WO2024055237A1 - Composition containing phenylphosphonic acid zinc salt and zinc phosphate complex, method for producing the same, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive - Google Patents

Composition containing phenylphosphonic acid zinc salt and zinc phosphate complex, method for producing the same, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive Download PDF

Info

Publication number
WO2024055237A1
WO2024055237A1 PCT/CN2022/119017 CN2022119017W WO2024055237A1 WO 2024055237 A1 WO2024055237 A1 WO 2024055237A1 CN 2022119017 W CN2022119017 W CN 2022119017W WO 2024055237 A1 WO2024055237 A1 WO 2024055237A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
represented
phenylphosphonic acid
moisture
urethane resin
Prior art date
Application number
PCT/CN2022/119017
Other languages
French (fr)
Inventor
Shuhui MA
Takuya Yoshida
Kunihiko Komatsuzaki
Lei Shi
Ruiyu Si
Zhiqiang Liu
Original Assignee
Dic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic Corporation filed Critical Dic Corporation
Priority to PCT/CN2022/119017 priority Critical patent/WO2024055237A1/en
Publication of WO2024055237A1 publication Critical patent/WO2024055237A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4216Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from mixtures or combinations of aromatic dicarboxylic acids and aliphatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/20Compositions for hot melt adhesives

Definitions

  • the present disclosure relates to a composition containing a phenylphosphonic acid zinc salt and a zinc phosphate complex, a method for producing the same, the use of the same as a crystal nucleating agent, and a moisture-curable hotmelt urethane resin adhesive.
  • Moisture-curable hotmelt urethane resins have excellent adhesiveness and can adjust an adhesion time relatively freely, are thus suitable for adhesives for use in adhesion processing requiring continuous production and forming processing such as sealing work, and are used in a wide variety of fields.
  • the problem can arise that the parts are moved to the next process with urethane resin insufficiently cooled and solidified.
  • Japanese Unexamined Patent Application Publication No. 2012-177016 discloses a moisture-curable hotmelt urethane resin adhesive containing an isocyanate group-terminated urethane prepolymer obtained by reacting a polyol and a polyisocyanate with each other in the presence of a metal salt of an aromatic phosphonic acid as a crystal nucleating agent.
  • an object of an aspect of the present invention is to provide a composition that can be suitably used as a nucleating agent that can further reduce the solidification time of a moisture-curable hotmelt urethane resin and a method for producing the same.
  • An object of another aspect of the present invention is to provide a moisture-curable hotmelt urethane resin adhesive with a further reduced solidification time.
  • the inventors of the present invention have found out that by using a specific phenylphosphonic acid and a specific phosphate as raw materials and simultaneously reacting them with a zinc compound, a composition containing a specific phenylphosphonic acid zinc salt and a specific zinc phosphate complex can be obtained and that the composition can be suitably used as a crystal nucleating agent that can further reduce the solidification time of a moisture-curable hotmelt urethane resin.
  • the present invention includes the following aspects.
  • a method for producing a composition containing a phenylphosphonic acid zinc salt and a zinc phosphate complex including a step of simultaneously reacting a phenylphosphonic acid represented by Formula (1) and a phosphate represented by Formula (2) with a zinc compound:
  • R 1 represents an alkyl group
  • R 2 represents an alkylene group
  • n represents an integer of 1 or more
  • a plurality of R 2 may be the same as each other or different from each other, and at least one of R 2 represents an ethylene group.
  • R 1 represents an alkyl group
  • R 2 represents an alkylene group
  • n represents an integer of 1 or more
  • a plurality of R2 may be the same as each other or different from each other, and at least one of R 2 represents an ethylene group.
  • composition according to [3] in which a molar ratio of an amount of the zinc phosphate complex represented by Formula (4) to an amount of the phenylphosphonic acid zinc salt represented by Formula (3) is 1/99 to 60/40.
  • Ri represents an alkyl group
  • R2 represents an alkylene group
  • n represents an integer of 1 or more
  • n represents an integer of 2 or more
  • a plurality of R2 may be the same as each other or different from each other
  • at least one of R 2 represents an ethylene group.
  • An aspect of the present invention can provide a composition that can be suitably used as a crystal nucleating agent that can further reduce the solidification time of a moisture-curable hotmelt urethane resin and a method for producing the same.
  • Another aspect of the invention can provide a moisture-curable hotmelt urethane resin adhesive with a further reduced solidification time.
  • An embodiment of the present invention is a method for producing a composition containing a phenylphosphonic acid zinc salt and a zinc phosphate complex, the method including a step of simultaneously reacting a phenylphosphonic acid represented by Formula (1) and a phosphate represented by Formula (2) with a zinc compound (areaction step) :
  • Ri represents an alkyl group
  • R2 represents an alkylene group
  • n represents an integer of 1 or more.
  • the alkyl group represented by R 1 may be linear or branched.
  • the number of carbons of the alkyl group represented by R 1 may be 1 or more and 15 or less, 14 or less, 13 or less, or 12 or less.
  • the phosphate represented by Formula (2) may be a mixture of two or more phosphates in which R 1 differ from each other.
  • the alkylene group represented by R 2 may be linear or branched.
  • the number of carbons of the alkylene group represented by R 2 may be 1 or more or 2 or more and 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, or 3 or less.
  • n is an integer of 2 or more, a plurality of R 2 may be the same each other or different from each other.
  • At least one of R 2 represents an ethylene group. That is, the phosphate represented by Formula (2) has at least one oxyethylene group. All of R 2 may be ethylene groups or part of R 2 may be ethylene groups with the rest being alkylene groups other than the ethylene group.
  • n may be an integer of 2 or more, 3 or more, or 4 or more and an integer of 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, or 4 or less.
  • the phosphate represented by Formula (2) may be a mixture of two or more phosphates in which n differ from each other.
  • the average molecular weight of the phosphate represented by Formula (2) may be 100 or more, 200 or more, or 300 or more and 900 or less, 800 or less, or 700 or less.
  • the average molecular weight in the present specification means a number average molecular weight measured by gel permeation chromatography (GPC) under the following conditions.
  • High-speed GPC apparatus High-speed GPC apparatus ( "HLC-8220GPC” manufactured by Tosoh Corporation)
  • TKgel G2000 (7.8 mm I.D. ⁇ 30 cm) ⁇ 1
  • RI a differential refractometer
  • Injection volume 100 ⁇ L (a tetrahydrofuran solution with a sample concentration of 0.4%by mass)
  • Standard sample A calibration curve is created using the following standard polystyrenes.
  • the molar ratio of the amount of the phosphate represented by Formula (2) to the amount of the phenylphosphonic acid represented by Formula (1) may be 1/99 or more, 60/40 or less, or 1/99 to 60/40.
  • the lower limit of the molar ratio may be 2/98, 5/95, 10/90, 15/85, or 20/80.
  • the upper limit of the molar ratio may be 55/45, 50/50, 45/55, 40/60, 35/65, 30/70, or 25/75.
  • the zinc compound to be simultaneously reacted with the phenylphosphonic acid represented by Formula (1) and the phosphate represented by Formula (2) may be zinc halide, zinc oxide, or zinc acetate, for example.
  • the zinc halide may be zinc fluoride, zinc chloride, zinc bromide, or zinc iodide.
  • the amount of the zinc compound may be 0.8 mole or more, 0.9 mole or more, or 0.95 mole or more and 1.2 mole or less, 1.1 mole or less, or 1.05 mole or less with respect to 1 mole of the total amount of the phenylphosphonic acid represented by Formula (1) and the phosphate represented by Formula (2) .
  • the reaction step by adding an aqueous solution in which the zinc compound is dissolved in water to an aqueous solution in which the phenylphosphonic acid represented by Formula (1) and the phosphate represented by Formula (2) are dissolved in water, the phenylphosphonic acid represented by Formula (1) and the phosphate represented by Formula (2) are simultaneously reacted with the zinc compound, for example.
  • the above reaction can be made to proceed by gradually adding an aqueous alkaline solution such as an aqueous sodium hydroxide solution, for example.
  • a white precipitate precipitated by the reaction is filtered out, is washed with water, and is then dried to obtain a composition containing a phenylphosphonic acid zinc salt and a zinc phosphate complex as white powder.
  • composition obtained by the method of production described above contains a phenylphosphonic acid zinc salt represented by Formula (3) and a zinc phosphate complex represented by formula (4) . That is, another embodiment of the present invention is a composition containing the phenylphosphonic acid zinc salt represented by Formula (3) and the zinc phosphate complex represented by Formula (4) :
  • R1 represents an alkyl group
  • R2 represents an alkylene group
  • n represents an integer of 1 or more
  • a plurality of R2 may be the same as each other or different from each other
  • at least one of R 2 represents an ethylene group.
  • the details of R 1 , R 2 , and n are the same as the details of R 1 , R 2 , and n described for the phosphate represented by Formula (2) .
  • the average molecular weight of the zinc phosphate complex represented by Formula (4) may be 150 or more, 250 or more, or 350 or more and 950 or less, 850 or less, or 750 or less.
  • the molar ratio of the amount of the zinc phosphate complex represented by Formula (4) to the amount of the phenylphosphonic acid zinc salt represented by Formula (3) may be 1/99 or more, 60/40 or less, or 1/99 to 60/40.
  • the lower limit of the molar ratio may be 2/98, 5/95, 10/90, 15/85, or 20/80.
  • the upper limit of the molar ratio may be 55/45, 50/50, 45/55, 40/60, 35/65, 30/70, or 25/75.
  • the composition of the present embodiment contains the zinc phosphate complex represented by Formula (4) in addition to the phenylphosphonic acid zinc salt represented by Formula (3) and can thereby further reduce the solidification time of a moisture-curable hotmelt urethane resin compared to a composition to which only the phenylphosphonic acid zinc salt represented by Formula (3) is added, for example.
  • the composition can improve the initial adhesive strength of a moisture-curable hotmelt urethane resin adhesive.
  • the composition of the present embodiment can be suitably used as a crystal nucleating agent, and more specifically, as a crystal nucleating agent promoting crystallization of urethane resins. That is, another embodiment of the present invention is the use (application) of the composition containing the phenylphosphonic acid zinc salt represented by Formula (3) above and the zinc phosphate complex represented by Formula (4) above as a crystal nucleating agent (acrystal nucleating agent promoting crystallization of urethane resins) .
  • Another embodiment of the present invention is a moisture-curable hotmelt urethane resin adhesive containing an isocyanate group-terminated urethane prepolymer, the phenylphosphonic acid zinc salt represented by Formula (3) above, and the zinc phosphate complex represented by Formula (4) above.
  • the isocyanate-terminated urethane prepolymer can be obtained by reacting a polyol (A) and a polyisocyanate (B) with each other in the presence of the phenylphosphonic acid zinc salt represented by Formula (3) above and the zinc phosphate complex represented by Formula (4) above.
  • the polyol (A) may contain an aliphatic polyester polyol, contain two kinds of aliphatic polyester polyols (an aliphatic polyester polyol (a1) and an aromatic polyester polyol (a2) described below) , or contain the two kinds of aliphatic polyester polyols (the aliphatic polyester polyol (a1) and the aromatic polyester polyol (a2) described below) and another polyol (a3) other than the aliphatic polyester polyols.
  • the aliphatic polyester polyol (a1) is a polyester polyol produced by a known and customary method with an aliphatic polycarboxylic acid and an aliphatic polyol as main components, and the method for producing the same is not limited to a particular method.
  • Preferred examples of the aliphatic polycarboxylic acid used in the synthesis of the aliphatic polyester polyol (a1) include C 4-12 aliphatic polycarboxylic acids such as succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosanedioic acid, citraconic acid, itaconic acid, citraconic anhydride, and itaconic anhydride.
  • C 4-12 aliphatic polycarboxylic acids such as succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosanedioic acid, citraconic acid, itaconic acid, citraconic anhydride, and itaconic anhydride.
  • lower alkyl ester derivatives such as methyl esters, acid anhydrides, and corresponding acid derivatives such as acid halides may be used, for example.
  • the aliphatic polyol used in the synthesis of the aliphatic polyester polyol (a1) is one having at least two hydroxy groups in the molecule and is preferably a C 2-12 aliphatic polyol.
  • the (a1) may be linear, branched, or cyclic in structure.
  • aliphatic polyol examples include linear aliphatic polyols such as ethylene glycol, 1, 3-propanediol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, 1, 7-heptanediol, 1, 8-octanediol, 1, 9-nonanediol, 1, 10-decanediol 1, 12-dodecanediol, diethylene glycol, triethylene glycol, triethylene glycol, and tetraethylene glycol; branched aliphatic polyols such as neopentyl glycol, 1, 3-butanediol, 2, 2-diethyl-1, 3-propanediol, 2, 2-diethylpropanediol, 3-methyl-1, 5-pentanediol, 2-ethyl-2-butyl-1, 3-propanediol, 2-methyl-1, 8
  • Adducts with various alkylene oxides added to hydrogenated bisphenol A, hydrogenated bisphenol F, or the like can also be used.
  • Polymerized products with ⁇ -butyrolactone, ⁇ -caprolactone, or the like subjected to ring-opening polymerization using a low molecular weight polyol as an initiator can also be used. They may be used alone or used in combination of two or more.
  • the aliphatic polyester polyol (a1) produced by a combination of a C 4-12 aliphatic polycarboxylic acid and a C 2-12 aliphatic polyol is contained in the polyol (A) , whereby the viscosity stability of the hotmelt urethane resin adhesive during forming processing is further improved, and an excellent effect of preventing a reduction in melt viscosity can be produced, which is preferred.
  • the aromatic polyester polyol (a2) is a polyester polyol produced by a known and customary method with an aromatic polycarboxylic acid and an aliphatic polyol or an aliphatic polycarboxylic acid and an aromatic polyol as main components, and the method for producing the same is not limited to a particular method.
  • the aromatic polycarboxylic acid is a carboxylic acid in which at least two carboxy groups are bonded to an aromatic ring and is preferably a C 8-24 aromatic polycarboxylic acid.
  • Examples thereof include orthophthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, biphenyldicarboxylic acid, and naphthalene dicarboxylic acid. They may be used alone or used in combination of two or more.
  • lower alkyl ester derivatives such as methyl esters, acid anhydrides, and corresponding acid derivatives such as acid halides may be used, for example.
  • Examples of the aliphatic polyol include the same as the aliphatic polyol that can be used in the synthesis of the aliphatic polyester polyol (a1) .
  • the aliphatic polyol that can be used in the synthesis of the aromatic polyester polyol (a2) and the aliphatic polyester polyol (a1) may be diethylene glycol, triethylene glycol, tetraethylene glycol, 1, 4-bis ( ⁇ -hydroxyethoxy) benzene, or the like, in which part of its carbon atoms is replaced by oxygen atoms or aromatic rings. These aliphatic polyols may also be used alone or used in combination of two or more.
  • polyester polyols obtained from the aromatic polycarboxylic acid and the aliphatic polyol may also be used.
  • Examples of the aliphatic polycarboxylic acid that can be used in the synthesis of the aromatic polyester polyol (a2) include C 4-12 aliphatic polycarboxylic acids, which are the same as those for the aliphatic polycarboxylic acid that can be used in the synthesis of the aliphatic polyester polyol (a1) .
  • the aromatic polyol is not limited to a particular aromatic polyol.
  • aromatic polyols obtained from aliphatic polyols such as ethylene glycol and neopentyl glycol and aromatic polycarboxylic acids such as orthophthalic acid and terephthalic acid.
  • aromatic polyol adducts with alkylene oxides such as ethylene oxide, propylene oxide, and butylene oxide added to bisphenol A, bisphenol F, or the like can also be used, for example.
  • alkylene oxides such as ethylene oxide, propylene oxide, and butylene oxide added to bisphenol A, bisphenol F, or the like
  • the equivalent ratio of hydroxy groups possessed by the aliphatic polyol and the aromatic polyol to carboxy groups of the aliphatic polycarboxylic acid and the aromatic polycarboxylic acid during the synthesis of the aliphatic polyester polyol (a1) and the aromatic polyester polyol (a2) is preferably in a range of 1.03 to 1.50 and more preferably in a range of 1.05 to 1.30.
  • the [OH/COOH equivalent ratio] is in such a range, the hydroxy group-terminated polyols can be generated in a larger amount, and a urethanation reaction with the polyisocyanate (B) can be made to proceed more easily, which is preferred.
  • the polycondensation conditions during the synthesis of the aliphatic polyester polyol (a1) and the aromatic polyester polyol (a2) are not limited to particular conditions so long as no abnormal reaction is caused and normal products can be obtained. Normally, certain amounts of the aliphatic polycarboxylic acid and the aliphatic polyol or the aromatic polycarboxylic acid and the aliphatic polyol may be subjected to an esterification reaction or an ester exchange reaction at an internal temperature of 150 to 250°C for 5 to 50 hours in the presence or in the absence of a catalyst and then be subjected to a polycondensation reaction.
  • the polycondensation reaction is preferably performed in the presence of a catalyst because the reaction easily proceeds.
  • the catalyst is not limited to a particular catalyst. Examples thereof include titanium-based catalysts such as titanium tetrabutoxide and tin-based catalysts such as dibutyltin oxide.
  • the catalyst may be charged together with the aliphatic polyol and the aliphatic polycarboxylic acid or the aliphatic polyol and the aromatic polycarboxylic acid or added after prepolymerization in the absence of a catalyst.
  • the number average molecular weight (Mn) of the aliphatic polyester polyol (a1) and the aromatic polyester polyol (a2) is preferably in a range of 500 to 6,000, more preferably in a range of 1,000 to 5,000, and particularly preferably in a range of 2,000 to 4,000.
  • Mn of (a1) and (a2) is in such a range, a balance of properties such as strength and elongation according to applications can be obtained, which is preferred.
  • Examples of the other polyol (a3) include polycarbonate polyols, polylactone polyols, and polyether polyols.
  • Examples of the polycarbonate polyols include polycarbonate polyols obtained using the linear aliphatic polyols such as 1, 4-butanediol, 1, 5-pentanediol, and 1, 6-hexanediol.
  • Examples of the polylactone polyols include polycaprolactone polyols obtained by ring-opening polymerization of caprolactone monomers.
  • Examples of the polyether polyols include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • the content ratio of the aliphatic polyester polyol (a1) /the aromatic polyester polyol (a2) /the other polyol (a3) may be 20 to 60 parts by mass/10 to 50 parts by mass/0 to 50 parts by mass and preferably 30 to 50 parts by mass/20 to 40 parts by mass/10 to 20 parts by mass in 100 parts by mass of the polyol (A) .
  • the melt viscosity of the polyol (A) can be adjusted to an appropriate range, and a moisture-curable hotmelt urethane resin adhesive exhibiting excellent workability and miscibility and having further excellent solidification properties can be obtained.
  • polyisocyanate (B) examples include known and customary aliphatic, aromatic, and alicyclic polyisocyanates.
  • aromatic diisocyanates such as diphenylmethane diisocyanate (MDI; a 4, 4′ form, a 2, 4′ form, a 2, 2′ form, mixtures thereof, and crude MDI)
  • carbodiimide-modified MDI modified MDI
  • polymethylene polyphenyl polyisocyanate carbodiimidated diphenylmethane polyisocyanate
  • xylene diisocyanate tolylene diisocyanate
  • TDI a 2, 4 form, a 2, 6 form, and mixtures thereof
  • xylylene diisocyanate XDI
  • NDI 1, 5-naphthalene diisocyanate
  • NDI tetramethyl xylene diisocyanate
  • phenylene diisocyanate aliphatic diisocyanates
  • the ratio between the polyol (A) and the polyisocyanate (B) used when the isocyanate group-terminated urethane prepolymer (hereinafter, referred to as a "prepolymer” ) is synthesized may be in a range that does not adversely affect reaction behavior, product quality, and the like.
  • the equivalent ratio of isocyanate groups possessed by the polyisocyanate (B) to hydroxy groups possessed by the polyol (A) (hereinafter, referred to as an [NCO/OH equivalent ratio] ) is preferably in a range of 1.2 to 4.0 and more preferably in a range of 1.5 to 3.0.
  • melt viscosity of the objective moisture-curable hotmelt urethane resin composition is in an appropriate range and performance such as excellent workability, film properties, and further excellent solidification properties can be exhibited.
  • the reaction conditions may be set in a range that does not adversely affect reaction behavior, product quality, and the like and are not limited to particular conditions. Normally, they are preferably reacted at a reaction temperature of 80 to 130°C for 1 to 10 hours.
  • reaction method a known reaction method such as batch reaction, semi-continuous reaction, or continuous reaction can be selected, for example.
  • the reaction can be performed in a solvent or solvent-free. However, when the reaction is performed in a solvent, it is preferable to remove the solvent during the reaction or after the end of the reaction to finally eliminate the solvent.
  • the method of removing the solvent is not limited to a particular method.
  • the total amount of the phenylphosphonic acid zinc salt represented by Formula (3) and the zinc phosphate complex represented by Formula (4) may be 0.1%by mass or more, 10%by mass or less, or 0.1 to 10%by mass based on the entire amount of the moisture-curable hotmelt urethane resin adhesive.
  • the lower limit of the total amount may be 0.3%by mass, 0.5%by mass, or 1%by mass based on the entire amount of the moisture-curable hotmelt urethane resin adhesive.
  • the upper limit of the total amount may be 7%by mass, 5%by mass, or 3%by mass based on the entire amount of the moisture-curable hotmelt urethane resin adhesive.
  • the molar ratio of the amount of the zinc phosphate complex represented by Formula (4) to the amount of the phenylphosphonic acid zinc salt represented by Formula (3) may be 1/99 or more, 60/40 or less, or 1/99 to 60/40.
  • the lower limit of the molar ratio may be 2/98, 5/95, 10/90, 15/85, or 20/80.
  • the upper limit of the molar ratio may be 55/45, 50/50, 45/55, 40/60, 35/65, 30/70, or 25/75.
  • the moisture-curable hotmelt urethane resin adhesive of the present embodiment may further contain other resins such as previously known thermoplastic resins and thermosetting resins and may further contain other additives.
  • the other additives include foam stabilizers, antioxidants, antifoaming agents, UV absorbers, abrasive grains, fillers, pigments, dyes, colorants, thickeners, surfactants, fire retardants, plasticizers, lubricants, antistatic agents, heat-resistant stabilizers, adhesion imparting agents, curing catalysts, stabilizers, fluorescent whitening agents, silane coupling agents, and waxes.
  • n represents an integer of 1 or more
  • n represents an integer of 1 or more
  • Composition 1 as a crystal nucleating agent was added to the (A) , and the mixture was heated up to 110°C and was dehydrated until the moisture content reached 0.05%by mass under a reduced pressure condition.
  • Example 2 The same operation as in Example 1 was performed except that 11.7 parts by mass (73.9 mmol) of the phenylphosphonic acid and 3.9 parts by mass (8.2 mmol) of the phosphate represented by Formula (2A) were used to obtain Composition 2 as white powder. The same operation as in Example 1 was performed except that Composition 2 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
  • Example 2 The same operation as in Example 1 was performed except that 10.0 parts by mass (63.3 mmol) of the phenylphosphonic acid and 9.0 parts by mass (18.8 mmol) of the phosphate represented by Formula (2A) were used to obtain Composition 3 as white powder.
  • Composition 3 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
  • Example 2 The same operation as in Example 1 was performed except that 9.1 parts by mass (57.5 mmol) of the phenylphosphonic acid and 11.8 parts by mass (24.6 mmol) of the phosphate represented by Formula (2A) were used to obtain Composition 4 as white powder.
  • Composition 4 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
  • Example 2 The same operation as in Example 1 was performed except that 6.5 parts by mass (41.1 mmol) of the phenylphosphonic acid and 19.7 parts by mass (41.1 mmol) of the phosphate represented by Formula (2A) were used to obtain Composition 5 as white powder.
  • Composition 5 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
  • R 1 represents an alkyl group of C 12 H 25 or C 14 H 29 ) as white powder.
  • Example 2 The same operation as in Example 1 was performed except that Composition 6 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
  • Example 6 The same operation as in Example 6 was performed except that 12.3 parts by mass (78.0 mmol) of the phenylphosphonic acid and 2.7 parts by mass (4.1 mmol) of the phosphate represented by Formula (2B) were used to obtain Composition 7 as white powder.
  • Composition 7 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
  • Example 6 The same operation as in Example 6 was performed except that 11.7 parts by mass (73.9 mmol) of the phenylphosphonic acid and 5.4 parts by mass (8.2 mmol) of the phosphate represented by Formula (2B) were used to obtain Composition 8 as white powder.
  • Composition 8 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
  • Example 6 The same operation as in Example 6 was performed except that 10.0 parts by mass (63.3 mmol) of the phenylphosphonic acid and 12.5 parts by mass (18.7 mmol) of the phosphate represented by Formula (2B) were used to obtain Composition 9 as white powder.
  • Composition 9 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
  • Example 2 The same operation as in Example 1 was performed except that Composition 1 was not added to obtain a moisture-curable hotmelt urethane resin adhesive.
  • Example 2 The same operation as in Example 1 was performed except that a phenylphosphonic acid zinc salt obtained by the following procedure was used in place of Composition 1 to prepare a moisture-curable hotmelt urethane resin adhesive.
  • Each of the obtained moisture-curable hotmelt urethane resin adhesives of the examples and the comparative examples was made into a heated and melted state at 120°C and was applied onto a polypropylene sheet as a base so as to have a thickness of 50 ⁇ m.
  • kraft paper as a surface member was placed on the adhesive layer applied as described above, which was immediately left in a thermostatic oven at 23°C. Based on the point in time when left in the thermostatic oven, a time (in seconds) until the kraft paper ceased to adhere to the adhesive layer was measured and was determined to be a solidification time at 23°C (an open time at 23°C) .
  • the results are listed in Table 1.
  • Each of the obtained moisture-curable hotmelt urethane resin adhesives of the examples and the comparative examples was made into a heated and melted state at 120°C, and 1 ml of the adhesive was applied to a wood block base with an area of one side of 4 cm 2 . Then, it was bonded to another wood block base to which no adhesive had been applied and was left in a thermostatic oven at 23°C for 3 minutes, and the tensile strength (mPa) was measured to be determined to be initial adhesive strength.
  • mPa tensile strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A method for producing a composition containing a phenylphosphonic acid zinc salt and a zinc phosphate complex, the method including a step of simultaneously reacting a phenylphosphonic acid represented by Formula (1) and a phosphate represented by Formula (2) with a zinc compound: in Formula (2), Ri represents an alkyl group, R2 represents an alkylene group, and n represents an integer of 1 or more, when n is an integer of 2 or more, a plurality of R2 may be the same as each other or different from each other, and at least one of R2 represents an ethylene group.

Description

COMPOSITION CONTAINING PHENYLPHOSPHONIC ACID ZINC SALT AND ZINC PHOSPHATE COMPLEX, METHOD FOR PRODUCING THE SAME, USE OF THE SAME AS CRYSTAL NUCLEATING AGENT, AND MOISTURE-CURABLE HOTMELT URETHANE RESIN ADHESIVE Technical Field
The present disclosure relates to a composition containing a phenylphosphonic acid zinc salt and a zinc phosphate complex, a method for producing the same, the use of the same as a crystal nucleating agent, and a moisture-curable hotmelt urethane resin adhesive.
Background Art
Moisture-curable hotmelt urethane resins have excellent adhesiveness and can adjust an adhesion time relatively freely, are thus suitable for adhesives for use in adhesion processing requiring continuous production and forming processing such as sealing work, and are used in a wide variety of fields. However, in wood wrapping applications for decorative sheets, in which initial strength is required, and electric/electronic parts and automotive parts applications, in which continuous production on high-speed lines is required, the problem  can arise that the parts are moved to the next process with urethane resin insufficiently cooled and solidified.
To solve the above problem, metal salts of phenylphosphonic acid compounds have been added to urethane resins as crystal nucleating agents to reduce a solidification time. Japanese Unexamined Patent Application Publication No. 2012-177016, for example, discloses a moisture-curable hotmelt urethane resin adhesive containing an isocyanate group-terminated urethane prepolymer obtained by reacting a polyol and a polyisocyanate with each other in the presence ofa metal salt of an aromatic phosphonic acid as a crystal nucleating agent.
Summary of Invention
According to study by the inventors of the present invention, there is room to further reduce the solidification time of the moisture-curable hotmelt urethane resin when the metal salt of the aromatic phosphonic acid is used as the crystal nucleating agent.
Given these circumstances, an object of an aspect of the present invention is to provide a composition that can be suitably used as a nucleating agent that can further  reduce the solidification time of a moisture-curable hotmelt urethane resin and a method for producing the same. An object of another aspect of the present invention is to provide a moisture-curable hotmelt urethane resin adhesive with a further reduced solidification time.
The inventors of the present invention have found out that by using a specific phenylphosphonic acid and a specific phosphate as raw materials and simultaneously reacting them with a zinc compound, a composition containing a specific phenylphosphonic acid zinc salt and a specific zinc phosphate complex can be obtained and that the composition can be suitably used as a crystal nucleating agent that can further reduce the solidification time of a moisture-curable hotmelt urethane resin.
The present invention includes the following aspects.
[1] A method for producing a composition containing a phenylphosphonic acid zinc salt and a zinc phosphate complex, the method including a step of simultaneously reacting a phenylphosphonic acid represented by Formula (1) and a phosphate represented by Formula (2) with a zinc compound:
Figure PCTCN2022119017-appb-000001
in Formula (2) , R 1 represents an alkyl group, R 2 represents an alkylene group, and n represents an integer of 1 or more, when n is an integer of 2 or more, a plurality of R 2 may be the same as each other or different from each other, and at least one of R 2 represents an ethylene group.
[2] The method for producing a composition according to [1], in which a molar ratio of an amount of the phosphate represented by Formula (2) to an amount of the phenylphosphonic acid represented by Formula (1) is 1/99 to 60/40.
[3] A composition containing a phenylphosphonic acid zinc salt represented by Formula (3) and a zinc phosphate complex represented by Formula (4) :
Figure PCTCN2022119017-appb-000002
Figure PCTCN2022119017-appb-000003
in Formula (4) , R 1 represents an alkyl group, R 2 represents an alkylene group, and n represents an integer of 1 or more, when n is an integer of 2 or more, a plurality of R2 may be the same as each other or different from each other, and at least one of R 2 represents an ethylene group.
[4] The composition according to [3] , in which a molar ratio of an amount of the zinc phosphate complex represented by Formula (4) to an amount of the phenylphosphonic acid zinc salt represented by Formula (3) is 1/99 to 60/40.
[5] Use of the composition according to [3] or [4] as a crystal nucleating agent.
[6] A moisture-curable hotmelt urethane resin adhesive containing an isocyanate group-terminated urethane prepolymer, a phenylphosphonic acid zinc salt represented by Formula (3) , and a zinc phosphate complex represented by Formula (4) :
Figure PCTCN2022119017-appb-000004
Figure PCTCN2022119017-appb-000005
in Formula (4) , Ri represents an alkyl group, R2 represents an alkylene group, and n represents an integer of 1 or more, when n is an integer of 2 or more, a plurality of R2 may be the same as each other or different from each other, and at least one of R 2 represents an ethylene group.
[7] The moisture-curable hotmelt urethane resin adhesive according to [6] , in which a molar ratio of an amount of the phosphate represented by Formula (4) to an amount of the phenylphosphonic acid represented by Formula (3) is 1/99 to 60/40.
[8] The moisture-curable hotmelt urethane resin adhesive according to [6] or [7] , in which a total amount of the phenylphosphonic acid zinc salt represented by Formula (3) and the zinc phosphate complex represented by Formula (4) is 0.1 to 10%by mass based on an entire amount of the moisture-curable hotmelt urethane resin adhesive.
An aspect of the present invention can provide a composition that can be suitably used as a crystal nucleating agent that can further reduce the  solidification time of a moisture-curable hotmelt urethane resin and a method for producing the same. Another aspect of the invention can provide a moisture-curable hotmelt urethane resin adhesive with a further reduced solidification time.
Description of Embodiments
The following describes embodiments of the present invention in detail. An embodiment of the present invention is a method for producing a composition containing a phenylphosphonic acid zinc salt and a zinc phosphate complex, the method including a step of simultaneously reacting a phenylphosphonic acid represented by Formula (1) and a phosphate represented by Formula (2) with a zinc compound (areaction step) :
Figure PCTCN2022119017-appb-000006
In Formula (2) , Ri represents an alkyl group, R2 represents an alkylene group, and n represents an integer  of 1 or more.
The alkyl group represented by R 1 may be linear or branched. The number of carbons of the alkyl group represented by R 1 may be 1 or more and 15 or less, 14 or less, 13 or less, or 12 or less. The phosphate represented by Formula (2) may be a mixture of two or more phosphates in which R 1 differ from each other.
The alkylene group represented by R 2 may be linear or branched. The number of carbons of the alkylene group represented by R 2 may be 1 or more or 2 or more and 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, or 3 or less. When n is an integer of 2 or more, a plurality of R 2 may be the same each other or different from each other.
At least one of R 2 represents an ethylene group. That is, the phosphate represented by Formula (2) has at least one oxyethylene group. All of R 2 may be ethylene groups or part of R 2 may be ethylene groups with the rest being alkylene groups other than the ethylene group.
The letter n may be an integer of 2 or more, 3 or more, or 4 or more and an integer of 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, or 4 or less.
The phosphate represented by Formula (2) may be a mixture of two or more phosphates in which n differ from each other.
The average molecular weight of the phosphate represented by Formula (2) may be 100 or more, 200 or more, or 300 or more and 900 or less, 800 or less, or 700 or less.
The average molecular weight in the present specification means a number average molecular weight measured by gel permeation chromatography (GPC) under the following conditions.
Measuring apparatus: High-speed GPC apparatus ( "HLC-8220GPC" manufactured by Tosoh Corporation) 
Column: The following columns manufactured by Tosoh Corporation are used connected in series.
"TSKgel G5000" (7.8 mm I.D. × 30 cm) × 1
"TSKgel G4000" (7.8 mm I.D. × 30 cm) × 1
"TSKgel G3000" (7.8 mm I.D. × 30 cm) × 1
"TSKgel G2000" (7.8 mm I.D. × 30 cm) × 1
Detector: RI (a differential refractometer)
Column temperature: 40℃
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL/minute
Injection volume: 100 μL (a tetrahydrofuran solution with a sample concentration of 0.4%by mass)
Standard sample: A calibration curve is created using the following standard polystyrenes.
(Standard Polystyrenes)
"TSKgel Standard Polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-40" manufactured by  Tosoh Corporation
"TSKgel Standard Polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-550" manufactured by Tosoh Corporation
The molar ratio of the amount of the phosphate represented by Formula (2) to the amount of the phenylphosphonic acid represented by Formula (1) (the amount of the phosphate represented by Formula (2) /the amount of the phenylphosphonic acid represented by Formula (1) ) may be 1/99 or more, 60/40 or less, or 1/99 to 60/40. The lower limit of the molar ratio may be 2/98, 5/95, 10/90, 15/85, or 20/80. The upper limit of the molar ratio may be 55/45, 50/50, 45/55, 40/60, 35/65, 30/70, or 25/75.
The zinc compound to be simultaneously reacted with the phenylphosphonic acid represented by Formula (1) and the phosphate represented by Formula (2) may be zinc halide, zinc oxide, or zinc acetate, for example. The  zinc halide may be zinc fluoride, zinc chloride, zinc bromide, or zinc iodide.
The amount of the zinc compound may be 0.8 mole or more, 0.9 mole or more, or 0.95 mole or more and 1.2 mole or less, 1.1 mole or less, or 1.05 mole or less with respect to 1 mole of the total amount of the phenylphosphonic acid represented by Formula (1) and the phosphate represented by Formula (2) .
In the reaction step, by adding an aqueous solution in which the zinc compound is dissolved in water to an aqueous solution in which the phenylphosphonic acid represented by Formula (1) and the phosphate represented by Formula (2) are dissolved in water, the phenylphosphonic acid represented by Formula (1) and the phosphate represented by Formula (2) are simultaneously reacted with the zinc compound, for example. In this process, the above reaction can be made to proceed by gradually adding an aqueous alkaline solution such as an aqueous sodium hydroxide solution, for example.
A white precipitate precipitated by the reaction is filtered out, is washed with water, and is then dried to obtain a composition containing a phenylphosphonic acid  zinc salt and a zinc phosphate complex as white powder.
The composition obtained by the method of production described above contains a phenylphosphonic acid zinc salt represented by Formula (3) and a zinc phosphate complex represented by formula (4) . That is, another embodiment of the present invention is a composition containing the phenylphosphonic acid zinc salt represented by Formula (3) and the zinc phosphate complex represented by Formula (4) :
Figure PCTCN2022119017-appb-000007
In Formula (4) , R1 represents an alkyl group, R2 represents an alkylene group, and n represents an integer of 1 or more, when n is an integer of 2 or more, a plurality of R2 may be the same as each other or different from each other, and at least one of R 2 represents an ethylene group. The details of R 1, R 2, and n are the same as the details of R 1, R 2, and n described for the phosphate represented by Formula (2) .
The average molecular weight of the zinc phosphate complex represented by Formula (4) may be 150 or more, 250 or more, or 350 or more and 950 or less, 850 or less, or 750 or less.
In the composition, the molar ratio of the amount of the zinc phosphate complex represented by Formula (4) to the amount of the phenylphosphonic acid zinc salt represented by Formula (3) (the amount of the zinc phosphate complex represented by Formula (4) /the amount of the phenylphosphonic acid zinc salt represented by Formula (3) ) may be 1/99 or more, 60/40 or less, or 1/99 to 60/40. The lower limit of the molar ratio may be 2/98, 5/95, 10/90, 15/85, or 20/80. The upper limit of the molar ratio may be 55/45, 50/50, 45/55, 40/60, 35/65, 30/70, or 25/75.
The composition of the present embodiment contains the zinc phosphate complex represented by Formula (4) in addition to the phenylphosphonic acid zinc salt represented by Formula (3) and can thereby further reduce the solidification time of a moisture-curable hotmelt urethane resin compared to a composition to which only the phenylphosphonic acid zinc salt represented by Formula (3)  is added, for example. In an embodiment, the composition can improve the initial adhesive strength of a moisture-curable hotmelt urethane resin adhesive.
Thus, the composition of the present embodiment can be suitably used as a crystal nucleating agent, and more specifically, as a crystal nucleating agent promoting crystallization of urethane resins. That is, another embodiment of the present invention is the use (application) of the composition containing the phenylphosphonic acid zinc salt represented by Formula (3) above and the zinc phosphate complex represented by Formula (4) above as a crystal nucleating agent (acrystal nucleating agent promoting crystallization of urethane resins) .
Another embodiment of the present invention is a moisture-curable hotmelt urethane resin adhesive containing an isocyanate group-terminated urethane prepolymer, the phenylphosphonic acid zinc salt represented by Formula (3) above, and the zinc phosphate complex represented by Formula (4) above.
The isocyanate-terminated urethane prepolymer can be obtained by reacting a polyol (A) and a polyisocyanate (B)  with each other in the presence of the phenylphosphonic acid zinc salt represented by Formula (3) above and the zinc phosphate complex represented by Formula (4) above.
The polyol (A) may contain an aliphatic polyester polyol, contain two kinds of aliphatic polyester polyols (an aliphatic polyester polyol (a1) and an aromatic polyester polyol (a2) described below) , or contain the two kinds of aliphatic polyester polyols (the aliphatic polyester polyol (a1) and the aromatic polyester polyol (a2) described below) and another polyol (a3) other than the aliphatic polyester polyols.
The aliphatic polyester polyol (a1) is a polyester polyol produced by a known and customary method with an aliphatic polycarboxylic acid and an aliphatic polyol as main components, and the method for producing the same is not limited to a particular method.
Preferred examples of the aliphatic polycarboxylic acid used in the synthesis of the aliphatic polyester polyol (a1) include C 4-12 aliphatic polycarboxylic acids such as succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosanedioic acid, citraconic acid,  itaconic acid, citraconic anhydride, and itaconic anhydride.
For the aliphatic polycarboxylic acid, lower alkyl ester derivatives such as methyl esters, acid anhydrides, and corresponding acid derivatives such as acid halides may be used, for example.
The aliphatic polyol used in the synthesis of the aliphatic polyester polyol (a1) is one having at least two hydroxy groups in the molecule and is preferably a C 2-12 aliphatic polyol. The (a1) may be linear, branched, or cyclic in structure.
Examples of the aliphatic polyol include linear aliphatic polyols such as ethylene glycol, 1, 3-propanediol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, 1, 7-heptanediol, 1, 8-octanediol, 1, 9-nonanediol, 1, 10-decanediol 1, 12-dodecanediol, diethylene glycol, triethylene glycol, triethylene glycol, and tetraethylene glycol; branched aliphatic polyols such as neopentyl glycol, 1, 3-butanediol, 2, 2-diethyl-1, 3-propanediol, 2, 2-diethylpropanediol, 3-methyl-1, 5-pentanediol, 2-ethyl-2-butyl-1, 3-propanediol, 2-methyl-1, 8-octanediol, 2, 4-diethyl-1, 5-pentanediol, trimethylol ethane, trimethylol  propane, and pentaerythritol; and alicyclic polyols such as cyclopentanediol, cyclohexanediol, and cyclohexanedimethanol. Among these, ethylene glycol, 1, 6-hexanediol, and neopentyl glycol are preferred.
Adducts with various alkylene oxides added to hydrogenated bisphenol A, hydrogenated bisphenol F, or the like can also be used. Polymerized products with γ-butyrolactone, ε-caprolactone, or the like subjected to ring-opening polymerization using a low molecular weight polyol as an initiator can also be used. They may be used alone or used in combination of two or more.
Among the combinations of the aliphatic polycarboxylic acid and the aliphatic polyol, the aliphatic polyester polyol (a1) produced by a combination of a C 4-12 aliphatic polycarboxylic acid and a C 2-12 aliphatic polyol is contained in the polyol (A) , whereby the viscosity stability of the hotmelt urethane resin adhesive during forming processing is further improved, and an excellent effect of preventing a reduction in melt viscosity can be produced, which is preferred.
The aromatic polyester polyol (a2) is a polyester polyol produced by a known and customary method with an  aromatic polycarboxylic acid and an aliphatic polyol or an aliphatic polycarboxylic acid and an aromatic polyol as main components, and the method for producing the same is not limited to a particular method.
The aromatic polycarboxylic acid is a carboxylic acid in which at least two carboxy groups are bonded to an aromatic ring and is preferably a C 8-24 aromatic polycarboxylic acid. Examples thereof include orthophthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, biphenyldicarboxylic acid, and naphthalene dicarboxylic acid. They may be used alone or used in combination of two or more.
For the aromatic polycarboxylic acid, lower alkyl ester derivatives such as methyl esters, acid anhydrides, and corresponding acid derivatives such as acid halides may be used, for example.
Examples of the aliphatic polyol include the same as the aliphatic polyol that can be used in the synthesis of the aliphatic polyester polyol (a1) .
The aliphatic polyol that can be used in the synthesis of the aromatic polyester polyol (a2) and the  aliphatic polyester polyol (a1) may be diethylene glycol, triethylene glycol, tetraethylene glycol, 1, 4-bis (β-hydroxyethoxy) benzene, or the like, in which part of its carbon atoms is replaced by oxygen atoms or aromatic rings. These aliphatic polyols may also be used alone or used in combination of two or more.
Furthermore, mixtures of polyester polyols obtained from the aromatic polycarboxylic acid and the aliphatic polyol may also be used.
Examples of the aliphatic polycarboxylic acid that can be used in the synthesis of the aromatic polyester polyol (a2) include C 4-12 aliphatic polycarboxylic acids, which are the same as those for the aliphatic polycarboxylic acid that can be used in the synthesis of the aliphatic polyester polyol (a1) .
The aromatic polyol is not limited to a particular aromatic polyol. Examples thereof include aromatic polyols obtained from aliphatic polyols such as ethylene glycol and neopentyl glycol and aromatic polycarboxylic acids such as orthophthalic acid and terephthalic acid.
As the aromatic polyol, adducts with alkylene oxides  such as ethylene oxide, propylene oxide, and butylene oxide added to bisphenol A, bisphenol F, or the like can also be used, for example.
The equivalent ratio of hydroxy groups possessed by the aliphatic polyol and the aromatic polyol to carboxy groups of the aliphatic polycarboxylic acid and the aromatic polycarboxylic acid during the synthesis of the aliphatic polyester polyol (a1) and the aromatic polyester polyol (a2) (that is, an [OH/COOH equivalent ratio] ) is preferably in a range of 1.03 to 1.50 and more preferably in a range of 1.05 to 1.30. When the [OH/COOH equivalent ratio] is in such a range, the hydroxy group-terminated polyols can be generated in a larger amount, and a urethanation reaction with the polyisocyanate (B) can be made to proceed more easily, which is preferred.
The polycondensation conditions during the synthesis of the aliphatic polyester polyol (a1) and the aromatic polyester polyol (a2) are not limited to particular conditions so long as no abnormal reaction is caused and normal products can be obtained. Normally, certain amounts of the aliphatic polycarboxylic acid and the aliphatic polyol or the aromatic polycarboxylic acid and the aliphatic polyol may be subjected to an esterification  reaction or an ester exchange reaction at an internal temperature of 150 to 250℃ for 5 to 50 hours in the presence or in the absence of a catalyst and then be subjected to a polycondensation reaction.
The polycondensation reaction is preferably performed in the presence of a catalyst because the reaction easily proceeds. The catalyst is not limited to a particular catalyst. Examples thereof include titanium-based catalysts such as titanium tetrabutoxide and tin-based catalysts such as dibutyltin oxide.
The catalyst may be charged together with the aliphatic polyol and the aliphatic polycarboxylic acid or the aliphatic polyol and the aromatic polycarboxylic acid or added after prepolymerization in the absence of a catalyst.
In the production of the aliphatic polyester polyol (a1) and the aromatic polyester polyol (a2) , it is desirable to make almost all both ends hydroxy groups and to leave as few carboxy group ends as possible, and for this purpose it is effective and preferred to add the catalyst after performing the prepolymerization.
The number average molecular weight (Mn) of the aliphatic polyester polyol (a1) and the aromatic polyester polyol (a2) is preferably in a range of 500 to 6,000, more preferably in a range of 1,000 to 5,000, and particularly preferably in a range of 2,000 to 4,000. When the Mn of (a1) and (a2) is in such a range, a balance of properties such as strength and elongation according to applications can be obtained, which is preferred.
Examples of the other polyol (a3) include polycarbonate polyols, polylactone polyols, and polyether polyols. Examples of the polycarbonate polyols include polycarbonate polyols obtained using the linear aliphatic polyols such as 1, 4-butanediol, 1, 5-pentanediol, and 1, 6-hexanediol. Examples of the polylactone polyols include polycaprolactone polyols obtained by ring-opening polymerization of caprolactone monomers. Examples of the polyether polyols include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
The content ratio of the aliphatic polyester polyol (a1) /the aromatic polyester polyol (a2) /the other polyol (a3) may be 20 to 60 parts by mass/10 to 50 parts by mass/0 to 50 parts by mass and preferably 30 to 50 parts by mass/20 to 40 parts by mass/10 to 20 parts by mass in  100 parts by mass of the polyol (A) . When the content ratio is in such a range, the melt viscosity of the polyol (A) can be adjusted to an appropriate range, and a moisture-curable hotmelt urethane resin adhesive exhibiting excellent workability and miscibility and having further excellent solidification properties can be obtained.
Examples of the polyisocyanate (B) include known and customary aliphatic, aromatic, and alicyclic polyisocyanates. Examples thereof include aromatic diisocyanates such as diphenylmethane diisocyanate (MDI; a 4, 4′ form, a 2, 4′ form, a 2, 2′ form, mixtures thereof, and crude MDI) , carbodiimide-modified MDI (modified MDI) , polymethylene polyphenyl polyisocyanate, carbodiimidated diphenylmethane polyisocyanate, xylene diisocyanate, tolylene diisocyanate (TDI; a 2, 4 form, a 2, 6 form, and mixtures thereof) , xylylene diisocyanate (XDI) , 1, 5-naphthalene diisocyanate (NDI) , tetramethyl xylene diisocyanate, and phenylene diisocyanate; aliphatic diisocyanates such as hexamethylene diisocyanate (HDI) , dimer acid diisocyanate, norbornene diisocyanate, lysine diisocyanate, and tetramethylxylylene diisocyanate; and alicyclic diisocyanates such as isophorone diisocyanate (IPDI) , hydrogenated diphenylmethane diisocyanate  (hydrogenated MDI) , hydrogenated xylylene diisocyanate (hydrogenated XDI) , cyclohexane diisocyanate, dicyclohexylmethane diisocyanate, and isophorone diisocyanate. Among these, MDI and XDI are preferred because of their fast reaction with the polyol (A) and moisture (water) to give excellent workability. They may be used alone or used in combination of two or more.
The ratio between the polyol (A) and the polyisocyanate (B) used when the isocyanate group-terminated urethane prepolymer (hereinafter, referred to as a "prepolymer" ) is synthesized may be in a range that does not adversely affect reaction behavior, product quality, and the like. Normally, the equivalent ratio of isocyanate groups possessed by the polyisocyanate (B) to hydroxy groups possessed by the polyol (A) (hereinafter, referred to as an [NCO/OH equivalent ratio] ) is preferably in a range of 1.2 to 4.0 and more preferably in a range of 1.5 to 3.0. When the [NCO/OH equivalent ratio] is in such a range, the melt viscosity of the objective moisture-curable hotmelt urethane resin composition is in an appropriate range and performance such as excellent workability, film properties, and further excellent solidification properties can be exhibited.
The reaction conditions may be set in a range that does not adversely affect reaction behavior, product quality, and the like and are not limited to particular conditions. Normally, they are preferably reacted at a reaction temperature of 80 to 130℃ for 1 to 10 hours.
For the reaction method, a known reaction method such as batch reaction, semi-continuous reaction, or continuous reaction can be selected, for example.
The reaction can be performed in a solvent or solvent-free. However, when the reaction is performed in a solvent, it is preferable to remove the solvent during the reaction or after the end of the reaction to finally eliminate the solvent. The method of removing the solvent is not limited to a particular method.
The total amount of the phenylphosphonic acid zinc salt represented by Formula (3) and the zinc phosphate complex represented by Formula (4) may be 0.1%by mass or more, 10%by mass or less, or 0.1 to 10%by mass based on the entire amount of the moisture-curable hotmelt urethane resin adhesive. The lower limit of the total amount may be 0.3%by mass, 0.5%by mass, or 1%by mass based on the entire amount of the moisture-curable hotmelt urethane  resin adhesive. The upper limit of the total amount may be 7%by mass, 5%by mass, or 3%by mass based on the entire amount of the moisture-curable hotmelt urethane resin adhesive.
In the moisture-curable hotmelt urethane resin adhesive, the molar ratio of the amount of the zinc phosphate complex represented by Formula (4) to the amount of the phenylphosphonic acid zinc salt represented by Formula (3) (the amount of the zinc phosphate complex represented by Formula (4) /the amount of the phenylphosphonic acid zinc salt represented by Formula (3) ) may be 1/99 or more, 60/40 or less, or 1/99 to 60/40. The lower limit of the molar ratio may be 2/98, 5/95, 10/90, 15/85, or 20/80. The upper limit of the molar ratio may be 55/45, 50/50, 45/55, 40/60, 35/65, 30/70, or 25/75.
The moisture-curable hotmelt urethane resin adhesive of the present embodiment may further contain other resins such as previously known thermoplastic resins and thermosetting resins and may further contain other additives. Examples of the other additives include foam stabilizers, antioxidants, antifoaming agents, UV absorbers, abrasive grains, fillers, pigments, dyes,  colorants, thickeners, surfactants, fire retardants, plasticizers, lubricants, antistatic agents, heat-resistant stabilizers, adhesion imparting agents, curing catalysts, stabilizers, fluorescent whitening agents, silane coupling agents, and waxes.
The following describes the present invention further specifically based on examples. The present invention is not limited to the examples.
[Example 1]
(Production of Composition Containing phenylphosphonic acid zinc salt and Zinc Phosphate Complex)
To a 3-liter four-neck flask, added were 12.3 parts by mass (78.0 mmol) of the phenylphosphonic acid represented by Formula (1) , 2.0 parts by mass (4.1 mmol) of a phosphate with an average molecular weight of 480 represented by Formula (2A) :
(in the formula, n represents an integer of 1 or more) , and 600 parts by mass of water to prepare an aqueous solution.
Figure PCTCN2022119017-appb-000008
To this flask, an aqueous solution that had been prepared from 11.2 parts by mass (82.2 mmol) of zinc chloride and 260 parts by mass of water was further added to be mixed together. To this solution, with stirring, 1, 608 parts by mass of a 0.1 M aqueous sodium hydroxide solution was added over 6 hours to be reacted. The precipitated white precipitate was filtered out, was washed with water, and was then dried under reduced pressure at 80℃ for 2 hours or more to obtain Composition 1 containing the phenylphosphonic acid zinc salt represented by Formula (3) and a zinc phosphate complex with an average molecular weight of 543 represented by Formula (4A) :
(in the formula, n represents an integer of 1 or more) as white powder.
Figure PCTCN2022119017-appb-000009
(Production of Moisture-Curable Hotmelt Urethane Resin Adhesive)
In a 1-liter four-neck flask, mixed together and melted were 30 parts by mass of polypropylene glycol (Mn = 1,000) , 40 parts by mass of an aliphatic polyester polyol (Mn = 4,500) obtained by reacting 1, 6-hexanediol (HD) and  adipic acid (AA) with each other in a mass ratio of HD/AA = 46/54, and 30 parts by mass of an aromatic polyester polyol (Mn = 5,000) obtained by reacting 1, 6 hexanediol (HD) , neopentyl glycol (NPG) , ethylene glycol (EG) , isophthalic acid (iPA) , and terephthalic acid (tPA) with each other in a mass ratio of HD/NPG/EG/iPA/tPA = 7/14/18/40/21 to prepare a polyol (A) .
Next, 1.2 parts by mass (1.0%by mass based on the entire amount of the adhesive) of Composition 1 as a crystal nucleating agent was added to the (A) , and the mixture was heated up to 110℃ and was dehydrated until the moisture content reached 0.05%by mass under a reduced pressure condition.
Subsequently, it was cooled to 70℃, to which 19 parts by mass of 4, 4-diphenylmethane diisocyanate was added, and the mixture was then reacted at 90℃ for 3 hours until the NCO content (%) became constant to obtain a moisture-curable hotmelt urethane resin adhesive.
[Example 2]
The same operation as in Example 1 was performed except that 11.7 parts by mass (73.9 mmol) of the phenylphosphonic acid and 3.9 parts by mass (8.2 mmol) of the phosphate represented by Formula (2A) were used to obtain Composition 2 as white powder. The same operation  as in Example 1 was performed except that Composition 2 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
[Example 3]
The same operation as in Example 1 was performed except that 10.0 parts by mass (63.3 mmol) of the phenylphosphonic acid and 9.0 parts by mass (18.8 mmol) of the phosphate represented by Formula (2A) were used to obtain Composition 3 as white powder. The same operation as in Example 1 was performed except that Composition 3 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
[Example 4]
The same operation as in Example 1 was performed except that 9.1 parts by mass (57.5 mmol) of the phenylphosphonic acid and 11.8 parts by mass (24.6 mmol) of the phosphate represented by Formula (2A) were used to obtain Composition 4 as white powder. The same operation as in Example 1 was performed except that Composition 4 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
[Example 5]
The same operation as in Example 1 was performed except that 6.5 parts by mass (41.1 mmol) of the phenylphosphonic acid and 19.7 parts by mass (41.1 mmol) of the phosphate represented by Formula (2A) were used to obtain Composition 5 as white powder. The same operation as in Example 1 was performed except that Composition 5 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
[Example 6]
To a 3-liter 4-neck flask, added were 12.6 parts by mass (80.0 mmol) of the phenylphosphonic acid and 1.4 parts by mass (2.1 mmol) ofa phosphate with an average molecular weight of 671 represented by Formula (2B) : (in the formula, R 1 represents an alkyl group of C 12H 25 or C 14H 29) , and 600 parts by mass of water to prepare an aqueous solution.
Figure PCTCN2022119017-appb-000010
To this flask, an aqueous solution that had been prepared from 11.2 parts by mass (82.2 mmol) of zinc chloride and 260 parts by mass of water was further added to be mixed together. To this solution, with stirring, 1, 606 parts by  mass of a 0.1 M aqueous sodium hydroxide solution was added over 6 hours to be reacted. The precipitated white precipitate was filtered out, was washed with water, and was then dried under reduced pressure at 80℃ for 2 hours or more to obtain Composition 6 containing the phenylphosphonic acid zinc salt represented by Formula (3) and a zinc phosphate complex with an average molecular weight of 735 represented by Formula (4B) :
(in the formula, R 1 represents an alkyl group of C 12H 25 or C 14H 29) as white powder.
Figure PCTCN2022119017-appb-000011
The same operation as in Example 1 was performed except that Composition 6 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
[Example 7]
The same operation as in Example 6 was performed except that 12.3 parts by mass (78.0 mmol) of the phenylphosphonic acid and 2.7 parts by mass (4.1 mmol) of the phosphate represented by Formula (2B) were used to obtain Composition 7 as white powder. The same operation as in Example 1 was performed except that Composition 7  was used to obtain a moisture-curable hotmelt urethane resin adhesive.
[Example 8]
The same operation as in Example 6 was performed except that 11.7 parts by mass (73.9 mmol) of the phenylphosphonic acid and 5.4 parts by mass (8.2 mmol) of the phosphate represented by Formula (2B) were used to obtain Composition 8 as white powder. The same operation as in Example 1 was performed except that Composition 8 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
[Example 9]
The same operation as in Example 6 was performed except that 10.0 parts by mass (63.3 mmol) of the phenylphosphonic acid and 12.5 parts by mass (18.7 mmol) of the phosphate represented by Formula (2B) were used to obtain Composition 9 as white powder. The same operation as in Example 1 was performed except that Composition 9 was used to obtain a moisture-curable hotmelt urethane resin adhesive.
[Comparative Example 1]
The same operation as in Example 1 was performed  except that Composition 1 was not added to obtain a moisture-curable hotmelt urethane resin adhesive.
[Comparative Example 2]
The same operation as in Example 1 was performed except that a phenylphosphonic acid zinc salt obtained by the following procedure was used in place of Composition 1 to prepare a moisture-curable hotmelt urethane resin adhesive.
To a 3-liter four-neck flask, 10.0 parts by mass (63.3 mmol) of the phenylphosphonic acid and 400 parts by mass of water were added to prepare an aqueous solution. To this flask, an aqueous solution that had been prepared from 8.6 parts by mass (63.3 mmol) of zinc chloride and 200 parts by mass of water was further added to be mixed together. To this solution, with stirring, 1, 244 parts by mass of a 0.1 M aqueous sodium hydroxide solution was added over 6 hours to be reacted. The precipitated white precipitate was filtered out, was washed with water, and was then dried under reduced pressure at 80℃ for 2 hours or more to obtain the phenylphosphonic acid zinc salt as white powder.
[Evaluation of Solidification Time (Open Time) ]
Each of the obtained moisture-curable hotmelt  urethane resin adhesives of the examples and the comparative examples was made into a heated and melted state at 120℃ and was applied onto a polypropylene sheet as a base so as to have a thickness of 50 μm. Next, kraft paper as a surface member was placed on the adhesive layer applied as described above, which was immediately left in a thermostatic oven at 23℃. Based on the point in time when left in the thermostatic oven, a time (in seconds) until the kraft paper ceased to adhere to the adhesive layer was measured and was determined to be a solidification time at 23℃ (an open time at 23℃) . The results are listed in Table 1.
[Evaluation of Initial Adhesive Strength] 
Each of the obtained moisture-curable hotmelt urethane resin adhesives of the examples and the comparative examples was made into a heated and melted state at 120℃, and 1 ml of the adhesive was applied to a wood block base with an area of one side of 4 cm 2. Then, it was bonded to another wood block base to which no adhesive had been applied and was left in a thermostatic oven at 23℃ for 3 minutes, and the tensile strength (mPa) was measured to be determined to be initial adhesive strength.
Figure PCTCN2022119017-appb-000012

Claims (8)

  1. A method for producing a composition containing a phenylphosphonic acid zinc salt and a zinc phosphate complex, the method including a step of simultaneously reacting a phenylphosphonic acid represented by Formula (1) and a phosphate represented by Formula (2) with a zinc compound:
    Figure PCTCN2022119017-appb-100001
    in Formula (2) , R 1 represents an alkyl group, R 2 represents an alkylene group, and n represents an integer of 1 or more, when n is an integer of 2 or more, a plurality of R2 are optionally same as each other or different from each other, and at least one of R 2 represents an ethylene group.
  2. The method for producing a composition according to claim 1, wherein a molar ratio of an amount of the phosphate represented by Formula (2) to an amount of the phenylphosphonic acid represented by Formula (1) is 1/99 to 60/40.
  3. A composition containing a phenylphosphonic acid zinc salt represented by Formula (3) and a zinc phosphate complex represented by Formula (4) :
    Figure PCTCN2022119017-appb-100002
    in Formula (4) , R 1 represents an alkyl group, R 2 represents an alkylene group, and n represents an integer of 1 or more, when n is an integer of 2 or more, a plurality of R2 are optionally same as each other or different from each other, and at least one of R 2 represents an ethylene group.
  4. The composition according to claim 3, wherein a molar ratio of an amount of the phosphate represented by Formula (4) to an amount of the phenylphosphonic acid represented by Formula (3) is 1/99 to 60/40.
  5. Use of the composition according to claim 3 or 4 as a crystal nucleating agent.
  6. A moisture-curable hotmelt urethane resin adhesive containing an isocyanate group-terminated urethane  prepolymer, a phenylphosphonic acid zinc salt represented by Formula (3) , and a zinc phosphate complex represented by Formula (4) :
    Figure PCTCN2022119017-appb-100003
    in Formula (4) , R 1 represents an alkyl group, R 2 represents an alkylene group, and n represents an integer of 1 or more, when n is an integer of 2 or more, a plurality of R2 are optionally same as each other or different from each other, and at least one of R 2 represents an ethylene group.
  7. The moisture-curable hotmelt urethane resin adhesive according to claim 6, wherein a molar ratio of an amount of the phosphate represented by Formula (4) to an amount of the phenylphosphonic acid represented by Formula (3) is 1/99 to 60/40.
  8. The moisture-curable hotmelt urethane resin adhesive according to claim 6 or 7, wherein a total amount of the phenylphosphonic acid zinc salt represented by Formula (3) and the zinc phosphate complex represented by Formula (4) is  0.1 to 10%by mass based on an entire amount of the moisture-curable hotmelt urethane resin adhesive.
PCT/CN2022/119017 2022-09-15 2022-09-15 Composition containing phenylphosphonic acid zinc salt and zinc phosphate complex, method for producing the same, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive WO2024055237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119017 WO2024055237A1 (en) 2022-09-15 2022-09-15 Composition containing phenylphosphonic acid zinc salt and zinc phosphate complex, method for producing the same, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119017 WO2024055237A1 (en) 2022-09-15 2022-09-15 Composition containing phenylphosphonic acid zinc salt and zinc phosphate complex, method for producing the same, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive

Publications (1)

Publication Number Publication Date
WO2024055237A1 true WO2024055237A1 (en) 2024-03-21

Family

ID=90274113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119017 WO2024055237A1 (en) 2022-09-15 2022-09-15 Composition containing phenylphosphonic acid zinc salt and zinc phosphate complex, method for producing the same, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive

Country Status (1)

Country Link
WO (1) WO2024055237A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172509A (en) * 1999-12-21 2001-06-26 Katsuta Kako Kk Thermoplastic resin composition
JP2003154539A (en) * 2001-09-10 2003-05-27 Toyobo Co Ltd Calendering polyester resin composition and sheet using the same
WO2008072514A1 (en) * 2006-12-11 2008-06-19 Kuraray Co., Ltd. Thermoplastic resin composition
JP2012177016A (en) * 2011-02-25 2012-09-13 Dic Corp Moisture-curable hot-melt urethane resin composition and molded article
CN115044069A (en) * 2022-05-31 2022-09-13 浙江创摩新材料有限公司 Preparation method of blended phenylphosphonate polylactic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172509A (en) * 1999-12-21 2001-06-26 Katsuta Kako Kk Thermoplastic resin composition
JP2003154539A (en) * 2001-09-10 2003-05-27 Toyobo Co Ltd Calendering polyester resin composition and sheet using the same
WO2008072514A1 (en) * 2006-12-11 2008-06-19 Kuraray Co., Ltd. Thermoplastic resin composition
JP2012177016A (en) * 2011-02-25 2012-09-13 Dic Corp Moisture-curable hot-melt urethane resin composition and molded article
CN115044069A (en) * 2022-05-31 2022-09-13 浙江创摩新材料有限公司 Preparation method of blended phenylphosphonate polylactic acid

Similar Documents

Publication Publication Date Title
JP5381707B2 (en) Resin composition containing thermoplastic polyurethane and hot melt adhesive
KR101793746B1 (en) Copolyester polyols, prepolymers, and polyurethane elastomers formed therefrom and processes for making same
JP4658972B2 (en) Moisture curable melt adhesive, process for its production and use of the moisture curable melt adhesive
JP6753550B2 (en) Moisture curable polyurethane hot melt resin composition
JP2016507619A (en) Moisture curable polyurethane composition comprising a raw material that is produced sustainably
WO2004083274A1 (en) Polyester polyols for polyurethane adhesives
JPH0458803B2 (en)
JP6923105B2 (en) Moisture curable polyurethane hot melt resin composition
EP0013461B1 (en) Process for the preparation of a segmented thermoplastic elastomer
CA2978913A1 (en) Crystalline thermoplastic polyurethane composition for hot-melt adhesives
EP3127934A1 (en) Polyester polyol having superior durability
US20060167203A1 (en) Liquid carboxy-containing polyester oligomer, water-compatible polyurethane resin, and process for producing the same
WO2024055237A1 (en) Composition containing phenylphosphonic acid zinc salt and zinc phosphate complex, method for producing the same, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive
JP3700645B2 (en) Compatibilizer and polyester polyol mixture containing the same and melt adhesive using the mixture
US6630561B2 (en) Crystalline polyesterpolyol and hot-melt adhesive
WO2024055238A1 (en) Method for producing phenylphosphonic acid zinc salt, powder of phenylphosphonic acid zinc salt, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive
JP7400257B2 (en) Moisture-curable polyurethane hot melt resin composition and cured product thereof
JP4994670B2 (en) Adhesive composition and its adhesive sheet
EP0159053A1 (en) Polyester-ester urethane
JPS63202610A (en) Production of polyurethane
JPH0458491B2 (en)
JP4045857B2 (en) Polyester carbonate urethane
JP6733836B2 (en) Moisture curable polyurethane hot melt resin composition
JP7058982B2 (en) Resin composition
JP3324890B2 (en) Polyurethane and polyester diol used for it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958430

Country of ref document: EP

Kind code of ref document: A1