WO2024055193A1 - 换热管、集热器、太阳能发电装置及太阳能光热发电系统 - Google Patents

换热管、集热器、太阳能发电装置及太阳能光热发电系统 Download PDF

Info

Publication number
WO2024055193A1
WO2024055193A1 PCT/CN2022/118705 CN2022118705W WO2024055193A1 WO 2024055193 A1 WO2024055193 A1 WO 2024055193A1 CN 2022118705 W CN2022118705 W CN 2022118705W WO 2024055193 A1 WO2024055193 A1 WO 2024055193A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
power generation
pipe
input
output
Prior art date
Application number
PCT/CN2022/118705
Other languages
English (en)
French (fr)
Inventor
杨向民
Original Assignee
杨向民
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨向民 filed Critical 杨向民
Priority to PCT/CN2022/118705 priority Critical patent/WO2024055193A1/zh
Publication of WO2024055193A1 publication Critical patent/WO2024055193A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/30Solar heat collectors using working fluids with means for exchanging heat between two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants

Definitions

  • the present disclosure relates to the field of power generation technology, in particular to a heat exchange tube, a heat collector, a solar power generation device and a solar thermal power generation system.
  • the heat collector is a key component for utilizing solar energy.
  • the heat collector in the prior art is installed on a flat plate for collecting solar energy. However, due to the small heat absorption area, the heat absorption and heat exchange effects are poor.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art. To this end, the present disclosure proposes a heat exchange tube that can increase the heat absorption area and improve the heat absorption effect and heat exchange effect.
  • the present disclosure proposes a heat collector that can increase the heat absorption area and improve the heat absorption effect and heat exchange effect.
  • the present disclosure also proposes a solar power generation device that integrates power generation and fresh water production, which can integrate power generation and fresh water production, improve the photoelectric conversion rate, and effectively reduce power generation costs.
  • the present disclosure also proposes a solar thermal power generation system that can continuously generate electricity, and can realize continuous power supply for 24 hours.
  • a heat exchange tube includes a heat radiation part, a heat absorption part and a heat transfer pipe; the heat radiation part is placed in the liquid to be heated; the heat absorption part is provided with a heat absorption surface, so The heat-absorbing surface is placed at the focusing point of the focusing mirror; the first end of the heat-transfer pipe is connected to the heat-absorbing part, and the second end of the heat-transfer pipe is connected to the heat-radiating part.
  • the heat exchange tubes of the embodiments of the present disclosure at least have the following beneficial effects: increasing the heat absorption surface and placing the heat absorption surface at the gathering point of the corresponding focusing mirror can increase the heat absorption area, thereby improving the heat absorption effect; At the same time, with the heat transfer pipe and the heat release part, the heat release part is placed in the liquid to be heated, so that the temperature difference between the two ends of the heat exchange tube is large, which can effectively improve the heat exchange effect.
  • a heat collector includes a fixed cover, a heating shell, at least one heat exchange tube as described in the above embodiment, and at least one focusing mirror; the upper end of the fixed cover is provided with a third An opening, the lower end of the fixed cover is provided with a second opening; the heating shell is placed at the second opening, and the lower end of the heating shell is provided with a first input end and a solid discharge end; the heating shell The upper end of the body is provided with a first output end, the first input end is used to input the liquid to be heated, and the first output end is used to output steam; the heat absorption part is located in the fixed cover, and the heat release part Placed in the heating shell, the heat transfer pipe is passed through the heating shell; the focusing mirror is located at the first opening, and the focusing point of the focusing mirror is located inside the fixed cover And placed on the corresponding heat-absorbing surface.
  • the heat collector in the embodiment of the present disclosure at least has the following beneficial effects: increasing the heat absorption surface and placing the heat absorption surface at the gathering point of the corresponding focusing mirror can increase the heat absorption area, thereby improving the heat absorption effect; At the same time, with the heat transfer pipe and the heat release part, the heat release part is placed in the liquid to be heated, so that the temperature difference between the two ends of the heat exchange pipe is large, which can effectively improve the heat exchange effect; the heating shell can load the liquid to be heated, and the liquid to be heated When the liquid is heated to the vaporization temperature, the liquid to be heated will turn into steam and be output from the first output end.
  • a solar power generation device integrating power generation and fresh water production includes a steam engine, a generator and at least one heat collector; each of the heat collectors is provided with a first input end and a first Output end, the first input end is used to input liquid to be heated, and the first output end is used to output steam; the steam engine is provided with a second input end, a transmission drive end and a second output end, and the second The input end is connected to the first output end; the generator has a driven end and a current output end, and the driven end is drivingly connected to the transmission driving end.
  • each of the heat collectors includes a fixed cover, a heating shell, at least one heat exchange tube, and at least one focusing mirror; the upper end of the fixed cover is provided with a first opening, The upper end of the fixed cover is provided with a second opening; the heating shell is placed at the corresponding second opening, the first input end is located at the lower end of the heating shell, and the first output end Located at the upper end of the heating shell, the lower end of the heating shell is also provided with a solid discharge end; each of the heat exchange tubes has a heat releasing part, a heat absorbing part and a heat transfer pipe, and the heat transfer pipe The first end of the heat transfer pipe is connected to the corresponding heat absorbing part, and the second end of the heat transfer pipe is connected to the corresponding heat releasing part.
  • the heat absorbing part is provided with a heat absorbing surface, and the heat absorbing part is located at In the fixed cover, the heat radiation part is placed in the heating shell, and the heat transfer pipe is passed through the heating shell; each focusing mirror is located at the corresponding first opening. , the focusing point of the focusing mirror is located inside the corresponding fixed cover and placed on the corresponding heat-absorbing surface.
  • the solar power generation device integrating power generation and fresh water production in the embodiment of the present disclosure has at least the following beneficial effects: the collector can effectively collect solar energy, and can use solar energy to heat seawater, turning seawater into water vapor and Input into the steam engine, the steam engine can convert the energy of water vapor into mechanical energy, and then use the steam engine to drive the generator to generate electricity, effectively improving the photoelectric conversion rate; and the water vapor is cooled after being cooled by the steam engine and can be turned into fresh water for use.
  • collectors, steam engines and generators it can not only be promoted and applied on a large scale, but can also achieve the purpose of generating electricity and producing fresh water simultaneously, effectively reducing the cost of solar power generation.
  • Each of the first collectors is provided with a fifth input end and a fifth output end, the fifth input end is used to input the liquid to be heated, and the fifth output end is used to output steam;
  • the steam engine It is provided with a second input end, a transmission driving end and a second output end, and the second input end is connected to the fifth output end;
  • the generator has a driven end and a current output end, and the driven end is connected to the fifth output end.
  • the transmission driving end is transmission connected; each second heat collector is provided with a sixth input end and a sixth output end, the sixth input end is used to input the heat transfer oil to be heated, and the sixth output
  • the third tank has a seventh output end and a seventh input end, and the seventh input end is connected to the sixth output end;
  • the heat exchanger has an eighth An input terminal, a ninth input terminal, an eighth output terminal and a ninth output terminal, the eighth input terminal is connected to the seventh output terminal, the eighth output terminal is connected to the sixth input terminal, and the The ninth output end is connected to the second input end, the eighth input end is used to input heat transfer oil, the eighth output end is used to output heat transfer oil, and the ninth input end is used to input liquid to be heated,
  • the ninth output terminal is used to output steam.
  • the solar photothermal power generation system that can continuously generate electricity according to the embodiments of the present disclosure has at least the following beneficial effects: the first collector can effectively collect solar energy, and can use solar energy to heat the liquid to be heated, so that the liquid to be heated turns into steam. And input into the steam engine, the steam engine can convert the energy of the steam into mechanical energy, and then use the steam engine to drive the generator to generate electricity, effectively improving the photoelectric conversion rate; in addition, with the second collector and the third tank, it can Solar energy is used to heat and store the thermal oil. When there is no sun, the heat exchanger can be used to heat the liquid to be heated, so that the liquid to be heated turns into steam and is input into the steam engine, realizing the ability to The purpose of continuous 24-hour power generation effectively improves the reliability of power generation.
  • Figure 1 is a schematic structural diagram of a heat exchange tube according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a heat exchange tube according to another embodiment of the present disclosure.
  • Figure 3 is a schematic structural diagram of a heat collector according to an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a heat collector according to another embodiment of the present disclosure.
  • FIG. 5 is a top view of the heat collector shown in Figure 4.
  • Figure 6 is a cross-sectional view shown along line A-A in Figure 5;
  • FIG 7 is a schematic structural diagram of the heat collector shown in Figure 4 with the fixing part and the fixing cover removed;
  • Figure 8 is a schematic diagram of the principle of a solar power generation device integrating power generation and fresh water production according to an embodiment of the present disclosure
  • Figure 9 is a schematic diagram of the principle of a solar power generation device integrating power generation and fresh water production according to another embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of the principle of a solar thermal power generation system capable of continuously generating electricity according to an embodiment of the present disclosure
  • Figure 11 is a schematic diagram of the principle of a solar thermal power generation system that can continuously generate electricity according to another embodiment of the present disclosure
  • Figure 12 is a schematic diagram of the principle of a solar thermal power generation system that can continuously generate electricity according to another embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of the principle of a solar thermal power generation system capable of continuously generating electricity according to another embodiment of the present disclosure.
  • Heat exchange tube 240 Fixed part 110 Heat radiating part 250 Dual-axis drive assembly 120 endothermic part 260 sun orientation sensor 121 heat absorbing surface 270 first collector 130 heat transfer pipe 280 Second collector 131 first pipeline 300 steam engine 132 Second pipeline 400 dynamo 133 third channel 500 First tank 200 Collector 600 Second tank 210 fixed cover 700 The third tank 220 heating shell 800 heat exchanger 230 focusing lens 900 The fourth tank
  • first, second, third, etc. may be used in this disclosure to describe various elements, these elements should not be limited to these terms. These terms are only used to distinguish elements of the same type from each other. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of the present disclosure.
  • a heat exchange tube 100 includes a heat releasing part 110 , a heat absorbing part 120 and a heat transfer pipe 130 ; the heat releasing part 110 is placed in the liquid to be heated; the heat absorbing part 120 is provided There is a heat-absorbing surface 121, which is placed at the focusing point of the focusing mirror 230; the first end of the heat-transfer pipe 130 is connected with the heat-absorbing part 120, and the second end of the heat-transfer pipe 130 is connected with the heat-radiating part 110.
  • the heat dissipation part 110 , the heat absorption part 120 and the heat transfer pipe 130 are made of superconducting heat pipes. Using superconducting heat pipes, it can conduct heat from top to bottom.
  • the heat-absorbing part 120 is in the shape of a spherical crown or a semi-spherical sphere, and the heat-absorbing surface 121 is in the shape of a circle.
  • the heat-absorbing part 120 adopts a spherical crown or a semi-spherical shape, which can maximize the space in a limited space, thereby increasing the area of the heat-absorbing surface 121 under the same conditions to improve the heat-absorbing effect and heat-exchange effect.
  • the heat dissipation part 110 and the heat transfer pipe 130 may be an integral structure, as shown in FIG. 2 , in which the heat transfer pipe 130 may also release heat into the liquid to be measured.
  • the heat transfer pipe 130 includes a first pipe 131 , a second pipe 132 and a third pipe 133 ; the first end of the first pipe 131 is connected with the heat absorbing part 120 ; The first end of the pipe 132 is connected to the second end of the first pipe 131; the first end of the third pipe 133 is connected to the second end of the second pipe 132; the second end of the third pipe 133 is connected to the heat dissipation part 110 ;
  • the angle between the extending direction of the first pipe 131 and the heat absorbing surface 121 is an acute angle
  • the extending direction of the second pipe 132 is perpendicular to the heat absorbing surface 121
  • the extending direction of the third pipe 133 is between The angle between them is an acute angle
  • the first pipe 131, the second pipe 132 and the third pipe 133 are located in the same plane, and the first pipe 131 and the third pipe 133 are located in the same side direction of the second pipe
  • the first pipe 131, the second pipe 132 and the third pipe 133 are located in the same plane.
  • the pipe 131 extends obliquely upward from the first end of the second pipe 132
  • the third pipe 133 extends obliquely downward from the second end of the second pipe 132 .
  • the heat absorption surface 121 is increased, and the heat absorption surface 121 is placed at the focusing point of the corresponding focusing mirror 230, so that the heat absorption surface 121 can be increased.
  • the hot surface area 121 is increased, which can improve the heat absorption effect.
  • the heat release part 110 is placed in the liquid to be heated, so that the temperature difference between the two ends of the heat exchange pipe 100 is large, so that it can effectively Improve heat exchange effect.
  • a heat collector 200 includes a fixed cover 210, a heating shell 220, at least one heat exchange tube 100 as in the above embodiment, and at least one focusing lens 230; fixed cover
  • the upper end of the heating shell 210 is provided with a first opening, and the lower end of the fixed cover 210 is provided with a second opening; the heating shell 220 is placed at the second opening, and the lower end of the heating shell 220 is provided with a first input end and a solid discharge end.
  • the upper end of 220 is provided with a first output end, the first input end is used to input the liquid to be heated, and the first output end is used to output steam;
  • the heat absorbing part 120 is located in the fixed cover 210, and the heat releasing part 110 is placed in the heating shell 220 , the heat transfer pipe 130 is passed through the heating shell 220;
  • the focusing mirror 230 is provided at the first opening, and the focusing point of the focusing mirror 230 is located inside the fixed cover 210 and placed on the corresponding heat absorption surface 121.
  • the number of the focusing mirror 230 and the heat exchange tube 100 can be one, two or more than three, and the specific number can be set according to actual needs.
  • the heat exchange tube 100 can be detachably connected to the heating shell 220 through screws or threads through fixing parts, such as stainless steel sheets. At the same time, the stainless steel sheets are provided with corresponding fixing slots for replacement. The heat pipe 100 can be inserted into the corresponding fixing slot to achieve fixed connection. In addition, it can also be used with other fixing parts or welding to achieve fixed connection.
  • the specific fixing method is a conventional technical means for those skilled in the art. Here, No further details will be given.
  • the liquid to be heated enters the heating shell 220 from the first input end.
  • the focusing mirror 230 can focus the light onto the corresponding heat-absorbing surface 121, and the heat exchange tube 100 will The heat is transferred from the heat-absorbing part 120 to the heat transfer conduit and the heat-radiating part 110 in sequence.
  • the heat-radiating part 110 will release the heat into the liquid to be measured.
  • the liquid to be measured reaches the evaporation temperature after being heated, it will turn into steam from the first One output terminal outputs.
  • the liquid to be heated is seawater, and the seawater enters the heating shell 220 from the first input end.
  • the focusing mirror 230 can focus the light to On the corresponding heat absorption surface 121, the heat exchange tube 100 will sequentially transfer heat from the heat absorption part 120 to the heat transfer conduit and the heat release part 110.
  • the heat release part 110 will release the heat into the liquid to be measured, and the seawater will be heated.
  • the evaporation temperature is finally reached, it will turn into water vapor and be output from the first output end.
  • the salt in the seawater will remain at the bottom of the heating shell 220. When accumulated to a certain amount, it can be discharged from the solid discharge end.
  • valves can be installed at the solid discharge end, the first output end and the first input end to control the opening and closing of the corresponding ports, thereby controlling the input of seawater, the discharge of salt and the discharge of water vapor.
  • valves on the pipeline can use solenoid valves, and with the control module, they can be opened remotely or automatically, or the valve opening and closing can be controlled manually.
  • the inner wall of the fixed cover 210 is provided with a reflective film.
  • Providing a reflective film can reflect sunlight that directly shines on the inner wall of the fixed cover 210 onto the surface of the heat exchange tube 100, which can further increase the absorption rate of solar energy and improve the heat absorption effect.
  • the fixed cover 210 has an inverse tapered shape, and the width or diameter of the first opening is longer than the second opening.
  • the angle between the extending direction of the first pipe 131 and the heat-absorbing surface 121 is an acute angle
  • the extending direction of the second pipe 132 is perpendicular to the heat-absorbing surface 121
  • the extending direction of the third pipe 133 is with
  • the angle between the heat absorption surfaces 121 is an acute angle
  • the first pipe 131 , the second pipe 132 and the third pipe 133 are located in the same plane
  • the first pipe 131 and the third pipe 133 are located on the same side of the second pipe 132 direction
  • the first pipe 131 extends diagonally upward from the first end of the second pipe 132
  • the third pipe 133 extends diagonally downward from the second end of the second pipe 132, thus improving heat absorption in the same space.
  • a fixing part 240 is also included, and the fixing cover 210 and the heating shell 220 are placed in the fixing part 240 .
  • the fixing cover 210 and the heating shell 220 can be fixed, thereby improving stability and reliability.
  • the fixing part 240 is provided with a third opening, and the fixing cover 210 is provided near an edge of the third opening.
  • the fixing part 240 is a shell, and the overall shape is wide at the top and narrow at the bottom.
  • a dual-axis drive assembly 250 is also included.
  • the driving end of the dual-axis drive assembly 250 is transmission-connected to the fixed part 240 .
  • the dual-axis drive assembly 250 can drive the fixed part 240 to deflect. .
  • the dual-axis drive assembly 250 can be used to rotate the fixed part 240 along itself and swing the fixed part 240 in the vertical direction.
  • the focusing mirror can be adjusted as the position of the sun changes. Adjust so that the focusing mirror 230 can always face the sun, that is, the sunlight can always be directed perpendicular to the plane of the focusing mirror 230 .
  • a sun orientation sensor 260 disposed around the focusing mirror 230 is also included.
  • the position of the sun can be automatically detected, the position of the sun can be detected in real time, and the dual-axis driving assembly 250 can be controlled to swing the position of the fixing part 240 so that the focusing mirror 230 can always face the sun forward.
  • a conventionally used control module is also included.
  • the control module is electrically connected to the dual-axis drive assembly 250 and the sun orientation sensor 260 respectively, and the control module can feedback according to the sun orientation sensor 260
  • the signal controls the dual-axis driving assembly 250 to detect the position of the sun in real time, and controls the dual-axis driving assembly 250 to swing the position of the fixing part 240 so that the focusing mirror 230 can always face the sun forward.
  • the specific structure of the dual-axis driving assembly 250 is a conventional technical means in the art, as long as it can drive the fixed part 240 to swing and deflect.
  • the heat collector 200 through such arrangement, at least the following effects can be achieved: increasing the heat absorption surface 121 and placing the heat absorption surface 121 at the focusing point of the corresponding focusing mirror 230, which can increase the absorption capacity.
  • the hot surface area 121 is increased, which can improve the heat absorption effect.
  • the heat release part 110 is placed in the liquid to be heated, so that the temperature difference between the two ends of the heat exchange tube 100 is large, so that it can effectively Improve the heat exchange effect; the heating shell 220 can be loaded with liquid to be heated. When the liquid to be heated reaches the vaporization temperature, the liquid to be heated will turn into steam and be output from the first output end.
  • a solar power generation device integrating power generation and fresh water production includes a steam engine 300, a generator 400 and at least one heat collector 200; each heat collector 200 is provided with a third An input end and a first output end, the first input end is used to input the liquid to be heated, and the first output end is used to output steam; the steam engine 300 is provided with a second input end, a transmission drive end and a second output end, and the second input end is The generator 400 has a driven end and a current output end, and the driven end is connected to the transmission driving end.
  • first input end can be directly connected to seawater through pipes and water pumps, and seawater can be directly input into the collector 200.
  • the first output end and the second input end are connected through pipes.
  • the number of heat collectors 200 can be selected according to the power generation demand and the actual area of the site, and is not limited to a specific number.
  • each heat collector 200 includes a fixed cover 210, a heating shell 220, at least one heat exchange tube 100, and at least one focusing lens 230; the fixed cover 210
  • the upper end of the fixed cover 210 is provided with a first opening, and the upper end of the fixed cover 210 is provided with a second opening; the heating shell 220 is placed at the corresponding second opening, the first input end is located at the lower end of the heating shell 220, and the first output end is located at the lower end of the heating shell 220.
  • each heat exchange tube 100 has a heat dissipation part 110, a heat absorption part 120 and a heat transfer pipe 130.
  • the heat transfer pipe 130 has a third end. One end is connected to the corresponding heat absorbing part 120, and the second end of the heat transfer pipe 130 is connected to the corresponding heat releasing part 110.
  • the heat absorbing part 120 is provided with a heat absorbing surface 121, and the heat absorbing part 120 is located in the fixed cover 210.
  • the heating part 110 is placed in the heating shell 220, and the heat transfer pipe 130 is passed through the heating shell 220; each focusing mirror 230 is set at the corresponding first opening, and the focusing point of the focusing mirror 230 is located at the corresponding fixed cover 210. inside and placed on the corresponding heat-absorbing surface 121.
  • the number of the focusing mirror 230 and the heat exchange tube 100 can be one, two or more than three, and the specific number can be set according to actual needs.
  • the heat exchange tube 100 can be detachably connected to the heating shell 220 through screws or threads through fixing parts, such as stainless steel sheets. At the same time, the stainless steel sheets are provided with corresponding fixing slots for replacement. The heat pipe 100 can be inserted into the corresponding fixing slot to achieve fixed connection. In addition, it can also be used with other fixing parts or welding to achieve fixed connection.
  • the specific fixing method is a conventional technical means for those skilled in the art. Here, No further details will be given.
  • valves can be installed at the solid discharge end, the first output end and the first input end to control the opening and closing of the corresponding ports, thereby controlling the input of seawater, the discharge of salt and the discharge of water vapor.
  • the heat exchange tube 100 includes a heat release part 110, a heat absorption part 120 and a heat transfer pipe 130; the heat release part 110 is placed in the liquid to be heated; the heat absorption part 120 is provided with The heat absorption surface 121 is placed at the focus point of the focusing mirror 230; the first end of the heat transfer pipe 130 is connected to the heat absorption part 120, and the second end of the heat transfer pipe 130 is connected to the heat release part 110.
  • the heat dissipation part 110, the heat absorption part 120 and the heat transfer pipe 130 are made of superconducting heat pipes. Using superconducting heat pipes, it can conduct heat from top to bottom.
  • the heat-absorbing part 120 is in the shape of a spherical crown or a semi-spherical sphere, and the heat-absorbing surface 121 is in the shape of a circle.
  • the heat-absorbing part 120 adopts a spherical crown or a semi-spherical shape, which can maximize the space in a limited space, thereby increasing the area of the heat-absorbing surface 121 under the same conditions to improve the heat-absorbing effect and heat-exchange effect.
  • the heat dissipation part 110 and the heat transfer pipe 130 may be an integral structure, as shown in FIG. 2 , in which the heat transfer pipe 130 may also release heat into the liquid to be measured.
  • the heat transfer pipe 130 includes a first pipe 131 , a second pipe 132 and a third pipe 133 ; the first end of the first pipe 131 is connected with the heat absorbing part 120 ; The first end of the pipe 132 is connected to the second end of the first pipe 131; the first end of the third pipe 133 is connected to the second end of the second pipe 132; the second end of the third pipe 133 is connected to the heat dissipation part 110 ;
  • the angle between the extending direction of the first pipe 131 and the heat absorbing surface 121 is an acute angle
  • the extending direction of the second pipe 132 is perpendicular to the heat absorbing surface 121
  • the extending direction of the third pipe 133 is between The angle between them is an acute angle
  • the first pipe 131, the second pipe 132 and the third pipe 133 are located in the same plane, and the first pipe 131 and the third pipe 133 are located in the same side direction of the second pipe
  • the first pipe 131, the second pipe 132 and the third pipe 133 are located in the same plane.
  • the pipe 131 extends obliquely upward from the first end of the second pipe 132
  • the third pipe 133 extends obliquely downward from the second end of the second pipe 132 .
  • the inner wall of the fixed cover 210 is provided with a reflective film.
  • Providing a reflective film can reflect sunlight that directly shines on the inner wall of the fixed cover 210 onto the surface of the heat exchange tube 100, which can further increase the absorption rate of solar energy and improve the heat absorption effect.
  • the fixed cover 210 has an inverse tapered shape, and the width or diameter of the first opening is longer than the second opening.
  • the angle between the extension direction of the first pipe 131 and the heat absorption surface 121 is an acute angle
  • the extension direction of the second pipe 132 is perpendicular to the heat absorption surface 121
  • the extension direction of the third pipe 133 is with
  • the angle between the heat absorption surfaces 121 is an acute angle
  • the first pipe 131 , the second pipe 132 and the third pipe 133 are located in the same plane
  • the first pipe 131 and the third pipe 133 are located on the same side of the second pipe 132 direction
  • the first pipe 131 extends diagonally upward from the first end of the second pipe 132
  • the third pipe 133 extends diagonally downward from the second end of the second pipe 132, thus improving heat absorption in the same space.
  • the area and heat absorption efficiency can be reduced
  • a fixing part 240 is also included, and the fixing cover 210 and the heating shell 220 are placed in the fixing part 240 .
  • the fixing cover 210 and the heating shell 220 can be fixed, thereby improving stability and reliability.
  • the fixing part 240 is provided with a third opening, and the fixing cover 210 is provided near an edge of the third opening.
  • the fixing part 240 is a shell, and the overall shape is wide at the top and narrow at the bottom.
  • a dual-axis drive assembly 250 is also included.
  • the driving end of the dual-axis drive assembly 250 is transmission-connected to the fixed part 240 .
  • the dual-axis drive assembly 250 can drive the fixed part 240 to deflect. .
  • the dual-axis drive assembly 250 can be used to rotate the fixed part 240 along itself and swing the fixed part 240 in the vertical direction.
  • the focusing mirror can be adjusted as the position of the sun changes. Adjust so that the focusing mirror 230 can always face the sun, that is, the sunlight can always be directed perpendicular to the plane of the focusing mirror 230 .
  • a sun orientation sensor 260 disposed around the focusing mirror 230 is also included.
  • the position of the sun can be automatically detected, the position of the sun can be detected in real time, and the dual-axis driving assembly 250 can be controlled to swing the position of the fixing part 240 so that the focusing mirror 230 can always face the sun forward.
  • a conventionally used control module is also included.
  • the control module is electrically connected to the dual-axis drive assembly 250 and the sun orientation sensor 260 respectively, and the control module can feedback according to the sun orientation sensor 260
  • the signal controls the dual-axis driving assembly 250 to detect the position of the sun in real time, and controls the dual-axis driving assembly 250 to swing the position of the fixing part 240 so that the focusing mirror 230 can always face the sun forward.
  • the specific structure of the dual-axis driving assembly 250 is a conventional technical means in the art, as long as it can drive the fixed part 240 to swing and deflect.
  • a first tank 500 is also included.
  • the first tank 500 has a third output end and a third input end.
  • the third output end is connected to the second input end.
  • the three input terminals are connected with the first output terminal.
  • the third output end and the second input end, and the third input end and the first output end are connected through pipes and valves.
  • the valves can control the corresponding pipes to connect or cut off.
  • the first tank 500 can be used to store water vapor. When the preset amount is reached, the water vapor in the first tank 500 can be input to the steam engine 300, thereby improving the efficiency of converting steam energy into mechanical energy and also improving the power generation efficiency; When multiple heat collectors 200 are used, the amount of water vapor output by each heat collector 200 is limited. If it is directly input to the steam engine 300, it may not be able to meet the high-power power generation demand. Therefore, the first tank 500 can be provided for reserve.
  • the first tank 500 can be provided with corresponding insulation materials, which can extend or reduce the speed of water vapor heat release, so as to ensure that a stable amount of water vapor can be output, and improve the efficiency of power generation. Stability and reliability.
  • a second tank 600 is also included.
  • the second tank 600 has a fourth input end and a fourth output end, and the fourth input end is connected to the second output end.
  • the fourth input end and the second output end are connected through pipes and valves.
  • the valves can control the corresponding pipes to connect or cut off.
  • the second tank 600 can be used to store the water vapor that has passed through the steam engine 300. After the steam passes through the steam engine 300, it is possible to directly cool it into liquid and flow out, and part of it is still output as water vapor. By using the second tank 600, the water vapor or water can be stored, and then when fresh water is needed, the steam or water can be stored. Fresh water is output from the fourth output port.
  • the fourth output end can be directly connected to the water pipe system of a residential house through a pipe.
  • valves on the pipeline can use solenoid valves, and with the control module, they can be opened remotely or automatically, or the valve opening and closing can be controlled manually.
  • a condenser or condensation fins can be installed inside the second tank 600 for cooling, so as to improve the efficiency of water vapor condensation.
  • steam engine 300 is a Stirling engine or steam turbine. According to the demand, you can choose to correspond to a Stirling engine or a steam turbine. When the demand for power generation is large, the Stirling engine can be used. When the demand for power generation is small, the steam turbine can be used. For example, when it is necessary to meet the needs of an area. When the power demand of a residential building is met, a Stirling engine can be used. At the same time, the generator 400 directly outputs current to the power grid. If it only meets the power demand of one residential house, a steam turbine can be used, and the generator 400 directly supplies electricity to the power grid. Just transmit electricity to residents’ homes.
  • the heat collector 200 can effectively collect solar energy, and can use solar energy to heat seawater;
  • the seawater is turned into water vapor and input into the steam engine 300.
  • the steam engine 300 can convert the energy of the water vapor into mechanical energy, and then the steam engine 300 is used to drive the generator 400 to generate electricity, effectively improving the photoelectric conversion rate; and the water vapor passes through After the steam engine 300 is cooled, it can be turned into fresh water for use.
  • the steam engine 300 and the generator 400 it can not only be promoted and applied on a large scale, but also achieve the purpose of generating electricity and making fresh water simultaneously, effectively reducing the cost The cost of solar power.
  • a solar thermal power generation system capable of continuously generating electricity according to an embodiment of the present disclosure includes a steam engine 300, a generator 400, a third tank 700, a heat exchanger 800, and at least one first heat collector.
  • each first heat collector 270 is provided with a fifth input end and a fifth output end, the fifth input end is used to input the liquid to be heated, and the fifth output end is used to output Steam;
  • the steam engine 300 is provided with a second input end, a transmission driving end and a second output end, and the second input end is connected to the fifth output end;
  • the generator 400 has a driven end and a current output end, and the driven end and the transmission driving end are Transmission connection;
  • each second heat collector 280 is provided with a sixth input end and a sixth output end, the sixth input end is used to input the heat transfer oil to be heated, and the sixth output end is used to output the heated heat transfer oil;
  • the third tank 700 has a seventh output terminal and a seventh input terminal, and the seventh input terminal is connected with the sixth output terminal;
  • the heat exchanger 800 has an eighth input terminal, a ninth input terminal, an eighth output terminal and a ninth output terminal.
  • the eighth input terminal is connected to the seventh output terminal
  • the eighth output terminal is connected to the sixth input terminal
  • the ninth output terminal is connected to the second input terminal
  • the eighth input terminal is used to input heat transfer oil
  • the eighth output terminal is used to input heat transfer oil.
  • the ninth input terminal is used to input liquid to be heated
  • the ninth output terminal is used to output steam.
  • the output end and the second input end are connected through pipelines.
  • the eighth input end and the eighth output end are connected to the same first cavity, and the ninth input end and the ninth output end are connected to the same second cavity.
  • the heated heat transfer oil is input into the first cavity, and the liquid to be heated enters the second cavity.
  • the heat exchange parts in the heat exchanger 800 the heat of the heat transfer oil can be transferred to the liquid to be heated, so that the heat transfer oil can be transferred to the liquid to be heated.
  • the liquid evaporates and turns into steam, which is then transported to the steam engine 300 through pipelines to convert the energy of the steam into mechanical energy to drive the generator 400 to generate electricity.
  • the liquid to be heated can enter the first heat collector 270 from the fifth input end.
  • the first heat collector 270 can collect solar energy.
  • the seawater is heated.
  • the heated seawater reaches the evaporation temperature, it will turn into steam and be output from the fifth output end.
  • the steam is input into the steam engine 300.
  • the steam engine 300 can convert the energy of the steam into mechanical energy, and then use the steam engine 300 to drive power generation.
  • the steam engine 400 can generate electricity, and the steam after passing through the steam engine 300 will be output through the second output end; at the same time, when the first heat collector 270 collects solar energy, the second heat collector 280 will also simultaneously collect solar energy to heat transfer oil. Heating is performed to reserve thermal energy.
  • the heat transfer oil heated by the second collector 280 will be input into the third tank 700 for storage.
  • the third tank 700 When there is no sunlight, such as at night or on a cloudy day, the third tank 700 will be heated.
  • the heat transfer oil of 700 is input into the heat exchanger 800.
  • the liquid to be heated is also input into the heat exchanger 800.
  • the heat exchanger 800 Through the heat exchanger 800, the liquid to be heated will evaporate into steam, and then be transported to the steam engine 300 through the pipeline. , to convert the energy of the steam into mechanical energy to drive the generator 400 to generate electricity, and the steam after passing through the steam engine 300 will be output through the second output end.
  • the liquid to be measured can be seawater. After being heated and evaporated by the first heat collector 270 and the heat exchanger 800, salt will be generated. Therefore, it can be measured in the first heat collector 270 and the heat exchanger 800. A solid discharge end is provided at the bottom. By setting a valve and using gravity, salt discharge can be achieved. At the same time, seawater will become fresh water after evaporation. Therefore, the steam output by the steam engine 300 can be collected and condensed with the condenser, and the fresh water can be evaporated. It can be stored and used as domestic water, which can simultaneously achieve the purpose of power generation and fresh water production, effectively reducing the cost of solar power generation.
  • liquid to be tested can also be other liquids, such as ordinary neutral water.
  • the number of the first heat collector 270 and the second heat collector 280 can be selected according to the power generation demand and the actual area of the site, and is not limited to a specific number.
  • a second tank 600 is also included.
  • the second tank 600 has a fourth input end and a fourth output end, and the fourth input end is connected to the second output end.
  • the fourth input end and the second output end are connected through pipes and valves.
  • the valves can control the corresponding pipes to connect or cut off.
  • the second tank 600 can be used to store the steam that has passed through the steam engine 300. The steam passes through After the steam engine 300 is installed, it is not possible to directly cool it into liquid and flow out, but part of it is still output as steam. Using the second tank 600, the steam or liquid can be stored.
  • the fourth output terminal when the liquid to be measured is seawater, the fourth output terminal can be directly connected to the tap water pipe system of the residential house through a pipeline; if it is neutral water, refer to Figure 12, the fourth output terminal can be Directly connected to the fifth input end and the ninth input end through pipelines, and with the valve and water pump, the liquid to be measured can be controlled to enter the first heat collector 270 or the heat exchanger 800, and the liquid to be measured can be controlled Repeat the "heating-evaporation-cooling" process.
  • valves on the pipeline can use solenoid valves, and with the control module, they can be opened remotely or automatically, or the valve opening and closing can be controlled manually.
  • a condenser or condensation fins can be installed inside the second tank 600 for cooling, so as to improve the efficiency of water vapor condensation.
  • each first heat collector 270 and each second heat collector 280 respectively include a fixed cover 210, a heating shell 220, at least one heat exchange tube 100, At least one focusing mirror 230; the upper end of the fixed cover 210 is provided with a first opening, and the upper end of the fixed cover 210 is provided with a second opening; the heating housing 220 is placed at the corresponding second opening, and the lower end of the heating housing 220 is provided with a third opening.
  • An input terminal, the upper end of the heating shell 220 is provided with a first output terminal, the corresponding first input terminal serves as the fifth input terminal or the sixth input terminal, and the corresponding first output terminal serves as the fifth output terminal or the fifth output terminal
  • Each heat exchange tube 100 has a heat dissipation part 110, a heat absorption part 120 and a heat transfer pipe 130. The first end of the heat transfer pipe 130 is connected with the corresponding heat absorption part 120, and the second end of the heat transfer pipe 130 is connected with the corresponding heat absorption part 120.
  • each focusing mirror 230 is provided at the corresponding first opening, and the focusing point of the focusing mirror 230 is located inside the corresponding fixed cover 210 and placed on the corresponding heat absorption surface 121.
  • valves on the pipeline can use solenoid valves, and with the control module, they can be opened remotely or automatically, or the valve opening and closing can be controlled manually.
  • the number of the focusing mirror 230 and the heat exchange tube 100 can be one, two or more than three, and the specific number can be set according to actual needs.
  • the heat exchange tube 100 can be detachably connected to the heating shell 220 through screws or threads through fixing parts, such as stainless steel sheets. At the same time, the stainless steel sheets are provided with corresponding fixing slots for replacement. The heat pipe 100 can be inserted into the corresponding fixing slot to achieve fixed connection. In addition, it can also be used with other fixing parts or welding to achieve fixed connection.
  • the specific fixing method is a conventional technical means for those skilled in the art. Here, No further details will be given.
  • the heat exchange tube 100 includes a heat release part 110, a heat absorption part 120 and a heat transfer pipe 130; the heat release part 110 is placed in the liquid to be heated; the heat absorption part 120 is provided with The heat absorption surface 121 is placed at the focus point of the focusing mirror 230; the first end of the heat transfer pipe 130 is connected to the heat absorption part 120, and the second end of the heat transfer pipe 130 is connected to the heat release part 110.
  • the heat dissipation part 110, the heat absorption part 120 and the heat transfer pipe 130 are made of superconducting heat pipes. Using superconducting heat pipes, it can conduct heat from top to bottom.
  • the heat-absorbing part 120 is in the shape of a spherical crown or a semi-spherical sphere, and the heat-absorbing surface 121 is in the shape of a circle.
  • the heat-absorbing part 120 adopts a spherical crown or a semi-spherical shape, which can maximize the space in a limited space, thereby increasing the area of the heat-absorbing surface 121 under the same conditions to improve the heat-absorbing and heat-exchanging effects.
  • the heat dissipation part 110 and the heat transfer pipe 130 may be an integral structure, as shown in FIG. 2 , in which the heat transfer pipe 130 may also release heat into the liquid to be measured.
  • the heat transfer pipe 130 includes a first pipe 131 , a second pipe 132 and a third pipe 133 ; the first end of the first pipe 131 is connected with the heat absorbing part 120 ; The first end of the pipe 132 is connected to the second end of the first pipe 131; the first end of the third pipe 133 is connected to the second end of the second pipe 132; the second end of the third pipe 133 is connected to the heat dissipation part 110 ;
  • the angle between the extending direction of the first pipe 131 and the heat absorbing surface 121 is an acute angle
  • the extending direction of the second pipe 132 is perpendicular to the heat absorbing surface 121
  • the extending direction of the third pipe 133 is between The angle between them is an acute angle
  • the first pipe 131, the second pipe 132 and the third pipe 133 are located in the same plane, and the first pipe 131 and the third pipe 133 are located in the same side direction of the second pipe
  • the first pipe 131, the second pipe 132 and the third pipe 133 are located in the same plane.
  • the pipe 131 extends obliquely upward from the first end of the second pipe 132
  • the third pipe 133 extends obliquely downward from the second end of the second pipe 132 .
  • the heat dissipation part 110 and the heat transfer pipe 130 may be an integral structure, as shown in FIG. 2 , in which the heat transfer pipe 130 may also release heat into the liquid to be measured.
  • the inner wall of the fixed cover 210 is provided with a reflective film.
  • Providing a reflective film can reflect sunlight that directly shines on the inner wall of the fixed cover 210 onto the surface of the heat exchange tube 100, which can further increase the absorption rate of solar energy and improve the heat absorption effect.
  • the fixed cover 210 has an inverse tapered shape, and the width or diameter of the first opening is longer than the second opening.
  • the angle between the extending direction of the first pipe 131 and the heat-absorbing surface 121 is an acute angle
  • the extending direction of the second pipe 132 is perpendicular to the heat-absorbing surface 121
  • the extending direction of the third pipe 133 is with
  • the angle between the heat absorption surfaces 121 is an acute angle
  • the first pipe 131 , the second pipe 132 and the third pipe 133 are located in the same plane
  • the first pipe 131 and the third pipe 133 are located on the same side of the second pipe 132 direction
  • the first pipe 131 extends diagonally upward from the first end of the second pipe 132
  • the third pipe 133 extends diagonally downward from the second end of the second pipe 132, thus improving heat absorption in the same space.
  • each first heat collector 270 and each second heat collector 280 further includes a fixing part 240 respectively, and the fixing cover 210 and the heating shell 220 are placed on in the corresponding fixing part 240. Cooperating with the fixing part 240, the fixing cover 210 and the heating shell 220 can be fixed, thereby improving stability and reliability.
  • each first heat collector 270 and each second heat collector 280 further includes a dual-shaft driving assembly 250 , and the driving end of the dual-shaft driving assembly 250 Drivenly connected to the corresponding fixed part 240, the biaxial driving assembly 250 can drive the fixed part 240 to deflect.
  • the dual-axis drive assembly 250 can be used to rotate the fixed part 240 along itself and swing the fixed part 240 in the vertical direction.
  • the focusing mirror can be adjusted as the position of the sun changes. Adjust so that the focusing mirror 230 can always face the sun, that is, the sunlight can always be directed perpendicular to the plane of the focusing mirror 230 .
  • each first heat collector 270 and each second heat collector 280 further includes a sun orientation sensor 260 disposed around the focusing mirror 230 .
  • the sun orientation sensor 260 Cooperating with the sun orientation sensor 260, the position of the sun can be automatically detected, the position of the sun can be detected in real time, and the dual-axis driving assembly 250 can be controlled to swing the position of the fixing part 240 so that the focusing mirror 230 can always face the sun forward.
  • a conventionally used control module is also included.
  • the control module is electrically connected to the dual-axis drive assembly 250 and the sun orientation sensor 260 respectively, and the control module can feedback according to the sun orientation sensor 260
  • the signal controls the dual-axis driving assembly 250 to detect the position of the sun in real time, and controls the dual-axis driving assembly 250 to swing the position of the fixing part 240 so that the focusing mirror 230 can always face the sun forward.
  • a first tank 500 is also included.
  • the first tank 500 has a third output end and a third input end.
  • the third output end and the second input end Connected, the third input terminal is connected to the fifth output terminal and the sixth output terminal.
  • the third output terminal and the second input terminal, the third input terminal and the fifth output terminal, and the third input terminal and the fifth output terminal are connected through pipelines and valves, and the valves can control the corresponding pipelines.
  • the first tank 500 can be used to store water vapor. When the preset amount is reached, the water vapor in the first tank 500 can be input to the steam engine 300, thereby improving the conversion of steam energy into mechanical energy. efficiency, and can also improve the power generation efficiency; when using multiple first heat collectors 270 and multiple second heat collectors 280, the steam output by each first heat collector 270 or each second heat collector 280 The amount of steam is limited.
  • the first tank 500 can be set up for storage to increase the instantaneous input capacity of steam to the steam engine 300 to improve the power generation efficiency and satisfy many needs.
  • the first tank 500 in order to reduce the amount of water vapor condensation, can be equipped with corresponding insulation materials, which can extend or reduce the speed of water vapor heat release to ensure that a stable amount of water vapor can be output, improving the stability and stability of power generation. reliability.
  • a fourth tank 900 is further included.
  • the fourth tank 900 is provided between the eighth output end and the sixth input end.
  • the fourth tank 900 has a tenth input end.
  • the tenth output terminal, the tenth input terminal and the eighth output terminal are connected through a pipeline, and the tenth output terminal and the sixth input terminal are connected through a pipeline.
  • the pipelines are equipped with corresponding valves and water pumps, which can be controlled
  • the heat transfer oil is input from the heat exchanger 800 to the fourth tank 900, or the heat transfer oil is controlled to be input from the fourth tank 900 to each second heat collector 280 for heating.
  • Setting up the fourth tank 900 can increase the transportation volume of the heat transfer oil.
  • With the third tank 700 choose a larger capacity or set up more third tanks 700 or more fourth tanks 900 to store heat transfer. oil, when the sun is sufficient, more heated thermal oil is stored, and more heat can be stored to meet more power generation needs.
  • steam engine 300 is a Stirling engine or steam turbine. According to the demand, you can choose to correspond to a Stirling engine or a steam turbine. When the demand for power generation is large, the Stirling engine can be used. When the demand for power generation is small, the steam turbine can be used. For example, when it is necessary to meet the needs of an area. When the power demand of a residential building is met, a Stirling engine can be used. At the same time, the generator 400 directly outputs current to the power grid. If it only meets the power demand of one residential house, a steam turbine can be used, and the generator 400 directly supplies electricity to the power grid. Just transmit electricity to residents’ homes.
  • the first heat collector 270 can be used to effectively collect solar energy, and the solar energy can be used to heat the liquid to be heated. , turning the liquid to be heated into steam and inputting it into the steam engine 300.
  • the steam engine 300 can convert the energy of the steam into mechanical energy, and then use the steam engine 300 to drive the generator 400 to generate electricity, effectively improving the photoelectric conversion rate; in addition, with
  • the second heat collector 280 and the third tank 700 can use solar energy to heat and reserve the heat transfer oil in advance.
  • the heat exchanger 800 can be used to heat the liquid to be heated by using the heat energy of the heated heat transfer oil.
  • the liquid to be heated turns into steam and is input into the steam engine 300, achieving the purpose of continuously generating electricity for 24 hours, effectively improving the reliability of power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种换热管、集热器、太阳能发电装置及太阳能光热发电系统。换热管(100)包括放热部(110)、吸热部(120)和传热管道(130);放热部(110)置于待加热液体中;吸热部(120)设有吸热面(121),吸热面(121)置于聚焦镜(230)的聚焦点处;传热管道(130)的第一端与吸热部(120)连通,传热管道(130)的第二端与放热部(110)连通。通过增加吸热面(121),将吸热面(121)置于对应的聚集点处,能够增大吸热面积,提升吸热效果,同时配合传热管道(130)和放热部(110),放热部(110)置于待加热液体中,使换热管(100)两端温差较大,进而能够有效地提升换热效果。此外,利用太阳能发电装置能够集发电和制淡水为一体,提升光电转化率,并有效地降低了发电成本,能够实现24小时持续进行供电。

Description

换热管、集热器、太阳能发电装置及太阳能光热发电系统 技术领域
本公开涉及发电技术领域,特别是一种换热管、集热器、太阳能发电装置及太阳能光热发电系统。
背景技术
随着全球经济的飞速发展,各个国家对能源的需求也在不断增长,而很多能源是不可再生资源,如煤矿、石油等,因此有的国家甚至因为能源的争夺而发生战争,此外对能源的不断需消耗过程中,也会严重破坏环境,如煤炭和石油的燃烧会产生一氧化碳、二氧化硫、二氧化碳等气体;因此现在很多国家开始研发一些清洁能源,一方面保证了对能源的需求,另一方面也避免了环境污染问题;如今利用水的势能、风能和太阳能来发电和利用太阳能来取暖等已经被人们得到了广泛的利用。集热器是利用太阳能的关键部件,现有技术中的集热器安装在平板上用于太阳能的集热,但是由于吸热面积小,造成吸热和换热效果较差。
现有的太阳能发电装置的主要都是采用太阳能板进行光能采集和发电,其光电转化率低,且需要占地面积较大,同时太阳能板主要材料是硅,所以目前的太阳能发电的成本高,导致太阳能发电技术无法进行大规模推广应用,此外,在阴天、下雨天或是夜晚等没有太阳的时候,现有的太阳能发电装置无法进行持续发电,影响发电的持续性和可靠性。
实用新型内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开提出一种换热管,能够增大吸热面积,提升吸热效果和换热效果。
本公开提出一种集热器,能够增大吸热面积,提升吸热效果和换热效果。
本公开还提出一种集发电、制淡水为一体的太阳能发电装置,能够集发电和制淡水为一体,提升光电转化率,并有效地降低了发电成本。
本公开还提出一种能持续发电的太阳能光热发电系统,能够实现24小时持续进行供电。
一方面,根据本公开实施例的换热管,包括放热部、吸热部和传热管道;所述放热部置于待加热液体中;所述吸热部设有吸热面,所述吸热面置于聚焦镜的聚焦点处;所述传热管道的第一端与所述吸热部连通,所述传热管道的第二端与所述放热部连通。
本公开实施例的所述换热管至少具有如下有益效果:增加吸热面,将吸热面置于对应的聚焦镜的聚集点处,能够增大吸热面积,进而能够提升吸热效果,同时配合传热管道和放热部,放热部置于待加热液体中,使换热管两端温差较大,进而能够有效地提升换热效果。
另一方面,根据本公开实施例的集热器,包括固定罩、加热壳体、至少一根如上述实施例所述的换热管及至少一个聚焦镜;所述固定罩的上端设有第一开口,所述固定罩的下端设有第二开口;所述加热壳体置于所述第二开口处,所述加热壳体下端设有第一输入端和固体排放端,所述加热壳体上端设有第一输出端,所述第一输入端用于输入待加热液体,所述第一输出端用于输出蒸汽;所述吸热部位于所述固定罩内,所述放热部置于所述加热壳体内,所述传热管道穿设于所述加热壳体上;所述聚焦镜设于所述第一开口处,所述聚焦镜的聚焦点位于所述固定罩的内部且置于对应的所述吸热面上。
本公开实施例的所述集热器至少具有如下有益效果:增加吸热面,将吸热面置于对应的聚焦镜的聚集点处,能够增大吸热面积,进而能够提升吸热效果,同时配合传热管道和放热部,放热部置于待加热液体中,使换热管两端温差较大,进而能够有效地提升换热效果;加热壳体能够装载待加热液体,待加热液体受热达到汽化温度时,待加热液体则会变成蒸汽从第一输出端输出。
另一方面,根据本公开实施例的集发电、制淡水为一体的太阳能发电装置,包括蒸汽机、发电机及至少一个集热器;每一个所述集热器设有第一输入端和第一输出端,所述第一输入端用于输入待加热液体,所述第一输出端用于输出蒸汽;所述蒸汽机设有第二输入端、传动驱动端和第二输出端,所述第二输入端与所述第一输出端连通;所述发电机具有被驱动端和电流输出端,所述被驱动端与所述传动驱动端传动连接。
根据本公开的一些实施例,每一个所述集热器包括固定罩、加热壳体、至少一根换热管换热管及至少一个聚焦镜;所述固定罩的上端设有第一开口,所述固定罩的上端设有第二开口;所述加热壳体置于对应的所述第二开口处,所述第一输入端设于所述加热壳体的下端,所述第一输出端设于所述加热壳体的上端,所述加热壳体的下端还设有固体排放端;每一根所述换热管具有放热部、吸热部和传热管道,所述传热管道的第一端与对应的所述吸热部连通,所述传热管道的第二端与对应的所述放热部连通,所述吸热部设有吸热面,所述吸热部位于所述固定罩内,所述放热部置于所述加热壳体内,所述传热管道穿设于所述加热壳体上;每一个所述聚焦镜设于对应的所述第一开口处,所述聚焦镜的聚焦点位于对应所述固定罩的内部且置于对应的所述吸热面上。
本公开实施例的所述集发电、制淡水为一体的太阳能发电装置至少具有如下有益效果:利用集热器能够有效地收集太阳能,并能够利用太阳能对海水进行加热,使海水变成水蒸汽并输入到蒸汽机内,蒸汽机能够将水蒸汽的能量转换为机械能,再利用蒸汽机驱动发电机,能够实现发电,有效地提升了光电转化率;而水蒸汽经过蒸汽机后进行冷却则可变成淡水进行使用,配合集热器、蒸汽机和发电机,不仅能够进行大规模地推广应用,同时能够同步实现发电和制淡水的目的,有效地降低了太阳能发电的成本。
另一方面,根据本公开实施例的能持续发电的太阳能光热发电系统,包括蒸汽机、发电机、第三罐体、热交换器、至少一个第一集热器及至少一个第二集热器;每一个所述第一集热器均设有第五输入端和第五输出端,所述第五输入端用于输入待加热液体,所述第五输出端用于输出蒸汽;所述蒸汽机设有第二输入端、传动驱动端和第二输出端,所述第二输入端与所述第五输出端连通;所述发电机具有被驱动端和电流输出端,所述被驱动端与所述传动驱动端传动连接;每一个所述第二集热器均设有第六输入端和第六输出端,所述第六输入端用于输入待加热的导热油,所述第六输出端用于输出加热后的导热油;所述第三罐体具有第七输出端和第七输入端,所述第七输入端与所述第六输出端连通;所述热交换器具有第八输入端、第九输入端、第八输出端和第九输出端,所述第八输入端与所述第七输出端连通,所述第八输出端与所述第六输入端连通,所述第九输出端与所述第二输入端连通,所述第八输入端用于输入导热油,所述第八输出端用于输出导热油,所述第九输入端用于输入待加热液体,所述第九输出端用于输出蒸汽。
本公开实施例所述能持续发电的太阳能光热发电系统至少具有如下有益效果:利用第一集热器能够有效地收集太阳能,并能够利用太阳能对待加热液体进行加热,使待加热液体变成蒸汽并输入到蒸汽机内,蒸汽机能够将蒸汽的能量转换为机械能,再利用蒸汽机驱动发电机,能够实现发电,有效地提升了光电转化率;此外,配合第二集热器、第三罐体能够提前利用太阳能对导热油进行加热和储备,在无太阳时,利用热交换器,能够将加热后导热油的热能对待加热液体进行加热,使待加热液体变成蒸汽并输入到蒸汽机内,实现了能够持续24小时不间断发电的目的,有效地提升了发电的可靠性。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例的换热管的结构示意图;
图2为本公开另一实施例的换热管的结构示意图;
图3为本公开实施例的集热器的结构示意图;
图4为本公开另一实施例的集热器的结构示意图;
图5为图4示出的集热器的俯视图;
图6为图5示出A-A所示的剖视图;
图7为图4示出的集热器去除固定部和固定罩后的结构示意图;
图8为本公开实施例的集发电、制淡水为一体的太阳能发电装置的原理示意图;
图9为本公开另一实施例的集发电、制淡水为一体的太阳能发电装置的原理示意图;
图10为本公开实施例的能持续发电的太阳能光热发电系统的原理示意图;
图11为本公开另一实施例的能持续发电的太阳能光热发电系统的原理示意图;
图12为本公开另一实施例的能持续发电的太阳能光热发电系统的原理示意图;
图13为本公开另一实施例的能持续发电的太阳能光热发电系统的原理示意图。
附图标记:
标号 名称 标号 名称
100 换热管 240 固定部
110 放热部 250 双轴驱动组件
120 吸热部 260 太阳方位传感器
121 吸热面 270 第一集热器
130 传热管道 280 第二集热器
131 第一管道 300 蒸汽机
132 第二管道 400 发电机
133 第三管道 500 第一罐体
200 集热器 600 第二罐体
210 固定罩 700 第三罐体
220 加热壳体 800 热交换器
230 聚焦镜 900 第四罐体
具体实施方式
以下将结合实施例和附图对本公开的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本公开的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本公开中所使用的上、下、左、右、顶、底等描述仅仅是相对于附图中本公开各组成部分的相互位置关系来说的。
此外,除非另有定义,本文所使用的所有的技术和科学术语与本技术领域的技术人员通 常理解的含义相同。本文说明书中所使用的术语只是为了描述具体的实施例,而不是为了限制本公开。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种元件,但这些元件不应限于这些术语。这些术语仅用来将同一类型的元件彼此区分开。例如,在不脱离本公开范围的情况下,第一元件也可以被称为第二元件,类似地,第二元件也可以被称为第一元件。
一方面,参照图1,根据本公开实施例的换热管100,包括放热部110、吸热部120和传热管道130;放热部110置于待加热液体中;吸热部120设有吸热面121,吸热面121置于聚焦镜230的聚焦点处;传热管道130的第一端与吸热部120连通,传热管道130的第二端与放热部110连通。
参照图1,在本公开的一些实施例中,放热部110、吸热部120和传热管道130由超导热管制成。采用超导热管,能够实现从上往下导热,
参照图1,在本公开的一些实施例中,吸热部120呈球冠状或半圆球状,吸热面121呈圆形。吸热部120采用球冠状或半圆球状,能够在有限的空间实现最大化,进而能够在同样的条件下增加吸热面121的面积,以提升吸热的效果和换热效果。
在本公开的一些实施例中,放热部110和传热管道130可以为一体成型的结构,如图2,其中,传热管道130也可以将热量释放到待测液体中。
参照图1,在本公开的一些实施例中,传热管道130包括第一管道131、第二管道132及第三管道133;第一管道131的第一端与吸热部120连通;第二管道132的第一端与第一管道131的第二端连通;第三管道133的第一端与第二管道132的第二端连通,第三管道133的第二端与放热部110连通;其中,第一管道131的延伸方向与吸热面121之间的夹角为锐角,第二管道132的延伸方向垂直于吸热面121,第三管道133的延伸方向与吸热面121之间的夹角为锐角,第一管道131、第二管道132和第三管道133位于同一平面内,且第一管道131和第三管道133位于第二管道132的同一侧的方向上,第一管道131自第二管道132的第一端斜向上延伸,第三管道133自第二管道132的第二端斜向下延伸。采用上述的结构,能够在同样空间下,安装多个换热管100,增加吸热面121积,并使多个换热管100能够均匀地通过放热部110将热量充分地给待测液体吸收,可以提升换热地效率。
根据本公开的实施例换热管100,通过如此设置,可以达成至少如下的一些效果:增加吸热面121,将吸热面121置于对应的聚焦镜230的聚集点处,能够增大吸热面121积,进而能够提升吸热效果,同时配合传热管道130和放热部110,放热部110置于待加热液体中,使换热管100两端温差较大,进而能够有效地提升换热效果。
另一方面,参照图3,根据本公开实施例的集热器200,包括固定罩210、加热壳体220、 至少一根如上述实施例的换热管100及至少一个聚焦镜230;固定罩210的上端设有第一开口,固定罩210的下端设有第二开口;加热壳体220置于第二开口处,加热壳体220下端设有第一输入端和固体排放端,加热壳体220上端设有第一输出端,第一输入端用于输入待加热液体,第一输出端用于输出蒸汽;吸热部120位于固定罩210内,放热部110置于加热壳体220内,传热管道130穿设于加热壳体220上;聚焦镜230设于第一开口处,聚焦镜230的聚焦点位于固定罩210的内部且置于对应的吸热面121上。
其中,可以知道是,聚焦镜230和换热管100可以是一个、两个或者是三个以上,可以具体数量可以根据实际需求进行设置。
值得注意的是,换热管100可以通过固定件,如不锈钢片,不锈钢钢片可以与加热壳体220通过螺钉或螺纹连接方式实现可拆卸连接,同时不锈钢片上设有对应的固定槽孔,换热管100可以插设于对应的固定槽孔内实现固定连接,此外,还可以配合其它固定件或是焊接的方式实现固定连接,具体的固定方式属于本领域技术人员常规的技术手段,此处不再进行详细地赘述。
工作原理:待加热液体从第一输入端进入加热壳体220内,在太阳光照射时,聚焦镜230能将光线进行聚焦,集中到对应的吸热面121上,换热管100则会将热量从吸热部120依次传递给传热导管和放热部110,放热部110则会将热量释放到待测液体中,待测液体受热后达到蒸发温度时,则会变成蒸汽从第一输出端输出。
可以知道的是,在本公开的一些实施例中,待加热液体是海水,海水从第一输入端进入加热壳体220内,在太阳光照射时,聚焦镜230能将光线进行聚焦,集中到对应的吸热面121上,换热管100则会将热量从吸热部120依次传递给传热导管和放热部110,放热部110则会将热量释放到待测液体中,海水受热后达到蒸发温度时,则会变成水蒸汽从第一输出端输出,同时海水中的盐分则会留在加热壳体220的底部,当积累到一定量时,则可以从固体排放端排出。
可以知道的是,在固体排放端、第一输出端和第一输入端出可以设置阀门,进而能够控制对应端口的开启和关闭,从而可以控制海水的输入、盐分的排出以及水蒸汽的排放。
可以知道的是,在管道上的阀门可以采用电磁阀,配合控制模块,则可以实现远程或自动开启,也可以是手动的方式对阀门的开关进行控制。
在本公开的一些实施例中,固定罩210的内壁设有反射膜。设置反射膜,能够将直接照射在固定罩210内壁的太阳光反射到换热管100表面上,能够进一步增加太阳能的吸收率,提升了吸热效果。
参照图3,在本公开的一些实施例中,固定罩210呈倒锥形状,第一开口的宽度或直径长于第二开口。配合上述提到的结构,即第一管道131的延伸方向与吸热面121之间的夹角 为锐角,第二管道132的延伸方向垂直于吸热面121,第三管道133的延伸方向与吸热面121之间的夹角为锐角,第一管道131、第二管道132和第三管道133位于同一平面内,且第一管道131和第三管道133位于第二管道132的同一侧的方向上,第一管道131自第二管道132的第一端斜向上延伸,第三管道133自第二管道132的第二端斜向下延伸,这样能够在同样的空间内,提升了吸热面121积和吸热效率,同时能够降低占用空间,能够进行大规模推广应用。
参照图4至图7,在本公开的一些实施例中,还包括固定部240,固定罩210和加热壳体220置于固定部240内。配合固定部240,能够对固定罩210和加热壳体220进行固定,提升了稳定性和可靠性。
参照图4至图7,在本公开的一些实施例中,固定部240设有第三开口,固定罩210设于靠近第三开口的边缘的位置。固定部240为一外壳,整体呈上宽下窄的形状。
参照图4至图7,在本公开的一些实施例中,还包括双轴驱动组件250,双轴驱动组件250的驱动端与固定部240传动连接,双轴驱动组件250能够驱动固定部240偏转。具体地,利用双轴驱动组件250,可以使固定部240沿自身旋转,并能够使固定部240沿竖直方向摆动,则配合双轴驱动组件250,可以使聚集镜随着太阳位置的变化而调整,进而使聚焦镜230始终可以朝着太阳,即可以实现太阳光始终是以垂直于聚焦镜230平面直射。
参照图4和图5,在本公开的一些实施例中,还包括设于聚焦镜230周边的太阳方位传感器260。配合太阳方位传感器260,则可以对太阳位置进行自动检测,实时检测太阳的位置,进而控制双轴驱动组件250,摆动固定部240的位置,使聚焦镜230始终能够正向朝着太阳。
可以知道的是,在本公开的一些实施例中,还包括常规使用的控制模块,控制模块分别与双轴驱动组件250和太阳方位传感器260电性连接,控制模块则能根据太阳方位传感器260反馈的信号控制双轴驱动组件250,则能够实时检测太阳的位置,控制双轴驱动组件250,摆动固定部240的位置,进而使聚焦镜230始终能够正向朝着太阳。
可以知道的是,双轴驱动组件250的具体结构属于本领域技术常规的技术手段,只要能够实现带动固定部240摆动偏转即可。
根据本公开的实施例集热器200,通过如此设置,可以达成至少如下的一些效果:增加吸热面121,将吸热面121置于对应的聚焦镜230的聚集点处,能够增大吸热面121积,进而能够提升吸热效果,同时配合传热管道130和放热部110,放热部110置于待加热液体中,使换热管100两端温差较大,进而能够有效地提升换热效果;加热壳体220能够装载待加热液体,待加热液体受热达到汽化温度时,待加热液体则会变成蒸汽从第一输出端输出。
另一方面,参照图8,根据本公开实施例的集发电、制淡水为一体的太阳能发电装置,包括蒸汽机300、发电机400及至少一个集热器200;每一个集热器200设有第一输入端和第一 输出端,第一输入端用于输入待加热液体,第一输出端用于输出蒸汽;蒸汽机300设有第二输入端、传动驱动端和第二输出端,第二输入端与第一输出端连通;发电机400具有被驱动端和电流输出端,被驱动端与传动驱动端传动连接。
可以知道的是,第一输入端可以通过管道及水泵与海水直接连通,进而能够直接将海水输入集热器200内,第一输出端和第二输入端之间通过管道连通,
工作原理:海水从第一输入端进入集热器200内,在太阳光照射时,集热器200能够收集太阳能。并对海水进行加热,海水受热后达到蒸发温度时,则会变成水蒸汽从第一输出端输出,同时海水中的盐分会留在集热器200中,水蒸汽输入到蒸汽机300内,蒸汽机300能够将水蒸汽的能量转换为机械能,再利用蒸汽机300驱动发电机400,则能够实现发电,经过蒸汽机300后的水蒸汽则会通过第二输出端输出,水蒸汽冷凝后则为淡水,可以作为生活用水进行使用。
因此配合集热器200、蒸汽机300和发电机400,不仅能够进行大规模地推广应用,同时能够同步实现发电和制淡水的目的,有效地降低了太阳能发电的成本。
可以知道的是,集热器200的数量可以根据发电功率需求和场地的实际面积来选取,不限于具体的数量。
参照图3,在本公开的一些实施例中,每一个集热器200包括固定罩210、加热壳体220、至少一根换热管100换热管100及至少一个聚焦镜230;固定罩210的上端设有第一开口,固定罩210的上端设有第二开口;加热壳体220置于对应的第二开口处,第一输入端设于加热壳体220的下端,第一输出端设于加热壳体220的上端,加热壳体220的下端还设有固体排放端;每一根换热管100具有放热部110、吸热部120和传热管道130,传热管道130的第一端与对应的吸热部120连通,传热管道130的第二端与对应的放热部110连通,吸热部120设有吸热面121,吸热部120位于固定罩210内,放热部110置于加热壳体220内,传热管道130穿设于加热壳体220上;每一个聚焦镜230设于对应的第一开口处,聚焦镜230的聚焦点位于对应固定罩210的内部且置于对应的吸热面121上。
可以知道的是,聚焦镜230和换热管100可以是一个、两个或者是三个以上,可以具体数量可以根据实际需求进行设置。
值得注意的是,换热管100可以通过固定件,如不锈钢片,不锈钢钢片可以与加热壳体220通过螺钉或螺纹连接方式实现可拆卸连接,同时不锈钢片上设有对应的固定槽孔,换热管100可以插设于对应的固定槽孔内实现固定连接,此外,还可以配合其它固定件或是焊接的方式实现固定连接,具体的固定方式属于本领域技术人员常规的技术手段,此处不再进行详细地赘述。
工作原理:海水从第一输入端进入加热壳体220内,在太阳光照射时,聚焦镜230能将 光线进行聚焦,集中到对应的吸热面121上,换热管100则会将热量从吸热部120依次传递给传热导管和放热部110,放热部110则会将热量释放到待测液体中,海水受热后达到蒸发温度时,则会变成水蒸汽从第一输出端输出,同时海水中的盐分则会留在加热壳体220的底部,当积累到一定量时,则可以从固体排放端排出。
可以知道的是,在固体排放端、第一输出端和第一输入端出可以设置阀门,进而能够控制对应端口的开启和关闭,从而可以控制海水的输入、盐分的排出以及水蒸汽的排放。
参照图1,在本公开的一些实施例中,换热管100包括放热部110、吸热部120和传热管道130;放热部110置于待加热液体中;吸热部120设有吸热面121,吸热面121置于聚焦镜230的聚焦点处;传热管道130的第一端与吸热部120连通,传热管道130的第二端与放热部110连通。
在本公开的一些实施例中,放热部110、吸热部120和传热管道130由超导热管制成。采用超导热管,能够实现从上往下导热,
参照图1,在本公开的一些实施例中,吸热部120呈球冠状或半圆球状,吸热面121呈圆形。吸热部120采用球冠状或半圆球状,能够在有限的空间实现最大化,进而能够在同样的条件下增加吸热面121的面积,以提升吸热的效果和换热效果。
在本公开的一些实施例中,放热部110和传热管道130可以为一体成型的结构,如图2,其中,传热管道130也可以将热量释放到待测液体中。
参照图1,在本公开的一些实施例中,传热管道130包括第一管道131、第二管道132及第三管道133;第一管道131的第一端与吸热部120连通;第二管道132的第一端与第一管道131的第二端连通;第三管道133的第一端与第二管道132的第二端连通,第三管道133的第二端与放热部110连通;其中,第一管道131的延伸方向与吸热面121之间的夹角为锐角,第二管道132的延伸方向垂直于吸热面121,第三管道133的延伸方向与吸热面121之间的夹角为锐角,第一管道131、第二管道132和第三管道133位于同一平面内,且第一管道131和第三管道133位于第二管道132的同一侧的方向上,第一管道131自第二管道132的第一端斜向上延伸,第三管道133自第二管道132的第二端斜向下延伸。采用上述的结构,能够在同样空间下,安装多个换热管100,增加吸热面121积,并使多个换热管100能够均匀地通过放热部110将热量充分地给待测液体吸收,可以提升换热地效率。
在本公开的一些实施例中,固定罩210的内壁设有反射膜。设置反射膜,能够将直接照射在固定罩210内壁的太阳光反射到换热管100表面上,能够进一步增加太阳能的吸收率,提升了吸热效果。
参照图4至图7,在本公开的一些实施例中,固定罩210呈倒锥形状,第一开口的宽度或直径长于第二开口。配合上述提到的结构,即第一管道131的延伸方向与吸热面121之间 的夹角为锐角,第二管道132的延伸方向垂直于吸热面121,第三管道133的延伸方向与吸热面121之间的夹角为锐角,第一管道131、第二管道132和第三管道133位于同一平面内,且第一管道131和第三管道133位于第二管道132的同一侧的方向上,第一管道131自第二管道132的第一端斜向上延伸,第三管道133自第二管道132的第二端斜向下延伸,这样能够在同样的空间内,提升了吸热面121积和吸热效率,同时能够降低占用空间,能够进行大规模推广应用。
参照图4至图7,在本公开的一些实施例中,还包括固定部240,固定罩210和加热壳体220置于固定部240内。配合固定部240,能够对固定罩210和加热壳体220进行固定,提升了稳定性和可靠性。
参照图4至图7,在本公开的一些实施例中,固定部240设有第三开口,固定罩210设于靠近第三开口的边缘的位置。固定部240为一外壳,整体呈上宽下窄的形状。
参照图4至图7,在本公开的一些实施例中,还包括双轴驱动组件250,双轴驱动组件250的驱动端与固定部240传动连接,双轴驱动组件250能够驱动固定部240偏转。具体地,利用双轴驱动组件250,可以使固定部240沿自身旋转,并能够使固定部240沿竖直方向摆动,则配合双轴驱动组件250,可以使聚集镜随着太阳位置的变化而调整,进而使聚焦镜230始终可以朝着太阳,即可以实现太阳光始终是以垂直于聚焦镜230平面直射。
参照图4和图5,在本公开的一些实施例中,还包括设于聚焦镜230周边的太阳方位传感器260。配合太阳方位传感器260,则可以对太阳位置进行自动检测,实时检测太阳的位置,进而控制双轴驱动组件250,摆动固定部240的位置,使聚焦镜230始终能够正向朝着太阳。
可以知道的是,在本公开的一些实施例中,还包括常规使用的控制模块,控制模块分别与双轴驱动组件250和太阳方位传感器260电性连接,控制模块则能根据太阳方位传感器260反馈的信号控制双轴驱动组件250,则能够实时检测太阳的位置,控制双轴驱动组件250,摆动固定部240的位置,进而使聚焦镜230始终能够正向朝着太阳。
可以知道的是,双轴驱动组件250的具体结构属于本领域技术常规的技术手段,只要能够实现带动固定部240摆动偏转即可。
参照图9,在本公开的一些实施例中,还包括第一罐体500,第一罐体500具有一个第三输出端和第三输入端,第三输出端与第二输入端连通,第三输入端与第一输出端连通。
可以知道的是,第三输出端和第二输入端之间、第三输入端和第一输出端之间通过管道及阀门实现连通,阀门可以控制对应的管道实现连通或截断,第一罐体500可以用于储存水蒸汽,在达到预设的量时,则可以将第一罐体500的水蒸汽向蒸汽机300输入,进而能够提升蒸汽能量转换为机械能的效率,同时也能提升发电效率;在采用多个集热器200时,每个集热器200输出的水蒸汽的量有限,若是直接输入蒸汽机300,可能满足不了大功率的发电 需求,因此可以通过设置第一罐体500进行储备,以提升瞬时向蒸汽机300输入水蒸汽的容量,以提升发电效率。需要注意的是,不采用第一罐体500时,还是可以实现发电,只是发电功率较小,只能满足小功率的发电需求,如只是满足一户居民房的电需求。
可以知道的是,为了降低水蒸汽冷凝的量,第一罐体500可以设置相应的保温材料,可以延长或降低水蒸汽热量释放的速度,以确保能够输出稳定量的水蒸汽,提升了发电的稳定性和可靠性。
参照图9,在本公开的一些实施例中,还包括第二罐体600,第二罐体600具有第四输入端和第四输出端,第四输入端与第二输出端连通。
其中,第四输入端与第二输出端之间通过管道及阀门实现连通,阀门可以控制对应的管道实现连通或截断,第二罐体600可以用于存放已经过蒸汽机300后的水蒸汽,水蒸汽经过蒸汽机300后,有不能可能直接是冷却成液体流出,部分还是以水蒸汽输出,利用第二罐体600,则可以将水蒸汽或水进行储存,然后等需要用淡水时,则可以将淡水从第四输出端出输出。
可以知道的是,第四输出端可以直接通过管道与居民房子的自来水管系统连通。
可以知道的是,在管道上的阀门可以采用电磁阀,配合控制模块,则可以实现远程或自动开启,也可以是手动的方式对阀门的开关进行控制。
可以知道的是,为了加快水蒸汽冷凝的效率,可以在第二罐体600内部设置冷凝机或冷凝片等进行冷却,以提升水蒸汽冷凝的效率。
在本公开的一些实施例中,蒸汽机300为斯特林发动机或汽轮机。根据需求,可以选择对应斯特林发动机或汽轮机,其中,在发电功率需求较大时,可以应用斯特林机发动机,在发电功率需求较较小时,可以应用汽轮机,如在需要满足一片区域的居民楼的用电需求时,则可以采用斯特林发动机,同时,发电机400直接向电网输出电流,若只是满足一户居民房的用电需求时,则可以采用汽轮机,发电机400直接向居民家中输电即可。
根据本公开的实施例集发电、制淡水为一体的太阳能发电装置,通过如此设置,可以达成至少如下的一些效果:利用集热器200能够有效地收集太阳能,并能够利用太阳能对海水进行加热,使海水变成水蒸汽并输入到蒸汽机300内,蒸汽机300能够将水蒸汽的能量转换为机械能,再利用蒸汽机300驱动发电机400,能够实现发电,有效地提升了光电转化率;而水蒸汽经过蒸汽机300后进行冷却则可变成淡水进行使用,配合集热器200、蒸汽机300和发电机400,不仅能够进行大规模地推广应用,同时能够同步实现发电和制淡水的目的,有效地降低了太阳能发电的成本。
另一方面,参照图10,根据本公开实施例的能持续发电的太阳能光热发电系统,包括蒸 汽机300、发电机400、第三罐体700、热交换器800、至少一个第一集热器270及至少一个第二集热器280;每一个第一集热器270均设有第五输入端和第五输出端,第五输入端用于输入待加热液体,第五输出端用于输出蒸汽;蒸汽机300设有第二输入端、传动驱动端和第二输出端,第二输入端与第五输出端连通;发电机400具有被驱动端和电流输出端,被驱动端与传动驱动端传动连接;每一个第二集热器280均设有第六输入端和第六输出端,第六输入端用于输入待加热的导热油,第六输出端用于输出加热后的导热油;第三罐体700具有第七输出端和第七输入端,第七输入端与第六输出端连通;热交换器800具有第八输入端、第九输入端、第八输出端和第九输出端,第八输入端与第七输出端连通,第八输出端与第六输入端连通,第九输出端与第二输入端连通,第八输入端用于输入导热油,第八输出端用于输出导热油,第九输入端用于输入待加热液体,第九输出端用于输出蒸汽。
第五输出端和第二输出端之间、第七输入端与第六输出端之间、第八输入端与第七输出端之间、第八输出端与第六输入端之间、第九输出端与第二输入端之间都通过管道实现连通,第八输入端和第八输出端是连通同一个第一腔体,第九输入端和第九输出端是连通同一个第二腔体,即加热后的导热油输入第一个腔体内,待加热液体进入第二腔体内,配合热交换器800内的换热件,则可以将导热油的热量传递给待加热液体,使待加热液体蒸发变成蒸汽,然后通过管道输送到蒸汽机300内,实现蒸汽的能量转换为机械能,以驱动发电机400进行发电。
工作原理:在有太阳光时,待加热液体可以从第五输入端进入第一集热器270内,在太阳光照射时,第一集热器270能够收集太阳能。并对海水进行加热,海水受热后达到蒸发温度时,则会变成蒸汽从第五输出端输出,蒸汽输入到蒸汽机300内,蒸汽机300能够将蒸汽的能量转换为机械能,再利用蒸汽机300驱动发电机400,则能够实现发电,经过蒸汽机300后的蒸汽则会通过第二输出端输出;同时,在第一集热器270收集太阳能时,第二集热器280也会同步收集太阳能对导热油进行加热以储备热能,经过第二集热器280加热后的导热油则会输入到第三罐体700内进行保存,在没有太阳光时,如夜晚或阴天时,则会将第三罐体700的导热油输入到热交换器800,同时,待加热液体也会同步输入到热交换器800内,通过热交换器800,待加热液体会蒸发变成蒸汽,然后通过管道输送到蒸汽机300内,实现蒸汽的能量转换为机械能,以驱动发电机400进行发电,经过蒸汽机300后的蒸汽则会通过第二输出端输出。
值得注意的是,参照图11,待测液体可以是海水,经过第一集热器270和热交换器800加热蒸发后会有盐分产生,故可以在第一集热器270和热交换器800的底部设置固体排放端,通过设置阀门并利用重力,可以实现盐分排放,同时海水蒸发后会变成淡水,故蒸汽机300输出的蒸汽可以进行收集,并配合冷凝机进行冷凝,则可以将淡水进行储存,并可以作为生活用水进行使用,能够同步实现发电和制淡水的目的,有效地降低了太阳能发电的成本。
此外,待测液体还可以是其它液体,如普通的中性水。
可以知道的是,第一集热器270和第二集热器280的数量可以根据发电功率需求和场地的实际面积来选取,不限于具体的数量。
参照图11,在本公开的一些实施例中,还包括第二罐体600,第二罐体600具有第四输入端和第四输出端,第四输入端与第二输出端连通。
其中,第四输入端与第二输出端之间通过管道及阀门实现连通,阀门可以控制对应的管道实现连通或截断,第二罐体600可以用于存放已经过蒸汽机300后的蒸汽,蒸汽经过蒸汽机300后,有不能可能直接是冷却成液体流出,部分还是以蒸汽输出,利用第二罐体600,则可以将蒸汽或液体进行储存。
可以知道的是,参照图11,当待测液体为海水时,第四输出端可以直接通过管道与居民房子的自来水管系统连通;若是中性水,参照图12,则可以将第四输出端直接通过管道与第五输入端和第九输入端连通,并配合阀门和水泵,则可以控制待测液体进入第一集热器270或是进入热交换器800中,则可以使待测液体进行重复“加热-蒸发-冷却”的过程。
可以知道的是,在管道上的阀门可以采用电磁阀,配合控制模块,则可以实现远程或自动开启,也可以是手动的方式对阀门的开关进行控制。
可以知道的是,为了加快水蒸汽冷凝的效率,可以在第二罐体600内部设置冷凝机或冷凝片等进行冷却,以提升水蒸汽冷凝的效率。
参照图3,在本公开的一些实施例中,每一个第一集热器270和每一个第二集热器280均分别包括固定罩210、加热壳体220、至少一根换热管100、至少一个聚焦镜230;固定罩210的上端设有第一开口,固定罩210的上端设有第二开口;加热壳体220置于对应的第二开口处,加热壳体220的下端设有第一输入端,加热壳体220的上端设有第一输出端,对应的第一输入端作为第五输入端或第六输入端,对应的第一输出端作为第五输出端或第五输出端;每一根换热管100具有放热部110、吸热部120和传热管道130,传热管道130的第一端与对应的吸热部120连通,传热管道130的第二端与对应的放热部110连通,吸热部120设有吸热面121,吸热部120位于固定罩210内,放热部110置于加热壳体220内,传热管道130穿设于加热壳体220上;每一个聚焦镜230设于对应的第一开口处,聚焦镜230的聚焦点位于对应固定罩210的内部且置于对应的吸热面121上。
可以知道的是,在管道上的阀门可以采用电磁阀,配合控制模块,则可以实现远程或自动开启,也可以是手动的方式对阀门的开关进行控制。
可以知道的是,聚焦镜230和换热管100可以是一个、两个或者是三个以上,可以具体数量可以根据实际需求进行设置。
值得注意的是,换热管100可以通过固定件,如不锈钢片,不锈钢钢片可以与加热壳体 220通过螺钉或螺纹连接方式实现可拆卸连接,同时不锈钢片上设有对应的固定槽孔,换热管100可以插设于对应的固定槽孔内实现固定连接,此外,还可以配合其它固定件或是焊接的方式实现固定连接,具体的固定方式属于本领域技术人员常规的技术手段,此处不再进行详细地赘述。
参照图1,在本公开的一些实施例中,换热管100包括放热部110、吸热部120和传热管道130;放热部110置于待加热液体中;吸热部120设有吸热面121,吸热面121置于聚焦镜230的聚焦点处;传热管道130的第一端与吸热部120连通,传热管道130的第二端与放热部110连通。
在本公开的一些实施例中,放热部110、吸热部120和传热管道130由超导热管制成。采用超导热管,能够实现从上往下导热,
参照图1,在本公开的一些实施例中,吸热部120呈球冠状或半圆球状,吸热面121呈圆形。吸热部120采用球冠状或半圆球状,能够在有限的空间实现最大化,进而能够在同样的条件下增加吸热面121的面积,以提升吸热的效果和换热效果。
在本公开的一些实施例中,放热部110和传热管道130可以为一体成型的结构,如图2,其中,传热管道130也可以将热量释放到待测液体中。
参照图1,在本公开的一些实施例中,传热管道130包括第一管道131、第二管道132及第三管道133;第一管道131的第一端与吸热部120连通;第二管道132的第一端与第一管道131的第二端连通;第三管道133的第一端与第二管道132的第二端连通,第三管道133的第二端与放热部110连通;其中,第一管道131的延伸方向与吸热面121之间的夹角为锐角,第二管道132的延伸方向垂直于吸热面121,第三管道133的延伸方向与吸热面121之间的夹角为锐角,第一管道131、第二管道132和第三管道133位于同一平面内,且第一管道131和第三管道133位于第二管道132的同一侧的方向上,第一管道131自第二管道132的第一端斜向上延伸,第三管道133自第二管道132的第二端斜向下延伸。采用上述的结构,能够在同样空间下,安装多个换热管100,增加吸热面121积,并使多个换热管100能够均匀地通过放热部110将热量充分地给待测液体吸收,可以提升换热地效率。
在本公开的一些实施例中,放热部110和传热管道130可以为一体成型的结构,如图2,其中,传热管道130也可以将热量释放到待测液体中。
在本公开的一些实施例中,固定罩210的内壁设有反射膜。设置反射膜,能够将直接照射在固定罩210内壁的太阳光反射到换热管100表面上,能够进一步增加太阳能的吸收率,提升了吸热效果。
参照图4至图7,在本公开的一些实施例中,固定罩210呈倒锥形状,第一开口的宽度或直径长于第二开口。配合上述提到的结构,即第一管道131的延伸方向与吸热面121之间 的夹角为锐角,第二管道132的延伸方向垂直于吸热面121,第三管道133的延伸方向与吸热面121之间的夹角为锐角,第一管道131、第二管道132和第三管道133位于同一平面内,且第一管道131和第三管道133位于第二管道132的同一侧的方向上,第一管道131自第二管道132的第一端斜向上延伸,第三管道133自第二管道132的第二端斜向下延伸,这样能够在同样的空间内,提升了吸热面121积和吸热效率,同时能够降低占用空间,能够进行大规模推广应用。
参照图4至图7,在本公开的一些实施例中,每一个第一集热器270和每一个第二集热器280分别还包括固定部240,固定罩210和加热壳体220置于对应的固定部240内。配合固定部240,能够对固定罩210和加热壳体220进行固定,提升了稳定性和可靠性。
参照图4至图7,在本公开的一些实施例中,每一个第一集热器270和每一个第二集热器280分别还包括双轴驱动组件250,双轴驱动组件250的驱动端与对应固定部240传动连接,双轴驱动组件250能够驱动固定部240偏转。具体地,利用双轴驱动组件250,可以使固定部240沿自身旋转,并能够使固定部240沿竖直方向摆动,则配合双轴驱动组件250,可以使聚集镜随着太阳位置的变化而调整,进而使聚焦镜230始终可以朝着太阳,即可以实现太阳光始终是以垂直于聚焦镜230平面直射。
参照图4和图5,在本公开的一些实施例中,每一个第一集热器270和每一个第二集热器280分别还包括设于聚焦镜230周边的太阳方位传感器260。配合太阳方位传感器260,则可以对太阳位置进行自动检测,实时检测太阳的位置,进而控制双轴驱动组件250,摆动固定部240的位置,使聚焦镜230始终能够正向朝着太阳。
可以知道的是,在本公开的一些实施例中,还包括常规使用的控制模块,控制模块分别与双轴驱动组件250和太阳方位传感器260电性连接,控制模块则能根据太阳方位传感器260反馈的信号控制双轴驱动组件250,则能够实时检测太阳的位置,控制双轴驱动组件250,摆动固定部240的位置,进而使聚焦镜230始终能够正向朝着太阳。
参照图11或图12,在本公开的一些实施例中,还包括第一罐体500,第一罐体500具有一个第三输出端和第三输入端,第三输出端与第二输入端连通,第三输入端与第五输出端及第六输出端连通。
其中,第三输出端和第二输入端之间、第三输入端和第五输出端之间及第三输入端和第五输出端之间通过管道及阀门实现连通,阀门可以控制对应的管道实现连通或截断,第一罐体500可以用于储存水蒸汽,在达到预设的量时,则可以将第一罐体500的水蒸汽向蒸汽机300输入,进而能够提升蒸汽能量转换为机械能的效率,同时也能提升发电效率;在采用多个第一集热器270和多个第二集热器280时,每个第一集热器270或每个第二集热器280输出的蒸汽的量有限,若是直接输入蒸汽机300,可能满足不了大功率的发电需求,因此可以 通过设置第一罐体500进行储备,以提升瞬时向蒸汽机300输入蒸汽的容量,以提升发电效率,能够满足多户居民楼的用电需求。需要注意的是,不采用第一罐体500时,还是可以实现发电,只是发电功率较小,只能满足小功率的发电需求,如只是满足一户居民房的电需求。
其中,为了降低水蒸汽冷凝的量,第一罐体500可以设置相应的保温材料,可以延长或降低水蒸汽热量释放的速度,以确保能够输出稳定量的水蒸汽,提升了发电的稳定性和可靠性。
参照图13,在本公开的一些实施例中,还包括第四罐体900,第四罐体900设于第八输出端和第六输入端之间,第四罐体900具有第十输入端和第十输出端,第十输入端和第八输出端通过管道连通,第十输出端和第六输入端通过管道连通,可以的知道的是,管道上设有相应的阀门和水泵,可以控制导热油从热交换器800输入到第四罐体900,或者是控制导热油从第四罐体900输入到各个第二集热器280中进行加热。设置第四罐体900,可以提升导热油的运输量,配合第三罐体700,选取越大的容量或是设置更多的第三罐体700或是更多的第四罐体900存储导热油,则在太阳光充足时,储备更多加热后的导热油,进而能够储存更多热量,以满足更多的发电需求。
在本公开的一些实施例中,蒸汽机300为斯特林发动机或汽轮机。根据需求,可以选择对应斯特林发动机或汽轮机,其中,在发电功率需求较大时,可以应用斯特林机发动机,在发电功率需求较较小时,可以应用汽轮机,如在需要满足一片区域的居民楼的用电需求时,则可以采用斯特林发动机,同时,发电机400直接向电网输出电流,若只是满足一户居民房的用电需求时,则可以采用汽轮机,发电机400直接向居民家中输电即可。
根据本公开的实施例能持续发电的太阳能光热发电系统,通过如此设置,可以达成至少如下的一些效果:利用第一集热器270能够有效地收集太阳能,并能够利用太阳能对待加热液体进行加热,使待加热液体变成蒸汽并输入到蒸汽机300内,蒸汽机300能够将蒸汽的能量转换为机械能,再利用蒸汽机300驱动发电机400,能够实现发电,有效地提升了光电转化率;此外,配合第二集热器280、第三罐体700能够提前利用太阳能对导热油进行加热和储备,在无太阳时,利用热交换器800,能够将加热后导热油的热能对待加热液体进行加热,使待加热液体变成蒸汽并输入到蒸汽机300内,实现了能够持续24小时不间断发电的目的,有效地提升了发电的可靠性。
以上所述,只是本公开的较佳实施例而已,本公开并不局限于上述实施方式,只要其以相同的手段达到本公开的技术效果,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。都应属于本公开的保护范围。在本公开的保护范围内其技术方案和/或实施方式可以有各种不同的修改和变化。

Claims (31)

  1. 一种换热管,其特征在于,包括:
    放热部(110),置于待加热液体中;
    吸热部(120),设有吸热面(121),所述吸热面(121)置于聚焦镜(230)的聚焦点处;
    传热管道(130),第一端与所述吸热部(120)连通,第二端与所述放热部(110)连通。
  2. 根据权利要求1所述的换热管(100),其特征在于:所述放热部(110)、吸热部(120)和传热管道(130)由超导热管制成。
  3. 根据权利要求1或2所述的换热管(100),其特征在于:所述吸热部(120)呈球冠状或半圆球状,所述吸热面(121)呈圆形。
  4. 根据权利要求1或2所述的换热管(100),其特征在于,所述传热管道(130)包括:
    第一管道(131),所述第一管道(131)的第一端与所述吸热部(120)连通;
    第二管道(132),所述第二管道(132)的第一端与所述第一管道(131)的第二端连通;
    第三管道(133),所述第三管道(133)的第一端与所述第二管道(132)的第二端连通,所述第三管道(133)的第二端与所述放热部(110)连通;
    其中,所述第一管道(131)的延伸方向与所述吸热面(121)之间的夹角为锐角,所述第二管道(132)的延伸方向垂直于所述吸热面(121),所述第三管道(133)的延伸方向与所述吸热面(121)之间的夹角为锐角,所述第一管道(131)、所述第二管道(132)和所述第三管道(133)位于同一平面内,且所述第一管道(131)和所述第三管道(133)位于所述第二管道(132)的同一侧的方向上,所述第一管道(131)自所述第二管道(132)的第一端斜向上延伸,所述第三管道(133)自所述第二管道(132)的第二端斜向下延伸。
  5. 一种集热器,其特征在于,包括:
    固定罩(210),上端设有第一开口,下端设有第二开口;
    加热壳体(220),置于所述第二开口处,下端设有第一输入端和固体排放端,上端设有第一输出端,所述第一输入端用于输入待加热液体,所述第一输出端用于输出蒸汽;
    至少一根如权利要求1至4任一项所述的换热管(100),所述吸热部(120)位于所述固定罩(210)内,所述放热部(110)置于所述加热壳体(220)内,所述传热管道(130)穿设于所述加热壳体(220)上;
    至少一个聚焦镜(230),设于所述第一开口处,所述聚焦镜(230)的聚焦点位于所述固定罩(210)的内部且置于对应的所述吸热面(121)上。
  6. 根据权利要求5所述的集热器,其特征在于:所述固定罩(210)的内壁设有反射膜。
  7. 根据权利要求5或6所述的集热器,其特征在于:所述固定罩(210)呈倒锥形状,所述第一开口的宽度或直径长于所述第二开口。
  8. 根据权利要求5所述的集热器,其特征在于:还包括固定部(240),所述固定罩(210)和所述加热壳体(220)置于所述固定部(240)内。
  9. 根据权利要求8所述的集热器,其特征在于:所述固定部(240)设有第三开口,所述固定罩(210)设于靠近所述第三开口的边缘的位置。
  10. 根据权利要求8或9所述的集热器,其特征在于:还包括双轴驱动组件(250),所述双轴驱动组件(250)的驱动端与所述固定部(240)传动连接,所述双轴驱动组件(250)能够驱动所述固定部(240)偏转。
  11. 根据权利要求5所述的集热器,其特征在于:还包括设于所述聚焦镜(230)周边的太阳方位传感器(260)。
  12. 一种集发电、制淡水为一体的太阳能发电装置,其特征在于,包括:
    至少一个集热器(200),设有第一输入端和第一输出端,所述第一输入端用于输入待加热液体,所述第一输出端用于输出蒸汽;
    蒸汽机(300),设有第二输入端、传动驱动端和第二输出端,所述第二输入端与所述第一输出端连通;
    发电机(400),具有被驱动端和电流输出端,所述被驱动端与所述传动驱动端传动连接。
  13. 根据权利要求12所述的集发电、制淡水为一体的太阳能发电装置,其特征在于:每一个所述集热器(200)包括:
    固定罩(210),所述固定罩(210)的上端设有第一开口,所述固定罩(210)的上端设有第二开口;
    加热壳体(220),所述加热壳体(220)置于对应的所述第二开口处,所述第一输入端设于所述加热壳体(220)的下端,所述第一输出端设于所述加热壳体(220)的上端,所述加热壳体(220)的下端还设有固体排放端;
    至少一根换热管(100),每一根所述换热管(100)具有放热部(110)、吸热部(120)和传热管道(130),所述传热管道(130)的第一端与对应的所述吸热部(120)连通,所述传热管道(130)的第二端与对应的所述放热部(110)连通,所述吸热部(120)设有吸热面(121),所述吸热部(120)位于所述固定罩(210)内,所述放热部(110)置于所述加热壳体(220)内,所述传热管道(130)穿设于所述加热壳体(220)上;
    至少一个聚焦镜(230),每一个所述聚焦镜(230)设于对应的所述第一开口处,所述聚焦镜(230)的聚焦点位于对应所述固定罩(210)的内部且置于对应的所述吸热面(121) 上。
  14. 根据权利要求13所述的集发电、制淡水为一体的太阳能发电装置,其特征在于:所述固定罩(210)的内壁设有反射膜。
  15. 根据权利要求13或14所述的集发电、制淡水为一体的太阳能发电装置,其特征在于:所述固定罩(210)呈倒锥形状,所述第一开口的宽度或直径长于所述第二开口。
  16. 根据权利要求13所述的集发电、制淡水为一体的太阳能发电装置,其特征在于:每一个所述集热器(200)还包括固定部(240),所述固定罩(210)和所述加热壳体(220)置于所述固定部(240)内。
  17. 根据权利要求16所述的集发电、制淡水为一体的太阳能发电装置,其特征在于:每一个所述集热器(200)还包括双轴驱动组件(250),所述双轴驱动组件(250)的驱动端与所述固定部(240)传动连接,所述双轴驱动组件(250)能够驱动所述固定部(240)偏转。
  18. 根据权利要求13所述的集发电、制淡水为一体的太阳能发电装置,其特征在于:每一个所述集热器(200)还包括设于所述聚焦镜(230)周边的太阳方位传感器(260)。
  19. 根据权利要求1所述的集发电、制淡水为一体的太阳能发电装置,其特征在于:还包括第一罐体(500),所述第一罐体(500)具有一个第三输出端和第三输入端,所述第三输出端与所述第二输入端连通,所述第三输入端与所述第一输出端连通。
  20. 根据权利要求12所述的集发电、制淡水为一体的太阳能发电装置,其特征在于:还包括第二罐体(600),所述第二罐体(600)具有第四输入端和第四输出端,所述第四输入端与所述第二输出端连通。
  21. 根据权利要求12所述的集发电、制淡水为一体的太阳能发电装置,其特征在于:所述蒸汽机(300)为斯特林发动机或汽轮机。
  22. 一种能持续发电的太阳能光热发电系统,其特征在于:
    至少一个第一集热器(270),设有第五输入端和第五输出端,所述第五输入端用于输入待加热液体,所述第五输出端用于输出蒸汽;
    蒸汽机(300),设有第二输入端、传动驱动端和第二输出端,所述第二输入端与所述第五输出端连通;
    发电机(400),具有被驱动端和电流输出端,所述被驱动端与所述传动驱动端传动连接;
    至少一个第二集热器(280),设有第六输入端和第六输出端,所述第六输入端用于输入待加热的导热油,所述第六输出端用于输出加热后的导热油;
    第三罐体(700),具有第七输出端和第七输入端,所述第七输入端与所述第六输出端连通;
    热交换器(800),具有第八输入端、第九输入端、第八输出端和第九输出端,所述第八输入端与所述第七输出端连通,所述第八输出端与所述第六输入端连通,所述第九输出端与所述第二输入端连通,所述第八输入端用于输入导热油,所述第八输出端用于输出导热油,所述第九输入端用于输入待加热液体,所述第九输出端用于输出蒸汽。
  23. 根据权利要求22所述的能持续发电的太阳能光热发电系统,其特征在于,每一个所述第一集热器(270)和每一个所述第二集热器(280)均分别包括:
    固定罩(210),所述固定罩(210)的上端设有第一开口,所述固定罩(210)的上端设有第二开口;
    加热壳体(220),所述加热壳体(220)置于对应的所述第二开口处,所述加热壳体(220)的下端设有第一输入端,所述加热壳体(220)的上端设有第一输出端,对应的所述第一输入端作为所述第五输入端或所述第六输入端,对应的所述第一输出端作为所述第五输出端或所述第五输出端;
    至少一根换热管(100),每一根所述换热管(100)具有放热部(110)、吸热部(120)和传热管道(130),所述传热管道(130)的第一端与对应的所述吸热部(120)连通,所述传热管道(130)的第二端与对应的所述放热部(110)连通,所述吸热部(120)设有吸热面(121),所述吸热部(120)位于所述固定罩(210)内,所述放热部(110)置于所述加热壳体(220)内,所述传热管道(130)穿设于所述加热壳体(220)上;
    至少一个聚焦镜(230),每一个所述聚焦镜(230)设于对应的所述第一开口处,所述聚焦镜(230)的聚焦点位于对应所述固定罩(210)的内部且置于对应的所述吸热面(121)上。
  24. 根据权利要求23所述的能持续发电的太阳能光热发电系统,其特征在于:所述固定罩(210)的内壁设有反射膜。
  25. 根据权利要求23或24所述的能持续发电的太阳能光热发电系统,其特征在于:所述固定罩(210)呈倒锥形状,所述第一开口的宽度或直径长于所述第二开口。
  26. 根据权利要求23所述的能持续发电的太阳能光热发电系统,其特征在于:每一个所述第一集热器(270)和每一个所述第二集热器(280)分别还包括固定部(240),所述固定罩(210)和所述加热壳体(220)置于对应的所述固定部(240)内。
  27. 根据权利要求26所述的能持续发电的太阳能光热发电系统,其特征在于:每一个所述第一集热器(270)和每一个所述第二集热器(280)分别还包括双轴驱动组件(250),所述双轴驱动组件(250)的驱动端与对应所述固定部(240)传动连接,所述双轴驱动组件(250)能够驱动所述固定部(240)偏转。
  28. 根据权利要求23所述的能持续发电的太阳能光热发电系统,其特征在于:每一个所 述第一集热器(270)和每一个所述第二集热器(280)分别还包括设于所述聚焦镜(230)周边的太阳方位传感器(260)。
  29. 根据权利要求22所述的能持续发电的太阳能光热发电系统,其特征在于,还包括第一罐体(500),所述第一罐体(500)具有一个第三输出端和第三输入端,所述第三输出端与所述第二输入端连通,所述第三输入端与所述第五输出端及所述第六输出端连通。
  30. 根据权利要求22所述的能持续发电的太阳能光热发电系统,其特征在于:还包括第二罐体(600),所述第二罐体(600)具有第四输入端和第四输出端,所述第四输入端与所述第二输出端连通。
  31. 根据权利要求22所述的能持续发电的太阳能光热发电系统,其特征在于:所述蒸汽机(300)为斯特林发动机或汽轮机。
PCT/CN2022/118705 2022-09-14 2022-09-14 换热管、集热器、太阳能发电装置及太阳能光热发电系统 WO2024055193A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118705 WO2024055193A1 (zh) 2022-09-14 2022-09-14 换热管、集热器、太阳能发电装置及太阳能光热发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118705 WO2024055193A1 (zh) 2022-09-14 2022-09-14 换热管、集热器、太阳能发电装置及太阳能光热发电系统

Publications (1)

Publication Number Publication Date
WO2024055193A1 true WO2024055193A1 (zh) 2024-03-21

Family

ID=90274109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118705 WO2024055193A1 (zh) 2022-09-14 2022-09-14 换热管、集热器、太阳能发电装置及太阳能光热发电系统

Country Status (1)

Country Link
WO (1) WO2024055193A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931732A (zh) * 2005-09-16 2007-03-21 鸿富锦精密工业(深圳)有限公司 淡水产生器
JP2010281251A (ja) * 2009-06-04 2010-12-16 Mitaka Koki Co Ltd 太陽集光蒸気発電装置
CN203532175U (zh) * 2013-11-14 2014-04-09 上海电机学院 小型太阳能聚光集热发电装置
US20140290247A1 (en) * 2013-03-28 2014-10-02 Hitachi, Ltd. Integrative System of Concentrating Solar Power Plant and Desalineation Plant
US20160223226A1 (en) * 2013-05-21 2016-08-04 Korea Institute Of Energy Research Solar power generation system
EP3168466A1 (en) * 2015-11-11 2017-05-17 Van Leeuw, Jon Otegui Solar ray concentration system
CN210710828U (zh) * 2019-05-19 2020-06-09 云南师范大学 一种基于cpc集热的太阳能海水淡化系统
CN113165911A (zh) * 2018-10-17 2021-07-23 S·玛娜 水淡化系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931732A (zh) * 2005-09-16 2007-03-21 鸿富锦精密工业(深圳)有限公司 淡水产生器
JP2010281251A (ja) * 2009-06-04 2010-12-16 Mitaka Koki Co Ltd 太陽集光蒸気発電装置
US20140290247A1 (en) * 2013-03-28 2014-10-02 Hitachi, Ltd. Integrative System of Concentrating Solar Power Plant and Desalineation Plant
US20160223226A1 (en) * 2013-05-21 2016-08-04 Korea Institute Of Energy Research Solar power generation system
CN203532175U (zh) * 2013-11-14 2014-04-09 上海电机学院 小型太阳能聚光集热发电装置
EP3168466A1 (en) * 2015-11-11 2017-05-17 Van Leeuw, Jon Otegui Solar ray concentration system
CN113165911A (zh) * 2018-10-17 2021-07-23 S·玛娜 水淡化系统
CN210710828U (zh) * 2019-05-19 2020-06-09 云南师范大学 一种基于cpc集热的太阳能海水淡化系统

Similar Documents

Publication Publication Date Title
CN208578678U (zh) 一种基于线性涅菲尔式定日镜的改良布雷顿光热发电系统
CN101392736B (zh) 太阳能低温热发电及冷热联供系统
US9169832B2 (en) Ground high-temperature high-efficiency solar steam electricity-generating device
US5195503A (en) Solar collector
CN210154106U (zh) 一种基于双冷凝器的热管光伏光热系统
TW201111628A (en) Solar and wind energy converter
CN101226006A (zh) 热管式聚焦蓄能型中高温太阳能集热器
CN113074404B (zh) 一种离网光储一体的清洁热电联供系统及其运行方法
CN108915791B (zh) 基于真空吸热管的直接吸热式储能发电系统
CN102207344A (zh) 双镜聚焦太阳能制冷装置
CN105716303B (zh) 一种太阳能光伏光热一体化的集能系统
WO2024055193A1 (zh) 换热管、集热器、太阳能发电装置及太阳能光热发电系统
CN208564880U (zh) 新型太阳能热发电系统
CN116499017A (zh) 一种风光互补直驱耦合式清洁能源供暖系统
CN113375348A (zh) 联动型竖向槽式抛物面同步跟踪太阳能中温供暖系统
CN104879953A (zh) 一种光能、风能和地热能综合利用装置
CN218934638U (zh) 能持续发电的太阳能光热发电系统
CN218934639U (zh) 换热管及集热器
Yang et al. Review of studies on enhancing thermal energy grade in the open ocean
CN218934640U (zh) 集发电、制淡水为一体的太阳能发电装置
CN112197333A (zh) 基于光伏发电余热的地源热泵供暖系统
CN105577032A (zh) 单元式太阳能全光谱利用的光电-热电-热水复合系统
CN101936273A (zh) 家用太阳能动力源装置
CN104848585A (zh) 一种光能、风能和地热能互补热泵系统
CN207350608U (zh) 一种太阳能空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958387

Country of ref document: EP

Kind code of ref document: A1