WO2024053964A1 - System for improving gene editing through structural change of guide rna of cas9 derived from campylobacter jejuni - Google Patents

System for improving gene editing through structural change of guide rna of cas9 derived from campylobacter jejuni Download PDF

Info

Publication number
WO2024053964A1
WO2024053964A1 PCT/KR2023/013166 KR2023013166W WO2024053964A1 WO 2024053964 A1 WO2024053964 A1 WO 2024053964A1 KR 2023013166 W KR2023013166 W KR 2023013166W WO 2024053964 A1 WO2024053964 A1 WO 2024053964A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
engineered
guide rna
cas9
nucleic acid
Prior art date
Application number
PCT/KR2023/013166
Other languages
French (fr)
Korean (ko)
Inventor
송동우
김석중
이혜림
오혜경
김운기
이재영
Original Assignee
주식회사 툴젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 툴젠 filed Critical 주식회사 툴젠
Publication of WO2024053964A1 publication Critical patent/WO2024053964A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/46Vector systems having a special element relevant for transcription elements influencing chromatin structure, e.g. scaffold/matrix attachment region, methylation free island

Definitions

  • the present invention is an invention in the field of CRISPR/Cas9 system technology.
  • the CRISPR/Cas system is a type of immune system found in prokaryotic organisms and includes Cas proteins, and guide RNA.
  • the detailed composition of the Cas protein or guide RNA is described in detail in the published document WO2018/231018 (International Publication No.).
  • Cas9 protein from Campylobacter jejuni also referred to as CjCas9, is one of the orthologs of Cas9 protein.
  • the CjCas9 has the smallest size among Cas9s and is known to exhibit double-strand DNA cleavage activity in eukaryotic cells.
  • the present invention relates to a Cas9 protein derived from Campylobacter jejuni and a guide RNA that can form a complex with the Cas9 protein.
  • the present specification is intended to provide an engineered guide RNA for the Cas9 protein from Campylobacter jejuni that has been modified to not contain more than four consecutive uridines.
  • the present specification seeks to provide various implementation forms of the engineered CRISPR/Cas9 system including the engineered guide RNA.
  • the present specification seeks to provide a gene editing method using the engineered CRISPR/Cas9 system. This specification seeks to provide uses of the engineered CRISPR/Cas9 system.
  • an engineered guide RNA capable of forming a complex with the Cas9 protein from Campylobacter jejuni represented by the following sequence:
  • the guide sequence can target a predetermined target sequence
  • the second sequence is AGUCCCUGAAGGGACU (SEQ ID NO: 6), or a sequence that is more than 80% identical to SEQ ID NO: 6,
  • the fourth sequence is UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 7), or a sequence that is more than 80% identical to SEQ ID NO: 7,
  • the first sequence and the third sequence are selected from the following combinations:
  • the first sequence is 5'-GUUUC-3'
  • the third sequence is 5'-GAAA-3'
  • the first sequence is 5'-GUUCU-3'
  • the third sequence is 5'-AGAA-3'
  • the first sequence is 5'-GUCUU-3'
  • the third sequence is 5'-AAGA-3'
  • the first sequence is 5'-GCUUU-3'
  • the third sequence is 5'-AAAG-3'.
  • the sequence of the engineered scaffold is GUUUCAGUCCCUGAAGGGACUGGAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 2), GUUCUAGUCCCUGAAGGGACUGAGAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 3), GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUU It may be selected from UGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 4), and GCUUUAGUCCCUGAAGGGACUAAAGUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 5).
  • sequence of the engineered scaffold may be GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 4).
  • an engineered CRISPR/Cas9 complex comprising:
  • the CRISPR/Cas9 complex can target a predetermined target sequence of the engineered guide RNA.
  • DNA encoding the engineered guide RNA is provided herein.
  • the present specification provides a vector capable of expressing each component of the CRISPR/Cas9 system, including the following:
  • a nucleic acid encoding the Cas9 protein from Campylobacter jejuni A nucleic acid encoding the Cas9 protein from Campylobacter jejuni.
  • the vector may be a viral vector or a non-viral vector.
  • the vector may be one or more viral vectors selected from the group consisting of retrovirus, lentivirus, adenovirus, adeno-associated virus, vaccinia virus, poxvirus, and herpes simplex virus.
  • the vector may be included in a single vector.
  • the vector may be included in two or more vectors.
  • engineered CRISPR/Cas9 compositions comprising:
  • Cas9 protein derived from Campylobacter jejuni, or a nucleic acid encoding the Cas9 protein
  • the engineered guide RNA or a nucleic acid encoding the guide RNA.
  • the composition includes the Cas9 protein and the engineered guide RNA, and the Cas9 protein may bind to the engineered guide RNA to form a Cas9-gRNA complex.
  • the composition may be a composition containing a nucleic acid encoding the Cas9 protein and a nucleic acid encoding the engineered guide RNA.
  • the composition comprises the vector.
  • a target nucleic acid having a target sequence of a gene in a cell comprising:
  • the guide domain of the engineered guide RNA of the composition can target the target nucleic acid.
  • the gene editing efficiency of the CRISPR/Cas9 system derived from Campylobacter jejuni can be dramatically increased.
  • gene editing efficiency can be expected to be greatly increased.
  • Figure 1 schematically shows the engineered guide RNA disclosed herein and shows examples of four representative engineered guide RNAs.
  • Figure 2 shows the indel occurrence rate in the HIF1A-E4 gene of the CRISPR/CjCas9 system containing each of wild-type single guide RNA and engineered guide RNA targeting the HIF1A gene in a human cell line (HEK293T) according to Experimental Example 2.
  • NT is a negative control
  • Ori is a wild-type guide RNA
  • Modi-1 is an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 2
  • Modi-2 is an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 3.
  • the engineered guide RNA, Modi-3 refers to an engineered guide RNA having an engineered scaffold sequence of SEQ ID NO: 4
  • Modi-4 refers to an engineered guide RNA having an engineered scaffold sequence of SEQ ID NO: 5.
  • Figure 3 is a graph showing the expression efficiency of expression vectors for each of wild-type single guide RNA and engineered guide RNA targeting the HIF1A gene in a human cell line (HEK293T) according to Experimental Example 2.
  • NT is a negative control
  • Ori is a wild-type guide RNA
  • Modi-1 is an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 2
  • Modi-2 is an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 3.
  • the engineered guide RNA, Modi-3 refers to an engineered guide RNA having an engineered scaffold sequence of SEQ ID NO: 4
  • Modi-4 refers to an engineered guide RNA having an engineered scaffold sequence of SEQ ID NO: 5.
  • Figure 4 shows the indel generation efficiency of the CRISPR/CjCas9 system containing the engineered guide RNA of Modi-3 transfected with Low 240ng plasmid transfection and High 800ng plasmid transfection in a rat cell line (RT4-D6P2T) according to Experimental Example 3.
  • This is a graph compared to the CRISPR/CjCas9 system containing wild-type guide RNA.
  • ORI-Low is a wild-type guide RNA infected with Low 240ng plasmid transfection
  • ORI-High is a wild-type guide RNA infected with High 800ng plasmid transfection
  • Modi-3-Low is an engineered guide RNA of SEQ ID NO. 4.
  • Modi-3-High is a transfection of an engineered guide RNA with a scaffold sequence using Low 240ng plasmid transfection.
  • Modi-3-Low is a transfection of an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 4 using High 800ng plasmid. It was infected by transfection.
  • Figure 5 is a graph comparing the expression level of engineered guide RNA of Modi-3 transfected with Low 240ng plasmid transfection and High 800ng plasmid transfection in rat cell line (RT4-D6P2T) according to Experimental Example 3 with that of wild type guide RNA. am.
  • ORI-Low is a wild-type guide RNA infected with Low 240ng plasmid transfection
  • ORI-High is a wild-type guide RNA infected with High 800ng plasmid transfection
  • Modi-3-Low is an engineered guide RNA of SEQ ID NO. 4.
  • Modi-3-High is a transfection of an engineered guide RNA with a scaffold sequence using Low 240ng plasmid transfection.
  • Modi-3-Low is a transfection of an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 4 using High 800ng plasmid. It was infected by transfection.
  • the term "about” refers to 30, 25, 20, 15, 10, 9, 8, 7 for a reference amount, level, value, number, frequency, percent, dimension, size, amount, weight or length. means a quantity, level, value, number, frequency, percentage, dimension, size, volume, weight or length that varies by , 6, 5, 4, 3, 2, 1 or 0%.
  • NLS refers to a peptide of a certain length that acts as a kind of “tag” attached to the protein that is the transport target when transporting substances from outside the cell nucleus into the inside of the cell through nuclear transport. It means sequence.
  • the NLS is the NLS of the SV40 virus large T-antigen having the amino acid sequence PKKKRKV (SEQ ID NO: 23); NLS from nucleoplasmin (e.g., nucleoplasmin bipartite NLS with sequence KRPAATKKAGQAKKKK (SEQ ID NO: 24)); c-myc NLS with amino acid sequence PAAKRVKLD (SEQ ID NO: 25) or RQRRNELKRSP (SEQ ID NO: 26); hRNPA1 M9 NLS with sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY (SEQ ID NO: 27); The sequence of the IBB domain from importin-alpha RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: 28); the sequences VSRKRPRP (SEQ ID NO: 29) and PPKKARED (SEQ ID NO: 30) of the myoma T protein; Sequence
  • amino acid sequence in this specification it is written in the direction from the N-terminal to the C-terminal using amino acid single-letter notation or triple-letter notation.
  • RNVP refers to a peptide in which arginine, asparagine, valine, and proline are linked in order from the N-terminal to the C-terminal.
  • Thr-Leu-Lys it means a peptide in which Threonine, Leucine, and Lysine are sequentially connected from the N-terminal to the C-terminal.
  • amino acids that cannot be expressed with the above one-letter notation they are written using other letters and are further supplemented and explained.
  • the notation method for each amino acid is as follows: Alanine (Ala, A); Arginine (Arg, R); Asparagine (Asn, N); Aspartic acid (Asp, D); Cysteine (Cys, C); Glutamic acid (Glu, E); Glutamine (Gln, Q); Glycine (Gly, G); Histidine (His, H); Isoleucine (Ile, I); Leucine (Leu, L); Lysine (Lys K); Methionine (Met, M); Phenylalanine (Phe, F); Proline (Pro, P); Serine (Ser, S); Threonine (Thr, T); Tryptophan (Trp, W); Tyrosine (Tyr, Y); and Valine (Val, V).
  • A, T, C, G and U used in this specification are interpreted as understood by those skilled in the art. Depending on the context and technology, it may be appropriately interpreted as a base, nucleoside, or nucleotide on DNA or RNA.
  • a base when referring to a base, it can be interpreted as adenine (A), thymine (T), cytosine (C), guanine (G), or uracil (U), respectively, and when referring to a nucleoside, it can be interpreted as Each can be interpreted as adenosine (A), thymidine (T), cytidine (C), guanosine (G), or uridine (U), and when referring to nucleotides in the sequence, each nucleoside above is used. It should be interpreted to mean the containing nucleotide.
  • operably linked means that, in gene expression technology, a specific component is linked to another component so that the specific component can function in the intended manner.
  • a promoter sequence when operably linked to a coding sequence, it means that the promoter is linked to affect transcription and/or expression of the coding sequence in the cell.
  • the above term includes all meanings that can be recognized by a person skilled in the art, and can be appropriately interpreted depending on the context.
  • target gene or target nucleic acid
  • target gene or “target nucleic acid” basically refers to a gene or nucleic acid in a cell that is the target of gene editing.
  • the target gene or target nucleic acid may be used interchangeably and may refer to the same target.
  • the target gene or target nucleic acid may refer to either a gene or nucleic acid unique to the target cell or a gene or nucleic acid derived from an external source, and is not particularly limited as long as it can be the subject of gene editing.
  • the target gene or target nucleic acid may be single-stranded DNA, double-stranded DNA, and/or RNA.
  • the above term includes all meanings that can be recognized by a person skilled in the art, and can be appropriately interpreted depending on the context.
  • target sequence refers to a specific sequence recognized by the CRISPR/Cas complex to cleave a target gene or target nucleic acid.
  • the target sequence may be appropriately selected depending on the purpose.
  • target sequence refers to a sequence contained in a target gene or target nucleic acid sequence and has complementarity with a spacer sequence contained in the guide RNA or engineered guide RNA provided herein.
  • the spacer sequence is determined considering the sequence of the target gene or target nucleic acid and the PAM sequence recognized by the effector protein of the CRISPR/Cas system.
  • the target sequence may refer only to a specific strand that binds complementary to the guide RNA of the CRISPR/Cas complex, or may refer to the entire target double strand including the specific strand portion, which is interpreted appropriately depending on the context.
  • the above term includes all meanings that can be recognized by a person skilled in the art, and can be appropriately interpreted depending on the context.
  • a vector refers collectively to all substances capable of transporting genetic material into a cell, unless otherwise specified.
  • a vector may be, but is not limited to, a DNA molecule containing the genetic material of interest, such as a nucleic acid encoding an effector protein of a CRISPR/Cas system, and/or a nucleic acid encoding a guide RNA.
  • the above terms include all meanings recognized by those skilled in the art, and can be appropriately interpreted depending on the context.
  • the CRISPR/Cas system is a type of immune system found in prokaryotic organisms and includes Cas proteins, and guide RNA.
  • the detailed composition of the Cas protein or guide RNA is described in detail in the published document WO2018/231018 (International Publication No.).
  • the term “Cas protein” is a general term for nucleases that can be interpreted as being used in the CRISPR/Cas system. Below, we briefly describe the DNA cutting process of the most commonly used CRISPR/Cas9 system.
  • the Cas9 protein corresponds to Class 2, Type II in the CRISPR/Cas system classification, and is suitable for Streptococcus pyogenes, Streptococcus thermophilus, Streptococcus sp., and Streptoma. Streptomyces pristinaespiralis, Streptomyces viridochromogenes, Streptomyces viridochromogenes, Streptosporangium roseum, Streptospor There is Cas9 protein derived from Streptosporangium roseum.
  • RNA that has the function of inducing the CRISPR/Cas9 complex to recognize a specific sequence contained in the target nucleic acid is called a guide RNA.
  • the composition of the guide RNA is divided functionally, it can be roughly divided into 1) a scaffold sequence portion, and 2) a guide sequence portion.
  • the scaffold sequence part is a part that interacts with the Cas9 protein and is a part that allows it to bind with the Cas9 protein to form a complex.
  • the scaffold sequence portion includes tracrRNA and crRNA repeat sequence portions, and the scaffold sequence is determined depending on which Cas9 protein is used.
  • the guide sequence portion is a portion that can bind complementary to a nucleotide sequence portion of a certain length in the target nucleic acid.
  • the guide sequence portion is a base portion that can be artificially modified and is determined by the target nucleotide sequence of interest.
  • the Cas9 protein When the CRISPR/Cas9 complex contacts the target nucleic acid, the Cas9 protein recognizes a nucleotide sequence of a certain length, and a part of the guide RNA (part of the guide sequence) binds complementary to the part adjacent to the PAM sequence, CRISPR/Cas9
  • the target nucleic acid is cleaved by the complex.
  • the nucleotide sequence of a certain length recognized by the Cas9 protein is called a protospacer-adjacent motif (PAM) sequence, which is a sequence determined depending on the type or origin of the Cas9 protein.
  • PAM protospacer-adjacent motif
  • the Cas9 protein from Streptococcus pyogenes can recognize the 5'-NGG-3' sequence in the target nucleic acid.
  • N is one of adenosine (A), thymidine (T), cytidine (C), and guanosine (G).
  • the guide sequence portion of the guide RNA must bind complementary to the sequence portion adjacent to the PAM sequence, so the guide sequence portion must be a sequence of the target nucleic acid, specifically a sequence adjacent to the PAM sequence. It is decided according to the part.
  • the CRISPR/Cas9 complex cleaves the target nucleic acid, any position within the PAM sequence portion of the target nucleic acid and/or the sequence portion that binds complementary to the guide sequence is cleaved.
  • target strand non-target strand
  • the CRISPR/Cas9 complex has cleavage activity on double-stranded DNA.
  • the strand containing the protospacer that binds to the guide sequence portion is called the target strand (TS).
  • a strand that is complementary to the target strand and has a protospacer that does not bind to the guide sequence portion is called a non-target strand (NTS).
  • the guide sequence portion may bind complementary to the protospacer sequence portion included in the target strand (TS) of double-stranded DNA.
  • the guide sequence and the protospacer sequence included in the non-target strand (NTS) of double-stranded DNA are equivalent sequences. Specifically, the only difference is that the guide sequence is an RNA sequence, and the protospacer sequence included in the non-target strand (NTS) is a corresponding DNA sequence.
  • Cas9 protein from Campylobacter jejuni also referred to as CjCas9, is one of the orthologs of Cas9 protein.
  • the CjCas9 has the smallest size among Cas9s and is known to exhibit double-strand DNA cleavage activity in eukaryotic cells.
  • Campylobacter jejuni-derived Cas9 protein The gene editing efficiency of Campylobacter jejuni-derived Cas9 protein is low.
  • the Cas9 protein derived from Campylobacter jejuni shows double-strand DNA cleavage activity, and its relatively small size is advantageous for commercialization.
  • the Cas9 protein derived from Campylobacter jejuni is known to have lower gene editing efficiency in cells than Cas9 derived from Streptococcus pyogenes, and the efficiency is particularly low when the Cas9 protein and guide RNA are vectorized and introduced. There is.
  • Guide RNA contains four consecutive uridines
  • the guide RNA for the Cas9 protein derived from Campylobacter jejuni includes a sequence of four consecutive uridines in the repeat portion of the crRNA among the scaffold sequences. Accordingly, when vectorizing the guide RNA, four thymi A DNA sequence with contiguous Deans is included in the vector. RNA polymerase, which transcribes the vector and produces RNA, recognizes the sequence of five consecutive thymidines (5'-TTTTT-3') as a termination signal and stops polymerization. Although the DNA sequence (5'-TTTT-3') containing four consecutive thymidines contained in the vectorized guide RNA is not a termination signal, it is recognized similarly to a termination signal, and transcriptional pausing or immature termination can occur. It has been reported.
  • the guide RNA may not be expressed properly when introduced into cells in vector form. This causes the Cas9 protein-guide RNA complex derived from Campylobacter jejuni to not be sufficiently formed within the cell, thereby reducing the gene editing efficiency of the CRISPR/CjCas9 system expression vector.
  • the engineered CRISPR/Cas9 system comprises a Cas9 protein (CjCas9) from Campylobacter jejuni and an (engineered) guide RNA, and is characterized in that the guide RNA is engineered.
  • the guide RNA comprises a guide domain and an engineered scaffold, and the engineered scaffold has a 5'-UUUU-3' sequence portion adjacent to the guide domain, compared to the guide RNA of the corresponding wild-type CjCas9 protein.
  • the 5'-AAAA-3' sequence part that binds complementary to this to form a Tetraloop is modified.
  • the engineered CRISPR/Cas9 system has the following characteristics: 1) when introduced into cells in the form of an expression vector, it exhibits a higher expression level compared to wild-type guide RNA, and 2) the activity of the CRISPR/Cas9 system is increased. .
  • the engineered CRISPR/Cas9 system disclosed herein includes an engineered guide RNA.
  • the engineered guide RNA consists of a guide domain and an engineered scaffold sequentially linked from the 5' end to the 3' end.
  • the guide domain is a part that can target a nucleic acid having a target sequence, and allows the engineered CRISPR/Cas9 system to exhibit target-specific nucleic acid cleavage activity.
  • the guide domain is appropriately designed according to the target sequence.
  • the engineered scaffold is a part that interacts with the Cas9 protein to form a complex.
  • the engineered scaffold is designed not to have more than four consecutive uridine (U) elements, and thus exhibits high expression levels when using the vector.
  • the engineered CRISPR/Cas9 system disclosed herein includes the Cas9 protein.
  • the Cas9 protein is a Cas9 protein derived from Campylobacter jejuni.
  • the Cas9 protein refers collectively to wild-type Cas9 protein, modified Cas9 protein, and fusion protein in which an additional domain is fused to the Cas9 protein.
  • the engineered CRISPR/Cas9 system disclosed herein is characterized in that the scaffold portion is engineered compared to the guide RNA of the CRISPR/Cas9 system found in nature. Specifically, the 5'-UUUU-3' sequence contained in the repeat portion of the wild-type crRNA and the 5'-AAAA-3' sequence contained in the antirepeat portion of the wild-type tracrRNA that binds complementary to it are appropriately changed. there is. Therefore, the engineered guide RNA does not have a continuous region of four or more uridines in the sequence.
  • RNA polymerase recognizes four consecutive thymidine (T) regions, preventing transcriptional pausing or immature termination.
  • T thymidine
  • the engineered CRISPR/Cas9 system disclosed herein has the effect of improving gene cleavage activity and/or efficiency itself due to the engineered scaffold.
  • the guide RNA engineered with the above-mentioned scaffold portion not only increases the expression level of the above-mentioned guide RNA, but also exhibits the characteristic of increasing the DNA cutting efficiency itself by interaction with CjCas9. Accordingly, the engineered CRISPR/Cas9 system shows higher gene editing activity than the wild-type CRISPR/Cas9 system regardless of the form in which it is used (ribonucleoprotein, vector, and/or composition).
  • the engineered scaffold disclosed herein can be divided into a first region, a second region, a third region, and a fourth region from the 5' end to the 3' end.
  • Each of the above regions may correspond to each part of the scaffold of the wild-type guide RNA for the Cas9 protein derived from Campylobacter jejuni (hereinafter referred to as wild-type scaffold), which will be described below.
  • wild-type scaffold for the Cas9 protein derived from Campylobacter jejuni
  • the wild-type guide RNA refers to guide RNA including naturally occurring crRNA and tracrRNA.
  • a single guide RNA in which the crRNA and tracrRNA are connected by a linker e.g., a linker with a 5'-GAAA-3' or 5'-GA-3' sequence
  • the wild-type scaffold refers to the naturally occurring scaffold of guide RNA for the Cas9 protein from Campylobacter jejuni.
  • the wild-type scaffold may be represented by the sequence GUUUUAGUCCCUGAAGGGACUAAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 1).
  • the wild-type scaffold can be divided as follows:
  • the first region of the wild type is 5'-GUUUU-3'
  • the second region of the wild type is 5'-AGUCCCUGAAGGGACU-3' (SEQ ID NO: 6)
  • the third region of the wild type is 5'-AAAA-3'
  • the fourth region of the wild type is 5'-UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC-3' (SEQ ID NO: 7).
  • the first region of the engineered scaffold disclosed herein is characterized by being modified to not have four consecutive uridines (U). Specifically, the first region is represented by a sequence selected from 5'-GUUUC-3', 5'-GUUCU-3', 5'-GUCUU-3', and 5'-GCUUU-3'.
  • the second region of the engineered scaffold disclosed herein is expressed in a sequence identical to or similar to the sequence of the second region of the wild type.
  • the second region is 5'-AGUCCCUGAAGGGACU-3' (SEQ ID NO: 6) and 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87 % or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more , or expressed as a 100% identical, equivalent, or homologous sequence.
  • the third region of the engineered scaffold disclosed herein is a sequence that can bind complementary to the first region to form a stem-loop structure.
  • the third region is determined depending on the sequence in which the first region is expressed. Specifically, when the first region is expressed as 5'-GUUUC-3', the third region is expressed as 5'-GAAA-3', and the first region is expressed as 5'-GUUCU-3' In this case, the third region is expressed as 5'-AGAA-3', and if the first region is expressed as 5'-GUCUU-3', the third region is expressed as 5'-AAGA-3' And, when the first region is expressed as 5'-GCUUU-3', the third region is expressed as 5'-AAAG-3'.
  • the fourth region of the engineered scaffold disclosed herein is expressed in a sequence identical to or similar to the sequence of the fourth region of the wild type. Specifically, the fourth region is 5'-UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC-3' (SEQ ID NO: 7) and 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87 % or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more , or expressed as a 100% identical, equivalent, or homologous sequence.
  • the engineered guide RNA provided herein can interact with the Cas9 protein to form a complex and can target nucleic acids with a target sequence.
  • the engineered guide RNA includes a guide domain and an engineered scaffold.
  • the engineered scaffold is a composition in which the guide RNA interacts with the Cas9 protein to form a complex.
  • the guide domain is configured to target a nucleic acid having a target sequence so that the Cas9-guide RNA complex can exhibit target-specific nucleic acid cleavage activity.
  • the guide domain is designed to target a nucleic acid having a target sequence.
  • the engineered guide RNA consists of a guide domain and an engineered scaffold sequentially linked from the 5' end to the 3' end.
  • the engineered scaffold of the guide RNA allows the guide RNA to interact with the Cas9 protein to form a complex.
  • the engineered scaffold is as described in the “Engineered Scaffold” section.
  • the programmable guide RNA includes a guide domain.
  • the guide domain is capable of targeting nucleic acids of a target sequence and is involved in activating the target-specific nucleic acid cleavage effect of the CRISPR/Cas9 system.
  • the guide domain may bind complementary to the target nucleic acid.
  • the guide domain is artificially designed to target the nucleic acid of the gene or target sequence to be edited.
  • the guide domain In order for the engineered CRISPR/Cas9 system to cleave a specific nucleic acid, the guide domain must first be able to bind to the nucleic acid of the target sequence. Accordingly, the guide domain may have a sequence complementary to the target sequence, or in some cases, may have a sequence equivalent to the target sequence.
  • the relationship between the above-described guide domain and the target sequence varies depending on the type of nucleic acid having the target sequence and/or the location of the target sequence within the nucleic acid.
  • the guide domain when the nucleic acid of the target sequence is a single-stranded nucleic acid, the guide domain may have a sequence complementary to the target sequence. In another embodiment, when the nucleic acid of the target sequence is a double-stranded nucleic acid and the target sequence is located on the same strand as the strand where the PAM sequence of the CRISPR / Cas9 system is located, the guide domain is equivalent to the target sequence ( equivalent) may be a sequence.
  • the guide domain is complementary to the target sequence It may be a ranking.
  • the guide domain is 1nt, 2nt, 3nt, 4nt, 5nt, 6nt, 7nt, 8nt, 9nt, 10nt, 11nt, 12nt, 13nt, 14nt, 15nt, 16nt, 17nt, 18nt, 19nt, 20nt, 21nt , 22nt, 23nt, 24nt, 25nt, 26nt, 27nt, 28nt, 29nt, or 30nt long.
  • the guide domain may be the length between two numerical ranges selected in the immediately preceding sentence.
  • the guide domain may be 18nt to 22nt long.
  • the guide domain is located toward the 5' end of the engineered scaffold, and the engineered scaffold is located toward the 3' end of the guide domain.
  • the guide RNA is characterized in that the guide domain and the engineered scaffold are sequentially connected from the 5' end to the 3' end.
  • the guide RNA is expressed as [Structural Formula 2]:
  • the engineered CRISPR/Cas9 system includes a Cas9 protein, specifically a Cas9 protein from Campylobacter jejuni.
  • the Cas9 protein encompasses wild-type Cas9 protein, Cas9 protein with one or more sequence modifications, Cas9 protein with altered function, Cas9 protein containing other additional modifications, and fusion protein containing the Cas9 protein.
  • the Cas9 protein should be interpreted as including all of the various forms of Cas9 protein described in the “Cas9 protein” section.
  • the Cas9 protein of the engineered CRISPR/Cas9 system provided herein may be a wild-type Cas9 protein.
  • the wild-type Cas9 protein may be a Cas9 protein derived from Campylobacter jejuni.
  • the engineered CRISPR/Cas9 system provided herein may include a modified Cas9 protein.
  • the modified Cas9 means that at least part of the sequence is modified from the wild-type or codon-optimized Cas9 protein sequence.
  • the Cas9 protein modification may be made in individual amino acid units or in functional domain units of the protein.
  • the modification of the protein may be one or more amino acids, peptides, polypeptides, proteins, and/or domains individually substituted, removed, and/or added to the wild-type or codon-optimized Cas9 protein sequence.
  • the Cas9 protein is one or more amino acids, peptides, and/or polypeptides in the RuvC domain, REC1 domain, REC2 domain, HNH domain, and/or PI domain included in the wild-type Cas9 protein. /or may be added.
  • the Cas9 protein included in the engineered CRISPR/Cas9 system provided herein may have the same function as the wild-type Cas9 protein.
  • the Cas9 protein included in the engineered CRISPR/Cas9 system provided herein may have an altered function compared to the wild-type Cas9 protein.
  • the change may be a modification of all or part of the function, loss of all or part of the function, and/or addition of an additional function.
  • the Cas9 protein is not particularly limited as long as it is a change that can be applied to the Cas protein of the CRISPR/Cas system by a person skilled in the art. At this time, the change may be made using known technology.
  • the Cas9 protein may be modified to cleave only one strand of the double strands of the target nucleic acid. Furthermore, the Cas9 protein can cleave only one strand of the double strands of the target nucleic acid, and may be modified to perform base editing or prime editing on the strand that is not cut. In one embodiment, the Cas9 protein may be modified so that it cannot cleave the entire double strand of the target nucleic acid. Furthermore, the Cas9 protein cannot cleave all double strands of the target nucleic acid, and may be modified to perform base editing, prime editing, or gene expression control functions for the target nucleic acid. .
  • the engineered CRISPR/Cas9 system provided herein may include a Cas9 fusion protein.
  • the Cas9 fusion protein refers to a protein in which additional amino acids, peptides, polypeptides, proteins, and/or domains are fused to the wild-type or modified Cas9 protein.
  • the Cas9 protein may be a base editor and/or reverse transcriptase fused to the wild-type Cas9 protein.
  • the base editor may be adenosine deaminase and/or cytidine deaminase.
  • the reverse transcriptase may be Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase, and/or a variant thereof.
  • M-MLV Moloney Murine Leukemia Virus
  • the Cas9 protein fused with the reverse transcriptase can function as a prime editor.
  • the Cas9 protein may be a fusion of various enzymes that may be involved in the gene expression process within cells to the wild-type Cas9 protein. At this time, the Cas9 protein to which the enzyme is fused can cause various quantitative and qualitative changes in gene expression in cells.
  • the Cas9 protein may include a Nuclear Localization Sequence (NLS) or a Nuclear Export Sequence (NES).
  • NLS nuclear Localization Sequence
  • NES Nuclear Export Sequence
  • the NLS may be any one of those exemplified in the NLS section of the “Definition of Terms”, but is not limited thereto.
  • the Cas9 protein may include a tag.
  • the tag may be one of those exemplified in the tag section of “Definition of Terms”, but is not limited thereto.
  • the base sequence (nucleotide sequence) of a certain length within the target gene or target nucleic acid that can be recognized by the Cas9 protein is called the Protospacer Adjacent Motif (PAM) sequence.
  • the PAM sequence is a unique sequence determined by the Cas9 protein.
  • Cas9 protein recognizes the PAM sequence of a certain length, and 2) the spacer sequence portion binds complementary to the sequence portion surrounding the PAM sequence, Cas9 protein/guide RNA complex ( CRISPR/Cas9 complex) cleaves the target gene or target nucleic acid. Therefore, when determining the target sequence of the CRISPR/Cas9 complex, there is a constraint that the target sequence must be determined within a sequence adjacent to the PAM sequence.
  • the Cas9 system of the CRISPR/Cas9 system is based on the Cas9 protein derived from Campylobacter jejuni, it can recognize the PAM sequence recognized by the Cas9 protein derived from Campylobacter jejuni.
  • the PAM sequence of the Cas9 protein may be 5'-NNNNRYAC-3'.
  • the N is each independently one of deoxythymidine (T), deoxyadenosine (A), deoxycytidine (C), or deoxyguanosine (G).
  • the R is either deoxyadenosine (A) or deoxyguanosine (G).
  • the Y is either deoxycytidine (T) or deoxycytidine (C).
  • the PAM sequence of the Cas9 protein may be different from the PAM sequence of Cas9 derived from wild-type Campylobacter jejuni.
  • the engineered CRISPR/Cas9 complex is a complex of Cas9 protein and engineered guide RNA, and directly exhibits target-specific nucleic acid cleavage activity.
  • the Cas9 protein is the same as described in the “Cas9 protein” section.
  • the engineered guide RNA is the same as described in the “Engineered Guide RNA” section.
  • vectors capable of expressing each component of the engineered CRISPR/Cas9 system are disclosed.
  • the vector can achieve a predetermined purpose by expressing the engineered CRISPR/Cas9 system in target cells.
  • the expression vector is not particularly limited as long as it can express each component of the engineered CRISPR/Cas9 system.
  • the expression vector includes a nucleic acid encoding the Cas9 protein, a nucleic acid encoding an engineered guide RNA, and may include other additional components such as a promoter.
  • the expression vector may be DNA and/or mRNA, but is not limited thereto.
  • the expression vector for each component of the engineered CRISPR/Cas9 system contains nucleic acid encoding the Cas9 protein.
  • the Cas9 protein is the same as described in the “Cas9 protein” section.
  • the expression vector for each component of the engineered CRISPR/Cas9 system includes a nucleic acid encoding the engineered guide RNA.
  • the engineered guide RNA is as described in the “Engineered Guide RNA” section.
  • the engineered CRISPR/Cas9 system component expression vector may include other components necessary to express each component of the engineered CRISPR/Cas9 system in other cells.
  • the other components include a promoter, enhancer, intron, polyadenylation signal, Kozak consensus sequence, Internal Ribosome Entry Site (IRES), splice acceptor, 2A sequence and/ Alternatively, it may include a replication origin.
  • the promoter sequence can be designed differently depending on the corresponding RNA transcription factor or expression environment, and is not limited as long as it can properly express the components of the CRISPR/Cas system within the cell.
  • the promoter may be SV40 early promoter, mouse mammary tumor virus long terminal repeat (LTR) promoter, adenovirus major late promoter (Ad MLP), herpes simplex virus (HSV) promoter, CMV immediate early promoter region (CMVIE), etc.
  • CMV cytomegalovirus
  • RSV rous sarcoma virus
  • enhanced U6 promoter e.g., Xia et al. , Nucleic Acids Res. 2003 Sep 1;31(17)
  • human H1 promoter H1
  • 7SK human H1 promoter
  • the origin of replication may be an f1 origin of replication, SV40 origin of replication, pMB1 origin of replication, Adeno origin of replication, AAV origin of replication, and/or BBV origin of replication, but is not limited thereto.
  • the expression vector may be a viral vector.
  • the viral vector may be one or more selected from the group consisting of retrovirus, lentivirus, adenovirus, adeno-associated virus, vaccinia virus, poxvirus, and herpes simplex virus. In one embodiment, the viral vector may be an adeno-associated virus.
  • the expression vector may be a non-viral vector.
  • the non-viral vector may be one or more selected from the group consisting of plasmid, phage, naked DNA, DNA complex, and mRNA.
  • the plasmid is pcDNA series, pS456, p326, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX series, pET series, and pUC19.
  • the phage may be selected from the group consisting of ⁇ gt4 ⁇ B, ⁇ -Charon, ⁇ z1, and M13.
  • the encoding nucleic acid may be a PCR amplicon.
  • engineered CRISPR/Cas9 compositions comprising each component of the engineered CRISPR/Cas9 system and/or nucleic acids encoding each component.
  • each component of the engineered CRISPR/Cas9 system is described in the “Cas9 Protein” and “Engineered Guide RNA” sections.
  • the form of the engineered CRISPR/Cas9 composition is not particularly limited as long as the CRISPR/Cas9 system can function for its intended purpose.
  • the gene editing method may be delivering, injecting, and/or administering the engineered CRISPR/Cas9 system to the gene editing target in an appropriate delivery form and using an appropriate delivery method.
  • the gene editing method may involve contacting or inducing the engineered CRISPR/Cas9 complex to contact a nucleic acid having a target sequence.
  • the gene editing target may be an individual or tissue, and may be referred to as a target individual or target tissue.
  • the target entity may be a plant, animal, non-human animal, and/or human.
  • the target object may be a mammal.
  • the target tissue may be non-human animal tissue and/or human tissue.
  • the gene editing target may refer to a cell and may be referred to as a target cell.
  • the target cell may be a prokaryotic cell.
  • the target cell may be a eukaryotic cell.
  • the eukaryotic cells may be plant cells, animal cells, non-human animal cells, and/or human cells.
  • the delivery form may be a ribonucleoprotein particle in which Cas9 protein and engineered guide RNA are combined. This may be in the form of a protein-nucleic acid complex as described in the section “Engineered CRISPR/Cas9 Complexes”.
  • the delivery form may be a vector capable of expressing each engineered component of CRISPR/Cas9. This may be explained in the section “Vectors capable of expressing each component of engineered CRISPR/Cas9”.
  • the delivery form may be a composition comprising each component of the engineered CRISPR/Cas9 system and/or a nucleic acid encoding each component. This may be the composition described in the section “Engineered CRISPR/Cas9 Compositions”.
  • the delivery method is not particularly limited as long as the guide RNA engineered into the cell or the nucleic acid encoding it, and the Cas9 protein or the nucleic acid encoding it can be delivered into the cell using any of the above delivery methods.
  • the delivery method may be electroporation, gene gun, sonoporation, magnetofection, and/or transient cell compression or squeezing.
  • the delivery method may be delivering at least one component included in the CRISPR/Cas9 system using nanoparticles.
  • the delivery method may be a known method that can be appropriately selected by a person skilled in the art.
  • the nanoparticle delivery method may be the method disclosed in (WO 2019/089820 A1), but is not limited thereto.
  • the delivery method may be delivering the Cas9 protein or the nucleic acid encoding it and/or the engineered guide RNA or the nucleic acid encoding it using nanoparticles.
  • the delivery method is cationic liposome method, lithium acetate-DMSO, lipid-mediated transfection, calcium phosphate precipitation, lipofection, PEI (Polyethyleneimine)-mediated transfection, and DEAE-dextran-mediated transfection. , and/or nanoparticle-mediated nucleic acid delivery (see Panyam et. , al Adv Drug Deliv Rev. 2012 Sep 13.pii: S0169-409X(12)00283-9.
  • the components of the CRISPR/Cas9 system may be in any one of the above delivery forms.
  • the components of the CRISPR/Cas9 system may be in the form of mRNA encoding each component, but are not limited thereto.
  • the gene editing method includes delivering an engineered guide RNA or a nucleic acid encoding it, and a Cas9 protein or a nucleic acid encoding it into a cell, wherein the constructs can be delivered simultaneously into the cell or sequentially with a time difference. there is. At this time, there is no limitation as to which configuration is delivered first, as long as the purpose of gene editing can be achieved.
  • indels may occur in the target gene or target nucleic acid.
  • the indel may occur inside and/or outside the target sequence portion and/or the protospacer sequence portion.
  • the indel refers to a mutation in which some nucleotides are deleted, certain nucleotides are inserted, and/or the insertion and deletion are mixed in the nucleotide sequence of the nucleic acid before gene editing.
  • the gene or nucleic acid is inactivated.
  • one or more nucleotides in the target gene or target nucleic acid may be deleted and/or added.
  • base editing may occur within the target gene or target nucleic acid.
  • one or more nucleotides in the target gene or target nucleic acid may be replaced with another nucleotide.
  • knock-in may occur in the target gene or target nucleic acid.
  • the knock-in refers to the insertion of an additional nucleic acid sequence into the target gene or target nucleic acid sequence.
  • a donor containing the additional nucleic acid sequence is required in addition to the CRISPR/Cas9 complex.
  • the CRISPR/Cas9 complex cleaves a target gene or target nucleic acid within a cell, repair of the cleaved target gene or target nucleic acid occurs.
  • the donor participates in the repair process so that the additional nucleic acid sequence can be inserted into the target gene or target nucleic acid.
  • the gene editing method may additionally include introducing a donor into the target cell.
  • the donor includes an exogeneous DNA sequence for insertion into the intracellular genome, and the donor induces insertion of the exogeneous DNA sequence into the target gene or target nucleic acid.
  • the above-described delivery form and/or delivery method may be used.
  • the removal means removing a certain base sequence (nucleotide sequence) within the target gene or target nucleic acid over a certain length. Compared to the indel effect described above, the removal refers to an effect that can entirely remove a specific region of a gene, for example, the first exon region.
  • the gene editing method includes a Cas12f1 protein or a nucleic acid encoding the same, a first engineered Cas12f1 guide RNA or a nucleic acid encoding the same, and a second engineered Cas12f1 guide RNA or a nucleic acid encoding the target gene or target nucleic acid. It includes introducing into cells containing. As a result, the gene editing results in the removal of a specific sequence portion within the target gene or target nucleic acid.
  • the gene editing method disclosed herein uses the engineered CRISPR/Cas9 system.
  • the guide RNA included in the engineered CRISPR/Cas9 system does not have a continuous region of four or more uridines in the sequence. Therefore, when the CRISPR/Cas9 system engineered according to the above gene editing method is vectorized and delivered to the editing target, RNA polymerase within the cell recognizes four consecutive thymidine (T) regions, leading to transcriptional pausing or immature termination. The probability is very low or non-existent.
  • the gene editing method is characterized by an increase in the expression level of the guide RNA included in the engineered CRIPSR/Cas9 system within the cell being edited.
  • the engineered CRISPR/Cas9 system disclosed herein has the feature that the gene cutting activity itself is increased due to the engineered scaffold. Therefore, when the engineered CRISPR/Cas9 system is used in a gene editing method, regardless of the form of use (ribonucleoprotein, vector, and/or composition), gene editing is higher than when using the wild-type CRISPR/Cas9 system. indicates activity.
  • An engineered guide RNA scaffold modified from RNA having a nucleic acid sequence of GUUUUAGUCCCUGAAGGGACUAAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 1) to not have four consecutive uridines.
  • Example 1 an engineered guide RNA scaffold represented by the following sequence:
  • the first region is selected from 5'-GUUUC-3', 5'-GUUCU-3', 5'-GUCUU-3', and 5'-GCUUU-3',
  • the second region is AGUCCCUGAAGGGACU (SEQ ID NO: 6), or the sequence of SEQ ID NO: 6 and at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, Matches at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or , is a homologous or corresponding sequence,
  • the third region is selected from 5'-GAAA-3', 5'-AGAA-3', 5'-AAGA-3', and 5'-AAAG-3',
  • the fourth region is UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 7), or the sequence of SEQ ID NO: 7 and at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, Matches at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or , is a homologous or corresponding sequence.
  • the engineered guide RNA scaffold is GUUUCAGUCCCUGAAGGGACUGGAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 2), GUUCUAGUCCCUGAAGGGACUGAGAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 3), GUCUUAGUCCCUGAAGG GACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 4), and GCUUUAGUCCCUGAAGGGACUAAAGUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 5)
  • An engineered guide RNA scaffold having a sequence from a group of nucleic acid sequences.
  • Engineered guide RNA represented by the following sequence:
  • the guide domain is artificially designed to target a target nucleic acid having a predetermined target sequence
  • the engineered guide RNA scaffold is any one of the engineered guide RNA scaffolds selected from Examples 1 to 4.
  • the guide domain is 1nt, 2nt, 3nt, 4nt, 5nt, 6nt, 7nt, 8nt, 9nt, 10nt, 11nt, 12nt, 13nt, 14nt, 15nt, 16nt, 17nt, 18nt, 19nt, 20nt, Engineered guide RNA having a length of 21nt, 22nt, 23nt, 24nt, 25nt, 26nt, 27nt, 28nt, 29nt, or 30nt.
  • the guide domain has a sequence equivalent to the predetermined target sequence, or has a complementary sequence to the predetermined target sequence.
  • Programmable guide RNA is a sequence equivalent to the predetermined target sequence, or has a complementary sequence to the predetermined target sequence.
  • the target nucleic acid having the predetermined target sequence is a double-stranded nucleic acid
  • the target nucleic acid includes a target strand and a nontarget strand
  • the target sequence of the target nucleic acid can be specified only by the sequence of the target strand or the sequence of the non-target strand,
  • the statement that the guide domain targets a target nucleic acid of the predetermined target sequence has the meaning selected from the following:
  • the guide domain may complementarily bind, and/or hybridize, with the target strand of the target nucleic acid
  • the sequence of the guide domain includes a sequence complementary to all or part of the sequence of the target strand of the target nucleic acid
  • the sequence of the guide domain is identical, matches, homologs, and/or comprises an equivalent sequence to all or part of the sequence of the non-target strand of the target nucleic acid;
  • sequence of the guide domain is any one selected from the following:
  • All or part of the sequence of the target sequence contained in the non-target strand of the target nucleic acid and the remaining bases except for 1, 2, 3, 4, or 5 nucleotide bases are identical (identical) or match ( match, homolog, and/or equivalent sequence;
  • a sequence in which all or part of the target sequence contained in the target strand of the target nucleic acid is complementary to the remaining bases except for 1, 2, 3, 4, or 5 nucleotide bases.
  • Example 10 the amino acid sequence of (SEQ ID NO: 39), or the amino acid sequence of SEQ ID NO: 39 and at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86% , at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or Cas9 protein expressed as a sequence that is at least 99% identical, corresponding, or equivalent.
  • the Cas9 protein according to any one of Examples 10 to 11, wherein the Cas9 is modified to have a nickase function.
  • the Cas9 protein according to any one of Examples 10 to 12, wherein the Cas9 is modified so as not to have nucleic acid cleavage activity.
  • the Cas9 protein according to any one of Examples 10 to 13, wherein the Cas9 is fused to a domain selected from the following:
  • the Cas9 protein according to any one of Examples 10 to 14, wherein the Cas9 protein includes one or more Nuclear Localization Signals at the N-terminus and/or C-terminus.
  • the one or more Nuclear Localization Signals are each independently PKKKRKV (SEQ ID NO: 23), KRPAATKKAGQAKKKK (SEQ ID NO: 24), PAAKRVKLD (SEQ ID NO: 25), RQRRNELKRSP (SEQ ID NO: 26), NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY (SEQ ID NO: 27) , RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: 28), VSRKRPRP (SEQ ID NO: 29), PPKKARED (SEQ ID NO: 30), PQPKKKPL (SEQ ID NO: 31), SALIKKKKKMAP (SEQ ID NO: 32), DRLRR (SEQ ID NO: 33), PKQKKRK (SEQ ID NO: 34), Has an amino acid sequence selected from RKLKKKIKKL (SEQ ID NO: 35), REKKKFLKRR (SEQ ID NO: 36),
  • the guide domain of the engineered guide RNA is artificially designed to target a nucleic acid of a predetermined target sequence
  • the engineered scaffold of the engineered guide RNA can interact with the Cas9 protein to form a complex.
  • a nucleic acid encoding the Cas9 protein selected from Examples 10 to 16;
  • the guide domain of the engineered guide RNA is artificially designed to target a nucleic acid of a predetermined target sequence
  • the engineered scaffold of the engineered guide RNA can interact with the Cas9 protein to form a complex.
  • nucleic acid encoding the Cas9 protein and the nucleic acid encoding the engineered guide RNA are each independently operably linked to a promoter capable of expressing them.
  • the promoter is SV40 early promoter, mouse mammary tumor virus long terminal repeat (LTR) promoter, adenovirus major late promoter (Ad MLP), herpes simplex virus (HSV) promoter, CMV immediate early promoter region (CMVIE) Such as cytomegalovirus (CMV) promoter, rous sarcoma virus (RSV) promoter, human U6 small nuclear promoter (U6) (Miyagishi et al., Nature Biotechnology 20, 497 - 500 (2002)), enhanced U6 promoter (e.g., Xia et al. al., Nucleic Acids Res. 2003 Sep 1;31(17)), human H1 promoter (H1), and 7SK, each independently selected from an expression vector.
  • LTR mouse mammary tumor virus long terminal repeat
  • Ad MLP adenovirus major late promoter
  • HSV herpes simplex virus
  • CMVIE CMV immediate early promoter region
  • CMV CMV immediate early promoter region
  • the viral vector is one or more selected from the group consisting of retrovirus, lentivirus, adenovirus, adeno-associated virus, vaccinia virus, poxvirus and herpes simplex virus. vector.
  • non-viral vector is one or more selected from the group consisting of plasmid, phage, naked DNA, DNA complex, and mRNA.
  • Example 25 specific nucleic acid encoding guide RNA
  • nucleic acid encoding the engineered guide RNA is GTTTCAGTCCCTGAAGGGACTGGAAATAAAGAGTTTGCGGGACTCTGCGGGGTTTACAATCCCCTAAAACCGC (SEQ ID NO: 9), GTTCTAGTCCCTGAAGGGACTGAGAATAAAGAGTTTGCGGGACTCTGCGGGGGTTACAATCCCCTAAAACCGC (SEQ ID NO: 10), GTCTTAGTCCCTGAAG GGACTGAAGATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC (SEQ ID NO: 11), and GCTTTAGTCCCTGAAGGGACTAAAGTAAAGAGTTTGCGGGACTCTGCGGGGGTTACAATCCCCTAAAACCGC (SEQ ID NO: 12)
  • An engineered CRISPR/Cas9 composition comprising:
  • the guide domain of the engineered guide RNA is artificially designed to target a nucleic acid of a predetermined target sequence
  • the engineered scaffold of the engineered guide RNA can interact with the Cas9 protein to form a complex.
  • Example 27 wherein the engineered CRISPR/Cas9 composition includes the Cas9 protein and the engineered guide RNA, and the Cas9 protein combines with the engineered guide RNA to form a ribonucleoprotein.
  • Example 27 wherein the engineered CRISPR/Cas9 composition comprises a nucleic acid encoding the Cas9 protein and a nucleic acid encoding the engineered guide RNA.
  • Example 27 wherein the composition comprises the CRISPR/Cas9 complex of Example 17, or the vector of any one of Examples 18 to 26.
  • a method of gene editing a cell containing a target nucleic acid including:
  • the guide domain of the engineered guide RNA of the composition is capable of targeting the target nucleic acid.
  • a gene editing method for cells containing a target nucleic acid including:
  • the guide domain of the engineered guide RNA of the composition is capable of targeting the target nucleic acid.
  • Example 33 limited to eukaryotic/prokaryotic cells
  • Example 34 limited to cell types
  • Example 36 limited method performance environment
  • a plasmid containing both the nucleic acid sequence encoding the CjCas9 protein between the inverted tandem repeat (ITR) of AAV2 and the nucleic acid encoding the CjCas9 guide RNA containing the wild-type scaffold was prepared using Gibson assembly (NEB/M5520AA). It was prepared by cloning (pAAV-EFS-CjCas9-U6-sgRNA vector). Afterwards, in the sequence encoding the scaffold of the wild-type CjCas9 guide RNA (SEQ ID NO: 8), the four consecutive T's were replaced with C one by one, and the paired part was modified to A>G to produce an engineered guide.
  • Four types of vectors for RNA were additionally prepared.
  • each engineered guide RNA is schematically shown in Figure 1, and each sequence is summarized in Table 1 below.
  • a guide domain sequence targeting the target sequence CATGAGGAAATGAGAGAAATGCTTACACAC (SEQ ID NO: 16) to be used in Experimental Examples 2 and 3 above was synthesized, and this was cloned into the 5' end of the scaffold sequence in the above vector using the BSPQ1 Site, resulting in the final A vector to be transfected into cells was prepared.
  • the target sequence includes the PAM sequence recognized by the CjCas9 protein.
  • Human HEK293T cells (CRL-3216, ATCC) or rat RT4-D6P2T cells (CRL-2768TM, ATCC) were cultured and used. The cells were subcultured at 2-3 day intervals using Dulbecco's Modified Eagle Medium (DMEM) (WelGene) supplemented with 10% fetal bovine serum (WelGene) and 1 ⁇ penicillin/streptomycin (WelGene), and maintained. .
  • DMEM Dulbecco's Modified Eagle Medium
  • WelGene fetal bovine serum
  • WelGene 1 ⁇ penicillin/streptomycin
  • RNA extracted in Experimental Example 1.3 1000 ng of RNA extracted in Experimental Example 1.3 was used to prepare cDNA using a cDNA Reverse-transcription kit (ThermoFisher). qRT-PCR was performed in QuantStudio 3 using SYBR Green Master Mix on 10 ng - 15 ng of cDNA obtained, according to the manufacturer's protocol (Thermo Fisher). Using the CT value information obtained as a result of qRT-PCR, the expression of each engineered guide RNA was compared relative to the expression level of the guide RNA containing the wild-type scaffold.
  • Primer information used for (engineered) guide RNA qRT-PCR analysis Primer name Sequence (5'-3') SEQ ID NO HIF1_sgRNA_qRT_F CATGAGGAAATGAGAGAAATG 17 sgRNA-primer-R GCGGTTTTAGGGGATTGTAAC 18
  • the genomic DNA extracted in Experimental Example 1.3 was analyzed and the indel occurrence rate was measured to evaluate the gene editing efficiency of each vector.
  • the specific process is as follows:
  • Primer information used in the indel analysis process Cell line Primer name Sequence (5'-3') SEQ ID NO HEK293 hHIF1a_F acactctttccctacacgacgctcttccgatctACATGGGATTAACTCAGG 19 hHIF1a_R gtgactggagttcagacgtgtgctcttccgatctTTTGCCTTGGGTAAGTAC 20 RT4-D6P2T rHIF1a_F acactctttccctacacgacgctcttccgatctCCACATATGAAGAGCACTTATGGG 21 rHIF1a_R gtgactggagttcagacgtgtgctctccgatctGTAGTAACAATATCTGACTGAAA 22
  • the plasmids of each example prepared according to Experimental Example 1.1 were transfected into HEK293T cells cultured according to Experimental Example 1.2 according to Experimental Example 1.3, and then according to Experimental Examples 1.4 to 1.6, the effect of improving guide RNA expression and target nucleic acid Editing efficiency was measured.
  • the plasmids of each example prepared according to Experimental Example 1.1 were transfected into RT4-D6P2T cells cultured according to Experimental Example 1.2 according to Experimental Example 1.3, and then according to Experimental Examples 1.4 to 1.6, the effect of improving guide RNA expression and Target nucleic acid editing efficiency was measured.
  • the engineered guide RNA for the Cas9 protein derived from Campylobacter jejuni modified to not contain four or more uridines and the CRISPR/CjCas9 system containing the same provided herein can be used for gene editing purposes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed herein is an engineered guide RNA for a Cas9 protein derived from Campylobacter jejuni, the engineered guide RNA being modified so as not to comprise four or more consecutive uridines. A CRISPR/Cas9 system comprising the engineered guide RNA is characterized by 1) exhibiting a high expression level in cells due to no occurrence of transcriptional pausing or immature termination when expressed in an expression vector, and 2) having increased DNA cleavage efficiency itself through interactions between the engineered guide RNA and the Cas9 protein. Therefore, the CRISPR/Cas9 system comprising the engineered guide RNA, disclosed in the present specification, exhibits higher gene editing activity than wild-type CRISPR/Cas9 system.

Description

캄필로박터 제주니 유래 CAS9의 가이드 RNA 구조변화를 통한 유전자교정 향상 시스템Gene editing improvement system through structural change of guide RNA of CAS9 derived from Campylobacter jejuni
본 발명은 CRISPR/Cas9 시스템 기술분야의 발명이다. CRISPR/Cas 시스템은 원핵생물 유기체에서 발견되는 면역 시스템의 일종이며, Cas 단백질, 및 가이드 RNA를 포함한다. Cas 단백질, 또는 가이드 RNA의 자세한 구성에 대해서는 공개문헌인 WO2018/231018(국제공개번호)에 자세히 설명되어 있다.The present invention is an invention in the field of CRISPR/Cas9 system technology. The CRISPR/Cas system is a type of immune system found in prokaryotic organisms and includes Cas proteins, and guide RNA. The detailed composition of the Cas protein or guide RNA is described in detail in the published document WO2018/231018 (International Publication No.).
캄필로박터 제주니 (Campylobacter jejuni) 유래 Cas9 단백질은, CjCas9이라고도 지칭되며, Cas9 단백질의 오르쏘로그(orthologs) 중 하나이다. 상기 CjCas9은 Cas9 중에서도 가장 작은 크기를 가지며, 진핵세포에서 이중가닥 DNA 절단 활성을 보이는 것으로 알려져 있다. 본 발명은 캄필로박터 제주니 유래 Cas9 단백질 및 상기 Cas9 단백질과 복합체를 이룰 수 있는 가이드 RNA에 대한 발명이다.Cas9 protein from Campylobacter jejuni, also referred to as CjCas9, is one of the orthologs of Cas9 protein. The CjCas9 has the smallest size among Cas9s and is known to exhibit double-strand DNA cleavage activity in eukaryotic cells. The present invention relates to a Cas9 protein derived from Campylobacter jejuni and a guide RNA that can form a complex with the Cas9 protein.
본 명세서에서는 연속하는 4개 이상의 유리딘을 포함하지 않도록 변형된 캄필로박터 제주니 유래 Cas9 단백질에 대한 엔지니어링 된 가이드 RNA를 제공하고자 한다. 본 명세서에서는 상기 엔지니어링 된 가이드 RNA를 포함하는 엔지니어링 된 CRISPR/Cas9 시스템의 다양한 구현 형태를 제공하고자 한다. 본 명세서에서는 상기 엔지니어링 된 CRISPR/Cas9 시스템을 사용한 유전자 편집 방법을 제공하고자 한다. 본 명세서에서는 상기 엔지니어링 된 CRISPR/Cas9 시스템의 용도를 제공하고자 한다.The present specification is intended to provide an engineered guide RNA for the Cas9 protein from Campylobacter jejuni that has been modified to not contain more than four consecutive uridines. The present specification seeks to provide various implementation forms of the engineered CRISPR/Cas9 system including the engineered guide RNA. The present specification seeks to provide a gene editing method using the engineered CRISPR/Cas9 system. This specification seeks to provide uses of the engineered CRISPR/Cas9 system.
본 명세서에서는 캄필로박터 제주니 (Campylobacter jejuni) 유래 Cas9 단백질과 복합체를 이룰 수 있는 엔지니어링 된 가이드 RNA로, 다음 서열로 표현되는 것을 제공한다:Provided herein is an engineered guide RNA capable of forming a complex with the Cas9 protein from Campylobacter jejuni, represented by the following sequence:
5'-[가이드 서열]-[제1 서열]-[제2 서열]-[제3 서열]-[제4 서열]-3'5'-[guide sequence]-[first sequence]-[second sequence]-[third sequence]-[fourth sequence]-3'
여기서, 상기 가이드 서열은 미리 결정된 표적 서열을 표적할 수 있고,Here, the guide sequence can target a predetermined target sequence,
상기 제2 서열은 AGUCCCUGAAGGGACU(서열번호 6), 또는 상기 서열번호 6과 80% 이상 일치하는 서열이고,The second sequence is AGUCCCUGAAGGGACU (SEQ ID NO: 6), or a sequence that is more than 80% identical to SEQ ID NO: 6,
상기 제4 서열은 UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 7), 또는 상기 서열번호 7과 80% 이상 일치하는 서열이며,The fourth sequence is UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 7), or a sequence that is more than 80% identical to SEQ ID NO: 7,
상기 제1 서열 및 상기 제3 서열은 다음 조합 중 선택됨:The first sequence and the third sequence are selected from the following combinations:
제1 서열은 5'-GUUUC-3'이고, 제3 서열은 5'-GAAA-3';The first sequence is 5'-GUUUC-3', the third sequence is 5'-GAAA-3';
제1 서열은 5'-GUUCU-3'이고, 제3 서열은 5'-AGAA-3';The first sequence is 5'-GUUCU-3', the third sequence is 5'-AGAA-3';
제1 서열은 5'-GUCUU-3'이고, 제3 서열은 5'-AAGA-3'; 및The first sequence is 5'-GUCUU-3', the third sequence is 5'-AAGA-3'; and
제1 서열은 5'-GCUUU-3'이고, 제3 서열은 5'-AAAG-3'.The first sequence is 5'-GCUUU-3', and the third sequence is 5'-AAAG-3'.
일 실시예로, 상기 엔지니어링 된 스캐폴드의 서열은 GUUUCAGUCCCUGAAGGGACUGGAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 2), GUUCUAGUCCCUGAAGGGACUGAGAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 3), GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 4), 및 GCUUUAGUCCCUGAAGGGACUAAAGUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 5) 중 선택된 것일 수 있다.In one embodiment, the sequence of the engineered scaffold is GUUUCAGUCCCUGAAGGGACUGGAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 2), GUUCUAGUCCCUGAAGGGACUGAGAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 3), GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUU It may be selected from UGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 4), and GCUUUAGUCCCUGAAGGGACUAAAGUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 5).
일 실시예로, 상기 엔지니어링 된 스캐폴드의 서열은 GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 4)일 수 있다.In one example, the sequence of the engineered scaffold may be GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 4).
본 명세서에서는 다음을 포함하는 엔지니어링 된 CRISPR/Cas9 복합체를 제공한다:Provided herein is an engineered CRISPR/Cas9 complex comprising:
상기 엔지니어링 된 가이드 RNA; 및the engineered guide RNA; and
캄필로박터 제주니 유래 Cas9 단백질,Cas9 protein from Campylobacter jejuni,
여기서, 상기 CRISPR/Cas9 복합체는 상기 엔지니어링 된 가이드 RNA의 미리 결정된 표적 서열을 표적할 수 있음.Here, the CRISPR/Cas9 complex can target a predetermined target sequence of the engineered guide RNA.
본 명세서에서는 상기 엔지니어링 된 가이드 RNA를 암호화하는 DNA를 제공한다.Provided herein is DNA encoding the engineered guide RNA.
본 명세서에서는 CRISPR/Cas9 시스템의 각 구성요소를 발현할 수 있는 벡터로, 다음을 포함하는 것을 제공한다:The present specification provides a vector capable of expressing each component of the CRISPR/Cas9 system, including the following:
캄필로박터 제주니 유래 Cas9 단백질을 암호화하는 핵산; 및A nucleic acid encoding the Cas9 protein from Campylobacter jejuni; and
상기 엔지니어링 된 가이드 RNA를 암호화하는 핵산.Nucleic acid encoding the engineered guide RNA.
일 실시예로, 상기 벡터는 바이러스 벡터, 또는 비-바이러스 벡터일 수 있다.In one embodiment, the vector may be a viral vector or a non-viral vector.
일 실시예로, 상기 벡터는 레트로바이러스, 렌티바이러스, 아데노바이러스, 아데노-연관 바이러스, 백시니아바이러스, 폭스바이러스 및 단순포진 바이러스로 구성된 군에서 선택되는 하나 이상의 바이러스 벡터인 것을 특징으로 할 수 있다.In one embodiment, the vector may be one or more viral vectors selected from the group consisting of retrovirus, lentivirus, adenovirus, adeno-associated virus, vaccinia virus, poxvirus, and herpes simplex virus.
일 실시예로, 상기 벡터는 단일 벡터(single vector)에 포함된 것일 수 있다.In one embodiment, the vector may be included in a single vector.
일 실시예로, 상기 벡터는 둘 이상의 벡터에 포함된 것일 수 있다.In one embodiment, the vector may be included in two or more vectors.
본 명세서에서는 엔지니어링 된 CRISPR/Cas9 조성물로, 다음을 포함하는 것을 제공한다:Provided herein are engineered CRISPR/Cas9 compositions comprising:
캄필로박터 제주니 유래 Cas9 단백질, 또는 상기 Cas9 단백질을 암호화하는 핵산; 및Cas9 protein derived from Campylobacter jejuni, or a nucleic acid encoding the Cas9 protein; and
상기 엔지니어링 된 가이드 RNA, 또는 상기 가이드 RNA를 암호화하는 핵산.The engineered guide RNA, or a nucleic acid encoding the guide RNA.
일 실시예로, 상기 조성물은 상기 Cas9 단백질 및 상기 엔지니어링 된 가이드 RNA를 포함하고, 상기 Cas9 단백질은 상기 엔지니어링 된 가이드 RNA와 결합하여 Cas9-gRNA 복합체를 형성하고 있을 수 있다.In one embodiment, the composition includes the Cas9 protein and the engineered guide RNA, and the Cas9 protein may bind to the engineered guide RNA to form a Cas9-gRNA complex.
일 실시예로, 상기 조성물은 상기 Cas9 단백질을 암호화하는 핵산 및 상기 엔지니어링 된 가이드 RNA를 암호화하는 핵산을 포함하는 조성물일 수 있다.In one embodiment, the composition may be a composition containing a nucleic acid encoding the Cas9 protein and a nucleic acid encoding the engineered guide RNA.
일 실시예로, 상기 조성물은 상기 벡터를 포함하는 것을 특징으로 하는 조성물.In one embodiment, the composition comprises the vector.
본 명세서에서는 다음을 포함하는, 세포 내 유전자의 표적 서열을 가지는 표적 핵산을 편집하는 방법을 제공한다:Provided herein are methods of editing a target nucleic acid having a target sequence of a gene in a cell, comprising:
상기 CRISPR/Cas9 조성물을 상기 세포에 도입하는 것,Introducing the CRISPR/Cas9 composition into the cell,
여기서, 상기 조성물의 엔지니어링 된 가이드 RNA의 가이드 도메인은 상기 표적 핵산을 표적할 수 있음.Here, the guide domain of the engineered guide RNA of the composition can target the target nucleic acid.
본 명세서에서 제공하는 엔지니어링 된 가이드 RNA를 사용하여, 캄필로박터 제주니 유래 CRISPR/Cas9 시스템의 유전자 편집 효율을 비약적으로 높일 수 있다. 특히, 상기 캄필로박터 제주니 유래 CRISPR/Cas9 시스템 발현 벡터를 사용하는 경우, 유전자 편집 효율이 크게 높아지는 것을 기대할 수 있다.By using the engineered guide RNA provided herein, the gene editing efficiency of the CRISPR/Cas9 system derived from Campylobacter jejuni can be dramatically increased. In particular, when using the CRISPR/Cas9 system expression vector derived from Campylobacter jejuni, gene editing efficiency can be expected to be greatly increased.
도 1은 본 명세서에서 개시하는 엔지니어링 된 가이드 RNA를 모식적으로 나타낸 것이며, 대표적인 4가지 엔지니어링 된 가이드 RNA의 예시를 나타낸다.Figure 1 schematically shows the engineered guide RNA disclosed herein and shows examples of four representative engineered guide RNAs.
도 2는 실험예 2에 따른, 인간 세포주 (HEK293T)에서 HIF1A 유전자를 표적으로 하는 야생형의 싱글 가이드 RNA 및 엔지니어링 된 가이드 RNA 각각을 포함하는 CRISPR/CjCas9 시스템의 상기 HIF1A-E4 유전자 내 인델 발생 비율을 나타낸 그래프이다. 여기서, NT는 음성 대조군, Ori는 야생형의 가이드 RNA, Modi-1은 서열번호 2의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA, Modi-2은 서열번호 3의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA, Modi-3은 서열번호 4의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA, Modi-4은 서열번호 5의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA를 나타낸다.Figure 2 shows the indel occurrence rate in the HIF1A-E4 gene of the CRISPR/CjCas9 system containing each of wild-type single guide RNA and engineered guide RNA targeting the HIF1A gene in a human cell line (HEK293T) according to Experimental Example 2. This is the graph shown. Here, NT is a negative control, Ori is a wild-type guide RNA, Modi-1 is an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 2, and Modi-2 is an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 3. The engineered guide RNA, Modi-3, refers to an engineered guide RNA having an engineered scaffold sequence of SEQ ID NO: 4, and Modi-4 refers to an engineered guide RNA having an engineered scaffold sequence of SEQ ID NO: 5.
도 3은 실험예 2에 따른, 인간 세포주 (HEK293T)에서 HIF1A 유전자를 표적으로 하는 야생형의 싱글 가이드 RNA 및 엔지니어링 된 가이드 RNA 각각에 대한 발현 벡터의 발현 효율을 나타낸 그래프이다. 여기서, NT는 음성 대조군, Ori는 야생형의 가이드 RNA, Modi-1은 서열번호 2의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA, Modi-2은 서열번호 3의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA, Modi-3은 서열번호 4의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA, Modi-4은 서열번호 5의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA를 나타낸다.Figure 3 is a graph showing the expression efficiency of expression vectors for each of wild-type single guide RNA and engineered guide RNA targeting the HIF1A gene in a human cell line (HEK293T) according to Experimental Example 2. Here, NT is a negative control, Ori is a wild-type guide RNA, Modi-1 is an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 2, and Modi-2 is an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 3. The engineered guide RNA, Modi-3, refers to an engineered guide RNA having an engineered scaffold sequence of SEQ ID NO: 4, and Modi-4 refers to an engineered guide RNA having an engineered scaffold sequence of SEQ ID NO: 5.
도 4는 실험예 3에 따른, 랫드 세포주 (RT4-D6P2T) 내 Low 240ng plasmid transfection 및 High 800ng plasmid transfection으로 형질감염시킨 Modi-3의 엔지니어링 된 가이드 RNA를 포함하는 CRISPR/CjCas9 시스템의 인델 발생 효율을 야생형의 가이드 RNA를 포함하는 CRISPR/CjCas9 시스템과 비교한 그래프이다. 여기서, ORI-Low는 야생형의 가이드 RNA를 Low 240ng plasmid transfection으로 감염시킨 것, ORI-High는 야생형의 가이드 RNA를 High 800ng plasmid transfection으로 감염시킨 것, Modi-3-Low는 서열번호 4의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA를 Low 240ng plasmid transfection으로 감염시킨 것, Modi-3-High는 Modi-3-Low는 서열번호 4의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA를 High 800ng plasmid transfection으로 감염시킨 것이다.Figure 4 shows the indel generation efficiency of the CRISPR/CjCas9 system containing the engineered guide RNA of Modi-3 transfected with Low 240ng plasmid transfection and High 800ng plasmid transfection in a rat cell line (RT4-D6P2T) according to Experimental Example 3. This is a graph compared to the CRISPR/CjCas9 system containing wild-type guide RNA. Here, ORI-Low is a wild-type guide RNA infected with Low 240ng plasmid transfection, ORI-High is a wild-type guide RNA infected with High 800ng plasmid transfection, and Modi-3-Low is an engineered guide RNA of SEQ ID NO. 4. Modi-3-High is a transfection of an engineered guide RNA with a scaffold sequence using Low 240ng plasmid transfection. Modi-3-Low is a transfection of an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 4 using High 800ng plasmid. It was infected by transfection.
도 5는 실험예 3에 따른, 랫드 세포주 (RT4-D6P2T) 내 Low 240ng plasmid transfection 및 High 800ng plasmid transfection으로 형질감염시킨 Modi-3의 엔지니어링 된 가이드 RNA의 발현량을 야생형의 가이드 RNA와 비교한 그래프이다. 여기서, ORI-Low는 야생형의 가이드 RNA를 Low 240ng plasmid transfection으로 감염시킨 것, ORI-High는 야생형의 가이드 RNA를 High 800ng plasmid transfection으로 감염시킨 것, Modi-3-Low는 서열번호 4의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA를 Low 240ng plasmid transfection으로 감염시킨 것, Modi-3-High는 Modi-3-Low는 서열번호 4의 엔지니어링 된 스캐폴드 서열을 가지는 엔지니어링 된 가이드 RNA를 High 800ng plasmid transfection으로 감염시킨 것이다.Figure 5 is a graph comparing the expression level of engineered guide RNA of Modi-3 transfected with Low 240ng plasmid transfection and High 800ng plasmid transfection in rat cell line (RT4-D6P2T) according to Experimental Example 3 with that of wild type guide RNA. am. Here, ORI-Low is a wild-type guide RNA infected with Low 240ng plasmid transfection, ORI-High is a wild-type guide RNA infected with High 800ng plasmid transfection, and Modi-3-Low is an engineered guide RNA of SEQ ID NO. 4. Modi-3-High is a transfection of an engineered guide RNA with a scaffold sequence using Low 240ng plasmid transfection. Modi-3-Low is a transfection of an engineered guide RNA with an engineered scaffold sequence of SEQ ID NO: 4 using High 800ng plasmid. It was infected by transfection.
이하, 첨부된 도면을 참조하여, 발명의 내용을 특정한 구현예와 예시들을 통해 더욱 상세하게 설명한다. 상기 첨부된 도면은 발명의 일부 구현예를 포함하지만, 모든 구현예를 포함하고 있지는 않다는 점에 유의해야 한다. 본 명세서에 의해 개시되는 발명의 내용은 다양하게 구현될 수 있으며, 여기에 설명되는 특정 구현예로 제한되지 않는다. 이러한 구현예들은 본 명세서에 적용되는 법적 요건을 만족시키기 위해 제공되는 것으로 보아야 한다. 본 명세서에 개시된 발명이 속한 기술분야에 있어 통상의 기술자라면, 본 명세서에 개시된 발명의 내용에 대한 많은 변형 및 다른 구현예들을 떠올릴 수 있을 것이다. 따라서, 본 명세서에서 개시된 발명의 내용은 여기에 기재된 특정 구현예로 제한되지 않으며, 이에 대한 변형 및 다른 구현예들도 청구범위 내에 포함되는 것으로 이해되어야 한다.Hereinafter, with reference to the attached drawings, the content of the invention will be described in more detail through specific implementation examples and examples. It should be noted that the attached drawings include some, but not all, embodiments of the invention. The subject matter of the invention disclosed by this specification may be implemented in various ways and is not limited to the specific implementation examples described herein. These implementations should be viewed as being provided to satisfy the legal requirements applicable to this specification. Those skilled in the art will be able to think of many modifications and other implementations of the invention disclosed herein. Accordingly, it should be understood that the content of the invention disclosed herein is not limited to the specific embodiments described herein, and that modifications and other embodiments thereof are also included within the scope of the claims.
용어의 정의Definition of Terms
approximately
본 명세서에서 사용되는 "약"이라는 용어는 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 또는 0% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.As used herein, the term "about" refers to 30, 25, 20, 15, 10, 9, 8, 7 for a reference amount, level, value, number, frequency, percent, dimension, size, amount, weight or length. means a quantity, level, value, number, frequency, percentage, dimension, size, volume, weight or length that varies by , 6, 5, 4, 3, 2, 1 or 0%.
NLS (Nuclear Localization Sequence)NLS (Nuclear Localization Sequence)
본 명세서에서 "NLS"라 함은, 핵 수송(nuclear transport) 작용으로 세포 핵 외부의 물질을 핵 내부로 수송할 때, 수송 대상인 단백질에 붙어 일종의 "태그"역할을 하는 일정 길이의 펩타이드, 또는 그 서열을 의미한다. 구체적으로, 상기 NLS는 아미노산 서열 PKKKRKV(서열번호 23)을 갖는 SV40 바이러스 대형 T-항원의 NLS; 뉴클레오플라스민(nucleoplasmin)으로부터의 NLS(예를 들어, 서열 KRPAATKKAGQAKKKK(서열번호 24)를 갖는 뉴클레오플라스민 이분(bipartite) NLS); 아미노산 서열 PAAKRVKLD(서열번호 25) 또는 RQRRNELKRSP(서열번호 26)를 갖는 c-myc NLS; 서열 NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY(서열번호 27)를 갖는 hRNPA1 M9 NLS; 임포틴-알파로부 터의 IBB 도메인의 서열 RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV(서열번호 28); 마이오마(myoma) T 단백질의 서열 VSRKRPRP(서열번호 29) 및 PPKKARED(서열번호 30); 인간 p53의 서열 PQPKKKPL(서열번호 31); 마우스 c-abl IV의 서열 SALIKKKKKMAP(서열번호 32); 인플루엔자 바이러스 NS1의 서열 DRLRR(서열번호 33) 및 PKQKKRK(서열번호 34); 간염 바이러스 델타 항원의 서열 RKLKKKIKKL(서열번호 35); 마우스 Mx1 단백질의 서열 REKKKFLKRR(서열번호 36); 인간 폴리(ADP-리보스) 중합효소의 서열 KRKGDEVDGVDEVAKKKSKK(서열번호 37); 또는 스테로이드 호르몬 수용체(인간) 글루코코르티코이드의 서열 RKCLQAGMNLEARKTKK(서열번호 38)로부터 유래된 NLS 서열일 수 있으나, 이에 제한되지 않는다. 본 명세서에서 사용되는 "NLS"라는 용어는 통상의 기술자가 인식할 수 있는 의미를 모두 포함하며, 문맥에 따라 적절하게 해석될 수 있다.In this specification, “NLS” refers to a peptide of a certain length that acts as a kind of “tag” attached to the protein that is the transport target when transporting substances from outside the cell nucleus into the inside of the cell through nuclear transport. It means sequence. Specifically, the NLS is the NLS of the SV40 virus large T-antigen having the amino acid sequence PKKKRKV (SEQ ID NO: 23); NLS from nucleoplasmin (e.g., nucleoplasmin bipartite NLS with sequence KRPAATKKAGQAKKKK (SEQ ID NO: 24)); c-myc NLS with amino acid sequence PAAKRVKLD (SEQ ID NO: 25) or RQRRNELKRSP (SEQ ID NO: 26); hRNPA1 M9 NLS with sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY (SEQ ID NO: 27); The sequence of the IBB domain from importin-alpha RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: 28); the sequences VSRKRPRP (SEQ ID NO: 29) and PPKKARED (SEQ ID NO: 30) of the myoma T protein; Sequence PQPKKKPL (SEQ ID NO: 31) of human p53; Sequence SALIKKKKKKMAP (SEQ ID NO: 32) of mouse c-abl IV; Sequences DRLRR (SEQ ID NO: 33) and PKQKKRK (SEQ ID NO: 34) of influenza virus NS1; Sequence RKLKKKIKKL (SEQ ID NO: 35) of hepatitis virus delta antigen; Sequence REKKKFLKRR (SEQ ID NO: 36) of mouse Mx1 protein; Sequence of human poly(ADP-ribose) polymerase KRKGDEVDGVDEVAKKKSKK (SEQ ID NO: 37); Or it may be, but is not limited to, an NLS sequence derived from the sequence RKCLQAGMNLEARKTKK (SEQ ID NO: 38) of the steroid hormone receptor (human) glucocorticoid. The term “NLS” used in this specification includes all meanings recognized by those skilled in the art, and may be appropriately interpreted depending on the context.
아미노산 서열 표기Amino acid sequence notation
달리 서술하지 않는 한, 본 명세서에서 아미노산 서열을 기재할 때는 아미노산 일문자 표기법, 또는 세문자 표기법을 사용하여, N-터미널에서 C-터미널 방향으로 기재한다. 예를 들어, RNVP로 표기하는 경우, N-터미널에서 C-터미널 방향으로 아르기닌(arginine), 아스파라긴(asparagine), 발린(valine), 및 프롤린(proline)이 차례로 연결된 펩타이드를 의미한다. 또 다른 예를 들어, Thr-Leu-Lys로 표기하는 경우, N-터미널에서 C-터미널 방향으로 트레오닌(Threonine), 류신(Leucine), 및 리신(Lysine)이 차례로 연결된 펩타이드를 의미한다. 상기 일문자 표기법으로 나타낼 수 없는 아미노산의 경우, 다른 문자를 사용하여 표기하며, 추가적으로 보충하여 설명한다.Unless otherwise stated, when describing the amino acid sequence in this specification, it is written in the direction from the N-terminal to the C-terminal using amino acid single-letter notation or triple-letter notation. For example, when written as RNVP, it refers to a peptide in which arginine, asparagine, valine, and proline are linked in order from the N-terminal to the C-terminal. For another example, when written as Thr-Leu-Lys, it means a peptide in which Threonine, Leucine, and Lysine are sequentially connected from the N-terminal to the C-terminal. In the case of amino acids that cannot be expressed with the above one-letter notation, they are written using other letters and are further supplemented and explained.
각각의 아미노산 표기 방법은 다음과 같다: 알라닌(Alanine; Ala, A); 아르기닌(Arginine; Arg, R); 아스파라긴(Asparagine; Asn, N); 아스파르트산(Aspartic acid; Asp, D); 시스테인(Cysteine; Cys, C); 글루탐산(Glutamic acid; Glu, E); 글루타민(Glutamine; Gln, Q); 글리신(Glycine; Gly, G); 히스티딘(Histidine; His, H); 이소류신(Isoleucine; Ile, I); 류신(Leucine; Leu, L); 리신(Lysine; Lys K); 메티오닌(Methionine; Met, M); 페닐알라닌(Phenylalanine; Phe, F); 프롤린(Proline; Pro, P); 세린(Serine; Ser, S); 트레오닌(Threonine; Thr, T); 트립토판(Tryptophan; Trp, W); 티로신(Tyrosine; Tyr, Y); 및 발린(Valine; Val, V).The notation method for each amino acid is as follows: Alanine (Ala, A); Arginine (Arg, R); Asparagine (Asn, N); Aspartic acid (Asp, D); Cysteine (Cys, C); Glutamic acid (Glu, E); Glutamine (Gln, Q); Glycine (Gly, G); Histidine (His, H); Isoleucine (Ile, I); Leucine (Leu, L); Lysine (Lys K); Methionine (Met, M); Phenylalanine (Phe, F); Proline (Pro, P); Serine (Ser, S); Threonine (Thr, T); Tryptophan (Trp, W); Tyrosine (Tyr, Y); and Valine (Val, V).
핵산 서열 표기Nucleic acid sequence notation
본 명세서에서 사용되는 A, T, C, G 및 U 기호는 당업계 통상의 기술자가 이해하는 의미로 해석된다. 문맥 및 기술에 따라 DNA 또는 RNA 상에서 염기, 뉴클레오사이드 또는 뉴클레오타이드로 적절히 해석될 수 있다. 예를 들어, 염기를 의미하는 경우는 각각 아데닌(A), 티민(T), 시토신(C), 구아닌(G) 또는 우라실(U) 자체로 해석될 수 있고, 뉴클레오사이드를 의미하는 경우는 각각 아데노신(A), 티미딘(T), 시티딘(C), 구아노신(G) 또는 유리딘(U)으로 해석될 수 있으며, 서열에서 뉴클레오타이드를 의미하는 경우는 상기 각각의 뉴클레오사이드를 포함하는 뉴클레오타이드를 의미하는 것으로 해석되어야 한다.The symbols A, T, C, G and U used in this specification are interpreted as understood by those skilled in the art. Depending on the context and technology, it may be appropriately interpreted as a base, nucleoside, or nucleotide on DNA or RNA. For example, when referring to a base, it can be interpreted as adenine (A), thymine (T), cytosine (C), guanine (G), or uracil (U), respectively, and when referring to a nucleoside, it can be interpreted as Each can be interpreted as adenosine (A), thymidine (T), cytidine (C), guanosine (G), or uridine (U), and when referring to nucleotides in the sequence, each nucleoside above is used. It should be interpreted to mean the containing nucleotide.
작동 가능하게 연결된(operably linked)operably linked
본 명세서에서 사용되는 "작동 가능하게 연결된"이라는 용어는 유전자 발현 기술에 있어서, 특정 구성이 다른 구성과 연결되어, 상기 특정 구성이 의도된 방식대로 기능할 수 있도록 연결되어 있는 것을 의미한다. 예를 들어, 프로모터 서열이 암호화 서열과 작동적으로 연결되었다고 할 때, 상기 프로모터가 상기 암호화 서열의 세포 내에서의 전사 및/또는 발현에 영향을 미칠 수 있도록 연결된 것을 의미한다. 또한, 상기 용어는 당업계 통상의 기술자가 인식할 수 있는 의미를 모두 포함하며, 문맥에 따라 적절히 해석될 수 있다.As used herein, the term “operably linked” means that, in gene expression technology, a specific component is linked to another component so that the specific component can function in the intended manner. For example, when a promoter sequence is operably linked to a coding sequence, it means that the promoter is linked to affect transcription and/or expression of the coding sequence in the cell. In addition, the above term includes all meanings that can be recognized by a person skilled in the art, and can be appropriately interpreted depending on the context.
표적 유전자 또는 표적 핵산target gene or target nucleic acid
본 명세서에서 사용되는 "표적 유전자" 또는 "표적 핵산"은 기본적으로, 유전자 편집의 대상이 되는 세포 내 유전자, 또는 핵산을 의미한다. 상기 표적 유전자 또는 표적 핵산은 혼용될 수 있으며, 서로 동일한 대상을 지칭할 수 있다. 상기 표적 유전자 또는 표적 핵산은 달리 기재되지 않은 한, 대상 세포가 가진 고유한 유전자 또는 핵산, 혹은 외부 유래의 유전자 또는 핵산 모두를 의미할 수 있으며, 유전자 편집의 대상이 될 수 있다면 특별히 제한되지 않는다. 상기 표적 유전자 또는 표적 핵산은 단일가닥 DNA, 이중가닥 DNA, 및/또는 RNA일 수 있다. 또한, 상기 용어는 당업계 통상의 기술자가 인식할 수 있는 의미를 모두 포함하며, 문맥에 따라 적절히 해석될 수 있다.As used herein, “target gene” or “target nucleic acid” basically refers to a gene or nucleic acid in a cell that is the target of gene editing. The target gene or target nucleic acid may be used interchangeably and may refer to the same target. Unless otherwise stated, the target gene or target nucleic acid may refer to either a gene or nucleic acid unique to the target cell or a gene or nucleic acid derived from an external source, and is not particularly limited as long as it can be the subject of gene editing. The target gene or target nucleic acid may be single-stranded DNA, double-stranded DNA, and/or RNA. In addition, the above term includes all meanings that can be recognized by a person skilled in the art, and can be appropriately interpreted depending on the context.
표적 서열target sequence
본 명세서에서 사용되는 "표적 서열"은 CRISPR/Cas 복합체가 표적 유전자 또는 표적 핵산을 절단하기 위해 인식하는 특정 서열을 의미한다. 상기 표적 서열은 그 목적에 따라 적절히 선택될 수 있다. 구체적으로, "표적 서열"은 표적 유전자 또는 표적 핵산 서열 내에 포함된 서열이며, 본 명세서에서 제공하는 가이드 RNA, 또는 엔지니어링 된 가이드 RNA에 포함된 스페이서 서열과 상보성을 가지는 서열을 의미한다. 일반적으로, 상기 스페이서 서열은 표적 유전자 또는 표적 핵산의 서열 및 CRISPR/Cas 시스템의 이펙터 단백질이 인식하는 PAM 서열을 고려하여 결정된다. 상기 표적 서열은 CRISPR/Cas 복합체의 가이드 RNA와 상보적으로 결합하는 특정 가닥만을 지칭할 수 있으며, 상기 특정 가닥 부분을 포함하는 표적 이중 가닥 전체를 지칭할 수도 있으며, 이는 문맥에 따라 적절히 해석된다. 또한, 상기 용어는 당업계 통상의 기술자가 인식할 수 있는 의미를 모두 포함하며, 문맥에 따라 적절히 해석될 수 있다.As used herein, “target sequence” refers to a specific sequence recognized by the CRISPR/Cas complex to cleave a target gene or target nucleic acid. The target sequence may be appropriately selected depending on the purpose. Specifically, “target sequence” refers to a sequence contained in a target gene or target nucleic acid sequence and has complementarity with a spacer sequence contained in the guide RNA or engineered guide RNA provided herein. Generally, the spacer sequence is determined considering the sequence of the target gene or target nucleic acid and the PAM sequence recognized by the effector protein of the CRISPR/Cas system. The target sequence may refer only to a specific strand that binds complementary to the guide RNA of the CRISPR/Cas complex, or may refer to the entire target double strand including the specific strand portion, which is interpreted appropriately depending on the context. In addition, the above term includes all meanings that can be recognized by a person skilled in the art, and can be appropriately interpreted depending on the context.
벡터vector
본 명세서에서 사용되는 "벡터"는 달리 특정되지 않는 한, 유전 물질을 세포 내로 운반할 수 있는 모든 물질을 통틀어 일컫는다. 예를 들어, 벡터는 대상이 되는 유전 물질, 예를 들어 CRISPR/Cas 시스템의 이펙터 단백질을 암호화하는 핵산, 및/또는 가이드 RNA를 암호화하는 핵산을 포함하는 DNA 분자일 수 있으나, 이에 제한되는 것은 아니다. 상기 용어는 당업계 통상의 기술자가 인식할 수 있는 의미를 모두 포함하며, 문맥에 따라 적절히 해석될 수 있다.As used herein, “vector” refers collectively to all substances capable of transporting genetic material into a cell, unless otherwise specified. For example, a vector may be, but is not limited to, a DNA molecule containing the genetic material of interest, such as a nucleic acid encoding an effector protein of a CRISPR/Cas system, and/or a nucleic acid encoding a guide RNA. . The above terms include all meanings recognized by those skilled in the art, and can be appropriately interpreted depending on the context.
CRISPR/Cas 시스템CRISPR/Cas system
CRISPR/Cas 시스템 개괄CRISPR/Cas system overview
CRISPR/Cas 시스템은 원핵생물 유기체에서 발견되는 면역 시스템의 일종이며, Cas 단백질, 및 가이드 RNA를 포함한다. Cas 단백질, 또는 가이드 RNA의 자세한 구성에 대해서는 공개문헌인 WO2018/231018(국제공개번호)에 자세히 설명되어 있다. 본 명세서에서 사용되는 "Cas 단백질" 이라는 용어는 CRISPR/Cas 시스템에서 이용되는 것으로 해석될 수 있는 뉴클레이즈(nuclease)를 총칭하는 용어이다. 이하에서는 가장 일반적으로 쓰이는 CRISPR/Cas9 시스템의 DNA 절단 과정을 간략히 설명한다.The CRISPR/Cas system is a type of immune system found in prokaryotic organisms and includes Cas proteins, and guide RNA. The detailed composition of the Cas protein or guide RNA is described in detail in the published document WO2018/231018 (International Publication No.). As used herein, the term “Cas protein” is a general term for nucleases that can be interpreted as being used in the CRISPR/Cas system. Below, we briefly describe the DNA cutting process of the most commonly used CRISPR/Cas9 system.
Cas9 단백질Cas9 protein
CRISPR/Cas9 복합체에서, 핵산을 절단하는 뉴클레이즈(nuclase) 활성을 가지는 단백질을 Cas9 단백질이라 한다. 상기 Cas9 단백질은 CRISPR/Cas 시스템 분류 상 Class 2, Type II에 해당하며, 스트렙토코커스 피오게네스(Streptococcus pyogenes), 스트렙토코커스 써모필러스(Streptococcus thermophilus), 스트렙토코커스 속 (Streptococcus sp.), 스트렙토마이세스 프리스티네스피랄리스(Streptomyces pristinaespiralis), 스트렙토마이세스 비리도크로모게네스(Streptomyces viridochromogenes), 스트렙토마이세스 비리도크로모게네스(Streptomyces viridochromogenes), 스트렙토스포랑기움 로세움(Streptosporangium roseum), 스트렙토스포랑기움 로세움(Streptosporangium roseum) 유래 Cas9 단백질 등이 있다.In the CRISPR/Cas9 complex, the protein that has nuclease activity to cleave nucleic acids is called the Cas9 protein. The Cas9 protein corresponds to Class 2, Type II in the CRISPR/Cas system classification, and is suitable for Streptococcus pyogenes, Streptococcus thermophilus, Streptococcus sp., and Streptoma. Streptomyces pristinaespiralis, Streptomyces viridochromogenes, Streptomyces viridochromogenes, Streptosporangium roseum, Streptospor There is Cas9 protein derived from Streptosporangium roseum.
가이드 RNAguide RNA
CRISPR/Cas9 복합체에서, 표적 핵산에 포함된 특정 서열을 인식하도록 CRISPR/Cas9 복합체를 유도하는 기능을 가지는 RNA를 가이드 RNA라 한다. 상기 가이드 RNA의 구성을 기능적으로 나눈다면 크게, 1) 스캐폴드 서열 부분, 및 2) 가이드 서열 부분으로 나눌 수 있다. 상기 스캐폴드 서열 부분은 Cas9 단백질과 상호작용하는 부분으로, Cas9 단백질과 결합하여 복합체를 이룰 수 있도록 하는 부분이다. 일반적으로, 상기 스캐폴드 서열 부분은 tracrRNA, crRNA 반복 서열 부분을 포함하며, 상기 스캐폴드 서열은 어떤 Cas9 단백질을 사용하느냐에 따라서 결정된다. 상기 가이드 서열 부분은, 표적 핵산 내 일정 길이의 뉴클레오타이드 서열 부분과 상보적으로 결합할 수 있는 부분이다. 상기 가이드 서열 부분은 인위적으로 변형할 수 있는 염기 부분으로, 관심 있는 표적 뉴클레오타이드 서열에 의해 결정된다.In the CRISPR/Cas9 complex, RNA that has the function of inducing the CRISPR/Cas9 complex to recognize a specific sequence contained in the target nucleic acid is called a guide RNA. If the composition of the guide RNA is divided functionally, it can be roughly divided into 1) a scaffold sequence portion, and 2) a guide sequence portion. The scaffold sequence part is a part that interacts with the Cas9 protein and is a part that allows it to bind with the Cas9 protein to form a complex. Generally, the scaffold sequence portion includes tracrRNA and crRNA repeat sequence portions, and the scaffold sequence is determined depending on which Cas9 protein is used. The guide sequence portion is a portion that can bind complementary to a nucleotide sequence portion of a certain length in the target nucleic acid. The guide sequence portion is a base portion that can be artificially modified and is determined by the target nucleotide sequence of interest.
CRISPR/Cas9 복합체가 표적 핵산을 절단하는 과정The process by which the CRISPR/Cas9 complex cleaves target nucleic acid
CRISPR/Cas9 복합체가 표적 핵산에 접촉하여 Cas9 단백질이 일정 길이의 뉴클레오타이드 서열을 인식하고, 가이드 RNA의 일부(상기 가이드 서열 부분)가 상기 PAM 서열과 인접한 부분과 상보적으로 결합하는 경우, CRISPR/Cas9 복합체에 의해 상기 표적 핵산이 절단된다. 이때, Cas9 단백질이 인식하는 일정 길이의 뉴클레오타이드 서열은 프로토스페이서 인접 모티프(protospacer-adjacent motif, PAM) 서열이라 하며, 이는 Cas9 단백질의 종류나 기원에 따라 결정되는 서열이다. 예를 들어, 스트렙토코커스 피오게네스(Streptococcus pyogenes) 유래 Cas9 단백질은 표적 핵산 내 5'-NGG-3' 서열을 인식할 수 있다. 이때, 상기 N은 아데노신(A), 티미딘(T), 사이티딘(C), 구아노신(G)중 하나이다. CRISPR/Cas9 복합체가 표적 핵산을 절단하기 위해서는 가이드 RNA의 가이드 서열 부분이 PAM 서열에 인접한 서열 부분과 상보적으로 결합해야 하므로, 상기 가이드 서열 부분은 표적 핵산의 서열, 구체적으로는 PAM 서열과 인접한 서열 부분에 맞추어 결정된다. CRISPR/Cas9 복합체가 상기 표적 핵산을 절단할 때, 표적 핵산의 PAM 서열 부분 및/또는 상기 가이드 서열과 상보적으로 결합하는 서열 부분 내 임의의 위치가 절단되게 된다.When the CRISPR/Cas9 complex contacts the target nucleic acid, the Cas9 protein recognizes a nucleotide sequence of a certain length, and a part of the guide RNA (part of the guide sequence) binds complementary to the part adjacent to the PAM sequence, CRISPR/Cas9 The target nucleic acid is cleaved by the complex. At this time, the nucleotide sequence of a certain length recognized by the Cas9 protein is called a protospacer-adjacent motif (PAM) sequence, which is a sequence determined depending on the type or origin of the Cas9 protein. For example, the Cas9 protein from Streptococcus pyogenes can recognize the 5'-NGG-3' sequence in the target nucleic acid. At this time, N is one of adenosine (A), thymidine (T), cytidine (C), and guanosine (G). In order for the CRISPR/Cas9 complex to cleave the target nucleic acid, the guide sequence portion of the guide RNA must bind complementary to the sequence portion adjacent to the PAM sequence, so the guide sequence portion must be a sequence of the target nucleic acid, specifically a sequence adjacent to the PAM sequence. It is decided according to the part. When the CRISPR/Cas9 complex cleaves the target nucleic acid, any position within the PAM sequence portion of the target nucleic acid and/or the sequence portion that binds complementary to the guide sequence is cleaved.
표적 가닥, 비표적 가닥target strand, non-target strand
CRISPR/Cas9 복합체는 이중가닥 DNA에 대한 절단 활성을 가진다. 상기 이중가닥 DNA에서, 상기 가이드 서열 부분과 결합하는 프로토스페이서(protospacer)가 있는 가닥을 표적 가닥(Target strand, TS)이라 한다. 상기 표적 가닥과는 상보적인 가닥으로, 상기 가이드 서열 부분과 결합하지 않는 프로토스페이서(protospacer)가 있는 가닥을 비표적 가닥(Non-target strand, NTS)라 한다. 상기 가이드 서열 부분은 이중가닥 DNA의 표적 가닥(TS)에 포함된 프로토스페이서 서열 부분과 상보적으로 결합할 수 있다. 상기 가이드 서열 및 이중가닥 DNA의 비표적 가닥(NTS)에 포함된 프로토스페이서 서열은 동등한(equivalent) 서열이다. 구체적으로, 가이드 서열은 RNA 서열이고, 비표적 가닥(NTS)에 포함된 프로토스페이서 서열은 이에 대응되는 DNA 서열이라는 차이가 있을 뿐이다.The CRISPR/Cas9 complex has cleavage activity on double-stranded DNA. In the double-stranded DNA, the strand containing the protospacer that binds to the guide sequence portion is called the target strand (TS). A strand that is complementary to the target strand and has a protospacer that does not bind to the guide sequence portion is called a non-target strand (NTS). The guide sequence portion may bind complementary to the protospacer sequence portion included in the target strand (TS) of double-stranded DNA. The guide sequence and the protospacer sequence included in the non-target strand (NTS) of double-stranded DNA are equivalent sequences. Specifically, the only difference is that the guide sequence is an RNA sequence, and the protospacer sequence included in the non-target strand (NTS) is a corresponding DNA sequence.
캄필로박터 제주니(Campylobacter jejuni) 유래 Cas9 단백질Cas9 protein from Campylobacter jejuni
캄필로박터 제주니 유래 Cas9 단백질은, CjCas9이라고도 지칭되며, Cas9 단백질의 오르쏘로그(orthologs) 중 하나이다. 상기 CjCas9은 Cas9 중에서도 가장 작은 크기를 가지며, 진핵세포에서 이중가닥 DNA 절단 활성을 보이는 것으로 알려져 있다.Cas9 protein from Campylobacter jejuni, also referred to as CjCas9, is one of the orthologs of Cas9 protein. The CjCas9 has the smallest size among Cas9s and is known to exhibit double-strand DNA cleavage activity in eukaryotic cells.
종래 기술의 한계점Limitations of prior art
캄필로박터 제주니 유래 Cas9 단백질의 유전자 편집 효율이 낮음The gene editing efficiency of Campylobacter jejuni-derived Cas9 protein is low.
캄필로박터 제주니 유래 Cas9 단백질의 경우, 이중가닥 DNA 절단 활성을 보이며, 그 크기가 상대적으로 작아 상용화하는 데 있어 이점이 있다. 하지만, 캄필로박터 제주니 유래 Cas9 단백질은 세포 내에서 유전자 편집 효율이 스트렙토코커스 피오게네스 유래 Cas9에 비해 낮은 것으로 알려져 있으며, 특히 Cas9 단백질 및 가이드 RNA를 벡터화하여 도입하는 경우 특히 그 효율이 떨어지는 문제점이 있다.The Cas9 protein derived from Campylobacter jejuni shows double-strand DNA cleavage activity, and its relatively small size is advantageous for commercialization. However, the Cas9 protein derived from Campylobacter jejuni is known to have lower gene editing efficiency in cells than Cas9 derived from Streptococcus pyogenes, and the efficiency is particularly low when the Cas9 protein and guide RNA are vectorized and introduced. There is.
가이드 RNA가 4개의 연속된 유리딘을 포함Guide RNA contains four consecutive uridines
상기 캄필로박터 제주니 유래 Cas9 단백질에 대한 가이드 RNA는 그 스캐폴드 서열 중, crRNA의 repeat 부분에 4개의 유리딘이 연속된 서열을 포함한다 이에 따라, 상기 가이드 RNA를 벡터화하는 경우, 4개의 티미딘이 연속된 DNA 서열이 벡터에 포함되게 된다. 상기 벡터를 전사하여 RNA를 생산하는 RNA 중합효소는 5개의 티미딘이 연속된 서열(5'-TTTTT-3')을 종결 신호로 인식하여 중합을 멈춘다. 상기 벡터화된 가이드 RNA에 포함된 4개의 티미딘이 연속된 DNA 서열(5'-TTTT-3')은 비록 종결 신호는 아니지만, 종결 신호와 유사하게 인식되어 transcriptional pausing이나 immature termination이 일어날 수 있음이 보고되어 있다. 따라서, 상기 가이드 RNA는 벡터 형태로 세포 내에 도입하는 경우 제대로 발현되지 않을 가능성이 있다. 이는 캄필로박터 제주니 유래 Cas9 단백질-가이드 RNA 복합체가 세포 내에서 충분히 형성되지 못하는 원인이 되므로, CRISPR/CjCas9 시스템 발현 벡터의 유전자 편집 효율을 떨어트린다.The guide RNA for the Cas9 protein derived from Campylobacter jejuni includes a sequence of four consecutive uridines in the repeat portion of the crRNA among the scaffold sequences. Accordingly, when vectorizing the guide RNA, four thymi A DNA sequence with contiguous Deans is included in the vector. RNA polymerase, which transcribes the vector and produces RNA, recognizes the sequence of five consecutive thymidines (5'-TTTTT-3') as a termination signal and stops polymerization. Although the DNA sequence (5'-TTTT-3') containing four consecutive thymidines contained in the vectorized guide RNA is not a termination signal, it is recognized similarly to a termination signal, and transcriptional pausing or immature termination can occur. It has been reported. Therefore, there is a possibility that the guide RNA may not be expressed properly when introduced into cells in vector form. This causes the Cas9 protein-guide RNA complex derived from Campylobacter jejuni to not be sufficiently formed within the cell, thereby reducing the gene editing efficiency of the CRISPR/CjCas9 system expression vector.
엔지니어링 된 CRISPR/Cas9 시스템Engineered CRISPR/Cas9 system
엔지니어링 된 CRISPR/Cas9 시스템 개괄Overview of Engineered CRISPR/Cas9 Systems
본 명세서에서는 엔지니어링 된 CRISPR/Cas9 시스템을 개시한다. 상기 엔지니어링 된 CRISPR/Cas9 시스템은 캄필로박터 제주니 유래 Cas9 단백질(CjCas9) 및 (엔지니어링 된) 가이드 RNA를 포함하며, 가이드 RNA가 엔지니어링 된 것을 특징으로 한다. 구체적으로, 상기 가이드 RNA는 가이드 도메인과 엔지니어링 된 스캐폴드를 포함하며, 상기 엔지니어링 된 스캐폴드는 이에 대응되는 야생형 CjCas9 단백질의 가이드 RNA와 비교하여, 가이드 도메인에 인접한 5'-UUUU-3' 서열 부분 및 이와 상보적으로 결합하여 Tetraloop을 이루는 5'-AAAA-3' 서열 부분이 변형된 것이다. 이러한 특징으로 인해 상기 엔지니어링 된 CRISPR/Cas9 시스템은 1) 발현벡터 형태로 세포 내 도입 시, 야생형의 가이드 RNA와 비교하여 높은 발현량을 나타내고, 2) CRISPR/Cas9 시스템의 활성이 증가되는 특징을 가진다.Disclosed herein is an engineered CRISPR/Cas9 system. The engineered CRISPR/Cas9 system comprises a Cas9 protein (CjCas9) from Campylobacter jejuni and an (engineered) guide RNA, and is characterized in that the guide RNA is engineered. Specifically, the guide RNA comprises a guide domain and an engineered scaffold, and the engineered scaffold has a 5'-UUUU-3' sequence portion adjacent to the guide domain, compared to the guide RNA of the corresponding wild-type CjCas9 protein. And the 5'-AAAA-3' sequence part that binds complementary to this to form a Tetraloop is modified. Due to these characteristics, the engineered CRISPR/Cas9 system has the following characteristics: 1) when introduced into cells in the form of an expression vector, it exhibits a higher expression level compared to wild-type guide RNA, and 2) the activity of the CRISPR/Cas9 system is increased. .
엔지니어링 된 가이드 RNAEngineered Guide RNA
본 명세서에서 개시하는 엔지니어링 된 CRISPR/Cas9 시스템은 엔지니어링 된 가이드 RNA를 포함한다. 상기 엔지니어링 가이드 RNA는 5'말단에서 3'말단 방향으로 가이드 도메인 및 엔지니어링 된 스캐폴드가 순차적으로 연결된 것이다. 상기 가이드 도메인은 표적 서열을 가지는 핵산을 표적할 수 있는 부분으로, 엔지니어링 된 CRISPR/Cas9 시스템이 표적-특이적 핵산 절단 활성을 보일 수 있도록 한다. 상기 가이드 도메인은 표적 서열에 따라 적절하게 설계된다. 상기 엔지니어링 된 스캐폴드는 Cas9 단백질과 상호작용하여 복합체를 이루도록 하는 부분이다. 상기 엔지니어링 된 스캐폴드는 연속하는 4개 이상의 유리딘(U)를 가지지 않도록 설계되어, 벡터 사용 시 높은 발현량을 보인다.The engineered CRISPR/Cas9 system disclosed herein includes an engineered guide RNA. The engineered guide RNA consists of a guide domain and an engineered scaffold sequentially linked from the 5' end to the 3' end. The guide domain is a part that can target a nucleic acid having a target sequence, and allows the engineered CRISPR/Cas9 system to exhibit target-specific nucleic acid cleavage activity. The guide domain is appropriately designed according to the target sequence. The engineered scaffold is a part that interacts with the Cas9 protein to form a complex. The engineered scaffold is designed not to have more than four consecutive uridine (U) elements, and thus exhibits high expression levels when using the vector.
Cas9 단백질Cas9 protein
본 명세서에서 개시하는 엔지니어링 된 CRISPR/Cas9 시스템은 Cas9 단백질을 포함한다. 구체적으로, 상기 Cas9 단백질은 캄필로박터 제주니 유래 Cas9 단백질이다. 상기 Cas9 단백질은 야생형의 Cas9 단백질, 변형된 Cas9 단백질, 및 상기 Cas9 단백질에 추가적인 도메인이 융합된 융합 단백질을 통틀어 일컫는다.The engineered CRISPR/Cas9 system disclosed herein includes the Cas9 protein. Specifically, the Cas9 protein is a Cas9 protein derived from Campylobacter jejuni. The Cas9 protein refers collectively to wild-type Cas9 protein, modified Cas9 protein, and fusion protein in which an additional domain is fused to the Cas9 protein.
엔지니어링 된 CRISPR/Cas9 시스템의 특징 1 - 가이드 RNA 발현량 증가 Feature 1 of the engineered CRISPR/Cas9 system - Increased guide RNA expression level
본 명세서에서 개시하는 엔지니어링 된 CRISPR/Cas9 시스템은 자연계에서 발견되는 CRISPR/Cas9 시스템의 가이드 RNA에 비해 스캐폴드 부분이 엔지니어링 된 것이 특징이다. 구체적으로, 야생형 crRNA의 repeat 부분에 포함된 5'-UUUU-3' 서열, 및 이와 상보적으로 결합하는 야생형 tracrRNA에 포함된 Antirepeat 부분에 포함된 5'-AAAA-3' 서열이 적절하게 변경되어 있다. 따라서, 상기 엔지니어링 된 가이드 RNA는 서열 내 4개 이상의 유리딘이 연속되는 부분이 존재하지 않는다. 이는 상기 엔지니어링 된 CRISPR/Cas9 시스템을 벡터화하여 세포에 도입하였을 때, RNA 중합효소가 4개의 연속된 티미딘(T) 부분을 인식하여 transcriptional pausing이나 immature termination이 되는 일을 방지한다. 결과적으로, 본 명세서에서 개시하는 상기 엔지니어링 된 가이드 RNA는 벡터 사용 시 세포 내에서 높은 발현량을 보인다.The engineered CRISPR/Cas9 system disclosed herein is characterized in that the scaffold portion is engineered compared to the guide RNA of the CRISPR/Cas9 system found in nature. Specifically, the 5'-UUUU-3' sequence contained in the repeat portion of the wild-type crRNA and the 5'-AAAA-3' sequence contained in the antirepeat portion of the wild-type tracrRNA that binds complementary to it are appropriately changed. there is. Therefore, the engineered guide RNA does not have a continuous region of four or more uridines in the sequence. When the engineered CRISPR/Cas9 system is vectorized and introduced into cells, RNA polymerase recognizes four consecutive thymidine (T) regions, preventing transcriptional pausing or immature termination. As a result, the engineered guide RNA disclosed herein shows a high expression level in cells when used as a vector.
엔지니어링 된 CRISPR/Cas9 시스템의 특징 2 - CRISPR/Cas9 시스템 활성 증가 Feature 2 of Engineered CRISPR/Cas9 System - Increased CRISPR/Cas9 System Activity
본 명세서에서 개시하는 엔지니어링 된 CRISPR/Cas9 시스템은 상기 엔지니어링 된 스캐폴드로 인해 유전자 절단 활성 및/또는 효율 그 자체가 향상된 효과를 가진다. 즉, 전술한 스캐폴드 부분이 엔지니어링된 가이드 RNA는 전술한 가이드 RNA의 발현량의 증가뿐만 아니라, CjCas9과의 상호작용에 의한 DNA 절단 효율 자체도 높아지는 특징을 나타낸다. 따라서, 상기 엔지니어링 된 CRISPR/Cas9 시스템은 그 사용 형태 (리보뉴클레오프로틴, 벡터, 및/또는 조성물)를 막론하고 야생형의 CRISPR/Cas9 시스템보다 높은 유전자 편집 활성을 보인다.The engineered CRISPR/Cas9 system disclosed herein has the effect of improving gene cleavage activity and/or efficiency itself due to the engineered scaffold. In other words, the guide RNA engineered with the above-mentioned scaffold portion not only increases the expression level of the above-mentioned guide RNA, but also exhibits the characteristic of increasing the DNA cutting efficiency itself by interaction with CjCas9. Accordingly, the engineered CRISPR/Cas9 system shows higher gene editing activity than the wild-type CRISPR/Cas9 system regardless of the form in which it is used (ribonucleoprotein, vector, and/or composition).
엔지니어링 된 스캐폴드Engineered Scaffold
엔지니어링 된 스캐폴드 개괄Engineered Scaffolds Overview
본 명세서에서 개시하는 엔지니어링 된 스캐폴드는 5'말단으로부터 3'말단 방향으로 제1 영역, 제2 영역, 제3 영역, 및 제4 영역으로 나눌 수 있다. 상기 각각의 영역은, 이하 설명하는, 캄필로박터 제주니 유래 Cas9 단백질에 대한 야생형 가이드 RNA의 스캐폴드(이하, 야생형 스캐폴드)의 각 부분과 대응될 수 있다. 이하, "제n 영역" (n은 1, 2, 3, 또는 4)이라 지칭하는 경우 엔지니어링 된 스캐폴드의 제n 영역을 의미한다 "야생형의 제n 영역"이라 지칭하는 경우 야생형 가이드 RNA의 스캐폴드 중 해당 부분을 지칭한다. 여기서, 상기 야생형 가이드 RNA는 자연적으로 발생한 crRNA 및 tracrRNA를 포함하는 가이드 RNA를 지칭한다. 또한, 상기 crRNA 및 tracrRNA가 링커(예를 들어 5'-GAAA-3' 또는 5'-GA-3' 서열의 링커)로 연결된 싱글 가이드 RNA도 본 명세서의 야생형 가이드 RNA에 포함되며, 이하, 이를 중심으로 설명하도록 한다.The engineered scaffold disclosed herein can be divided into a first region, a second region, a third region, and a fourth region from the 5' end to the 3' end. Each of the above regions may correspond to each part of the scaffold of the wild-type guide RNA for the Cas9 protein derived from Campylobacter jejuni (hereinafter referred to as wild-type scaffold), which will be described below. Hereinafter, when referred to as “nth region” (n is 1, 2, 3, or 4), it refers to the nth region of the engineered scaffold. When referred to as “wild type nth region”, it refers to the scaffold of the wild type guide RNA. Refers to the relevant part of the fold. Here, the wild-type guide RNA refers to guide RNA including naturally occurring crRNA and tracrRNA. In addition, a single guide RNA in which the crRNA and tracrRNA are connected by a linker (e.g., a linker with a 5'-GAAA-3' or 5'-GA-3' sequence) is also included in the wild-type guide RNA of the present specification, hereinafter referred to as Let's focus on explaining.
야생형 스캐폴드의 각 부분Each part of the wild-type scaffold
상기 야생형 스캐폴드는 자연적으로 발생한, 캄필로박터 제주니 유래 Cas9 단백질에 대한 가이드 RNA의 스캐폴드를 지칭한다.The wild-type scaffold refers to the naturally occurring scaffold of guide RNA for the Cas9 protein from Campylobacter jejuni.
일 구현예로, 상기 야생형 스캐폴드는 GUUUUAGUCCCUGAAGGGACUAAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (서열번호 1)의 서열로 표현될 수 있다.In one embodiment, the wild-type scaffold may be represented by the sequence GUUUUAGUCCCUGAAGGGACUAAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 1).
일 구현예로, 상기 야생형 스캐폴드는 다음과 같이 구분될 수 있다:In one embodiment, the wild-type scaffold can be divided as follows:
5'-[야생형의 제1 영역]-[야생형의 제2 영역]-[야생형의 제3 영역]-[야생형의 제4 영역]-3'5'-[1st region of wild type]-[2nd region of wild type]-[3rd region of wild type]-[4th region of wild type]-3'
여기서, 야생형의 제1 영역은 5'-GUUUU-3'이고, 야생형의 제2 영역은 5'-AGUCCCUGAAGGGACU-3'(서열번호 6)이고, 야생형의 제3 영역은 5'-AAAA-3'이고, 야생형의 제4 영역은 5'-UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC-3'(서열번호 7)이다.Here, the first region of the wild type is 5'-GUUUU-3', the second region of the wild type is 5'-AGUCCCUGAAGGGACU-3' (SEQ ID NO: 6), and the third region of the wild type is 5'-AAAA-3' and the fourth region of the wild type is 5'-UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC-3' (SEQ ID NO: 7).
제1 영역first area
본 명세서에서 개시하는 엔지니어링 된 스캐폴드의 제1 영역은 연속하는 4개의 유리딘(U)을 가지지 않도록 변형된 것이 특징이다. 구체적으로, 상기 제1 영역은 5'-GUUUC-3', 5'-GUUCU-3', 5'-GUCUU-3', 및 5'-GCUUU-3' 중 선택된 서열로 표현된다.The first region of the engineered scaffold disclosed herein is characterized by being modified to not have four consecutive uridines (U). Specifically, the first region is represented by a sequence selected from 5'-GUUUC-3', 5'-GUUCU-3', 5'-GUCUU-3', and 5'-GCUUU-3'.
제2 영역2nd area
본 명세서에서 개시하는 엔지니어링 된 스캐폴드의 제2 영역은 야생형의 제2 영역의 서열과 동일하거나 유사한 서열로 표현된다. 구체적으로, 상기 제2 영역은 5'-AGUCCCUGAAGGGACU-3'(서열번호 6)과 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 85% 이상, 86% 이상, 87% 이상, 88% 이상, 89% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상, 또는 100% 동일하거나, 동등하거나, 상동성 있는 서열로 표현된다.The second region of the engineered scaffold disclosed herein is expressed in a sequence identical to or similar to the sequence of the second region of the wild type. Specifically, the second region is 5'-AGUCCCUGAAGGGACU-3' (SEQ ID NO: 6) and 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87 % or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more , or expressed as a 100% identical, equivalent, or homologous sequence.
제3 영역third area
본 명세서에서 개시하는 엔지니어링 된 스캐폴드의 제3 영역은 상기 제1 영역과 상보적으로 결합하여 stem-loop 구조를 이룰 수 있는 서열이다. 상기 제3 영역은 상기 제1 영역이 어떤 서열로 표현되느냐에 따라 결정된다. 구체적으로, 상기 제1 영역이 5'-GUUUC-3'으로 표현되는 경우, 상기 제3 영역은 5'-GAAA-3'으로 표현되고, 상기 제1 영역이 5'-GUUCU-3'으로 표현되는 경우, 상기 제3 영역은 5'-AGAA-3'으로 표현되고, 상기 제1 영역이 5'-GUCUU-3'으로 표현되는 경우, 상기 제3 영역은 5'-AAGA-3'으로 표현되고, 상기 제1 영역이 5'-GCUUU-3'으로 표현되는 경우, 상기 제3 영역은 5'-AAAG-3'으로 표현된다.The third region of the engineered scaffold disclosed herein is a sequence that can bind complementary to the first region to form a stem-loop structure. The third region is determined depending on the sequence in which the first region is expressed. Specifically, when the first region is expressed as 5'-GUUUC-3', the third region is expressed as 5'-GAAA-3', and the first region is expressed as 5'-GUUCU-3' In this case, the third region is expressed as 5'-AGAA-3', and if the first region is expressed as 5'-GUCUU-3', the third region is expressed as 5'-AAGA-3' And, when the first region is expressed as 5'-GCUUU-3', the third region is expressed as 5'-AAAG-3'.
제4 영역 domain 4
본 명세서에서 개시하는 엔지니어링 된 스캐폴드의 제4 영역은 야생형의 제4 영역의 서열과 동일하거나 유사한 서열로 표현된다. 구체적으로, 상기 제4영역은 5'-UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC-3'(서열번호 7)과 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 85% 이상, 86% 이상, 87% 이상, 88% 이상, 89% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상, 또는 100% 동일하거나, 동등하거나, 상동성 있는 서열로 표현된다.The fourth region of the engineered scaffold disclosed herein is expressed in a sequence identical to or similar to the sequence of the fourth region of the wild type. Specifically, the fourth region is 5'-UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC-3' (SEQ ID NO: 7) and 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87 % or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more , or expressed as a 100% identical, equivalent, or homologous sequence.
엔지니어링 된 가이드 RNAEngineered Guide RNA
엔지니어링 된 가이드 RNA 개괄Engineered Guide RNA Overview
본 명세서에서 제공하는 엔지니어링 된 가이드 RNA는 Cas9 단백질과 상호작용하여 복합체를 형성할 수 있으며, 표적 서열을 가진 핵산을 표적할 수 있다. 상기 엔지니어링 된 가이드 RNA는 가이드 도메인 및 엔지니어링 된 스캐폴드를 포함한다. 상기 엔지니어링 된 스캐폴드는 상기 가이드 RNA가 Cas9 단백질과 상호작용하여 복합체를 형성하는 데 관여하는 구성이다. 상기 가이드 도메인은 표적 서열을 가진 핵산을 표적하여 상기 Cas9-가이드 RNA 복합체가 표적-특이적 핵산 절단 활성을 나타낼 수 있도록 하는 구성이다. 구체적으로, 상기 가이드 도메인은 표적 서열을 가진 핵산을 표적할 수 있도록 설계된다. 상기 엔지니어링 된 가이드 RNA는 5'말단에서 3'말단 방향으로, 가이드 도메인 및 엔지니어링 된 스캐폴드가 순차적으로 연결된 것이다.The engineered guide RNA provided herein can interact with the Cas9 protein to form a complex and can target nucleic acids with a target sequence. The engineered guide RNA includes a guide domain and an engineered scaffold. The engineered scaffold is a composition in which the guide RNA interacts with the Cas9 protein to form a complex. The guide domain is configured to target a nucleic acid having a target sequence so that the Cas9-guide RNA complex can exhibit target-specific nucleic acid cleavage activity. Specifically, the guide domain is designed to target a nucleic acid having a target sequence. The engineered guide RNA consists of a guide domain and an engineered scaffold sequentially linked from the 5' end to the 3' end.
엔지니어링 된 스캐폴드Engineered Scaffold
상기 가이드 RNA의 엔지니어링 된 스캐폴드는 상기 가이드 RNA가 Cas9 단백질과 상호작용하여 복합체를 형성할 수 있도록 한다. 상기 엔지니어링 된 스캐폴드는 《엔지니어링 된 스캐폴드》 단락에서 설명한 바와 같다.The engineered scaffold of the guide RNA allows the guide RNA to interact with the Cas9 protein to form a complex. The engineered scaffold is as described in the “Engineered Scaffold” section.
가이드 도메인guide domain
상기 프로그램 가능한 가이드 RNA는 가이드 도메인을 포함한다. 상기 가이드 도메인은 표적 서열의 핵산을 표적할 수 있는 구성으로, CRISPR/Cas9 시스템의 표적-특이적 핵산 절단 효과 활성화에 관여한다. 구체적으로, 상기 가이드 도메인은 표적 핵산과 상보적으로 결합할 수 있다. 본 명세서에서 개시하는 신규 CRISPR/Cas9 시스템을 유전자 편집 용도로 사용하기 위해서, 상기 가이드 도메인은 편집하고자 하는 유전자, 또는 표적 서열의 핵산을 표적할 수 있도록 인공적으로 설계된 것이다.The programmable guide RNA includes a guide domain. The guide domain is capable of targeting nucleic acids of a target sequence and is involved in activating the target-specific nucleic acid cleavage effect of the CRISPR/Cas9 system. Specifically, the guide domain may bind complementary to the target nucleic acid. In order to use the new CRISPR/Cas9 system disclosed herein for gene editing, the guide domain is artificially designed to target the nucleic acid of the gene or target sequence to be edited.
가이드 도메인 및 표적서열의 관계Relationship between guide domain and target sequence
엔지니어링 된 CRISPR/Cas9 시스템이 특정 핵산을 절단하기 위해서는, 우선 상기 가이드 도메인이 표적 서열의 핵산과 결합할 수 있어야 한다. 따라서, 상기 가이드 도메인은 표적 서열과 상보적인 서열을 가지거나, 경우에 따라서는 표적 서열과 동등한(equivalent) 서열을 가질 수 있다. 전술한 가이드 도메인 및 표적 서열의 관계는 표적 서열을 가진 핵산의 종류 및/또는 표적 서열의 핵산 내 위치에 따라 달라진다.In order for the engineered CRISPR/Cas9 system to cleave a specific nucleic acid, the guide domain must first be able to bind to the nucleic acid of the target sequence. Accordingly, the guide domain may have a sequence complementary to the target sequence, or in some cases, may have a sequence equivalent to the target sequence. The relationship between the above-described guide domain and the target sequence varies depending on the type of nucleic acid having the target sequence and/or the location of the target sequence within the nucleic acid.
일 구현예로, 상기 표적 서열의 핵산이 단일가닥 핵산인 경우, 상기 가이드 도메인은 상기 표적 서열과 상보적인 서열을 가질 수 있다. 또 다른 구현예로, 상기 표적 서열의 핵산이 이중가닥 핵산이고, 상기 표적 서열이 CRISPR/Cas9 시스템의 PAM 서열이 위치하는 가닥과 동일한 가닥에 위치하는 경우, 상기 가이드 도메인은 상기 표적 서열과 동등한(equivalent) 서열일 수 있다. 또 다른 구현예로, 상기 표적 서열의 핵산이 이중가닥 핵산이고, 상기 표적 서열이 CRISPR/Cas9 시스템의 PAM 서열이 위치하는 가닥과 다른 가닥에 위치하는 경우, 상기 가이드 도메인은 상기 표적 서열과 상보적인 서열일 수 있다.In one embodiment, when the nucleic acid of the target sequence is a single-stranded nucleic acid, the guide domain may have a sequence complementary to the target sequence. In another embodiment, when the nucleic acid of the target sequence is a double-stranded nucleic acid and the target sequence is located on the same strand as the strand where the PAM sequence of the CRISPR / Cas9 system is located, the guide domain is equivalent to the target sequence ( equivalent) may be a sequence. In another embodiment, when the nucleic acid of the target sequence is a double-stranded nucleic acid and the target sequence is located on a strand different from the strand where the PAM sequence of the CRISPR / Cas9 system is located, the guide domain is complementary to the target sequence It may be a ranking.
가이드 도메인 길이Guide domain length
일 구현예로, 상기 가이드 도메인은 1nt, 2nt, 3nt, 4nt, 5nt, 6nt, 7nt, 8nt, 9nt, 10nt, 11nt, 12nt, 13nt, 14nt, 15nt, 16nt, 17nt, 18nt, 19nt, 20nt, 21nt, 22nt, 23nt, 24nt, 25nt, 26nt, 27nt, 28nt, 29nt, 또는 30nt 길이일 수 있다. 일 구현예로, 상기 가이드 도메인은 바로 이전 문장에서 선택된 두 수치범위 사이의 길이일 수 있다. 예를 들어, 상기 가이드 도메인은 18nt 내지 22nt 길이일 수 있다.In one embodiment, the guide domain is 1nt, 2nt, 3nt, 4nt, 5nt, 6nt, 7nt, 8nt, 9nt, 10nt, 11nt, 12nt, 13nt, 14nt, 15nt, 16nt, 17nt, 18nt, 19nt, 20nt, 21nt , 22nt, 23nt, 24nt, 25nt, 26nt, 27nt, 28nt, 29nt, or 30nt long. In one implementation, the guide domain may be the length between two numerical ranges selected in the immediately preceding sentence. For example, the guide domain may be 18nt to 22nt long.
가이드 RNA 구조Guide RNA structure
상기 가이드 RNA에서, 상기 가이드 도메인은 상기 엔지니어링 된 스캐폴드의 5'말단 방향에, 상기 엔지니어링 된 스캐폴드는 상기 가이드 도메인의 3'말단 방향에 위치한다.In the guide RNA, the guide domain is located toward the 5' end of the engineered scaffold, and the engineered scaffold is located toward the 3' end of the guide domain.
일 구현예로, 상기 가이드 RNA는 5'말단에서 3'말단 방향으로 상기 가이드 도메인 및 상기 엔지니어링 된 스캐폴드가 차례로 연결되어 있는 것을 특징으로 한다.In one embodiment, the guide RNA is characterized in that the guide domain and the engineered scaffold are sequentially connected from the 5' end to the 3' end.
또 다른 구현예로, 상기 가이드 RNA는 다음 [구조식 2]로 표현된다:In another embodiment, the guide RNA is expressed as [Structural Formula 2]:
[구조식 2][Structural Formula 2]
5'-[가이드 도메인]-[엔지니어링 된 스캐폴드]-3'.5'-[guide domain]-[engineered scaffold]-3'.
Cas9 단백질Cas9 protein
Cas9 단백질 개괄Cas9 protein overview
본 명세서에서 제공하는 엔지니어링 된 CRISPR/Cas9 시스템은 Cas9 단백질, 구체적으로는 캄필로박터 제주니 유래 Cas9 단백질을 포함한다. 여기서, 상기, Cas9 단백질은 야생형의 Cas9 단백질, 하나 이상의 서열이 변형된 Cas9 단백질, 기능이 변경된 Cas9 단백질, 기타 추가 변형을 포함하는 Cas9 단백질, 및 상기 Cas9 단백질을 포함하는 융합 단백질을 모두 포괄한다. 본 명세서에서 Cas9 단백질이라 함은, 본 《Cas9 단백질》 단락에서 설명하는 다양한 형태의 Cas9 단백질을 모두 포함하는 것으로 해석해야 한다.The engineered CRISPR/Cas9 system provided herein includes a Cas9 protein, specifically a Cas9 protein from Campylobacter jejuni. Here, the Cas9 protein encompasses wild-type Cas9 protein, Cas9 protein with one or more sequence modifications, Cas9 protein with altered function, Cas9 protein containing other additional modifications, and fusion protein containing the Cas9 protein. As used herein, the Cas9 protein should be interpreted as including all of the various forms of Cas9 protein described in the “Cas9 protein” section.
야생형의 Cas9 단백질Wild-type Cas9 protein
본 명세서에서 제공하는 엔지니어링 된 CRISPR/Cas9 시스템의 Cas9 단백질은 야생형의 Cas9 단백질일 수 있다. 구체적으로, 상기 야생형의 Cas9 단백질은 캄필로박터 제주니 유래 Cas9 단백질일 수 있다.The Cas9 protein of the engineered CRISPR/Cas9 system provided herein may be a wild-type Cas9 protein. Specifically, the wild-type Cas9 protein may be a Cas9 protein derived from Campylobacter jejuni.
변형된 Cas9 단백질 1 - 서열 변형Modified Cas9 protein 1 - sequence modification
본 명세서에서 제공하는 엔지니어링 된 CRISPR/Cas9 시스템은 변형된 Cas9 단백질을 포함할 수 있다. 상기 변형된 Cas9은 야생형, 또는 코돈 최적화된 Cas9 단백질 서열에서 적어도 일부 서열이 변형된 것을 의미한다. 상기 Cas9 단백질 변형은 개별 아미노산 단위로 이루어진 것일 수 있고, 단백질의 기능적 도메인 단위로 이루어진 것일 수 있다.The engineered CRISPR/Cas9 system provided herein may include a modified Cas9 protein. The modified Cas9 means that at least part of the sequence is modified from the wild-type or codon-optimized Cas9 protein sequence. The Cas9 protein modification may be made in individual amino acid units or in functional domain units of the protein.
일 구현예로, 상기 단백질의 변형은 야생형, 또는 코돈 최적화된 Cas9 단백질 서열에서 하나 이상의 아미노산, 펩타이드, 폴리펩타이드, 단백질, 및/또는 도메인이 개별적으로 치환, 제거, 및/또는 부가된 것일 수 있다. 일 구현예로, 상기 Cas9 단백질은 야생형 Cas9 단백질에 포함된 RuvC 도메인, REC1 도메인, REC2 도메인, HNH 도메인, 및/또는 PI 도메인 내 하나 이상의 아미노산, 펩타이드, 및/또는 폴리펩타이드가 치환, 제거, 및/또는 부가된 것일 수 있다.In one embodiment, the modification of the protein may be one or more amino acids, peptides, polypeptides, proteins, and/or domains individually substituted, removed, and/or added to the wild-type or codon-optimized Cas9 protein sequence. . In one embodiment, the Cas9 protein is one or more amino acids, peptides, and/or polypeptides in the RuvC domain, REC1 domain, REC2 domain, HNH domain, and/or PI domain included in the wild-type Cas9 protein. /or may be added.
변형된 Cas9 단백질 2 - 기능 변형Modified Cas9 Protein 2 - Modified Function
본 명세서에서 제공하는 엔지니어링 된 CRISPR/Cas9 시스템에 포함된 Cas9 단백질은 야생형의 Cas9 단백질과 동일한 기능을 가질 수 있다. 본 명세서에서 제공하는 엔지니어링 된 CRISPR/Cas9 시스템에 포함된 Cas9 단백질은 야생형의 Cas9 단백질과 비교할 때, 기능이 변경된 것일 수 있다. 구체적으로, 상기 변경은 전부 또는 일부 기능의 변형, 전부 또는 일부 기능의 상실, 및/또는 부가적인 기능의 추가일 수 있다. 일 구현예로, 상기 Cas9 단백질은 당업계 통상의 기술자가 CRISPR/Cas 시스템의 Cas 단백질에 적용할 수 있는 변경이라면, 특별히 제한되지 않는다. 이때 상기 변경은 공지의 기술을 이용한 것일 수 있다.The Cas9 protein included in the engineered CRISPR/Cas9 system provided herein may have the same function as the wild-type Cas9 protein. The Cas9 protein included in the engineered CRISPR/Cas9 system provided herein may have an altered function compared to the wild-type Cas9 protein. Specifically, the change may be a modification of all or part of the function, loss of all or part of the function, and/or addition of an additional function. In one embodiment, the Cas9 protein is not particularly limited as long as it is a change that can be applied to the Cas protein of the CRISPR/Cas system by a person skilled in the art. At this time, the change may be made using known technology.
일 구현예로, 상기 Cas9 단백질은 표적 핵산의 이중가닥 중 하나의 가닥만 절단하도록 변경된 것일 수 있다. 더 나아가, 상기 Cas9 단백질은 표적 핵산의 이중가닥 중 하나의 가닥만 절단할 수 있고, 절단하지 않는 가닥에 대해 베이스 에디팅(Base editing) 또는 프라임 에디팅(Prime editing)을 할 수 있도록 변경된 것일 수 있다. 일 구현예로, 상기 Cas9 단백질은 표적 핵산의 이중가닥 전부를 절단할 수 없도록 변경된 것일 수 있다. 더 나아가, 상기 Cas9 단백질은 표적 핵산의 이중가닥 전부를 절단할 수 없고, 표적 핵산에 대해 베이스 에디팅(Base editing), 프라임 에디팅(Prime editing), 또는 유전자 발현 조절 기능을 할 수 있도록 변경된 것일 수 있다.In one embodiment, the Cas9 protein may be modified to cleave only one strand of the double strands of the target nucleic acid. Furthermore, the Cas9 protein can cleave only one strand of the double strands of the target nucleic acid, and may be modified to perform base editing or prime editing on the strand that is not cut. In one embodiment, the Cas9 protein may be modified so that it cannot cleave the entire double strand of the target nucleic acid. Furthermore, the Cas9 protein cannot cleave all double strands of the target nucleic acid, and may be modified to perform base editing, prime editing, or gene expression control functions for the target nucleic acid. .
Cas9 단백질을 포함하는 융합 단백질Fusion protein containing Cas9 protein
본 명세서에서 제공하는 엔지니어링 된 CRISPR/Cas9 시스템은 Cas9 융합 단백질을 포함할 수 있다. 이때, 상기 Cas9 융합 단백질은 야생형, 또는 변형된 Cas9 단백질에 추가적인 아미노산, 펩타이드, 폴리펩타이드, 단백질, 및/또는 도메인이 융합된 단백질을 의미한다. 일 구현예로, Cas9 단백질은 야생형의 Cas9 단백질에 베이스 에디터, 및/또는 역전사 효소(reverse transcriptase)가 융합된 것일 수 있다. 일 구현예로, 상기 베이스 에디터는 adenosine deaminase, 및/또는 cytidine deaminase일 수 있다. 일 구현예로, 상기 역전사 효소는 Moloney Murine Leukemia Virus(M-MLV) 역전사 효소, 및/또는 그 변이체일 수 있다. 이때, 상기 역전사 효소가 융합된 Cas9 단백질은 프라임 에디터로 기능할 수 있다. 일 구현예로 , Cas9 단백질은 야생형의 Cas9 단백질에, 세포 내의 유전자 발현 과정에 관여할 수 있는 다양한 효소가 융합된 것일 수 있다. 이때, 상기 효소가 융합된 Cas9 단백질은 세포 내 유전자 발현에 다양한 양적, 질적 변화를 초래할 수 있다.The engineered CRISPR/Cas9 system provided herein may include a Cas9 fusion protein. At this time, the Cas9 fusion protein refers to a protein in which additional amino acids, peptides, polypeptides, proteins, and/or domains are fused to the wild-type or modified Cas9 protein. In one embodiment, the Cas9 protein may be a base editor and/or reverse transcriptase fused to the wild-type Cas9 protein. In one embodiment, the base editor may be adenosine deaminase and/or cytidine deaminase. In one embodiment, the reverse transcriptase may be Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase, and/or a variant thereof. At this time, the Cas9 protein fused with the reverse transcriptase can function as a prime editor. In one embodiment, the Cas9 protein may be a fusion of various enzymes that may be involved in the gene expression process within cells to the wild-type Cas9 protein. At this time, the Cas9 protein to which the enzyme is fused can cause various quantitative and qualitative changes in gene expression in cells.
변형된 Cas9 단백질 3 - 기타 변형Modified Cas9 Protein 3 - Other Modifications
일 구현예로, 상기 Cas9 단백질은 NLS(Nuclear Localization Sequence), 또는 NES(Nuclear Export Sequence)를 포함할 수 있다. 구체적으로, 상기 NLS는 《용어의 정의》 중 NLS 단락에 예시된 것 중 어느 하나일 수 있으나, 이에 제한되는 것은 아니다. 일 구현예로, 상기 Cas9 단백질은 태그를 포함할 수 있다. 구체적으로, 상기 태그는 "용어의 정의" 중 태그 단락에 예시된 것 중 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the Cas9 protein may include a Nuclear Localization Sequence (NLS) or a Nuclear Export Sequence (NES). Specifically, the NLS may be any one of those exemplified in the NLS section of the “Definition of Terms”, but is not limited thereto. In one embodiment, the Cas9 protein may include a tag. Specifically, the tag may be one of those exemplified in the tag section of “Definition of Terms”, but is not limited thereto.
PAM 서열PAM sequence
CRISPR/Cas9 시스템이 표적 유전자, 또는 표적 핵산을 절단하기 위해서는 두 가지 조건이 필요하다.Two conditions are required for the CRISPR/Cas9 system to cleave a target gene or target nucleic acid.
첫째, 표적 유전자, 또는 표적 핵산 내에 Cas9 단백질이 인식할 수 있는 일정 길이의 염기 서열(뉴클레오타이드 서열)이 있어야 한다. 이때, 상기 Cas9 단백질에 의해 인식되는 일정 길이의 염기 서열(뉴클레오타이드 서열)을 Protospacer Adjacent Motif(PAM) 서열이라 한다. 상기 PAM 서열은 상기 Cas9 단백질에 따라 정해지는 고유한 서열이다, 둘째, 상기 일정 길이의 PAM 서열 주변에 가이드 RNA에 포함된 스페이서 서열과 상보적으로 결합할 수 있는 서열이 있어야 한다.First, there must be a base sequence (nucleotide sequence) of a certain length within the target gene or target nucleic acid that can be recognized by the Cas9 protein. At this time, the base sequence (nucleotide sequence) of a certain length recognized by the Cas9 protein is called the Protospacer Adjacent Motif (PAM) sequence. The PAM sequence is a unique sequence determined by the Cas9 protein. Second, there must be a sequence around the PAM sequence of a certain length that can bind complementary to the spacer sequence included in the guide RNA.
이러한 두 가지 조건이 만족되어 1) Cas9 단백질이 상기 일정 길이의 PAM 서열을 인식하고, 2) 상기 스페이서 서열 부분이 상기 PAM 서열 주변 서열 부분과 상보적으로 결합하는 경우, Cas9 단백질/가이드 RNA 복합체(CRISPR/Cas9 복합체)는 표적 유전자, 또는 표적 핵산을 절단한다. 따라서, 상기 CRISPR/Cas9 복합체의 표적 서열을 결정할 때, 상기 PAM 서열과 인접한 서열 내에서 상기 표적 서열을 결정해야 한다는 제약이 따른다.If these two conditions are satisfied and 1) the Cas9 protein recognizes the PAM sequence of a certain length, and 2) the spacer sequence portion binds complementary to the sequence portion surrounding the PAM sequence, Cas9 protein/guide RNA complex ( CRISPR/Cas9 complex) cleaves the target gene or target nucleic acid. Therefore, when determining the target sequence of the CRISPR/Cas9 complex, there is a constraint that the target sequence must be determined within a sequence adjacent to the PAM sequence.
PAM 서열 예시PAM sequence example
본 명세서에서 제공하는 CRISPR/Cas9 시스템의 Cas9 시스템은 캄필로박터 제주니 유래 Cas9 단백질을 기초로 하므로, 캄필로박터 제주니 유래 Cas9 단백질이 인식하는 PAM 서열을 인식할 수 있다. 일 구현예로, 상기 Cas9 단백질의 PAM 서열은 5'-NNNNRYAC-3'일 수 있다. 여기서, 상기 N은 각각 독립적으로 디옥시티미딘(T), 디옥시아데노신(A), 디옥시사이티딘(C), 또는 디옥시구아노신(G) 중 하나이다. 상기 R은 디옥시아데노신(A), 또는 디옥시구아노신(G) 중 하나이다. 상기 Y는 디옥시티미딘(T), 또는 디옥시사이티딘(C) 중 하나이다. 일 구현예로, 상기 Cas9 단백질의 PAM 서열은 야생형의 캄필로박터 제주니 유래 Cas9의 PAM 서열과는 다른 것일 수 있다.Since the Cas9 system of the CRISPR/Cas9 system provided herein is based on the Cas9 protein derived from Campylobacter jejuni, it can recognize the PAM sequence recognized by the Cas9 protein derived from Campylobacter jejuni. In one embodiment, the PAM sequence of the Cas9 protein may be 5'-NNNNRYAC-3'. Here, the N is each independently one of deoxythymidine (T), deoxyadenosine (A), deoxycytidine (C), or deoxyguanosine (G). The R is either deoxyadenosine (A) or deoxyguanosine (G). The Y is either deoxycytidine (T) or deoxycytidine (C). In one embodiment, the PAM sequence of the Cas9 protein may be different from the PAM sequence of Cas9 derived from wild-type Campylobacter jejuni.
엔지니어링 된 CRISPR/Cas9 복합체Engineered CRISPR/Cas9 complex
본 명세서에서는 엔지니어링 된 CRISPR/Cas9 복합체를 개시한다. 상기 엔지니어링 된 CRISPR/Cas9 복합체는 Cas9 단백질, 및 엔지니어링 된 가이드 RNA가 복합체를 이루고 있는 것이며, 직접적으로 표적-특이적 핵산 절단 활성을 나타낸다. 여기서, 상기 Cas9 단백질은 《Cas9 단백질》 단락에서 서술된 것과 같다. 또한, 상기 엔지니어링 된 가이드 RNA는 《엔지니어링 된 가이드 RNA》 단락에서 서술된 것과 같다.Disclosed herein is an engineered CRISPR/Cas9 complex. The engineered CRISPR/Cas9 complex is a complex of Cas9 protein and engineered guide RNA, and directly exhibits target-specific nucleic acid cleavage activity. Here, the Cas9 protein is the same as described in the “Cas9 protein” section. Additionally, the engineered guide RNA is the same as described in the “Engineered Guide RNA” section.
엔지니어링 된 CRISPR/Cas9의 각 구성요소를 발현할 수 있는 벡터Vector capable of expressing each component of engineered CRISPR/Cas9
발현 벡터 개괄Expression vector overview
본 명세서에서는 엔지니어링 된 CRISPR/Cas9 시스템 각 구성요소를 발현할 수 있는 벡터를 개시한다. 상기 벡터는 엔지니어링 된 CRISPR/Cas9 시스템을 대상 세포 내에서 발현시켜서 소정의 목적을 달성할 수 있다. 상기 발현 벡터는 엔지니어링 된 CRISPR/Cas9 시스템의 각 구성요소를 발현할 수 있는 것이라면 특별히 제한되지 않는다. 구체적으로, 상기 발현 벡터는 Cas9 단백질을 암호화하는 핵산, 엔지니어링 된 가이드 RNA를 암호화하는 핵산을 포함하고, 프로모터 등 기타 추가 구성을 포함할 수 있다. 또한, 상기 발현 벡터는 DNA 및/또는 mRNA일 수 있으나, 이에 제한되는 것은 아니다.In this specification, vectors capable of expressing each component of the engineered CRISPR/Cas9 system are disclosed. The vector can achieve a predetermined purpose by expressing the engineered CRISPR/Cas9 system in target cells. The expression vector is not particularly limited as long as it can express each component of the engineered CRISPR/Cas9 system. Specifically, the expression vector includes a nucleic acid encoding the Cas9 protein, a nucleic acid encoding an engineered guide RNA, and may include other additional components such as a promoter. Additionally, the expression vector may be DNA and/or mRNA, but is not limited thereto.
발현 벡터 구성 1 - Cas9 단백질 암호화하는 핵산Expression Vector Construction 1 - Nucleic Acid Encoding Cas9 Protein
상기 엔지니어링 된 CRISPR/Cas9 시스템 각 구성요소 발현 벡터는 Cas9 단백질을 암호화하는 핵산을 포함한다. 여기서, 상기 Cas9 단백질은 《Cas9 단백질》 단락에서 서술된 것과 같다.The expression vector for each component of the engineered CRISPR/Cas9 system contains nucleic acid encoding the Cas9 protein. Here, the Cas9 protein is the same as described in the “Cas9 protein” section.
발현 벡터 구성 2 - 엔지니어링 된 가이드 RNA 암호화 핵산Expression Vector Construction 2 - Engineered Guide RNA Encoding Nucleic Acid
상기 엔지니어링 된 CRISPR/Cas9 시스템 각 구성요소 발현 벡터는 엔지니어링 된 가이드 RNA를 암호화하는 핵산을 포함한다. 여기서, 상기 엔지니어링 된 가이드 RNA는 《엔지니어링 된 가이드 RNA》 단락에서 서술된 것과 같다.The expression vector for each component of the engineered CRISPR/Cas9 system includes a nucleic acid encoding the engineered guide RNA. Here, the engineered guide RNA is as described in the “Engineered Guide RNA” section.
발현 벡터 구성 3 - 기타 구성Expression Vector Configuration 3 - Other Configurations
상기 엔지니어링 된 CRISPR/Cas9 시스템 구성요소 발현 벡터는 그 외 세포 내에서 엔지니어링 된 CRISPR/Cas9 시스템의 각 구성요소를 발현하기 위해 필요한 기타 구성을 포함할 수 있다.The engineered CRISPR/Cas9 system component expression vector may include other components necessary to express each component of the engineered CRISPR/Cas9 system in other cells.
일 구현예로, 상기 기타 구성은 프로모터, 인핸서, 인트론, 폴리아데닐화 신호, 코작 공통(Kozak consensus) 서열, 내부 리보솜 유입 부위(IRES, Internal Ribosome Entry Site), 스플라이스 억셉터, 2A 서열 및/또는 복제원점(replication origin)을 포함할 수 있다. 여기서, 상기 프로모터 서열은 대응하는 RNA 전사 인자, 또는 발현 환경에 따라 달리 설계할 수 있으며, CRISPR/Cas 시스템의 구성 요소를 세포 내에서 적절히 발현시킬 수 있는 것이라면 제한되지 않는다. 예를 들어, 상기 프로모터는 SV40 초기 프로모터, mouse mammary tumor virus long terminal repeat(LTR) 프로모터, adenovirus major late 프로모터 (Ad MLP), herpes simplex virus (HSV) 프로모터, CMV immediate early promoter region (CMVIE)와 같은 cytomegalovirus (CMV) 프로모터, rous sarcoma virus (RSV) 프로모터, human U6 small nuclear 프로모터 (U6) (Miyagishi et al., Nature Biotechnology 20, 497 - 500 (2002)), enhanced U6 프로모터 (e.g., Xia et al., Nucleic Acids Res. 2003 Sep 1;31(17)), human H1 프로모터 (H1), 및 7SK 중 하나 일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 복제원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점, 및/또는 BBV 복제원점일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the other components include a promoter, enhancer, intron, polyadenylation signal, Kozak consensus sequence, Internal Ribosome Entry Site (IRES), splice acceptor, 2A sequence and/ Alternatively, it may include a replication origin. Here, the promoter sequence can be designed differently depending on the corresponding RNA transcription factor or expression environment, and is not limited as long as it can properly express the components of the CRISPR/Cas system within the cell. For example, the promoter may be SV40 early promoter, mouse mammary tumor virus long terminal repeat (LTR) promoter, adenovirus major late promoter (Ad MLP), herpes simplex virus (HSV) promoter, CMV immediate early promoter region (CMVIE), etc. cytomegalovirus (CMV) promoter, rous sarcoma virus (RSV) promoter, human U6 small nuclear promoter (U6) (Miyagishi et al., Nature Biotechnology 20, 497 - 500 (2002)), enhanced U6 promoter (e.g., Xia et al. , Nucleic Acids Res. 2003 Sep 1;31(17)), human H1 promoter (H1), and 7SK, but is not limited thereto. Additionally, the origin of replication may be an f1 origin of replication, SV40 origin of replication, pMB1 origin of replication, Adeno origin of replication, AAV origin of replication, and/or BBV origin of replication, but is not limited thereto.
발현 벡터 형태 1 - 바이러스 벡터Expression Vector Form 1 - Viral Vector
상기 발현 벡터는 바이러스 벡터일 수 있다.The expression vector may be a viral vector.
일 구현예로, 상기 바이러스 벡터는 레트로바이러스, 렌티바이러스, 아데노바이러스, 아데노-연관 바이러스, 백시니아바이러스, 폭스바이러스 및 단순포진 바이러스로 구성된 군에서 선택되는 하나 이상일 수 있다. 일 구현예로, 상기 바이러스 벡터는 아데노-연관 바이러스일 수 있다.In one embodiment, the viral vector may be one or more selected from the group consisting of retrovirus, lentivirus, adenovirus, adeno-associated virus, vaccinia virus, poxvirus, and herpes simplex virus. In one embodiment, the viral vector may be an adeno-associated virus.
발현 벡터 형태 2 - 비바이러스 벡터Expression Vector Type 2 - Nonviral Vector
상기 발현 벡터는 비바이러스 벡터일 수 있다. 일 구현예로, 상기 비바이러스 벡터는 플라스미드, 파지, 네이키드 DNA, DNA 복합체, 및 mRNA로 구성된 군에서 선택되는 1 이상일 수 있다. 일 구현예로, 상기 플라스미드는 pcDNA 시리즈, pS456, p326, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈, 및 pUC19으로 이뤄진 군에서 선택된 것일 수 있다. 일 구현예로, 상기 파지는 λgt4λB, λ-Charon, λΔz1, 및 M13으로 이뤄진 군에서 선택된 것일 수 있다. 일 구현예로, 상기 암호화 핵산은 PCR 앰플리콘(amplicon)일 수 있다.The expression vector may be a non-viral vector. In one embodiment, the non-viral vector may be one or more selected from the group consisting of plasmid, phage, naked DNA, DNA complex, and mRNA. In one embodiment, the plasmid is pcDNA series, pS456, p326, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX series, pET series, and pUC19. It may have been selected from a group consisting of In one embodiment, the phage may be selected from the group consisting of λgt4λB, λ-Charon, λΔz1, and M13. In one embodiment, the encoding nucleic acid may be a PCR amplicon.
엔지니어링 된 CRISPR/Cas9 조성물Engineered CRISPR/Cas9 compositions
본 명세서에서는 엔지니어링 된 CRISPR/Cas9 시스템의 각 구성요소 및/또는 각 구성요소를 암호화하는 핵산을 포함하는 엔지니어링 된 CRISPR/Cas9 조성물을 개시한다. 여기서, 엔지니어링 된 CRISPR/Cas9 시스템의 각 구성요소는 《Cas9 단백질》, 및 《엔지니어링 된 가이드 RNA> 단락에서 설명된 것이다. 상기 엔지니어링 된 CRISPR/Cas9 조성물의 형태는 CRISPR/Cas9 시스템이 목적에 맞게 기능할 수 있는 한 특별히 제한되지 않는다.Disclosed herein are engineered CRISPR/Cas9 compositions comprising each component of the engineered CRISPR/Cas9 system and/or nucleic acids encoding each component. Here, each component of the engineered CRISPR/Cas9 system is described in the “Cas9 Protein” and “Engineered Guide RNA” sections. The form of the engineered CRISPR/Cas9 composition is not particularly limited as long as the CRISPR/Cas9 system can function for its intended purpose.
엔지니어링 된 CRISPR/Cas9 시스템을 사용한 유전자 편집 방법Gene editing method using engineered CRISPR/Cas9 system
유전자 편집 방법 개괄Overview of gene editing methods
본 명세서에서는 엔지니어링 된 CRISPR/Cas9 시스템을 사용한 유전자 편집 방법을 개시한다. 일 예로, 상기 유전자 편집 방법은 엔지니어링 된 CRISPR/Cas9 시스템을 적절한 전달형태로, 적절한 전달방법을 사용하여 유전자 편집 대상에 전달(deliver), 주입(inject), 및/또는 도입(administer)하는 것일 수 있다. 또 다른 예로, 상기 유전자 편집 방법은 엔지니어링 된 CRISPR/Cas9 복합체를 표적 서열을 가지는 핵산에 접촉시키거나, 접촉하도록 유도하는 것일 수 있다.Disclosed herein is a gene editing method using an engineered CRISPR/Cas9 system. As an example, the gene editing method may be delivering, injecting, and/or administering the engineered CRISPR/Cas9 system to the gene editing target in an appropriate delivery form and using an appropriate delivery method. there is. As another example, the gene editing method may involve contacting or inducing the engineered CRISPR/Cas9 complex to contact a nucleic acid having a target sequence.
유전자 편집 대상 1 - 대상개체, 또는 대상조직Gene editing target 1 - target object or target tissue
상기 유전자 편집 대상은 개체 또는 조직일 수 있으며, 대상개체 또는 대상조직으로 지칭될 수 있다. 일 구현예로, 상기 대상개체는 식물, 동물, 비인간 동물, 및/또는 인간일 수 있다. 구체적으로, 상기 대상개체는 포유류일 수 있다. 일 구현예로, 상기 대상조직은 비인간 동물의 조직 및/또는 인간의 조직일 수 있다.The gene editing target may be an individual or tissue, and may be referred to as a target individual or target tissue. In one embodiment, the target entity may be a plant, animal, non-human animal, and/or human. Specifically, the target object may be a mammal. In one embodiment, the target tissue may be non-human animal tissue and/or human tissue.
유전자 편집 대상 2 - 대상세포Gene editing target 2 - Target cell
상기 유전자 편집 대상은 세포를 의미할 수 있으며, 대상 세포로 지칭될 수 있다. 일 구현예로, 상기 대상 세포는 원핵 세포일 수 있다. 또 다른 구현예로, 상기 대상 세포는 진핵 세포일 수 있다. 구체적으로, 상기 진핵 세포는 식물 세포, 동물 세포, 비인간 동물 세포 및/또는 인간 세포일 수 있다.The gene editing target may refer to a cell and may be referred to as a target cell. In one embodiment, the target cell may be a prokaryotic cell. In another embodiment, the target cell may be a eukaryotic cell. Specifically, the eukaryotic cells may be plant cells, animal cells, non-human animal cells, and/or human cells.
CRISPR/Cas9 시스템 전달형태 1 - RNPCRISPR/Cas9 system delivery mode 1 - RNP
상기 전달형태는 Cas9 단백질 및 엔지니어링 된 가이드 RNA가 결합한 리보뉴클레오프로틴 입자일 수 있다. 이는, 《엔지니어링 된 CRISPR/Cas9 복합체》 단락에서 설명된 단백질-핵산 복합체 형태일 수 있다.The delivery form may be a ribonucleoprotein particle in which Cas9 protein and engineered guide RNA are combined. This may be in the form of a protein-nucleic acid complex as described in the section “Engineered CRISPR/Cas9 Complexes”.
CRISPR/Cas9 시스템 전달형태 2 - 벡터CRISPR/Cas9 System Delivery Mode 2 - Vector
상기 전달형태는 엔지니어링 된 CRISPR/Cas9의 각 구성요소를 발현할 수 있는 벡터일 수 있다. 이는, 《엔지니어링 된 CRISPR/Cas9의 각 구성요소를 발현할 수 있는 벡터》 단락에서 설명된 것일 수 있다.The delivery form may be a vector capable of expressing each engineered component of CRISPR/Cas9. This may be explained in the section “Vectors capable of expressing each component of engineered CRISPR/Cas9”.
CRISPR/Cas9 시스템 전달형태 3 - 조성물CRISPR/Cas9 System Delivery Mode 3 - Composition
상기 전달형태는 엔지니어링 된 CRISPR/Cas9 시스템의 각 구성요소 및/또는 각 구성요소를 암호화하는 핵산을 포함하는 조성물일 수 있다. 이는, 《엔지니어링 된 CRISPR/Cas9 조성물》 단락에서 설명된 조성물일 수 있다.The delivery form may be a composition comprising each component of the engineered CRISPR/Cas9 system and/or a nucleic acid encoding each component. This may be the composition described in the section “Engineered CRISPR/Cas9 Compositions”.
CRISPR/Cas9 시스템 전달방법 1 - 일반적인 전달 수단CRISPR/Cas9 system delivery method 1 - General delivery method
상기 전달방법은, 세포 내로 엔지니어링 된 가이드 RNA 또는 이를 암호화하는 핵산, 및 Cas9 단백질 또는 이를 암호화하는 핵산을 상기 전달형태 중 어느 하나로 세포 내로 전달할 수 있는 것이라면 특별히 제한되지 않는다. 일 구현예로, 상기 전달 방법은 전기천공법, 유전자총, 초음파천공법, 자기주입법(magnetofection), 및/또는 일시적인 세포 압축 또는 스퀴징일 수 있다.The delivery method is not particularly limited as long as the guide RNA engineered into the cell or the nucleic acid encoding it, and the Cas9 protein or the nucleic acid encoding it can be delivered into the cell using any of the above delivery methods. In one embodiment, the delivery method may be electroporation, gene gun, sonoporation, magnetofection, and/or transient cell compression or squeezing.
CRISPR/Cas9 시스템 전달방법 2 - 나노파티클CRISPR/Cas9 system delivery method 2 - Nanoparticles
상기 전달 방법은, 상기 CRISPR/Cas9 시스템에 포함된 적어도 하나의 구성요소를 나노파티클을 이용하여 전달하는 것일 수 있다. 이때, 상기 전달 방법은 당업계 통상의 기술자가 적절히 선택할 수 있는 공지된 방법일 수 있다. 예를 들어, 상기 나노파티클 전달 방법은 (WO 2019/089820 A1)에 개시된 방법일 수 있으나, 이에 제한되는 것은 아니다.The delivery method may be delivering at least one component included in the CRISPR/Cas9 system using nanoparticles. At this time, the delivery method may be a known method that can be appropriately selected by a person skilled in the art. For example, the nanoparticle delivery method may be the method disclosed in (WO 2019/089820 A1), but is not limited thereto.
일 구현예로, 상기 전달 방법은 Cas9 단백질 또는 이를 암호화하는 핵산 및/또는 엔지니어링 된 가이드 RNA 또는 이를 암호화하는 핵산을 나노파티클을 이용하여 전달하는 것일 수 있다. 이때, 상기 전달 방법은 양이온성 리포좀법, 초산 리튬-DMSO, 지질-매개 형질감염(transfection), 인산칼슘 침전법(precipitation), lipofection, PEI(Polyethyleneimine)-매개 형질감염, DEAE-dextran 매개 형질감염, 및/또는 나노파티클-매개 핵산 전달(Panyam et. , al Adv Drug Deliv Rev. 2012 Sep 13.pii: S0169-409X(12)00283-9. doi: 10.1016/j.addr.2012.09.023 참조)일 수 있으나, 이에 제한되는 것은 아니다. 이때, 상기 CRISPR/Cas9 시스템의 구성 요소는 상기 전달형태 중 어느 하나일 수 있다. 예를 들어, 상기 CRISPR/Cas9 시스템의 구성 요소는 각 구성요소를 암호화하는 mRNA 형태일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the delivery method may be delivering the Cas9 protein or the nucleic acid encoding it and/or the engineered guide RNA or the nucleic acid encoding it using nanoparticles. At this time, the delivery method is cationic liposome method, lithium acetate-DMSO, lipid-mediated transfection, calcium phosphate precipitation, lipofection, PEI (Polyethyleneimine)-mediated transfection, and DEAE-dextran-mediated transfection. , and/or nanoparticle-mediated nucleic acid delivery (see Panyam et. , al Adv Drug Deliv Rev. 2012 Sep 13.pii: S0169-409X(12)00283-9. doi: 10.1016/j.addr.2012.09.023) It may be, but is not limited to this. At this time, the components of the CRISPR/Cas9 system may be in any one of the above delivery forms. For example, the components of the CRISPR/Cas9 system may be in the form of mRNA encoding each component, but are not limited thereto.
CRISPR/Cas9 시스템 각 구성요소 전달 순서Sequence of delivery of each component of the CRISPR/Cas9 system
상기 유전자 편집 방법은 엔지니어링 된 가이드 RNA 또는 이를 암호화하는 핵산, 및 Cas9 단백질 또는 이를 암호화하는 핵산을 세포 내 전달하는 것을 포함하는데, 이때 상기 구성이 세포 내에 동시에 전달되거나 또는 시간차를 두고 순차적으로 전달될 수 있다. 이때, 어떤 구성이 먼저 전달될 지는 유전자 편집 목적을 달성할 수 있는 한, 달리 제한되지 않는다.The gene editing method includes delivering an engineered guide RNA or a nucleic acid encoding it, and a Cas9 protein or a nucleic acid encoding it into a cell, wherein the constructs can be delivered simultaneously into the cell or sequentially with a time difference. there is. At this time, there is no limitation as to which configuration is delivered first, as long as the purpose of gene editing can be achieved.
유전자 편집 결과 1 - 인델(indel)Gene editing result 1 - indel
본 명세서에서 제공하는 유전자 편집 방법의 수행 결과로, 표적 유전자 또는 표적 핵산에 인델이 발생할 수 있다. 이때, 상기 인델은 표적 서열 부분 및/또는 프로토스페이서 서열 부분의 내부 및/또는 외부에서 일어날 수 있다. 상기 인델은, 유전자 편집 전 핵산의 뉴클레오타이드 배열에서 일부 뉴클레오타이드가 중간에 결실되거나, 임의의 뉴클레오타이드가 삽입되거나, 및/또는 상기 삽입과 결실이 혼입된 변이를 일컫는다. 일반적으로, 표적 유전자 또는 표적 핵산 서열 내 인델이 일어나면, 해당 유전자 또는 핵산이 불활성화된다. 일 구현예로, 상기 유전자 편집 방법의 수행 결과, 표적 유전자 또는 표적 핵산 내 하나 이상의 뉴클레오타이드가 결실 및/또는 추가될 수 있다.As a result of performing the gene editing method provided herein, indels may occur in the target gene or target nucleic acid. At this time, the indel may occur inside and/or outside the target sequence portion and/or the protospacer sequence portion. The indel refers to a mutation in which some nucleotides are deleted, certain nucleotides are inserted, and/or the insertion and deletion are mixed in the nucleotide sequence of the nucleic acid before gene editing. Generally, when an indel occurs within a target gene or target nucleic acid sequence, the gene or nucleic acid is inactivated. In one embodiment, as a result of performing the gene editing method, one or more nucleotides in the target gene or target nucleic acid may be deleted and/or added.
유전자 편집 결과 2 - 베이스 에디팅(base editing)Gene editing result 2 - base editing
본 명세서에서 제공하는 유전자 편집 방법의 수행 결과로, 표적 유전자 또는 표적 핵산 내 베이스 에디팅이 일어날 수 있다. 이는 표적 유전자 또는 표적 핵산 내 임의의 뉴클레오타이드가 결실, 또는 추가되는 인델과는 달리, 핵산 내 하나 이상의 특정 뉴클레오타이드를 의도한 대로 변경하는 것을 의미한다. 달리 표현하면, 표적 유전자 또는 표적 핵산 내 특정 위치에서, 미리 의도한 점 돌연변이(point mutation)를 일으키는 것이다. 일 구현예로, 상기 유전자 편집 방법의 수행 결과, 표적 유전자 또는 표적 핵산 내 하나 이상의 뉴클레오타이드가 다른 뉴클레오타이드로 치환될 수 있다.As a result of performing the gene editing method provided herein, base editing may occur within the target gene or target nucleic acid. This means changing one or more specific nucleotides in a nucleic acid as intended, unlike indels in which any nucleotide in the target gene or target nucleic acid is deleted or added. In other words, it causes a pre-intended point mutation at a specific position in the target gene or target nucleic acid. In one embodiment, as a result of performing the gene editing method, one or more nucleotides in the target gene or target nucleic acid may be replaced with another nucleotide.
유전자 편집 결과 3 - 삽입(insertion)Gene editing result 3 - insertion
본 명세서에서 제공하는 유전자 편집 방법의 수행 결과로, 표적 유전자 또는 표적 핵산 내 넉인이 발생할 수 있다. 상기 넉인은 표적 유전자 또는 표적 핵산 서열 내에 추가적인 핵산 서열을 삽입하는 것을 의미한다. 상기 넉인이 일어나려면, CRISPR/Cas9 복합체 외에 상기 추가적인 핵산 서열을 포함하는 도너가 더 필요하다. 세포 내에서 CRISPR/Cas9 복합체가 표적 유전자 또는 표적 핵산을 절단하는 경우, 상기 절단된 표적 유전자 또는 표적 핵산의 수복이 일어나게 된다. 이때, 상기 도너가 상기 수복 과정에 관여하여 상기 추가적인 핵산 서열이 표적 유전자 또는 표적 핵산 내에 삽입될 수 있도록 한다. 일 구현예로, 상기 유전자 편집 방법은 대상 세포 내로 도너를 도입하는 것을 추가적으로 포함할 수 있다. 예를 들어, 상기 도너는 세포 내 게놈에 삽입하기 위한 외래 DNA 서열(exogeneous DNA sequence)을 포함하며, 상기 도너에 의해 상기 표적 유전자 또는 상기 표적 핵산 내 상기 외래 DNA 서열 의 삽입이 유도된다. 이때, 상기 도너를 대상 세포 내로 전달할 때, 전술한 전달 형태 및/또는 전달 방법이 사용될 수 있다.As a result of performing the gene editing method provided herein, knock-in may occur in the target gene or target nucleic acid. The knock-in refers to the insertion of an additional nucleic acid sequence into the target gene or target nucleic acid sequence. For the knock-in to occur, a donor containing the additional nucleic acid sequence is required in addition to the CRISPR/Cas9 complex. When the CRISPR/Cas9 complex cleaves a target gene or target nucleic acid within a cell, repair of the cleaved target gene or target nucleic acid occurs. At this time, the donor participates in the repair process so that the additional nucleic acid sequence can be inserted into the target gene or target nucleic acid. In one embodiment, the gene editing method may additionally include introducing a donor into the target cell. For example, the donor includes an exogeneous DNA sequence for insertion into the intracellular genome, and the donor induces insertion of the exogeneous DNA sequence into the target gene or target nucleic acid. At this time, when delivering the donor into the target cell, the above-described delivery form and/or delivery method may be used.
유전자 편집 결과 4 - 제거(deletion)Gene editing result 4 - deletion
본 명세서에서 제공하는 유전자 편집 방법의 수행 결과로, 표적 유전자 또는 표적 핵산 서열의 전부 또는 일부를 제거할 수 있다. 상기 제거는 상기 표적 유전자 또는 상기 표적 핵산 내 일부 염기 서열(뉴클레오타이드 서열)을 일정 길이 이상 제거하는 것을 의미한다. 상기 제거는 전술한 인델 효과와 비교하여, 유전자의 특정 영역, 예를 들어, 제1 엑손 영역을 전체적으로 제거(removal)할 수 있는 효과를 의미한다.As a result of performing the gene editing method provided herein, all or part of the target gene or target nucleic acid sequence may be removed. The removal means removing a certain base sequence (nucleotide sequence) within the target gene or target nucleic acid over a certain length. Compared to the indel effect described above, the removal refers to an effect that can entirely remove a specific region of a gene, for example, the first exon region.
일 구현예로, 상기 유전자 편집 방법은 Cas12f1 단백질 또는 이를 암호화하는 핵산, 제1 엔지니어링 된 Cas12f1 가이드 RNA 또는 이를 암호화하는 핵산, 및 제2 엔지니어링 된 Cas12f1 가이드 RNA 또는 이를 암호화하는 핵산을 표적 유전자 또는 표적 핵산을 포함하는 세포내에 도입하는 것을 포함한다. 이로 인해, 상기 유전자 편집 결과 표적 유전자 또는 표적 핵산 내에 특정 서열 부분의 제거가 일어난다.In one embodiment, the gene editing method includes a Cas12f1 protein or a nucleic acid encoding the same, a first engineered Cas12f1 guide RNA or a nucleic acid encoding the same, and a second engineered Cas12f1 guide RNA or a nucleic acid encoding the target gene or target nucleic acid. It includes introducing into cells containing. As a result, the gene editing results in the removal of a specific sequence portion within the target gene or target nucleic acid.
유전자 편집 방법 특징 1 - 높은 가이드 RNA 발현량Gene editing method feature 1 - High guide RNA expression level
본 명세서에서 개시하는 유전자 편집 방법은 엔지니어링 된 CRISPR/Cas9 시스템을 사용한다. 여기서, 상기 엔지니어링 된 CRISPR/Cas9 시스템에 포함된 가이드 RNA는 서열 내 4개 이상의 유리딘이 연속되는 부분이 존재하지 않는다. 따라서, 상기 유전자 편집 방법에 따라 엔지니어링 된 CRISPR/Cas9 시스템을 벡터화하여 편집 대상에 전달하였을 때, 세포 내에서 RNA 중합효소가 4개의 연속된 티미딘(T) 부분을 인식하여 transcriptional pausing이나 immature termination 될 확률이 매우 낮거나 없다. 결과적으로, 상기 유전자 편집 방법에 의하면, 편집 대상인 세포 내에서 상기 엔지니어링 된 CRIPSR/Cas9 시스템에 포함된 가이드 RNA의 발현량이 증가한다는 점이 특징이다.The gene editing method disclosed herein uses the engineered CRISPR/Cas9 system. Here, the guide RNA included in the engineered CRISPR/Cas9 system does not have a continuous region of four or more uridines in the sequence. Therefore, when the CRISPR/Cas9 system engineered according to the above gene editing method is vectorized and delivered to the editing target, RNA polymerase within the cell recognizes four consecutive thymidine (T) regions, leading to transcriptional pausing or immature termination. The probability is very low or non-existent. As a result, the gene editing method is characterized by an increase in the expression level of the guide RNA included in the engineered CRIPSR/Cas9 system within the cell being edited.
유전자 편집 방법 특징 2 - 높은 CRISPR/Cas9 시스템 활성Gene editing method feature 2 - High CRISPR/Cas9 system activity
전술한 바, 본 명세서에서 개시하는 엔지니어링 된 CRISPR/Cas9 시스템은 상기 엔지니어링 된 스캐폴드로 인해 유전자 절단 활성 그 자체가 증대되었다는 특징이 있다. 따라서, 상기 엔지니어링 된 CRISPR/Cas9 시스템을 유전자 편집 방법에 사용하였을 때, 그 사용 형태 (리보뉴클레오프로틴, 벡터, 및/또는 조성물)를 막론하고 야생형의 CRISPR/Cas9 시스템을 사용할 때보다 높은 유전자 편집 활성을 나타낸다.As described above, the engineered CRISPR/Cas9 system disclosed herein has the feature that the gene cutting activity itself is increased due to the engineered scaffold. Therefore, when the engineered CRISPR/Cas9 system is used in a gene editing method, regardless of the form of use (ribonucleoprotein, vector, and/or composition), gene editing is higher than when using the wild-type CRISPR/Cas9 system. indicates activity.
발명의 가능한 실시예Possible Embodiments of the Invention
이하 본 명세서에서 제공하는 발명의 가능한 실시예들을 나열한다. 본 단락에서 제공하는 이하의 실시예들은 단지 발명의 일 예시에 해당될 뿐이다. 따라서, 본 명세서에서 제공하는 발명을 하기 실시예로 제한하여 해석할 수 없다. 실시예 번호와 함께 기재된 간략한 설명 또한, 각 실시예 간 구분의 편의를 위한 것일 뿐 본 명세서에서 개시하는 발명에 대한 제한으로 해석될 수 없다.Possible embodiments of the invention provided in this specification are listed below. The following embodiments provided in this paragraph are merely examples of the invention. Therefore, the invention provided in this specification cannot be interpreted as limited to the following examples. The brief description provided along with the example number is only for the convenience of distinguishing between each example and cannot be construed as a limitation on the invention disclosed in this specification.
엔지니어링 된 스캐폴드Engineered Scaffold
실시예 1, 엔지니어링 된 스캐폴드Example 1, Engineered Scaffold
GUUUUAGUCCCUGAAGGGACUAAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 1)의 핵산서열을 가지는 RNA에서, 연속하는 4개의 유리딘을 가지지 않도록 변형된 엔지니어링 된 가이드 RNA 스캐폴드.An engineered guide RNA scaffold modified from RNA having a nucleic acid sequence of GUUUUAGUCCCUGAAGGGACUAAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 1) to not have four consecutive uridines.
실시예 2, 엔지니어링 된 스캐폴드 영역Example 2, Engineered Scaffold Region
실시예 1에 있어서, 다음 서열로 표현되는 엔지니어링 된 가이드 RNA 스캐폴드:In Example 1, an engineered guide RNA scaffold represented by the following sequence:
5'-[제1 영역]-[제2 영역]-[제3 영역]-[제4 영역]-3'5'-[first region]-[second region]-[third region]-[fourth region]-3'
여기서, 제1 영역은 5'-GUUUC-3', 5'-GUUCU-3', 5'-GUCUU-3', 5'-GCUUU-3' 중 선택된 것이고,Here, the first region is selected from 5'-GUUUC-3', 5'-GUUCU-3', 5'-GUCUU-3', and 5'-GCUUU-3',
제2 영역은 AGUCCCUGAAGGGACU(서열번호 6), 또는 서열번호 6의 서열과 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 85% 이상, 86% 이상, 87% 이상, 88% 이상, 89% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상 일치하거나, 상동성있거나, 상응하는 서열이고,The second region is AGUCCCUGAAGGGACU (SEQ ID NO: 6), or the sequence of SEQ ID NO: 6 and at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, Matches at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or , is a homologous or corresponding sequence,
제3 영역은 5'-GAAA-3', 5'-AGAA-3', 5'-AAGA-3', 5'-AAAG-3' 중 선택된 것이고,The third region is selected from 5'-GAAA-3', 5'-AGAA-3', 5'-AAGA-3', and 5'-AAAG-3',
제4 영역은 UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 7), 또는 서열번호 7의 서열과 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 85% 이상, 86% 이상, 87% 이상, 88% 이상, 89% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상 일치하거나, 상동성있거나, 상응하는 서열임.The fourth region is UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 7), or the sequence of SEQ ID NO: 7 and at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, Matches at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or , is a homologous or corresponding sequence.
실시예 3, 서열한정Example 3, sequence limitation
실시예 1 내지 실시예 2 중 어느 하나에 있어서, 상기 엔지니어링 된 가이드 RNA 스캐폴드는 GUUUCAGUCCCUGAAGGGACUGGAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 2), GUUCUAGUCCCUGAAGGGACUGAGAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 3), GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 4), 및 GCUUUAGUCCCUGAAGGGACUAAAGUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 5)의 핵산 서열로 이뤄진 군에서 서열을 가지는 엔지니어링 된 가이드 RNA 스캐폴드.The method of any one of Examples 1 to 2, wherein the engineered guide RNA scaffold is GUUUCAGUCCCUGAAGGGACUGGAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 2), GUUCUAGUCCCUGAAGGGACUGAGAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 3), GUCUUAGUCCCUGAAGG GACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 4), and GCUUUAGUCCCUGAAGGGACUAAAGUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 5) An engineered guide RNA scaffold having a sequence from a group of nucleic acid sequences.
실시예 4, CjCas9 한정Example 4, CjCas9 only
실시예 1 내지 실시예 3 중 어느 하나에 있어서, 상기 엔지니어링 된 가이드 RNA 스캐폴드는 캄필로박터 제주니 유래 Cas9 단백질과 상호작용하여 복합체를 형성할 수 있는 것인, 엔지니어링 된 가이드 RNA 스캐폴드.The engineered guide RNA scaffold according to any one of Examples 1 to 3, wherein the engineered guide RNA scaffold is capable of forming a complex by interacting with the Cas9 protein derived from Campylobacter jejuni.
엔지니어링 된 가이드 RNAEngineered Guide RNA
실시예 5, 엔지니어링 된 가이드 RNAExample 5, Engineered Guide RNA
다음 서열로 표현되는 엔지니어링 된 가이드 RNA:Engineered guide RNA represented by the following sequence:
5'-[가이드 도메인]-[엔지니어링 된 가이드 RNA 스캐폴드]-3'5'-[guide domain]-[engineered guide RNA scaffold]-3'
여기서, 상기 가이드 도메인은 미리 결정된 표적 서열을 가지는 표적 핵산을 표적할 수 있도록 인공적으로 설계된 것이고,Here, the guide domain is artificially designed to target a target nucleic acid having a predetermined target sequence,
상기 엔지니어링 된 가이드 RNA 스캐폴드는 실시예 1 내지 실시예 4 중 선택된 어느 하나의 엔지니어링 된 가이드 RNA 스캐폴드임.The engineered guide RNA scaffold is any one of the engineered guide RNA scaffolds selected from Examples 1 to 4.
실시예 6, 가이드 도메인 길이Example 6, Guide Domain Length
실시예 5에 있어서, 상기 가이드 도메인은 1nt, 2nt, 3nt, 4nt, 5nt, 6nt, 7nt, 8nt, 9nt, 10nt, 11nt, 12nt, 13nt, 14nt, 15nt, 16nt, 17nt, 18nt, 19nt, 20nt, 21nt, 22nt, 23nt, 24nt, 25nt, 26nt, 27nt, 28nt, 29nt, 또는 30nt 길이를 가지는, 엔지니어링 된 가이드 RNA.In Example 5, the guide domain is 1nt, 2nt, 3nt, 4nt, 5nt, 6nt, 7nt, 8nt, 9nt, 10nt, 11nt, 12nt, 13nt, 14nt, 15nt, 16nt, 17nt, 18nt, 19nt, 20nt, Engineered guide RNA having a length of 21nt, 22nt, 23nt, 24nt, 25nt, 26nt, 27nt, 28nt, 29nt, or 30nt.
실시예 7, 가이드 도메인 및 표적 서열의 관계Example 7, relationship between guide domain and target sequence
실시예 5 내지 실시예 6 중 어느 하나에 있어서, 상기 가이드 도메인은 상기 미리 결정된 표적 서열과 동등한(equivalent) 서열을 가지거나, 또는 상기 미리 결정된 표적 서열과 상보적인(complementary) 서열을 가지는 것을 특징으로 하는 프로그램 가능한 가이드 RNA.According to any one of Examples 5 to 6, the guide domain has a sequence equivalent to the predetermined target sequence, or has a complementary sequence to the predetermined target sequence. Programmable guide RNA.
실시예 8, 가이드 도메인 및 표적 서열의 관계Example 8, relationship between guide domain and target sequence
실시예 5 내지 실시예 7 중 어느 하나에 있어서,In any one of Examples 5 to 7,
상기 미리 결정된 표적 서열을 가지는 표적 핵산은 이중가닥 핵산이고,The target nucleic acid having the predetermined target sequence is a double-stranded nucleic acid,
상기 표적 핵산은 표적 가닥 (target strand) 및 비표적 가닥 (nontarget strand)을 포함하고,The target nucleic acid includes a target strand and a nontarget strand,
상기 표적 가닥의 서열 및 상기 비표적 가닥의 서열은 서로 상보적인 서열이므로, 상기 표적 핵산의 표적 서열은 상기 표적 가닥의 서열 또는 상기 비표적 가닥의 서열만으로 특정될 수 있으며,Since the sequence of the target strand and the sequence of the non-target strand are complementary sequences, the target sequence of the target nucleic acid can be specified only by the sequence of the target strand or the sequence of the non-target strand,
상기 가이드 도메인이 상기 미리 결정된 표적 서열의 표적 핵산을 표적한다는 서술은 다음 중 선택된 의미를 가짐:The statement that the guide domain targets a target nucleic acid of the predetermined target sequence has the meaning selected from the following:
상기 가이드 도메인이 상기 표적 핵산의 표적 가닥과 상보적으로 결합하거나 (complementarily binds), 및/또는 혼성화될 (hybridize) 수 있음;The guide domain may complementarily bind, and/or hybridize, with the target strand of the target nucleic acid;
상기 가이드 도메인의 서열은 상기 표적 핵산의 표적 가닥의 전부 또는 일부 서열과 상보적인 서열을 포함함;The sequence of the guide domain includes a sequence complementary to all or part of the sequence of the target strand of the target nucleic acid;
상기 가이드 도메인의 서열은 상기 표적 핵산의 비표적 가닥의 전부 또는 일부 서열과 일치하거나 (identical), 매치되거나 (match), 상동이거나 (homolog), 및/또는 동등한 (equivalant) 서열을 포함함; 및The sequence of the guide domain is identical, matches, homologs, and/or comprises an equivalent sequence to all or part of the sequence of the non-target strand of the target nucleic acid; and
통상의 기술자가 인식할 수 있는 범위 내에서, 상기 서술의 적절한 조합.Appropriate combinations of the above descriptions, within the range recognizable to those skilled in the art.
실시예 9, 미스매치 포함Example 9, with mismatches
실시예 8에 있어서, 상기 가이드 도메인의 서열은 다음 중 선택된 어느 하나임:In Example 8, the sequence of the guide domain is any one selected from the following:
상기 표적 핵산의 비표적 가닥에 포함된 상기 표적 서열의 전부 또는 일부 서열과 1개, 2개, 3개, 4개, 또는 5개의 뉴클레오티드 염기를 제외한 나머지 염기가 일치하거나 (identical), 매치되거나 (match), 상동이거나 (homolog), 및/또는 동등한 (equivalant) 서열; 및All or part of the sequence of the target sequence contained in the non-target strand of the target nucleic acid and the remaining bases except for 1, 2, 3, 4, or 5 nucleotide bases are identical (identical) or match ( match, homolog, and/or equivalent sequence; and
상기 표적 핵산의 표적 가닥에 포함된 상기 표적 서열의 전부 또는 일부 서열과 1개, 2개, 3개, 4개, 또는 5개의 뉴클레오티드 염기를 제외한 나머지 염기가 상보적인 서열.A sequence in which all or part of the target sequence contained in the target strand of the target nucleic acid is complementary to the remaining bases except for 1, 2, 3, 4, or 5 nucleotide bases.
Cas9 단백질Cas9 protein
실시예 10, CjCas9Example 10, CjCas9
캄필로박터 제주니(Campylobacter jejuni) 유래 Cas9 단백질.Cas9 protein from Campylobacter jejuni.
실시예 11, CjCas9, 서열한정Example 11, CjCas9, sequence limited
실시예 10에 있어서, MARILAFDIGISSIGWAFSENDELKDCGVRIFTKVENPKTGESLALPRRLARSARKRLARRKARLNHLKHLIANEFKLNYEDYQSFDESLAKAYKGSLISPYELRFRALNELLSKQDFARVILHIAKRRGYDDIKNSDDKEKGAILKAIKQNEEKLANYQSVGEYLYKEYFQKFKENSKEFTNVRNKKESYERCIAQSFLKDELKLIFKKQREFGFSFSKKFEEEVLSVAFYKRALKDFSHLVGNCSFFTDEKRAPKNSPLAFMFVALTRIINLLNNLKNTEGILYTKDDLNALLNEVLKNGTLTYKQTKKLLGLSDDYEFKGEKGTYFIEFKKYKEFIKALGEHNLSQDDLNEIAKDITLIKDEIKLKKALAKYDLNQNQIDSLSKLEFKDHLNISFKALKLVTPLMLEGKKYDEACNELNLKVAINEDKKDFLPAFNETYYKDEVTNPVVLRAIKEYRKVLNALLKKYGKVHKINIELAREVGKNHSQRAKIEKEQNENYKAKKDAELECEKLGLKINSKNILKLRLFKEQKEFCAYSGEKIKISDLQDEKMLEIDHIYPYSRSFDDSYMNKVLVFTKQNQEKLNQTPFEAFGNDSAKWQKIEVLAKNLPTKKQKRILDKNYKDKEQKNFKDRNLNDTRYIARLVLNYTKDYLDFLPLSDDENTKLNDTQKGSKVHVEAKSGMLTSALRHTWGFSAKDRNNHLHHAIDAVIIAYANNSIVKAFSDFKKEQESNSAELYAKKISELDYKNKRKFFEPFSGFRQKVLDKIDEIFVSKPERKKPSGALHEETFRKEEEFYQSYGGKEGVLKALELGKIRKVNGKIVKNGDMFRVDIFKHKKTNKFYAVPIYTMDFALKVLPNKAVARSKKGEIKDWILMDENYEFCFSLYKDSLILIQTKDMQEPEFVYYNAFTSSTVSLIVSKHDNKFETLSKNQKILFKNANEKEVIAKSIGIQNLKVFEKYIVSALGEVTKAEFRQREDFKKSGPPKKKRKVYPYDVPDYA(서열번호 39) 의 아미노산 서열, 또는 서열번호 39의 아미노산 서열과 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 85% 이상, 86% 이상, 87% 이상, 88% 이상, 89% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상 동일하거나(identical), 상응하거나(corresponding), 동등한(equivalent) 서열로 표현되는 Cas9 단백질.In Example 10, the amino acid sequence of (SEQ ID NO: 39), or the amino acid sequence of SEQ ID NO: 39 and at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86% , at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or Cas9 protein expressed as a sequence that is at least 99% identical, corresponding, or equivalent.
실시예 12, CjCas9 기능변이 - nickaseExample 12, CjCas9 functional mutation - nickase
실시예 10 내지 실시예 11 중 어느 하나에 있어서, 상기 Cas9은 nickase 기능을 가지도록 변형된 것인, Cas9 단백질.The Cas9 protein according to any one of Examples 10 to 11, wherein the Cas9 is modified to have a nickase function.
실시예 13, CjCas9 기능변이 - DeadExample 13, CjCas9 functional mutation - Dead
실시예 10 내지 실시예 12 중 어느 하나에 있어서, 상기 Cas9은 핵산 절단 활성을 가지지 않도록 변형된 것인, Cas9 단백질.The Cas9 protein according to any one of Examples 10 to 12, wherein the Cas9 is modified so as not to have nucleic acid cleavage activity.
실시예 14, CjCas9 기능변이 - BE, PE, a/iExample 14, CjCas9 functional mutation - BE, PE, a/i
실시예 10 내지 실시예 13 중 어느 하나에 있어서, 상기 Cas9은 다음 중 선택된 도메인과 융합된 것인, Cas9 단백질:The Cas9 protein according to any one of Examples 10 to 13, wherein the Cas9 is fused to a domain selected from the following:
베이스 에디터 도메인; 프라임 에디터 도메인; 유전자 전사/발현 억제 도메인; 및 유전자 전사/발현 증가 도메인.base editor domain; Prime Editor Domain; Gene transcription/expression repression domain; and a gene transcription/expression increase domain.
실시예 15, NLS 추가 포함Example 15, with additional NLS
실시예 10 내지 실시예 14 중 어느 하나에 있어서, 상기 Cas9 단백질은 N말단 및/또는 C말단에 하나 이상의 Nuclear Localization Signal을 포함하는 Cas9 단백질.The Cas9 protein according to any one of Examples 10 to 14, wherein the Cas9 protein includes one or more Nuclear Localization Signals at the N-terminus and/or C-terminus.
실시예 16, NLS 서열 한정Example 16, limited to NLS sequences
실시예 15에 있어서, 상기 하나 이상의 Nuclear Localization Signal은 각각 독립적으로 PKKKRKV(서열번호 23), KRPAATKKAGQAKKKK(서열번호 24), PAAKRVKLD(서열번호 25), RQRRNELKRSP(서열번호 26), NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY(서열번호 27), RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV(서열번호 28), VSRKRPRP(서열번호 29), PPKKARED(서열번호 30), PQPKKKPL(서열번호 31), SALIKKKKKMAP(서열번호 32), DRLRR(서열번호 33), PKQKKRK(서열번호 34), RKLKKKIKKL(서열번호 35), REKKKFLKRR(서열번호 36), KRKGDEVDGVDEVAKKKSKK(서열번호 37), 및 RKCLQAGMNLEARKTKK(서열번호 38) 중 선택된 아미노산 서열을 가짐.In Example 15, the one or more Nuclear Localization Signals are each independently PKKKRKV (SEQ ID NO: 23), KRPAATKKAGQAKKKK (SEQ ID NO: 24), PAAKRVKLD (SEQ ID NO: 25), RQRRNELKRSP (SEQ ID NO: 26), NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY (SEQ ID NO: 27) , RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID NO: 28), VSRKRPRP (SEQ ID NO: 29), PPKKARED (SEQ ID NO: 30), PQPKKKPL (SEQ ID NO: 31), SALIKKKKKMAP (SEQ ID NO: 32), DRLRR (SEQ ID NO: 33), PKQKKRK (SEQ ID NO: 34), Has an amino acid sequence selected from RKLKKKIKKL (SEQ ID NO: 35), REKKKFLKRR (SEQ ID NO: 36), KRKGDEVDGVDEVAKKKSKK (SEQ ID NO: 37), and RKCLQAGMNLEARKTKK (SEQ ID NO: 38).
엔지니어링 된 CRISPR/Cas9 복합체Engineered CRISPR/Cas9 complex
실시예 17, CjCas9-gRNA complexExample 17, CjCas9-gRNA complex
다음을 포함하는 엔지니어링 된 CRISPR/Cas9 복합체:Engineered CRISPR/Cas9 complex containing:
실시예 10 내지 실시예 16 중 선택된 어느 하나의 Cas9 단백질; 및Any one Cas9 protein selected from Examples 10 to 16; and
실시예 5 내지 실시예 9 중 선택된 어느 하나의 엔지니어링 된 가이드 RNA,Any one of the engineered guide RNAs selected from Examples 5 to 9,
여기서, 상기 엔지니어링 된 가이드 RNA의 가이드 도메인은 미리 결정된 표적 서열의 핵산을 표적할 수 있도록 인공적으로 설계된 것이고,Here, the guide domain of the engineered guide RNA is artificially designed to target a nucleic acid of a predetermined target sequence,
상기 엔지니어링 된 가이드 RNA의 엔지니어링 된 스캐폴드는 상기 Cas9 단백질과 상호작용하여 복합체를 이룰 수 있는 것임.The engineered scaffold of the engineered guide RNA can interact with the Cas9 protein to form a complex.
엔지니어링 된 CRISPR/Cas9 구성요소 발현 벡터Engineered CRISPR/Cas9 component expression vector
실시예 18, CjCas9, gRNA expression vectorExample 18, CjCas9, gRNA expression vector
다음을 포함하는 엔지니어링 된 CRISPR/Cas9 구성요소 발현 벡터:Engineered CRISPR/Cas9 component expression vector containing:
실시예 10 내지 실시예 16 중 선택된 어느 하나의 Cas9 단백질을 암호화하는 핵산; 및A nucleic acid encoding the Cas9 protein selected from Examples 10 to 16; and
실시예 5 내지 실시예 9 중 선택된 어느 하나의 엔지니어링 된 가이드 RNA를 암호화하는 핵산,A nucleic acid encoding any one of the engineered guide RNAs selected from Examples 5 to 9,
여기서, 상기 엔지니어링 된 가이드 RNA의 가이드 도메인은 미리 결정된 표적 서열의 핵산을 표적할 수 있도록 인공적으로 설계된 것이고,Here, the guide domain of the engineered guide RNA is artificially designed to target a nucleic acid of a predetermined target sequence,
상기 엔지니어링 된 가이드 RNA의 엔지니어링 된 스캐폴드는 상기 Cas9 단백질과 상호작용하여 복합체를 이룰 수 있는 것임.The engineered scaffold of the engineered guide RNA can interact with the Cas9 protein to form a complex.
실시예 19, single vectorExample 19, single vector
실시예 18에 있어서, 상기 벡터는 상기 Cas9 단백질을 암호화하는 핵산 및 상기 가이드 RNA를 암호화하는 핵산을 단일 벡터(single vector)에 포함하는 것을 특징으로 하는 발현 벡터.The expression vector according to Example 18, wherein the vector contains a nucleic acid encoding the Cas9 protein and a nucleic acid encoding the guide RNA in a single vector.
실시예 20, multiple vectorsExample 20, multiple vectors
실시예 18에 있어서, 상기 벡터는 상기 Cas9 단백질을 암호화하는 핵산 및 상기 가이드 RNA를 암호화하는 핵산을 둘 이상의 벡터에 포함하는 것을 특징으로 하는 발현 벡터.The expression vector according to Example 18, wherein the vector contains a nucleic acid encoding the Cas9 protein and a nucleic acid encoding the guide RNA in two or more vectors.
실시예 21, promotersExample 21, promoters
실시예 18 내지 실시예 20 중 어느 하나에 있어서, 상기 Cas9 단백질을 암호화하는 핵산 및 상기 엔지니어링 된 가이드 RNA를 암호화하는 핵산은 각각 독립적으로, 이를 발현시킬 수 있는 프로모터와 작동적으로 연결된 발현 벡터.The expression vector according to any one of Examples 18 to 20, wherein the nucleic acid encoding the Cas9 protein and the nucleic acid encoding the engineered guide RNA are each independently operably linked to a promoter capable of expressing them.
실시예 22, promoter 한정Example 22, promoter only
실시예 21에 있어서, 상기 프로모터는 SV40 초기 프로모터, mouse mammary tumor virus long terminal repeat(LTR) 프로모터, adenovirus major late 프로모터 (Ad MLP), herpes simplex virus (HSV) 프로모터, CMV immediate early promoter region (CMVIE)와 같은 cytomegalovirus (CMV) 프로모터, rous sarcoma virus (RSV) 프로모터, human U6 small nuclear 프로모터 (U6) (Miyagishi et al., Nature Biotechnology 20, 497 - 500 (2002)), enhanced U6 프로모터 (e.g., Xia et al., Nucleic Acids Res. 2003 Sep 1;31(17)), human H1 프로모터 (H1), 및 7SK 중 각각 독립적으로 선택된 발현 벡터.In Example 21, the promoter is SV40 early promoter, mouse mammary tumor virus long terminal repeat (LTR) promoter, adenovirus major late promoter (Ad MLP), herpes simplex virus (HSV) promoter, CMV immediate early promoter region (CMVIE) Such as cytomegalovirus (CMV) promoter, rous sarcoma virus (RSV) promoter, human U6 small nuclear promoter (U6) (Miyagishi et al., Nature Biotechnology 20, 497 - 500 (2002)), enhanced U6 promoter (e.g., Xia et al. al., Nucleic Acids Res. 2003 Sep 1;31(17)), human H1 promoter (H1), and 7SK, each independently selected from an expression vector.
실시예 23, viral vectorExample 23, viral vector
실시예 18 내지 실시예 22 중 어느 하나에 있어서, 상기 바이러스 벡터는 레트로바이러스, 렌티바이러스, 아데노바이러스, 아데노-연관 바이러스, 백시니아바이러스, 폭스바이러스 및 단순포진 바이러스로 구성된 군에서 선택되는 하나 이상인 발현 벡터.The method according to any one of Examples 18 to 22, wherein the viral vector is one or more selected from the group consisting of retrovirus, lentivirus, adenovirus, adeno-associated virus, vaccinia virus, poxvirus and herpes simplex virus. vector.
실시예 24, non-viral vectorExample 24, non-viral vector
실시예 18 내지 실시예 23 중 어느 하나에 있어서, 상기 비바이러스 벡터는 플라스미드, 파지, 네이키드 DNA, DNA 복합체, 및 mRNA로 구성된 군에서 선택되는 하나 이상인 발현 벡터.The expression vector according to any one of Examples 18 to 23, wherein the non-viral vector is one or more selected from the group consisting of plasmid, phage, naked DNA, DNA complex, and mRNA.
실시예 25, guide RNA 암호화 핵산 특정Example 25, specific nucleic acid encoding guide RNA
실시예 18 내지 실시예 24 중 어느 하나에 있어서, 상기 상기 엔지니어링 된 가이드 RNA를 암호화하는 핵산은 GTTTCAGTCCCTGAAGGGACTGGAAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC(서열번호 9), GTTCTAGTCCCTGAAGGGACTGAGAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC(서열번호 10), GTCTTAGTCCCTGAAGGGACTGAAGATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC(서열번호 11), 및 GCTTTAGTCCCTGAAGGGACTAAAGTAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC(서열번호 12) 중 선택된 핵산 서열을 가지는 발현 벡터.The method of any one of Examples 18 to 24, wherein the nucleic acid encoding the engineered guide RNA is GTTTCAGTCCCTGAAGGGACTGGAAATAAAGAGTTTGCGGGACTCTGCGGGGTTTACAATCCCCTAAAACCGC (SEQ ID NO: 9), GTTCTAGTCCCTGAAGGGACTGAGAATAAAGAGTTTGCGGGACTCTGCGGGGGTTACAATCCCCTAAAACCGC (SEQ ID NO: 10), GTCTTAGTCCCTGAAG GGACTGAAGATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC (SEQ ID NO: 11), and GCTTTAGTCCCTGAAGGGACTAAAGTAAAGAGTTTGCGGGACTCTGCGGGGGTTACAATCCCCTAAAACCGC (SEQ ID NO: 12) An expression vector having a nucleic acid sequence selected from among.
실시예 26, DNA 한정Example 26, DNA limited
실시예 18 내지 실시예 25 중 어느 하나에 있어서, 상기 Cas9 단백질을 암호화하는 핵산 및 상기 가이드 RNA를 암호화하는 핵산은 DNA인 것을 특징으로 하는 발현 벡터.The expression vector according to any one of Examples 18 to 25, wherein the nucleic acid encoding the Cas9 protein and the nucleic acid encoding the guide RNA are DNA.
엔지니어링 된 CRISPR/Cas9 조성물Engineered CRISPR/Cas9 compositions
실시예 27, CRISPR/Cas9 조성물Example 27, CRISPR/Cas9 composition
다음을 포함하는 엔지니어링 된 CRISPR/Cas9 조성물:An engineered CRISPR/Cas9 composition comprising:
실시예 10 내지 실시예 16 중 선택된 어느 하나의 Cas9 단백질, 또는 상기 Cas9 단백질을 암호화하는 핵산; 및Any one Cas9 protein selected from Examples 10 to 16, or a nucleic acid encoding the Cas9 protein; and
실시예 5 내지 실시예 9 중 선택된 어느 하나의 엔지니어링 된 가이드 RNA, 또는 상기 가이드 RNA를 암호화하는 핵산,Any one of the engineered guide RNAs selected from Examples 5 to 9, or a nucleic acid encoding the guide RNA,
여기서, 상기 엔지니어링 된 가이드 RNA의 가이드 도메인은 미리 결정된 표적 서열의 핵산을 표적할 수 있도록 인공적으로 설계된 것이고,Here, the guide domain of the engineered guide RNA is artificially designed to target a nucleic acid of a predetermined target sequence,
상기 엔지니어링 된 가이드 RNA의 엔지니어링 된 스캐폴드는 상기 Cas9 단백질과 상호작용하여 복합체를 이룰 수 있는 것임.The engineered scaffold of the engineered guide RNA can interact with the Cas9 protein to form a complex.
실시예 28, RNPExample 28, RNP
실시예 27에 있어서, 상기 엔지니어링 된 CRISPR/Cas9 조성물은 상기 Cas9 단백질 및 상기 엔지니어링 된 가이드 RNA를 포함하고, 상기 Cas9 단백질은 상기 엔지니어링 된 가이드 RNA와 결합하여 리보뉴클레오프로틴(ribonucleoprotein)을 이루는 조성물.The composition of Example 27, wherein the engineered CRISPR/Cas9 composition includes the Cas9 protein and the engineered guide RNA, and the Cas9 protein combines with the engineered guide RNA to form a ribonucleoprotein.
실시예 29, VectorExample 29, Vector
실시예 27에 있어서, 상기 엔지니어링 된 CRISPR/Cas9 조성물은 상기 Cas9 단백질을 암호화하는 핵산 및 상기 엔지니어링 된 가이드 RNA를 암호화하는 핵산을 포함하는 조성물.The composition of Example 27, wherein the engineered CRISPR/Cas9 composition comprises a nucleic acid encoding the Cas9 protein and a nucleic acid encoding the engineered guide RNA.
실시예 30, RNP/Vector 구체화Example 30, RNP/Vector specification
실시예 27에 있어서, 상기 조성물은 실시예 17의 CRISPR/Cas9 복합체, 또는 실시예 18 내지 실시예 26 중 어느 하나의 벡터를 포함하는 조성물.The composition of Example 27, wherein the composition comprises the CRISPR/Cas9 complex of Example 17, or the vector of any one of Examples 18 to 26.
유전자 편집 방법Gene editing methods
실시예 31, 유전자 편집 방법Example 31, gene editing method
표적 핵산을 포함하는 세포에 대한 유전자 편집 방법으로, 다음을 포함함:A method of gene editing a cell containing a target nucleic acid, including:
실시예 27 내지 실시예 30 중 어느 하나의 엔지니어링 된 CRISPR/Cas9 조성물을 상기 세포에 전달(deliver), 도입(introduce), 주입(injection), 또는 투여(administer) 하는 것,Deliver, introduce, inject, or administer the engineered CRISPR/Cas9 composition of any one of Examples 27 to 30 into the cell,
여기서, 상기 조성물의 엔지니어링 된 가이드 RNA의 가이드 도메인은 상기 표적 핵산을 표적할 수 있는 것임.Here, the guide domain of the engineered guide RNA of the composition is capable of targeting the target nucleic acid.
실시예 32, 접촉을 통한 방법Example 32, Method Via Contact
표적핵산을 포함하는 세포에 대한 유전자 편집 방법으로, 다음을 포함함:A gene editing method for cells containing a target nucleic acid, including:
실시예 17의 엔지니어링 된 CRISPR/Cas9 복합체와 상기 표적핵산을 접촉시키거나, 접촉을 유도하는 것,Contacting or inducing contact with the engineered CRISPR/Cas9 complex of Example 17 and the target nucleic acid,
여기서, 상기 조성물의 엔지니어링 된 가이드 RNA의 가이드 도메인은 상기 표적핵산을 표적할 수 있는 것임.Here, the guide domain of the engineered guide RNA of the composition is capable of targeting the target nucleic acid.
실시예 33, 진핵/원핵 세포 한정Example 33, limited to eukaryotic/prokaryotic cells
실시예 31 내지 실시예 32 중 어느 하나에 있어서, 상기 세포는 원핵세포, 또는 진핵세포임.The method of any one of Examples 31-32, wherein the cell is a prokaryotic cell or a eukaryotic cell.
실시예 34, 세포 종류 한정Example 34, limited to cell types
실시예 31 내지 실시예 33 중 어느 하나에 있어서, 상기 세포는 진핵세포이고, 상기 세포는 인간 세포, 비인간 동물 세포, 및 식물 세포 중 선택된 어느 하나임.The method of any one of Examples 31 to 33, wherein the cell is a eukaryotic cell and the cell is any one selected from human cells, non-human animal cells, and plant cells.
실시예 35, 단리된 세포Example 35, Isolated Cells
실시예 31 내지 실시예 34 중 어느 하나에 있어서, 상기 세포는 단리된 (isolated) 세포임.The method of any one of Examples 31 to 34, wherein the cells are isolated cells.
실시예 36, 방법 수행 환경 한정Example 36, limited method performance environment
실시예 31 내지 실시예 35 중 어느 하나에 있어서, 상기 방법은 생체 내 (in vivo), 시험관 내 (in vitro) 및/또는 생체 외 (ex vivo)에서 수행됨.The method of any one of Examples 31-35, wherein the method is performed in vivo , in vitro , and/or ex vivo .
이하, 실험예 및 실시예를 통해 본 명세서가 제공하는 발명에 대해 더욱 상세히 설명한다. 이들 실시예는 오로지 본 명세서에 의해 개시되는 내용을 예시하기 위한 것으로, 본 명세서에 의해 개시되는 내용의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the invention provided by this specification will be described in more detail through experimental examples and examples. These examples are solely for illustrating the content disclosed by this specification, and the scope of the content disclosed by this specification should not be construed as being limited by these examples. It will be self-evident.
실험예 1. 실험 방법 및 재료Experimental Example 1. Experimental methods and materials
실험예 1.1. 플라스미드 제조Experimental Example 1.1. Plasmid preparation
AAV2의 inverted tandem repeat (ITR) 사이에 CjCas9 단백질을 암호화하는 핵산 서열 및 야생형의 스캐폴드를 포함하는 CjCas9 가이드 RNA를 암호화하는 핵산을 모두 포함하는 플라스미드를 깁슨 어셈블리 (Gibson assembly, NEB/M5520AA) 방식으로 클로닝하여 제조하였다 (pAAV-EFS-CjCas9-U6-sgRNA 벡터). 이후, 상기 야생형의 CjCas9 가이드 RNA의 스캐폴드를 암호화하는 서열 (서열번호 8) 중 4개의 T가 연속된 부분을 하나씩 C로 치환하고, 이와 pair를 이루는 부분을 A>G로 변형시킨 엔지니어링 된 가이드 RNA에 대한 4종류의 벡터를 각각 추가적으로 제조하였다. 여기서, 각 엔지니어링 된 가이드 RNA는 도 1에 모식적으로 나타내었고, 각각의 서열은 다음 표 1에 정리하였다.A plasmid containing both the nucleic acid sequence encoding the CjCas9 protein between the inverted tandem repeat (ITR) of AAV2 and the nucleic acid encoding the CjCas9 guide RNA containing the wild-type scaffold was prepared using Gibson assembly (NEB/M5520AA). It was prepared by cloning (pAAV-EFS-CjCas9-U6-sgRNA vector). Afterwards, in the sequence encoding the scaffold of the wild-type CjCas9 guide RNA (SEQ ID NO: 8), the four consecutive T's were replaced with C one by one, and the paired part was modified to A>G to produce an engineered guide. Four types of vectors for RNA were additionally prepared. Here, each engineered guide RNA is schematically shown in Figure 1, and each sequence is summarized in Table 1 below.
(엔지니어링 된) 가이드 RNA의 스캐폴드 서열을 암호화하는 서열Sequence encoding the scaffold sequence of the (engineered) guide RNA
LabelLabel 1st sequence1st sequence 2nd sequence2nd sequence 3rd sequence3rd sequence 4th sequence4th sequence
OriOri GTTTTGTTTT AGTCCCTGAAGGGACT
(SEQ ID NO: 13)
AGTCCCTGAAGGGACT
(SEQ ID NO: 13)
AAAAAAAA TAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC
(SEQ ID NO: 14)
TAAAGAGTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC
(SEQ ID NO: 14)
Modi-1Modi-1 GTTTCGTTTC GAAAGAAA
Modi-2Modi-2 GTTCTGTTCT AGAAAGAA
Modi-3Modi-3 GTCTTGTCTT AAGAAAGA
Modi-4Modi-4 GCTTTGCTTT AAAGAAAG
이후, 위 실험예 2 및 실험예 3에 사용될 표적서열 CATGAGGAAATGAGAGAAATGCTTACACAC(서열번호 16)을 표적하는 가이드 도메인 서열을 합성하고, 이를 위 벡터 내 스캐폴드 서열의 5'말단쪽에 BSPQ1 Site를 이용하여 클로닝하여 최종적으로 세포에 형질감염 (transfection)시킬 벡터를 준비하였다. 여기서 상기 표적서열은 CjCas9 단백질이 인식하는 PAM 서열을 포함하는 것이다.Afterwards, a guide domain sequence targeting the target sequence CATGAGGAAATGAGAGAAATGCTTACACAC (SEQ ID NO: 16) to be used in Experimental Examples 2 and 3 above was synthesized, and this was cloned into the 5' end of the scaffold sequence in the above vector using the BSPQ1 Site, resulting in the final A vector to be transfected into cells was prepared. Here, the target sequence includes the PAM sequence recognized by the CjCas9 protein.
실험예 1.2. 세포 배양Experimental Example 1.2. cell culture
인간 세포인 HEK293T 세포 (CRL-3216, ATCC), 또는 랫드 세포인 RT4-D6P2T 세포 (CRL-2768TM, ATCC)를 배양하여 사용하였다. 상기 세포를 10% fetal bovine serum (WelGene)과 1Хpenicillin/streptomycin (WelGene)을 첨가한 Dulbecco's Modified Eagle Medium (DMEM) (WelGene)을 사용, 2-3일 간격으로 계대배양 (subculture)하고, 이를 유지하였다.Human HEK293T cells (CRL-3216, ATCC) or rat RT4-D6P2T cells (CRL-2768TM, ATCC) were cultured and used. The cells were subcultured at 2-3 day intervals using Dulbecco's Modified Eagle Medium (DMEM) (WelGene) supplemented with 10% fetal bovine serum (WelGene) and 1Хpenicillin/streptomycin (WelGene), and maintained. .
실험예 1.3. CRISPR/Cas9 형질감염 (transfection) 및 DNA/RNA 추출Experimental Example 1.3. CRISPR/Cas9 transfection and DNA/RNA extraction
HEK293T cellHEK293T cell
24-well 접시에 웰 당 5.5 x 104 개의 세포를 시딩하고, 실험예 1.1에서 제조한 플라스미드를 각각 300 ng, Lipofectamin2000 (Thermofisher) 2ul를 사용하여 제조사 프로토콜에 따라 형질감염 (transfection) 시켰다. 형질감염 3일 후, 셀 펠릿을 수득하여 Quick DNA/RNA Miniprep Kit (ZYMO RESEARCH)로 DNA, RNA를 추출하였다. 5.5 Three days after transfection, cell pellets were obtained, and DNA and RNA were extracted using the Quick DNA/RNA Miniprep Kit (ZYMO RESEARCH).
RT4-D6P2T cellRT4-D6P2T cell
24-well 접시에 웰 당 2 x 105 개의 세포를 실험예 1.1에서 제조한 플라스미드로 각각 240 ng(Low dose), 800ng(High dose), Neon electrophoration (Thermofisher)를 사용하여 제조사 프로토콜에 따라 1400/20/2의 조건으로 형질감염 (transfection) 시켰다. 형질감염 3일 후, 셀 펠릿을 수득하여 Quick DNA/RNA Miniprep Kit (ZYMO RESEARCH)로 DNA, RNA를 추출하였다.In a 24-well dish, 2 Transfection was performed under conditions of 20/2. Three days after transfection, cell pellets were obtained, and DNA and RNA were extracted using the Quick DNA/RNA Miniprep Kit (ZYMO RESEARCH).
실험예 1.4. Real time PCR (qRT-PCR)Experimental Example 1.4. Real-time PCR (qRT-PCR)
실험예 1.3에 의해 추출된 RNA는 1000 ng을 맞추어 cDNA Reverse-transcription kit (ThermoFisher)을 사용하여 cDNA를 제조하였다. 제조업체의 프로토콜(Thermo Fisher)에 따라, 수득된 cDNA 10 ng - 15 ng에 SYBR Green Master Mix를 사용하여, QuantStudio 3에서 qRT-PCR을 수행하였다. 상기 qRT-PCR 결과 얻어진 CT 값 정보를 사용하여, 각 엔지니어링 된 가이드 RNA의 발현을 야생형 스캐폴드를 포함하는 가이드 RNA의 발현량과 상대적으로 비교하였다.1000 ng of RNA extracted in Experimental Example 1.3 was used to prepare cDNA using a cDNA Reverse-transcription kit (ThermoFisher). qRT-PCR was performed in QuantStudio 3 using SYBR Green Master Mix on 10 ng - 15 ng of cDNA obtained, according to the manufacturer's protocol (Thermo Fisher). Using the CT value information obtained as a result of qRT-PCR, the expression of each engineered guide RNA was compared relative to the expression level of the guide RNA containing the wild-type scaffold.
qRT-PCR에 사용된 프라이머 정보는 표 2에 나타내었다.Primer information used in qRT-PCR is shown in Table 2.
(엔지니어링 된) 가이드 RNA qRT-PCR 분석에 사용한 프라이머 정보 Primer information used for (engineered) guide RNA qRT-PCR analysis
Primer namePrimer name Sequence (5'-3')Sequence (5'-3') SEQ ID NOSEQ ID NO
HIF1_sgRNA_qRT_FHIF1_sgRNA_qRT_F CATGAGGAAATGAGAGAAATGCATGAGGAAATGAGAGAAATG 1717
sgRNA-primer-RsgRNA-primer-R GCGGTTTTAGGGGATTGTAACGCGGTTTTAGGGGATTGTAAC 1818
실험예 1.5. 인델 분석 (Targeted deep-sequencing)Experimental Example 1.5. Indel analysis (Targeted deep-sequencing)
실험예 1.3에 의해 추출된 genomic DNA를 분석, 인델 발생 비율을 측정하여 각각의 벡터에 의한 유전자 편집 효율을 평가하였다. 구체적인 과정은 다음과 같다:The genomic DNA extracted in Experimental Example 1.3 was analyzed and the indel occurrence rate was measured to evaluate the gene editing efficiency of each vector. The specific process is as follows:
1) 추출된 genomic DNA 및 프라이머 (표 3 참조)를 사용하여 On-target 위치의 서열을 증폭시켰다.1) The sequence of the on-target position was amplified using the extracted genomic DNA and primers (see Table 3).
2) Illumine TrueSeq adaptor (Illumina)를 사용하여 추가 PCR을 진행하여, 각 샘플에 대한 Barcode를 제작하였다.2) Additional PCR was performed using the Illumine TrueSeq adapter (Illumina), and a barcode was created for each sample.
3) PCR purification kit (Intronbio)을 사용하여 각 샘플들을 정제하였다.3) Each sample was purified using a PCR purification kit (Intronbio).
4) 정제된 샘플을 등몰비 (Equimolar ratio)로 풀링하고, Miseq, TrueSeq HT dual index system (Illumina)을 사용하여 paired sequencing을 진행, 시퀀싱 리드 (sequencing read)를 생산하였다.4) The purified samples were pooled in an equimolar ratio, and paired sequencing was performed using Miseq and TrueSeq HT dual index systems (Illumina) to produce sequencing reads.
5) 4)에서 생산된 시퀀싱 리드를 CRISPR/RGEN Tools (www.rgenome.net)의 Cas9-Analyzer를 통해 분석하여 on-target 유전체 위치에서의 인델 발생률을 정량적으로 계산하였다.5) The sequencing reads produced in 4) were analyzed using Cas9-Analyzer from CRISPR/RGEN Tools (www.rgenome.net) to quantitatively calculate the indel occurrence rate at the on-target genome location.
여기서, 위 1) 과정에서 사용한 프라이머는 하기 표 3에 나타내었다:Here, the primers used in process 1) above are shown in Table 3 below:
인델 분석 과정에 사용한 프라이머 정보Primer information used in the indel analysis process
Cell lineCell line Primer namePrimer name Sequence (5'-3')Sequence (5'-3') SEQ ID NOSEQ ID NO
HEK293HEK293 hHIF1a_FhHIF1a_F acactctttccctacacgacgctcttccgatctACATGGGATTAACTCAGGacactctttccctacacgacgctcttccgatctACATGGGATTAACTCAGG 1919
hHIF1a_RhHIF1a_R gtgactggagttcagacgtgtgctcttccgatctTTTGCCTTGGGTAAGTACgtgactggagttcagacgtgtgctcttccgatctTTTGCCTTGGGTAAGTAC 2020
RT4-D6P2TRT4-D6P2T rHIF1a_FrHIF1a_F acactctttccctacacgacgctcttccgatctCCACATATGAAGAGCACTTATGGGacactctttccctacacgacgctcttccgatctCCACATATGAAGAGCACTTATGGG 2121
rHIF1a_RrHIF1a_R gtgactggagttcagacgtgtgctcttccgatctGTAGTAACAATATCTGACTGAAAgtgactggagttcagacgtgtgctcttccgatctGTAGTAACAATATCTGACTGAAA 2222
실험예 1.6. 통계분석Experimental Example 1.6. Statistical analysis
각 실험은 3-4회 반복하여 평균값을 사용하였으며, Student t-test를 사용하여 각 그룹 별 차이의 통계적 유의성을 분석하였다. 각 도면에서 *는 p-value <0.05, **는 p-value <0.01, ***는 p-value <0.001을 의미한다.Each experiment was repeated 3-4 times and the average value was used, and the statistical significance of the differences in each group was analyzed using Student t-test. In each figure, * means p-value <0.05, ** means p-value <0.01, and *** means p-value <0.001.
실험예 2. 엔지니어링 된 가이드 RNA의 사용에 따른 가이드 RNA 발현 개선 효과 및 표적 핵산 편집 효율 개선 효과 1Experimental Example 2. Effect of improving guide RNA expression and target nucleic acid editing efficiency according to the use of engineered guide RNA 1
실험예 1.1에 따라 제조한 각 실시예의 플라스미드를, 실험예 1.2에 따라 배양한 HEK293T 세포에 실험예 1.3에 따라 형질감염 시킨 후, 실험예 1.4 내지 실험예 1.6에 따라 가이드 RNA 발현 개선 효과 및 표적 핵산 편집 효율을 측정하였다.The plasmids of each example prepared according to Experimental Example 1.1 were transfected into HEK293T cells cultured according to Experimental Example 1.2 according to Experimental Example 1.3, and then according to Experimental Examples 1.4 to 1.6, the effect of improving guide RNA expression and target nucleic acid Editing efficiency was measured.
사용한 각각의 실시예 정보는 표 4에 나타내었다:Information for each example used is shown in Table 4:
실험예 2에 사용한 각 CRISPR/Cas9 시스템의 구성Configuration of each CRISPR/Cas9 system used in Experimental Example 2
LabelLabel Cas9
protein
Cas9
protein
Guide domain
of guide RNA
Guide domain
of guide RNA
SEQ ID NOSEQ ID NO Scaffold
of guide RNA
Scaffold
of guide RNA
SEQ ID NOSEQ ID NO
OriOri CjCas9 (SEQ ID NO: 39)CjCas9 (SEQ ID NO: 39) CATGAGGAAATGAGAGAAATGCCATGAGGAAATGAGAGAAATGC 1515 GTTTTAGTCCCTGAAGGGACTAAAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCGTTTTAGTCCCTGAAGGGACTAAAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC 88
Modi-1Modi-1 GTTTCAGTCCCTGAAGGGACTGGAAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCGTTTCAGTCCCTGAAGGGACTGGAAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC 99
Modi-2Modi-2 GTTCTAGTCCCTGAAGGGACTGAGAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCGTTCTAGTCCCTGAAGGGACTGAGAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC 1010
Modi-3Modi-3 GTCTTAGTCCCTGAAGGGACTGAAGATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCGTCTTAGTCCCTGAAGGGACTGAAGATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC 1111
Modi-4Modi-4 GCTTTAGTCCCTGAAGGGACTAAAGTAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCGCTTTAGTCCCTGAAGGGACTAAAGTAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC 1212
실험 결과는 도 2 및 도 3에 나타내었다. 실험 결과, 야생형의 스캐폴드를 포함하는 가이드 RNA인 Ori에 비해, Modi-1, Modi-2, Modi-3에서 통계적으로 유의미한 가이드 RNA 발현량 증가가 나타났다. 나아가, Modi-2 및 Modi-3은 Ori에 비해 통계적으로 유의미한 인델 발생 효율 증가가 나타났다. 결론적으로, 야생형의 스캐폴드를 암호화하는 핵산의 서열 중, poly-T 및 poly-A 서열을 변경한 엔지니어링 된 가이드 RNA를 사용하면, 1) 세포 내 가이드 RNA 발현량이 증가하고, 및 2) 세포의 내인성 유전자에 대한 편집 효율이 증가되는 것을 확인할 수 있었다.The experimental results are shown in Figures 2 and 3. As a result of the experiment, compared to Ori, a guide RNA containing a wild-type scaffold, a statistically significant increase in guide RNA expression was observed in Modi-1, Modi-2, and Modi-3. Furthermore, Modi-2 and Modi-3 showed a statistically significant increase in indel generation efficiency compared to Ori. In conclusion, using an engineered guide RNA in which the poly-T and poly-A sequences of the nucleic acid encoding the wild-type scaffold were changed, 1) the amount of guide RNA expression in the cell increased, and 2) the cellular It was confirmed that the editing efficiency for endogenous genes increased.
실험예 3. 엔지니어링 된 가이드 RNA의 사용에 따른 가이드 RNA 발현 개선 효과 및 표적 핵산 편집 효율 개선 효과 2Experimental Example 3. Effect of improving guide RNA expression and target nucleic acid editing efficiency according to the use of engineered guide RNA 2
실험예 1.1에 따라 제조한 각 실시예의 플라스미드를, 실험예 1.2에 따라 배양한 RT4-D6P2T 세포에 실험예 1.3에 따라 형질감염 시킨 후, 실험예 1.4 내지 실험예 1.6에 따라 가이드 RNA 발현 개선 효과 및 표적 핵산 편집 효율을 측정하였다.The plasmids of each example prepared according to Experimental Example 1.1 were transfected into RT4-D6P2T cells cultured according to Experimental Example 1.2 according to Experimental Example 1.3, and then according to Experimental Examples 1.4 to 1.6, the effect of improving guide RNA expression and Target nucleic acid editing efficiency was measured.
사용한 각각의 실시예 정보는 표 5에 나타내었다:Information for each example used is shown in Table 5:
실험예 3에 사용한 각 CRISPR/Cas9 시스템의 구성 및 형질감염 조건Configuration and transfection conditions of each CRISPR/Cas9 system used in Experimental Example 3
LabelLabel Transfection
Condition
Transfection
Condition
Cas9
protein
Cas9
protein
Guide domain
of guide RNA
Guide domain
of guide RNA
Scaffold
of guide RNA
Scaffold
of guide RNA
Ori-LowOri-Low Low doseLow dose CjCas9 (SEQ ID NO: 39)CjCas9 (SEQ ID NO: 39) CATGAGGAAATGAGAGAAATGC
(SEQ ID NO: 15)
CATGAGGAAATGAGAGAAATGC
(SEQ ID NO: 15)
GTTTTAGTCCCTGAAGGGACTAAAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC
(SEQ ID NO: 8)
GTTTTAGTCCCTGAAGGGACTAAAATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC
(SEQ ID NO: 8)
Ori-HighOri-High High doseHigh dose
Modi-3-LowModi-3-Low Low doseLow dose GTCTTAGTCCCTGAAGGGACTGAAGATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC
(SEQ ID NO: 11)
GTCTTAGTCCCTGAAGGGACTGAAGATAAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGC
(SEQ ID NO: 11)
Modi-3-HighModi-3-High High doseHigh dose
실험 결과는 도 4 및 도 5에 나타내었다. 실험 결과, Modi-3에 대해, Low dose, 및 High dose 형질감염 조건에서 모두 Ori와 비교하여 1) 통계적으로 유의한 가이드 RNA 발현량 증가, 및 2) 통계적으로 유의미한 인델 발생 효율 증가가 나타났다.The experimental results are shown in Figures 4 and 5. As a result of the experiment, Modi-3 showed 1) a statistically significant increase in guide RNA expression, and 2) a statistically significant increase in indel generation efficiency compared to Ori under both low dose and high dose transfection conditions.
본 명세서에서 제공하는, 4개 이상의 유리딘을 포함하지 않도록 변형된 캄필로박터 제주니 유래 Cas9 단백질에 대한 엔지니어링 된 가이드 RNA 및 이를 포함하는 CRISPR/CjCas9 시스템은 유전자 편집 용도로 사용할 수 있다.The engineered guide RNA for the Cas9 protein derived from Campylobacter jejuni modified to not contain four or more uridines and the CRISPR/CjCas9 system containing the same provided herein can be used for gene editing purposes.

Claims (15)

  1. 캄필로박터 제주니 (Campylobacter jejuni) 유래 Cas9 단백질과 복합체를 이룰 수 있는 엔지니어링 된 가이드 RNA,Engineered guide RNA capable of forming a complex with the Cas9 protein from Campylobacter jejuni,
    상기 엔지니어링 된 가이드 RNA는 다음 서열로 표현됨:The engineered guide RNA is represented by the following sequence:
    5'-[가이드 서열]-[제1 서열]-[제2 서열]-[제3 서열]-[제4 서열]-3'5'-[guide sequence]-[first sequence]-[second sequence]-[third sequence]-[fourth sequence]-3'
    여기서, 상기 가이드 서열은 미리 결정된 표적 서열을 표적할 수 있고,Here, the guide sequence can target a predetermined target sequence,
    상기 제2 서열은 AGUCCCUGAAGGGACU(서열번호 6), 또는 상기 서열번호 6과 80% 이상 일치하는 서열이고,The second sequence is AGUCCCUGAAGGGACU (SEQ ID NO: 6), or a sequence that is more than 80% identical to SEQ ID NO: 6,
    상기 제4 서열은 UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 7), 또는 상기 서열번호 7과 80% 이상 일치하는 서열이며,The fourth sequence is UAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 7), or a sequence that is more than 80% identical to SEQ ID NO: 7,
    상기 제1 서열 및 상기 제3 서열은 다음 조합 중 선택됨:The first sequence and the third sequence are selected from the following combinations:
    제1 서열은 5'-GUUUC-3'이고, 제3 서열은 5'-GAAA-3';The first sequence is 5'-GUUUC-3', the third sequence is 5'-GAAA-3';
    제1 서열은 5'-GUUCU-3'이고, 제3 서열은 5'-AGAA-3';The first sequence is 5'-GUUCU-3', the third sequence is 5'-AGAA-3';
    제1 서열은 5'-GUCUU-3'이고, 제3 서열은 5'-AAGA-3'; 및The first sequence is 5'-GUCUU-3', the third sequence is 5'-AAGA-3'; and
    제1 서열은 5'-GCUUU-3'이고, 제3 서열은 5'-AAAG-3'.The first sequence is 5'-GCUUU-3', and the third sequence is 5'-AAAG-3'.
  2. 제1항에 있어서, 상기 엔지니어링 된 스캐폴드의 서열은 GUUUCAGUCCCUGAAGGGACUGGAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 2), GUUCUAGUCCCUGAAGGGACUGAGAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 3), GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 4), 및 GCUUUAGUCCCUGAAGGGACUAAAGUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 5) 중 선택된 것인 엔지니어링 된 가이드 RNA.The method of claim 1, wherein the sequence of the engineered scaffold is GUUUCAGUCCCUGAAGGGACUGGAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 2), GUUCUAGUCCCUGAAGGGACUGAGAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 3), GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGU An engineered guide RNA selected from UUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 4), and GCUUUAGUCCCUGAAGGGACUAAAGUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 5) .
  3. 제2항에 있어서, 상기 엔지니어링 된 스캐폴드의 서열은 GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC(서열번호 4)인 엔니지어링 된 가이드 RNA.The engineered guide RNA of claim 2, wherein the sequence of the engineered scaffold is GUCUUAGUCCCUGAAGGGACUGAAGAUAAAGAGUUUGCGGGACUCUGCGGGGUUACAAUCCCCUAAAACCGC (SEQ ID NO: 4).
  4. 다음을 포함하는 엔지니어링 된 CRISPR/Cas9 복합체:Engineered CRISPR/Cas9 complex containing:
    제1항 내지 제3항 중 선택된 어느 하나의 엔지니어링 된 가이드 RNA; 및Any one engineered guide RNA selected from claims 1 to 3; and
    캄필로박터 제주니 유래 Cas9 단백질,Cas9 protein from Campylobacter jejuni,
    여기서, 상기 CRISPR/Cas9 복합체는 상기 엔지니어링 된 가이드 RNA의 미리 결정된 표적 서열을 표적할 수 있음.Here, the CRISPR/Cas9 complex can target a predetermined target sequence of the engineered guide RNA.
  5. 제1항 내지 제3항 중 선택된 어느 하나의 엔지니어링 된 가이드 RNA를 암호화하는 DNA.DNA encoding any one of the engineered guide RNAs selected from claims 1 to 3.
  6. CRISPR/Cas9 시스템의 각 구성요소를 발현할 수 있는 벡터로, 다음을 포함함:A vector capable of expressing each component of the CRISPR/Cas9 system, including:
    캄필로박터 제주니 유래 Cas9 단백질을 암호화하는 핵산; 및A nucleic acid encoding the Cas9 protein from Campylobacter jejuni; and
    제1항 내지 제3항 중 선택된 어느 하나의 엔지니어링 된 가이드 RNA를 암호화하는 핵산.A nucleic acid encoding any one of the engineered guide RNAs selected from claims 1 to 3.
  7. 제6항에 있어서, 상기 벡터는 바이러스 벡터, 또는 비-바이러스 벡터인 것을 특징으로 하는 벡터.The vector according to claim 6, wherein the vector is a viral vector or a non-viral vector.
  8. 제7항에 있어서, 상기 벡터는 레트로바이러스, 렌티바이러스, 아데노바이러스, 아데노-연관 바이러스, 백시니아바이러스, 폭스바이러스 및 단순포진 바이러스로 구성된 군에서 선택되는 하나 이상의 바이러스 벡터인 것을 특징으로 하는 벡터.The vector according to claim 7, wherein the vector is one or more viral vectors selected from the group consisting of retrovirus, lentivirus, adenovirus, adeno-associated virus, vaccinia virus, poxvirus, and herpes simplex virus.
  9. 제6항 내지 제8항 중 선택된 어느 하나에 있어서, 상기 벡터는 단일 벡터(single vector)에 포함된 것을 특징으로 하는 벡터.The vector according to any one of claims 6 to 8, wherein the vector is contained in a single vector.
  10. 제6항 내지 제8항 중 선택된 어느 하나에 있어서, 상기 벡터는 둘 이상의 벡터에 포함된 것을 특징으로 하는 벡터.The vector according to any one of claims 6 to 8, wherein the vector is included in two or more vectors.
  11. 엔지니어링 된 CRISPR/Cas9 조성물로, 다음을 포함함:An engineered CRISPR/Cas9 composition containing:
    캄필로박터 제주니 유래 Cas9 단백질, 또는 상기 Cas9 단백질을 암호화하는 핵산; 및Cas9 protein derived from Campylobacter jejuni, or a nucleic acid encoding the Cas9 protein; and
    제1항 내지 제3항 중 선택된 어느 하나의 엔지니어링 된 가이드 RNA, 또는 상기 가이드 RNA를 암호화하는 핵산.An engineered guide RNA selected from claims 1 to 3, or a nucleic acid encoding the guide RNA.
  12. 제11항에 있어서, 상기 조성물은 상기 Cas9 단백질 및 상기 엔지니어링 된 가이드 RNA를 포함하고, 상기 Cas9 단백질은 상기 엔지니어링 된 가이드 RNA와 결합하여 Cas9-gRNA 복합체를 형성하고 있는 조성물.The composition of claim 11, wherein the composition includes the Cas9 protein and the engineered guide RNA, and the Cas9 protein combines with the engineered guide RNA to form a Cas9-gRNA complex.
  13. 제11항에 있어서, 상기 조성물은 상기 Cas9 단백질을 암호화하는 핵산 및 상기 엔지니어링 된 가이드 RNA를 암호화하는 핵산을 포함하는 조성물.The composition of claim 11, wherein the composition comprises a nucleic acid encoding the Cas9 protein and a nucleic acid encoding the engineered guide RNA.
  14. 제13항에 있어서, 상기 조성물은 제6항 내지 제10항 중 선택된 어느 하나의 벡터를 포함하는 것을 특징으로 하는 조성물.The composition according to claim 13, wherein the composition comprises any one vector selected from claims 6 to 10.
  15. 다음을 포함하는, 세포 내 유전자의 표적 서열을 가지는 표적 핵산을 편집하는 방법:A method of editing a target nucleic acid having a target sequence of a gene in a cell, comprising:
    제11항 내지 제14항 중 선택된 어느 하나의 조성물을 상기 세포에 도입하는 것,Introducing any one of the compositions selected from claims 11 to 14 into the cells,
    여기서, 상기 조성물의 엔지니어링 된 가이드 RNA의 가이드 도메인은 상기 표적 핵산을 표적할 수 있음.Here, the guide domain of the engineered guide RNA of the composition can target the target nucleic acid.
PCT/KR2023/013166 2022-09-06 2023-09-04 System for improving gene editing through structural change of guide rna of cas9 derived from campylobacter jejuni WO2024053964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220112557 2022-09-06
KR10-2022-0112557 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024053964A1 true WO2024053964A1 (en) 2024-03-14

Family

ID=90191414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013166 WO2024053964A1 (en) 2022-09-06 2023-09-04 System for improving gene editing through structural change of guide rna of cas9 derived from campylobacter jejuni

Country Status (2)

Country Link
KR (1) KR20240034661A (en)
WO (1) WO2024053964A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140273232A1 (en) * 2012-12-12 2014-09-18 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
KR20190037145A (en) * 2017-09-28 2019-04-05 주식회사 툴젠 Genome editing for control of gene expression
WO2021178720A2 (en) * 2020-03-04 2021-09-10 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome
US20210388348A1 (en) * 2020-05-12 2021-12-16 University Of Massachusetts Modified guide rnas for crispr genome editing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140273232A1 (en) * 2012-12-12 2014-09-18 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
KR20190037145A (en) * 2017-09-28 2019-04-05 주식회사 툴젠 Genome editing for control of gene expression
WO2021178720A2 (en) * 2020-03-04 2021-09-10 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome
US20210388348A1 (en) * 2020-05-12 2021-12-16 University Of Massachusetts Modified guide rnas for crispr genome editing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN SIYU, LIU ZHIQUAN, XIE WANHUA, YU HAO, LAI LIANGXUE, LI ZHANJUN: "Compact Cje3Cas9 for Efficient In Vivo Genome Editing and Adenine Base Editing", THE CRISPR JOURNAL, vol. 5, no. 3, 1 June 2022 (2022-06-01), pages 472 - 486, XP093147041, ISSN: 2573-1599, DOI: 10.1089/crispr.2021.0143 *
KWEON JIYEON, JANG AN-HEE, KWON EUNJI, KIM UNGI, SHIN HA RIM, SEE JIEUN, JANG GAYOUNG, LEE CHAEYEON, KOO TAEYOUNG, KIM SEOKJOONG, : "Targeted dual base editing with Campylobacter jejuni Cas9 by single AAV-mediated delivery", EXPERIMENTAL AND MOLECULAR MEDICINE, NATURE PUBLISHING GROUP, GB, vol. 55, no. 2, 1 February 2023 (2023-02-01), GB , pages 377 - 384, XP093147040, ISSN: 2092-6413, DOI: 10.1038/s12276-023-00938-w *

Also Published As

Publication number Publication date
KR20240034661A (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2021086083A2 (en) Engineered guide rna for increasing efficiency of crispr/cas12f1 system, and use of same
WO2019009682A2 (en) Target-specific crispr mutant
WO2016021973A1 (en) Genome editing using campylobacter jejuni crispr/cas system-derived rgen
WO2017217768A1 (en) Method for screening targeted genetic scissors by using multiple target system of on-target and off-target activity and use thereof
WO2017188797A1 (en) Method for evaluating, in vivo, activity of rna-guided nuclease in high-throughput manner
WO2019103442A2 (en) Genome editing composition using crispr/cpf1 system and use thereof
WO2015167278A1 (en) A protein secretory factor with high secretory efficiency and an expression vector comprising the same
WO2018231018A2 (en) Platform for expressing protein of interest in liver
WO2012165854A2 (en) Long interfering dsrna simultaneously inducing an immune reaction and the inhibition of the expression of target genes
WO2022075813A1 (en) Engineered guide rna for increasing efficiency of crispr/cas12f1 system, and use of same
WO2022220503A1 (en) Gene expression regulatory system using crispr system
WO2022075808A1 (en) Engineered guide rna comprising u-rich tail for increasing efficiency of crispr/cas12f1 system, and use thereof
WO2022075816A1 (en) Engineered guide rna for increasing efficiency of crispr/cas12f1 (cas14a1) system, and use thereof
WO2018088694A2 (en) Artificially engineered sc function control system
WO2016140492A1 (en) Novel dna-rna hybrid regular tetrahedron structure or rna tetrahedron structure
WO2020235974A9 (en) Single base substitution protein, and composition comprising same
WO2012134215A2 (en) Expression vector for animal cells
WO2024053964A1 (en) System for improving gene editing through structural change of guide rna of cas9 derived from campylobacter jejuni
WO2023153845A2 (en) Target system for homology-directed repair and gene editing method using same
WO2023059115A1 (en) Target system for genome editing and uses thereof
WO2022158898A1 (en) Genome replacement and insertion technology using reverse-transcriptase enzyme on basis of francisella novicida cas9 module
WO2020022802A1 (en) Genome editing for treating autoimmune disease
WO2019031804A9 (en) E. coli and corynebacterium glutamicum shuttle vector for regulating expression of target gene
WO2020022803A1 (en) Gene editing of anticoagulants
WO2018194438A1 (en) Cell line for producing nonreplicating adenovirus, and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863438

Country of ref document: EP

Kind code of ref document: A1