WO2024055169A1 - 盘式电机的转子、盘式电机和用电设备 - Google Patents
盘式电机的转子、盘式电机和用电设备 Download PDFInfo
- Publication number
- WO2024055169A1 WO2024055169A1 PCT/CN2022/118533 CN2022118533W WO2024055169A1 WO 2024055169 A1 WO2024055169 A1 WO 2024055169A1 CN 2022118533 W CN2022118533 W CN 2022118533W WO 2024055169 A1 WO2024055169 A1 WO 2024055169A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- rotor
- magnetic pole
- magnetic body
- bodies
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 28
- 229910052742 iron Inorganic materials 0.000 abstract description 14
- 230000001965 increasing effect Effects 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 11
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 230000004888 barrier function Effects 0.000 abstract description 8
- 230000005389 magnetism Effects 0.000 abstract description 3
- 230000004907 flux Effects 0.000 abstract 1
- 230000005415 magnetization Effects 0.000 description 32
- 238000010586 diagram Methods 0.000 description 24
- 230000009286 beneficial effect Effects 0.000 description 15
- 239000004020 conductor Substances 0.000 description 11
- 238000009826 distribution Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000005347 demagnetization Effects 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2793—Rotors axially facing stators
- H02K1/2795—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
Definitions
- the present application relates to the field of electrical machines, and more specifically, to a rotor of a disc motor, a disc motor and electrical equipment.
- Disc motors are also called axial magnetic field motors, and their magnetic field direction is parallel to the rotation axis of the rotor.
- the magnetic field travels from the axial direction, which not only has a high magnetic energy density, but also a large space for energy exchange. Therefore, the torque density of the motor is greatly improved compared to the radial magnetic field.
- Disc motors have received more and more attention due to their compact structure, high efficiency, and high power density. They are especially suitable for applications in electric vehicles, renewable energy systems, flywheel energy storage systems, and industrial equipment that require high torque density and Space is tight.
- This application provides a disc motor rotor, a disc motor and electrical equipment, which can improve the torque density and efficiency of the motor.
- embodiments of the present application provide a rotor of a disk motor.
- the rotor is divided into a plurality of magnetic pole units along its circumferential direction, and each magnetic pole unit includes at least two magnetic bodies; along the circumferential direction of the rotor, each magnetic pole unit
- the magnetizing directions of the magnetic bodies of each magnetic pole unit are the same, and the magnetizing directions of the magnetic bodies of any two adjacent magnetic pole units are opposite.
- each magnetic pole unit includes at least two magnetic bodies with the same magnetization direction, which increases the number of magnetic body layers in each magnetic pole unit and increases the magnetic barrier of the magnetic pole unit.
- the quantity is beneficial to reducing the stator armature reaction and iron loss, and at the same time improving the magnetization effect of the rotor, ultimately improving the motor torque density and efficiency.
- the rotor further comprises a plurality of magnetizers arranged at intervals along the circumferential direction, and a magnetic body is embedded between any two adjacent magnetizers.
- the magnetizers have a magnetic conductivity function, which enhances the magnetic field strength of the magnetic pole unit.
- multiple magnetic pole units are evenly distributed along the circumferential direction of the rotor, which enhances the uniformity of the magnetic field intensity distribution of the rotor.
- the magnetic pole unit includes at least one first magnetic body group, and each first magnetic body group includes two first magnetic bodies, and the two first magnetic bodies are symmetrically distributed along the center line of the magnetic pole unit.
- the number of first magnetic bodies is an even number, and the two first magnetic bodies of each first magnetic body group are symmetrically distributed to ensure uniform distribution of magnetic field intensity of the magnetic pole unit and improve the electromagnetic performance of the disk motor.
- the magnetic pole unit further includes a second magnetic body, and the second magnetic body is disposed on the centerline.
- the above solution further increases the number of magnetic bodies in the magnetic pole unit.
- the number of magnetic barriers in the magnetic pole unit is increased, which is more conducive to reducing the stator armature reaction and iron loss, improving the magnetization effect, and ultimately making the motor Torque density and efficiency are improved.
- the second magnetic body is disposed on the center line, which can improve the uniformity of the magnetic field intensity distribution of the magnetic pole unit.
- the size of the first magnetic body and the second magnetic body along the magnetizing direction are different, which is beneficial to improving the air gap magnetic density harmonics, allowing the motor to achieve optimal electromagnetic performance, and at the same time, by increasing the size of the magnetic body, Reduces the risk of magnetic demagnetization.
- the magnetic pole unit includes a plurality of first magnetic body groups; in a magnetic pole unit, two first magnetic bodies of each first magnetic body group are arranged at an angle, and the plurality of first magnetic body groups are arranged at an angle. The included angles of the first magnetic bodies are different from each other.
- the two first magnetic bodies of each first magnetic body group are arranged at different angles.
- the angle of the first magnetic body of each first magnetic body group can be arbitrarily selected and set, which is beneficial to improving the The harmonics of the air gap magnetic field enable the motor to achieve optimal electromagnetic performance.
- the first magnetic bodies of at least two first magnetic body groups have different sizes along the magnetizing direction.
- the sizes of the first magnetic bodies of the plurality of first magnetic body groups along the magnetizing direction can be set to be different, which is beneficial to improving the air gap magnetic density harmonics, allowing the motor to achieve optimal electromagnetic performance, and at the same time, by increasing the magnetism
- the size of the body can reduce the risk of demagnetization of the magnetic body.
- the angle between the two outermost magnetic bodies of the magnetic pole unit is smaller than the corresponding central angle of the magnetic pole unit in the rotor, which can provide space for the installation of the magnetic conductor at the outermost side of each magnetic pole unit and improve the performance of the magnetic pole unit. Magnetic field strength.
- each magnetic pole unit has at least one sector-shaped magnetic body, which is beneficial to improving the space utilization of the magnetic body and allowing the motor to achieve optimal electromagnetic performance.
- the magnetic body is arranged with oblique poles, which is beneficial to reducing the motor torque ripple and back electromotive force harmonics, improving noise and vibration, and enabling the motor to achieve optimal electromagnetic performance.
- a second embodiment of the present application provides a disk motor, including a stator and a rotor according to any of the above embodiments.
- the stator and the rotor are spaced apart along the axial direction of the rotor.
- a third embodiment of the present application provides electrical equipment, including the disk motor of any of the above embodiments.
- Figure 1 is a schematic structural diagram of a rotor provided by the first embodiment of the present application.
- Figure 2 is a top view of the rotor provided by the first embodiment of the present application.
- Figure 3 is a schematic diagram of the magnetic pole unit provided by the first embodiment of the present application.
- Figure 4 is a schematic structural diagram of a rotor provided by the second embodiment of the present application.
- Figure 5 is a top view of the rotor provided by the second embodiment of the present application.
- Figure 6 is a schematic diagram of a magnetic pole unit provided by the second embodiment of the present application.
- Figure 7 is a schematic diagram of a magnetic pole unit provided by the third embodiment of the present application.
- Figure 8 is a schematic diagram of the magnetic pole unit provided by the fourth embodiment of the present application.
- Figure 9 is a schematic diagram of a magnetic pole unit provided by the fifth embodiment of the present application.
- Figure 10 is a schematic diagram of a magnetic pole unit provided by the sixth embodiment of the present application.
- Figure 11 is a top view of the rotor provided by the sixth embodiment of the present application.
- Figure 12 is a top view of the rotor provided by the seventh embodiment of the present application.
- Figure 13 is a schematic diagram of a magnetic pole unit provided by the seventh embodiment of the present application.
- Figure 14 is a top view of the rotor provided by the eighth embodiment of the present application.
- Figure 15 is a schematic diagram of a magnetic pole unit provided by the eighth embodiment of the present application.
- Figure 16 is a schematic diagram of the simulation of motor torque changes using the rotor according to the second embodiment of the present application and a conventional rotor;
- Figure 17 is a schematic diagram illustrating the simulation of changes in iron loss performance of a motor using the rotor according to the second embodiment of the present application and a conventional rotor.
- an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
- the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
- connection should be understood in a broad sense.
- connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
- connection can be a fixed connection
- connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
- connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
- “Plural” appearing in this application means two or more (including two).
- disk motors have received more and more attention due to their compact structure, high efficiency, high power density, etc., and are particularly suitable for use in electric vehicles, renewable energy systems, flywheel energy storage systems, industrial equipment, etc. Where high torque density and compact space are required.
- the rotor of a conventional surface-mounted disk motor has a strong stator armature reaction due to the close axial distance between the rotor core and the stator core, resulting in large iron losses in the stator under AC current excitation, which reduces the performance of the motor. Efficiency under light load conditions.
- the magnetization effect of the conventional disk motor rotor with spoke-shaped permanent magnets is limited, and the motor torque density is difficult to increase.
- the present application provides a technical solution.
- the rotor is divided into a plurality of magnetic pole units along its circumferential direction.
- Each magnetic pole unit includes at least two magnetic bodies.
- the magnetic bodies of each magnetic pole unit are The magnetization directions are the same, and the magnetization directions of the magnetic bodies of any two adjacent magnetic pole units are opposite.
- This technical solution increases the number of magnetic layers in each magnetic pole unit and increases the number of magnetic barriers in the magnetic pole unit, which is beneficial to reducing the stator armature reaction and iron loss, and at the same time improving the magnetization effect of the rotor, ultimately making the motor torque density and Efficiency is improved.
- Figure 1 is a schematic structural diagram of the rotor provided by the first embodiment of the present application
- Figure 2 is a top view of the rotor provided by the first embodiment of the present application
- Figure 3 is a schematic diagram of the magnetic pole unit provided by the first embodiment of the present application.
- the rotor 100 of the disc motor is divided into a plurality of magnetic pole units 10 along its circumferential direction.
- Each magnetic pole unit 10 includes at least two magnetic bodies 20 .
- the magnetizing directions of the magnetic bodies 20 of the magnetic pole units 10 are the same, and the magnetizing directions of the magnetic bodies 20 of any two adjacent magnetic pole units 10 are opposite.
- the magnetic body 20 refers to an object that is inherently magnetic or an object that becomes magnetic after being magnetized. It can use soft magnetic materials or hard magnetic materials. It can generate a magnetic field on its own without external current or induction to attract iron, cobalt, nickel and other substances.
- the magnetic body can be a permanent magnet, such as natural magnet (magnetite) and artificial magnet steel, which is not easy to lose magnetism and is not easy to be magnetized.
- Magnetic steel can be synthesized from several harder metals, such as iron and aluminum, nickel, cobalt, etc. It can also be synthesized from copper, niobium, tantalum, etc.
- Magnetic materials can be magnetized to saturation in the same direction, which is called the magnetization direction or magnetization direction.
- the magnetizing directions of all the magnetic bodies 20 of each magnetic pole unit 10 are the same, that is, the magnetizing directions of the magnetic bodies 20 of the same magnetic pole unit 10 are distributed in the clockwise or counterclockwise direction along the circumference, which increases the number of magnets for each magnetic pole.
- the magnetizing directions of two adjacent magnetic pole units 10 are opposite, and the plurality of magnetic pole units 10 are alternately arranged in different magnetizing directions.
- the magnetic body 20 of the first magnetic pole unit is magnetized in the clockwise direction of the circumference, that is, in the clockwise direction N.
- the pole points to the S pole, and the magnetic body 20 of the next adjacent magnetic pole unit 10 in the clockwise direction of the circumference is magnetized in the counterclockwise direction of the circumference, that is, the N pole points to the S pole in the counterclockwise direction, thereby producing a ratio
- the magnetic body 20 has a larger number of poles and the rotor 100 has a constant magnetic field.
- each magnetic pole unit 10 includes at least two magnetic bodies 20 with the same magnetizing direction. This increases the number of layers of magnetic bodies 20 in each magnetic pole unit 10 and increases The number of magnetic barriers in the magnetic pole unit 10 is beneficial to reducing the stator armature reaction and iron loss, and at the same time improving the magnetization effect of the rotor 100, ultimately improving the motor torque density and efficiency.
- the rotor 100 may also include a chassis 30.
- the magnetic body 20 may be fixed to the chassis 30 through bolts, adhesives, buckles, etc., and a through hole is provided in the center of the chassis 30 for the rotating shaft of the rotor 100 to pass through.
- a plurality of magnetic bodies 20 are arranged at intervals along the circumferential direction of the chassis 30 around the through holes, forming a plurality of magnetic pole units 10 .
- the rotor 100 further includes a plurality of magnetic conductors 40 arranged at intervals along the circumferential direction, and a magnetic body 20 is embedded between any two adjacent magnetic conductors 40 .
- the magnetic conductor 40 that is, the rotor core, can be a laminated or block-shaped component made of magnetic materials such as ferrite materials, or can also be made of silicon steel sheets laminated, wound, or powder metallurgically die-cast.
- the rotational torque of the disc motor rotor 100 comes from the induced magnetic field force between the stator and the rotor 100.
- the rotor core and the stator core have the same function, which can enhance the intensity of the induced magnetic field and the density of magnetic force lines, thereby enhancing the mutual magnetic field interaction. moment. Therefore, the magnetic permeable body 40 of this embodiment has a magnetic conductive effect and can enhance the magnetic field intensity and magnetic field torque of the magnetic pole unit 10 .
- the magnetic conductors 40 can be fixed to the chassis 30 through bolts, adhesives, buckles, etc., and the plurality of magnetic conductors 40 are arranged at circumferential intervals around the through holes of the chassis 30 .
- the cross-section of the magnetic conductor 40 along the direction parallel to the chassis 30 may be fan-shaped or rectangular.
- a fixed groove is formed between two adjacent magnetic conductors 40 .
- the magnetic body 20 is embedded in the fixed groove in a spoke shape along the radial direction of the rotor 100 .
- each magnetic pole unit 10 is provided with multiple layers of spoke-shaped magnetic bodies 20 arranged at intervals. Each magnetic body 20 extends along the radial direction of the rotor 100.
- the number of layers may be 2 to N, and N is an integer greater than 2.
- the plurality of magnetic pole units 10 are evenly distributed along the circumferential direction of the rotor 100 .
- the rotor 100 is evenly divided into a plurality of magnetic pole units 10 along its circumferential direction, so that the magnetic field distribution of the rotor 100 is uniform, and the uniformity of the magnetic field intensity distribution of the rotor 100 is enhanced.
- the magnetic pole unit 10 includes at least one first magnetic body group 50 , and each first magnetic body group 50 includes two first magnetic bodies 20 a , two first magnetic bodies 20 a , and two first magnetic bodies 20 a .
- the magnetic bodies 20a are symmetrically distributed along the center line 11 of the magnetic pole unit 10.
- the first magnetic body 20a refers to any one of the plurality of magnetic bodies 20.
- the two magnetic bodies 20 of the first magnetic body group 50 that are symmetrically distributed along the center line 11 of the magnetic pole unit 10 are called two first magnetic bodies 20 a.
- the two first magnetic bodies 20a are magnetized in the same direction.
- the number of magnetic barriers in the magnetic pole unit 10 is increased, which is beneficial to reducing the stator armature reaction and iron loss, improving the magnetization effect, and finally The motor torque density and efficiency are improved.
- the number of the first magnetic bodies 20a is an even number.
- the centerline 11 of the magnetic pole unit 10 refers to the central symmetry axis of the magnetic pole unit 10, that is, the magnetic pole unit 10 is along the centerline 11 Axisymmetric.
- the first magnetic bodies 20a of the first magnetic body group 50 of each magnetic pole unit 10 are symmetrically distributed to ensure uniform distribution of magnetic field intensity of the magnetic pole unit 10 and improve the electromagnetic performance of the disk motor.
- FIG. 4 is a schematic structural diagram of the rotor provided in the second embodiment of the present application
- FIG. 5 is a top view of the rotor provided in the second embodiment of the present application
- FIG. 6 is a schematic diagram of the magnetic pole unit provided in the second embodiment of the present application.
- the magnetic pole unit 10 further includes a second magnetic body 20 b , and the second magnetic body 20 b is disposed on the center line 11 .
- the arrangement of the second magnetic body 20b on the center line 11 means that the center line 11 passes through the second magnetic body 20b.
- the second magnetic body 20b is axially symmetrical about the center line 11 .
- the above solution adds a second magnetic body 20b.
- the first magnetic body 20a and the second magnetic body 20b of the first magnetic body group 50 have the same magnetization direction. Further, The number of magnetic bodies 20 in the magnetic pole unit 10 is increased. By increasing the number of magnetic bodies 20 in the magnetic pole unit 10, the number of magnetic barriers in the magnetic pole unit 10 is increased, which is more conducive to reducing the stator armature reaction and iron loss, improving the magnetization effect, and finally The motor torque density and efficiency are improved.
- the second magnetic body 20b is disposed on the center line 11, which can improve the uniformity of the magnetic field intensity distribution of the magnetic pole unit 10.
- the second magnetic body 20b extends along the radial direction of the rotor 100, and the second magnetic body 20b is axially symmetrical about the center line 11.
- the second magnetic body 20b is located between the two first magnetic bodies 20a. This embodiment can further improve the uniformity of the magnetic field intensity distribution of the magnetic pole unit 10 .
- Figure 7 is a schematic diagram of a magnetic pole unit provided by the third embodiment of the present application. As shown in FIG. 7 , in the third embodiment of the present application, the sizes of the first magnetic body 20 a and the second magnetic body 20 b along the magnetization direction are different.
- the size of the first magnetic body 20a along the magnetization direction is D1 in Figure 7; the size of the two first magnetic bodies 20a of the first magnetic body group 50 along the magnetization direction Same thickness.
- the size of the second magnetic body 20b along the magnetization direction is D2 in FIG. 7 .
- the first magnetic body 20a and the second magnetic body 20b are rectangular parallelepipeds.
- the first magnetic body 20a includes a first surface 21 and a second surface 22 arranged relatively parallel.
- the N pole is close to the first surface 21 and the S pole is close to the second surface. 22.
- the first magnetic body 20a is magnetized in the direction from the first surface 21a to the second surface 21b.
- the dimension D1 of the first magnetic body 20a along the magnetization direction is the thickness perpendicular to the first surface 21 or the second surface 22.
- the dimension D2 of the second magnetic body 20b along the magnetization direction is also measured using the same method as the dimension D1 of the first magnetic body 20a along the magnetization direction.
- the first magnetic body 20a and the second magnetic body 20b have different sizes along the magnetization direction.
- the thickness D2 of the second magnetic body 20b can be set to be greater than the thickness D1 of the first magnetic body 20a, or the first magnetic body 20b can be The thickness D1 of the magnetic body 20a is set to be greater than the thickness D2 of the second magnetic body 20b, which is beneficial to improving the air gap magnetic density harmonics and enabling the motor to achieve optimal electromagnetic performance.
- the magnetic body 20 can be reduced Risk of demagnetization.
- Figure 8 is a schematic diagram of a magnetic pole unit provided by the fourth embodiment of the present application.
- the magnetic pole unit 10 includes a plurality of first magnetic body groups 50 .
- two first magnetic bodies of each first magnetic body group 50 The bodies 20a are arranged at an included angle, and the included angles of the first magnetic bodies 20a of the plurality of first magnetic body groups 50 are different from each other.
- the two first magnetic bodies 20 a of each first magnetic body group 50 are symmetrically distributed at a certain angle along the center line 11 of the magnetic pole unit 10 .
- Each magnetic pole unit 10 has M pieces of magnetic bodies 20. If M is an even number greater than 1, then the magnetic pole unit 10 has M/2 first magnetic body groups 50; if M is an odd number greater than 1, then the magnetic pole unit 10 has ( M-1)/2 first magnetic body groups 50.
- the first magnetic bodies 20 a of the plurality of first magnetic body groups 50 are all distributed in a clockwise or counterclockwise direction along the circumference, and adjacent magnetic pole units 10 have opposite magnetizing directions of the magnetic bodies 20 .
- the fourth embodiment further increases the number of magnetic barriers in the magnetic pole unit 10, which is more conducive to reducing the stator armature reaction and iron loss. At the same time, by providing a greater number of magnetic bodies 20, the motor rotates Moment density and efficiency are improved.
- the angle between the two magnetic bodies 20 may be the angle formed by the center lines of the two magnetic bodies 20 .
- the center line of the magnetic body 20 extends in the radial direction of the rotor.
- each magnetic pole unit 10 has four first magnetic bodies 20a arranged in the counterclockwise direction of the circumference, which are the first layer of first magnetic bodies 20a, the second layer of first magnetic bodies 20a, and the third layer of first magnetic bodies 20a.
- Three layers of first magnetic bodies 20a form another first magnetic body group 50b.
- the angle ⁇ 1 between the first layer of first magnetic body 20a and the fourth layer of first magnetic body 20a is greater than the angle ⁇ 2 between the second layer of first magnetic body 20a and the third layer of first magnetic body 20a, and the angle ⁇ 1 between the first layer of first magnetic body 20a and the fourth layer of first magnetic body 20a
- the angle ⁇ 1 between one layer of first magnetic body 20a and the fourth layer of first magnetic body 20a, and the angle ⁇ 2 between the second layer of first magnetic body 20a and the third layer of first magnetic body 20a can be selected arbitrarily. angle.
- the two first magnetic bodies 20a of each first magnetic body group 50 are arranged at different angles.
- the angle of the angle can be set arbitrarily, which is beneficial to improving the harmonics of the air gap magnetic field and allowing the motor to achieve optimal electromagnetic performance.
- Figure 9 is a schematic diagram of a magnetic pole unit provided by the fifth embodiment of the present application. Further, as shown in FIG. 9 , in the fifth embodiment, in one magnetic pole unit 10 , the first magnetic bodies 20 a of at least two first magnetic body groups 50 have different sizes along the magnetizing direction. .
- the first magnetic body 20a is a rectangular parallelepiped, and the thicknesses of the first magnetic bodies 20a of different first magnetic body groups 50 along the magnetization direction may be set to be different.
- a first magnetic body group 50a is composed of a first layer of first magnetic bodies 20a and a fourth layer of first magnetic bodies 20a.
- the size of the first magnetic bodies 20a of the first magnetic body group 50a along the magnetization direction is D3.
- the second layer of first magnetic body 20a and the third layer of first magnetic body 20a form another first magnetic body group 50b.
- the size of the first magnetic body 20a of the first magnetic body group 50b along the magnetization direction is D4, which can be D4 is set larger than D3.
- D3 and D4 are measured in the same way as the dimension D1 of the first magnetic body 20a along the magnetization direction.
- the measurement method of the dimension D1 of the first magnetic body 20a along the magnetization direction has been explained above, so the measurement of D3 and D4 is The method will not be described in detail here.
- the sizes of the first magnetic bodies 20a of the plurality of first magnetic body groups 50 along the magnetizing direction can be set to be different, which is beneficial to improving the air gap magnetic density harmonics, allowing the motor to achieve optimal electromagnetic performance, and at the same time, through Increasing the size of the first magnetic body 20a can reduce the risk of demagnetization of the first magnetic body 20a.
- FIG. 10 is a schematic diagram of a magnetic pole unit provided by the sixth embodiment of the present application
- FIG. 11 is a top view of a rotor provided by the sixth embodiment of the present application.
- the angle ⁇ 3 between the two outermost magnetic bodies 20 of the magnetic pole unit 10 is smaller than the corresponding central angle ⁇ 4 of the magnetic pole unit 10 in the rotor 100 .
- the central angle ⁇ 4 may be the angle between two end surfaces of the magnetic pole unit 10 along the circumferential direction.
- the rotor 100 is evenly divided into K magnetic pole units 10 along its circumferential direction, and the central angle ⁇ 4 of each magnetic pole unit 10 is 360°/K.
- the outermost magnetic bodies 20 of two adjacent magnetic pole units 10 are arranged at intervals, which can provide installation space for the magnetic conductive body 40, that is, one magnetic conductive body 40 can be shared between two adjacent magnetic pole units 10, ensuring that each magnetic pole unit 10 can share a magnetic conductive body 40.
- Each magnetic pole unit 10 has a magnetic conductor 40 at its outermost side to increase the magnetic field intensity of the magnetic pole unit 10 .
- FIG. 12 is a top view of the rotor provided by the seventh embodiment of the present application
- FIG. 13 is a schematic diagram of the magnetic pole unit provided by the seventh embodiment of the present application.
- each magnetic pole unit 10 has at least one sector-shaped magnetic body 20 .
- the magnetic body 20 is sector-shaped in a direction parallel to the chassis 30 and away from the rotor. In the direction of the center 100 , the radius of the sector-shaped magnetic body 20 gradually increases. All the magnetic bodies 20 of the rotor 100 can be arranged in a sector shape, or only one or a few magnetic bodies 20 can be arranged in a sector shape, and the specific number is not limited.
- the dimension D of the magnetic body 20 along the magnetization direction is calculated based on the center of the magnetic body 20 along the radial direction of the rotor.
- the magnetic body 20 includes a first surface 21 and a second surface 22 that are oppositely arranged.
- the first surface 21 is close to the N pole
- the second surface 22 is close to the S pole.
- each magnetic pole unit 10 has at least one sector-shaped magnetic body 20, which is beneficial to improving the space utilization of the magnetic body 20 and allowing the motor to achieve optimal electromagnetic performance.
- FIG. 14 is a top view of the rotor provided by the eighth embodiment of the present application
- FIG. 15 is a schematic diagram of the magnetic pole unit provided by the eighth embodiment of the present application.
- the magnetic body 20 is arranged with an oblique pole, that is, the extension direction of the magnetic body 20 is arranged at an angle with the radial direction of the rotor 100, which is beneficial to reducing the rotation speed of the motor. Torque pulsation and back electromotive force harmonics improve noise and vibration, allowing the motor to achieve optimal electromagnetic performance.
- the measurement method of the size of the magnetic body 20 along the direction of the magnetic field is the same as the measurement of the size D1 of the first magnetic body 20a along the magnetization direction in the third embodiment.
- the method is the same; if the magnetic body 20 arranged with oblique poles is fan-shaped, the measurement method of the size D of the magnetic body 20 along the magnetic field direction is the same as the measurement method of the dimension D of the magnetic body 20 along the magnetization direction of the seventh embodiment.
- the second embodiment of the present application provides a disk motor, including a stator and the rotor 100 of any of the above embodiments.
- the stator and the rotor 100 are spaced apart along the axial direction of the rotor 100 . Since this disc motor adopts all the technical solutions of all the above embodiments, it has at least all the beneficial effects brought by the technical solutions of the above embodiments, which will not be described again one by one.
- Figure 16 is a schematic diagram of the simulation of torque changes of a motor using the rotor of the second embodiment of the present application and a conventional rotor.
- a in the abscissa of Figure 16 represents the conventional rotor, and B represents the rotor of the second embodiment. It can be seen from Figure 16 that the magnetization effect of the motor using the rotor of the second embodiment of the present application is improved, the armature reaction is weakened, and the output torque of the motor can be increased by 61%.
- Figure 17 is a schematic diagram of the simulation of changes in iron loss performance of a motor using the rotor of the second embodiment of the present application and a conventional rotor.
- a in the abscissa of Figure 17 represents the conventional rotor, and B represents the rotor of the second embodiment. It can be seen from Figure 17 that the 10 krpm full load iron loss of the motor using the rotor of the second embodiment of the present application is reduced by 19%.
- a third embodiment of the present application provides an electrical device, including the above-mentioned disk motor.
- the electrical equipment can be, but is not limited to, battery cars, electric cars, ships, spacecraft, etc.
- spacecraft can include aircraft, rockets, space shuttles, spacecrafts, etc.
- the present application provides a rotor 100 of a disk motor.
- the rotor 100 is divided into a plurality of magnetic pole units 10 along its circumferential direction.
- Each magnetic pole unit 10 includes at least two magnetic bodies 20 .
- Each magnetic pole unit 10 includes at least two magnetic bodies 20 .
- the magnetizing directions of the magnetic bodies 20 of the magnetic pole units 10 are the same, and the magnetizing directions of the magnetic bodies 20 of any two adjacent magnetic pole units 10 are opposite.
- the rotor 100 also includes a plurality of magnetic conductors 40 arranged at intervals along the circumferential direction, and a magnetic body 20 is embedded between any two adjacent magnetic conductors 40 .
- the magnetic permeable body 40 has a magnetic conductive effect and enhances the magnetic field intensity of the magnetic pole unit 10 .
- the plurality of magnetic pole units 10 are evenly distributed along the circumferential direction of the chassis 30 , thereby enhancing the uniformity of the magnetic field intensity distribution of the rotor 100 .
- the magnetic pole unit 10 includes a first magnetic body group 50 , and the first magnetic body group 50 includes two first magnetic bodies 20 a symmetrically distributed along the center line 11 of the magnetic pole unit 10 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
本申请实施例提供一种转子和盘式电机。转子沿其周向被划分为多个磁极单元,每个磁极单元包括至少两个磁性体,每个磁极单元的磁性体的充磁方向相同,且任意相邻的两个磁极单元的磁性体的充磁方向相反。本申请实施例增加磁极单元的磁障数量,有利于降低定子电枢反应与铁耗,同时提升了转子的聚磁效果,最终使得电机转矩密度与效率得到提升。
Description
本申请涉及电机领域,并且更具体地,涉及一种盘式电机的转子、盘式电机和用电设备。
盘式电机也叫轴向磁场电机,其磁场方向与转子的转轴平行。磁场从轴向走,不但磁能密度大,而且交换能量的空间也大,因此电机的转矩密度相比径向磁场大幅度提高。盘式电机因其结构紧凑、效率高、功率密度大等优点获得越来越多的关注,尤其适合应用于电动车辆、可再生能源系统、飞轮储能系统和工业设备等要求高转矩密度和空间紧凑的场合。
在盘式电机的发展中,如何提高电机的转矩密度与效率,是电机技术中一个重要的研究方向。
发明内容
本申请提供了一种盘式电机的转子、盘式电机和用电设备,其能改善电机的转矩密度与效率。
第一方面,本申请实施例提供了一种盘式电机的转子,转子沿其周向被划分为多个磁极单元,每个磁极单元包括至少两个磁性体;沿转子的周向方向,每个磁极单元的磁性体的充磁方向相同,且任意相邻的两个磁极单元的磁性体的充磁方向相反。
上述方案中,相邻两个磁极单元的充磁方向相反,每个磁极单元包括至少两个充磁方向相同的磁性体,增加了每个磁极单元的磁性体层数,增加磁极单元的磁障数量,有利于降低定子电枢反应与铁耗,同时提升了转子的聚磁效果,最终使得电机转矩密度与效率得到提升。
在一些实施例中,转子还包括沿周向间隔排布的多个导磁体,任意 相邻的两个导磁体之间嵌设有一个磁性体。导磁体具有导磁的作用,增强了磁极单元的磁场强度。
在一些实施例中,多个磁极单元沿转子的周向均匀分布,增强了转子磁场强度分布的均一性。
在一些实施例中,磁极单元包括至少一个第一磁性体组,每个第一磁性体组包括两个第一磁性体,两个第一磁性体沿磁极单元的中心线对称分布。
上述方案中,第一磁性体的数量为偶数,每个第一磁性体组的两个第一磁性体对称分布,保证磁极单元的磁场强度均匀分布,提高盘式电机的电磁性能。
在一些实施例中,磁极单元还包括一个第二磁性体,第二磁性体设在中心线上。
上述方案进一步增加了磁极单元的磁性体数量,通过增加磁极单元的磁性体数量增加了磁极单元的磁障数量,更有利于降低定子电枢反应与铁耗,提升了聚磁效果,最终使电机转矩密度与效率得到提升。第二磁性体设在中心线上,可改善磁极单元的磁场强度分布的均匀性。
在一些实施例中,第一磁性体与第二磁性体沿充磁方向的尺寸不相同,有利于改善气隙磁密谐波,使得电机达到最优电磁性能,同时通过增加磁性体的尺寸,可降低磁性体退磁的风险。
在一些实施例中,磁极单元包括多个第一磁性体组;在一个磁极单元中,每个第一磁性体组的两个第一磁性体呈夹角设置,多个第一磁性体组的第一磁性体夹角的角度互不相同。
上述方案中,每个第一磁性体组的两个第一磁性体呈不同角度的夹角设置,每个第一磁性体组的第一磁性体夹角的角度可任意选择设置,有利于改善气隙磁场谐波,使得电机达到最优电磁性能。
在一些实施例中,在一个磁极单元中,至少两个第一磁性体组的第一磁性体沿充磁方向的尺寸不相同。
上述方案中,多个第一磁性体组的第一磁性体沿充磁方向的尺寸可设置为不相同,有利于改善气隙磁密谐波,使得电机达到最优电磁性能, 同时通过增加磁性体的尺寸,可降低磁性体退磁的风险。
在一些实施例中,磁极单元最外侧的两个磁性体之间的夹角小于磁极单元在转子中对应的圆心角,能够为每个磁极单元最外侧提供导磁体的设置空间,提高磁极单元的磁场强度。
在一些实施例中,每个磁极单元具有至少一个扇形的磁性体,有利于提升磁性体空间利用率,电机达到最优电磁性能。
在一些实施例中,磁性体呈斜极设置,有利于降低电机转矩脉动与反电动势谐波,改善噪音与振动,使电机达到最优电磁性能。
本申请第二方面的实施例提供一种盘式电机,包括定子以及上述任一实施方式的转子,定子与转子沿转子的轴向间隔设置。
本申请第三方面的实施例提供一种用电设备,包括上述任一实施方式的盘式电机。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请第一实施例提供的转子的结构示意图;
图2为本申请第一实施例提供的转子的俯视图;
图3为本申请第一实施例提供的磁极单元的示意图;
图4为本申请第二实施例提供的转子的结构示意图;
图5为本申请第二实施例提供的转子的俯视图;
图6为本申请第二实施例提供的磁极单元的示意图;
图7为本申请第三实施例提供的磁极单元的示意图;
图8为本申请第四些实施例提供的磁极单元的示意图;
图9为本申请第五实施例提供的磁极单元的示意图;
图10为本申请第六实施例提供的磁极单元的示意图;
图11为本申请第六实施例提供的转子的俯视图;
图12为本申请第七实施例提供的转子的俯视图;
图13为本申请第七施例提供的磁极单元的示意图;
图14为本申请第八实施例提供的转子的俯视图;
图15为本申请第八实施例提供的磁极单元的示意图;
图16为使用本申请第二实施例的转子与常规转子的电机转矩变化仿真示意图;
图17为使用本申请第二实施例的转子与常规转子的电机铁耗性能变化仿真示意图。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连, 也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及供电装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明人注意到,盘式电机因其结构紧凑、效率高、功率密度大等优点获得越来越多的关注,尤其适合应用于电动车辆、可再生能源系统、飞轮储能系统和工业设备等要求高转矩密度和空间紧凑的场合。在进一步研究之后发现,常规的表贴式盘式电机的转子由于转子铁芯与定子铁芯轴向距离近,定子电枢反应强,导致定子在交流电流激励下铁耗大,降低了电机在轻载工况下的效率。而常规的辐条状永磁体排布的盘式电机转子的聚磁效果有限,电机转矩密度难以提高。
鉴于此,本申请提供了一种技术方案,在该技术方案中,转子沿其周向被划分为多个磁极单元,每个磁极单元包括至少两个磁性体,每个磁极单元的磁性体的充磁方向相同,且任意相邻的两个磁极单元的磁性体的充磁方向相反。该技术方案增加了每个磁极单元的磁性体层数,增加磁极单元的磁障数量,有利于降低定子电枢反应与铁耗,同时提升了转子的聚磁效果,最终使得电机转矩密度与效率得到提升。
图1为本申请第一实施例提供的转子的结构示意图;图2为本申请第一实施例提供的转子的俯视图;图3为本申请第一实施例提供的磁极单 元的示意图。
请结合参阅图1至图3,在第一实施例中,盘式电机的转子100沿其周向被划分为多个磁极单元10,每个磁极单元10包括至少两个磁性体20,每个磁极单元10的磁性体20的充磁方向相同,任意相邻的两个磁极单元10的磁性体20的充磁方向相反。
磁性体20是指原本就具有磁性的物体或被磁化后具有磁性的物体,可采用软磁材料或硬磁材料,在不外加电流或感应即自行产生磁场以吸引铁、钴、镍等物质的物体。示例性地,磁性体可以为永磁体,如天然的磁石(磁铁矿)和人造磁钢,不易失磁,也不易被磁化。磁钢可由几种硬度较大的金属,如铁与铝、镍、钴等合成,也可以采用铜、铌、钽等合成。
磁性材料可以沿同一方向充磁至饱和,这一方向叫做充磁方向或磁化方向。
本实施例的每个磁极单元10的所有磁性体20的充磁方向相同,即同一磁极单元10的磁性体20充磁方向均为随圆周顺时针方向或逆时针方向分布,增加了每个磁极单元10中磁性体20数量。相邻的两个磁极单元10的充磁方向相反,多个磁极单元10采用不同充磁方向的交替排列,例如第一磁极单元的磁性体20沿圆周顺时针方向充磁,即沿顺时针N极指向S极,而沿圆周顺时针方向的相邻的下一个磁极单元10,第二磁极单元的磁性体20沿圆周逆时针方向充磁,即沿逆时针N极指向S极,从而产生比磁性体20块数更多的极数的转子100恒定磁场。
上述方案中,相邻两个磁极单元10的充磁方向相反,每个磁极单元10包括至少两个充磁方向相同的磁性体20,增加了每个磁极单元10的磁性体20层数,增加磁极单元10的磁障数量,有利于降低定子电枢反应与铁耗,同时提升了转子100的聚磁效果,最终使得电机转矩密度与效率得到提升。
在一些实施例中,转子100还可包括底盘30,磁性体20可以通过螺栓、胶黏剂或卡扣等方式固定于底盘30,底盘30的中心开设有供转子100的转轴穿过的通孔,多个磁性体20围绕该通孔沿底盘30的周向间隔排布,形成了多个磁极单元10。
进一步的,在一些实施例中,转子100还包括沿周向间隔排布的多个导磁体40,任意相邻的两个导磁体40之间嵌设有一个磁性体20。
导磁体40即转子铁芯,可以是由铁氧体材料等磁性材料制成的叠片或块状元件,还可以由硅钢片叠压、卷绕或粉末冶金压铸而成。
盘式电机转子100的旋转力矩来自定子与转子100之间的感应磁场作用力,转子铁芯与定子铁芯的作用一样,都可以增强感应磁场的强度和磁力线密度,从而增强相互间的磁场作用力矩。因此本实施例的导磁体40具有导磁的作用,能够增强磁极单元10的磁场强度和磁场力矩。
在一些实施例中,导磁体40可以通过螺栓、胶黏剂或卡扣等方式固定于底盘30,多个导磁体40围绕底盘30通孔的周向间隔排布。导磁体40沿平行于底盘30方向的横截面可以为扇形或矩形,相邻两个导磁体40之间形成固定槽,磁性体20沿转子100的径向呈辐条状嵌设在该固定槽中,且每个磁极单元10设置有多层间隔设置的辐条状磁性体20,每个磁性体20沿转子100的径向延伸,层数可以为2~N,N为大于2的整数。
具体地,在一些实施例中,多个磁极单元10沿转子100的周向均匀分布。转子100沿其周向被均分为多个磁极单元10,使得转子100的磁场分布均匀,增强了转子100磁场强度分布的均一性。
更具体地,在一些实施例中,如图3所示,磁极单元10包括至少一个第一磁性体组50,每个第一磁性体组50包括两个第一磁性体20a,两个第一磁性体20a沿磁极单元10的中心线11对称分布。
第一磁性体20a指的是多个磁性体20中的某一个。换言之,第一磁性体组50的沿磁极单元10的中心线11对称分布的两个磁性体20称为两个第一磁性体20a。
两个第一磁性体20a充磁方向相同,通过增加磁极单元10的磁性体20数量增加了磁极单元10的磁障数量,有利于降低定子电枢反应与铁耗,提升了聚磁效果,最终使电机转矩密度与效率得到提升。
上述方案中,第一磁性体20a的数量为偶数,需要说明的是,本实施例中磁极单元10的中心线11指的是磁极单元10的中心对称轴,即磁极单元10沿该中心线11呈轴对称。每个磁极单元10的第一磁性体组50的 第一磁性体20a对称分布,保证磁极单元10的磁场强度均匀分布,提高盘式电机的电磁性能。
图4为本申请第二实施例提供的转子的结构示意图;图5为本申请第二些实施例提供的转子的俯视图;图6为本申请第二实施例提供的磁极单元的示意图。
请结合参阅图4~图6,在本申请的第二实施例中,磁极单元10还包括一个第二磁性体20b,第二磁性体20b设在中心线11上。
第二磁性体20b设在中心线11上指的是,中心线11从第二磁性体20b上传过。可选地,第二磁性体20b关于中心线11呈轴对称。
在第一实施例的基础上,上述方案增加了第二磁性体20b,同一磁极单元10下,第一磁性体组50的第一磁性体20a与第二磁性体20b的充磁方向相同,进一步增加了磁极单元10的磁性体20数量,通过增加磁极单元10的磁性体20数量增加了磁极单元10的磁障数量,更有利于降低定子电枢反应与铁耗,提升了聚磁效果,最终使电机转矩密度与效率得到提升。第二磁性体20b设在中心线11上,可改善磁极单元10的磁场强度分布的均匀性。
在一些实施例中,第二磁性体20b沿转子100的径向延伸,第二磁性体20b第二磁性体20b关于中心线11呈轴对称。第二磁性体20b位于两个第一磁性体20a之间。本实施例可进一步改善磁极单元10的磁场强度分布的均匀性。
图7为本申请第三实施例提供的磁极单元的示意图。如图7所示,在本申请的第三实施例,第一磁性体20a与第二磁性体20b沿充磁方向的尺寸不相同。
第一磁性体20a沿充磁方向的尺寸即第一磁性体20a沿充磁方向的厚度,为图7中的D1;第一磁性体组50的两个第一磁性体20a沿充磁方向的厚度相同。第二磁性体20b沿充磁方向的尺寸即第二磁性体20b,为图7中的D2。其中,第一磁性体20a和第二磁性体20b为长方体,第一磁性体20a包括相对平行设置的第一面21和第二面22,N极靠近第一面21,S极靠近第二面22,第一磁性体20a由第一面21a指向第二面21b的方向 充磁,第一磁性体20a沿充磁方向的尺寸D1为垂直于第一面21或第二面22的厚度。同样地,第二磁性体20b沿充磁方向的尺寸D2也采用与第一磁性体20a沿充磁方向的尺寸D1相同的方法测量。
上述方案中,第一磁性体20a与第二磁性体20b沿充磁方向的尺寸不相同,可将第二磁性体20b的厚度D2设置为大于第一磁性体20a的厚度D1,或者将第一磁性体20a的厚度D1设置为大于第二磁性体20b的厚度D2,有利于改善气隙磁密谐波,使得电机达到最优电磁性能,同时通过增加磁性体20的尺寸,可降低磁性体20退磁的风险。
图8为本申请第四实施例提供的磁极单元的示意图。如图8所示,在本申请的第四实施例中,磁极单元10包括多个第一磁性体组50,在一个磁极单元10中,每个第一磁性体组50的两个第一磁性体20a呈夹角设置,多个第一磁性体组50的第一磁性体20a夹角的角度互不相同。
每一个第一磁性体组50的两个第一磁性体20a沿磁极单元10中心线11呈一定角度对称分布。每个磁极单元10具有M块磁性体20,若M为大于1的偶数,则磁极单元10具有M/2个第一磁性体组50;若M为大于1的奇数,则磁极单元10具有(M-1)/2个第一磁性体组50。多个第一磁性体组50的第一磁性体20a均为随圆周顺时针方向或逆时针方向分布,相邻磁极单元10具有相反的磁性体20充磁方向。在第一实施例的基础上,第四实施例进一步增加了磁极单元10的磁障数量,更有利于降低定子电枢反应与铁耗,同时通过设置更多的磁性体20数量,使得电机转矩密度与效率得到提升。
两个磁性体20夹角可为两个磁性体20的中心线形成的夹角的角度。示例性地,磁性体20的中心线沿转子的径向延伸。
以每个磁极单元10具有4个沿圆周逆时针方向排布的第一磁性体20a为例,分别为第一层第一磁性体20a、第二层第一磁性体20a、第三层第一磁性体20a和第四层第一磁性体20a,则第一层第一磁性体20a和第四层第一磁性体20a组成一个第一磁性体组50a,第二层第一磁性体20a和第三层第一磁性体20a组成另一个第一磁性体组50b。第一层第一磁性体20a与第四层第一磁性体20a之间的夹角α1大于第二层第一磁性体20a 与第三层第一磁性体20a之间的夹角α2,且第一层第一磁性体20a与第四层第一磁性体20a之间的夹角α1、以及第二层第一磁性体20a与第三层第一磁性体20a之间的夹角α2可选择任意角度。
在第四实施例的方案中,每个第一磁性体组50的两个第一磁性体20a呈不同角度的夹角设置,每个第一磁性体组50的两个第一磁性体20a夹角的角度可任意选择设置,有利于改善气隙磁场谐波,使得电机达到最优电磁性能。
图9为本申请第五实施例提供的磁极单元的示意图。进一步的,如图9所示,在第五实施例中,在一个磁极单元10中,至少两个第一磁性体组50的第一磁性体20a沿充磁方向的尺寸不相同。。
示例性地,第一磁性体20a为长方体,不同第一磁性体组50的第一磁性体20a沿充磁方向的厚度可以设置为不相同。例如第一层第一磁性体20a和第四层第一磁性体20a组成的一个第一磁性体组50a,第一磁性体组50a的第一磁性体20a沿充磁方向的尺寸为D3。第二层第一磁性体20a和第三层第一磁性体20a组成另一个第一磁性体组50b,第一磁性体组50b的第一磁性体20a沿充磁方向的尺寸为D4,可将D4设置为大于D3。其中,D3、D4与第一磁性体20a沿充磁方向的尺寸D1的测量方式相同,第一磁性体20a沿充磁方向的尺寸D1的测量方式已在前文中说明,因此D3、D4的测量方式在此不再赘述。
上述方案中,多个第一磁性体组50的第一磁性体20a沿充磁方向的尺寸可设置为不相同,有利于改善气隙磁密谐波,使得电机达到最优电磁性能,同时通过增加第一磁性体20a的尺寸,可降低第一磁性体20a退磁的风险。
图10为本申请第六实施例提供的磁极单元的示意图;图11为本申请第六实施例提供的转子的俯视图。如图10和图11所示,磁极单元10最外侧的两个磁性体20之间的夹角α3小于磁极单元10在转子100中的对应的圆心角α4。
圆心角α4可为磁极单元10沿周向的两个端面之间的角度。示例性地,转子100沿自身周向被均分为K个磁极单元10,各磁极单元10的圆 心角α4为360°/K。例如图11中,转子100被均为分为8份,对应八个磁极单元10,每个磁极单元在转子中的夹角α4=360°/8=45°。
,相邻两个磁极单元10的最外侧的磁性体20之间呈间隔设置,能够为导磁体40提供设置空间,即相邻两个磁极单元10之间可共用一个导磁体40,保证了每个磁极单元10的最外侧都具有导磁体40,提高磁极单元10的磁场强度。
图12为本申请第七实施例提供的转子的俯视图;图13为本申请第七实施例提供的磁极单元的示意图。
请结合参阅图12和图13,在本申请的第七实施例中,每个磁极单元10具有至少一个扇形的磁性体20,该磁性体20沿平行于底盘30方向为扇形,且沿远离转子100中心的方向,扇形的磁性体20半径逐渐增大。可将转子100所有的磁性体20均设置为扇形,也可以仅设置一个或几个磁性体20为扇形,具体数量不作限定。
示例性地,对于扇形的磁性体20,磁性体20沿充磁方向的尺寸D以磁性体20沿转子径向的中心计算,例如磁性体20包括相对设置的第一面21和第二面22,第一面21靠近N极,第二面22靠近S极,计算图13中的尺寸D时,在磁性体20沿转子径向的中心点,从N极指向S极的方向测量。
在第七实施例的方案中,每个磁极单元10具有至少一个扇形的磁性体20,有利于提升磁性体20空间利用率,电机达到最优电磁性能。
图14为本申请第八实施例提供的转子的俯视图;图15为本申请第八实施例提供的磁极单元的示意图。请结合参阅图14和图15,在本申请的第八实施例中,磁性体20呈斜极设置,即磁性体20的延伸方向与转子100的径向呈夹角设置,有利于降低电机转矩脉动与反电动势谐波,改善噪音与振动,使电机达到最优电磁性能。
需要说明的是,若呈斜极设置的磁性体20为长方体,则该磁性体20沿磁场方向的尺寸测量方法与第三实施例中的第一磁性体20a沿充磁方向的尺寸D1的测量方法相同;若呈斜极设置的磁性体20为扇形,则该磁性体20沿磁场方向的尺寸测量方法与第七实施例的磁性体20沿充磁方向 的尺寸D的测量方法相同。
本申请第二方面的实施例提供一种盘式电机,包括定子以及上述任一实施方式的转子100,定子与转子100沿转子100的轴向间隔设置。由于该盘式电机采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
图16为使用本申请第二实施例的转子与常规转子的电机转矩变化仿真示意图,图16横坐标的A代表常规转子,B代表第二实施例的转子。由图16可知,使用本申请第二实施例的转子的电机聚磁效果提升,电枢反应减弱,电机输出扭矩可提高61%。
图17为使用本申请第二实施例的转子与常规转子的电机铁耗性能变化仿真示意图,图17横坐标的A代表常规转子,B代表第二实施例的转子。由图17可知,使用本申请第二实施例的转子的电机10krpm满载铁耗降低19%。
本申请第三方面的实施例提供一种用电设备,包括上述盘式电机。该用电设备可以为但不限于电瓶车、电动汽车、轮船、航天器等等。其中,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
根据本申请的一些实施例,本申请提供一种盘式电机的转子100,转子100沿其周向被划分为多个磁极单元10,每个磁极单元10包括至少两个磁性体20,每个磁极单元10的磁性体20的充磁方向相同,增加了且任意相邻的两个磁极单元10的磁性体20的充磁方向相反。转子100还包括沿周向间隔排布的多个导磁体40,任意相邻的两个导磁体40之间嵌设有一个磁性体20。导磁体40具有导磁的作用,增强了磁极单元10的磁场强度。多个磁极单元10沿底盘30的周向均匀分布,增强了转子100磁场强度分布的均一性。磁极单元10包括第一磁性体组50,第一磁性体组50包括沿磁极单元10的中心线11对称分布的两个第一磁性体20a。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行 修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (13)
- 一种盘式电机的转子,所述转子沿其周向被划分为多个磁极单元,每个所述磁极单元包括至少两个磁性体;沿所述转子的周向方向,每个所述磁极单元的磁性体的充磁方向相同,且任意相邻的两个所述磁极单元的所述磁性体的充磁方向相反。
- 根据权利要求1所述的转子,其中,所述转子还包括沿所述周向间隔排布的多个导磁体,任意相邻的两个所述导磁体之间嵌设有一个所述磁性体。
- 根据权利要求1或2所述的转子,其中,多个所述磁极单元沿所述转子的周向均匀分布。
- 根据权利要求1-3任一项所述的转子,其中,所述磁极单元包括至少一个第一磁性体组,每个所述第一磁性体组包括两个第一磁性体,所述两个第一磁性体沿所述磁极单元的中心线对称分布。
- 根据权利要求4所述的盘式电机的转子,其中,所述磁极单元还包括一个第二磁性体,所述第二磁性体设在所述中心线上。
- 根据权利要求5所述的转子,其中,所述第一磁性体与所述第二磁性体沿所述充磁方向的尺寸不相同。
- 根据权利要求4-6任一项所述的转子,其中,所述磁极单元包括多个所述第一磁性体组;在一个所述磁极单元中,每个所述第一磁性体组的两个第一磁性体呈夹角设置,多个所述第一磁性体组的第一磁性体夹角的角度互不相同。
- 根据权利要求7所述的转子,其中,在一个所述磁极单元中,至少两个所述第一磁性体组的所述第一磁性体沿所述充磁方向的尺寸不相同。
- 根据权利要求1-8中任一项所述的转子,其中,所述磁极单元最外侧的两个磁性体之间的夹角小于所述磁极单元在转子中对应的圆心角。
- 根据权利要求1-9中任一项所述的转子,其中,每个所述磁极单元具有至少一个扇形的所述磁性体。
- 根据权利要求1-10中任一项所述的转子,其中,所述磁性体呈斜 极设置。
- 一种盘式电机,包括定子以及如权利要求1~11中任一项所述的转子,所述定子与转子沿所述转子的轴向间隔设置。
- 一种用电设备,包括如权利要求12所述的盘式电机。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22958363.8A EP4407839A1 (en) | 2022-09-13 | 2022-09-13 | Rotor of disc-type electric motor, and disc-type electric motor and electric device |
CN202280006371.3A CN118044099A (zh) | 2022-09-13 | 2022-09-13 | 盘式电机的转子、盘式电机和用电设备 |
PCT/CN2022/118533 WO2024055169A1 (zh) | 2022-09-13 | 2022-09-13 | 盘式电机的转子、盘式电机和用电设备 |
US18/679,476 US20240322623A1 (en) | 2022-09-13 | 2024-05-31 | Rotor for disc motor, disc motor, and electric device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/118533 WO2024055169A1 (zh) | 2022-09-13 | 2022-09-13 | 盘式电机的转子、盘式电机和用电设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/679,476 Continuation US20240322623A1 (en) | 2022-09-13 | 2024-05-31 | Rotor for disc motor, disc motor, and electric device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024055169A1 true WO2024055169A1 (zh) | 2024-03-21 |
Family
ID=90274103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/118533 WO2024055169A1 (zh) | 2022-09-13 | 2022-09-13 | 盘式电机的转子、盘式电机和用电设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240322623A1 (zh) |
EP (1) | EP4407839A1 (zh) |
CN (1) | CN118044099A (zh) |
WO (1) | WO2024055169A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1897419A (zh) * | 2005-06-16 | 2007-01-17 | 富士通将军股份有限公司 | 轴向气隙型电动机 |
EP1816731A2 (en) * | 2006-02-02 | 2007-08-08 | Soluciones Energeticas, S.A. | A reversible high-performance electric machine |
CN103036376A (zh) * | 2011-10-10 | 2013-04-10 | 三星电子株式会社 | 电动机和电动机的转子 |
CN111541325A (zh) * | 2020-04-30 | 2020-08-14 | 南京理工大学 | 一种轴向磁场永磁电机组合充磁型永磁体内置式转子 |
-
2022
- 2022-09-13 CN CN202280006371.3A patent/CN118044099A/zh active Pending
- 2022-09-13 WO PCT/CN2022/118533 patent/WO2024055169A1/zh active Application Filing
- 2022-09-13 EP EP22958363.8A patent/EP4407839A1/en active Pending
-
2024
- 2024-05-31 US US18/679,476 patent/US20240322623A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1897419A (zh) * | 2005-06-16 | 2007-01-17 | 富士通将军股份有限公司 | 轴向气隙型电动机 |
EP1816731A2 (en) * | 2006-02-02 | 2007-08-08 | Soluciones Energeticas, S.A. | A reversible high-performance electric machine |
CN103036376A (zh) * | 2011-10-10 | 2013-04-10 | 三星电子株式会社 | 电动机和电动机的转子 |
CN111541325A (zh) * | 2020-04-30 | 2020-08-14 | 南京理工大学 | 一种轴向磁场永磁电机组合充磁型永磁体内置式转子 |
Also Published As
Publication number | Publication date |
---|---|
CN118044099A (zh) | 2024-05-14 |
EP4407839A1 (en) | 2024-07-31 |
US20240322623A1 (en) | 2024-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7294948B2 (en) | Rotor-stator structure for electrodynamic machines | |
CN108448849B (zh) | 一种定子永磁型双转子磁场调制电机及其设计方法 | |
US7982350B2 (en) | Conical magnets and rotor-stator structures for electrodynamic machines | |
Miura et al. | A ferrite permanent magnet axial gap motor with segmented rotor structure for the next generation hybrid vehicle | |
US8072106B2 (en) | Stator and rotor-stator structures for electrodynamic machines | |
CN108649720B (zh) | 一种静音自发电发电机 | |
CN110086308B (zh) | 六相聚磁式内外无源转子横向磁通永磁电机 | |
CN109861413B (zh) | 一种聚磁型交替极容错永磁游标电机 | |
CN113241866B (zh) | 具有聚磁结构的盘式永磁电机定转子单元 | |
CN116633052A (zh) | 一种多层串联磁路永磁同步电机 | |
CN105406684A (zh) | 一种齿槽凸极永磁复合阵列直线电机 | |
CN202309460U (zh) | 大容量外转子三面定子横向磁通永磁风力发电机 | |
WO2024055169A1 (zh) | 盘式电机的转子、盘式电机和用电设备 | |
CN115065183B (zh) | 一种基于拓扑优化方法的航空用双层开气隙不对称发电机 | |
CN114123699B (zh) | 一种伺服双余度有限转角力矩电机 | |
CN114094738B (zh) | 自起动永磁辅助同步磁阻电机转子和电机 | |
CN215378594U (zh) | 大转矩密度的盘式永磁电机转子单元 | |
CN206135581U (zh) | 电机转子以及永磁电机 | |
WO2022179628A1 (zh) | 一种多边形电机 | |
CN115347752A (zh) | 一种具有磁场调制效应的定子多齿轴向磁通永磁电机 | |
CN111934508B (zh) | 径向磁场无铁心永磁同步电机 | |
WO2018076486A1 (zh) | 电机 | |
EP1810391A2 (en) | Rotor-stator structure for electrodynamic machines | |
CN113872406A (zh) | 一种双转子轴向混合励磁双凸极电机 | |
CN217656486U (zh) | 一种永磁辅助同步磁阻电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202280006371.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022958363 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022958363 Country of ref document: EP Effective date: 20240425 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22958363 Country of ref document: EP Kind code of ref document: A1 |