WO2024053896A1 - Antimicrobial polymer and antimicrobial polymer film containing same - Google Patents

Antimicrobial polymer and antimicrobial polymer film containing same Download PDF

Info

Publication number
WO2024053896A1
WO2024053896A1 PCT/KR2023/012133 KR2023012133W WO2024053896A1 WO 2024053896 A1 WO2024053896 A1 WO 2024053896A1 KR 2023012133 W KR2023012133 W KR 2023012133W WO 2024053896 A1 WO2024053896 A1 WO 2024053896A1
Authority
WO
WIPO (PCT)
Prior art keywords
pchm
polymer
pope
functional group
antibacterial
Prior art date
Application number
PCT/KR2023/012133
Other languages
French (fr)
Korean (ko)
Inventor
이종찬
육진솔
정다운
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2024053896A1 publication Critical patent/WO2024053896A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/26Use as polymer for film forming

Definitions

  • the present invention relates to an antibacterial polymer and an antibacterial polymer film containing the same.
  • Antimicrobial peptides (AMPs), first discovered in the 1980s, are present in many organisms and act as an essential part of the innate immune system of various organisms, including humans. Antimicrobial peptides exhibit a broad spectrum of antibacterial activity, including against Gram-positive bacteria, Gram-negative bacteria, viruses and fungi. In addition, antibacterial peptides can effectively inhibit resistant bacteria due to a different mechanism of action induced by the cationic moiety of the antibacterial peptide, which promotes binding of the antibacterial peptide to the bacterial surface through electrostatic interactions. However, mass production of antibacterial peptides is difficult, including high costs.
  • the present invention provides a polymer with excellent antibacterial properties.
  • the present invention provides a polymer film with excellent antibacterial properties.
  • the antibacterial polymer according to one embodiment of the present invention includes a functional group that forms a hydrogen bond with the bacterial cell membrane.
  • the functional group may be located in at least one of the main chain and side chain of the antibacterial polymer.
  • the functional group may form a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
  • the functional group may include at least one of S and O.
  • the functional group may include sulfoxide (SO).
  • the antibacterial polymer may include a citronellol-derived polymer.
  • the functional group can link citronellyl analogs with methacrylate-based polymers.
  • the antibacterial polymer according to another embodiment of the present invention includes a sulfoxide (SO) functional group.
  • SO sulfoxide
  • the sulfoxide functional group may be located in at least one of the main chain and side chain of the antibacterial polymer.
  • the sulfoxide functional group may form a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
  • Antibacterial polymer films according to embodiments of the present invention include the antibacterial polymer.
  • Polymers and polymer films according to embodiments of the present invention may have excellent antibacterial properties.
  • the antibacterial polymer has a simple manufacturing method and is easy to mass produce.
  • Figure 1 shows the synthesis method of PCHM-#.
  • Figure 2 shows 1 H NMR spectra of (a) PCHM-S, (b) PCHM-SO, (c) PCHM-SO 2 , and (d) PCHM-O.
  • Figure 3 shows the synthesis method of PE_S_6,8 and PE_SO_6,8.
  • Figure 4 shows the 1 H NMR spectra of PE_S_6,8 and PE_SO_6,8.
  • Figure 5 shows the FT-IR spectra of PE_S_6,8 and PE_SO_6,8.
  • Figure 6 shows the FT-IR spectrum of PCHM-#.
  • Figure 7 shows S 2p XPS spectra of PCHM-S, PCHM-SO, and PCHM-SO 2 .
  • Figure 8 shows the antibacterial test results of PCHM-# against E. coli.
  • Figure 9 shows the bactericidal activity of PCHM-#.
  • Figure 10 shows a CLSM image of E. coli attached to the PCHM-# film.
  • Figure 11 shows the antibacterial test results of PE_S_6,8 and PE_SO_6,8 against E. coli.
  • Figure 12 shows the Raman spectrum of PCHM-# film in the range 1640 - 1800 cm -1 .
  • Figure 13 shows the Raman spectrum of PCHM-# film in the range of 1000 - 1200 cm -1 .
  • the antibacterial polymer according to one embodiment of the present invention includes a functional group that forms a hydrogen bond with the bacterial cell membrane.
  • the functional group may be located in at least one of the main chain and side chain of the antibacterial polymer.
  • the functional group may form a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
  • the functional group may include at least one of S and O.
  • the functional group may include sulfoxide (SO).
  • the antibacterial polymer may include a citronellol-derived polymer.
  • the functional group can link citronellyl analogs with methacrylate-based polymers.
  • the antibacterial polymer according to another embodiment of the present invention includes a sulfoxide (SO) functional group.
  • SO sulfoxide
  • the sulfoxide functional group may be located in at least one of the main chain and side chain of the antibacterial polymer.
  • the sulfoxide functional group may form a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
  • the antibacterial polymer may include a citronellol-derived polymer.
  • the functional group can link the citronellyl analog to the methacrylate-based polymer.
  • Antibacterial polymer films according to embodiments of the present invention include the antibacterial polymer.
  • Citronellyl bromide can be synthesized through the Appel reaction using carbon tetrabromide as a halogen source.
  • a solution of citronellol (5 g, 32 mmol) and CBr 4 (11.67 g, 35.20 mmol) in dry dichloromethane (135 mL) was added to a 250 mL one-neck round bottom flask equipped with a magnetic stir bar.
  • PPh 3 (10.07 g, 38.40 mmol) was added to the solution at 0° C. and the solution was stirred at room temperature under nitrogen atmosphere overnight.
  • the reaction was terminated by adding water and the mixture was extracted with dichloromethane.
  • the combined organic layer was dried with anhydrous magnesium sulfate and filtered.
  • PGMA poly(glycidyl methacrylate)
  • PCHM-S poly(3-citronellylthio-2-hydroxypropyl methacrylate)
  • PCHM-S poly(3-citronellylthio-2-hydroxypropyl methacrylate)
  • Citronellyl thiol (2.43 g, 14.10 mmol) was added to a solution of PGMA (1.00 g, 7.05 mmol) in THF (25 mL).
  • LiOH 33.77 mg, 1.41 mmol
  • water 3.4 mL
  • PCHM-S represents the thioether moiety of the side chain.
  • 1H NMR of PCHM-S [400MHz, CDCl 3 , ⁇ (ppm), TMS ref]: 5.09(CH 2 -CH-C), 4.30-3.85(COO-CH 2 -CH), 2.75-2.48(CH 2 -S-CH 2 ) and 1.97(CH 2 -CH-C).
  • PCHM-SO poly(3-citronellylsulfinyl-2-hydroxypropyl methacrylate)
  • PCHM-S poly(3-citronellylsulfinyl-2-hydroxypropyl methacrylate)
  • Hydrogen peroxide solution (0.36 g, 30 wt% solution in distilled water) and 10 mL of acetic acid were added to a 100 mL round bottom flask containing PCHM-S (1.00 g, 3.18 mmol) powder.
  • the reaction mixture was stirred at 30°C overnight to obtain a homogeneous solution.
  • the product was precipitated three times in diethyl ether, filtered, and vacuum dried at room temperature to obtain PCHM-SO powder in 90% yield.
  • SO represents the sulfoxide moiety of the side chain.
  • PCHM-SO 2 poly(3-citronellylsulfonyl-2-hydroxypropyl methacrylate)
  • PCHM-S (1.00 g, 3.18 mmol) was dissolved in 125 mL of DMF, and oxone (2.93 g, 9.54 mmol) dissolved in distilled water was added to the polymer solution. This solution was heated at 60°C for 24 hours in an oil bath under nitrogen conditions. The product was precipitated three times in distilled water, filtered, and vacuum dried at room temperature to obtain PCHM-SO 2 powder in 85% yield.
  • SO 2 represents the sulfone moiety of the side chain.
  • CGE (citronellyl glycidyl ether) was synthesized to prepare a polymer containing an ether moiety instead of the thioether moiety of PCHM-S.
  • Tetrabutylammonium bromide (0.52 g, 1.60 mmol) and sodium hydroxide solution (3.84 g, 95.99 mmol, 48% solution by weight in distilled water) were added to a solution of citronellol (5 g, 32.00 mmol) in 32 mL toluene.
  • Epichlorohydrin (5.92 g, 63.99 mmol) was added to the solution while stirring at room temperature, and the reaction mixture was stirred at 50°C for 6 hours.
  • PMA poly(methacrylic acid)
  • PMA poly(methacrylic acid)
  • Methacrylic acid (5g, 58.10mmol), AIBN (22.72mg, 0.14mmol), and 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (0.116g, 0.41mmol) were dissolved in 13mL of DMF and added to the solution. was deoxygenated through three freeze-pump-thaw cycles. The deoxygenated solution was heated at 80°C for 16 hours in an oil bath under nitrogen conditions.
  • PCHM-# represents a PCHM polymer containing another functional group in the side chain
  • # in PCHM-# represents a functional group in the side chain
  • PCHM-S, PCHM-SO, PCHM-SO 2 and PCHM-O represent PCHM polymers containing thioethers, sulfoxides, sulfones and ethers, respectively.
  • a 1 wt% polymer solution in chloroform was coated on a glass substrate using a spin coating process (3,000 rpm, 30 seconds) and then dried in vacuum overnight.
  • a polymer film prepared by spin coating the bactericidal activity of the polymer film, bacterial attachment to the polymer surface, and surface characteristics were evaluated.
  • the bactericidal activity of the PCHM-# film was investigated using a film adhesion test against E. coli (ATCC 700926).
  • E. coli cells were cultured in NB (Nutrient broth) solution at 37°C for 18 hours. Representative colonies were removed with a platinum loop, placed in 30 mL of nutrient solution, and cultured with shaking at 37°C for 18 hours. After washing twice with saline solution (0.9 wt% NaCl solution), it was resuspended in saline solution to generate 1 ⁇ 10 5 CFU (colony forming unit)/mL.
  • Bacterial cell concentration was estimated by measuring the absorbance of the cell dispersion at 600 nm and referring to a standard calibration curve. An optical density of 0.1 at 600 nm corresponds to approximately 10 8 CFU/mL.
  • 0.1 mL of bacterial suspension was dropped on the surface of the PCHM-# film (2.5 cm ⁇ 2.5 cm) placed in a Petri dish, covered with an OHP film of the same size, and checked to see if it was in full contact. After 24 hours at 25°C, 0.9 mL of saline solution was poured into the Petri dish containing the sample. The adhered cells were separated from the film by shaking vigorously and the solution mixture was transferred to a microtube.
  • N 0 represents the bacterial CFU of the blank and N i represents the bacterial CFU of the test sample.
  • PE_S_6_8 represents an antibacterial polymer containing a thioether group in the main chain.
  • 20 mL of 2.0 g (18.15 mmol) of 1,7-octadiene, 2.728 g (18.15 mmol) of 1,6-hexanedithiol, and 47.28 mg of DMPA (2,2-Dimethoxy-2-phenylacetophenone) It was dissolved in THF, placed in a round bottom flask, and then irradiated with UV light for 1 hour. After precipitating the product in methanol, unreacted substances were removed through filtering, and this process was repeated three times. The obtained powdered polymer was dried at room temperature under vacuum for one day.
  • PE_SO_6,8 represents an antibacterial polymer containing a sulfoxide group in the main chain.
  • PE_SO_6,8 can be prepared by oxidizing the thioether group of PE_S_6,8. 0.5 g (3.84 mmol) of the synthesized PE_S_6,8 polymer was added to a round bottom flask along with 0.131 g (3.84 mmol) of hydrogen peroxide and 5 mL of acetic acid, and then reacted with stirring at 30°C for 24 hours. The product was precipitated in diethyl ether and filtered, and this process was repeated three times. The obtained polymer was dried at room temperature under vacuum for one day.
  • SYTO9 is a green fluorescent nuclear and chromosome counterstain that can penetrate both living and dead cell membranes.
  • PI is a red fluorescent dye that is membrane impermeable and is generally excluded from viable cells. Therefore, the SYTO9 and PI mixture is commonly used to distinguish between live and dead cells.
  • a polymer film (2.5 cm ⁇ 2.5 cm) coated on a glass substrate was placed in a 6-well plate and incubated with 5 mL of bacterial suspension (10 8 CFU/mL). After 24 hours at 25°C without shaking, the glass substrate was washed twice with 1 mL of saline solution and stained for 20 minutes in the dark using SYTO9 (0.01mM) and PI (0.02mM). To prepare the SYTO9 and PI mixture used for bacterial staining, 1 ⁇ L of PI solution (20 mM in DMSO) and 2 ⁇ L of SYTO9 solution (5 mM) were added to 1 mL of distilled water and diluted to the appropriate concentration.
  • the glass substrate was gently rinsed twice with saline solution and covered with a coverslip.
  • Samples were characterized by confocal laser scanning microscopy (CLSM) using a 488 nm laser for SYTO9 and a 545 nm laser for PI.
  • CLSM confocal laser scanning microscopy
  • a polymer film was prepared by drop casting a 1 wt% polymer solution in chloroform on a glass substrate (1 cm ⁇ 1 cm). 1 mL of FITC-LPS solution (0.1 mg/10 mL in saline solution) was added to each well of a 24-well plate, and a polymer film was placed in each well. After gently shaking for 24 hours at 25°C, avoiding light, 200 ⁇ L of the solution from each well was transferred from a transparent 24-well plate to a 96-well black plate. The adsorption of FITC-conjugated LPS by the polymer film was analyzed by exciting FITC-LPS at 485 nm and monitoring FITC emission at 535 nm using a multimode microplate reader.
  • Thermogravimetric analysis was performed in a nitrogen (N 2 ) atmosphere. The sample was heated to 100°C, isothermal for 10 minutes, and then heated to 700°C at a heating rate of 10°C.
  • FT-IR spectra were recorded in the absorption mode of the spectrophotometer with a resolution of 8 cm -1 in the vibration frequency range of 600 to 4000 cm -1 .
  • Raman spectra were recorded on a Raman spectrometer using a 532 nm laser.
  • a polymer film containing POPE 1 mg of POPE and 2 mg of the polymer were dissolved in chloroform, drop-casted on a glass substrate (1 cm ⁇ 1 cm), and dried under reduced pressure at room temperature for one day.
  • the absorbance of the bacterial suspension at 600 nm was measured with a UV-Visible spectrometer at room temperature.
  • Surface morphology and topology were investigated by atomic force microscopy (AFM).
  • the surface composition of the polymer film was analyzed using X-ray photoelectron spectroscopy (XPS) using Mg/Al (1486.69 eV) as a radiation source. After the survey scan was performed, high-resolution scans in the range of 0-1500 eV at an angle of 30° were performed in the C 1s, O 1s, N 1s and S 2p regions.
  • XPS X-ray photoelectron spectroscopy
  • the contact angle between diiodo-methane and water on the polymer surface was measured with a droplet shape analyzer connected to a computer running droplet shape analysis software. The contact angle for each sample was measured more than five times on independently prepared polymer films, and the average value was used as data.
  • the Owens-Wendt-Rabel-Kaelble (OWRK) method was used to calculate the surface energy of the polymer film.
  • the zeta potential of PCHM-# films was measured by electrophoretic light scattering spectrophotometry.
  • Figure 1 shows the synthesis method of PCHM-#
  • Figure 2 shows the 1 H NMR spectra of (a) PCHM-S, (b) PCHM-SO, (c) PCHM-SO 2 , and (d) PCHM-O. indicates.
  • # refers to the functional group linking the citronellyl analogue to the 2-hydroxypropyl methacrylate-based polymer
  • S, SO, SO 2 and O refer to thioether, sulfoxide, sulfone and ether, respectively. do.
  • the epoxy of PGMA and the thiol of citronellyl thiol were synthesized by raft polymerization of GMA using 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid as a chain transfer agent. It is synthesized through liver reaction.
  • Citronellyl thiol is synthesized by the reaction of thiourea with citronellyl bromide prepared by the Appel reaction of citronellol using carbon tetrabromide as a halide source.
  • the chemical structures of nellyl bromide and citronellyl thiol were confirmed by 1 H NMR.
  • the degree of substitution of citronellyl thiol is 100% as confirmed by 1 H NMR, and the proton peak of the epoxy moiety of PGMA disappears after the epoxy-thiol reaction.
  • the thioether moiety of PCHM-S is oxidized to sulfoxide and sulfone using hydrogen peroxide and oxone as oxidizing agents, respectively, and oxone is used to prevent oxidation of the double bond in the citronellyl analogue.
  • PCHM-O is synthesized by the reaction of the epoxy group of citronellyl glycidyl ether (CGE) and the carboxyl group of PMA using TBAB as a catalyst, and PMA is synthesized by methacrylic acid using the same chain transfer agent used in the synthesis of PGMA. It is synthesized by raft polymerization.
  • CGE is synthesized through the reaction of citronellol and epichlorohydrin in the presence of TBAB, a phase transfer catalyst, and its chemical structure can be confirmed by 1 H NMR.
  • the proton peak from the carboxylic acid of PMA disappears after reaction with CGE, indicating that all carboxylic acid functional groups of PMA reacted with CGE.
  • Figure 3 shows the synthesis method of PE_S_6,8 and PE_SO_6,8,
  • Figure 4 shows the 1 H NMR spectra of PE_S_6,8 and PE_SO_6,8,
  • Figure 5 shows the FT-IR spectrum of PE_S_6,8 and PE_SO_6,8. indicates.
  • PE_S_6_8 uses DMPA (2,2-Dimethoxy-2-phenylacetophenone) as a catalyst to react 1,7-octadiene and 1,6-hexanedithiol. It is synthesized by PE_SO_6,8 is manufactured by placing the synthesized PE_S_6,8 polymer in a round bottom flask with hydrogen peroxide and acetic acid and then reacting.
  • DMPA 2,2-Dimethoxy-2-phenylacetophenone
  • PE_S_6,8 and PE_SO_6,8 were confirmed by 1 H NMR. After oxidation of the thioether group, the peak corresponding to the hydrogen of the methylene group attached to sulfur moved to the lower field, confirming that oxidation had progressed. In addition, in the FT-IR spectrum of PE_SO_6,8, a peak at 1098 cm -1 corresponding to sulfoxide was observed, confirming that oxidation had proceeded well.
  • Figure 6 shows the FT-IR spectrum of PCHM-#
  • Figure 7 shows the S 2p XPS spectrum of PCHM-S, PCHM-SO, and PCHM-SO 2 .
  • the characteristic peaks corresponding to the functional groups in the side chain of PCHM-# show the successful synthesis of the polymer.
  • a characteristic hydroxyl peak in the range of 3100 - 3300 cm -1 appears due to the ring-opening reaction between the epoxy moiety of PGMA and CGE.
  • the hydroxyl peak of PCHM-SO appears at the lowest wave number compared to other polymers because the polar sulfoxide group and hydroxyl group of the side chain can form hydrogen bonds.
  • the characteristic peak assigned to the epoxy moiety of PGMA at 904 cm -1 disappears after the thiol-epoxy reaction, showing that all epoxy moieties were reacted with citronellyl thiol, consistent with the 1 H NMR spectrum.
  • the oxidation state of sulfur in PCHM-S, PCHM-SO and PCHM-SO 2 was analyzed by the XPS spectrum of S 2p, and the sulfur peak shifts to higher binding energy with increasing sulfur oxidation number.
  • the molecular weight and polydispersity of PCHM-# were investigated by GPC analysis using DMF as eluent due to the low solubility of PCHM-SO in THF.
  • the molecular weight of sulfur-containing polymers increases with increasing sulfur oxidation number, because the addition of oxygen increases the molecular weight of the repeating unit and the solubility of the polymer in DMF.
  • the molecular weight (Mn) of PCHM-# is in the range of 19,000 - 32,000, which is not much different and is sufficient to produce a physically stable film.
  • Figure 8 shows the antibacterial test results of PCHM-# against E. coli
  • Figure 9 shows the bactericidal activity of PCHM-#
  • Figure 10 shows a CLSM image of E. coli attached to the PCHM-# film.
  • the bactericidal activity of the PCHM-# film prepared by spin coating was evaluated against E. coli using glass washed with ethanol as a negative control.
  • the PCHM-SO film showed the most effective bactericidal activity of 99.99%, showing no bacterial flora on the agar plate.
  • PCHM-SO 2 While there were a few bacterial flora on the agar plates of PCHM-SO 2 and PCHM-O, many bacterial flora were found on the agar plates of PCHM-S, and the bactericidal activities of PCHM-SO 2 , PCHM-O and PCHM-S were 88.19, respectively. , 84.25, 15.34%.
  • PCHM-S shows relatively low bactericidal activity despite the presence of citronellyl analogs in the side chain, indicating that the functional groups in the side chain have a significant impact on the bactericidal activity of the polymer.
  • Bacterial adhesion to the polymer film was measured by observing fluorescence microscopy images of E. coli stained with a dye mixture of SYTO9 and PI to distinguish between live and dead bacteria. The number of attached live and dead bacteria was calculated by the image program, and CLSM images of PCHM-SO, PCHM-SO 2 and PCHM-O showed few or no live bacteria stained by SYTO9 with green fluorescence. Many live bacteria were observed on the PCHM-S film, which is consistent with the bactericidal activity test results.
  • the total number of bacteria attached to PCHM-S, PCHM-SO, PCHM-SO2, and PCHM-O is 141, 39, 31, and 122, respectively, and the number of bacteria attached to PCHM-S and PCHM-O films is 141, 39, 31, and 122, respectively. and about 4 times that of the PCHM-SO 2 film.
  • the interaction between the polymer film and bacteria is highly dependent on the functional groups of the polymer side chain, resulting in different bactericidal activity and bacterial adhesion.
  • Figure 11 shows the antibacterial test results of PE_S_6,8 and PE_SO_6,8 against E. coli.
  • the antibacterial test of PE_S_6,8 and PE_SO_6,8 was performed in the same manner as the antibacterial test of PCHM-#.
  • PE_SO_6,8 showed over 95% antibacterial activity against E. coli and appeared to have superior antibacterial activity to PE_S_6,8, confirming that the antibacterial activity of the PE_SO_6,8 polymer was due to the sulfoxide group located in the main chain.
  • the zeta potentials of PCHM-S, PCHM-SO, PCHM-SO 2 , and PCHM-O are -31.28, -44.81, -41.85, and -17.85 mV, respectively.
  • the absolute value of the zeta potential decreases. increases. This is due to the negatively charged oxygen being attached to sulfur by a coordinating single bond with both shared electrons coming from sulfur. Therefore, PCHM-SO and PCHM-SO 2 films exhibit a larger negative zeta potential than other polymer films, so the electrostatic repulsion between these polymer films and bacteria is large, effectively inhibiting bacterial attachment.
  • Static contact angle and surface energy were also measured to understand bacterial attachment on polymer surfaces (Table 1). Since the bactericidal activity and bacterial attachment were investigated when the polymer film was in full contact with the bacterial suspension, the static contact angle and surface energy were measured using the polymer film immersed in a saline solution at 25°C for 24 hours.
  • the hydrophilic moiety of the polymer tends to be located at the interface between the polymer film and water.
  • water molecules act as a plasticizer and the polymer is in an amorphous state at that temperature, so the polymer can be easily assembled into a thermodynamically stable structure. Therefore, the water contact angle value of the polymer film becomes smaller than that of the polymer film cast after being immersed in saline solution for 24 hours.
  • PCHM-S and PCHM-O have low glass transition temperatures of 34.5°C and 15.2°C, and are close to 25°C, so the water contact angle value of PCHM-S and PCHM-O decreases after immersion compared to PCHM-SO and PCHM-SO 2 is bigger.
  • the water contact angle values of PCHM-SO and PCHM-SO 2 are smaller than those of PCHM-S and PCHM-O due to the polar functional groups in the side chains.
  • the amount of water absorbed by the polymer film is the largest in the PCHM-SO film, so the decrease in water contact angle value after immersion of PCHM-SO is observed for PCHM-SO. It is greater than the decrease in -SO 2 .
  • the polar sulfoxide group of PCHM-SO can form strong hydrogen bonds with water, causing the polymer to absorb a large amount of water, which results in the FT-IR spectrum of PCHM-SO having hydroxyl peaks at lower wavenumbers compared to other polymers. You can also check this.
  • E. coli exhibits a low water contact angle of 30.7° and a high surface energy of 67.1 mN/m, indicating that the surface of E. coli is hydrophilic due to the polar phosphate and hydroxyl groups of the outer membrane.
  • Bacterial adhesion to a polymer surface increases as the difference in surface energy between the polymer surface and bacterial cells decreases, so in the case of PCHM-#, bacterial adhesion is suppressed on polymer surfaces with low surface energy. Therefore, bacterial adhesion is effectively inhibited on PCHM-SO and PCHM-SO2 films, which have relatively low surface energy values and larger negative zeta potential compared to other polymer films.
  • the interaction between the polymer and the outer membrane of bacteria is one of the important factors that determines the antibacterial properties of polymers.
  • the outermost component of the E. coli outer membrane is LPS containing phosphate and hydroxyl moieties
  • the LPS binding affinity to the polymer film is measured by measuring the fluorescence of FITC-conjugated LPS using a microplate reader. It was measured and analyzed. 1 mL of FITC-LPS solution (0.1 mg/10 mL in saline solution) was added to each well of a 24-well plate, and PCHM-# film was placed in each well and mixed gently for 24 hours at 25°C.
  • the fluorescence intensity of solutions treated with PCHM-SO films is significantly lower than those treated with other polymers, which is due to the ability of the sulfoxide moiety to form strong hydrogen bonds between PCHM-SO and LPS. indicates effective interaction.
  • the fluorescence intensity of solutions treated with polymer films of PCHM-SO 2 and PCHM-O is lower than that of solutions treated with clean glass and higher than that of solutions treated with PCHM-SO films, as LPS has a lower fluorescence intensity than that of solutions treated with PCHM-SO. It indicates that it is bound to the polymer films of PCHM-SO 2 and PCHM-O through relatively weak hydrogen bonds.
  • the ether moiety Because the ether moiety has a smaller hydrogen bond radius than the thioether moiety, the ether moiety forms a stronger hydrogen bond complex than the thioether moiety. Therefore, the interaction between PCHM-S film and LPS is the weakest among all polymer films, as evidenced by the similar fluorescence intensity between solutions treated with PCHM-S and those treated with pristine glass. LPS binding affinity varies greatly depending on the side chain functional group of the polymer, and the higher the hydrogen bond strength of the side chain functional group, the greater the amount of bound LPS.
  • Figure 12 shows the Raman spectrum of the PCHM-# film in the range of 1640 - 1800 cm -1
  • Figure 13 shows the Raman spectrum of the PCHM-# film in the range of 1000 - 1200 cm -1
  • the solid line corresponds to the PCHM-# film containing no POPE
  • the dotted line corresponds to the PCHM-# film containing POPE (POPE mixed PCHM-S film).
  • the PCHM-# film without POPE is manufactured by drop casting a 1 wt% polymer solution in chloroform
  • the characteristic peak assigned to the carbonyl moiety of POPE appears at 1740 cm -1 , which is a higher wave number compared to all POPE blended polymer films except the POPE blended PCHM-S film, which is This indicates that the interactions between polymers other than PCHM-S and PCHM-S are stronger than those between POPE molecules.
  • Characteristic peaks of the phosphate group of POPE appear at 1064, 1096, and 1128 cm -1 , which correspond to the vibrational modes of -PO- in the head group, PO 2 - and -PO- in the tail group. These three characteristic peaks are clearly distinguished in the Raman spectra of the POPE blended film with PCHM-S, whereas these peaks are indistinguishable in the Raman spectra of the POPE blended film with PCHM-SO and PCHM-SO 2 .
  • the interaction between the phosphate group of POPE and the polymer is stronger for PCHM-SO, PCHM-SO 2 , and PCHM-O than for PCHM-S.
  • Phospholipids have diverse phase behaviors through self-assembly resulting from polar head groups and hydrophobic tails, and phase transitions in phospholipids can be recognized through DSC analysis.
  • the phase transition of phospholipids depends on internal factors such as the composition and structure of the phospholipids and external factors such as temperature, pH, water content, and the presence of solutes.
  • the presence of other molecules, such as solutes, can inhibit POPE self-assembly by inhibiting interactions between POPE molecules.
  • phase behavior of POPE a mixture of POPE and polymer
  • POPE a polymer mixed POPE solution in chloroform
  • the first heating scan showed that there were two phase transitions.
  • the first transition at a lower temperature of 10.18 °C corresponds to the chain melting transition of hydrophobic alkyl chains from gel to liquid crystal, followed by a lower enthalpy transition at a higher temperature of 53.01 °C, corresponding to the transition from a bilayer structure to an inverted hexagonal structure.
  • the melting peaks of PCHM-S, PCHM-SO, PCHM-SO 2 and PCHM-O appear around 5 to 8°C, which is lower than the first melting temperature of POPE, and the alkyl chains of POPE are PCHM-S and PCHM. Less tightly packed in the presence of -SO 2 and PCHM-O.
  • the melting peak appears at 47.09°C, which is similar to the second transition temperature of POPE. Since the strong interaction between PCHM-SO and POPE prevents gel formation of POPE, the first melting peak occurs in the presence of PCHM-SO. The enthalpy change appears to be the smallest.
  • the first chain melting transition is dominant in POPE and the melting peak of polymer blend POPE appears at a lower temperature than that of POPE.
  • the decrease in melting temperature after polymer incorporation is much larger for PCHM-SO compared to other polymers, indicating the strongest interaction between POPE and PCHM-SO due to the sulfoxide bonds that can form strong hydrogen bonds.
  • the melting peak of the polymer-mixed POPE is due to the phase transition of POPE
  • the change in phase transition enthalpy of the polymer-mixed POPE was recalculated by correcting the weight of POPE to the total weight.
  • the transition enthalpy is smaller than that of POPE, indicating that the interaction between POPE and these polymers inhibits chain packing between POPE molecules.
  • Polymers and polymer films according to embodiments of the present invention may have excellent antibacterial properties.
  • the antibacterial polymer has a simple manufacturing method and is easy to mass produce.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

An antimicrobial polymer and an antimicrobial polymer film containing same are provided. The antimicrobial polymer bears a functional group that forms hydrogen bonds with bacterial cell membranes. The functional group can be located on at least one of the main chain and side chain of the antimicrobial polymer. The antimicrobial polymer film contains the antimicrobial polymer.

Description

항균성 고분자 및 이를 포함하는 항균성 고분자 필름Antibacterial polymer and antibacterial polymer film containing the same
본 발명은 항균성 고분자 및 이를 포함하는 항균성 고분자 필름에 관한 것이다.The present invention relates to an antibacterial polymer and an antibacterial polymer film containing the same.
내성균의 증가 및 항생제 개발의 정체로 인해 기존의 항생제를 대체할 수 있는 효과적인 항생제의 개발이 시급한 실정이다. 1980년대에 처음 발견된 항균 펩타이드(Antimicrobial peptides, AMP)는 많은 유기체에 존재하며 인간을 포함한 다양한 유기체의 선천 면역계의 필수적인 부분으로 작용한다. 항균 펩타이드는 그람 양성 박테리아(Gram-positive bacteria), 그람 음성 박테리아(Gram-negative bacteria), 바이러스 및 진균을 포함하여 광범위한 항균 활성을 나타낸다. 또, 항균 펩타이드는 정전기적 상호작용을 통해 박테리아 표면에 항균 펩타이드의 결합을 촉진하는 항균 펩타이드의 양이온성 모이어티(cationic moiety)에 의해 유도되는 상이한 작용 기전으로 인해 내성 박테리아를 효과적으로 억제할 수 있다. 그러나 항균 펩타이드의 대량 생산은 비용이 많이 드는 등 어려움이 있다.Due to the increase in resistant bacteria and stagnation in antibiotic development, there is an urgent need to develop effective antibiotics that can replace existing antibiotics. Antimicrobial peptides (AMPs), first discovered in the 1980s, are present in many organisms and act as an essential part of the innate immune system of various organisms, including humans. Antimicrobial peptides exhibit a broad spectrum of antibacterial activity, including against Gram-positive bacteria, Gram-negative bacteria, viruses and fungi. In addition, antibacterial peptides can effectively inhibit resistant bacteria due to a different mechanism of action induced by the cationic moiety of the antibacterial peptide, which promotes binding of the antibacterial peptide to the bacterial surface through electrostatic interactions. However, mass production of antibacterial peptides is difficult, including high costs.
본 발명은 우수한 항균성을 갖는 고분자를 제공한다.The present invention provides a polymer with excellent antibacterial properties.
본 발명은 우수한 항균성을 갖는 고분자 필름을 제공한다.The present invention provides a polymer film with excellent antibacterial properties.
본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.Other objects of the present invention will become clear from the following detailed description and accompanying drawings.
본 발명의 일 실시예에 따른 항균성 고분자는 박테리아 세포막과 수소 결합을 하는 작용기를 포함한다.The antibacterial polymer according to one embodiment of the present invention includes a functional group that forms a hydrogen bond with the bacterial cell membrane.
상기 작용기는 상기 항균성 고분자의 주쇄 및 측쇄 중 적어도 하나에 위치할 수 있다.The functional group may be located in at least one of the main chain and side chain of the antibacterial polymer.
상기 작용기는 박테리아 세포막의 지질다당류(lipopolysaccharide) 및 인지질(phospholipid) 중 적어도 하나와 수소 결합을 할 수 있다.The functional group may form a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
상기 작용기는 S 및 O 중 적어도 하나를 포함할 수 있다. 상기 작용기는 설폭사이드(SO)를 포함할 수 있다.The functional group may include at least one of S and O. The functional group may include sulfoxide (SO).
상기 항균성 고분자는 시트로넬롤 유래 고분자를 포함할 수 있다. 상기 작용기는 시트로넬릴 유사체를 메타크릴레이트 기반 고분자와 연결할 수 있다.The antibacterial polymer may include a citronellol-derived polymer. The functional group can link citronellyl analogs with methacrylate-based polymers.
본 발명의 다른 실시예에 따른 항균성 고분자는 설폭사이드(SO) 작용기를 포함한다.The antibacterial polymer according to another embodiment of the present invention includes a sulfoxide (SO) functional group.
상기 설폭사이드 작용기는 상기 항균성 고분자의 주쇄 및 측쇄 중 적어도 하나에 위치할 수 있다.The sulfoxide functional group may be located in at least one of the main chain and side chain of the antibacterial polymer.
상기 설폭사이드 작용기는 박테리아 세포막의 지질다당류(lipopolysaccharide) 및 인지질(phospholipid) 중 적어도 하나와 수소 결합을 할 수 있다The sulfoxide functional group may form a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
본 발명의 실시예들에 따른 항균성 고분자 필름은 상기 항균성 고분자를 포함한다.Antibacterial polymer films according to embodiments of the present invention include the antibacterial polymer.
본 발명의 실시예들에 따른 고분자 및 고분자 필름은 우수한 항균성을 가질 수 있다. 상기 항균성 고분자는 제조 방법이 간단하고 대량 생산이 용이하다. Polymers and polymer films according to embodiments of the present invention may have excellent antibacterial properties. The antibacterial polymer has a simple manufacturing method and is easy to mass produce.
도 1은 PCHM-#의 합성 방법을 나타낸다.Figure 1 shows the synthesis method of PCHM-#.
도 2는 (a) PCHM-S, (b) PCHM-SO, (c) PCHM-SO2, 및 (d) PCHM-O의 1H NMR 스펙트럼을 나타낸다.Figure 2 shows 1 H NMR spectra of (a) PCHM-S, (b) PCHM-SO, (c) PCHM-SO 2 , and (d) PCHM-O.
도 3은 PE_S_6,8 및 PE_SO_6,8의 합성 방법을 나타낸다.Figure 3 shows the synthesis method of PE_S_6,8 and PE_SO_6,8.
도 4는 PE_S_6,8 및 PE_SO_6,8의 1H NMR 스펙트럼을 나타낸다.Figure 4 shows the 1 H NMR spectra of PE_S_6,8 and PE_SO_6,8.
도 5는 PE_S_6,8 및 PE_SO_6,8의 FT-IR 스펙트럼을 나타낸다.Figure 5 shows the FT-IR spectra of PE_S_6,8 and PE_SO_6,8.
도 6은 PCHM-#의 FT-IR 스펙트럼을 나타낸다.Figure 6 shows the FT-IR spectrum of PCHM-#.
도 7은 PCHM-S, PCHM-SO, 및 PCHM-SO2의 S 2p XPS 스펙트럼을 나타낸다.Figure 7 shows S 2p XPS spectra of PCHM-S, PCHM-SO, and PCHM-SO 2 .
도 8은 대장균에 대한 PCHM-#의 항균 테스트 결과를 나타낸다.Figure 8 shows the antibacterial test results of PCHM-# against E. coli.
도 9는 PCHM-#의 살균 활성을 나타낸다.Figure 9 shows the bactericidal activity of PCHM-#.
도 10은 PCHM-# 필름에 부착된 대장균의 CLSM 이미지를 나타낸다.Figure 10 shows a CLSM image of E. coli attached to the PCHM-# film.
도 11은 대장균에 대한 PE_S_6,8 및 PE_SO_6,8의 항균 테스트 결과를 나타낸다.Figure 11 shows the antibacterial test results of PE_S_6,8 and PE_SO_6,8 against E. coli.
도 12는 1640 - 1800cm-1 범위에서 PCHM-# 필름의 라만 스펙트럼을 나타낸다.Figure 12 shows the Raman spectrum of PCHM-# film in the range 1640 - 1800 cm -1 .
도 13은 1000 - 1200cm-1 범위에서 PCHM-# 필름의 라만 스펙트럼을 나타낸다.Figure 13 shows the Raman spectrum of PCHM-# film in the range of 1000 - 1200 cm -1 .
도 14는 PCHM-#와 POPE의 혼합물(PCHM-#:POPE=2:1(w/w))의 제1 가열 스캔의 DSC 곡선을 나타낸다.Figure 14 shows the DSC curve of the first heating scan of a mixture of PCHM-# and POPE (PCHM-#:POPE=2:1(w/w)).
도 15는 PCHM-#와 POPE의 혼합물(PCHM-#:POPE=2:1(w/w))의 제2 가열 스캔의 DSC 곡선을 나타낸다.Figure 15 shows the DSC curve of the second heating scan of a mixture of PCHM-# and POPE (PCHM-#:POPE=2:1(w/w)).
이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in detail through examples. The purpose, features, and advantages of the present invention will be easily understood through the following examples. The present invention is not limited to the embodiments described herein and may be embodied in other forms. The embodiments introduced herein are provided to ensure that the disclosed content is thorough and complete and to enable the idea of the present invention to be sufficiently conveyed to those skilled in the art to which the present invention pertains. Accordingly, the present invention should not be limited by the following examples.
본 발명의 일 실시예에 따른 항균성 고분자는 박테리아 세포막과 수소 결합을 하는 작용기를 포함한다.The antibacterial polymer according to one embodiment of the present invention includes a functional group that forms a hydrogen bond with the bacterial cell membrane.
상기 작용기는 상기 항균성 고분자의 주쇄 및 측쇄 중 적어도 하나에 위치할 수 있다.The functional group may be located in at least one of the main chain and side chain of the antibacterial polymer.
상기 작용기는 박테리아 세포막의 지질다당류(lipopolysaccharide) 및 인지질(phospholipid) 중 적어도 하나와 수소 결합을 할 수 있다.The functional group may form a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
상기 작용기는 S 및 O 중 적어도 하나를 포함할 수 있다. 상기 작용기는 설폭사이드(SO)를 포함할 수 있다.The functional group may include at least one of S and O. The functional group may include sulfoxide (SO).
상기 항균성 고분자는 시트로넬롤 유래 고분자를 포함할 수 있다. 상기 작용기는 시트로넬릴 유사체를 메타크릴레이트 기반 고분자와 연결할 수 있다.The antibacterial polymer may include a citronellol-derived polymer. The functional group can link citronellyl analogs with methacrylate-based polymers.
본 발명의 다른 실시예에 따른 항균성 고분자는 설폭사이드(SO) 작용기를 포함한다.The antibacterial polymer according to another embodiment of the present invention includes a sulfoxide (SO) functional group.
상기 설폭사이드 작용기는 상기 항균성 고분자의 주쇄 및 측쇄 중 적어도 하나에 위치할 수 있다.The sulfoxide functional group may be located in at least one of the main chain and side chain of the antibacterial polymer.
상기 설폭사이드 작용기는 박테리아 세포막의 지질다당류(lipopolysaccharide) 및 인지질(phospholipid) 중 적어도 하나와 수소 결합을 할 수 있다The sulfoxide functional group may form a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
상기 항균성 고분자는 시트로넬롤 유래 고분자를 포함할 수 있다. 상기 작용기는 시트로넬릴 유사체를 메타크릴레이트 기반 고분자와 연결할 수 있다.The antibacterial polymer may include a citronellol-derived polymer. The functional group can link the citronellyl analog to the methacrylate-based polymer.
본 발명의 실시예들에 따른 항균성 고분자 필름은 상기 항균성 고분자를 포함한다.Antibacterial polymer films according to embodiments of the present invention include the antibacterial polymer.
[실시예][Example]
[시트로넬릴 브로마이드 및 시트로넬릴 티올의 합성예][Synthesis example of citronellyl bromide and citronellyl thiol]
시트로넬릴 브로마이드(citronellyl bromide)는 카본 테트라브로마이드를 할로겐 공급원으로 사용하여 아펠 반응(Appel reaction)을 통해 합성될 수 있다. 건조 디클로로메탄(135mL) 중 시트로넬롤(5g, 32mmol) 및 CBr4(11.67g, 35.20mmol)의 용액을 자기 교반 막대가 장착된 250mL 1구 둥근 바닥 플라스크에 첨가하였다. PPh3(10.07g, 38.40mmol)를 0℃에서 상기 용액에 첨가하고 상기 용액을 질소 분위기 하에 실온에서 밤새 교반하였다. 물을 첨가하여 반응을 종결시키고 혼합물을 디클로로메탄으로 추출하였다. 결합된 유기층을 무수 황산마그네슘으로 건조시키고 여과하였다. 얻어진 생성물을 저압 환경에서 증발시켜 무색 오일을 얻고, 이를 컬럼 크로마토그래피(100% 헥산)로 정제하였다. 65% 수율로 시트로넬릴 브로마이드(무색 오일)를 얻었다. 시트로넬릴 브로마이드의 1H NMR [400MHz, CDCl3, δ(ppm), TMS ref]: 5.09(CH2-CH-C), 3.41(CH2-Br) 및 1.98(CH-CH2-CH2).Citronellyl bromide can be synthesized through the Appel reaction using carbon tetrabromide as a halogen source. A solution of citronellol (5 g, 32 mmol) and CBr 4 (11.67 g, 35.20 mmol) in dry dichloromethane (135 mL) was added to a 250 mL one-neck round bottom flask equipped with a magnetic stir bar. PPh 3 (10.07 g, 38.40 mmol) was added to the solution at 0° C. and the solution was stirred at room temperature under nitrogen atmosphere overnight. The reaction was terminated by adding water and the mixture was extracted with dichloromethane. The combined organic layer was dried with anhydrous magnesium sulfate and filtered. The obtained product was evaporated in a low pressure environment to obtain a colorless oil, which was purified by column chromatography (100% hexane). Citronellyl bromide (colorless oil) was obtained in 65% yield. 1 H NMR of citronellyl bromide [400 MHz, CDCl 3 , δ(ppm), TMS ref]: 5.09 (CH 2 -CH-C), 3.41 (CH 2 -Br) and 1.98 (CH-CH 2 -CH 2 ).
티오우레아(1.74g, 22.81mmol)를 에탄올(45mL) 중 시트로넬릴 브로마이드(5g, 22.81mmol)의 용액에 첨가하였다. 이 혼합물을 환류 조건 하에 3시간 동안 교반하였다. 수산화나트륨 수용액(10wt%, 12.3mL)을 첨가하여 반응을 종료하고, 80℃에서 5시간 더 가열하였다. 반응 후 생성물을 감압 농축하고 클로로포름에 녹여 분액 깔때기로 옮겼다. 0.1M HCl 용액으로 추출한 후 결합된 유기층을 무수 황산마그네슘으로 건조하고 여과하였다. 생성물을 감압하에 증발시켜 89% 수율로 시트로넬릴 티올(무색 오일)을 얻었다. 시트로넬릴 티올(citronellyl thiol)의 1H NMR [400MHz, CDCl3, δ(ppm), TMS ref]: 5.09(CH2-CH-C), 2.51(CH2-Br) 및 1.97(CH-CH2-CH2).Thiourea (1.74 g, 22.81 mmol) was added to a solution of citronellyl bromide (5 g, 22.81 mmol) in ethanol (45 mL). This mixture was stirred under reflux conditions for 3 hours. The reaction was terminated by adding aqueous sodium hydroxide solution (10 wt%, 12.3 mL) and heated at 80°C for another 5 hours. After the reaction, the product was concentrated under reduced pressure, dissolved in chloroform, and transferred to a separatory funnel. After extraction with 0.1M HCl solution, the combined organic layer was dried over anhydrous magnesium sulfate and filtered. The product was evaporated under reduced pressure to give citronellyl thiol (colorless oil) in 89% yield. 1 H NMR of citronellyl thiol [400 MHz, CDCl 3 , δ(ppm), TMS ref]: 5.09 (CH 2 -CH-C), 2.51 (CH 2 -Br) and 1.97 (CH-CH 2 -CH 2 ).
[폴리(글리시딜 메타크릴레이트)(PGMA)의 합성예][Synthesis example of poly(glycidyl methacrylate) (PGMA)]
PGMA(poly(glycidyl methacrylate)는 4-시아노-4-(페닐카르보노티오일티오)펜탄산(4-cyano-4-(phenylcarbonothioylthio)pentanoic acid)을 체인 이동제(chain transfer agent)로 사용하여 GMA(glycidyl methacrylate)의 라프트(RAFT) 중합에 의해 합성될 수 있다. GMA(10g, 70.35mmol), AIBN(16.42mg, 0.1mmol) 및 4-시아노-4-(페닐카르보노티오일티오)펜탄산(0.140g, 0.5mmol)을 디옥산 15mL에 용해시키고 용액을 3회의 동결-펌프-해동 사이클에 의해 탈산소화시켰다. 이 용액을 질소 조건하에 오일 배스에서 80℃에서 16시간 동안 가열하였다. 반응 후 생성물을 헥산에 3회 침전시켜 미반응 단량체를 제거하였다. 여과한 후 상온에서 진공 건조시켜 70% 수율로 PGMA 분말을 얻었다. PGMA의 1H NMR [400MHz, CDCl3, δ(ppm), TMS ref]: 4.29(O-CH2-CH), 3.82(O-CH2-CH), 3.24(CH2-CH-CH2-O), 2.85(COO-CH2-CH-CH2-O), 및 2.64(COO-CH2-CH-CH2-O).PGMA (poly(glycidyl methacrylate)) uses 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid as a chain transfer agent to form GMA. It can be synthesized by RAFT polymerization of (glycidyl methacrylate) GMA (10 g, 70.35 mmol), AIBN (16.42 mg, 0.1 mmol) and 4-cyano-4-(phenylcarbonothioylthio)phene. Carbonic acid (0.140 g, 0.5 mmol) was dissolved in 15 mL of dioxane and the solution was deoxygenated by three freeze-pump-thaw cycles. The solution was heated at 80°C for 16 hours in an oil bath under nitrogen conditions. After this, the product was precipitated in hexane three times to remove unreacted monomers. After filtering, it was vacuum dried at room temperature to obtain PGMA powder in 70% yield. 1 H NMR of PGMA [400 MHz, CDCl 3 , δ (ppm), TMS ref]: 4.29(O-CH 2 -CH), 3.82(O-CH 2 -CH), 3.24(CH 2 -CH-CH 2 -O), 2.85(COO-CH 2 -CH-CH 2 -O) , and 2.64(COO-CH 2 -CH-CH 2 -O).
[폴리(3-시트로넬릴티오-2-하이드록시프로필 메타크릴레이트)(PCHM-S)의 합성예][Synthesis example of poly(3-citronellylthio-2-hydroxypropyl methacrylate) (PCHM-S)]
PCHM-S(poly(3-citronellylthio-2-hydroxypropyl methacrylate))는 LiOH를 촉매로 사용하여 PGMA의 에폭시-티올 반응에 의해 합성될수 있다. 시트로넬릴 티올(2.43g, 14.10mmol)을 THF(25mL) 중 PGMA(1.00g, 7.05mmol)의 용액에 첨가하였다. 물(3.4mL)에 용해된 LiOH(33.77mg, 1.41mmol)를 0℃에서 용액에 첨가하였다. 그 다음 냉각을 제거하고 반응 혼합물을 실온에서 24시간 동안 교반하였다. 반응 혼합물을 디클로로메탄으로 희석하고 물로 세척하였다. 유기층을 무수 황산마그네슘으로 건조시키고 여과하고 감압 농축하였다. 생성물을 헥산에 3회 침전시켜 미반응 시트로넬릴 티올을 제거하였다. 여과 및 실온에서의 진공 건조 후 80% 수율로 PCHM-S 분말을 얻었다. PCHM-S에서 S는 측쇄의 티오에테르 모이어티를 나타낸다. PCHM-S의 1H NMR [400MHz, CDCl3, δ(ppm), TMS ref]: 5.09(CH2-CH-C), 4.30-3.85(COO-CH2-CH), 2.75-2.48(CH2-S-CH2) 및 1.97(CH2-CH-C).PCHM-S (poly(3-citronellylthio-2-hydroxypropyl methacrylate)) can be synthesized by the epoxy-thiol reaction of PGMA using LiOH as a catalyst. Citronellyl thiol (2.43 g, 14.10 mmol) was added to a solution of PGMA (1.00 g, 7.05 mmol) in THF (25 mL). LiOH (33.77 mg, 1.41 mmol) dissolved in water (3.4 mL) was added to the solution at 0°C. Cooling was then removed and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was diluted with dichloromethane and washed with water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The product was precipitated three times in hexane to remove unreacted citronellyl thiol. After filtration and vacuum drying at room temperature, PCHM-S powder was obtained in 80% yield. In PCHM-S, S represents the thioether moiety of the side chain. 1H NMR of PCHM-S [400MHz, CDCl 3 , δ(ppm), TMS ref]: 5.09(CH 2 -CH-C), 4.30-3.85(COO-CH 2 -CH), 2.75-2.48(CH 2 -S-CH 2 ) and 1.97(CH 2 -CH-C).
[폴리(3-시트로넬릴설피닐-2-하이드록시프로필 메타크릴레이트)(PCHM-SO)의 합성예][Synthesis example of poly(3-citronellylsulfinyl-2-hydroxypropyl methacrylate) (PCHM-SO)]
PCHM-SO(poly(3-citronellylsulfinyl-2-hydroxypropyl methacrylate))는 PCHM-S를 산화시켜 형성될 수 있다. PCHM-S(1.00g, 3.18mmol) 분말을 포함하는 100mL 둥근 바닥 플라스크에 과산화수소 용액(0.36g, 증류수 중 30중량% 용액) 및 10mL의 아세트산을 첨가하였다. 반응 혼합물을 30℃에서 밤새 교반하여 균질한 용액을 얻었다. 생성물을 디에틸 에테르에서 3회 침전시키고 여과한 후 상온에서 진공 건조하여 90% 수율로 PCHM-SO 분말을 얻었다. PCHM-SO에서 SO는 측쇄의 설폭사이드 모이어티를 나타낸다. PCHM-SO의 1H NMR [400MHz, CDCl3, δ(ppm), TMS ref]: 5.08(CH2-CH-C), 4.55-3.75(COO-CH2-CH), 3.05-2.65(CH2-SO-CH2) 및 2.00(CH2-CH-C).PCHM-SO (poly(3-citronellylsulfinyl-2-hydroxypropyl methacrylate)) can be formed by oxidizing PCHM-S. Hydrogen peroxide solution (0.36 g, 30 wt% solution in distilled water) and 10 mL of acetic acid were added to a 100 mL round bottom flask containing PCHM-S (1.00 g, 3.18 mmol) powder. The reaction mixture was stirred at 30°C overnight to obtain a homogeneous solution. The product was precipitated three times in diethyl ether, filtered, and vacuum dried at room temperature to obtain PCHM-SO powder in 90% yield. In PCHM-SO, SO represents the sulfoxide moiety of the side chain. 1H NMR of PCHM-SO [400MHz, CDCl 3 , δ(ppm), TMS ref]: 5.08(CH 2 -CH-C), 4.55-3.75(COO-CH 2 -CH), 3.05-2.65(CH 2 - SO-CH 2 ) and 2.00(CH 2 -CH-C).
[폴리(3-시트로넬릴설포닐-2-하이드록시프로필 메타크릴레이트)(PCHM-SO2)의 합성예][Synthesis example of poly(3-citronellylsulfonyl-2-hydroxypropyl methacrylate)(PCHM-SO 2 )]
PCHM-SO2(poly(3-citronellylsulfonyl-2-hydroxypropyl methacrylate))는 PCHM-S를 산화시켜 형성될 수 있다. PCHM-S(1.00g, 3.18mmol)를 125mL의 DMF에 용해시키고 증류수에 용해된 옥손(2.93g, 9.54mmol)을 상기 고분자 용액에 첨가하였다. 이 용액을 질소 조건의 오일 배스에서 60℃에서 24시간 동안 가열하였다. 생성물을 증류수에 3회 침전시키고 여과한 후 상온에서 진공 건조하여 85% 수율로 PCHM-SO2 분말을 얻었다. PCHM-SO2에서 SO2는 측쇄의 설폰 모이어티를 나타낸다. PCHM-SO21H NMR [400MHz, CDCl3, δ(ppm), TMS ref]: 5.08(CH2-CH-C), 4.60-3.85(COO-CH2-CH), 3.40-3.00(CH2-SO2-CH2) 및 1.99(CH2-CH-C).PCHM-SO 2 (poly(3-citronellylsulfonyl-2-hydroxypropyl methacrylate)) can be formed by oxidizing PCHM-S. PCHM-S (1.00 g, 3.18 mmol) was dissolved in 125 mL of DMF, and oxone (2.93 g, 9.54 mmol) dissolved in distilled water was added to the polymer solution. This solution was heated at 60°C for 24 hours in an oil bath under nitrogen conditions. The product was precipitated three times in distilled water, filtered, and vacuum dried at room temperature to obtain PCHM-SO 2 powder in 85% yield. In PCHM-SO 2 , SO 2 represents the sulfone moiety of the side chain. 1H NMR of PCHM-SO 2 [400MHz, CDCl 3 , δ(ppm), TMS ref]: 5.08(CH 2 -CH-C), 4.60-3.85(COO-CH 2 -CH), 3.40-3.00(CH 2 -SO 2 -CH 2 ) and 1.99(CH 2 -CH-C).
[시트로넬릴 글리시딜 에테르(CGE)의 합성예][Synthesis example of citronellyl glycidyl ether (CGE)]
CGE(citronellyl glycidyl ether)를 합성하여 PCHM-S의 티오에테르 모이어티 대신 에테르 모이어티를 포함하는 고분자를 제조하였다. 테트라부틸암모늄 브로마이드(0.52g, 1.60mmol) 및 수산화나트륨 용액(3.84g, 95.99mmol, 증류수 중 48중량% 용액)을 32mL 톨루엔 중 시트로넬롤(5g, 32.00mmol)의 용액에 첨가하였다. 상온에서 교반하면서 상기 용액에 에피클로로히드린(5.92g, 63.99mmol)을 첨가하고, 반응 혼합물을 50℃에서 6시간 동안 교반하였다. 반응 후 생성물을 디클로로메탄으로 희석하고 물로 세척하였다. 유기층을 무수 황산마그네슘으로 건조한 후 여과하고 감압 농축하여 95% 수율로 시트로넬릴 글리시딜 에테르(무색 오일)를 얻었다. CGE의 1H NMR [400MHz, CDCl3, δ(ppm), TMS ref]: 5.09(CH2-CH-C), 3.69(O-CH2-CH2-CH), 3.53(CH2-O-CH2-CH2-CH), 3.38(CH2-O-CH2-CH2-CH), 3.14(O-CH2-CH-CH2-O), 2.80(O-CH2-CH-CH2-O-CH2) 및 2.61(O-CH2-CH-CH2-O-CH2).CGE (citronellyl glycidyl ether) was synthesized to prepare a polymer containing an ether moiety instead of the thioether moiety of PCHM-S. Tetrabutylammonium bromide (0.52 g, 1.60 mmol) and sodium hydroxide solution (3.84 g, 95.99 mmol, 48% solution by weight in distilled water) were added to a solution of citronellol (5 g, 32.00 mmol) in 32 mL toluene. Epichlorohydrin (5.92 g, 63.99 mmol) was added to the solution while stirring at room temperature, and the reaction mixture was stirred at 50°C for 6 hours. After reaction, the product was diluted with dichloromethane and washed with water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure to obtain citronellyl glycidyl ether (colorless oil) in 95% yield. 1 H NMR of CGE [400 MHz, CDCl 3 , δ(ppm), TMS ref]: 5.09(CH 2 -CH-C), 3.69(O-CH 2 -CH 2 -CH), 3.53(CH 2 -O- CH 2 -CH 2 -CH), 3.38(CH 2 -O-CH 2 -CH 2 -CH), 3.14(O-CH 2 -CH-CH 2 -O), 2.80(O-CH 2 -CH-CH 2 -O-CH 2 ) and 2.61(O-CH 2 -CH-CH 2 -O-CH 2 ).
[폴리(메타크릴산)(PMA)의 합성예][Synthesis example of poly(methacrylic acid) (PMA)]
PMA(poly(methacrylic acid))는 4-시아노-4-(페닐카보노티오일티오)펜탄산을 체인 이동제로 사용하여 메타크릴산의 라프트(RAFT) 중합에 의해 합성될 수 있다. 메타크릴산(5g, 58.10mmol), AIBN(22.72mg, 0.14mmol) 및 4-시아노-4-(페닐카르보노티오일티오)펜탄산(0.116g, 0.41mmol)을 DMF 13mL에 용해시키고 용액을 3회의 동결-펌프-해동 사이클로 탈산소화시켰다. 탈산소화된 용액을 질소 조건의 오일 배스에서 80℃에서 16시간 동안 가열하였다. 반응 후 생성물을 디에틸 에테르에 3회 침전시켜 미반응 단량체를 제거하였다. 여과한 후 상온에서 진공 건조시켜 75% 수율로 PMA 분말을 얻었다. PMA의 1H NMR [400MHz, DMSO, δ(ppm), TMS ref]: 12.36(COOH), 1.85-1.60(CH2-C-CH3) 및 1.07-0.87(CH2-C-CH3).PMA (poly(methacrylic acid)) can be synthesized by RAFT polymerization of methacrylic acid using 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid as a chain transfer agent. Methacrylic acid (5g, 58.10mmol), AIBN (22.72mg, 0.14mmol), and 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (0.116g, 0.41mmol) were dissolved in 13mL of DMF and added to the solution. was deoxygenated through three freeze-pump-thaw cycles. The deoxygenated solution was heated at 80°C for 16 hours in an oil bath under nitrogen conditions. After the reaction, the product was precipitated in diethyl ether three times to remove unreacted monomers. After filtration, it was vacuum dried at room temperature to obtain PMA powder with a 75% yield. 1 H NMR of PMA [400 MHz, DMSO, δ(ppm), TMS ref]: 12.36 (COOH), 1.85-1.60 (CH 2 -C-CH 3 ) and 1.07-0.87 (CH 2 -C-CH 3 ).
[폴리(3-시트로넬릴옥시-2-하이드록시프로필 메타크릴레이트)(PCHM-O)의 합성예][Synthesis example of poly(3-citronellyloxy-2-hydroxypropyl methacrylate) (PCHM-O)]
CGE(4.93g, 23.24mmol) 및 테트라부틸암모늄 브로마이드(0.75g, 2.32mmol)를 57mL의 DMF 중 PMA(1g, 11.62mmol)의 용액에 첨가하였다. 반응 혼합물을 100℃에서 16시간 동안 교반하였다. 생성물을 에테르에 3회 침전시켜 미반응 CGE를 제거한 후 클로로포름에 용해시키고 상온에서 감압 건조하여 끈적끈적한 고체의 PCHM-O를 65% 수율로 얻었다. PCHM-O에서 O는 측쇄의 에테르 모이어티를 나타낸다. PCHM-O의 1H NMR [400MHz, CDCl3, δ(ppm), TMS ref]: 5.09(CH2-CH-C), 4.15-3.85(COO-CH2-CH), 3.65-3.30(CH2-O-CH2) 및 1.97(CH2-CH-C).CGE (4.93 g, 23.24 mmol) and tetrabutylammonium bromide (0.75 g, 2.32 mmol) were added to a solution of PMA (1 g, 11.62 mmol) in 57 mL of DMF. The reaction mixture was stirred at 100°C for 16 hours. The product was precipitated in ether three times to remove unreacted CGE, then dissolved in chloroform and dried under reduced pressure at room temperature to obtain PCHM-O as a sticky solid in 65% yield. In PCHM-O, O represents the ether moiety of the side chain. 1H NMR of PCHM-O [400MHz, CDCl 3 , δ(ppm), TMS ref]: 5.09(CH 2 -CH-C), 4.15-3.85(COO-CH 2 -CH), 3.65-3.30(CH 2 -O-CH 2 ) and 1.97(CH 2 -CH-C).
[PCHM-# 필름][PCHM-#Film]
PCHM-#는 측쇄에 다른 작용기를 포함하는 PCHM 고분자를 나타내고, PCHM-#에서 #는 측쇄의 작용기를 나타낸다. 예를 들어, PCHM-S, PCHM-SO, PCHM-SO2 및 PCHM-O는 각각 티오에테르, 설폭사이드, 설폰 및 에테르를 포함하는 PCHM 고분자를 나타낸다. 유리기판에 클로로포름 내 1wt% 고분자 용액을 스핀 코팅 공정(3,000rpm, 30초)으로 코팅한 후 밤새 진공건조하였다. 스핀 코팅으로 제조된 고분자 필름을 사용하여 고분자 필름의 살균 활성, 고분자 표면에 대한 세균 부착 및 표면 특성을 평가하였다.PCHM-# represents a PCHM polymer containing another functional group in the side chain, and # in PCHM-# represents a functional group in the side chain. For example, PCHM-S, PCHM-SO, PCHM-SO 2 and PCHM-O represent PCHM polymers containing thioethers, sulfoxides, sulfones and ethers, respectively. A 1 wt% polymer solution in chloroform was coated on a glass substrate using a spin coating process (3,000 rpm, 30 seconds) and then dried in vacuum overnight. Using a polymer film prepared by spin coating, the bactericidal activity of the polymer film, bacterial attachment to the polymer surface, and surface characteristics were evaluated.
[PCHM-# 필름의 살균 활성][Bactericidal activity of PCHM-# film]
PCHM-# 필름의 살균 활성은 대장균(E. coli; ATCC 700926)에 대한 필름 부착 테스트를 사용하여 조사되었다. 박테리아 현탁액을 제조하기 위해 대장균 세포를 37℃에서 18시간 동안 NB(Nutrient broth) 용액에서 배양하였다. 대표적인 균총(colony)을 백금 루프로 떼어내고 30mL의 영양액에 넣고 37℃에서 18시간 동안 흔들면서 배양하였다. 식염수(0.9wt% NaCl 용액)로 두 번 세척한 후 식염수에 재현탁하여 1×105 CFU(colony forming unit)/mL를 생성하였다. 박테리아 세포 농도는 600nm에서 세포 분산액의 흡광도를 측정하고 표준 보정 곡선을 참조하여 추정하였다. 600nm에서 0.1의 광학 밀도는 대략 108 CFU/mL에 해당한다.The bactericidal activity of the PCHM-# film was investigated using a film adhesion test against E. coli (ATCC 700926). To prepare a bacterial suspension, E. coli cells were cultured in NB (Nutrient broth) solution at 37°C for 18 hours. Representative colonies were removed with a platinum loop, placed in 30 mL of nutrient solution, and cultured with shaking at 37°C for 18 hours. After washing twice with saline solution (0.9 wt% NaCl solution), it was resuspended in saline solution to generate 1×10 5 CFU (colony forming unit)/mL. Bacterial cell concentration was estimated by measuring the absorbance of the cell dispersion at 600 nm and referring to a standard calibration curve. An optical density of 0.1 at 600 nm corresponds to approximately 10 8 CFU/mL.
PCHM-# 필름의 살균 활성을 평가하기 위해 페트리 접시에 위치한 PCHM-# 필름(2.5cm×2.5cm) 표면에 0.1mL의 세균 현탁액을 떨어뜨리고 동일한 크기의 OHP 필름으로 덮고 전체적으로 접촉하고 있는지 확인하였다. 25℃에서 24시간 후 0.9mL의 식염수 용액을 샘플이 들어 있는 페트리 접시에 부었다. 세게 흔들어서 부착 세포를 필름에서 분리한 후 용액 혼합물을 마이크로 튜브로 옮겼다.To evaluate the bactericidal activity of the PCHM-# film, 0.1 mL of bacterial suspension was dropped on the surface of the PCHM-# film (2.5 cm × 2.5 cm) placed in a Petri dish, covered with an OHP film of the same size, and checked to see if it was in full contact. After 24 hours at 25°C, 0.9 mL of saline solution was poured into the Petri dish containing the sample. The adhered cells were separated from the film by shaking vigorously and the solution mixture was transferred to a microtube.
생성된 용액을 연속 희석한 다음 각 희석액 0.1mL를 한천 플레이트(agar plates)에 번지게 했다. 37℃에서 18시간 동안 인큐베이션한 후 생존 가능한 미생물 균총을 계수하였다. 각 테스트는 최소 세 번 반복되었다. 살균 활성은 다음과 같이 계산되었다.The resulting solution was serially diluted, and then 0.1 mL of each dilution was spread on agar plates. After incubation at 37°C for 18 hours, viable microbial flora were counted. Each test was repeated at least three times. Bactericidal activity was calculated as follows.
살균 활성(Bactericidal activity)(%) = 100×(N0 - Ni)/N0 Bactericidal activity (%) = 100×(N 0 - N i )/N 0
상기 식에서, N0는 블랭크(blank)의 박테리아 CFU를 나타내고, Ni는 테스트 샘플의 박테리아 CFU를 나타낸다.In the above formula, N 0 represents the bacterial CFU of the blank and N i represents the bacterial CFU of the test sample.
[PE_S_6,8의 합성예][Synthesis example of PE_S_6,8]
PE_S_6_8은 주쇄에 티오에테르기를 포함하는 항균성 고분자를 나타낸다. 1,7-옥타디엔(octadiene) 2.0g(18.15mmol), 1,6-헥산디티올(hexanedithiol) 2.728g(18.15mmol), 및 DMPA(2,2-Dimethoxy-2-phenylacetophenone) 47.28mg을 20mL의 THF에 녹여 둥근바닥 플라스크에 넣은 후 1시간 동안 UV를 조사하였다. 생성물을 메탄올에 침전시킨 후 필터링을 통해 미반응물을 제거하였고, 이 과정을 3회 반복하였다. 얻어진 가루 형태의 고분자를 상온 진공 상태에서 하루 동안 건조하였다.PE_S_6_8 represents an antibacterial polymer containing a thioether group in the main chain. 20 mL of 2.0 g (18.15 mmol) of 1,7-octadiene, 2.728 g (18.15 mmol) of 1,6-hexanedithiol, and 47.28 mg of DMPA (2,2-Dimethoxy-2-phenylacetophenone) It was dissolved in THF, placed in a round bottom flask, and then irradiated with UV light for 1 hour. After precipitating the product in methanol, unreacted substances were removed through filtering, and this process was repeated three times. The obtained powdered polymer was dried at room temperature under vacuum for one day.
[PE_SO_6,8의 합성예][Synthesis example of PE_SO_6,8]
PE_SO_6,8은 주쇄에 설폭사이드기를 포함하는 항균성 고분자를 나타낸다. PE_SO_6,8은 PE_S_6,8의 티오에테르기를 산화시켜 제조될 수 있다. 합성한 PE_S_6,8 고분자 0.5g(3.84mmol)을 과산화수소 0.131g(3.84mmol) 및 아세트산 5mL와 함께 둥근바닥 플라스크에 넣은 후 30℃에서 24시간 동안 교반하면서 반응시켰다. 생성물을 디에틸 에테르에 침전시키 후 필터링하였고, 이 과정을 3회 반복하였다. 얻어진 고분자를 상온 진공 상태에서 하루 동안 건조하였다.PE_SO_6,8 represents an antibacterial polymer containing a sulfoxide group in the main chain. PE_SO_6,8 can be prepared by oxidizing the thioether group of PE_S_6,8. 0.5 g (3.84 mmol) of the synthesized PE_S_6,8 polymer was added to a round bottom flask along with 0.131 g (3.84 mmol) of hydrogen peroxide and 5 mL of acetic acid, and then reacted with stirring at 30°C for 24 hours. The product was precipitated in diethyl ether and filtered, and this process was repeated three times. The obtained polymer was dried at room temperature under vacuum for one day.
[공초점 레이저 스캐닝 현미경(CLSM) 이미지][Confocal laser scanning microscopy (CLSM) image]
공초점 레이저 스캐닝 현미경을 사용하여 고분자 필름에 부착된 살아있는 박테리아와 죽은 박테리아의 이미지를 얻었다. SYTO9은 살아있는 세포막과 죽은 세포막 모두에 투과할 수 있는 녹색 형광 핵 및 염색체 대조염색이다. PI는 적색 형광 염료로, 막 불투과성이며 일반적으로 생존 세포에서 배제된다. 따라서 SYTO9와 PI 혼합물은 일반적으로 살아있는 세포와 죽은 세포를 식별하는 데 사용된다.Images of live and dead bacteria attached to the polymer film were obtained using a confocal laser scanning microscope. SYTO9 is a green fluorescent nuclear and chromosome counterstain that can penetrate both living and dead cell membranes. PI is a red fluorescent dye that is membrane impermeable and is generally excluded from viable cells. Therefore, the SYTO9 and PI mixture is commonly used to distinguish between live and dead cells.
유리 기판에 코팅된 고분자 필름(2.5cm×2.5cm)을 6-웰 플레이트에 놓고 5mL의 박테리아 현탁액(108CFU/mL)으로 인큐베이션하였다. 흔들지 않고 25℃에서 24시간 후 상기 유리 기판을 1mL의 식염수로 2회 세척하고 SYTO9(0.01mM) 및 PI(0.02mM)를 사용하여 암실에서 20분 동안 염색하였다. 박테리아 염색에 사용되는 SYTO9와 PI 혼합물을 준비하기 위해 1μL의 PI 용액(DMSO 중 20mM)과 2μL의 SYTO9 용액(5mM)을 1mL의 증류수에 첨가하여 적절한 농도로 희석하였다. 상기 유리 기판을 식염수로 부드럽게 두 번 헹구고 커버슬립으로 덮었다. 샘플은 SYTO9에 대해 488nm 레이저를 사용하고 PI에 대해 545nm 레이저를 사용하는 공초점 레이저 스캐닝 현미경(CLSM)에 의해 특성화되었다.A polymer film (2.5 cm × 2.5 cm) coated on a glass substrate was placed in a 6-well plate and incubated with 5 mL of bacterial suspension (10 8 CFU/mL). After 24 hours at 25°C without shaking, the glass substrate was washed twice with 1 mL of saline solution and stained for 20 minutes in the dark using SYTO9 (0.01mM) and PI (0.02mM). To prepare the SYTO9 and PI mixture used for bacterial staining, 1 μL of PI solution (20 mM in DMSO) and 2 μL of SYTO9 solution (5 mM) were added to 1 mL of distilled water and diluted to the appropriate concentration. The glass substrate was gently rinsed twice with saline solution and covered with a coverslip. Samples were characterized by confocal laser scanning microscopy (CLSM) using a 488 nm laser for SYTO9 and a 545 nm laser for PI.
[고분자 필름에 대한 FITC-LPS 결합 분석][FITC-LPS binding analysis on polymer films]
각 고분자의 LPS 결합 친화도를 평가하기 위해 유리 기판(1cm×1cm)에 클로로포름 내 1wt% 고분자 용액을 드롭 캐스팅하여 고분자 필름을 제조하였다. 1mL의 FITC-LPS 용액(식염수 용액 내 0.1mg/10mL)을 24웰 플레이트의 각 웰에 첨가하였으며, 고분자 필름을 각 웰에 배치하였다. 빛을 피해 25℃에서 24시간 동안 부드럽게 흔든 후 각 웰의 용액 200μL를 투명한 24웰 플레이트에서 96웰 블랙 플레이트로 옮겼다. 고분자 필름에 의한 FITC-결합 LPS의 흡착은 485nm에서 FITC-LPS를 여기시키고 다중 모드 마이크로플레이트 판독기를 사용하여 535nm에서 FITC 방출을 모니터링하여 분석하였다.To evaluate the LPS binding affinity of each polymer, a polymer film was prepared by drop casting a 1 wt% polymer solution in chloroform on a glass substrate (1 cm × 1 cm). 1 mL of FITC-LPS solution (0.1 mg/10 mL in saline solution) was added to each well of a 24-well plate, and a polymer film was placed in each well. After gently shaking for 24 hours at 25°C, avoiding light, 200 μL of the solution from each well was transferred from a transparent 24-well plate to a 96-well black plate. The adsorption of FITC-conjugated LPS by the polymer film was analyzed by exciting FITC-LPS at 485 nm and monitoring FITC emission at 535 nm using a multimode microplate reader.
[특징 분석][Feature Analysis]
1H NMR 스펙트럼은 TMS를 기준으로 하여 상온에서 용매로 CDCl3 및 DMSO를 사용하여 분광계(400MHz)에서 기록되었다. 분자량(Mn, Mw) 및 다분산 지수(polydispersity index, PDI)는 Ultimate 3000 HPLC 시스템을 사용하여 겔 투과 크로마토그래피(GPC)로 분석하였다. HPLC 그레이드 DMF를 용리액으로 사용하였다. 고분자의 유리전이온도는 질소 분위기에서 시차 주사 열량계(differential scanning calorimetry, DSC)에 의해 조사되었다. 5 - 10 mg의 일반적인 질량을 갖는 샘플을 밀봉된 알루미늄 팬에 캡슐화하였다. 샘플을 먼저 120℃로 가열한 다음 -80℃로 퀜칭하였고 이어서 10℃/min의 가열 속도로 -80℃에서 120℃로 두 번째 가열 스캔을 수행하였다. 1 H NMR spectra were recorded on a spectrometer (400 MHz) at room temperature using CDCl 3 and DMSO as solvents, with TMS as the reference. Molecular weight (Mn, Mw) and polydispersity index (PDI) were analyzed by gel permeation chromatography (GPC) using an Ultimate 3000 HPLC system. HPLC grade DMF was used as the eluent. The glass transition temperature of the polymer was investigated by differential scanning calorimetry (DSC) in a nitrogen atmosphere. Samples with a typical mass of 5 - 10 mg were encapsulated in sealed aluminum pans. The sample was first heated to 120°C and then quenched to -80°C and then a second heating scan was performed from -80°C to 120°C at a heating rate of 10°C/min.
고분자와 인지질(phospholipid, POPE)의 상호작용을 알아보기 위해 POPE 1mg과 고분자 2mg을 클로로포름에 녹여 알루미늄 팬에 넣고 상온에서 감압 건조하였다. POPE만을 포함하는 DSC 샘플을 준비하기 위해 동일한 절차를 수행하였다. 샘플을 -80℃로 냉각하고 10℃/min의 가열 속도로 90℃까지 가열하였고 이어서, -80℃로 냉각하고 동일한 가열 속도로 -80℃에서 90℃까지 2차 가열 스캔하였다.To investigate the interaction between the polymer and phospholipid (POPE), 1 mg of POPE and 2 mg of the polymer were dissolved in chloroform, placed in an aluminum pan, and dried under reduced pressure at room temperature. The same procedure was performed to prepare DSC samples containing only POPE. The sample was cooled to -80°C and heated to 90°C at a heating rate of 10°C/min and then cooled to -80°C and subjected to a second heat scan from -80°C to 90°C at the same heating rate.
열중량 분석(TGA)은 질소(N2) 분위기에서 수행되었다. 샘플을 100℃로 가열하고, 10분간 등온시킨 후 10℃의 가열 속도로 700℃로 가열하였다. FT-IR 스펙트럼은 600~4000cm-1의 진동 주파수 범위에서 8cm-1의 분해능으로 분광 광도계의 흡수 모드에서 기록되었다. 라만 스펙트럼은 532nm 레이저를 사용하여 라만 분광계에서 기록되었다.Thermogravimetric analysis (TGA) was performed in a nitrogen (N 2 ) atmosphere. The sample was heated to 100°C, isothermal for 10 minutes, and then heated to 700°C at a heating rate of 10°C. FT-IR spectra were recorded in the absorption mode of the spectrophotometer with a resolution of 8 cm -1 in the vibration frequency range of 600 to 4000 cm -1 . Raman spectra were recorded on a Raman spectrometer using a 532 nm laser.
POPE를 포함하는 고분자 필름을 제조하기 위해 POPE 1mg과 고분자 2mg을 클로로포름에 녹인 후 유리 기판(1cm×1cm)에 드롭 캐스팅한 후 상온에서 하루 동안 감압 건조하였다. 600nm에서 박테리아 현탁액의 흡광도는 상온에서 자외선-가시광선 분광계(UV-Visible spectrometer)로 측정되었다. 표면 모폴로지와 토폴로지는 원자력 현미경(atomic force microscopy, AFM)으로 조사하였다. Mg/Al(1486.69 eV)을 방사선원으로 사용하여 X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)으로 고분자 필름의 표면 조성을 분석하였다. 조사 스캔이 수행된 후 C 1s, O 1s, N 1s 및 S 2p 영역에서 30°각도에서 0-1500eV 범위의 고해상도 스캔이 수행되었다.To prepare a polymer film containing POPE, 1 mg of POPE and 2 mg of the polymer were dissolved in chloroform, drop-casted on a glass substrate (1 cm × 1 cm), and dried under reduced pressure at room temperature for one day. The absorbance of the bacterial suspension at 600 nm was measured with a UV-Visible spectrometer at room temperature. Surface morphology and topology were investigated by atomic force microscopy (AFM). The surface composition of the polymer film was analyzed using X-ray photoelectron spectroscopy (XPS) using Mg/Al (1486.69 eV) as a radiation source. After the survey scan was performed, high-resolution scans in the range of 0-1500 eV at an angle of 30° were performed in the C 1s, O 1s, N 1s and S 2p regions.
고분자 표면의 디요오도-메탄과 물의 접촉각은 물방울 모양 분석 소프트웨어를 실행하는 컴퓨터에 연결된 물방울 모양 분석기로 측정되었다. 각각의 샘플에 대한 접촉각은 독립적으로 제조된 고분자 필름에 대해 5회 이상 측정하였으며, 그 평균값을 데이터로 사용하였다. OWRK(Owens-Wendt-Rabel-Kaelble) 방법은 고분자 필름의 표면 에너지를 계산하는 데 사용되었다. PCHM-# 필름의 제타 전위는 전기 영동 광산란 분광 광도계로 측정하였다.The contact angle between diiodo-methane and water on the polymer surface was measured with a droplet shape analyzer connected to a computer running droplet shape analysis software. The contact angle for each sample was measured more than five times on independently prepared polymer films, and the average value was used as data. The Owens-Wendt-Rabel-Kaelble (OWRK) method was used to calculate the surface energy of the polymer film. The zeta potential of PCHM-# films was measured by electrophoretic light scattering spectrophotometry.
도 1은 PCHM-#의 합성 방법을 나타내고, 도 2는 (a) PCHM-S, (b) PCHM-SO, (c) PCHM-SO2, and (d) PCHM-O의 1H NMR 스펙트럼을 나타낸다. PCHM-#에서 #은 시트로넬릴 유사체를 2-하이드록시프로필 메타크릴레이트 기반 고분자와 연결하는 작용기를 의미하고, S, SO, SO2 및 O는 각각 티오에테르, 설폭사이드, 설폰 및 에테르를 의미한다.Figure 1 shows the synthesis method of PCHM-#, and Figure 2 shows the 1 H NMR spectra of (a) PCHM-S, (b) PCHM-SO, (c) PCHM-SO 2 , and (d) PCHM-O. indicates. In PCHM-#, # refers to the functional group linking the citronellyl analogue to the 2-hydroxypropyl methacrylate-based polymer, and S, SO, SO 2 and O refer to thioether, sulfoxide, sulfone and ether, respectively. do.
도 1 및 도 2를 참조하면, 4-시아노-4-(페닐카르보노티오일티오)펜탄산을 체인 이동제로 사용하여 GMA의 라프트 중합에 의해 합성된 PGMA의 에폭시와 시트로넬릴 티올의 티올 간 반응에 의해 합성된다. 시트로넬릴 티올은 사브롬화 탄소(carbon tetrabromide)를 할로겐화물 소스로 사용하여 시트로넬롤의 아펠(Appel) 반응에 의해 제조된 시트로넬릴 브로마이드와 티오우레아(thiourea)의 반응으로 합성되며, 시트로넬릴 브로마이드와 시트로넬릴 티올의 화학 구조는 1H NMR로 확인된다.Referring to Figures 1 and 2, the epoxy of PGMA and the thiol of citronellyl thiol were synthesized by raft polymerization of GMA using 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid as a chain transfer agent. It is synthesized through liver reaction. Citronellyl thiol is synthesized by the reaction of thiourea with citronellyl bromide prepared by the Appel reaction of citronellol using carbon tetrabromide as a halide source. The chemical structures of nellyl bromide and citronellyl thiol were confirmed by 1 H NMR.
시트로넬릴 티올의 치환도는 1H NMR에 의해 확인된 바와 같이 100%이며, PGMA의 에폭시 모이어티의 양성자 피크는 에폭시-티올 반응 후에 사라진다. PCHM-S의 티오에테르 모이어티는 과산화수소와 옥손을 각각 산화제로 사용하여 설폭사이드와 설폰으로 산화되며 옥손은 시트로넬릴 유사체에서 이중 결합의 산화를 방지하기 위해 사용된다.The degree of substitution of citronellyl thiol is 100% as confirmed by 1 H NMR, and the proton peak of the epoxy moiety of PGMA disappears after the epoxy-thiol reaction. The thioether moiety of PCHM-S is oxidized to sulfoxide and sulfone using hydrogen peroxide and oxone as oxidizing agents, respectively, and oxone is used to prevent oxidation of the double bond in the citronellyl analogue.
PCHM-S, PCHM-SO 및 PCHM-SO2의 황에 부착된 탄소의 양성자 피크는 황의 산화수 및 전자를 끄는 산소의 수의 증가에 따라 점차적으로 낮은 장(downfield)으로 이동하고, 이는 해당 작용기로의 성공적인 산화를 나타낸다. The proton peak of the carbon attached to sulfur in PCHM-S, PCHM-SO and PCHM-SO 2 gradually shifts to the lower field with the increase in the oxidation number of sulfur and the number of electron-withdrawing oxygen, which leads to the corresponding functional group. indicates successful oxidation.
PCHM-O는 TBAB를 촉매로 사용하여 시트로넬릴 글리시딜 에테르(CGE)의 에폭시기와 PMA의 카르복실기의 반응에 의해 합성되고, PMA는 PGMA 합성에 사용된 동일한 체인 이동제를 사용하여 메타크릴산의 라프트 중합에 의해 합성된다.PCHM-O is synthesized by the reaction of the epoxy group of citronellyl glycidyl ether (CGE) and the carboxyl group of PMA using TBAB as a catalyst, and PMA is synthesized by methacrylic acid using the same chain transfer agent used in the synthesis of PGMA. It is synthesized by raft polymerization.
CGE는 상전이 촉매인 TBAB의 존재 하에서 시트로넬롤과 에피클로로히드린의 반응으로 합성되며, 1H NMR로 화학 구조를 확인할 수 있다. PMA의 카르복시산에서 나온 양성자 피크는 CGE와 반응한 후 사라지는데, 이는 PMA의 모든 카르복시산 작용기가 CGE와 반응했음을 나타낸다.CGE is synthesized through the reaction of citronellol and epichlorohydrin in the presence of TBAB, a phase transfer catalyst, and its chemical structure can be confirmed by 1 H NMR. The proton peak from the carboxylic acid of PMA disappears after reaction with CGE, indicating that all carboxylic acid functional groups of PMA reacted with CGE.
도 3은 PE_S_6,8 및 PE_SO_6,8의 합성 방법을 나타내고, 도 4는 PE_S_6,8 및 PE_SO_6,8의 1H NMR 스펙트럼을 나타내며, 도 5는 PE_S_6,8 및 PE_SO_6,8의 FT-IR 스펙트럼을 나타낸다.Figure 3 shows the synthesis method of PE_S_6,8 and PE_SO_6,8, Figure 4 shows the 1 H NMR spectra of PE_S_6,8 and PE_SO_6,8, and Figure 5 shows the FT-IR spectrum of PE_S_6,8 and PE_SO_6,8. indicates.
도 3 내지 도 5를 참조하면, PE_S_6_8는 DMPA(2,2-Dimethoxy-2-phenylacetophenone)를 촉매로 사용하여 1,7-옥타디엔(octadiene)과 1,6-헥산디티올(hexanedithiol)을 반응시켜 합성된다. PE_SO_6,8은 합성한 PE_S_6,8 고분자를 과산화수소 및 아세트산과 함께 둥근바닥 플라스크에 넣은 후 반응시켜 제조된다.Referring to Figures 3 to 5, PE_S_6_8 uses DMPA (2,2-Dimethoxy-2-phenylacetophenone) as a catalyst to react 1,7-octadiene and 1,6-hexanedithiol. It is synthesized by PE_SO_6,8 is manufactured by placing the synthesized PE_S_6,8 polymer in a round bottom flask with hydrogen peroxide and acetic acid and then reacting.
PE_S_6,8 및 PE_SO_6,8의 구조는 1H NMR에 의해 확인되었다. 티오에테르기의 산화 이후에 황에 부착된 메틸렌기의 수소에 해당하는 피크가 낮은 장(downfield)으로 이동하여 산화가 진행되었음이 확인되었다. 또, PE_SO_6,8의 FT-IR 스펙트럼에서 설폭사이드에 해당하는 1098cm-1 위치의 피크가 관찰되어 산화가 잘 진행되었음이 확인되었다. The structures of PE_S_6,8 and PE_SO_6,8 were confirmed by 1 H NMR. After oxidation of the thioether group, the peak corresponding to the hydrogen of the methylene group attached to sulfur moved to the lower field, confirming that oxidation had progressed. In addition, in the FT-IR spectrum of PE_SO_6,8, a peak at 1098 cm -1 corresponding to sulfoxide was observed, confirming that oxidation had proceeded well.
도 6은 PCHM-#의 FT-IR 스펙트럼을 나타내고, 도 7은 PCHM-S, PCHM-SO, 및 PCHM-SO2의 S 2p XPS 스펙트럼을 나타낸다.Figure 6 shows the FT-IR spectrum of PCHM-#, and Figure 7 shows the S 2p XPS spectrum of PCHM-S, PCHM-SO, and PCHM-SO 2 .
도 6 및 도 7을 참조하면, PCHM-#의 측쇄에 있는 작용기에 해당하는 특징적인 피크는 고분자의 성공적인 합성을 보여준다. PCHM-#의 FT-IR 스펙트럼에서 3100 - 3300cm-1 범위의 특징적인 수산기 피크(hydroxyl peak)는 PGMA의 에폭시 모이어티와 CGE의 개환 반응으로 인해 나타난다. PCHM-SO의 수산기 피크는 측쇄의 극성 설폭사이드기와 수산기가 수소 결합을 형성할 수 있기 때문에 다른 고분자에 비해 가장 낮은 파수에서 나타난다. 904cm-1에서 PGMA의 에폭시 모이어티에 할당된 특징적인 피크는 티올-에폭시 반응 후에 사라지며, 이는 모든 에폭시 모이어티가 시트로넬릴 티올과 반응했음을 보여주고, 1H NMR 스펙트럼과 일치한다.Referring to Figures 6 and 7, the characteristic peaks corresponding to the functional groups in the side chain of PCHM-# show the successful synthesis of the polymer. In the FT-IR spectrum of PCHM-#, a characteristic hydroxyl peak in the range of 3100 - 3300 cm -1 appears due to the ring-opening reaction between the epoxy moiety of PGMA and CGE. The hydroxyl peak of PCHM-SO appears at the lowest wave number compared to other polymers because the polar sulfoxide group and hydroxyl group of the side chain can form hydrogen bonds. The characteristic peak assigned to the epoxy moiety of PGMA at 904 cm -1 disappears after the thiol-epoxy reaction, showing that all epoxy moieties were reacted with citronellyl thiol, consistent with the 1 H NMR spectrum.
PCHM-S의 성공적인 산화는 PCHM-SO의 FT-IR 스펙트럼에서 996cm-1에서 설폭사이드의 특성 피크가 나타나고, PCHM-SO2의 FT-IR 스펙트럼에서 1123 및 1274cm-1에서 설폰의 특성 피크가 나타나는 것으로 명확하게 확인된다. Successful oxidation of PCHM-S results in the appearance of the characteristic peak of sulfoxide at 996 cm -1 in the FT-IR spectrum of PCHM-SO, and the appearance of characteristic peaks of sulfone at 1123 and 1274 cm -1 in the FT-IR spectrum of PCHM-SO 2 It is clearly confirmed that
PCHM-O의 FT-IR 스펙트럼에서 에테르기에 할당된 1113cm-1의 피크가 나타나고 CGE 치환 후 PMA의 카르보닐기의 특성 피크가 1699에서 1728cm-1로 이동하여 100% 치환도를 갖는 PCHM-O의 성공적인 합성을 나타낸다.In the FT-IR spectrum of PCHM-O, a peak at 1113 cm -1 assigned to the ether group appears, and after CGE substitution, the characteristic peak of the carbonyl group of PMA shifts from 1699 to 1728 cm -1 , resulting in the successful synthesis of PCHM-O with 100% substitution degree. represents.
PCHM-S, PCHM-SO 및 PCHM-SO2에서 황의 산화 상태는 S 2p의 XPS 스펙트럼으로 분석되었으며, 황 피크는 황 산화수가 증가함에 따라 더 높은 결합 에너지로 이동한다. PCHM-#의 분자량 및 다분산성은 THF에서 PCHM-SO의 낮은 용해도로 인해 용리액으로 DMF를 사용하는 GPC 분석에 의해 조사되었다. 황 함유 고분자의 분자량은 황 산화수가 증가함에 따라 증가하는데, 이는 산소의 첨가가 반복 단위의 분자량 및 DMF 내 고분자의 용해도를 증가시키기 때문이다. PCHM-#의 분자량(Mn)은 19,000 - 32,000 범위로 큰 차이가 없으며 물리적으로 안정적인 필름을 제조하기에 충분하다.The oxidation state of sulfur in PCHM-S, PCHM-SO and PCHM-SO 2 was analyzed by the XPS spectrum of S 2p, and the sulfur peak shifts to higher binding energy with increasing sulfur oxidation number. The molecular weight and polydispersity of PCHM-# were investigated by GPC analysis using DMF as eluent due to the low solubility of PCHM-SO in THF. The molecular weight of sulfur-containing polymers increases with increasing sulfur oxidation number, because the addition of oxygen increases the molecular weight of the repeating unit and the solubility of the polymer in DMF. The molecular weight (Mn) of PCHM-# is in the range of 19,000 - 32,000, which is not much different and is sufficient to produce a physically stable film.
도 8은 대장균에 대한 PCHM-#의 항균 테스트 결과를 나타내고, 도 9는 PCHM-#의 살균 활성을 나타내며, 도 10은 PCHM-# 필름에 부착된 대장균의 CLSM 이미지를 나타낸다.Figure 8 shows the antibacterial test results of PCHM-# against E. coli, Figure 9 shows the bactericidal activity of PCHM-#, and Figure 10 shows a CLSM image of E. coli attached to the PCHM-# film.
도 8 내지 도 10을 참조하면, 스핀 코팅 방법으로 제조된 PCHM-# 필름의 살균 활성은 에탄올로 세척한 유리를 음성 대조군으로 사용하여 대장균에 대해 평가하였다. PCHM-# 필름 중 PCHM-SO 필름이 한천 플레이트 상에 박테리아 균총이 없는 99.99%의 가장 효과적인 살균 활성을 보였다.Referring to Figures 8 to 10, the bactericidal activity of the PCHM-# film prepared by spin coating was evaluated against E. coli using glass washed with ethanol as a negative control. Among the PCHM-# films, the PCHM-SO film showed the most effective bactericidal activity of 99.99%, showing no bacterial flora on the agar plate.
PCHM-SO2 및 PCHM-O의 한천 플레이트에는 몇 개의 박테리아 균총이 있는 반면 PCHM-S의 한천 플레이트에는 많은 박테리아 균총이 발견되었으며 PCHM-SO2, PCHM-O 및 PCHM-S의 살균 활성은 각각 88.19, 84.25, 15.34%이다. PCHM-S는 측쇄에 시트로넬릴 유사체가 존재함에도 불구하고 비교적 낮은 살균 활성을 나타내어 측쇄의 작용기가 중합체의 살균 활성에 상당한 영향을 미친다는 것을 나타낸다.While there were a few bacterial flora on the agar plates of PCHM-SO 2 and PCHM-O, many bacterial flora were found on the agar plates of PCHM-S, and the bactericidal activities of PCHM-SO 2 , PCHM-O and PCHM-S were 88.19, respectively. , 84.25, 15.34%. PCHM-S shows relatively low bactericidal activity despite the presence of citronellyl analogs in the side chain, indicating that the functional groups in the side chain have a significant impact on the bactericidal activity of the polymer.
고분자 필름에 대한 세균 부착은 살아있는 세균과 죽은 세균을 구별하기 위해 SYTO9와 PI의 염료 혼합물로 염색된 대장균의 형광 현미경 이미지를 관찰하여 측정되었다. 부착된 살아있는 박테리아 및 죽은 박테리아의 수는 이미지 프로그램에 의해 계산되었으며, PCHM-SO, PCHM-SO2 및 PCHM-O의 CLSM 이미지에는 녹색 형광으로 SYTO9에 의해 염색된 살아있는 박테리아가 거의 없거나 전혀 없었다. PCHM-S 필름에는 살아있는 박테리아가 많이 관찰되었으며 이는 살균 활성 테스트 결과와 일치한다.Bacterial adhesion to the polymer film was measured by observing fluorescence microscopy images of E. coli stained with a dye mixture of SYTO9 and PI to distinguish between live and dead bacteria. The number of attached live and dead bacteria was calculated by the image program, and CLSM images of PCHM-SO, PCHM-SO 2 and PCHM-O showed few or no live bacteria stained by SYTO9 with green fluorescence. Many live bacteria were observed on the PCHM-S film, which is consistent with the bactericidal activity test results.
PCHM-S, PCHM-SO, PCHM-SO2, PCHM-O에 대하여 부착된 박테리아의 총수는 각각 141, 39, 31, 122이며, PCHM-S 및 PCHM-O 필름에 부착된 세균의 수가 PCHM-SO 및 PCHM-SO2 필름의 4배 정도이다. 즉, 고분자 필름과 박테리아 사이의 상호 작용은 고분자 측쇄의 작용기에 크게 의존하여 살균 활성과 박테리아 접착력이 다르게 나타난다.The total number of bacteria attached to PCHM-S, PCHM-SO, PCHM-SO2, and PCHM-O is 141, 39, 31, and 122, respectively, and the number of bacteria attached to PCHM-S and PCHM-O films is 141, 39, 31, and 122, respectively. and about 4 times that of the PCHM-SO 2 film. In other words, the interaction between the polymer film and bacteria is highly dependent on the functional groups of the polymer side chain, resulting in different bactericidal activity and bacterial adhesion.
도 11은 대장균에 대한 PE_S_6,8 및 PE_SO_6,8의 항균 테스트 결과를 나타낸다. PE_S_6,8 및 PE_SO_6,8의 항균 테스트는 PCHM-#의 항균 테스트와 동일한 방법으로 수행하였다.Figure 11 shows the antibacterial test results of PE_S_6,8 and PE_SO_6,8 against E. coli. The antibacterial test of PE_S_6,8 and PE_SO_6,8 was performed in the same manner as the antibacterial test of PCHM-#.
도 11을 참조하면, PE_SO_6,8은 대장균에 대하여 95% 이상의 항균성을 보였고, PE_S_6,8 보다 우수한 항균성을 갖는 것으로 나타나, PE_SO_6,8 고분자의 항균성은 주쇄에 위치한 설폭사이드기에 기인한다는 것이 확인되었다.Referring to Figure 11, PE_SO_6,8 showed over 95% antibacterial activity against E. coli and appeared to have superior antibacterial activity to PE_S_6,8, confirming that the antibacterial activity of the PE_SO_6,8 polymer was due to the sulfoxide group located in the main chain.
박테리아 부착의 억제는 유해한 박테리아 감염의 가능성을 줄이기 위해 중요하기 때문에 특히 바이오 의료 기기의 경우 표면 특성과 박테리아 부착 사이의 관계를 밝히기 위해 많은 연구가 수행되어 왔다. PCHM-# 필름에 대한 세균 부착을 이해하기 위해 표면 거칠기, 제타 전위 및 표면 에너지를 사용하여 PCHM-# 필름의 표면 특성을 분석하여 표 1에 나타내었다. Because inhibition of bacterial adhesion is important to reduce the likelihood of harmful bacterial infection, many studies have been conducted to elucidate the relationship between surface properties and bacterial adhesion, especially for biomedical devices. To understand bacterial attachment on PCHM-# films, the surface properties of PCHM-# films were analyzed using surface roughness, zeta potential and surface energy, which are shown in Table 1.
[표 1][Table 1]
Figure PCTKR2023012133-appb-img-000001
Figure PCTKR2023012133-appb-img-000001
표 1을 참조하면, 모든 고분자 필름은 1-3 nm 범위의 작은 Ra 값으로 매끄러운 표면을 가지므로 표면 거칠기는 박테리아 접착에 영향을 미치는 요인에서 제외되었다. 대장균 외막의 최외곽 성분은 반복되는 당기(sugar group)에 수산기(hydroxyl group)를 포함하고 내부 코어에 인산기(phosphate group)를 포함하는 지질다당류(lipopolysaccharide, LPS)이며, 이러한 수산기와 인산기는 대장균의 전반적인 음의 제타 전위를 설명할 수 있다. 따라서 정전기적 반발력에 의해 음전하를 띤 표면에 박테리아 부착을 크게 억제할 수 있다. 모든 PCHM-# 필름은 고분자 백본의 카르보닐 모이어티에 높은 전기음성도의 산소가 존재하기 때문에 음의 제타 전위를 나타낸다.Referring to Table 1, all polymer films had smooth surfaces with small Ra values in the range of 1–3 nm, so surface roughness was excluded as a factor affecting bacterial adhesion. The outermost component of the E. coli outer membrane is lipopolysaccharide (LPS), which contains a hydroxyl group in the repeating sugar group and a phosphate group in the inner core. These hydroxyl and phosphate groups are of E. coli. This can explain the overall negative zeta potential. Therefore, the attachment of bacteria to negatively charged surfaces can be greatly inhibited by electrostatic repulsion. All PCHM-# films exhibit negative zeta potential due to the presence of highly electronegative oxygen in the carbonyl moiety of the polymer backbone.
PCHM-S, PCHM-SO, PCHM-SO2, 및 PCHM-O의 제타 전위는 각각 -31.28, -44.81, -41.85, -17.85 mV이며, 대체로 작용기의 쌍극자 모멘트가 증가할수록 제타 전위의 절대값이 증가한다. 이는 두 공유 전자가 모두 황에서 오는 배위 단일 결합에 의해 황에 부착된 음으로 하전된 산소로 인한 것이다. 따라서 PCHM-SO 및 PCHM-SO2 필름은 다른 고분자 필름보다 더 큰 음의 제타 전위를 나타내므로 이러한 고분자 필름과 박테리아 사이의 정전기적 반발력이 커서 박테리아 부착을 효과적으로 억제한다.The zeta potentials of PCHM-S, PCHM-SO, PCHM-SO 2 , and PCHM-O are -31.28, -44.81, -41.85, and -17.85 mV, respectively. In general, as the dipole moment of the functional group increases, the absolute value of the zeta potential decreases. increases. This is due to the negatively charged oxygen being attached to sulfur by a coordinating single bond with both shared electrons coming from sulfur. Therefore, PCHM-SO and PCHM-SO 2 films exhibit a larger negative zeta potential than other polymer films, so the electrostatic repulsion between these polymer films and bacteria is large, effectively inhibiting bacterial attachment.
정적 접촉각과 표면 에너지도 고분자 표면의 박테리아 부착을 이해하기 위해 측정되었다(표 1). 고분자 필름이 박테리아 현탁액과 완전히 접촉했을 때 살균 활성 및 박테리아 부착을 조사하였으므로 정적 접촉각 및 표면 에너지는 25℃에서 24시간 동안 식염수 용액에 침지된 고분자 필름을 사용하여 측정하였다. 고분자 필름을 일정한 온도의 물에 담그면 고분자의 친수성 모이어티가 고분자 필름과 물의 계면에 위치하는 경향이 있다. 또, 온도가 고분자의 유리전이온도에 가까울 때 물 분자가 가소제 역할을 하고 고분자가 그 온도에서 비정질 상태이기 때문에 고분자가 열역학적으로 안정한 구조로 쉽게 어셈블될 수 있다. 따라서 고분자 필름의 물 접촉각 값은 24시간 동안 식염수에 담근 후 주조된 고분자 필름에 비해 작아진다.Static contact angle and surface energy were also measured to understand bacterial attachment on polymer surfaces (Table 1). Since the bactericidal activity and bacterial attachment were investigated when the polymer film was in full contact with the bacterial suspension, the static contact angle and surface energy were measured using the polymer film immersed in a saline solution at 25°C for 24 hours. When a polymer film is immersed in water at a certain temperature, the hydrophilic moiety of the polymer tends to be located at the interface between the polymer film and water. Additionally, when the temperature is close to the glass transition temperature of the polymer, water molecules act as a plasticizer and the polymer is in an amorphous state at that temperature, so the polymer can be easily assembled into a thermodynamically stable structure. Therefore, the water contact angle value of the polymer film becomes smaller than that of the polymer film cast after being immersed in saline solution for 24 hours.
PCHM-S와 PCHM-O는 유리전이온도가 34.5℃와 15.2℃로 낮고, 25℃에 가까우므로 PCHM-S와 PCHM-O가 PCHM-SO와 PCHM-SO2에 비해 침지 후 물 접촉각 값의 감소가 더 크다. 주조 필름의 경우 PCHM-SO 및 PCHM-SO2의 물 접촉각 값은 측쇄의 극성 작용기로 인해 PCHM-S 및 PCHM-O의 물 접촉각 값보다 작다.PCHM-S and PCHM-O have low glass transition temperatures of 34.5℃ and 15.2℃, and are close to 25℃, so the water contact angle value of PCHM-S and PCHM-O decreases after immersion compared to PCHM-SO and PCHM-SO 2 is bigger. For cast films, the water contact angle values of PCHM-SO and PCHM-SO 2 are smaller than those of PCHM-S and PCHM-O due to the polar functional groups in the side chains.
PCHM-SO와 PCHM-SO2의 식염수 침지 전과 후의 물 접촉각 값을 비교하면, 고분자 필름에 의해 흡수된 물의 양이 PCHM-SO 필름에서 가장 크기 때문에 PCHM-SO의 침지 후 물 접촉각 값의 감소가 PCHM-SO2의 감소보다 더 크다. PCHM-SO의 극성 설폭사이드기는 물과 강한 수소 결합을 형성할 수 있어 고분자가 많은 양의 물을 흡수하게 되며, 이는 다른 고분자에 비해 더 낮은 파수에서 수산기 피크가 있는 PCHM-SO의 FT-IR 스펙트럼으로도 확인할 수 있다. Comparing the water contact angle values of PCHM-SO and PCHM-SO 2 before and after immersion in saline solution, the amount of water absorbed by the polymer film is the largest in the PCHM-SO film, so the decrease in water contact angle value after immersion of PCHM-SO is observed for PCHM-SO. It is greater than the decrease in -SO 2 . The polar sulfoxide group of PCHM-SO can form strong hydrogen bonds with water, causing the polymer to absorb a large amount of water, which results in the FT-IR spectrum of PCHM-SO having hydroxyl peaks at lower wavenumbers compared to other polymers. You can also check this.
대장균은 30.7°의 낮은 물 접촉각과 67.1mN/m의 높은 표면 에너지를 나타내어 대장균의 표면이 외막의 극성 인산기과 수산기로 인해 친수성임을 나타낸다. 고분자 표면의 박테리아 부착은 고분자 표면과 박테리아 세포의 표면 에너지 차이가 작을수록 증가하므로 PCHM-#의 경우 표면 에너지가 낮은 고분자 표면에서 박테리아 부착이 억제된다. 따라서 다른 고분자 필름에 비해 상대적으로 낮은 표면 에너지 값과 더 큰 음의 제타 전위를 갖는 PCHM-SO 및 PCHM-SO2 필름에서 박테리아 부착이 효과적으로 억제된다.E. coli exhibits a low water contact angle of 30.7° and a high surface energy of 67.1 mN/m, indicating that the surface of E. coli is hydrophilic due to the polar phosphate and hydroxyl groups of the outer membrane. Bacterial adhesion to a polymer surface increases as the difference in surface energy between the polymer surface and bacterial cells decreases, so in the case of PCHM-#, bacterial adhesion is suppressed on polymer surfaces with low surface energy. Therefore, bacterial adhesion is effectively inhibited on PCHM-SO and PCHM-SO2 films, which have relatively low surface energy values and larger negative zeta potential compared to other polymer films.
항균성 고분자는 박테리아의 외막 무결성을 파괴하여 사멸에 이르게 하므로 고분자와 박테리아의 외막 사이의 상호작용은 고분자의 항균성을 결정짓는 중요한 요소 중 하나이다. 대장균 외막의 최외각 성분은 인산기 및 수산기 모이어티(phosphate and hydroxyl moieties)를 포함하는 LPS이므로 고분자 필름에 대한 LPS 결합 친화도는 마이크로플레이트 판독기(microplate reader)를 이용하여 FITC가 결합된 LPS의 형광성을 측정하여 분석하였다. 1mL의 FITC-LPS 용액(식염수 용액 내 0.1mg/10mL)을 24웰 플레이트의 각 웰에 첨가하고, PCHM-# 필름을 각 웰에 배치하고, 25℃에서 24시간 동안 부드럽게 혼합하였다. 혼합 후 고분자 필름으로 처리된 FITC-LPS 용액과 깨끗한 유리로 처리한 용액 간의 형광 강도를 비교하여 고분자 필름에 결합된 LPS의 양을 측정하여 표 2에 나타내었다. 표 2는 535nm에서 FITC-LPS 용액의 형광 광도와 PCHM-# 필름에 흡착된 LPS의 양을 나타낸다.Since antibacterial polymers destroy the integrity of the outer membrane of bacteria, leading to their death, the interaction between the polymer and the outer membrane of bacteria is one of the important factors that determines the antibacterial properties of polymers. Since the outermost component of the E. coli outer membrane is LPS containing phosphate and hydroxyl moieties, the LPS binding affinity to the polymer film is measured by measuring the fluorescence of FITC-conjugated LPS using a microplate reader. It was measured and analyzed. 1 mL of FITC-LPS solution (0.1 mg/10 mL in saline solution) was added to each well of a 24-well plate, and PCHM-# film was placed in each well and mixed gently for 24 hours at 25°C. After mixing, the fluorescence intensity between the FITC-LPS solution treated with the polymer film and the solution treated with clean glass was compared to measure the amount of LPS bound to the polymer film, which is shown in Table 2. Table 2 shows the fluorescence intensity of the FITC-LPS solution at 535 nm and the amount of LPS adsorbed on the PCHM-# film.
[표 2][Table 2]
Figure PCTKR2023012133-appb-img-000002
Figure PCTKR2023012133-appb-img-000002
표 2를 참조하면, PCHM-SO 필름으로 처리된 용액의 형광 강도는 다른 고분자로 처리된 것보다 현저히 낮으며, 이는 강한 수소 결합을 형성하는 설폭사이드 모이어티의 능력으로 인해 PCHM-SO와 LPS 사이의 효과적인 상호 작용을 나타낸다. PCHM-SO2 및 PCHM-O의 고분자 필름으로 처리된 용액은 깨끗한 유리로 처리된 용액에 비해 형광 강도가 낮고 PCHM-SO 필름으로 처리된 용액의 형광 강도보다는 높은데, 이는 LPS가 PCHM-SO에 비해 상대적으로 약한 수소 결합으로 PCHM-SO2 및 PCHM-O의 고분자 필름에 결합된다는 것을 나타낸다.Referring to Table 2, the fluorescence intensity of solutions treated with PCHM-SO films is significantly lower than those treated with other polymers, which is due to the ability of the sulfoxide moiety to form strong hydrogen bonds between PCHM-SO and LPS. indicates effective interaction. The fluorescence intensity of solutions treated with polymer films of PCHM-SO 2 and PCHM-O is lower than that of solutions treated with clean glass and higher than that of solutions treated with PCHM-SO films, as LPS has a lower fluorescence intensity than that of solutions treated with PCHM-SO. It indicates that it is bound to the polymer films of PCHM-SO 2 and PCHM-O through relatively weak hydrogen bonds.
에테르 모이어티는 티오에테르 모이어티보다 수소 결합 반경이 작기 때문에 에테르 모이어티는 티오에테르 모이어티에 비해 더 강한 수소 결합 착물을 형성한다. 따라서 PCHM-S 필름과 LPS 사이의 상호작용은 모든 고분자 필름 중에서 가장 약하며, 이는 PCHM-S로 처리한 용액과 깨끗한 유리로 처리한 용액 사이의 유사한 형광 강도로 입증된다. LPS 결합 친화도는 고분자의 측쇄 작용기에 따라 크게 달라지며, 측쇄 작용기의 수소 결합 강도가 높을수록 결합된 LPS의 양이 증가한다.Because the ether moiety has a smaller hydrogen bond radius than the thioether moiety, the ether moiety forms a stronger hydrogen bond complex than the thioether moiety. Therefore, the interaction between PCHM-S film and LPS is the weakest among all polymer films, as evidenced by the similar fluorescence intensity between solutions treated with PCHM-S and those treated with pristine glass. LPS binding affinity varies greatly depending on the side chain functional group of the polymer, and the higher the hydrogen bond strength of the side chain functional group, the greater the amount of bound LPS.
도 12는 1640 - 1800cm-1 범위에서 PCHM-# 필름의 라만 스펙트럼을 나타내고, 도 13은 1000 - 1200cm-1 범위에서 PCHM-# 필름의 라만 스펙트럼을 나타낸다. 도 12 및 도 13에서 실선은 POPE를 포함하지 않는 PCHM-# 필름에 해당하고, 점선은 POPE를 포함하는 PCHM-# 필름(POPE 혼합 PCHM-S 필름)에 해당한다. POPE를 포함하지 않는 PCHM-# 필름은 클로로포름 내 1wt% 고분자 용액을 드롭 캐스팅하여 제조되고, POPE 혼합 PCHM-# 필름은 클로로포름 내 POPE 및 고분자(POPE:고분자=1:2(w/w))의 용액 혼합물을 드롭 캐스팅하여 제조된다. Figure 12 shows the Raman spectrum of the PCHM-# film in the range of 1640 - 1800 cm -1 , and Figure 13 shows the Raman spectrum of the PCHM-# film in the range of 1000 - 1200 cm -1 . In Figures 12 and 13, the solid line corresponds to the PCHM-# film containing no POPE, and the dotted line corresponds to the PCHM-# film containing POPE (POPE mixed PCHM-S film). The PCHM-# film without POPE is manufactured by drop casting a 1 wt% polymer solution in chloroform, and the POPE mixed PCHM-# film is made by drop casting of POPE and polymer (POPE: polymer = 1:2 (w/w)) in chloroform. It is prepared by drop casting the solution mixture.
도 12 및 도 13을 참조하면, POPE의 카르보닐 모이어티에 할당된 특징적인 피크는 1740cm-1에서 나타나며, 이는 POPE 혼합 PCHM-S 필름을 제외한 모든 POPE 혼합 고분자 필름에 비해 더 높은 파수이며, 이는 POPE와 PCHM-S를 제외한 다른 고분자 사이의 상호작용이 POPE 분자 간의 상호 작용보다 더 강하다는 것을 나타낸다.Referring to Figures 12 and 13, the characteristic peak assigned to the carbonyl moiety of POPE appears at 1740 cm -1 , which is a higher wave number compared to all POPE blended polymer films except the POPE blended PCHM-S film, which is This indicates that the interactions between polymers other than PCHM-S and PCHM-S are stronger than those between POPE molecules.
1064, 1096, 1128cm-1에서 POPE의 인산기의 특징적인 피크가 나타나며, 이는 헤드 기의 -P-O-, 꼬리 기의 PO2- 및 -P-O-의 진동 모드에 해당한다. 이 세 가지 특징적인 피크는 PCHM-S가 있는 POPE 혼합 필름의 라만 스펙트럼에서 명확하게 구별되는 반면 이러한 피크는 PCHM-SO 및 PCHM-SO2가 있는 POPE 혼합 필름의 라만 스펙트럼에서 구별되지 않음을 나타낸다. POPE의 인산기와 고분자 사이의 상호 작용은 PCHM-S보다 PCHM-SO, PCHM-SO2, 및 PCHM-O에 대하여 더 강하다. Characteristic peaks of the phosphate group of POPE appear at 1064, 1096, and 1128 cm -1 , which correspond to the vibrational modes of -PO- in the head group, PO 2 - and -PO- in the tail group. These three characteristic peaks are clearly distinguished in the Raman spectra of the POPE blended film with PCHM-S, whereas these peaks are indistinguishable in the Raman spectra of the POPE blended film with PCHM-SO and PCHM-SO 2 . The interaction between the phosphate group of POPE and the polymer is stronger for PCHM-SO, PCHM-SO 2 , and PCHM-O than for PCHM-S.
라만 스펙트럼을 이용하여 POPE와 고분자의 특징적인 작용기 피크의 위치와 모양을 비교하여 POPE와 PCHM-# 간의 상호작용을 조사한 결과 POPE와 PCHM-S 간의 상호작용이 다른 고분자에 비해 가장 약한 것으로 나타났다.As a result of investigating the interaction between POPE and PCHM-# by comparing the positions and shapes of the characteristic functional group peaks of POPE and the polymer using Raman spectra, it was found that the interaction between POPE and PCHM-S was the weakest compared to other polymers.
도 14는 PCHM-#와 POPE의 혼합물(PCHM-#:POPE=2:1(w/w))의 제1 가열 스캔의 DSC 곡선을 나타내고, 도 15는 PCHM-#와 POPE의 혼합물(PCHM-#:POPE=2:1(w/w))의 제2 가열 스캔의 DSC 곡선을 나타낸다.Figure 14 shows the DSC curve of the first heating scan of the mixture of PCHM-# and POPE (PCHM-#:POPE=2:1 (w/w)), and Figure 15 shows the DSC curve of the mixture of PCHM-# and POPE (PCHM-#:POPE=2:1(w/w)). #:POPE=2:1(w/w)) shows the DSC curve of the second heating scan.
인지질은 극성 헤드 기와 소수성 꼬리에 기인하는 셀프 어셈블리를 통해 다양한 상 거동을 가지며 인지질의 상전이는 DSC 분석을 통해 인식될 수 있다. 인지질의 상전이는 인지질의 구성 및 구조와 같은 내부 요인과 온도, pH, 수분 함량 및 용질의 존재와 같은 외부 요인에 따라 달라진다. 용질과 같은 다른 분자의 존재는 POPE 분자 간의 상호 작용을 억제하여 POPE 셀프 어셈블리를 방해할 수 있다.Phospholipids have diverse phase behaviors through self-assembly resulting from polar head groups and hydrophobic tails, and phase transitions in phospholipids can be recognized through DSC analysis. The phase transition of phospholipids depends on internal factors such as the composition and structure of the phospholipids and external factors such as temperature, pH, water content, and the presence of solutes. The presence of other molecules, such as solutes, can inhibit POPE self-assembly by inhibiting interactions between POPE molecules.
POPE와 고분자가 혼합된 POPE의 위상 거동은 DSC 팬에 POPE 용액 또는 클로로포름 내 고분자 혼합 POPE 용액(POPE:고분자=1:2(w/w))을 첨가한 후 실온에서 진공 건조하여 제조한 샘플을 사용하여 DSC 분석으로 조사하였다.The phase behavior of POPE, a mixture of POPE and polymer, was determined by adding a POPE solution or a polymer mixed POPE solution in chloroform (POPE: polymer = 1:2 (w/w)) to a DSC pan and vacuum drying the sample at room temperature. was investigated using DSC analysis.
도 14를 참조하면, 제1 가열 스캔에서 두 가지 상전이가 있는 것으로 나타났다. 10.18℃의 저온에서의 제1 전이는 겔에서 액정으로 소수성 알킬 사슬의 사슬 용융 전이에 해당하고, 이중층 구조에서 역육각형 구조로의 전이에 해당하는 53.01℃의 더 높은 온도에서 낮은 엔탈피 전이가 뒤따른다. 제1 가열 스캔에서 PCHM-S, PCHM-SO, PCHM-SO2 및 PCHM-O의 용융 피크는 POPE의 제1 용융 온도보다 낮은 5 ~ 8℃ 부근에서 나타나 POPE의 알킬 사슬은 PCHM-S, PCHM-SO2 및 PCHM-O가 있을 때 덜 타이트하게 채워졌다. PCHM-SO의 경우 47.09℃에서 용융 피크가 나타나 POPE의 제2 전이온도와 유사하며, PCHM-SO와 POPE의 강한 상호작용이 POPE의 겔 형성을 방지하기 때문에 PCHM-SO의 존재 하에서는 제1 용융 피크의 엔탈피 변화가 가장 작게 나타난다.Referring to Figure 14, the first heating scan showed that there were two phase transitions. The first transition at a lower temperature of 10.18 °C corresponds to the chain melting transition of hydrophobic alkyl chains from gel to liquid crystal, followed by a lower enthalpy transition at a higher temperature of 53.01 °C, corresponding to the transition from a bilayer structure to an inverted hexagonal structure. . In the first heating scan, the melting peaks of PCHM-S, PCHM-SO, PCHM-SO 2 and PCHM-O appear around 5 to 8°C, which is lower than the first melting temperature of POPE, and the alkyl chains of POPE are PCHM-S and PCHM. Less tightly packed in the presence of -SO 2 and PCHM-O. In the case of PCHM-SO, the melting peak appears at 47.09°C, which is similar to the second transition temperature of POPE. Since the strong interaction between PCHM-SO and POPE prevents gel formation of POPE, the first melting peak occurs in the presence of PCHM-SO. The enthalpy change appears to be the smallest.
도 15를 참조하면, 제2 가열 스캔에서 제1 사슬 용융 전이가 POPE에서 지배적이며 고분자 혼합 POPE의 용융 피크가 POPE보다 낮은 온도에서 나타난다. 고분자 혼입 후 용융 온도의 감소는 다른 고분자에 비해 PCHM-SO의 경우 훨씬 더 크며, 이는 강력한 수소 결합을 형성할 수 있는 설폭사이드 결합으로 인해 POPE와 PCHM-SO 사이의 가장 강한 상호 작용을 나타낸다. 고분자 혼합 POPE의 용융 피크는 POPE의 상전이에 기인하므로 고분자 혼합 POPE의 상전이 엔탈피 변화는 POPE의 중량을 전체 중량으로 보정하여 재계산하였다. PCHM-SO, PCHM-SO2, PCHM-O의 경우 전이 엔탈피가 POPE보다 작아 POPE와 이들 고분자 간의 상호작용이 POPE 분자 사이의 사슬 패킹(chain packing)을 억제함을 알 수 있다.Referring to Figure 15, in the second heating scan, the first chain melting transition is dominant in POPE and the melting peak of polymer blend POPE appears at a lower temperature than that of POPE. The decrease in melting temperature after polymer incorporation is much larger for PCHM-SO compared to other polymers, indicating the strongest interaction between POPE and PCHM-SO due to the sulfoxide bonds that can form strong hydrogen bonds. Since the melting peak of the polymer-mixed POPE is due to the phase transition of POPE, the change in phase transition enthalpy of the polymer-mixed POPE was recalculated by correcting the weight of POPE to the total weight. In the case of PCHM-SO, PCHM-SO 2 , and PCHM-O, the transition enthalpy is smaller than that of POPE, indicating that the interaction between POPE and these polymers inhibits chain packing between POPE molecules.
POPE와 PCHM-S 사이의 상호작용이 다른 고분자에 비해 약하기 때문에 PCHM-S 혼합 POPE의 전이 엔탈피는 POPE와 거의 유사하다. 고분자가 존재할 때 POPE의 위상 거동은 고분자의 측쇄에 있는 작용기에 의해 크게 영향을 받으며, 고분자에 작용기가 있을 때 POPE와 강한 수소 결합을 형성하면 고분자가 POPE 분자 사이의 사슬 패킹을 효과적으로 교란시킨다.Because the interaction between POPE and PCHM-S is weaker than that of other polymers, the transition enthalpy of POPE mixed with PCHM-S is almost similar to that of POPE. When a polymer is present, the phase behavior of POPE is greatly influenced by the functional groups on the side chains of the polymer, and when functional groups are present on the polymer, forming strong hydrogen bonds with POPE effectively disrupts the chain packing between POPE molecules.
이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, we have looked at specific embodiments of the present invention. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.
본 발명의 실시예들에 따른 고분자 및 고분자 필름은 우수한 항균성을 가질 수 있다. 상기 항균성 고분자는 제조 방법이 간단하고 대량 생산이 용이하다.Polymers and polymer films according to embodiments of the present invention may have excellent antibacterial properties. The antibacterial polymer has a simple manufacturing method and is easy to mass produce.

Claims (11)

  1. 박테리아 세포막과 수소 결합을 하는 작용기를 포함하는 항균성 고분자.An antibacterial polymer containing functional groups that hydrogen bond with bacterial cell membranes.
  2. 제 1 항에 있어서,According to claim 1,
    상기 작용기는 상기 항균성 고분자의 주쇄 및 측쇄 중 적어도 하나에 위치하는 것을 특징으로 하는 항균성 고분자.An antibacterial polymer, characterized in that the functional group is located on at least one of the main chain and the side chain of the antibacterial polymer.
  3. 제 1 항에 있어서,According to claim 1,
    상기 작용기는 박테리아 세포막의 지질다당류(lipopolysaccharide) 및 인지질(phospholipid) 중 적어도 하나와 수소 결합을 하는 것을 특징으로 하는 항균성 고분자.An antibacterial polymer characterized in that the functional group forms a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
  4. 제 1 항에 있어서,According to claim 1,
    상기 작용기는 S 및 O 중 적어도 하나를 포함하는 것을 특징으로 하는 항균성 고분자.An antibacterial polymer, characterized in that the functional group includes at least one of S and O.
  5. 제 3 항에 있어서,According to claim 3,
    상기 작용기는 설폭사이드(SO)를 포함하는 것을 특징으로 하는 항균성 고분자.An antibacterial polymer characterized in that the functional group includes sulfoxide (SO).
  6. 제 1 항에 있어서,According to claim 1,
    상기 항균성 고분자는 시트로넬롤 유래 고분자를 포함하는 것을 특징으로 하는 항균성 고분자.The antibacterial polymer is an antibacterial polymer, characterized in that it contains a citronellol-derived polymer.
  7. 제 6 항에 있어서,According to claim 6,
    상기 작용기는 시트로넬릴 유사체를 메타크릴레이트 기반 고분자와 연결하는 것을 특징으로 하는 항균성 고분자.An antibacterial polymer characterized in that the functional group connects a citronellyl analog to a methacrylate-based polymer.
  8. 설폭사이드(SO) 작용기를 포함하는 항균성 고분자.Antibacterial polymer containing a sulfoxide (SO) functional group.
  9. 제 8 항에 있어서,According to claim 8,
    상기 설폭사이드 작용기는 상기 항균성 고분자의 주쇄 및 측쇄 중 적어도 하나에 위치하는 것을 특징으로 하는 항균성 고분자.An antibacterial polymer, characterized in that the sulfoxide functional group is located in at least one of the main chain and the side chain of the antibacterial polymer.
  10. 제 8 항에 있어서,According to claim 8,
    상기 설폭사이드 작용기는 박테리아 세포막의 지질다당류(lipopolysaccharide) 및 인지질(phospholipid) 중 적어도 하나와 수소 결합을 하는 것을 특징으로 하는 항균성 고분자.An antibacterial polymer characterized in that the sulfoxide functional group forms a hydrogen bond with at least one of lipopolysaccharide and phospholipid of the bacterial cell membrane.
  11. 제 1 항 내지 제 10 항 중 어느 하나의 항균성 고분자를 포함하는 항균성 고분자 필름.An antibacterial polymer film comprising the antibacterial polymer of any one of claims 1 to 10.
PCT/KR2023/012133 2022-09-08 2023-08-16 Antimicrobial polymer and antimicrobial polymer film containing same WO2024053896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0114088 2022-09-08
KR1020220114088A KR20240035076A (en) 2022-09-08 2022-09-08 Antibaterial polymer and antibaterial polymer film

Publications (1)

Publication Number Publication Date
WO2024053896A1 true WO2024053896A1 (en) 2024-03-14

Family

ID=90191370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012133 WO2024053896A1 (en) 2022-09-08 2023-08-16 Antimicrobial polymer and antimicrobial polymer film containing same

Country Status (2)

Country Link
KR (1) KR20240035076A (en)
WO (1) WO2024053896A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120068806A (en) * 2009-06-08 2012-06-27 유니버시티 오브 매사추세츠 Antimicrobial polymers
JP2018070890A (en) * 2013-04-09 2018-05-10 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Antimicrobial cationic polycarbonate
KR20210147972A (en) * 2020-05-28 2021-12-07 주식회사 엘지화학 Antibacterial polymer composition
CN114478834A (en) * 2022-02-28 2022-05-13 江南大学 Guanidino hyaluronic acid antibacterial polymer and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120068806A (en) * 2009-06-08 2012-06-27 유니버시티 오브 매사추세츠 Antimicrobial polymers
JP2018070890A (en) * 2013-04-09 2018-05-10 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Antimicrobial cationic polycarbonate
KR20210147972A (en) * 2020-05-28 2021-12-07 주식회사 엘지화학 Antibacterial polymer composition
CN114478834A (en) * 2022-02-28 2022-05-13 江南大学 Guanidino hyaluronic acid antibacterial polymer and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUK, JINSOL ET AL.: "2PS-3: Synthesis and Structure-antibacterial Activity Relationships of Various Polymers Containing Plant-based Citronellol.", PROCEEDINGS OF THE POLYMER SOCITEY OF KOREA 2015 SPRING CONFERENCE, POLYMER SOCIETY OF KOREA, KR, vol. 46, no. 1, 1 January 2021 (2021-01-01), KR , pages 77 - 77, XP009555099, ISSN: 2384-0307 *

Also Published As

Publication number Publication date
KR20240035076A (en) 2024-03-15

Similar Documents

Publication Publication Date Title
Müller et al. Influences of protein films on antibacterial or bacteria-repellent surface coatings in a model system using silicon wafers
US8568872B2 (en) Catechol functionalized polymers and method for preparing them
US20100162494A1 (en) Functionalized nanoparticles
WO2016159734A1 (en) Bleed-free injection needle coated with crosslinked chitosan having introduced catechol group and oxidized catechol group
WO2024053896A1 (en) Antimicrobial polymer and antimicrobial polymer film containing same
WO2016098969A1 (en) Protein-polymer-graphene oxide nanocomposite, and film comprising same
WO2015046968A1 (en) Organic/inorganic hybrid tio2 complex, cosmetic composition containing same, and method for manufacturing same
WO2014069728A1 (en) Method for forming coating film including nitrogen monoxide on surface of material by using catecholamine
Gurol et al. Phthalocyanine functionalized poly (vinyl alcohol) s via CuAAC click chemistry and their antibacterial properties
WO2022035198A1 (en) Method for preparing metallopolymer-based coating solution
Lou et al. Self-disinfecting PDMS surfaces with high quaternary ammonium functionality by direct surface photoinitiated polymerization of vinylbenzyl dimethylbutylammonium chloride
US20190313642A1 (en) A simultaneously antimicrobial and protein-repellent polyzwitterion
Mukherjee et al. Matrix assisted antibacterial activity of polymer conjugates with pendant antibiotics, and bioactive and biopassive moieties
FR2536405A1 (en) CIPO - Patent
Blackman et al. Dual Action Antimicrobial Surfaces: Alternating Photopatterns Maintain Contact‐Killing Properties with Reduced Biofilm Formation
Adelmann et al. Functional polymethacrylates as bacteriostatic polymers
WO2019235742A1 (en) Antibacterial agent comprising metal-organic framework compound, and antibacterial silicone and antibacterial hydrogel comprising same
Prasad et al. Thiophene-derived polymer dots for imaging endocytic compartments in live cells and broad-spectrum bacterial killing
CN113754564B (en) Antibacterial amidine oligomer with drug resistance and preparation method and application thereof
WO2020235846A1 (en) Uv-curable, highly transparent, and amphiphobic fluorinated silica hybrid material having anti-fingerprint and anti-fouling properties
WO2023211184A1 (en) Antibacterial polymer composition comprising polymer compound obtained by graft polymerizing cationic monomer and fluorine-based acrylic monomer to fluorine-based copolymer
WO2024128515A1 (en) Antibacterial composition
Lv et al. A fluorescent quaternary phosphonium main-chain-type polymer: an opportunity to fabricate functional materials with excellent antibacterial activity and bacterial imaging capability
WO2010053240A1 (en) Low temperature processable and photocurable organic insulator and organic thin film transistor using the same
WO2022146086A1 (en) Γ-hydroxybutyric-acid-based compound-sensitive chromogenic compound, and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863375

Country of ref document: EP

Kind code of ref document: A1