WO2024053728A1 - Subject state prediction and application of same - Google Patents

Subject state prediction and application of same Download PDF

Info

Publication number
WO2024053728A1
WO2024053728A1 PCT/JP2023/032811 JP2023032811W WO2024053728A1 WO 2024053728 A1 WO2024053728 A1 WO 2024053728A1 JP 2023032811 W JP2023032811 W JP 2023032811W WO 2024053728 A1 WO2024053728 A1 WO 2024053728A1
Authority
WO
WIPO (PCT)
Prior art keywords
blink
subject
value
eye
estimating
Prior art date
Application number
PCT/JP2023/032811
Other languages
French (fr)
Japanese (ja)
Inventor
伸 手嶋
光將 栗田
耕志 山本
典子 西川
大樹 神山
信孝 服部
Original Assignee
住友ファーマ株式会社
学校法人順天堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ファーマ株式会社, 学校法人順天堂 filed Critical 住友ファーマ株式会社
Publication of WO2024053728A1 publication Critical patent/WO2024053728A1/en

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present disclosure relates to a method of estimating the state of a target based on the value of a parameter related to blinking. Furthermore, the present disclosure also relates to methods of evaluating therapeutic or preventive drugs or other medical techniques for a subject.
  • Parkinson's disease is one of the progressive neurodegenerative diseases whose main symptoms are abnormalities in extrapyramidal function. Pathologically, dopamine neuron loss and alpha-synuclein deposition in the substantia nigra pars compacta are observed. Clinically, it exhibits various motor symptoms such as akinesia, resting tremor, muscle rigidity, and loss of postural reflexes.
  • Parkinson's disease treatment is drug therapy aimed at replenishing dopamine in the brain, and drugs containing the dopamine precursor levodopa (L-DOPA, levodopa) are used as the first-line drug for the initial treatment of Parkinson's disease. be done.
  • L-DOPA dopamine precursor levodopa
  • L-DOPA dopamine precursor levodopa
  • PD-LID levodopa-induced dyskinesia
  • Motor complications such as dyskinesia (sometimes referred to as dyskinesia) occur.
  • Typical symptoms of diurnal fluctuations include wearing-off, on-off, no-on, and delayed-on phenomena.
  • wearing-off is caused by, as mentioned above, when the ability to retain dopamine in the synaptic cleft decreases as the disease progresses, the dopamine concentration in the brain fluctuates depending on the blood concentration of levodopa, and as a result, the blood concentration of levodopa is below the safe therapeutic range, and the duration of the effect of levodopa is shortened.
  • Peak-dose dyskinesia is known as a typical symptom of PD-LID, and it is an involuntary disorder that appears on the face, tongue, neck, limbs, trunk, etc. when the blood concentration of levodopa is high. It's exercise.
  • the present disclosure was completed by discovering that the value of a parameter related to blinking serves as an index for estimating the state of a subject.
  • the subject is preferably a Parkinson's disease patient or a patient suspected of having Parkinson's disease, and more preferably a Parkinson's disease patient undergoing treatment with L-DOPA, an L-DOPA-related compound, or a dopamine agonist.
  • the present disclosure provides:
  • a method of estimating a state of a target comprising: A) obtaining the value of a parameter related to the subject's blink; B) estimating the state of the object based on at least the value of the parameter related to the blink.
  • the parameter related to blinking is at least one of the following: eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, degree of eye opening, blink duration, and number of blinks. or a combination according to item 1.
  • the step B) includes estimating the state of the subject based on the elapsed time after administering L-DOPA, an L-DOPA-related compound, or a dopamine agonist to the subject and the blink-related parameter. , the method described in any one of items 1 to 4.
  • the condition includes a condition indicated by an index that can be used for clinical evaluation.
  • the condition is according to any one of items 1 to 6, including a condition indicated by at least one of the presence or absence of dyskinesia, ON-OFF, MDS-UPDRS Part III score, UDysRS score, and plasma levodopa concentration. Method described.
  • (Item 8) 8. The method according to any one of items 1 to 7, wherein the subject is a Parkinson's disease patient being treated with L-DOPA, an L-DOPA-related compound, or a dopamine agonist.
  • (Item 8A) 9. The method of any one of items 1-8, wherein estimating the state of the object includes predicting a future state of the object.
  • a method of estimating a state of a target comprising: A) acquiring eyeball information of the subject; B) A method comprising the step of estimating the condition of the subject based on the eyeball information and the elapsed time after administering L-DOPA, an L-DOPA-related compound, or a dopamine agonist to the subject.
  • a method for estimating the condition of a Parkinson's disease patient being treated with L-DOPA, an L-DOPA-related compound, or a dopamine agonist comprising: A) obtaining a blink confidence value of the patient; B) estimating the condition of the patient based on the blink confidence value and the elapsed time after administering L-DOPA, an L-DOPA-related compound, or a dopamine agonist to the patient; The method, wherein the condition includes at least one of the presence or absence of dyskinesia, ON-OFF, MDS-UPDRS Part III score, UDysRS score, and plasma levodopa concentration.
  • the step A) further includes obtaining at least one value of the patient's blink interval, blink energy, blink duration, and number of blinks,
  • the step B) is based on the value of the blink confidence, the elapsed time, and the value of at least one of the blink interval, blink energy, blink duration, and number of blinks.
  • the method according to item 10 comprising estimating a state of.
  • the system of item 12 comprising the features described in one or more of the above items.
  • (Item 13) A program for estimating a state of a target, the program being executed in a computer including a processor, the program comprising: A) obtaining the value of a parameter related to the subject's blink; B) A program that causes the processor to perform a process including: estimating the state of the object based on at least the value of the parameter related to the blink. (Item 13A) 14. The program according to item 13, comprising the features described in one or more of the above items. (Item 13B) A computer-readable storage medium storing the program according to item 13 or 13A.
  • (Item 14) A method of evaluating a therapeutic or preventive drug or other medical technology for a subject, the method comprising: A) obtaining the value of a parameter related to the subject's blink; B) calculating an estimated effective amount or effective level or usage or administration of the therapeutic or prophylactic drug or other medical technique based on at least the value of the blink-related parameter. (Item 15) The method according to item 14, further comprising determining a therapeutic or prophylactic drug or other medical technique recommended for the subject based on the calculated estimated effective amount or effective level or dosage or administration. . (Item 15A) 15. A method according to item 14, comprising the features described in one or more of the above items.
  • (Item 16) A system for evaluating therapeutic or preventive drugs or other medical techniques for a subject, means for acquiring the value of a parameter related to the blink of the subject; and means for calculating an estimated effective amount or effective level or usage or administration of the therapeutic or prophylactic drug or other medical technique based on at least the value of the blink-related parameter. (Item 16A) 17.
  • the system of item 16 comprising the features described in one or more of the above items.
  • (Item 17) A program for evaluating therapeutic or preventive drugs or other medical techniques for a subject, the program being executed on a computer including a processor, the program comprising: A) obtaining the value of a parameter related to the subject's blink; B) Calculating an estimated effective amount or effective level or usage or dosage of the therapeutic or prophylactic drug or other medical technology based on at least the value of the blink-related parameter. ,program. (Item 17A) 18. The program according to item 17, comprising the features described in one or more of the above items. (Item 17B) A computer-readable storage medium storing the program according to item 17 or 17A.
  • a target health management method Performing the method described in any one of items 1 to 11, determining whether or not to treat the subject based on the results of the method; If it is determined that treatment should be performed on the subject, taking action for health management of the subject.
  • the action includes performing the treatment on the target, issuing an alert that the treatment should be performed on the target, and administering a predetermined drug or therapy to the target.
  • the method according to item 18, comprising at least one of the following.
  • a target health management system An estimation system configured to perform the method described in any one of items 1 to 11; means for determining whether or not to treat the subject based on the output from the estimation system; A system comprising means for taking action for health management of the subject when it is determined that the subject should be treated.
  • the system of item 20 comprising the features described in one or more of the above items.
  • (Item 21) A target health management program, the program being executed on a computer comprising a processor, the program comprising: Performing the method described in any one of items 1 to 11, determining whether or not to treat the subject based on the results of the method; A program that causes the processor to perform processing including: issuing an instruction to take action for health management of the subject when it is determined that treatment should be taken for the subject.
  • the program according to item 21, comprising the features described in one or more of the above items.
  • (Item 21B) A computer-readable storage medium storing the program according to item 21 or 21A.
  • the present disclosure allows the state of a target to be easily estimated.
  • the present disclosure can provide a method of estimating the condition of a Parkinson's disease patient or a patient suspected of having Parkinson's disease, etc., which is practically possible.
  • Flowchart of how to estimate or predict the state of a target Flowchart of a method for evaluating therapeutic or prophylactic drugs or other medical techniques for a subject Diagram showing an example of the configuration of the system 10
  • Diagram showing an example of the configuration of system 10A A diagram showing an example of the configuration of a system 1000 of the present disclosure
  • a diagram showing an example of the configuration of the user device 100 A diagram showing an example of the configuration of a server device 200
  • Diagram schematically showing the test procedure of Example 1 Diagram showing an example of data measured from one patient Diagram showing the results of estimation performance evaluation for unknown data Diagram showing the results of estimation performance evaluation for unknown data Diagram showing the results of estimation performance evaluation for unknown data Diagram showing the results of estimation performance evaluation for unknown data Diagram showing the results of estimation performance evaluation for unknown data Diagram showing the results of determining the presence or absence of dyskinesia for unknown data and learning data of patient #20
  • subject is used in the same meaning as “subject” and “subject”, and refers to a human being for whom the treatment, diagnosis, or test of the present disclosure is performed, and the subject is suffering from a disease. is used synonymously with “patient”.
  • the subject is preferably a Parkinson's disease patient undergoing treatment with L-DOPA, L-DOPA related compounds or dopamine agonists.
  • dopamine or a substance biologically equivalent to dopamine refers to dopamine or any substance that has a similar function to dopamine in vivo.
  • One such function is as a neurotransmitter, and there are three main neural pathways through which dopamine acts: the nigrostriatal tract, mesolimbic tract, mesencephalic tract, and the nigrostriatal tract. Since the striatal tract is associated with Parkinson's disease, this specification specifically refers to the biological equivalent of dopamine as referred to herein, if it can be said that it is biologically equivalent in relation to the nigrostriatal tract. It corresponds to an equivalent substance.
  • substances biologically equivalent to dopamine include, for example, levodopa (L-3,4-dihydroxyphenylalanine (IUPAC name is (S)-2-amino-3-(3,4-dihydroxyphenyl) ) propanoic acid), also called L-dopa), L-3,4-dihydroxyphenylalanine, bromocriptine, pergolide, talipexole, cabergoline, pramipexole, ropinirole, rotigotine, apomorphine, etc. but is not limited to these.
  • L-DOPA, L-DOPA-related compounds, or dopamine agonists refers to the pharmacological effects of L-DOPA through metabolism in the body when administered to a living body (for example, a Parkinson's disease patient). For example, it refers to a substance that exhibits the biological function of "dopamine or a substance biologically equivalent to dopamine," and includes L-DOPA, L-DOPA-related compounds, and dopamine agonists. Ru.
  • dopamine agonist includes, but is not limited to, L-3,4-dihydroxyphenylalanine, bromocriptine, pergolide, talipexole, cabergoline, pramipexole, ropinirole, rotigotine, apomorphine, and the like.
  • L-DOPA and “levodopa” are synonymous.
  • L-DOPA a compound related to L-DOPA
  • L-DOPA related compounds include, but are not limited to, esters of L-3,4-dihydroxyphenylalanine and salts thereof.
  • esters of L-3,4-dihydroxyphenylalanine are levodopa ethyl ester (LDEE; ethyl (2S)-2-amino-3-(3,4-dihydroxyphenyl)propanoate), levodopapropyl ester; Propyl (2S)-2-amino-3-(3,4-dihydroxyphenyl)propanoate), levodopa methyl ester (methyl (2S)-2-amino-3-(3,4-dihydroxyphenyl)propanoate), etc.
  • the ester of L-3,4-dihydroxyphenylalanine can be a salt, including, for example, a hydrated salt.
  • the salts of levodopa ester are octanoate, myristate, succinate, succinate dihydrate, fumarate, fumarate dihydrate, mesylate, tartrate and hydrochloride. may include, but are not limited to.
  • the succinate or succinate dihydrate of the ester of L-3,4-dihydroxyphenylalanine is levodopaethyl ester succinate (LDEE-S) or levodopaethyl ester succinate dihydrate (LDEE-S). -S-dihydrate or LDEE-S(d)).
  • Compounds related to L-DOPA include prodrugs and depot agents of L-DOPA. L-DOPA related compounds may overlap with dopamine agonists, but may be classified herein as such in either case.
  • L-DOPA adjunct refers to a drug that suppresses the metabolism or decomposition of L-DOPA or regulates the release of dopamine derived from L-DOPA into the synaptic cleft.
  • the daily dosage of levodopa which is the main drug, is the usual dose for levodopa treatment as described in the 2018 version of the Parkinson's Disease Clinical Practice Guidelines or the corresponding guidelines in the United States and Europe.
  • the usual daily dose of levodopa is 50 to 1200 mg/day, preferably 100 mg to 600 mg/day, in combination or as a combination drug with peripheral dopa decarboxylase inhibitor (DCI). It is day.
  • SINEMET® Carbidopa-Levodopa combination tablets
  • NDA New Drug Application
  • SINEMET® Carbidopa-Levodopa combination tablets
  • SINEMET registered trademark
  • SINEMET is administered as a daily maintenance dose from 70 mg to 100 mg of Carbidopa
  • SINEMET registered trademark
  • levodopa auxiliaries examples include levodopa metabolic enzyme inhibitors and dopamine release controlling agents.
  • levodopa metabolic enzyme inhibitor refers to any drug that has the effect of inhibiting the metabolism of levodopa so as to enhance its action in a broad sense.
  • Dopa decarboxylase (decarboxylase) inhibitors DCI (carbidopa, ⁇ -methyldopa, benzerazide (Ro4-4602), ⁇ -difluoromethyl-DOPA (DFMD), or salts thereof, etc.) are exemplified.
  • catecholamine-O-methyltransferase inhibitors include catecholamine-O-methyltransferase inhibitors (COMT-I) (entacapone is an example), which prevent levodopa from being broken down before it enters the brain, and drugs that prevent dopamine from being broken down in the brain.
  • Examples include monoamine oxidase inhibitors (MAO-I) (selegiline is an example).
  • a "dopamine release controlling agent” refers to a drug that has the effect of controlling dopamine release from dopamine nerves, and examples thereof include zonisamide, amantadine, tandospirone, buspirone, istradefylline, and the like.
  • dopamine nerve function restoring agent refers to any drug or treatment method aimed at restoring the function of dopamine nerves and/or preventing or suppressing their degeneration and loss, and refers to substances that have dopamine nerve degeneration effects. Examples include vaccines or antibody drugs against alpha-synuclein, and nucleic acid drugs that affect its expression.
  • dopamine-producing cell drug refers to a drug that treats Parkinson's disease through cell transplantation of dopamine neurons. Examples include cell transplantation of fetal midbrain tissue and cell transplantation of dopaminergic neural progenitor cells derived from human induced pluripotent stem cells (iPS cells).
  • iPS cells dopaminergic neural progenitor cells derived from human induced pluripotent stem cells
  • dopamine-producing gene therapy refers to a treatment method in which the enzyme gene necessary for dopamine synthesis is introduced into the putamen using a viral vector.
  • An example is a gene therapy method in which an aromatic amino acid decarboxylase (AADC) gene is introduced into an adeno-associated virus (AAV).
  • AADC aromatic amino acid decarboxylase
  • AAV adeno-associated virus
  • surgical therapy refers to deep brain stimulation (DBS) to the subthalamic nucleus, internal globus pallidus, and thalamus, stereotactic destruction of the thalamus and globus pallidus, and focused ultrasound.
  • DBS deep brain stimulation
  • FUS Focused Ultrasound
  • a certain “amount” when referred to, it may include not only an “absolute amount” in its narrow sense, but also a “relative amount” in its broad sense.
  • the “relative amount” includes, for example, the amount of change (for example, the amount of increase, the amount of decrease).
  • level means an approximate degree, even if the amount cannot be specified. These levels refer to the degree of effect (action), and include Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), UPDRS, Unified Dysk inesia Rating Scale (UDysRS), Clinical Dyskinesia Rating Scale (CDRS), The Rush Dyskinesia Rating Scale (Rush DRS), Abnormal Involuntary Movement Scale (AIMS), EuroQol 5 Dimensions (EQ- 5D-5L), PDQ-39 (Parkinson's Disease Questionnarie-39), Clinical Global Impressions (CGI), Patient Global It can be expressed using a clinical evaluation scale such as PGI (PGI), a patient diary, or a scale calculated from locomotion information acquired by a wearable device such as an accelerometer and/or angular velocity meter.
  • PGI PGI
  • a wearable device such as an accelerometer and/or angular velocity meter.
  • variable refers to a change over time or a value that changes over time.
  • the value that changes over time is also called the amount of change.
  • in vivo dopamine or a substance biologically equivalent to dopamine refers to dopamine or a substance biologically equivalent to dopamine that exists in a certain organ, organ (including blood, etc.), or cell. refers to a substance that
  • dopamine in the brain or a substance biologically equivalent to dopamine refers to dopamine existing in the brain or a substance biologically equivalent to dopamine.
  • Dopamine in the brain or substances biologically equivalent to dopamine can be determined by measuring the amount of dopamine using microdialysis, mass spectrometry imaging (MSI), drugs that undergo metabolism similar to L-DOPA, and dopamine transporters. , Single Photon Emission Computed Tomography (SPECT) preparations and Positron Emission Tomography (PET) of drugs that have affinity for dopamine receptors. Measured by methods such as brain functional imaging using preparations can do.
  • MSI mass spectrometry imaging
  • SPECT Single Photon Emission Computed Tomography
  • PET Positron Emission Tomography
  • eye-closing speed refers to the average speed of upper eyelid movement from the moment the upper eyelid begins to move to close the eye during a blink to the moment when the upper eyelid movement is considered to have stopped.
  • eye closing peak speed refers to the maximum speed of upper eyelid movement from the moment the upper eyelid begins to move to close the eye during a blink to the moment when the upper eyelid movement is considered to have stopped. say.
  • eye opening speed refers to the average speed of upper eyelid movement from the moment the upper eyelid begins to move to open the eye during a blink to the moment when the upper eyelid movement is considered to have stopped.
  • peak eye opening speed refers to the maximum speed of upper eyelid movement from the moment the upper eyelid begins to move to open the eye during a blink to the moment when the upper eyelid movement is considered to have stopped. say.
  • eye-closing time refers to the time from the moment the upper eyelid finishes moving to close the eye during a blink to the moment the upper eyelid begins to move to open the eye.
  • eye-opening amplitude refers to the distance that the upper eyelid moves from the moment the upper eyelid begins to move to open the eye during a blink to the moment when the upper eyelid movement is considered to have stopped.
  • eye closure amplitude refers to the distance that the upper eyelid moves from the moment the upper eyelid begins to move to close the eye during a blink to the moment when the upper eyelid movement is considered to have stopped.
  • eye opening degree is an index representing the relative position of the upper eyelid. For example, the relative position of the upper eyelid when the eyes are completely open is 0, and when the eyes are completely closed, the relative position of the upper eyelid is 0. The relative position of the upper eyelid can be expressed when the relative position of the upper eyelid is set to 1.
  • the "number of blinks" refers to the number of blinks in a certain time window.
  • Parameters related to blinks refer to parameters that can be obtained from blinks. Parameters related to blinking are typically among the following: eye closing speed, eye closing peak velocity, eye opening speed, eye opening peak velocity, eye closing time, eye opening amplitude, eye closing amplitude, degree of eye opening, blink duration, and number of blinks. at least one or a combination of the following. The combination of at least some of the following: eye-closing velocity, eye-closing peak velocity, eye-opening velocity, eye-opening peak velocity, eye-closing time, eye-opening amplitude, eye-closing amplitude, interblink time, blink duration, and number of blinks, for example, It can be expressed as blink confidence, blink interval, and blink energy.
  • the blink-related parameters include at least one of blink confidence, blink interval, blink energy, and blink depth. More preferably, the blink-related parameters include blink confidence and blink interval.
  • the blink-related parameters may include calculated values of eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, degree of eye opening, blink duration, and number of blinks. .
  • the calculated value is, for example, the calculated value of the value within each classification when data is divided by a predetermined threshold (for example, a time threshold (time window), an absolute value threshold, a relative value threshold). ) may be included.
  • the intra-class calculation values include, but are not limited to, various statistics such as maximum value, minimum value, average value, median value, variance, 25% percentile value, 75% percentile value, and frequency analysis spectrum.
  • the calculated values may include, for example, calculated values of intra-section calculated values (inter-section calculated values) of a plurality of sections.
  • Inter-section calculation values include, but are not limited to, weighted sums, differences, time differentials, time integrals, ratios, correlation coefficients, covariances, and standard deviation parameters obtained by Poincaré plot analysis.
  • the standard deviation parameter obtained by Poincaré plot analysis is the one in which the method used for heartbeat analysis is applied to blink analysis.
  • the horizontal axis represents the time between the nth blink and the n+1st blink (the "blink interval” described below), and the vertical axis represents the time between the n+1st blink and the n+2nd blink.
  • ratios such as SD1/SD2 or SD2/SD1
  • “blink confidence” refers to the relative position of the upper eyelid when the eyes are completely open as 0, and the relative position of the upper eyelid when the eyes are completely closed as 1.
  • the area on the curve / (area on the curve + area under the curve) when the horizontal axis is the time from the start to the end of one blink and the vertical axis is the relative position of the upper eyelid. It can be expressed as
  • “blink interval” refers to the time between one blink and the next blink, and the relative position of the upper eyelid when the eyes are fully open is 0, completely If the relative position of the upper eyelid when the eyes are closed is set to 1, then the difference between the moment when the relative position of the upper eyelid reaches its maximum value and the next moment when the relative position of the upper eyelid reaches its maximum value. It can be expressed in terms of time.
  • link energy is a parameter that simulates the energy or amount of work used in a blink, and is the reciprocal of the number of blinks and the average blink duration or the power thereof in a certain time window. can be represented by the product of
  • blink depth refers to a parameter obtained by dividing blink confidence by blink duration.
  • eyeball information refers to information regarding eyeballs.
  • the eyeball information includes, for example, information regarding eyeball movements.
  • eyeball movement refers to all movements related to the eyeballs. Eye movements may include, for example, eye movements, changes in eye conditions, changes in electrooculography, and the like. It is included in eye movement even when the eyeballs are stationary.
  • Examples of eyeball information include, for example, information regarding blinks, information regarding pupil coordinates or the relative position of the eyeballs, and information regarding pupil diameter.
  • the information regarding blinking is synonymous with the value of the parameter regarding blinking.
  • Blinks include, for example, spontaneous blinks, voluntary blinks, and reflex blinks.
  • Information regarding blinks includes, but is not limited to, for example, blink frequency or number of blinks, blink duration, inter-blink time, eye closure time, eye opening speed, eye closing speed, eyelid movement width, and eyelid opening degree.
  • information about pupillary coordinates or the relative position of the eyeballs may include movement distance, movement direction, velocity, acceleration, angular velocity, saccades, gliding eye movements, vestibulo-ocular reflexes, convergence/divergence, fixation micromovements (ocular tremor, drift). , microsaccades), amount, or level.
  • Information regarding blinks and information regarding pupil coordinates or relative positions of eyeballs may also include calculated values of these information.
  • the calculated value may include, for example, a function output (power, logarithm, distribution, frequency analysis value, etc.) using the information as an input variable.
  • the calculated value is, for example, the calculated value of the value within each classification when data is divided by a predetermined threshold (for example, a time threshold (time window), an absolute value threshold, a relative value threshold). ) may be included.
  • the intra-class calculation values include, but are not limited to, various statistics such as maximum value, minimum value, average value, median value, variance, 25% percentile value, 75% percentile value, and frequency analysis spectrum.
  • the calculated values may include, for example, calculated values of intra-section calculated values (inter-section calculated values) of a plurality of sections.
  • Inter-section calculation values include, but are not limited to, weighted sums, differences, time differentials, time integrals, ratios, correlation coefficients, covariances, and standard deviation parameters obtained by Poincaré plot analysis.
  • Parkinson's disease patient being treated with L-DOPA refers to a Parkinson's disease patient who is being treated with L-DOPA, including MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, Symptoms are measured using clinical evaluation scales such as AIMS, EQ-5D-5L, PDQ-39, CGI, and PGI, patient diaries, and scales calculated from locomotion information acquired by wearable devices such as accelerometers and/or gyrometry. can be confirmed.
  • untreated Parkinson's disease patients are Parkinson's disease patients who have not received treatment such as administration of L-DOPA, and although symptoms of Parkinson's disease can be confirmed, the symptoms have progressed.
  • Parkinson's disease refers to patients for whom it is decided not to start treatment until
  • patients suspected of having Parkinson's disease are patients who have not been definitively diagnosed with Parkinson's disease, but who may have some of the symptoms or signs of Parkinson's disease. A patient who can confirm the
  • the term "therapeutic drug” refers to a drug for curing a target disease or alleviating symptoms.
  • drugs used to cure Parkinson's disease or alleviate symptoms when referring to patients with Parkinson's disease, it refers to drugs used to cure Parkinson's disease or alleviate symptoms.
  • clinical evaluation scales such as MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, AIMS, EQ-5D-5L, PDQ-39, CGI, PGI, patient diary, accelerometer and/or gyro meter, etc.
  • Symptom improvement can be confirmed using a scale calculated from movement information acquired by a wearable device.
  • prophylactic drug refers to a drug for preventing aggravation of a subject's disease or preventing symptoms (such as dyskinesia) from occurring.
  • symptoms such as dyskinesia
  • drugs used to prevent Parkinson's disease from worsening or to prevent symptoms such as dyskinesia
  • Clinically, clinical evaluation scales such as MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, AIMS, EQ-5D-5L, PDQ-39, CGI, PGI, patient diary, accelerometer and/or gyro meter, etc. The preventive effect can be confirmed by the scale etc. calculated from the movement information acquired by the wearable device.
  • medical technology refers to technology for performing some medical treatment, and may be provided in any form such as pharmaceuticals, medical devices, regenerative medicine products, surgical therapy, etc.
  • the daily dosage of levodopa which is the main drug, is the usual dose for levodopa treatment as described in the 2018 version of the Parkinson's Disease Clinical Practice Guidelines or the corresponding guidelines in the United States and Europe.
  • the usual daily dose of levodopa is 50 to 1200 mg/day, preferably 100 mg to 600 mg/day, in combination or as a combination drug with peripheral dopa decarboxylase inhibitor (DCI). It is day.
  • SINEMET® (Carbidopa-Levodopa combination tablets) (New Drug Application (NDA) #017555) approved by the FDA has a 1:4 ratio combination tablet (Carbidopa 25mg-Levodopa 100mg), and 1:10 It is provided as a ratio combination tablet (Carbidopa 10mg - Levodopa 100mg, Carbidopa 25mg - Levodopa 250mg).
  • SINEMET (registered trademark) is administered as a daily maintenance dose from 70 mg to 100 mg of Carbidopa
  • SINEMET (registered trademark) is administered as a maximum daily dose of 200 mg as Carbidopa.
  • the effect of a drug that has an improving effect on L-DOPA, L-DOPA-related compounds, or dopamine agonists refers to It refers to the effect that a drug has, and can be measured by various techniques such as the following.
  • the improving effect on levodopa-induced dyskinesia of Parkinson's disease in the present disclosure is clinically based on MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, AIMS, EQ-5D-5L, PDQ-39, CGI, PGI, etc.
  • This can be confirmed using a clinical evaluation scale, a patient diary, a scale calculated from locomotion information acquired by a wearable device such as an accelerometer and/or a gyrometer, etc.
  • the dyskinesia improving effect can be confirmed by evaluating dyskinesia-like abnormal involuntary movement behavior.
  • the states of Parkinson's disease that can be measured by the present disclosure include akinesia, bradykinesia, tremor, muscle rigidity, and loss of posture, which are the main motor symptoms. of postural reflexes, floxed posture, freezing, sleep disorders, mental/cognitive/behavioral disorders, autonomic nervous disorders, sensory disorders, and any motor complications.
  • motor complications refers to any motor symptoms observed in patients with advanced stage Parkinson's disease that are a problem in treatment, and includes diurnal fluctuations in Parkinson's symptoms and problems associated with levodopa treatment. Examples include dyskinesia (levodopa-induced dyskinesia (PD-LID)), which is a voluntary movement. Motor complications are interpreted to be caused by abnormal release of dopamine in the brain, but the mechanism is not necessarily clear.
  • circumsadian fluctuations of parkinsonian symptoms refers to wearing-off, on-off phenomenon, no-on phenomenon, delayed-on phenomenon, delayed on) phenomenon is known.
  • wearing-off occurs when the ability to retain dopamine in the synaptic cleft decreases as the disease progresses, causing dopamine concentration in the brain to fluctuate in accordance with the blood concentration of levodopa, and as a result, the blood concentration drops below the safe treatment range. This is a symptom that occurs when the duration of the effect of levodopa is shortened.
  • levodopa-induced dyskinesia ⁇ involuntary movements> refers to involuntary movements (dyskinesia) induced by excessive administration of levodopa, which occurs within 5 to 10 days after starting treatment with levodopa. It occurs in more than half of patients with Parkinson's disease at older ages, and the proportion (%) of patients affected by PD-LID is increasing over time (for a review, see, for example, Encarnacion and Hauser, (2008), Levodopa-induced dyskinesias in Parkinson's disease: etiology, impact on quality of life, and tre ”, Eur Neurol, 60(2), pp. 57-66).
  • Dyskinesia is a condition in which a part of the body moves on its own and does not stop, bites the lip, has difficulty speaking, cannot sit still, or has difficulty moving the limbs as desired, including limbs and/or orofacial areas and/or body axis. It is a movement disorder in which involuntary movements of parts are seen. Peak-dose dyskinesia is known as a typical symptom of PD-LID, and symptoms appear on the face, tongue, neck, limbs, trunk, etc. when the blood concentration of levodopa is high. .
  • PD-LID is more likely to appear if levodopa is continued to be taken in larger doses than necessary from the early stage of the disease, and once PD-LID appears, it is difficult to control it even if the dosage of levodopa is adjusted in various ways. It is known that it is difficult.
  • an index that can be used for clinical evaluation refers to an index that can be used to evaluate the symptoms of a subject, and typically includes subjective evaluation items.
  • “Indicators that can be used for clinical evaluation” include clinical evaluation scales such as MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, AIMS, EQ-5D-5L, PDQ-39, CGI, PGI, and patient diaries. , but not limited to.
  • a method for estimating or predicting the state of a target In one aspect of the present disclosure, a method for estimating or predicting the state of a target, a computer program for realizing the same or a storage medium storing the same, and a system or user equipment forming part of the system are provided. Ru. In this aspect, a method is provided for estimating or predicting the state of a subject.
  • FIG. 1A shows a flowchart of a method for estimating or predicting the state of a subject.
  • an “estimated” state refers to a past, present or future state. "Estimate” of the future state is sometimes expressed as “prediction”, and “estimate”, which is contrasted with “prediction”, is sometimes interpreted narrowly as “estimation” of the past or present state.
  • the "state” estimated or predicted in this aspect may be any state associated with blinking.
  • Conditions include, for example, conditions indicated by indicators that can be utilized in clinical evaluation, and typically include conditions associated with Parkinson's disease.
  • the condition associated with Parkinson's disease is, for example, at least one of the conditions indicated by at least one of the presence or absence of dyskinesia, ON-OFF, MDS-UPDRS Part III score, UDysRS score, and plasma levodopa concentration.
  • Clinical scores such as the MDS-UPDRS Part III score and the UDysRS score are shown as the sum of several subscores.
  • the MDS-UPDRS Part III score is based on individual symptoms such as rigidity, tremor, postural disturbance, and bradykinesia.
  • the UDysRS score is composed of the total score of subscores indicating the site of onset of dyskinesia and dystonia, severity, and degree of impact on daily life.
  • Conditions associated with Parkinson's disease may include not only the total clinical score, but also at least one of these subscores. Since the "subject" targeted by the present disclosure is a human, it is possible to use an index that can be used for clinical evaluation. In particular, indicators that can be used for clinical evaluation that have subjective evaluation items are unique to the fact that the "subject" is a human.
  • step S101 target eyeball information is acquired.
  • the value of a parameter related to the subject's blink is acquired.
  • eyeball information (preferably the value of a parameter related to blinking) can be measured using a device capable of acquiring eyeball information of a target.
  • Devices capable of acquiring eyeball information include, for example, eyeglass-type devices equipped with an image recording function, an eye tracking function, a three-point electrooculogram sensor, an acceleration sensor, and/or a gyro sensor, eye tracking glasses, a smartphone, a personal computer, This includes, but is not limited to, an electro-oculography measuring device and the like.
  • the device capable of acquiring eyeball information is a device capable of measuring the value of a parameter related to blinking, for example, an eye tracking device.
  • the measurement time per measurement is determined to be long enough for eyeball information to be measured relatively stably, and may range from 30 seconds to 16 hours per measurement. More preferably, it is in the range of 5 minutes to 8 hours.
  • the subject may be engaged in unrestricted daily life, or may be performing a task to measure specific eye movements. Examples of tasks include following an indicator that suddenly disappears or appears on a display as a visual stimulus to induce a saccade, or following a smoothly moving indicator to induce a gliding eye movement. Examples include chasing.
  • an accelerometer, etc. attached to the arm or head may be used in conjunction with the movement of the head or arm to evaluate eyeball information, or to remove the movement element of the head.
  • a device to immobilize the head and jaw may also be used. Subjects may also complete a patient diary to record subjective symptoms.
  • time intervals or "time windows" of digital data are extracted from time-series data.
  • the width of the time window is in the range of 10 seconds to 30 minutes, more preferably 1 minute to 10 minutes, and even more preferably 3 minutes.
  • data from an eye-tracking device is filtered to remove noise and extract data of interest.
  • eyeblink data it is possible to exclude abnormally long eyeblink events, which typically do not occur in human eyeblinks, such as eyeblink durations greater than 1000 ms, but can be excluded in patients with Parkinson's disease, etc. If it is assumed that the user has an abnormality in blinking, the exclusion criterion can be made more relaxed, for example, 2000 milliseconds.
  • eye movement data for example, when focusing on eye tremor, eye movements with large movement distances such as saccades become noise that interferes with frequency analysis, so time window data that includes data points with large movement distances are excluded in advance. be able to.
  • eye movements are obtained as discrete pupil coordinate data, but data points may be smoothly interpolated with a spline curve or the like and upsampled to obtain sufficient temporal resolution.
  • the measured values regarding the user's eyeballs may be standardized or corrected based on the user's past measured values or the measured values of other users.
  • the measurements regarding the user's eyes may be based on body movements or activity changes due to the user's exercise estimated by an accelerometer or the like, or physiological states such as drowsiness estimated from eye movements or heart rate variability. may be standardized or corrected.
  • the blink-related parameters include eye-closing velocity, eye-closing peak velocity, eye-opening velocity, eye-opening peak velocity, eye-closing time, eye-opening amplitude, eye-closing amplitude, inter-blink time, eye-opening degree, blink duration, and At least one or a combination of blink counts is obtained.
  • a parameter related to blinking at least one of the following: eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, inter-blink time, blink duration, and number of blinks. Two calculated values may be obtained.
  • at least one of blink confidence, blink interval, blink depth, and blink energy is acquired as the blink-related parameter.
  • a blink confidence and a blink interval are obtained as blink-related parameters.
  • step S101 in addition to the subject's eyeball information, the elapsed time after administering the drug (more specifically, L-DOPA, L-DOPA-related compound, or dopamine agonist) to the subject is indicated. Information can also be obtained.
  • the drug more specifically, L-DOPA, L-DOPA-related compound, or dopamine agonist
  • step S102 the state of the target is estimated or predicted based on at least the eyeball information acquired in step S101.
  • the state of the object is estimated or predicted based on the value of a parameter related to blinking.
  • the state of the subject can be estimated or predicted from the correlation between the eye information of the subject and the state of the subject.
  • the state of the target can be estimated or predicted from the correlation between the value of the parameter related to the blink of the target and the state of the target.
  • the learned model has learned the relationship between the value of at least one of the blink-related parameters and the state of the object.
  • the condition of the subject can be estimated or predicted from the correlation between the subject's eyeball information and the elapsed time after administering the drug to the subject, and the subject's condition.
  • the condition of the subject can be estimated or predicted from the correlation between the value of the parameter related to the blink of the subject and the elapsed time after administering the drug to the subject, and the condition of the subject.
  • the value of at least one appropriately selected parameter related to blinking and the elapsed time after administering the drug to the subject are input as features into the trained model, and the learning is performed.
  • the state of the target can be estimated or predicted from the output of the model.
  • the learned model has learned the relationship between the value of at least one of the blink-related parameters, the elapsed time after administering the drug to the subject, and the state of the subject.
  • At least one of the blink-related parameters includes eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, blink duration, number of blinks, and blink confidence.
  • blink interval, and blink energy preferably at least one of blink confidence, blink interval, and blink energy, and more preferably, blink confidence, blink interval, and blink energy. Can be confidence and blink interval.
  • At least one parameter among the blink-related parameters may be appropriately selected depending on the estimated or predicted state of the target. For example, when estimating or predicting the presence or absence of dyskinesia as a target condition, parameters that highly contribute to prediction accuracy, such as blink confidence, blink count, blink duration, etc., may be selected. If the elapsed time after administering the drug to the subject is also used for estimation or prediction, the selected blink-related parameters may vary. For example, when estimating or predicting the presence or absence of dyskinesia as a condition of a subject based on the elapsed time after administering a drug to the subject and parameters related to blinking, parameters that have a high contribution to prediction accuracy, such as blinking. Confidence, blink frequency, blink energy, etc. may be selected.
  • the condition of the subject estimated or predicted in step S102 can be applied to the subject's health management method.
  • the target health management method after estimating or predicting the condition of the target in steps S101 and S102, based on the result, it is determined whether or not the target should be treated, and the process is performed on the target. This includes taking actions for the health management of the subject when it is determined that it is necessary.
  • Actions for health management of a target include, for example, administering a treatment to the target, issuing an alert that a treatment should be performed to the target, administering a prescribed drug or therapy to the target.
  • a treatment refers to some kind of medical treatment, and typically may refer to intervention by a doctor.
  • an alert that a treatment should be performed on a subject may be issued from a user terminal owned by the subject, or may be issued from a terminal device of a doctor who is examining the subject. However, it may also be emitted from another device. This allows the subject, physician, or other person to take action to perform treatment on the subject.
  • Method of evaluating therapeutic or preventive drugs or medical technology for a target In another aspect of the present disclosure, a method for evaluating therapeutic or preventive drugs or other medical techniques for a subject, a computer program for realizing the same, a storage medium storing the same, and a system or a part of the system are provided. Configuring user equipment, etc. are provided. In this aspect, methods are provided for evaluating therapeutic or prophylactic agents or other medical techniques for a subject.
  • FIG. 1B shows a flowchart of a method for evaluating therapeutic or prophylactic drugs or other medical techniques for a subject.
  • the "therapeutic drug or preventive drug or other medical technology” evaluated in this aspect may be a therapeutic drug or preventive drug or other medical technology that may have some relation to blinking.
  • Therapeutic or prophylactic drugs or other medical techniques include, for example, L-DOPA or L-DOPA-related compounds, adjuncts of L-DOPA, dopamine nerve function restoring agents, dopamine-producing cell medicines, or dopamine-producing gene therapy. , or surgical therapy (such as deep brain stimulation or stereotaxic destruction).
  • step S111 target eyeball information is acquired.
  • the value of a parameter related to the subject's blink is acquired.
  • Step S111 is a process similar to step S101, and its explanation will be omitted.
  • an estimated effective amount or effective level of the therapeutic drug, preventive drug, or other medical technology is calculated based on at least the eyeball information acquired in step S111.
  • an estimated effective amount or level of a therapeutic or prophylactic drug or other medical technique is calculated based on the value of the blink-related parameter.
  • the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technology is determined from a correlation between the subject's ocular information and the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technology. can be calculated.
  • the estimated effective amount or level of a therapeutic or prophylactic drug or other medical technology is determined by the relationship between the value of the blink-related parameter in question and the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technology. It can be calculated from the correlation. Specifically, by inputting the value of at least one appropriately selected parameter among blink-related parameters into a trained model as a feature quantity, therapeutic drugs, preventive drugs, or Estimated effective amounts or levels of other medical techniques can be calculated. At this time, the trained model has learned the relationship between the value of at least one of the blink-related parameters and the estimated effective amount or effective level of the therapeutic or preventive drug or other medical technology.
  • the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technique is based on the subject's ocular information and the elapsed time since administering the drug to the subject, and the therapeutic or prophylactic drug or other medical technique. It can be calculated from a correlation with the estimated effective amount or level of effectiveness of the technology.
  • the estimated effective amount or level of a therapeutic or prophylactic drug or other medical technique depends on the value of the subject's eyeblink parameters and the elapsed time after administering the drug to the subject and It can be calculated from a correlation with an estimated effective amount or level of medical technology.
  • the value of at least one appropriately selected parameter related to blinking and the elapsed time after administering the drug to the subject are input as features into the trained model, and the learning is performed. From the output of the model, an estimated effective amount or level of a therapeutic or prophylactic drug or other medical technology can be calculated. At this time, the trained model calculates the value of at least one of the blink-related parameters, the elapsed time after administering the drug to the subject, and the estimated effective amount or effective amount of the therapeutic or preventive drug or other medical technology. Learning the relationship with level.
  • At least one of the blink-related parameters includes eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, degree of eye opening, blink duration, number of blinks, It may be at least one of blink confidence, blink interval, blink depth, and blink energy, preferably at least one of blink confidence, blink interval, blink depth, and blink energy. more preferably blink confidence and blink interval.
  • step S112 in addition to or in place of the estimated effective amount or level, the effective usage or dosage of the therapeutic or prophylactic drug or other medical technology may be calculated as well. .
  • the estimated effective amount or effective level or usage or dosage of the therapeutic or preventive drug or other medical technique calculated in step S112 determines the therapeutic or preventive drug or other medical technique recommended for the subject. can be used for.
  • an estimated effective amount or effective level is calculated for the first therapeutic agent
  • an estimated effective amount or effective level is calculated for the second therapeutic agent
  • an estimated effective amount or effective level is calculated for the nth therapeutic agent.
  • each estimated effective amount or effective level is compared, and the therapeutic drug with the most appropriate estimated effective amount or effective level for the subject is determined as the therapeutic drug recommended for the subject.
  • the most appropriate estimated effective amount or level can be, for example, the lowest amount or level.
  • the prophylactic drug or other medical technique that has the most appropriate estimated effective amount or level for the subject is the recommended prophylactic drug or other medical technique for the subject. can be determined.
  • the system 10 is configured to estimate or predict the state of the target based on eyeball information of the target, more preferably parameters related to the blink of the target.
  • FIG. 2 shows an example of the configuration of the system 10.
  • the system 10 includes at least an acquisition means 11 and an estimation/prediction means 12.
  • the acquisition means 11 is configured to acquire eyeball information of the target.
  • the information acquisition means 11 can acquire eyeball information by any means.
  • the information acquisition means 11 may acquire eyeball information stored in a storage means external or internal to the system 10, or may acquire eyeball information by extracting eyeball information from an eyeball information source. You may also do so.
  • the ocular information source includes optical information (image or reflected light), physical information (vibration, etc.) or electrical information (potential, current, etc.), chemical information, or a combination of multiple thereof, of the subject's eyeball.
  • the ocular information source may be, for example, at least one image taken of the subject's eyeball, electrooculography measurements, or motion information (e.g., acceleration measurements) of the subject's body part.
  • It may be reflected light information from illumination light irradiated onto the eyeball (cornea and/or sclera), current information obtained by a search coil method, or information directly applied to the eyeball.
  • the amount of electromotive force information obtained from a piezo element probe in contact may be used.
  • the reflected light information may be information obtained by a simple sensor such as a photodiode, or may be information obtained by image analysis.
  • the motion information may be, for example, information obtained by image analysis or information obtained by distance measurement.
  • the acquisition means 11 can acquire the value of the parameter related to the subject's blink.
  • the acquisition means 11 can acquire the value of a parameter related to the subject's blinking, for example, from a moving image or a plurality of still images of the subject's eyeball.
  • the acquisition means 11 can communicate with a device capable of acquiring an eyeball image of the object, such as an eye tracking device.
  • the acquisition means 11 itself may be implemented by a device capable of acquiring an eyeball image of a target, such as an eye tracking device.
  • the value of the parameter related to blinking can be obtained based on the pupil or eyelid in the image. For example, when an eyeball is photographed by irradiating the eyeball with infrared rays and then binarized using an appropriate threshold value, the pupil is extracted as an ellipse with relatively low brightness information in the eyeball image. Ellipse fitting is performed on the binarized eyeball image, and if the ellipse fitting is achieved with a certain level of accuracy or higher (an ellipse is recognized in the image), when the eyes are opened, the ellipse fitting is performed with less than a certain level of accuracy (an ellipse is not recognized in the image). ), it can be inferred that the eyes are closed.
  • a blink can be expressed as an event in which the accuracy of the ellipse fitting decreases below a certain level and increases again above the certain level in a time window of 0.25 seconds, for example.
  • Information about blinking can be obtained by using electrodes attached to the top and bottom and/or left and right sides of the eye to capture and analyze the potential difference between the retina and cornea (electrooculography) during eye movement and eyelid movement. is also possible.
  • Information regarding blinks can also be obtained by extracting an electro-oculography waveform characteristic of blinks. Specifically, in the differential waveform of the electrooculogram during blinking, a sharp peak on the negative side first appears, and then a peak on the positive side occurs beyond the baseline. This corresponds to the reciprocating movement of the eyelids, and such a positive/negative reversal of the differential waveform is not seen in typical eye movements.
  • the acquisition means 11 includes, in addition to the eyeball information, information indicating the elapsed time after administering the drug (more specifically, L-DOPA, an L-DOPA-related compound, or a dopamine agonist) to the subject. Also get.
  • Information indicating the elapsed time after administering a drug to a target can be obtained, for example, when a user inputs a medication administration time into a user device (e.g., a smartphone, tablet, smart watch, etc.) and receives the input medication administration time from the user device.
  • the elapsed time can be obtained by deriving the elapsed time from the medication administration time.
  • the information indicating the elapsed time after administering the drug to the target can be obtained by, for example, inputting the timing at which the user took the drug into the user device (for example, by pressing a button indicating that the drug has been taken), and It can be obtained by receiving the information from the device and deriving the elapsed time from the timing of taking the medication.
  • information indicating the elapsed time after administering the drug to the subject may be obtained, for example, by receiving a signal indicating the timing of taking the drug from a sensor incorporated in the drug, and deriving the elapsed time from the received signal. can be done.
  • the eyeball information (values of parameters related to blinking) acquired by the acquisition means 11 is passed to the estimation/prediction means 12.
  • the information acquired by the acquisition means 11 indicating the elapsed time after administering the drug to the subject is also passed to the estimation/prediction means 12 .
  • the estimation/prediction means 12 is configured to estimate or predict the state of the target based on the eyeball information. In a preferred embodiment, the estimating/predicting means 12 is configured to estimate or predict the state of the object based on the value of the blink-related parameter.
  • the estimation/prediction means 12 can estimate or predict the state of the target, for example, using a learned model.
  • the learned model has learned, for example, the relationship between the value of a parameter related to blinking and the state of the object.
  • FIG. 3 shows an example of the structure of a neural network 20 for constructing a learned model that can be used by the estimation/prediction means 12.
  • the neural network 20 has an input layer, at least one hidden layer, and an output layer.
  • the number of nodes in the input layer of the neural network 20 corresponds to the number of dimensions of input data.
  • the number of nodes in the output layer of the neural network 20 corresponds to the number of dimensions of output data. For example, when outputting the presence or absence of dyskinesia as the target state, the number of nodes in the output layer is 1 (for example, the output node outputs a value between 0 and 1, and "0" indicates the absence of dyskinesia. ⁇ 1'' may indicate the presence of dyskinesia).
  • the hidden layers of neural network 20 can include any number of nodes.
  • the weighting coefficient of each node of the hidden layer of the neural network 20 may be calculated based on data obtained in advance.
  • the process of calculating this weighting coefficient is the learning process.
  • the learning process may be supervised learning or unsupervised learning.
  • the weighting coefficient of each node is calculated so that when the value of a parameter related to the blink of a certain subject is input to the input layer, the value of the output layer will be the value indicating the condition of the patient. can be done. This can be done, for example, by backpropagation. Although it may be preferable to have a large amount of training datasets used for learning, if the amount is too large, overfitting is likely to occur.
  • the set of (input supervised data, output supervised data) for supervised learning is (value of the parameter related to the blink of the first object, value indicating the state of the first object), (second (value of the parameter related to the blink of the object, value indicating the state of the second object), ... (value of the parameter related to the blink of the i-th object, value indicating the state of the i-th object), ... ⁇ etc.
  • the value of the parameter related to blinking may have any dimension.
  • the value of the blink-related parameter may be a value for one blink-related parameter (i.e., one-dimensional) or a value for two blink-related parameters (i.e., two-dimensional).
  • it may be a value for three or more blink-related parameters (that is, three or more dimensions).
  • a value of a parameter related to blinking acquired from a new object is input to the input layer of such a trained neural network model, a value indicating the state of the object is output to the output layer.
  • the estimation/prediction means 12 may, for example, utilize a plurality of trained models.
  • the first trained model among the plurality of trained models can output a value indicating the first state of the subject (for example, the presence or absence of dyskinesia), and the first trained model among the plurality of trained models
  • the second trained model can output a value indicating the second state of the patient (for example, plasma levodopa concentration), and the third trained model among the plurality of trained models can output a value indicating the second state of the patient.
  • a value for example, MDS-UPDRS Part III score
  • the estimation/prediction means 12 can estimate or predict the state of the object by integrating outputs from a plurality of trained models.
  • the estimation/prediction means 12 can estimate or predict the state of the subject based on the value of the parameter related to blinking and the elapsed time after administering the drug to the subject.
  • the estimation/prediction means 12 can estimate or predict the state of the target using the learned model, and at this time, the trained model can estimate or predict the state of the target, for example, based on the values of parameters related to blinking and whether a drug has been administered to the target. It learns the relationship between the elapsed time and the state of the target.
  • the set (input supervised data, output supervised data) for supervised learning is ((value of the parameter related to the blink of the first subject, elapsed time after administering the drug to the first subject). ), value indicating the state of the first subject), ((value of parameter related to blinking of the second subject, elapsed time after administering the drug to the second subject), indicating the state of the second subject value), ... ((value of the parameter related to the blink of the i-th object, elapsed time after administering the drug to the i-th object), value indicating the state of the i-th object), ..., etc. It can be. If you input the blink-related parameter values obtained from a new subject and the elapsed time after administering the drug to the new subject into the input layer of such a trained neural network model, the state of that subject will be shown. The value is output to the output layer.
  • the trained model described above is not limited to the neural network model as described, but any other machine learning model can be used.
  • random forests can be used.
  • the estimation/prediction means 12 may estimate or predict the state of the target based on a rule without relying on machine learning.
  • a system that predicts changes in a subject's state caused by a drug based on the amount and time course of drug administration based on a pharmacokinetic model, or a system that estimates a subject's state solely from motor symptoms can be implemented without using a learning process.
  • the present disclosure can be implemented by using these systems together and using a trained model.
  • the state of the object estimated or predicted by the system 10 can be used for any purpose.
  • a doctor can use the condition of the subject estimated or predicted by the system 10 as an index for diagnosis.
  • the subject itself can use the state of the subject estimated or predicted by the system 10 as an index for understanding its own state.
  • the condition of the subject estimated or predicted by the system 10 can be used for health management of the subject. For example, after estimating or predicting the state of the target, the system 10 determines whether or not the target should be processed based on the result, and when it is determined that the target should be processed. , taking actions for the health management of the subject.
  • Actions for health management of the target include, for example, administering treatment to the target.
  • the system 10 may include means for administering a treatment to a subject, or may issue an instruction to a means external to the system 10 to administer a treatment to a subject.
  • Actions for health management of a subject include, for example, issuing an alert that a treatment should be performed on the subject.
  • the system 10 may include a means for issuing an alert that a treatment should be taken against the object, or may issue an instruction to a means external to the system 10 to issue an alert. Good too.
  • Actions for health management of a subject include, for example, administering a predetermined drug or therapy to the subject.
  • the system 10 may include means for administering a predetermined drug or therapy to a subject, or means external to the system 10 may be configured to administer a predetermined drug or therapy to a subject. You may also issue instructions like this.
  • the system 10A of the present disclosure can evaluate therapeutic or preventive drugs or other medical techniques for a subject.
  • Evaluating a therapeutic or prophylactic drug or other medical technology includes calculating an estimated effective amount or level of effectiveness of the therapeutic or prophylactic drug or other medical technology for a subject. The estimated effective amount or level allows one to assess whether a therapeutic or prophylactic drug or other medical technique will be useful to a subject.
  • FIG. 4 shows an example of the configuration of the system 10A.
  • the system 10A includes at least an acquisition means 11 and a calculation means 13.
  • the configuration of the system 10A is the same as the configuration of the system 10, except that the estimation/prediction unit 12 is replaced by a calculation unit 13.
  • FIG. 4 the same reference numerals are given to the same components as those described above with reference to FIG. 2, and the description thereof will be omitted here.
  • the calculation means 13 is configured to calculate an estimated effective amount or effective level of a therapeutic or preventive drug or other medical technique for the subject based on the eyeball information.
  • the estimating/predicting means 12 is configured to calculate an estimated effective amount or effective level of a therapeutic or prophylactic drug or other medical technique for the subject based on the value of the blink-related parameter. .
  • the calculation means 13 can calculate the estimated effective amount or effective level of a therapeutic or preventive drug or other medical technology for a subject, for example, using a learned model.
  • the learned model has learned, for example, the relationship between the value of a parameter related to blinking and the estimated effective amount or effective level.
  • the calculation means 13 can utilize a neural network similar to the neural network 20 described above with reference to FIG.
  • the weighting coefficient of each node of the hidden layer of the neural network may be calculated based on previously obtained data.
  • the process of calculating this weighting coefficient is a learning process.
  • the learning process may be supervised learning or unsupervised learning.
  • the value of the output layer is the estimated effective amount or effective amount of a therapeutic or preventive drug or other medical technology for that patient.
  • a weighting factor for each node may be calculated to be a level. This can be done, for example, by backpropagation. Although it may be preferable to have a large amount of training datasets used for learning, if the amount is too large, overfitting is likely to occur.
  • the set of (input supervised data, output supervised data) for supervised learning is (value of parameter related to blink of the first target, therapeutic or preventive drug or other medical treatment for the first target). (estimated effective amount or effective level of the technology), (value of parameter related to blinking of the second subject, estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technology for the second subject),... (the value of the parameter related to the blink of the i-th subject, the estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technology for the i-th subject), etc.
  • the value of the parameter related to blinking may have any dimension.
  • the value of the blink-related parameter may be a value for one blink-related parameter (i.e., one-dimensional) or a value for two blink-related parameters (i.e., two-dimensional). Alternatively, it may be a value for three or more blink-related parameters (that is, three or more dimensions).
  • the estimated effective amount or effective level of a therapeutic or preventive drug or other medical technology for that subject can be calculated. is output to the output layer.
  • the calculation means 13 calculates the estimated effective amount or effective amount of the therapeutic or prophylactic drug or other medical technique for the subject based on the value of the blink-related parameter and the elapsed time after administering the drug to the subject.
  • the level can be calculated.
  • the estimation/prediction means 12 can calculate the estimated effective amount or effective level of a therapeutic or preventive drug or other medical technology for a subject by using the trained model, and at this time, the trained model can calculate, for example, , the relationship between the values of blink-related parameters and the elapsed time after administering the drug to the subject and the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technique for the subject.
  • the set (input supervised data, output supervised data) for supervised learning is ((value of the parameter related to the blink of the first subject, elapsed time after administering the drug to the first subject). ), estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technique for the first subject), ((value of the blink-related parameter of the second subject, after administering the drug to the second subject) ), the estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technology for the second subject), ... the estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technique for the i-th subject), etc.
  • the therapeutic agent or An estimated effective amount or level of the prophylactic drug or other medical technology is output to the output layer.
  • the trained model described above is not limited to the neural network model as described, but any other machine learning model can be used.
  • random forests can be used.
  • the calculating means 13 may calculate the estimated effective amount or effective level of a therapeutic drug, preventive drug, or other medical technology for a subject based on a rule without relying on machine learning.
  • a system that predicts changes in a subject's state caused by a drug based on the amount and time course of drug administration based on a pharmacokinetic model, or a system that estimates a subject's state solely from motor symptoms can be implemented without using a learning process.
  • the present disclosure can be implemented by using these systems together and using a trained model.
  • the estimated effective amount or effective level calculated by the system 10A can be used for any purpose. For example, a doctor can use the estimated effective amount or effective level calculated by the system 10A as an index for prescribing a therapeutic or preventive drug or determining the administration of a medical technique. Alternatively, the estimated effective amount or level calculated by system 10A can be utilized to determine recommended therapeutic or prophylactic agents or other medical techniques for the subject. For example, after calculating the estimated effective amount or level, system 10A can determine a recommended therapeutic or prophylactic drug or other medical technique for the subject based on the results. For example, the calculation means 13 of the system 10A calculates the estimated effective amount or effective level for the first therapeutic agent, calculates the estimated effective amount or effective level for the second therapeutic agent, and...
  • the system 10A compares the estimated effective amount or effective level and selects the therapeutic drug with the most appropriate estimated effective amount or effective level for the subject. can be determined as the recommended treatment for. Similarly for prophylactic drugs or other medical techniques, the system 10A determines which prophylactic drugs or other medical techniques are recommended for the subject, and which have the most appropriate estimated effective amount or level for the subject. can be determined as a medical technology.
  • the systems 10 and 10A described above may be implemented, for example, in a system 1000 that includes a user device and a server device connected via a network.
  • FIG. 5 is a diagram showing an example of the configuration of the system 1000 of the present disclosure.
  • the system 1000 includes at least one user device 100, a server device 200 connected to the at least one user device 100 via a network 400, and a database unit 300 connected to the server device 200.
  • the user device 100 may be any terminal device such as a smartphone, a tablet computer, smart glasses, a smart watch, a laptop computer, a desktop computer, an eye tracker, etc.
  • User device 100 can communicate with server device 200 via network 400.
  • the type of network 400 does not matter.
  • the user device 100 may communicate with the server device 200 via the Internet or may communicate with the server device 200 via a LAN.
  • three user devices 100 are depicted in FIG. 5, the number of user devices 100 is not limited thereto. The number of user devices 100 may be any number greater than or equal to one.
  • the server device 200 can communicate with at least one user device 100 via the network 400. Further, the server device 200 can communicate with a database unit 300 connected to the server device 200.
  • the database unit 300 connected to the server device 200 may store eyeball information of a plurality of targets acquired in advance.
  • a plurality of pieces of stored eyeball information can be used, for example, to construct a learned model.
  • the database unit 300 may store constructed learned models.
  • FIG. 6A shows an example of the configuration of the user device 100.
  • the user device 100 includes a communication interface section 110, an input section 120, a display section 130, a memory section 140, and a processor section 150.
  • the communication interface unit 110 controls communication via the network 400.
  • the processor unit 150 of the user device 100 can receive information from outside the user device 100 via the communication interface unit 110, and can transmit information to the outside of the user device 100.
  • the processor unit 150 of the user device 100 can receive information from the server device 200 via the communication interface unit 110, and can transmit information to the server device 200.
  • Communication interface section 110 can control communication in any manner.
  • the input unit 120 allows the user to input information into the user device 100. It does not matter in what manner the input unit 120 allows the user to input information into the user device 100. For example, if the input unit 120 is a touch panel, the user may input information by touching the touch panel. Alternatively, if the input unit 120 is a mouse, the user may input information by operating the mouse. Alternatively, if the input unit 120 is a keyboard, the user may input information by pressing keys on the keyboard. Alternatively, if the input unit 120 is a microphone, the user may input information by voice.
  • the display unit 130 may be any display for displaying information.
  • the memory unit 140 stores programs for executing processes in the user device 100, data required for executing the programs, and the like.
  • the memory unit 140 stores, for example, a program for estimating or predicting the state of the object (for example, a program for performing processing including the steps shown in FIG. 1A or a program for implementing the processing shown in FIGS. 7 and 8, which will be described later). ), and/or a part or all of a program for evaluating a therapeutic or preventive drug or other medical technology for a subject (for example, a program for performing processing including the steps shown in FIG. 1B) is stored. There is.
  • the memory unit 140 may store an application that implements an arbitrary function.
  • the memory unit 140 may store, for example, an application for acquiring eyeball information by tracking a pupil in an eyeball image (eye tracking). Thereby, the user device 100 has a portion that implements the eye tracking function.
  • the memory unit 140 may store, for example, an application for acquiring eyeball information from electro-oculogram measurements. As a result, the user device 100 has a portion that implements the function of measuring electro-oculography.
  • the memory unit 140 may store applications for acquiring eyeball information by other means.
  • the program may be preinstalled in the memory unit 140.
  • the program may be installed in the memory unit 140 by being downloaded via the network 400.
  • Memory section 140 may be implemented by any storage means.
  • the processor unit 150 controls the operation of the user device 100 as a whole.
  • the processor unit 150 reads a program stored in the memory unit 140 and executes the program. This allows the user device 100 to function as a device that executes desired steps.
  • the processor unit 150 may be implemented by a single processor or by multiple processors.
  • the user device 100 can include an imaging means 160.
  • Imaging means 160 is any means for acquiring images.
  • the imaging means 160 is, for example, a camera.
  • image includes still images and moving images.
  • the imaging means 160 may be, for example, a built-in camera in the user device 100 or an external camera attached to the user device 100.
  • a camera built into the smartphone can be used as the imaging means 160.
  • the user device 100 can include an electro-oculography acquisition device 170.
  • the electro-oculogram acquisition means 170 is any means for acquiring electro-oculography.
  • the electro-oculography acquisition means 170 is, for example, a plurality of electrodes that can be placed on the skin around the eyes.
  • the electro-oculography acquisition means 170 may be an electrode built into the user device 100 or an external electrode attached to the user device 100.
  • electrodes built into the glasses-type eye tracker can be used as the electro-oculogram acquisition means 170.
  • each component of the user device 100 is provided within the user device 100, but the present disclosure is not limited thereto. It is also possible for any of the components of user device 100 to be provided outside of user device 100. For example, if the input section 120, display section 130, memory section 140, processor section 150, and imaging means 160 are each composed of separate hardware components, each hardware component may be connected via an arbitrary network. may be done. At this time, the type of network does not matter. Each hardware component may be connected via a LAN, wirelessly, or wired, for example.
  • User device 100 is not limited to a specific hardware configuration. For example, it is also within the scope of the present disclosure to configure the processor section 150 with an analog circuit rather than a digital circuit. The configuration of the user device 100 is not limited to that described above as long as its functions can be realized.
  • FIG. 6B shows an example of the configuration of the server device 200.
  • the server device 200 includes a communication interface section 210, a memory section 220, and a processor section 230.
  • the communication interface unit 210 controls communication via the network 400.
  • the communication interface section 210 also controls communication with the database section 300.
  • the processor unit 230 of the server device 200 can receive information from outside the server device 200 via the communication interface unit 210, and can transmit information to the outside of the server device 200.
  • the processor section 230 of the server device 200 can receive information from the user device 100 via the communication interface section 210, and can transmit information to the user device 100.
  • Communication interface unit 210 may control communication in any manner.
  • the memory unit 220 stores programs required for executing processes of the server device 200, data required for executing the programs, and the like. For example, a program for estimating or predicting the state of a target (for example, a program for performing processing including the steps shown in FIG. 1A or a program for implementing the processing shown in FIGS. 7 and 8 described later), and/or Part or all of a program for evaluating a therapeutic drug or preventive drug or other medical technology for a subject (for example, a program for performing processing including the steps shown in FIG. 1B) is stored.
  • the memory unit 220 stores, for example, an application for acquiring eyeball information by tracking the pupil in an eyeball image (eye tracking), and an application for acquiring eyeball information from electrooculography measurement values. Good too.
  • the memory unit 220 may store, for example, an application for acquiring eyeball information by other means. Memory section 220 may be implemented by any storage means.
  • the processor unit 230 controls the operation of the server device 200 as a whole.
  • the processor unit 230 reads a program stored in the memory unit 220 and executes the program. This allows the server device 200 to function as a device that executes desired steps.
  • the processor unit 230 may be implemented by a single processor or by multiple processors.
  • each component of the server device 200 is provided within the server device 200, but the present disclosure is not limited thereto. It is also possible for any of the components of the server device 200 to be provided outside the server device 200. For example, if the memory section 220 and the processor section 230 are each composed of separate hardware components, each of the hardware components may be connected via an arbitrary network. At this time, the type of network does not matter. Each hardware component may be connected via a LAN, wirelessly, or wired, for example.
  • Server device 200 is not limited to a specific hardware configuration. For example, it is also within the scope of the present disclosure to configure the processor section 230 with an analog circuit rather than a digital circuit. The configuration of the server device 200 is not limited to that described above as long as its functions can be realized.
  • the database unit 300 is provided outside the server device 200, but the present disclosure is not limited thereto. It is also possible to provide the database unit 300 inside the server device 200. At this time, the database unit 300 may be implemented by the same storage unit that implements the memory unit 220, or may be implemented by a different storage unit from the storage unit that implements the memory unit 220. In any case, the database unit 300 is configured as a storage unit for the server device 200.
  • the configuration of the database unit 300 is not limited to a specific hardware configuration.
  • the database unit 300 may be composed of a single hardware component or a plurality of hardware components.
  • the database unit 300 may be configured as an external hard disk device of the server device 200, or may be configured as a storage on a cloud connected via a network.
  • the components of the system 10 may be included in the user device 100, the server device 200, or distributed in both the user device 100 and the server device 200, for example.
  • the user device 100 can be provided with the acquisition means 11
  • the server device 200 can be provided with the estimation/prediction means 12.
  • the components of the system 10A may be included in the user device 100, the server device 200, or distributed in both the user device 100 and the server device 200, for example. good.
  • the user device 100 may include the acquisition means 11, and the server device 200 may include the calculation means 13.
  • the user device 100 includes the acquisition unit 11
  • the server device 200 includes the estimation/prediction unit 12.
  • FIG. 7 is a data flow diagram showing data exchange between the user device 100 and the server device 200 in this embodiment.
  • the user device 100 acquires an eyeball information source.
  • the eyeball information source may be, for example, at least one image taken of the subject's eyeball, or may be an electrooculography measurement value.
  • the eyeball information source may be a plurality of images taken of the subject's eyeball or a time series of electro-oculography measurements. This is because a plurality of images or time-series electro-oculography measurement values can include a time component of eyeball information.
  • the imaging unit 160 of the user device 100 can acquire at least one image by photographing the eyeball.
  • the imaging means 160 of the user device 100 may photograph the eyeball of the target when the target is aware, such as when the target is staring at the imaging means 160, or when the target is within the field of view of the imaging means 160.
  • the subject's eyeballs may be photographed when the subject is not recognized, such as when the subject is in the room. By photographing the subject's eyeballs when the subject is not aware of the situation, it is possible to obtain an eyeball information source without placing a burden on the subject.
  • the electro-oculogram acquisition unit 170 of the user device 100 can acquire an electro-oculogram measurement value by measuring the electric potential around the eyes.
  • the electro-oculogram acquisition means 170 of the user device 100 may acquire the electro-oculogram measurement value when the subject is aware of the situation, such as by attaching electrodes around the eyes, or when the subject is wearing them.
  • Electro-oculography measurements may be obtained using electrodes or the like built into a glasses-type device, when the object is not recognized. By photographing the subject's eyeballs when the subject is not aware of the situation, it is possible to obtain an eyeball information source without placing a burden on the subject.
  • the user device 100 acquires eyeball information.
  • the acquisition unit 11 that may be included in the processor unit 150 of the user device 100 acquires eyeball information from the eyeball information source acquired in step S701.
  • the eyeball information includes, for example, information regarding blinks, information regarding pupil coordinates or relative positions of the eyeballs, and information regarding eyeball movements.
  • the acquisition means 11 can acquire eyeball information from an eyeball information source, for example, by any known method.
  • the acquisition means 11 preferably acquires values of parameters related to blinking.
  • step S703 the user device 100 transmits eyeball information to the server device 200.
  • the processor unit 150 of the user device 100 transmits eyeball information to the server device 200 via the communication interface unit 110.
  • Server device 200 receives the transmitted eyeball information.
  • the processor unit 230 of the server device 200 receives eyeball information from the user device 100 via the communication interface unit 210.
  • step S704 the server device 200 estimates or predicts the state of the target based on the eyeball information.
  • the estimation/prediction means 12 that may be included in the processor unit 230 of the server device 200 estimates or predicts the state of the target based on the eyeball information received in step S703.
  • the calculation means 12 can estimate or predict the state of the target by using, for example, a trained model.
  • the learned model has learned the relationship between the eyeball information and the state of the target, and when the eyeball information received in step S703 is input to the trained model, the corresponding state of the target is output.
  • step S705 the server device 200 transmits the estimation or prediction result in step S704 to the user device 100.
  • the processor unit 230 of the server device 200 transmits the estimation or prediction result in step S704 to the user device 100 via the communication interface unit 210.
  • User equipment 100 receives the transmitted estimation or prediction results.
  • the processor unit 150 of the user device 100 receives the estimation or prediction result from the server device 200 via the communication interface unit 110.
  • step S706 the user device 100 presents the estimation or prediction result received in step S705 to the target.
  • the mode of presentation does not matter.
  • the display unit 130 of the user device 100 can display the results.
  • a microphone that the user device 100 may include or be connected to may present the results audibly.
  • a printer that the user device 100 may include or be connected to can print the results.
  • the user device 100 can obtain an estimated or predicted result from the eyeball information simply by acquiring the eyeball information and transmitting it to the server device 200.
  • the user device 100 also does not have to bear the calculation load on the estimation/prediction means 12.
  • the server device 200 can include the acquisition means 11 and the estimation/prediction means 12 of the system 10.
  • FIG. 8 is a data flow diagram showing data exchange between the user device 100 and the server device 200 in this embodiment.
  • step S801 the user device 100 acquires an eyeball information source.
  • Step S801 is a step similar to step S701.
  • step S802 the user device 100 transmits the eyeball information source acquired in step S801 to the server device 200.
  • the processor unit 150 of the user device 100 transmits the eyeball information source to the server device 200 via the communication interface unit 110.
  • the server device 200 receives the transmitted eyeball information source.
  • the processor unit 230 of the server device 200 receives the transmitted eyeball information source from the user device 100 via the communication interface unit 210.
  • the server device 200 acquires eyeball information.
  • the acquisition unit 11 that may be included in the processor unit 230 of the server device 200 acquires eyeball information from the eyeball information source received in step S802.
  • the eyeball information includes, for example, information regarding blinks, information regarding pupil coordinates or relative positions of the eyeballs, and information regarding eyeball movements.
  • the acquisition means 11 can acquire eyeball information from an eyeball information source, for example, by any known method.
  • the acquisition means 11 preferably acquires values of parameters related to blinking.
  • step S804 the server device 200 estimates or predicts the state of the target based on the eyeball information.
  • Step S804 is a step similar to step S704.
  • step S805 the server device 200 transmits the estimation or prediction result in step S804 to the user device 100.
  • Step S805 is a step similar to step S705.
  • step S806 the user device 100 presents the estimation or prediction result received in step S805 to the target.
  • Step S806 is a step similar to step S706.
  • the user device 100 can obtain a fixed or predicted result from the eyeball information source by simply acquiring the eyeball information source and transmitting it to the server device 200.
  • the user device 100 does not have to bear the calculation load for acquiring eyeball information in addition to the calculation load placed on the estimation/prediction means 12.
  • the user device 100 can include the acquisition means 11 and the estimation/prediction means 12 of the system 10. At this time, the user device 100 does not need to communicate with the server device 200 and can operate standalone. The user device 100 performs, for example, steps S701 to S706 other than steps S703 and S705.
  • At least one of the processes in each step shown in FIGS. , the processor unit 230 and the memory unit 220 of the server device 200 are not limited thereto.
  • At least one of the processes in each step shown in FIGS. 7 to 8 may be realized by a hardware configuration such as a control circuit.
  • the system of the present disclosure can be used in conjunction with, for example, a means capable of outputting indicators related to Parkinson's disease.
  • the means capable of outputting indicators related to Parkinson's disease is a wearable device configured to be worn on the patient's body.
  • the wearable device may be configured to be attached to at least one limb of the patient and to measure limb movements (eg, tremors) due to Parkinson's disease.
  • the wearable device can measure the movement of a limb using an inertial sensor mounted therein, and can output velocity data, acceleration data, angular velocity data, and/or angular acceleration data.
  • limb movements eg, tremors
  • the wearable device can measure the movement of a limb using an inertial sensor mounted therein, and can output velocity data, acceleration data, angular velocity data, and/or angular acceleration data.
  • Such a wearable device whose output data is analyzed and used as an index regarding Parkinson's disease is described, for example, by Rob Powers1 et al. , “Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease ”, Sci. Transl. Med. 13, eabd7865 (2021) 3 February 2021.
  • this index can be used to calculate a threshold for estimating the patient's condition.
  • the wearable device and the information acquisition means 11 are used together to continuously acquire movement measurement data and eyeball information.
  • Eyeball information when movement measurement data indicates that symptoms of Parkinson's disease are present can be set as a threshold value regarding symptoms of Parkinson's disease.
  • the systems, apparatuses, and devices of the present disclosure may optionally be configured with one or more sensors that collect health data of the user, other than indicators related to Parkinson's disease.
  • Health data may include any suitable data related to the user's health.
  • the device may be configured to capture health data from the user.
  • Such health data may include information about the user, such as pulse rate, heart rate, heart rate variability measurements, temperature data, number of steps, standing and sitting time, number of calories burned, number of minutes exercised, and/or any other suitable information. Data may be specified.
  • a device may be configured with one or more input devices that allow a user to interact with the device.
  • the device may also be configured with one or more output devices for outputting any suitable output information.
  • the device may be configured to output visual, audio, and/or tactile information.
  • the output information can be presented to the user in a manner that guides the user to perform one or more actions related to breathing.
  • the output information may include a fluctuating progress indicator (eg, some type of visual information).
  • a progress indicator can be presented on the device's graphical user interface and can be configured to guide the user through a series of breathing movements included in a breathing sequence, as further described herein.
  • Output information may be presented by an application running on the device.
  • the device may be associated with a second device (e.g., a paired device (e.g., a wearable device such as a wristwatch or glasses) or a host device).
  • a second device e.g., a paired device (e.g., a wearable device such as a wristwatch or glasses) or a host device).
  • this may include a device paired with the second device in any suitable manner. Pairing two devices optionally allows the second device to function as a replacement for this device.
  • the device, the second device, or any suitable combination of the device and the second device can generate output information based at least in part on the health data. Further parameters may be obtained by arranging arbitrary electrodes. Health indicators that can be calculated using electrodes include, but are not limited to, cardiac function (ECG, EKG), water content, body fat percentage, galvanic skin resistance, and combinations thereof.
  • the present disclosure may apply systems, apparatus, and methods for operation of a wearable device that depends on whether the wearable device utilized by the present disclosure is being worn.
  • a wearable device can be attached to a portion of a user's body by an attachment member and can operate in at least a connected state and a disconnected state.
  • One or more sensors disposed within the wearable device and/or the attachment member can detect when the device is attached to or in close proximity to a subject.
  • One or more sensors disposed within the wearable device and/or the attachment member can detect that the attached object, if present, is a part of the user's body.
  • Such a technique is publicly known, and for example, the technique described in WO2015/116163 can be used.
  • Welby it may be linked or used in conjunction with an electronic medical record application such as Welby. For example, you can periodically take pictures of your eye movements at home for about 5 minutes using a smartphone camera or a stationary eye tracker and record the parameters. ) to optimize the relationship between symptoms and eye movement parameters. Data can be transmitted remotely to help doctors optimize drug prescriptions.
  • a contactless eye tracker or an eye tracker available from Tobii Technology (Sweden) can be used.
  • the present disclosure provides a system for implementation as an application, the system being used for treatment of a treatable disease, the system comprising a server and a user terminal.
  • medical characteristics representing medical characteristics of a patient related to a disease are clustered into various medical characteristics (e.g., behavioral medical characteristics, knowledge medical characteristics, and cognitive medical characteristics), and the server are stored in association with one or more treatments, each medical characteristic is further associated with another type of medical characteristic (e.g., any one of a behavioral medical characteristic, a knowledge medical characteristic, and a cognitive medical characteristic), and the server further includes a treatment method associated with a specific medical characteristic selected as a treatment target from the plurality of medical characteristics and a treatment method associated with each of the various medical characteristic information associated with the selected medical characteristic.
  • the selection of a treatment by a medical professional becomes training information and changes the probability of selecting a treatment, thereby increasing the probability of selecting a treatment considered to be more effective, thereby increasing the probability of selecting a treatment that is considered to be more effective. It becomes possible to do so.
  • cluster factors for individual patients can be modified based on efficacy information. For example, the cluster factor of a cluster to which a medical characteristic associated with a treatment method that has been found to be effective belongs is increased, and when it is ineffective, it is decreased. Which cluster is more effective for treatment may vary depending on the patient. A cluster to which medical characteristics associated with an effective treatment belongs is likely to be an effective cluster for that patient, so by increasing the cluster factor, the probability of selecting a treatment for that cluster increases. increases, making more effective treatment possible.
  • Example 1 An uncontrolled, open-label, exploratory clinical trial was conducted on 20 patients with Parkinson's disease.
  • Eyeglass-type devices were worn on 20 patients with Parkinson's disease, parameters related to blinking were obtained, and the patient's condition at that time was also measured. By learning the relationship between the measured patient condition and blink-related parameters, a trained model capable of estimating or predicting the patient's condition was created, and estimation/prediction was performed.
  • FIG. 9 schematically shows the test procedure of Example 1.
  • a screening test was conducted 28 to 8 days before the test to confirm eligibility for this test.
  • a patient diary was recorded from 7 days to 1 day before the test.
  • the patient's diary mainly records the patient's chief complaint (subjective symptoms, etc.), but it also records the presence or absence of dyskinesia and whether the medication is working or not, every 30 minutes. , and also included sleep time and levodopa taking time.
  • the patient was made to wear the glasses-type device in order to get the patient used to wearing the glasses-type device.
  • Pupil Core eye-tracking glasses were used as the eyeglass-type device (https://pupil-labs.com). These Pupil Core eye tracking glasses can output an eyeball image whose photographing position is fixed and the time at which it was photographed.
  • Pupil Core eye-tracking glasses and a smartphone (Android OS) were connected by wire, and the Pupil Core smartphone was used to supply power to the eye-tracking glasses, control ON/OFF, and record data collection.
  • levodopa preparations For levodopa preparations, patients were given the drugs they normally take in the usual dosage and administration. However, when evaluating eyeball information, etc., it was decided that the levodopa preparation should be taken after the patient was in the OFF state, and that the levodopa preparation should not be taken for a maximum of 4 hours after taking the levodopa preparation. However, if OFF was observed twice in a row in the MDS-UPDRS Part III score every 30 minutes within 4 hours after taking the levodopa preparation, the evaluation was terminated and the patient was allowed to take the levodopa preparation.
  • a glasses-type device was worn on the patient and eyeball information was measured. Parameters related to blinking were derived from the measured eyeball information.
  • FIG. 10 shows an example of data measured from one patient.
  • the top graph shows the time series fluctuation of the total score of MDS-UPDRS Part III score.
  • the vertical axis is the total score of the MDS-UPDRS Part III score, and the horizontal axis is the time axis.
  • the second graph from the top shows time-series fluctuations in ON/OFF bedside scores.
  • the vertical axis is the ON/OFF bedside score axis, and the horizontal axis is the time axis.
  • the actual measured values are discrete quantities from 1 to 4, but they are linearly interpolated to make them continuous quantities. A score above 2.5 indicates ON, and a score below 2.5 indicates OFF.
  • the third graph from the top shows time-series fluctuations in plasma levodopa concentration.
  • the vertical axis is the axis of plasma levodopa concentration (ng/mL), and the horizontal axis is the time axis.
  • the bottom graph shows time-series fluctuations in the number of blinks among the blink-related parameters.
  • the vertical axis is the axis of the number of blinks, and the horizontal axis is the time axis.
  • the color coding represents the blink duration of each blink, and the darker the color, the longer the blink duration.
  • blink-related parameters at least the number of blinks
  • the total score of the MDS-UPDRS Part III score the ON/OFF state
  • the plasma levodopa concentration can be correlated.
  • a machine learning model was created using the machine learning platform "DataRobot.”
  • the blink-related parameters include 666 parameters including the number of blinks, blink duration, blink confidence, blink energy, and blink interval, and some of these parameters were used for learning.
  • the corresponding 3 minutes of clinical information was used as the objective variable.
  • clinical information presence or absence of dyskinesia, ON/OFF, total score of MDS-UPDRS Part III score, and plasma levodopa concentration were used.
  • the clinical information sampling interval is 15 to 30 minutes, linear interpolation was performed to obtain a value every 3 minutes.
  • ON/OFF we created a machine learning model that can estimate ON/OFF.
  • a machine learning model capable of estimating the total score of the MDS-UPDRS Part III score was created.
  • plasma levodopa concentration as the objective variable, we created a machine learning model that can estimate plasma levodopa concentration.
  • a machine learning model was created that also used the time elapsed since taking the levodopa preparation as a feature.
  • the following parameters were cited as feature quantities that had a relatively large contribution in any of the above machine learning models.
  • the baseline is defined as the blink parameter at the measurement time before taking levodopa or at the OFF time after the effect of levodopa disappears.
  • a machine learning model was created using the presence or absence of dyskinesia as the objective variable and 15 blink-related parameters as features.
  • Another machine learning model was created using the presence or absence of dyskinesia as the objective variable and the 15 blink-related parameters and the time elapsed since taking the levodopa preparation as feature quantities.
  • a machine learning model was created using the presence or absence of dyskinesia as the objective variable and the plasma levodopa concentration as the only feature. Furthermore, for comparison, a machine learning model was created using the presence or absence of dyskinesia as the objective variable and only the time elapsed since taking the levodopa preparation as a feature.
  • a first group of machine learning models was created using data from all patients, and a second group of machine learning models was created using data from patients who had a pattern of increased blink frequency, and a second group of machine learning models was created using data from patients who had a pattern of increased blink frequency.
  • a third group of machine learning models was created using data of patients with patterns, and a fourth group of machine learning models was created using data of patients with patterns in which changes in blink frequency were unclear.
  • the machine learning model group refers to a machine learning model created with the presence or absence of dyskinesia as an objective variable and 15 eyeblink-related parameters as features, a machine learning model that uses dyskinesia as an objective variable, 15 eyeblink-related parameters, and levodopa It includes a machine learning model created using the elapsed time from the time of taking the drug as a feature.
  • the first machine learning model group includes a machine learning model created using the presence or absence of dyskinesia as an objective variable and only the concentration of plasma levodopa as a feature quantity, and a machine learning model that uses the presence or absence of dyskinesia as an objective variable and is based on the time of taking levodopa preparations. machine learning model created using only the elapsed time as a feature.
  • Table 1 shows the results of comparing the results of the first to fourth machine learning models. Recall (true positive rate) in cross-validation data is an index indicating whether dyskinesia was estimated without missing anything, and is expressed as TP/(TP+FN). Precision (positive predictive value) is an index indicating how accurate the estimation of dyskinesia was, and is expressed as TP/(TP+FP). Here, TP is true positive, FP is false positive, and FN is false negative.
  • the presence or absence of dyskinesia could be estimated with high accuracy by using parameters related to blinking as feature quantities.
  • FIG. 11 shows the results of estimation performance evaluation for unknown data.
  • the graph on the left shows the results of estimating the presence or absence of dyskinesia for data from patients without dyskinesia (unknown data derived from patients not used for learning).
  • the graph on the right shows the results of estimating the presence or absence of dyskinesia for data from patients without dyskinesia (unknown data derived from patients not used for learning).
  • the vertical axis shows the output from the machine learning model, and indicates the likelihood of dyskinesia as a value from 0 to 1. 0 indicates no dyskinesia and 1 indicates dyskinesia.
  • the horizontal axis shows time.
  • the graph on the right shows the actually measured duration of dyskinesia (about 90 minutes to about 220 minutes).
  • a machine learning model was created using ON/OFF as the objective variable and only the plasma levodopa concentration as the feature quantity. Furthermore, for comparison, a machine learning model was created using ON/OFF as the objective variable and using only the elapsed time from the time of taking the levodopa preparation as the feature quantity.
  • a first set of machine learning models was created using data from all patients, and a second set of machine learning models was created using data from patients who had a pattern of increased blink frequency, and a second set of machine learning models was created using data from patients who had a pattern of increased blink frequency.
  • a third group of machine learning models was created using data of patients with patterns, and a fourth group of machine learning models was created using data of patients with patterns in which changes in blink frequency were unclear.
  • the machine learning model group is a machine learning model created with ON/OFF as the objective variable and 15 blink-related parameters as features, and a machine learning model created with ON/OFF as the objective variable and 15 blink-related parameters.
  • the first machine learning model group includes a machine learning model created with ON/OFF as the objective variable and only the plasma levodopa concentration as a feature quantity, and a machine learning model that uses ON/OFF as the objective variable and uses levodopa preparations as the objective variable. This includes a machine learning model created using only the elapsed time as a feature.
  • the following feature values made a large contribution to the estimation accuracy of the first machine learning model, which was created using the 15 blink-related parameters and the elapsed time from the time of taking the levodopa preparation as feature values.
  • ⁇ Time elapsed since taking the levodopa preparation ⁇ Percentage of blinks with high blink confidence ⁇ Total number of blinks ⁇ Maximum value of blink confidence ⁇ Number of blinks with long blink duration ⁇ Blinks with short blink duration Number of times ⁇ Maximum blink depth
  • Table 2 shows the results of comparing the results of the first to fourth machine learning models.
  • ON/OFF is estimated with a certain degree of accuracy using a machine learning model based only on plasma levodopa concentration and a machine learning model created using only the time elapsed since taking the levodopa preparation as a feature.
  • a machine learning model that uses blink-related parameters as features was also able to estimate with similar accuracy. The most accurate estimation was possible by using parameters related to blinking and the time elapsed since the time of taking the levodopa preparation as features.
  • Estimation accuracy was somewhat improved by stratifying patients based on the pattern of increase/decrease in the number of blinks.
  • FIG. 12 shows the results of estimation performance evaluation for unknown data.
  • the graph on the left shows the results of estimating ON/OFF for data from patient #3 (unknown data derived from the patient not used for learning).
  • the graph on the right shows the result of estimating ON/OFF for data from patient #20 (unknown data derived from the patient not used for learning).
  • the vertical axis shows the output from the machine learning model, and indicates the likelihood of being ON as a value from 0 to 1. 0 indicates that it is not ON, and 1 indicates that it is ON.
  • the horizontal axis shows time.
  • the graphs on the left and right show the actually measured ON periods.
  • a machine learning model was created using the total score of the MDS-UPDRS Part III score as the objective variable and using only the plasma levodopa concentration as the feature quantity. Furthermore, for comparison, a machine learning model was created using the total score of the MDS-UPDRS Part III score as an objective variable and using only the time elapsed from the time of taking the levodopa preparation as a feature quantity.
  • a first group of machine learning models was created using data from all patients, and a second group of machine learning models was created using data from patients who had a pattern of increased blink frequency, and a second group of machine learning models was created using data from patients who had a pattern of increased blink frequency.
  • a third group of machine learning models was created using data of patients with patterns, and a fourth group of machine learning models was created using data of patients with patterns in which changes in blink frequency were unclear.
  • the machine learning model group refers to a machine learning model created using the total score of MDS-UPDRS Part III score as the objective variable and 15 blink-related parameters as the feature quantity, and a machine learning model created using the total score of MDS-UPDRS Part III score as the objective variable.
  • the first machine learning model group includes a machine learning model created using the total score of the MDS-UPDRS Part III score as an objective variable and only the plasma levodopa concentration as a feature quantity, and the MDS-UPDRS Part III score
  • the model includes a machine learning model created with the total score as the objective variable and only the time elapsed since taking the levodopa preparation as the feature quantity.
  • the following feature values made a large contribution to the estimation accuracy of the first machine learning model, which was created using the 15 blink-related parameters and the elapsed time from the time of taking the levodopa preparation as feature values.
  • ⁇ Time elapsed since taking the levodopa preparation ⁇ Percentage of blinks with high blink confidence ⁇ Blink energy ⁇ Total number of blinks ⁇ Standard deviation of blink depth
  • Table 3 shows the results of comparing the results of the first to fourth machine learning models.
  • a machine learning model was created using the data of 17 patients, excluding 2 data from the 19 patients' data.
  • the total score of the MDS-UPDRS Part III score was used as the objective variable, and 15 types of blink-related parameters and the elapsed time from the time of taking the levodopa preparation were used as the feature quantities.
  • FIG. 13 shows the results of estimation performance evaluation for unknown data.
  • the graph (a) on the left shows the results of estimating the total score of the MDS-UPDRS Part III score for data from patient #3 (unknown data derived from a patient not used for learning).
  • the graph (a) on the right shows the result of estimating the total score of the MDS-UPDRS Part III score for data from patient #20 (unknown data derived from the patient not used for learning).
  • the vertical axis indicates the total score of the MDS-UPDRS Part III score.
  • the horizontal axis shows time.
  • the light solid line indicates the actual measured value of the total score of the MDS-UPDRS Part III score, and the dark solid line indicates the output value from the machine learning model.
  • a machine learning model was created using plasma levodopa concentration as the objective variable and 15 blink-related parameters as features. As the plasma levodopa concentration, the plasma levodopa concentration measured almost simultaneously with the blink measurement and the plasma levodopa concentration measured about 30 minutes before the blink measurement were used, respectively.
  • a first set of machine learning models was created using data from all patients, and a second set of machine learning models was created using data from patients who had a pattern of increased blink frequency, and a second set of machine learning models was created using data from patients who had a pattern of increased blink frequency.
  • a third group of machine learning models was created using data of patients with patterns, and a fourth group of machine learning models was created using data of patients with patterns in which changes in blink frequency were unclear.
  • the machine learning model group refers to a machine learning model created with plasma levodopa concentration as an objective variable and 15 blink-related parameters as features, and a machine learning model created with plasma levodopa concentration as an objective variable and 15 blink-related parameters.
  • the first machine learning model group includes a machine learning model created using plasma levodopa concentration as an objective variable and using only the elapsed time from the time of taking the levodopa preparation as a feature quantity.
  • Table 4 shows the results of comparing the results of the first to fourth machine learning models.
  • the plasma levodopa concentration could be estimated with high accuracy by using the elapsed time from the time of taking the levodopa preparation as a feature quantity.
  • the levodopa taken into the peripheral blood must move into the brain, so the blink parameter is a function of the peripheral blood levodopa concentration with a certain time lag. There is a possibility that it can be strongly estimated.
  • FIG. 14A(a) shows the results of estimating the presence or absence of dyskinesia from unknown data of patient #20.
  • the output from the machine learning model fluctuates about 15 minutes before the actual measurement time of about 90 minutes when dyskinesia is present ( ⁇ ). This shows that the machine learning model that was created was able to determine even the signs of dyskinesia.
  • FIG. 14A(b) shows one of the results of determining the presence or absence of dyskinesia in the learning data.
  • the dark solid line indicates the output value from the machine learning model, and the light solid line indicates the presence or absence of actually measured dyskinesia.
  • FIG. 14B(a) shows the results of ON/OFF determination for unknown data of patient #3 and patient #20.
  • the output from the machine learning model fluctuates at the timing before ON switches to OFF ( ⁇ ). From this, it can be seen that the created machine learning model is able to determine even the signs of ON/OFF switching.
  • FIG. 14B(b) shows one of the results of determining whether the learning data is ON/OFF.
  • a dark solid line indicates the output value from the machine learning model, and a light solid line indicates the presence or absence of actually measured ON/OFF.
  • examplementation example 2 Application example
  • measurements that correlate with clinical evaluations such as the presence or absence of dyskinesia in Parkinson's disease patients, ON/OFF, and the total score of MDS-UPDRS Part III scores, from eye movement measurements such as blink parameters. It is possible to objectively estimate the value. This could be a means to solve the problems faced by today's treatments for Parkinson's disease. An example is shown below.
  • This implementation example shows an application method related to Parkinson's disease.
  • the users of this implementation example may include all Parkinson's disease patients from immediately after diagnosis to advanced and late stages of Parkinson's disease.
  • patients who have not been diagnosed with Parkinson's disease but are suspected of having it, or who are considered to be at high risk of developing Parkinson's disease could be targeted.
  • People who are considered to have a high risk of developing Parkinson's disease include, for example, people who have mutations in genes that cause hereditary Parkinson's disease (such as SNCA, PARK2, PINK1, etc.), people who have anosmia, and people who have REM sleep behavior disorder. These include people, and relatively elderly people aged 60 to 70 years or older.
  • a user can measure eye movements on a daily basis by wearing smart glasses having an eye movement measuring function, an electro-oculography measuring device, or glasses with an external eye movement measuring device attached.
  • non-wearable devices may also be used, such as stationary eye-tracking devices or camera-equipped smartphones, tablets, or personal computers to measure eye movements over relatively short periods of time. You can also do that.
  • Eye movement data may be measured not only on a daily basis but also periodically.
  • the measurement environment is not particularly important as long as it does not affect the performance of the measurement device, but it is assumed that the measurement environment is the user's home, a medical institution, or a regular health checkup.
  • the eye movement data thus acquired is accumulated in the user device and/or the server device, and various estimation algorithms are used to output an index of the amount of dopamine in the brain, an index of the severity of motor symptoms, dyskinesia, etc.
  • Such an embodiment could be a means to solve the problems of today's treatments for Parkinson's disease.
  • Parkinson's disease patients are evaluated using subjective evaluation scales used by clinicians and patients, such as MDS-UPDRS, UdysRS, and patient diaries.
  • accuracy of such subjective evaluation indicators is influenced by many factors, such as the clinician's experience and training, the patient's temperament, and the interpersonal relationship between the provider and the patient, and the results may vary depending on the evaluator. obtain.
  • subjective rating scales have various costs and limitations due to the fact that clinicians and patients must actively perform the evaluation. Evaluations by clinicians are usually performed during hospital visits once every January to March, and are only measured at one point in the day. However, since Parkinson's disease has large diurnal and day-to-day fluctuations, it is difficult to obtain measured values that truly reflect the patient's condition with such infrequent and short-term evaluations.
  • An example of this embodiment provides a new index for objectively evaluating the motor symptoms and motor complications of Parkinson's disease and the amount of dopamine in the body by applying eye movements.
  • the frequency and duration of assessment may vary depending on the embodiment, in all cases the measurements are convenient for the patient and provide a good indication of the patient's condition even in the absence of active observation of symptoms by the clinician or patient. , providing a means to measure, analyze, and report objectively and easily, remotely and far more frequently and continuously than clinically. These processes are almost automatic. The output results are automatically converted into a report format and can be used as a clinical tool for clinicians to refer to at any time. Objective and continuous data collection allows for more accurate capture of patient symptoms, including diurnal and day-to-day variations.
  • clinicians can more effectively adjust and set drug doses and types to reduce the frequency and severity of motor symptoms and complications, such as dyskinesia and ON/OFF. Become.
  • This makes it possible to provide precision medicine that provides treatments optimized to each individual's symptoms while reducing the burden on clinicians and patients, improving the quality of life of patients.
  • a broader benefit of this embodiment is that it reduces the frequency of in-person patient visits to health care facilities, reducing the financial burden of health care on patients, health care providers, and the nation, and helping to optimize health economics. It is hoped that it will get closer.
  • peripheral information such as measurement records based on past eye movements of the user and other users, patient diaries, evaluation records by clinicians, and medication status are simultaneously referred to, By analyzing and reporting, it is possible to provide even more useful information to help clinicians make more appropriate decisions.
  • a patient when a patient is receiving device-assisted treatment such as deep brain stimulation therapy or administration of an L-DOPA preparation through a transdermal or enteral device, motor symptoms and motor complications are output.
  • device-assisted treatment such as deep brain stimulation therapy or administration of an L-DOPA preparation through a transdermal or enteral device
  • the degree of device treatment can be determined in real time in response to fluctuations in symptoms, such as the dose and speed of administration of L-DOPA preparations, and the It is possible to construct a closed-loop system that controls the stimulation frequency and intensity of stimulation therapy within a safe range.
  • some items in a report that reports the patient's condition can be referenced not only by medical personnel but also by the patient, and by visualizing the patient's symptoms and their degree of improvement, it is possible to be more proactive in treatment. It is possible to encourage people's participation. Furthermore, it is also possible to provide alerts and reminder functions that prompt patients to take medication based on the worsening of symptoms, including the current situation or in the future from several minutes to several tens of minutes, or when time has elapsed since taking the medication.
  • Parkinson's disease symptoms using wristwatch-type acceleration and angular velocity measurement devices have been considered, but the symptoms that can be evaluated are limited to dyskinesia chorea and resting tremor.
  • IMUs angular velocity measurement devices
  • the present disclosure focuses on eye movements that directly reflect dopamine function in the brain, and is different from IMU-based systems that directly quantify motor symptoms and motor complications of Parkinson's disease.
  • changes in brain dopamine function which are the essence of pathological conditions, can be acutely grasped.
  • the degree of progression of Parkinson's disease can also be estimated by measuring the in-vivo dopamine level and/or responsiveness to a therapeutic agent such as L-DOPA over time using eye movements. . Therefore, by regularly performing measurements according to the present embodiment on patients who are taking or being treated with disease-modifying drugs, preventive drugs, candidate drugs and treatment methods, regenerative cell medicines, etc. for Parkinson's disease, The effect of the treatment method on inhibiting the progression of Parkinson's disease can be evaluated.
  • disease-modifying drugs for Parkinson's disease we use invasive and high-cost imaging diagnostic methods such as PET and SPECT, which measure dopamine receptors and dopamine transporters in the brain, to quantify neurological deficits, as well as the methods described above.
  • the user whose eye movements are measured does not need to be a patient with a confirmed diagnosis of Parkinson's disease.
  • patients suspected of having Parkinson's disease or people considered to be at high risk of developing Parkinson's disease may be targeted.
  • Cases suspected of having Parkinson's disease include, for example, in addition to Parkinson's disease, patients who actually have parkinsonism syndromes such as multiple system atrophy, corticobasal degeneration, and supranuclear progressive palsy, as well as patients with essential tremor. Examples include war patients. It is known that the reactivity to L-DOPA is limited for diseases other than Parkinson's disease.
  • Parkinson's disease treatment drugs such as L-DOPA. It can be applied as a biomarker to promote appropriate treatment.
  • people who are considered to have a high risk of developing Parkinson's disease include, for example, people with mutations in genes that cause hereditary Parkinson's disease (such as SNCA, PARK2, PINK1, etc.), people with anosmia, and people with REM sleep behavior disorder. These include people who have , and relatively elderly people aged 60 to 70 years or older.
  • Parkinson's disease function can be estimated before the onset of Parkinson's disease by estimating dopamine function in the brain by measuring eye movements, and by measuring responsiveness to Parkinson's disease treatment drugs such as L-DOPA. By detecting the decline, it can be applied as a biomarker that enables early diagnosis. It is said that motor symptoms appear in Parkinson's disease patients after about 60% of dopaminergic neurons have been lost. Its effectiveness is limited after significant neurological deficits occur. In other words, in order to realize a radical treatment for Parkinson's disease, we are faced with the challenge of finding and treating patients before the onset of Parkinson's disease.
  • a broader advantage of such an embodiment is that if a treatment method that can be used as a preventive measure against Parkinson's disease is developed, such as a vaccine therapy against alpha-synuclein, an antibody drug, or a nucleic acid drug, it will be available to all elderly people.
  • the present disclosure provides technology for estimating or predicting a subject's condition and providing treatment that improves the quality of life.

Abstract

The present disclosure provides a method by which it is possible to estimate the state of a subject with ease. A method for estimating the state of a subject of the present disclosure comprises: (A) a step for acquiring the value of a parameter pertaining to the blinking of the subject; and (B) a step for estimating the state of the subject on the basis of at least the value of the parameter pertaining to the blinking. In one embodiment, parameters pertaining to blinking include at least one or a combination of eye closure speed, peak eye closure speed, eye opening speed, peak eye opening speed, eye closure time, eye opening time amplitude, eye closure time amplitude, blinking continuation time, and blink count. In a preferable embodiment, the parameters pertaining to the blinking include at least one of blinking confidence, blinking interval, blinking depth, and blinking energy.

Description

対象の状態の予測およびその応用Prediction of target state and its application
 本開示は、瞬目に関するパラメータの値に基づいて、対象の状態を推定する方法等に関する。さらに、本開示は、対象に対する治療薬または予防薬あるいは他の医療技術を評価する方法等にも関する。 The present disclosure relates to a method of estimating the state of a target based on the value of a parameter related to blinking. Furthermore, the present disclosure also relates to methods of evaluating therapeutic or preventive drugs or other medical techniques for a subject.
 パーキンソン病は、錐体外路機能の異常を主症状とする進行性の神経変性疾患の1つである。病理学的には、黒質緻密部におけるドパミン神経細胞脱落およびalpha-synuclein沈着が見られる。臨床的には、無動症(akinesia)、静止時振戦(tremor)、筋強剛(rigidity)、姿勢保持障害(loss of postural reflexes)等の様々な運動症状を呈する。 Parkinson's disease is one of the progressive neurodegenerative diseases whose main symptoms are abnormalities in extrapyramidal function. Pathologically, dopamine neuron loss and alpha-synuclein deposition in the substantia nigra pars compacta are observed. Clinically, it exhibits various motor symptoms such as akinesia, resting tremor, muscle rigidity, and loss of postural reflexes.
 パーキンソン病治療の基本は脳内ドパミンの補充を目的とした薬物療法であり、ドパミン前駆物質であるレボドパ(L-DOPA,levodopa)を含有する薬物が、パーキンソン病初期治療の第一選択薬として使用される。しかしながら、病態進行とともに、レボドパ治療を行っているほぼ全ての患者において、パーキンソン症状の日内変動(motor fluctations)、パーキンソン病におけるレボドパ誘発性ジスキネジア(以下、「PD-LID」(Parkinson’s Disease Levodopa induced dyskinesia)と称することがある。)といった運動合併症(motor complications)が出現する。 The basis of Parkinson's disease treatment is drug therapy aimed at replenishing dopamine in the brain, and drugs containing the dopamine precursor levodopa (L-DOPA, levodopa) are used as the first-line drug for the initial treatment of Parkinson's disease. be done. However, as the disease progresses, in almost all patients treated with levodopa, circadian fluctuations in Parkinson's symptoms, levodopa-induced dyskinesia (PD-LID) in Parkinson's disease (hereinafter referred to as "PD-LID") Motor complications such as dyskinesia (sometimes referred to as dyskinesia) occur.
 日内変動の代表的な症状としては、ウェアリングオフ(wearing-off)、オン・オフ(on-off)現象、ノーオン(no-on)現象、遅発オン(delayed on)現象などが知られている。その中でも、ウェアリングオフは、前述の通り、病態の進行によってシナプス間隙でのドパミン保持能が低下すると、レボドパの血中濃度に応じて脳内ドパミン濃度が変動し、その結果、レボドパ血中濃度が安全治療域を下回り、レボドパの効果持続時間の短縮がみられる症状である。 Typical symptoms of diurnal fluctuations include wearing-off, on-off, no-on, and delayed-on phenomena. There is. Among them, wearing-off is caused by, as mentioned above, when the ability to retain dopamine in the synaptic cleft decreases as the disease progresses, the dopamine concentration in the brain fluctuates depending on the blood concentration of levodopa, and as a result, the blood concentration of levodopa is below the safe therapeutic range, and the duration of the effect of levodopa is shortened.
 レボドパ治療開始後5年におけるPD-LIDの発症頻度は30~50%であり、病態進行に伴って上昇し、治療開始後10年で50~100%になる。PD-LIDの代表的症状としては、ピークドーズジスキネジア(peak-dose dyskinesia)が知られており、レボドパ血中濃度の高い時期に、顔面、舌、頸部、四肢、体幹等に現れる不随意運動である。 The incidence of PD-LID within 5 years after starting levodopa treatment is 30-50%, and increases as the disease progresses, reaching 50-100% within 10 years after starting treatment. Peak-dose dyskinesia is known as a typical symptom of PD-LID, and it is an involuntary disorder that appears on the face, tongue, neck, limbs, trunk, etc. when the blood concentration of levodopa is high. It's exercise.
 L-DOPAで治療中のパーキンソン病患者の状態は実際にジスキネジアが起こってからでないとわからないことが多い。他方、脳内L-DOPAの量が、ジスキネジアの発症と相関することが知られているが、脳内L-DOPAの量をリアルタイムで測定することは現実的でないため、現実的に実現可能な、リアルタイムでパーキンソン病の状態を推定する方法は提供されていない。 The condition of Parkinson's disease patients being treated with L-DOPA is often not known until dyskinesia actually occurs. On the other hand, it is known that the amount of L-DOPA in the brain correlates with the onset of dyskinesia, but it is not practical to measure the amount of L-DOPA in the brain in real time, so it is not realistic to measure it in real time. However, no method has been provided to estimate the state of Parkinson's disease in real time.
 本開示は、瞬目に関するパラメータの値が、対象の状態を推定する指標となることを見出したことにより完成されたものである。なお、対象は、好ましくは、パーキンソン病患者またはパーキンソン病疑いの患者であり、より好ましくは、L-DOPA、L-DOPA関連化合物またはドパミン作動薬で治療中のパーキンソン病患者であり得る。 The present disclosure was completed by discovering that the value of a parameter related to blinking serves as an index for estimating the state of a subject. The subject is preferably a Parkinson's disease patient or a patient suspected of having Parkinson's disease, and more preferably a Parkinson's disease patient undergoing treatment with L-DOPA, an L-DOPA-related compound, or a dopamine agonist.
 したがって、本開示は以下を提供する。 Accordingly, the present disclosure provides:
(項目1)
 対象の状態を推定する方法であって、
 A)該対象の瞬目に関するパラメータの値を取得する工程と、
 B)少なくとも該瞬目に関するパラメータの値に基づいて、該対象の状態を推定する工程と
 を含む方法。
(項目2)
 前記瞬目に関するパラメータは、閉眼速度、閉眼ピーク速度、開眼速度、開眼ピーク速度、閉眼時間、開眼時振幅、閉眼時振幅、開眼度、瞬目持続時間、および瞬目回数のうちの少なくとも1つまたは組み合わせを含む、項目1に記載の方法。
(項目3)
 前記瞬目に関するパラメータは、瞬目コンフィデンス、瞬目インターバル、瞬目深度、および瞬目エネルギーのうちの少なくとも1つを含む、項目1または項目2に記載の方法。
(項目4)
 前記瞬目に関するパラメータは、瞬目コンフィデンスと瞬目インターバルとを含む、項目1に記載の方法。
(項目5)
 前記工程B)は、L-DOPA、L-DOPA関連化合物またはドパミン作動薬を前記対象に投与した後の経過時間と前記瞬目に関するパラメータとに基づいて、該対象の状態を推定することを含む、項目1~4のいずれか一項に記載の方法。
(項目6)
 前記状態は、臨床評価に活用可能な指標によって示される状態を含む、項目1~5のいずれか一項に記載の方法。
(項目7)
 前記状態は、ジスキネジアの有無、ON-OFF、MDS-UPDRS Part IIIスコア、UDysRSスコア、および血漿中レボドパ濃度のうちの少なくとも1つによって示される状態を含む、項目1~6のいずれか一項に記載の方法。
(項目8)
 前記対象は、L-DOPA、L-DOPA関連化合物またはドパミン作動薬で治療中のパーキンソン病患者である、項目1~7のいずれか一項に記載の方法。
(項目8A)
 前記対象の状態を推定することは、前記対象の未来の状態を予測することを含む、項目1~8のいずれか一項に記載の方法。
(項目9)
 対象の状態を推定する方法であって、
 A)該対象の眼球情報を取得する工程と、
 B)該眼球情報と、L-DOPA、L-DOPA関連化合物またはドパミン作動薬を該対象に投与した後の経過時間とに基づいて、該対象の状態を推定する工程と
 を含む方法。
(項目10)
 L-DOPA、L-DOPA関連化合物またはドパミン作動薬で治療中のパーキンソン病患者の状態を推定する方法であって、
 A)該患者の瞬目コンフィデンスの値を取得する工程と、
 B)該瞬目コンフィデンスの値と、L-DOPA、L-DOPA関連化合物またはドパミン作動薬を該患者に投与した後の経過時間とに基づいて、該患者の状態を推定する工程と
 を含み、該状態は、ジスキネジアの有無、ON-OFF、MDS-UPDRS Part IIIスコア、UDysRSスコア、および血漿中レボドパ濃度のうちの少なくとも1つを含む、方法。
(項目11)
 前記工程A)は、前記患者の瞬目インターバル、瞬目エネルギー、瞬目持続時間、瞬目回数のうちの少なくとも1つの値をさらに取得することを含み、
 前記工程B)は、前記瞬目コンフィデンスの値と、前記経過時間と、該瞬目インターバル、瞬目エネルギー、瞬目持続時間、瞬目回数のうちの少なくとも1つの値とに基づいて、該患者の状態を推定することを含む、項目10に記載の方法。
(項目12)
 対象の状態を推定するシステムであって、
 該対象の瞬目に関するパラメータの値を取得する手段と、
 少なくとも該瞬目に関するパラメータの値に基づいて、該対象の状態を推定する手段と
 を備えるシステム。
(項目12A)
 上記項目の1つまたは複数に記載の特徴を備える、項目12に記載のシステム。
(項目13)
 対象の状態を推定するプログラムであって、該プログラムは、プロセッサを備えるコンピュータにおいて実行され、該プログラムは、
 A)該対象の瞬目に関するパラメータの値を取得する工程と、
 B)少なくとも該瞬目に関するパラメータの値に基づいて、該対象の状態を推定する工程と
 を含む処理を該プロセッサに行わせる、プログラム。
(項目13A)
 上記項目の1つまたは複数に記載の特徴を備える、項目13に記載のプログラム。
(項目13B)
 項目13または13Aに記載のプログラムを格納するコンピュータ読み取り可能な記憶媒体。
(項目14)
 対象に対する治療薬または予防薬あるいは他の医療技術を評価する方法であって、
 A)該対象の瞬目に関するパラメータの値を取得する工程と、
 B)少なくとも該瞬目に関するパラメータの値に基づいて、該治療薬または予防薬あるいは他の医療技術の推定有効量もしくは有効レベルまたは用法もしくは用量を算出する工程と
 を含む方法。
(項目15)
 前記算出された推定有効量もしくは有効レベルまたは用法もしくは用量に基づいて、前記対象に対して推奨される治療薬または予防薬あるいは他の医療技術を決定すること
 をさらに含む、項目14に記載の方法。
(項目15A)
 上記項目の1つまたは複数に記載の特徴を備える、項目14に記載の方法。
(項目16)
 対象に対する治療薬または予防薬あるいは他の医療技術を評価するシステムであって、
 該対象の瞬目に関するパラメータの値を取得する手段と、
 少なくとも該瞬目に関するパラメータの値に基づいて、該治療薬または予防薬あるいは他の医療技術の推定有効量もしくは有効レベルまたは用法もしくは用量を算出する手段と
 を備えるシステム。
(項目16A)
 上記項目の1つまたは複数に記載の特徴を備える、項目16に記載のシステム。
(項目17)
 対象に対する治療薬または予防薬あるいは他の医療技術を評価するプログラムであって、該プログラムは、プロセッサを備えるコンピュータにおいて実行され、該プログラムは、
 A)該対象の瞬目に関するパラメータの値を取得する工程と、
 B)少なくとも該瞬目に関するパラメータの値に基づいて、該治療薬または予防薬あるいは他の医療技術の推定有効量もしくは有効レベルまたは用法もしくは用量を算出する工程と
 を含む処理を該プロセッサに行わせる、プログラム。
(項目17A)
 上記項目の1つまたは複数に記載の特徴を備える、項目17に記載のプログラム。
(項目17B)
 項目17または17Aに記載のプログラムを格納するコンピュータ読み取り可能な記憶媒体。
(項目18)
 対象の健康管理方法であって、
 項目1~11のいずれか一項に記載の方法を行うことと、
 該方法の結果に基づいて、該対象に処置をすべきか否かを判断することと、
 該対象に対して処置をすべきと判断される場合、該対象の健康管理のためのアクションを行うことと
を含む、方法。
(項目19)
 前記アクションは、前記対象に対して前記処置を施すこと、前記対象に対して前記処置を施すべきことのアラートを発出すること、前記対象に対して所定の薬剤または療法を施与することのうちの少なくとも1つを含む、項目18に記載の方法。
(項目20)
 対象の健康管理システムであって、
 項目1~11のいずれか一項に記載の方法を行うように構成されている推定システムと、
 該推定システムからの出力に基づいて、該対象に処置をすべきか否かを判断する手段と、
 該対象に対して処置をすべきと判断される場合、該対象の健康管理のためのアクションを行う手段と
を含む、システム。
(項目20A)
 上記項目の1つまたは複数に記載の特徴を備える、項目20に記載のシステム。
(項目21)
 対象の健康管理プログラムであって、該プログラムは、プロセッサを備えるコンピュータにおいて実行され、該プログラムは、
 項目1~11のいずれか一項に記載の方法を行うことと、
 該方法の結果に基づいて、該対象に処置をすべきか否かを判断することと、
 該対象に対して処置をすべきと判断される場合、該対象の健康管理のためのアクションを行うための指示を出すことと
 を含む処理を該プロセッサに行わせる、プログラム。
(項目21A)
 上記項目の1つまたは複数に記載の特徴を備える、項目21に記載のプログラム。
(項目21B)
 項目21または21Aに記載のプログラムを格納するコンピュータ読み取り可能な記憶媒体。
(Item 1)
A method of estimating a state of a target, the method comprising:
A) obtaining the value of a parameter related to the subject's blink;
B) estimating the state of the object based on at least the value of the parameter related to the blink.
(Item 2)
The parameter related to blinking is at least one of the following: eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, degree of eye opening, blink duration, and number of blinks. or a combination according to item 1.
(Item 3)
The method according to item 1 or item 2, wherein the blink-related parameters include at least one of blink confidence, blink interval, blink depth, and blink energy.
(Item 4)
The method according to item 1, wherein the blink-related parameters include blink confidence and blink interval.
(Item 5)
The step B) includes estimating the state of the subject based on the elapsed time after administering L-DOPA, an L-DOPA-related compound, or a dopamine agonist to the subject and the blink-related parameter. , the method described in any one of items 1 to 4.
(Item 6)
The method according to any one of items 1 to 5, wherein the condition includes a condition indicated by an index that can be used for clinical evaluation.
(Item 7)
The condition is according to any one of items 1 to 6, including a condition indicated by at least one of the presence or absence of dyskinesia, ON-OFF, MDS-UPDRS Part III score, UDysRS score, and plasma levodopa concentration. Method described.
(Item 8)
8. The method according to any one of items 1 to 7, wherein the subject is a Parkinson's disease patient being treated with L-DOPA, an L-DOPA-related compound, or a dopamine agonist.
(Item 8A)
9. The method of any one of items 1-8, wherein estimating the state of the object includes predicting a future state of the object.
(Item 9)
A method of estimating a state of a target, the method comprising:
A) acquiring eyeball information of the subject;
B) A method comprising the step of estimating the condition of the subject based on the eyeball information and the elapsed time after administering L-DOPA, an L-DOPA-related compound, or a dopamine agonist to the subject.
(Item 10)
A method for estimating the condition of a Parkinson's disease patient being treated with L-DOPA, an L-DOPA-related compound, or a dopamine agonist, the method comprising:
A) obtaining a blink confidence value of the patient;
B) estimating the condition of the patient based on the blink confidence value and the elapsed time after administering L-DOPA, an L-DOPA-related compound, or a dopamine agonist to the patient; The method, wherein the condition includes at least one of the presence or absence of dyskinesia, ON-OFF, MDS-UPDRS Part III score, UDysRS score, and plasma levodopa concentration.
(Item 11)
The step A) further includes obtaining at least one value of the patient's blink interval, blink energy, blink duration, and number of blinks,
The step B) is based on the value of the blink confidence, the elapsed time, and the value of at least one of the blink interval, blink energy, blink duration, and number of blinks. The method according to item 10, comprising estimating a state of.
(Item 12)
A system for estimating the state of a target,
means for acquiring the value of a parameter related to the blink of the subject;
A system comprising: means for estimating a state of the object based on at least a value of a parameter related to the blink.
(Item 12A)
13. The system of item 12, comprising the features described in one or more of the above items.
(Item 13)
A program for estimating a state of a target, the program being executed in a computer including a processor, the program comprising:
A) obtaining the value of a parameter related to the subject's blink;
B) A program that causes the processor to perform a process including: estimating the state of the object based on at least the value of the parameter related to the blink.
(Item 13A)
14. The program according to item 13, comprising the features described in one or more of the above items.
(Item 13B)
A computer-readable storage medium storing the program according to item 13 or 13A.
(Item 14)
A method of evaluating a therapeutic or preventive drug or other medical technology for a subject, the method comprising:
A) obtaining the value of a parameter related to the subject's blink;
B) calculating an estimated effective amount or effective level or usage or administration of the therapeutic or prophylactic drug or other medical technique based on at least the value of the blink-related parameter.
(Item 15)
The method according to item 14, further comprising determining a therapeutic or prophylactic drug or other medical technique recommended for the subject based on the calculated estimated effective amount or effective level or dosage or administration. .
(Item 15A)
15. A method according to item 14, comprising the features described in one or more of the above items.
(Item 16)
A system for evaluating therapeutic or preventive drugs or other medical techniques for a subject,
means for acquiring the value of a parameter related to the blink of the subject;
and means for calculating an estimated effective amount or effective level or usage or administration of the therapeutic or prophylactic drug or other medical technique based on at least the value of the blink-related parameter.
(Item 16A)
17. The system of item 16, comprising the features described in one or more of the above items.
(Item 17)
A program for evaluating therapeutic or preventive drugs or other medical techniques for a subject, the program being executed on a computer including a processor, the program comprising:
A) obtaining the value of a parameter related to the subject's blink;
B) Calculating an estimated effective amount or effective level or usage or dosage of the therapeutic or prophylactic drug or other medical technology based on at least the value of the blink-related parameter. ,program.
(Item 17A)
18. The program according to item 17, comprising the features described in one or more of the above items.
(Item 17B)
A computer-readable storage medium storing the program according to item 17 or 17A.
(Item 18)
A target health management method,
Performing the method described in any one of items 1 to 11,
determining whether or not to treat the subject based on the results of the method;
If it is determined that treatment should be performed on the subject, taking action for health management of the subject.
(Item 19)
The action includes performing the treatment on the target, issuing an alert that the treatment should be performed on the target, and administering a predetermined drug or therapy to the target. The method according to item 18, comprising at least one of the following.
(Item 20)
A target health management system,
An estimation system configured to perform the method described in any one of items 1 to 11;
means for determining whether or not to treat the subject based on the output from the estimation system;
A system comprising means for taking action for health management of the subject when it is determined that the subject should be treated.
(Item 20A)
21. The system of item 20, comprising the features described in one or more of the above items.
(Item 21)
A target health management program, the program being executed on a computer comprising a processor, the program comprising:
Performing the method described in any one of items 1 to 11,
determining whether or not to treat the subject based on the results of the method;
A program that causes the processor to perform processing including: issuing an instruction to take action for health management of the subject when it is determined that treatment should be taken for the subject.
(Item 21A)
22. The program according to item 21, comprising the features described in one or more of the above items.
(Item 21B)
A computer-readable storage medium storing the program according to item 21 or 21A.
 本開示において、上記の一つまたは複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。本開示のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。 In the present disclosure, it is intended that one or more of the features described above may be provided in further combinations in addition to the specified combinations. Still further embodiments and advantages of the present disclosure will be recognized by those skilled in the art upon reading and understanding the following detailed description, as appropriate.
 本開示は、対象の状態を簡易に推定することができるものである。一例において、本開示は、現実的に実現可能な、パーキンソン病患者またはパーキンソン病疑いの患者の状態を推定する方法等を提供することができる。 The present disclosure allows the state of a target to be easily estimated. In one example, the present disclosure can provide a method of estimating the condition of a Parkinson's disease patient or a patient suspected of having Parkinson's disease, etc., which is practically possible.
対象の状態を推定または予測する方法のフローチャートFlowchart of how to estimate or predict the state of a target 対象に対する治療薬または予防薬あるいは他の医療技術を評価する方法のフローチャートFlowchart of a method for evaluating therapeutic or prophylactic drugs or other medical techniques for a subject システム10の構成の一例を示す図Diagram showing an example of the configuration of the system 10 推定/予測手段12が利用し得る学習済モデルを構築するためのニューラルネットワーク20の構造の一例を示す図A diagram showing an example of the structure of a neural network 20 for constructing a learned model that can be used by the estimation/prediction means 12. システム10Aの構成の一例を示す図Diagram showing an example of the configuration of system 10A 本開示のシステム1000の構成の一例を示す図A diagram showing an example of the configuration of a system 1000 of the present disclosure ユーザ装置100の構成の一例を示す図A diagram showing an example of the configuration of the user device 100 サーバ装置200の構成の一例を示す図A diagram showing an example of the configuration of a server device 200 一実施形態におけるユーザ装置100とサーバ装置200との間のデータのやり取りを示すデータフロー図A data flow diagram showing data exchange between the user device 100 and the server device 200 in one embodiment 一実施形態におけるユーザ装置100とサーバ装置200との間のデータのやり取りを示すデータフロー図A data flow diagram showing data exchange between the user device 100 and the server device 200 in one embodiment 実施例1の試験の手順を図式的に示す図Diagram schematically showing the test procedure of Example 1 1人の患者から測定されたデータの例を示す図Diagram showing an example of data measured from one patient 未知データに対する推定性能の評価の結果を示す図Diagram showing the results of estimation performance evaluation for unknown data 未知データに対する推定性能の評価の結果を示す図Diagram showing the results of estimation performance evaluation for unknown data 未知データに対する推定性能の評価の結果を示す図Diagram showing the results of estimation performance evaluation for unknown data 患者#20の未知データおよび学習データに対してジスキネジアの有無を判定した結果を示す図Diagram showing the results of determining the presence or absence of dyskinesia for unknown data and learning data of patient #20 患者#3および患者#20の未知データならびに学習データに対してON/OFFを判定した結果を示す図Diagram showing the results of ON/OFF determination for unknown data and learning data of patient #3 and patient #20
 以下、本開示を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 The present disclosure will be described below. Throughout this specification, references to the singular should be understood to include the plural unless specifically stated otherwise. Accordingly, singular articles (e.g., "a," "an," "the," etc. in English) should be understood to also include the plural concept, unless specifically stated otherwise. Further, it should be understood that the terms used herein have the meanings commonly used in the art unless otherwise specified. Accordingly, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In case of conflict, the present specification (including definitions) will control.
 (定義)
 本明細書において使用される用語および一般的な技術を説明する。
(definition)
Terminology and general techniques used herein are explained.
 本明細書において、「約」とは、後に続く数値の±10%を意味する。 As used herein, "about" means ±10% of the following numerical value.
 本明細書において「対象」とは、「被験体」、「被験者」と同様の意義で用いられ、本開示の治療、診断または検査などを行う目的となるヒトをいい、対象が疾患に罹患している場合は「患者」と同義に用いられる。対象は、好ましくは、L-DOPA、L-DOPA関連化合物またはドパミン作動薬で治療中のパーキンソン病患者である。 In this specification, "subject" is used in the same meaning as "subject" and "subject", and refers to a human being for whom the treatment, diagnosis, or test of the present disclosure is performed, and the subject is suffering from a disease. is used synonymously with "patient". The subject is preferably a Parkinson's disease patient undergoing treatment with L-DOPA, L-DOPA related compounds or dopamine agonists.
 本明細書において「ドパミンまたはドパミンと生物学的に同等な物質」とは、ドパミンまたは生体内でドパミンと同様の機能を有する任意の物質を指す。そのような機能として神経伝達物質としての機能があり、ドパミンが働く主な神経経路には黒質線条体路・中脳辺縁系路・中脳皮質路の3つあるところ、黒質線条体路はパーキンソン病と関連することから、本明細書では特に、黒質線条体路との関係で生物学的な同等性がいえれば、本明細書にいうドパミンと生物学的に同等な物質に該当する。 As used herein, "dopamine or a substance biologically equivalent to dopamine" refers to dopamine or any substance that has a similar function to dopamine in vivo. One such function is as a neurotransmitter, and there are three main neural pathways through which dopamine acts: the nigrostriatal tract, mesolimbic tract, mesencephalic tract, and the nigrostriatal tract. Since the striatal tract is associated with Parkinson's disease, this specification specifically refers to the biological equivalent of dopamine as referred to herein, if it can be said that it is biologically equivalent in relation to the nigrostriatal tract. It corresponds to an equivalent substance.
 本明細書において、ドパミンと生物学的に同等な物質としては、例えば、レボドパ(L-3,4-ジヒドロキシフェニルアラニン(IUPAC名は(S)-2-アミノ-3-(3,4-ジヒドロキシフェニル)プロパン酸)であり、L-ドパとも称される。)の他、L-3,4-ジヒドロキシフェニルアラニン、ブロモクリプチン、ペルゴリド、タリペキソール、カベルゴリン、プラミペキソール、ロピニロール、ロチゴチン、アポモルヒネなどを挙げることができるがこれらに限定されない。 In this specification, substances biologically equivalent to dopamine include, for example, levodopa (L-3,4-dihydroxyphenylalanine (IUPAC name is (S)-2-amino-3-(3,4-dihydroxyphenyl) ) propanoic acid), also called L-dopa), L-3,4-dihydroxyphenylalanine, bromocriptine, pergolide, talipexole, cabergoline, pramipexole, ropinirole, rotigotine, apomorphine, etc. but is not limited to these.
 本明細書において、「L-DOPA、L-DOPA関連化合物またはドパミン作動薬」とは、生体(例えば、パーキンソン病患者)に投与したときに、生体内での代謝を経てL-DOPAの薬理学的機能を発揮すること、例えば「ドパミンまたはドパミンと生物学的に同等な物質」の生物学的機能を発揮する物質を指し、L-DOPAの他L-DOPA関連化合物およびドパミン作動薬が包含される。 As used herein, "L-DOPA, L-DOPA-related compounds, or dopamine agonists" refers to the pharmacological effects of L-DOPA through metabolism in the body when administered to a living body (for example, a Parkinson's disease patient). For example, it refers to a substance that exhibits the biological function of "dopamine or a substance biologically equivalent to dopamine," and includes L-DOPA, L-DOPA-related compounds, and dopamine agonists. Ru.
 本明細書において、「ドパミン作動薬」とは、L-3,4-ジヒドロキシフェニルアラニン、ブロモクリプチン、ペルゴリド、タリペキソール、カベルゴリン、プラミペキソール、ロピニロール、ロチゴチン、アポモルヒネなどを挙げることができるがこれらに限定されない。 As used herein, the term "dopamine agonist" includes, but is not limited to, L-3,4-dihydroxyphenylalanine, bromocriptine, pergolide, talipexole, cabergoline, pramipexole, ropinirole, rotigotine, apomorphine, and the like.
 本明細書において「L-DOPA」または「レボドパ」は同義である。 In this specification, "L-DOPA" and "levodopa" are synonymous.
 本明細書において、「L-DOPAの関連化合物」とは、L-DOPAとは異なるが、L-DOPAと同等の生物学的機能(特に、例えば、パーキンソン病の治療に関連する活性)を有するものをいう。例えば、L-DOPA関連化合物としては、例えば、L-3,4-ジヒドロキシフェニルアラニンのエステルおよびその塩を包含するが、これらに限定されない。L-3,4-ジヒドロキシフェニルアラニンのエステルの例は、レボドパエチルエステル(LDEE;エチル(2S)-2-アミノ-3-(3,4-ジヒドロキシフェニル)プロパノエート)、レボドパプロピルエステル;レボドパプロピルエステル(プロピル(2S)-2-アミノ-3-(3,4-ジヒドロキシフェニル)プロパノエート)、レボドパメチルエステル(メチル(2S)-2-アミノ-3-(3,4-ジヒドロキシフェニル)プロパノエート)等を挙げることができ、L-3,4-ジヒドロキシフェニルアラニンのエステルは、例えば水和塩を含む塩であり得る。レボドパエステルの塩は、オクタン酸塩、ミリスチン酸塩、コハク酸塩、コハク酸塩二水和物、フマル酸塩、フマル酸塩二水和物、メシル酸塩、酒石酸塩および塩酸塩のいずれかを含み得るが、これらに限定されない。例えば、L-3,4-ジヒドロキシフェニルアラニンのエステルのコハク酸塩またはコハク酸塩二水和物は、レボドパエチルエステルスクシネート(LDEE-S)またはレボドパエチルエステルスクシネート二水和物(LDEE-S-二水和物またはLDEE-S(d))を挙げることができる。L-DOPAの関連化合物には、L-DOPAのプロドラッグやデポ剤等も含まれる。L-DOPA関連化合物は、ドパミン作動薬と重複することがあり得るが、本明細書ではそのような場合いずれに分類されてもよい。 As used herein, "a compound related to L-DOPA" is different from L-DOPA but has a biological function equivalent to that of L-DOPA (particularly, for example, an activity related to the treatment of Parkinson's disease). say something For example, L-DOPA related compounds include, but are not limited to, esters of L-3,4-dihydroxyphenylalanine and salts thereof. Examples of esters of L-3,4-dihydroxyphenylalanine are levodopa ethyl ester (LDEE; ethyl (2S)-2-amino-3-(3,4-dihydroxyphenyl)propanoate), levodopapropyl ester; Propyl (2S)-2-amino-3-(3,4-dihydroxyphenyl)propanoate), levodopa methyl ester (methyl (2S)-2-amino-3-(3,4-dihydroxyphenyl)propanoate), etc. The ester of L-3,4-dihydroxyphenylalanine can be a salt, including, for example, a hydrated salt. The salts of levodopa ester are octanoate, myristate, succinate, succinate dihydrate, fumarate, fumarate dihydrate, mesylate, tartrate and hydrochloride. may include, but are not limited to. For example, the succinate or succinate dihydrate of the ester of L-3,4-dihydroxyphenylalanine is levodopaethyl ester succinate (LDEE-S) or levodopaethyl ester succinate dihydrate (LDEE-S). -S-dihydrate or LDEE-S(d)). Compounds related to L-DOPA include prodrugs and depot agents of L-DOPA. L-DOPA related compounds may overlap with dopamine agonists, but may be classified herein as such in either case.
 本明細書において、「助剤(adjunct)」とは、主な作用をする薬剤以外の薬剤をいい、本明細書においては、レボドパが主剤であるとすると、タンドスピロン等は助剤であるということができる。本明細書において「L-DOPAの助剤(adjunct)」とはL-DOPAの代謝や分解を抑制する、あるいは、L-DOPA由来のドパミンのシナプス間隙への放出を調節する薬剤をいう。本明細書において、主剤であるレボドパの1日あたりの投与量は、パーキンソン病診療ガイドライン2018年バージョンあるいは米国や欧州における対応するガイドラインに記載されたレボドパ治療の通常用量である。一般的には、1日あたりのレボドパ通常用量は、末梢性ドパ脱炭酸酵素阻害薬(decarboxylase inhibitor;DCI)の併用もしくは配合剤として、50~1200mg/日であり、好ましくは100mg~600mg/日である。例えば、FDAで承認されているSINEMET(登録商標)(Carbidopa-Levodopa配合錠)(New Drug Application(NDA)#017555)は、1:4比率配合錠(Carbidopa 25mg-Levodopa 100mg)、および1:10比率配合錠(Carbidopa 10mg-Levodopa 100mg、Carbidopa 25mg-Levodopa 250mg)として提供される。1日維持量は、Carbidopaが70mgから100mgとなるようSINEMET(登録商標)が投与され、1日最大量は、Carbidopaとして200mgまでSINEMET(登録商標)が投与される。 As used herein, "adjunct" refers to a drug other than the drug that has the main effect, and in this specification, if levodopa is the main drug, tandospirone etc. are adjuvants. Can be done. As used herein, the term "L-DOPA adjunct" refers to a drug that suppresses the metabolism or decomposition of L-DOPA or regulates the release of dopamine derived from L-DOPA into the synaptic cleft. In the present specification, the daily dosage of levodopa, which is the main drug, is the usual dose for levodopa treatment as described in the 2018 version of the Parkinson's Disease Clinical Practice Guidelines or the corresponding guidelines in the United States and Europe. Generally, the usual daily dose of levodopa is 50 to 1200 mg/day, preferably 100 mg to 600 mg/day, in combination or as a combination drug with peripheral dopa decarboxylase inhibitor (DCI). It is day. For example, SINEMET® (Carbidopa-Levodopa combination tablets) (New Drug Application (NDA) #017555) approved by the FDA has a 1:4 ratio combination tablet (Carbidopa 25mg-Levodopa 100mg), and 1:10 It is provided as a ratio combination tablet (Carbidopa 10mg - Levodopa 100mg, Carbidopa 25mg - Levodopa 250mg). SINEMET (registered trademark) is administered as a daily maintenance dose from 70 mg to 100 mg of Carbidopa, and SINEMET (registered trademark) is administered as a maximum daily dose of 200 mg as Carbidopa.
 レボドパの助剤の例としては、レボドパの代謝酵素阻害剤やドパミン放出制御剤を挙げることができる。 Examples of levodopa auxiliaries include levodopa metabolic enzyme inhibitors and dopamine release controlling agents.
 本明細書において、「レボドパの代謝酵素阻害剤」とは、広義のレボドパの作用を強めるようにその代謝を阻害する作用を有する任意の薬剤を指し、レボドパが腸、肝臓、血管内でドパミンに変わるのを防ぐドパ脱炭酸酵素(デカルボキシラーゼ)阻害薬(DCI)(カルビドパ、α-メチルドパ、ベンゼラジド(Ro4-4602)、α-ジフルオロメチル-DOPA(DFMD)またはそれらの塩等が例示される)、同様にレボドパが脳に入る前に分解されるのを防ぐカテコラミン-O-メチル基転移酵素阻害薬(COMT-I)(エンタカポンが例示される)、脳内でドパミンが分解されるのを防ぐモノアミン酸化酵素阻害薬(MAO-I)(セレギリンが例示される)等を挙げることができる。「ドパミン放出制御剤」は、ドパミン神経からのドパミン放出を制御する作用を有する薬剤を指し、ゾニサミドやアマンタジン、タンドスピロン、ブスピロン、イストラデフィリン等が例示される。 As used herein, "levodopa metabolic enzyme inhibitor" refers to any drug that has the effect of inhibiting the metabolism of levodopa so as to enhance its action in a broad sense. Dopa decarboxylase (decarboxylase) inhibitors (DCI) (carbidopa, α-methyldopa, benzerazide (Ro4-4602), α-difluoromethyl-DOPA (DFMD), or salts thereof, etc.) are exemplified. ), as well as catecholamine-O-methyltransferase inhibitors (COMT-I) (entacapone is an example), which prevent levodopa from being broken down before it enters the brain, and drugs that prevent dopamine from being broken down in the brain. Examples include monoamine oxidase inhibitors (MAO-I) (selegiline is an example). A "dopamine release controlling agent" refers to a drug that has the effect of controlling dopamine release from dopamine nerves, and examples thereof include zonisamide, amantadine, tandospirone, buspirone, istradefylline, and the like.
 本明細書において「ドパミン神経機能回復剤」とは、ドパミン神経の機能回復および/あるいは変性脱落を予防もしくは抑制することを目的とした任意の薬剤や治療法を指し、ドパミン神経変性作用を有する物質、例えばalpha―synucleinに対するワクチンあるいは抗体医薬あるいはその発現などに影響を与える核酸医薬などを挙げることができる。 As used herein, the term "dopamine nerve function restoring agent" refers to any drug or treatment method aimed at restoring the function of dopamine nerves and/or preventing or suppressing their degeneration and loss, and refers to substances that have dopamine nerve degeneration effects. Examples include vaccines or antibody drugs against alpha-synuclein, and nucleic acid drugs that affect its expression.
 本明細書において「ドパミン産生細胞医薬品」とは、ドパミン神経細胞の細胞移植によりパーキンソン病を治療する医薬品をいう。例としては、胎児中脳組織の細胞移植や、ヒト人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)由来ドパミン神経前駆細胞の細胞移植を挙げることができる。 As used herein, the term "dopamine-producing cell drug" refers to a drug that treats Parkinson's disease through cell transplantation of dopamine neurons. Examples include cell transplantation of fetal midbrain tissue and cell transplantation of dopaminergic neural progenitor cells derived from human induced pluripotent stem cells (iPS cells).
 本明細書において「ドパミン産生遺伝子治療」とは、ドパミン合成に必要な酵素遺伝子をウイルスベクターにより被殻に導入する治療法をいう。例としては、アデノ随伴ウイルス(adeno-associated virus(AAV))に芳香族アミノ酸脱炭酸酵素(AADC)遺伝子を導入した遺伝子治療法を挙げることができる。 As used herein, "dopamine-producing gene therapy" refers to a treatment method in which the enzyme gene necessary for dopamine synthesis is introduced into the putamen using a viral vector. An example is a gene therapy method in which an aromatic amino acid decarboxylase (AADC) gene is introduced into an adeno-associated virus (AAV).
 本明細書において「手術療法」は、視床下核や淡蒼球内節、視床への脳深部刺激療法(Deep Brain Stimulation:DBS)や、視床や淡蒼球の定位的破壊術、集束超音波治療(Focused Ultrasound:FUS)等の外科的治療法を挙げることができる。 In this specification, "surgical therapy" refers to deep brain stimulation (DBS) to the subthalamic nucleus, internal globus pallidus, and thalamus, stereotactic destruction of the thalamus and globus pallidus, and focused ultrasound. Surgical treatment methods such as Focused Ultrasound (FUS) can be mentioned.
 本明細書において、ある「量」に言及する場合、その狭義の意味での「絶対量」のみならず、その広義の意味での「相対量」も含み得る。「相対量」は、例えば、変化量(例えば、増加量、減少量)を含む。 In this specification, when a certain "amount" is referred to, it may include not only an "absolute amount" in its narrow sense, but also a "relative amount" in its broad sense. The "relative amount" includes, for example, the amount of change (for example, the amount of increase, the amount of decrease).
 本明細書において、「レベル」とは、量までは特定できないとしても、おおよその度合いを意味する。これらのレベルは、効果(作用)の程度をいい、Movement Disorder Society-Unified Parkinson‘s Disease Rating Scale(MDS-UPDRS)、UPDRS、Unified Dyskinesia Rating Scale(UDysRS)、Clinical Dyskinesia Rating Scale(CDRS)、The Rush Dyskinesia Rating Scale(Rush DRS)、Abnormal Involuntary Movement Scale(AIMS)、EuroQol 5 Dimensions(EQ-5D-5L)、PDQ-39(Parkinson‘s Disease Questionnarie-39)、Clinical Global Impressions(CGI)、Patient Global Impression(PGI)等の臨床評価スケールや患者日誌、加速度計および/または角速度計等のウェアラブルデバイスにより取得される移動運動情報より計算されるスケールなどで表現することができる。 As used herein, "level" means an approximate degree, even if the amount cannot be specified. These levels refer to the degree of effect (action), and include Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), UPDRS, Unified Dysk inesia Rating Scale (UDysRS), Clinical Dyskinesia Rating Scale (CDRS), The Rush Dyskinesia Rating Scale (Rush DRS), Abnormal Involuntary Movement Scale (AIMS), EuroQol 5 Dimensions (EQ- 5D-5L), PDQ-39 (Parkinson's Disease Questionnarie-39), Clinical Global Impressions (CGI), Patient Global It can be expressed using a clinical evaluation scale such as PGI (PGI), a patient diary, or a scale calculated from locomotion information acquired by a wearable device such as an accelerometer and/or angular velocity meter.
 本明細書において、「変動」とは、経時的に変化すること、または経時的に変化した値のことをいう。経時的に変化した値は、変化量ともいう。 As used herein, "variation" refers to a change over time or a value that changes over time. The value that changes over time is also called the amount of change.
 本明細書において、「生体内(の)ドパミンまたはドパミンと生物学的に同等な物質」とは、ある臓器や器官(血液なども含む)、細胞において存在するドパミンまたはドパミンと生物学的に同等な物質のことをいう。 As used herein, "in vivo dopamine or a substance biologically equivalent to dopamine" refers to dopamine or a substance biologically equivalent to dopamine that exists in a certain organ, organ (including blood, etc.), or cell. refers to a substance that
 本明細書において、「脳内のドパミンまたはドパミンと生物学的に同等な物質」とは、脳内に存在するドパミンまたはドパミンと生物学的に同等な物質をいう。脳内のドパミンまたはドパミンと生物学的に同等な物質はマイクロダイアリシス法によるドパミン量の測定や、質量分析イメージング(Mass Spectrometry Imaging:MSI)、L-DOPA同様の代謝を受ける薬剤やドパミントランスポーター、ドパミン受容体に親和性を有する薬剤のシングルフォトン断層法(Single Photon Emission Computed Tomography:SPECT)製剤や、ポジトロン断層法(Positron Emission Tomography:PET)製剤を用いた脳機能イメージング法等の方法で測定することができる。 As used herein, "dopamine in the brain or a substance biologically equivalent to dopamine" refers to dopamine existing in the brain or a substance biologically equivalent to dopamine. Dopamine in the brain or substances biologically equivalent to dopamine can be determined by measuring the amount of dopamine using microdialysis, mass spectrometry imaging (MSI), drugs that undergo metabolism similar to L-DOPA, and dopamine transporters. , Single Photon Emission Computed Tomography (SPECT) preparations and Positron Emission Tomography (PET) of drugs that have affinity for dopamine receptors. Measured by methods such as brain functional imaging using preparations can do.
 本明細書において、「閉眼速度」とは、瞬目において眼を閉じるために上眼瞼が動き始める瞬間から上眼瞼の動きが止まったとみなされる瞬間までの上眼瞼の動きの平均速度のことをいう。 As used herein, "eye-closing speed" refers to the average speed of upper eyelid movement from the moment the upper eyelid begins to move to close the eye during a blink to the moment when the upper eyelid movement is considered to have stopped. .
 本明細書において、「閉眼ピーク速度」とは、瞬目において眼を閉じるために上眼瞼が動き始める瞬間から上眼瞼の動きが止まったとみなされる瞬間までの上眼瞼の動きの最大速度のことをいう。 In this specification, "eye closing peak speed" refers to the maximum speed of upper eyelid movement from the moment the upper eyelid begins to move to close the eye during a blink to the moment when the upper eyelid movement is considered to have stopped. say.
 本明細書において、「開眼速度」とは、瞬目において眼を開くために上眼瞼が動き始める瞬間から上眼瞼の動きが止まったとみなされる瞬間までの上眼瞼の動きの平均速度のことをいう。 As used herein, "eye opening speed" refers to the average speed of upper eyelid movement from the moment the upper eyelid begins to move to open the eye during a blink to the moment when the upper eyelid movement is considered to have stopped. .
 本明細書において、「開眼ピーク速度」とは、瞬目において眼を開くために上眼瞼が動き始める瞬間から上眼瞼の動きが止まったとみなされる瞬間までの上眼瞼の動きの最大速度のことをいう。 In this specification, "peak eye opening speed" refers to the maximum speed of upper eyelid movement from the moment the upper eyelid begins to move to open the eye during a blink to the moment when the upper eyelid movement is considered to have stopped. say.
 本明細書において、「閉眼時間」とは、瞬目において眼を閉じるために上眼瞼が動き終えた瞬間から、眼を開くために上眼瞼が動き始める瞬間までの時間のことをいう。 As used herein, "eye-closing time" refers to the time from the moment the upper eyelid finishes moving to close the eye during a blink to the moment the upper eyelid begins to move to open the eye.
 本明細書において、「開眼時振幅」とは、瞬目において眼を開くために上眼瞼が動き始める瞬間から上眼瞼の動きが止まったとみなされる瞬間までに上眼瞼が移動する距離のことをいう。 As used herein, "eye-opening amplitude" refers to the distance that the upper eyelid moves from the moment the upper eyelid begins to move to open the eye during a blink to the moment when the upper eyelid movement is considered to have stopped. .
 本明細書において、「閉眼時振幅」とは、瞬目において眼を閉じるために上眼瞼が動き始める瞬間から上眼瞼の動きが止まったとみなされる瞬間までに上眼瞼が移動する距離のことをいう。 In this specification, "eye closure amplitude" refers to the distance that the upper eyelid moves from the moment the upper eyelid begins to move to close the eye during a blink to the moment when the upper eyelid movement is considered to have stopped. .
 本明細書において、「開眼度」とは、上眼瞼の相対的な位置を表す指標であり、例えば完全に開眼している場合の上眼瞼の相対的な位置を0とし、完全に閉眼している場合の上眼瞼の相対的位置を1としたときの相対的な位置を表すことができる。 In this specification, "eye opening degree" is an index representing the relative position of the upper eyelid. For example, the relative position of the upper eyelid when the eyes are completely open is 0, and when the eyes are completely closed, the relative position of the upper eyelid is 0. The relative position of the upper eyelid can be expressed when the relative position of the upper eyelid is set to 1.
 本明細書において、「瞬目持続時間」とは、瞬目において眼を閉じるために上眼瞼が動き始める瞬間から眼を開くための上眼瞼の動きが止まったとみなされる瞬間までの時間のことをいう。「瞬目持続時間」=(開眼時振幅/開眼速度)+(閉眼時振幅/閉眼速度)となり得る。 As used herein, "blink duration" refers to the time from the moment when the upper eyelid begins to move to close the eye during a blink to the moment when the upper eyelid is considered to have stopped moving to open the eye. say. "Blink duration" = (eye-opening amplitude/eye-opening speed) + (eye-closing amplitude/eye-closing speed).
 本明細書において、「瞬目回数」とは、一定の時間窓における瞬目の回数のことをいう。 In this specification, the "number of blinks" refers to the number of blinks in a certain time window.
 本明細書において、「瞬目に関するパラメータ」とは、瞬目から取得され得るパラメータのことを言う。瞬目に関するパラメータは、典型的には、閉眼速度、閉眼ピーク速度、開眼速度、開眼ピーク速度、閉眼時間、開眼時振幅、閉眼時振幅、開眼度、瞬目持続時間、および瞬目回数のうちの少なくとも1つまたは組み合わせを含む。閉眼速度、閉眼ピーク速度、開眼速度、開眼ピーク速度、閉眼時間、開眼時振幅、閉眼時振幅、瞬目間時間、瞬目持続時間、瞬目回数のうちの少なくともいくつかの組み合わせは、例えば、瞬目コンフィデンス、瞬目インターバル、瞬目エネルギーとして表現され得る。好ましくは、瞬目に関するパラメータは、瞬目コンフィデンス、瞬目インターバル、および瞬目エネルギー、瞬目深度のうちの少なくとも1つを含む。より好ましくは、瞬目に関するパラメータは、瞬目コンフィデンスおよび瞬目インターバルを含む。瞬目に関するパラメータは、閉眼速度、閉眼ピーク速度、開眼速度、開眼ピーク速度、閉眼時間、開眼時振幅、閉眼時振幅、開眼度、瞬目持続時間、および瞬目回数の演算値を含んでもよい。演算値は、例えば、データを所定の閾値(例えば、時間に関する閾値(時間窓)、絶対値に関する閾値、相対値に関する閾値)で区分したときの各区分内の値の演算値(区分内演算値)を含み得る。区分内演算値は、例えば、最大値、最小値、平均値、中央値、分散、25%パーセンタイル値、75%パーセンタイル値、周波数解析スペクトラム等の各種統計量を含むがこれらに限定されない。演算値は、例えば、複数の区分の区分内演算値の演算値(区分間演算値)を含み得る。区分間演算値は、例えば、加重和、差分、時間微分、時間積分、比、相関係数、共分散、ポアンカレプロット解析により得られる標準偏差パラメータを含むがこれらに限定されない。ここで、ポアンカレプロット解析により得られる標準偏差パラメータとは、心拍解析に用いる手法を瞬目解析に対して援用したものである。すなわち、横軸にn番目の瞬目とn+1番目の瞬目との間の時間(下記に説明する「瞬目インターバル」)BI(n)をとり、縦軸にn+1番目の瞬目とn+2番目との間の時間BI(n+1)をとって散布図とし、そのBI(n)=BI(n+1)の直線に対する垂直方向、平行方向の標準偏差をそれぞれSD1、SD2として標準偏差パラメータとする。さらに、SD1/SD2あるいはSD2/SD1といった比や、プロットが描く仮想楕円の面積としてS=SD1xSD2を算出するなどの演算処理によって得られた値もパラメータとして活用できる。 In this specification, "parameters related to blinks" refer to parameters that can be obtained from blinks. Parameters related to blinking are typically among the following: eye closing speed, eye closing peak velocity, eye opening speed, eye opening peak velocity, eye closing time, eye opening amplitude, eye closing amplitude, degree of eye opening, blink duration, and number of blinks. at least one or a combination of the following. The combination of at least some of the following: eye-closing velocity, eye-closing peak velocity, eye-opening velocity, eye-opening peak velocity, eye-closing time, eye-opening amplitude, eye-closing amplitude, interblink time, blink duration, and number of blinks, for example, It can be expressed as blink confidence, blink interval, and blink energy. Preferably, the blink-related parameters include at least one of blink confidence, blink interval, blink energy, and blink depth. More preferably, the blink-related parameters include blink confidence and blink interval. The blink-related parameters may include calculated values of eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, degree of eye opening, blink duration, and number of blinks. . The calculated value is, for example, the calculated value of the value within each classification when data is divided by a predetermined threshold (for example, a time threshold (time window), an absolute value threshold, a relative value threshold). ) may be included. The intra-class calculation values include, but are not limited to, various statistics such as maximum value, minimum value, average value, median value, variance, 25% percentile value, 75% percentile value, and frequency analysis spectrum. The calculated values may include, for example, calculated values of intra-section calculated values (inter-section calculated values) of a plurality of sections. Inter-section calculation values include, but are not limited to, weighted sums, differences, time differentials, time integrals, ratios, correlation coefficients, covariances, and standard deviation parameters obtained by Poincaré plot analysis. Here, the standard deviation parameter obtained by Poincaré plot analysis is the one in which the method used for heartbeat analysis is applied to blink analysis. In other words, the horizontal axis represents the time between the nth blink and the n+1st blink (the "blink interval" described below), and the vertical axis represents the time between the n+1st blink and the n+2nd blink. The time BI(n+1) between BI(n+1) and BI(n+1) is plotted as a scatter diagram, and the standard deviations in the vertical direction and parallel direction to the straight line of BI(n)=BI(n+1) are defined as SD1 and SD2, respectively, as standard deviation parameters. Furthermore, ratios such as SD1/SD2 or SD2/SD1, and values obtained through arithmetic processing such as calculating S=SD1×SD2 as the area of a virtual ellipse drawn by a plot can also be used as parameters.
 本明細書において、「瞬目コンフィデンス」とは、完全に開眼している場合の上眼瞼の相対的な位置を0、完全に閉眼している場合の上眼瞼の相対的位置を1とした場合に、1回の瞬目の開始から終了までの時間を横軸に、上眼瞼の相対的な位置を縦軸に表した際の曲線上の面積/(曲線上の面積+曲線下の面積)で表され得る。 In this specification, "blink confidence" refers to the relative position of the upper eyelid when the eyes are completely open as 0, and the relative position of the upper eyelid when the eyes are completely closed as 1. The area on the curve / (area on the curve + area under the curve) when the horizontal axis is the time from the start to the end of one blink and the vertical axis is the relative position of the upper eyelid. It can be expressed as
 本明細書において、「瞬目インターバル」とは、ある瞬目と次の瞬目との間の時間のことをいい、完全に開眼している場合の上眼瞼の相対的な位置を0、完全に閉眼している場合の上眼瞼の相対的位置を1とした場合に、上眼瞼の相対位置が極大値となる瞬間と、次に上眼瞼の相対位置が極大値となる瞬間との間の時間によって表され得る。 In this specification, "blink interval" refers to the time between one blink and the next blink, and the relative position of the upper eyelid when the eyes are fully open is 0, completely If the relative position of the upper eyelid when the eyes are closed is set to 1, then the difference between the moment when the relative position of the upper eyelid reaches its maximum value and the next moment when the relative position of the upper eyelid reaches its maximum value. It can be expressed in terms of time.
 本明細書において、「瞬目エネルギー」とは、瞬目に使われたエネルギーまたは仕事量を模したパラメータであり、一定の時間窓における、瞬目回数と平均瞬目持続時間の逆数またはその累乗との積によって表され得る。 In this specification, "blink energy" is a parameter that simulates the energy or amount of work used in a blink, and is the reciprocal of the number of blinks and the average blink duration or the power thereof in a certain time window. can be represented by the product of
 本明細書において、「瞬目深度」とは、瞬目コンフィデンスを瞬目持続時間で除したパラメータのことをいう。 In this specification, "blink depth" refers to a parameter obtained by dividing blink confidence by blink duration.
 本明細書において、「眼球情報」とは、眼球に関する情報のことをいう。眼球情報は、例えば、眼球運動に関する情報を含む。本明細書において、「眼球運動」とは、眼球に関する運動全般のことをいう。眼球運動は、例えば、眼球移動、眼球状態変化、眼電位の変化等を含み得る。眼球が静止している場合であっても眼球運動に含まれる。眼球情報の例としては、例えば、瞬目に関する情報、瞳孔座標または眼球の相対位置に関する情報、瞳孔径に関する情報を含む。瞬目に関する情報は、瞬目に関するパラメータの値と同義である。瞬目は、例えば、自発的瞬目、随意的瞬目、反射的瞬目を含む。瞬目に関する情報は、例えば、瞬目頻度または瞬目回数、瞬目持続時間、瞬目間時間、閉眼時間、開眼速度、閉眼速度、眼瞼移動幅、眼瞼開口度を含むがこれらに限定されない。例えば、瞳孔座標または眼球の相対位置に関する情報は、移動距離、移動方向、速度、加速度、角速度、サッケード、滑動性眼球運動、前庭動眼反射、輻輳・開散、固視微動(眼球振戦、ドリフト、マイクロサッケード)の存否、量またはレベルを含むがこれらに限定されない。 In this specification, "eyeball information" refers to information regarding eyeballs. The eyeball information includes, for example, information regarding eyeball movements. As used herein, "eyeball movement" refers to all movements related to the eyeballs. Eye movements may include, for example, eye movements, changes in eye conditions, changes in electrooculography, and the like. It is included in eye movement even when the eyeballs are stationary. Examples of eyeball information include, for example, information regarding blinks, information regarding pupil coordinates or the relative position of the eyeballs, and information regarding pupil diameter. The information regarding blinking is synonymous with the value of the parameter regarding blinking. Blinks include, for example, spontaneous blinks, voluntary blinks, and reflex blinks. Information regarding blinks includes, but is not limited to, for example, blink frequency or number of blinks, blink duration, inter-blink time, eye closure time, eye opening speed, eye closing speed, eyelid movement width, and eyelid opening degree. For example, information about pupillary coordinates or the relative position of the eyeballs may include movement distance, movement direction, velocity, acceleration, angular velocity, saccades, gliding eye movements, vestibulo-ocular reflexes, convergence/divergence, fixation micromovements (ocular tremor, drift). , microsaccades), amount, or level.
 瞬目に関する情報および瞳孔座標または眼球の相対位置に関する情報は、それらの情報の演算値も含み得る。演算値は、例えば、前記情報を入力変数とした関数出力(累乗、対数、分布、周波数解析値など)を含み得る。演算値は、例えば、データを所定の閾値(例えば、時間に関する閾値(時間窓)、絶対値に関する閾値、相対値に関する閾値)で区分したときの各区分内の値の演算値(区分内演算値)を含み得る。区分内演算値は、例えば、最大値、最小値、平均値、中央値、分散、25%パーセンタイル値、75%パーセンタイル値、周波数解析スペクトラム等の各種統計量を含むがこれらに限定されない。演算値は、例えば、複数の区分の区分内演算値の演算値(区分間演算値)を含み得る。区分間演算値は、例えば、加重和、差分、時間微分、時間積分、比、相関係数、共分散、ポアンカレプロット解析により得られる標準偏差パラメータを含むがこれらに限定されない。 Information regarding blinks and information regarding pupil coordinates or relative positions of eyeballs may also include calculated values of these information. The calculated value may include, for example, a function output (power, logarithm, distribution, frequency analysis value, etc.) using the information as an input variable. The calculated value is, for example, the calculated value of the value within each classification when data is divided by a predetermined threshold (for example, a time threshold (time window), an absolute value threshold, a relative value threshold). ) may be included. The intra-class calculation values include, but are not limited to, various statistics such as maximum value, minimum value, average value, median value, variance, 25% percentile value, 75% percentile value, and frequency analysis spectrum. The calculated values may include, for example, calculated values of intra-section calculated values (inter-section calculated values) of a plurality of sections. Inter-section calculation values include, but are not limited to, weighted sums, differences, time differentials, time integrals, ratios, correlation coefficients, covariances, and standard deviation parameters obtained by Poincaré plot analysis.
 本明細書において、「L-DOPAで治療中のパーキンソン病患者」とは、L-DOPAの投与による治療を受けているパーキンソン病患者をいい、MDS-UPDRS、UPDRS、UDysRS、CDRS、Rush DRS、AIMS、EQ-5D-5L、PDQ-39、CGI、PGI等の臨床評価スケールや患者日誌、加速度計および/または角速度計等のウェアラブルデバイスにより取得される移動運動情報より計算されるスケール等により症状を確認することができる。これに対して、「未治療のパーキンソン病患者」とは、L-DOPAの投与等による治療を受けていないパーキンソン病患者であって、パーキンソン病の症状を確認することができるものの、症状が進むまで治療を開始しないことを判断された患者をいう。また、「パーキンソン病疑いの患者(prodromal PD)」とは、パーキンソン病であると確定診断されていないが、パーキンソン病の可能性がある患者であって、パーキンソン病の症状の一部またはその兆候を確認することができる患者をいう。 As used herein, "Parkinson's disease patient being treated with L-DOPA" refers to a Parkinson's disease patient who is being treated with L-DOPA, including MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, Symptoms are measured using clinical evaluation scales such as AIMS, EQ-5D-5L, PDQ-39, CGI, and PGI, patient diaries, and scales calculated from locomotion information acquired by wearable devices such as accelerometers and/or gyrometry. can be confirmed. On the other hand, "untreated Parkinson's disease patients" are Parkinson's disease patients who have not received treatment such as administration of L-DOPA, and although symptoms of Parkinson's disease can be confirmed, the symptoms have progressed. Refers to patients for whom it is decided not to start treatment until In addition, "patients suspected of having Parkinson's disease (prodromal PD)" are patients who have not been definitively diagnosed with Parkinson's disease, but who may have some of the symptoms or signs of Parkinson's disease. A patient who can confirm the
 本明細書において、「治療薬」とは、対象の疾患を治癒させたり、症状を軽快にさせたりするための薬剤をいう。特に、パーキンソン病患者についていう場合、パーキンソン病を治癒させたり、症状を軽快にさせたりするための薬剤をいう。臨床的には、MDS-UPDRS、UPDRS、UDysRS、CDRS、Rush DRS、AIMS、EQ-5D-5L、PDQ-39、CGI、PGI等の臨床評価スケールや患者日誌、加速度計および/または角速度計等のウェアラブルデバイスにより取得される移動運動情報より計算されるスケール等により症状改善を確認することができる。 As used herein, the term "therapeutic drug" refers to a drug for curing a target disease or alleviating symptoms. In particular, when referring to patients with Parkinson's disease, it refers to drugs used to cure Parkinson's disease or alleviate symptoms. Clinically, clinical evaluation scales such as MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, AIMS, EQ-5D-5L, PDQ-39, CGI, PGI, patient diary, accelerometer and/or gyro meter, etc. Symptom improvement can be confirmed using a scale calculated from movement information acquired by a wearable device.
 本明細書において、「予防薬」とは、対象の疾患の悪化が生じることを予防したり、症状(例えばジスキネジア等)が出るのを予防したりするための薬剤をいう。特に、パーキンソン病患者についていう場合、パーキンソン病の悪化が生じることを予防したり、症状(例えばジスキネジア等)が出るのを予防したりするための薬剤をいう。臨床的には、MDS-UPDRS、UPDRS、UDysRS、CDRS、Rush DRS、AIMS、EQ-5D-5L、PDQ-39、CGI、PGI等の臨床評価スケールや患者日誌、加速度計および/または角速度計等のウェアラブルデバイスにより取得される移動運動情報より計算されるスケール等により予防効果を確認することができる。 As used herein, the term "prophylactic drug" refers to a drug for preventing aggravation of a subject's disease or preventing symptoms (such as dyskinesia) from occurring. In particular, when referring to patients with Parkinson's disease, it refers to drugs used to prevent Parkinson's disease from worsening or to prevent symptoms (such as dyskinesia) from occurring. Clinically, clinical evaluation scales such as MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, AIMS, EQ-5D-5L, PDQ-39, CGI, PGI, patient diary, accelerometer and/or gyro meter, etc. The preventive effect can be confirmed by the scale etc. calculated from the movement information acquired by the wearable device.
 本明細書において、「医療技術」とは、何らかの医療的な処置を講じるための技術を言い、医薬品、医療機器、再生医療等製品、手術療法などの任意の形態で提供され得る。 As used herein, "medical technology" refers to technology for performing some medical treatment, and may be provided in any form such as pharmaceuticals, medical devices, regenerative medicine products, surgical therapy, etc.
 本明細書において、「有効量」または「有効レベル」とは、特定の疾患の治療または予防のために有効な量またはレベルをいう。特に、パーキンソン病の治療または予防のために有効な量またはレベルをいう。本明細書において、主剤であるレボドパの1日あたりの投与量は、パーキンソン病診療ガイドライン2018年バージョンあるいは米国や欧州における対応するガイドラインに記載されたレボドパ治療の通常用量である。一般的には、1日あたりのレボドパ通常用量は、末梢性ドパ脱炭酸酵素阻害薬(decarboxylase inhibitor;DCI)の併用もしくは配合剤として、50~1200mg/日であり、好ましくは100mg~600mg/日である。例えば、FDAで承認されているSINEMET(登録商標)(Carbidopa-Levodopa配合錠)(New Drug Application(NDA)#017555)は、1:4比率配合錠(Carbidopa 25mg-Levodopa 100mg)、および1:10比率配合錠(Carbidopa 10mg-Levodopa 100mg、Carbidopa 25mg-Levodopa 250mg)として提供される。1日維持量は、Carbidopaが70mgから100mgとなるようSINEMET(登録商標)が投与され、1日最大量は、Carbidopaとして200mgまでSINEMET(登録商標)が投与される。 As used herein, "effective amount" or "effective level" refers to an amount or level effective for treating or preventing a specific disease. In particular, it refers to an amount or level effective for the treatment or prevention of Parkinson's disease. In the present specification, the daily dosage of levodopa, which is the main drug, is the usual dose for levodopa treatment as described in the 2018 version of the Parkinson's Disease Clinical Practice Guidelines or the corresponding guidelines in the United States and Europe. Generally, the usual daily dose of levodopa is 50 to 1200 mg/day, preferably 100 mg to 600 mg/day, in combination or as a combination drug with peripheral dopa decarboxylase inhibitor (DCI). It is day. For example, SINEMET® (Carbidopa-Levodopa combination tablets) (New Drug Application (NDA) #017555) approved by the FDA has a 1:4 ratio combination tablet (Carbidopa 25mg-Levodopa 100mg), and 1:10 It is provided as a ratio combination tablet (Carbidopa 10mg - Levodopa 100mg, Carbidopa 25mg - Levodopa 250mg). SINEMET (registered trademark) is administered as a daily maintenance dose from 70 mg to 100 mg of Carbidopa, and SINEMET (registered trademark) is administered as a maximum daily dose of 200 mg as Carbidopa.
 本明細書において、「L-DOPA、L-DOPA関連化合物またはドパミン作動薬に対する改善効果を有する医薬の効果」とは、L-DOPA、L-DOPA関連化合物またはドパミン作動薬に対して改善効果を有する医薬が持つ、効果を言い、以下のような種々の技術によって測定することができる。 As used herein, "the effect of a drug that has an improving effect on L-DOPA, L-DOPA-related compounds, or dopamine agonists" refers to It refers to the effect that a drug has, and can be measured by various techniques such as the following.
 すなわち、本開示におけるパーキンソン病のレボドパ誘発性ジスキネジアに対する改善効果は、臨床的にはMDS-UPDRS、UPDRS、UDysRS、CDRS、Rush DRS、AIMS、EQ-5D-5L、PDQ-39、CGI、PGI等の臨床評価スケールや患者日誌、加速度計および/または角速度計等のウェアラブルデバイスにより取得される移動運動情報より計算されるスケール等により確認することができる。また、非臨床PD-LIDモデルラットあるいはPD-LIDモデルサルでは、ジスキネジア様の異常不随意運動行動評価によりジスキネジアの改善効果を確認することができる。この手法を用いることで、レボドパ誘発性ジスキネジア(PD-LID)症状の改善、進行抑制または予防のほか、レボドパ誘発性ジスキネジア(PD-LID)発現時間の短縮を測定することができる。 That is, the improving effect on levodopa-induced dyskinesia of Parkinson's disease in the present disclosure is clinically based on MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, AIMS, EQ-5D-5L, PDQ-39, CGI, PGI, etc. This can be confirmed using a clinical evaluation scale, a patient diary, a scale calculated from locomotion information acquired by a wearable device such as an accelerometer and/or a gyrometer, etc. Furthermore, in non-clinical PD-LID model rats or PD-LID model monkeys, the dyskinesia improving effect can be confirmed by evaluating dyskinesia-like abnormal involuntary movement behavior. By using this method, it is possible to measure the improvement, progression suppression, or prevention of levodopa-induced dyskinesia (PD-LID) symptoms, as well as the shortening of the onset time of levodopa-induced dyskinesia (PD-LID).
 本開示が測定可能なパーキンソン病の状態は、運動症状の主要症状である無動(akinesia)、運動緩慢(bradykinesia)や、振戦(tremor)、筋強剛(rigidity)、姿勢保持障害(loss of postural reflexes)、前傾姿勢(floxed posture)、すくみ現象(freezing)、睡眠障害、精神・認知・行動障害、自律神経障害、感覚障害や、任意の運動合併症を挙げることができる。 The states of Parkinson's disease that can be measured by the present disclosure include akinesia, bradykinesia, tremor, muscle rigidity, and loss of posture, which are the main motor symptoms. of postural reflexes, floxed posture, freezing, sleep disorders, mental/cognitive/behavioral disorders, autonomic nervous disorders, sensory disorders, and any motor complications.
 本明細書において、「運動合併症(motor complications)」とは、進行期パーキンソン病患者において認められる治療上の問題点となる任意の運動症状をいい、パーキンソン症状の日内変動やレボドパ治療に伴う不随意運動であるジスキネジア(レボドパ誘発性ジスキネジア(PD-LID))等を挙げることができる。運動合併症は、脳内ドパミンの放出異常に基づくと解釈されているが、そのメカニズムは必ずしも明らかになっていない。 As used herein, "motor complications" refers to any motor symptoms observed in patients with advanced stage Parkinson's disease that are a problem in treatment, and includes diurnal fluctuations in Parkinson's symptoms and problems associated with levodopa treatment. Examples include dyskinesia (levodopa-induced dyskinesia (PD-LID)), which is a voluntary movement. Motor complications are interpreted to be caused by abnormal release of dopamine in the brain, but the mechanism is not necessarily clear.
 本明細書において、「パーキンソン症状の日内変動(motor fluctations)」とは、ウェアリングオフ(wearing-off)、オン・オフ(on-off)現象、ノーオン(no-on)現象、遅発オン(delayed on)現象などが知られている。その中でも、ウェアリングオフは、病態の進行によってシナプス間隙でのドパミン保持能が低下すると、レボドパの血中濃度に応じて脳内ドパミン濃度が変動し、その結果、血中濃度が安全治療域を下回るレボドパの効果持続時間短縮でみられる症状である。 As used herein, "circadian fluctuations of parkinsonian symptoms" refers to wearing-off, on-off phenomenon, no-on phenomenon, delayed-on phenomenon, delayed on) phenomenon is known. Among these, wearing-off occurs when the ability to retain dopamine in the synaptic cleft decreases as the disease progresses, causing dopamine concentration in the brain to fluctuate in accordance with the blood concentration of levodopa, and as a result, the blood concentration drops below the safe treatment range. This is a symptom that occurs when the duration of the effect of levodopa is shortened.
 本明細書において、「レボドパ誘発性ジスキネジア<不随意運動>(PD-LID)」とは、レボドパの過剰投与によって誘発される不随意運動(ジスキネジア)であり、レボドパでの治療を始めて5から10年が経過したパーキンソン病患者の半数超において生じ、PD-LIDに冒される患者の比率(%)は時間の経過と共に上昇している(総説として、例えば、EncarnacionおよびHauser、(2008)、「Levodopa-induced dyskinesias in Parkinson’s disease: etiology, impact on quality of life, and treatments.」、Eur Neurol、60(2)、57~66ページを参照)。 As used herein, "levodopa-induced dyskinesia <involuntary movements> (PD-LID)" refers to involuntary movements (dyskinesia) induced by excessive administration of levodopa, which occurs within 5 to 10 days after starting treatment with levodopa. It occurs in more than half of patients with Parkinson's disease at older ages, and the proportion (%) of patients affected by PD-LID is increasing over time (for a review, see, for example, Encarnacion and Hauser, (2008), Levodopa-induced dyskinesias in Parkinson's disease: etiology, impact on quality of life, and tre ”, Eur Neurol, 60(2), pp. 57-66).
 ジスキネジアは、体の一部が勝手に動き、止まらない、口唇をかむ、しゃべりにくい、じっとできない、手足を思ったように動かしにくいことをいい、四肢および/または口腔顔面部分および/または体の軸部分の不随意運動がみられるようになる運動障害である。PD-LIDの代表的症状としては、ピークドーズジスキネジア(peak-dose dyskinesia)が知られており、レボドパ血中濃度の高い時期に、顔面、舌、頸部、四肢、体幹等に症状が現れる。PD-LIDは、病初期からレボドパを必要以上に大量に服用し続けると出現しやすくなることや、一度出現したPD-LIDは、その後レボドパの投与量をいろいろと加減してもコントロールが非常に困難であることなどが知られている。 Dyskinesia is a condition in which a part of the body moves on its own and does not stop, bites the lip, has difficulty speaking, cannot sit still, or has difficulty moving the limbs as desired, including limbs and/or orofacial areas and/or body axis. It is a movement disorder in which involuntary movements of parts are seen. Peak-dose dyskinesia is known as a typical symptom of PD-LID, and symptoms appear on the face, tongue, neck, limbs, trunk, etc. when the blood concentration of levodopa is high. . PD-LID is more likely to appear if levodopa is continued to be taken in larger doses than necessary from the early stage of the disease, and once PD-LID appears, it is difficult to control it even if the dosage of levodopa is adjusted in various ways. It is known that it is difficult.
 本明細書において、「臨床評価に活用可能な指標」とは、対象の症状を評価するために活用可能な指標のことをいい、典型的には、主観的な評価項目を含む。「臨床評価に活用可能な指標」は、MDS-UPDRS、UPDRS、UDysRS、CDRS、Rush DRS、AIMS、EQ-5D-5L、PDQ-39、CGI、PGI等の臨床評価スケールおよび患者日誌を含むが、これらに限定されない。 As used herein, "an index that can be used for clinical evaluation" refers to an index that can be used to evaluate the symptoms of a subject, and typically includes subjective evaluation items. "Indicators that can be used for clinical evaluation" include clinical evaluation scales such as MDS-UPDRS, UPDRS, UDysRS, CDRS, Rush DRS, AIMS, EQ-5D-5L, PDQ-39, CGI, PGI, and patient diaries. , but not limited to.
 (好ましい実施形態)
 以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参照して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
(Preferred embodiment)
Preferred embodiments of the present disclosure will be described below. It is understood that the embodiments provided below are provided for a better understanding of the present disclosure, and the scope of the present disclosure should not be limited to the following description. Therefore, it is clear that those skilled in the art can refer to the description in this specification and make appropriate modifications within the scope of the present disclosure. It is also understood that the following embodiments of the present disclosure can be used alone or in combination.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する趣旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that the embodiments described below are comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, steps, order of steps, etc. shown in the following embodiments are merely examples, and are not intended to limit the scope of the claims. Further, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the most significant concept will be described as arbitrary constituent elements.
 (対象の状態を推定または予測する方法)
 本開示の一局面において、対象の状態を推定または予測する方法、これを実現するためのコンピュータプログラムもしくはこれを格納する記憶媒体、およびシステムあるいはそのシステムの一部を構成するユーザ機器などが提供される。この局面において、対象の状態を推定または予測する方法が提供される。
(Method of estimating or predicting the state of the target)
In one aspect of the present disclosure, a method for estimating or predicting the state of a target, a computer program for realizing the same or a storage medium storing the same, and a system or user equipment forming part of the system are provided. Ru. In this aspect, a method is provided for estimating or predicting the state of a subject.
 図1Aは、対象の状態を推定または予測する方法のフローチャートを示す。本明細書では、「推定」される状態は、過去、現在または未来の状態のことをいう。未来の状態の「推定」を「予測」と表現することもあり、「予測」と対比される「推定」は、過去または現在の状態の「推定」として狭義に解釈されることもある。 FIG. 1A shows a flowchart of a method for estimating or predicting the state of a subject. As used herein, an "estimated" state refers to a past, present or future state. "Estimate" of the future state is sometimes expressed as "prediction", and "estimate", which is contrasted with "prediction", is sometimes interpreted narrowly as "estimation" of the past or present state.
 この局面において推定または予測される「状態」は、瞬目と関連付けられる任意の状態であり得る。状態は、例えば、臨床評価に活用可能な指標によって示される状態を含み、典型的には、パーキンソン病に関連する状態を含む。パーキンソン病に関連する状態は、例えば、ジスキネジアの有無、ON-OFF、MDS-UPDRS Part IIIスコア、UDysRSスコア、および血漿中レボドパ濃度のうちの少なくとも1つによって示される状態のうちの少なくとも1つを含む。MDS-UPDRS Part IIIスコアやUDysRSスコアといった臨床スコアは、いくつかのサブスコアの合計点として示され、例えば、MDS-UPDRS Part IIIスコアは、固縮、振戦、姿勢障害、動作緩慢といった個々の症状の重症度を示すサブスコアの合計点によって構成される。また、UDysRSスコアは、ジスキネジア、ジストニアの発現部位、重症度、日常生活への影響度を示すサブスコアの合計点によって構成される。パーキンソン病に関連する状態は、臨床スコアの合計点のみならず、これらサブスコアの少なくとも1つを含むこともある。本開示が標的とする「対象」がヒトであることで、臨床評価に活用可能な指標を利用することができる。特に、主観的な評価項目を有する臨床評価に活用可能な指標は、「対象」がヒトであること特有である。 The "state" estimated or predicted in this aspect may be any state associated with blinking. Conditions include, for example, conditions indicated by indicators that can be utilized in clinical evaluation, and typically include conditions associated with Parkinson's disease. The condition associated with Parkinson's disease is, for example, at least one of the conditions indicated by at least one of the presence or absence of dyskinesia, ON-OFF, MDS-UPDRS Part III score, UDysRS score, and plasma levodopa concentration. include. Clinical scores such as the MDS-UPDRS Part III score and the UDysRS score are shown as the sum of several subscores. For example, the MDS-UPDRS Part III score is based on individual symptoms such as rigidity, tremor, postural disturbance, and bradykinesia. It is composed of the total score of subscores indicating the severity of symptoms. Further, the UDysRS score is composed of the total score of subscores indicating the site of onset of dyskinesia and dystonia, severity, and degree of impact on daily life. Conditions associated with Parkinson's disease may include not only the total clinical score, but also at least one of these subscores. Since the "subject" targeted by the present disclosure is a human, it is possible to use an index that can be used for clinical evaluation. In particular, indicators that can be used for clinical evaluation that have subjective evaluation items are unique to the fact that the "subject" is a human.
 ステップS101では、対象の眼球情報を取得する。好ましくは、対象の瞬目に関するパラメータの値を取得する。 In step S101, target eyeball information is acquired. Preferably, the value of a parameter related to the subject's blink is acquired.
 一実施形態では、対象の眼球情報を取得可能な装置を利用して、眼球情報(好ましくは、瞬目に関するパラメータの値)を測定することができる。眼球情報を取得可能な装置は、例えば、画像記録機能、アイトラッキング機能、3点式眼電位センサ、加速度センサ、および/またはジャイロセンサを備えた眼鏡型装置、アイトラッキンググラス、スマートフォン、パーソナルコンピュータ、眼電位測定装置等を含むがこれらに限定されない。好ましくは、眼球情報を取得可能な装置は、瞬目に関するパラメータの値を測定可能なデバイス、例えば、アイトラッキングデバイスである。 In one embodiment, eyeball information (preferably the value of a parameter related to blinking) can be measured using a device capable of acquiring eyeball information of a target. Devices capable of acquiring eyeball information include, for example, eyeglass-type devices equipped with an image recording function, an eye tracking function, a three-point electrooculogram sensor, an acceleration sensor, and/or a gyro sensor, eye tracking glasses, a smartphone, a personal computer, This includes, but is not limited to, an electro-oculography measuring device and the like. Preferably, the device capable of acquiring eyeball information is a device capable of measuring the value of a parameter related to blinking, for example, an eye tracking device.
 一回あたりの測定時間は、眼球情報が比較的安定的に測定されるために十分に長いように決定されるが、これは一回あたり30秒から16時間の範囲であってよい。より好ましくは、5分から8時間の範囲である。測定に際して、対象は制約のない日常生活をしていてもよく、あるいは特定の眼球運動を測定するためのタスクを実施していてもよい。タスクの例としては、サッケードを誘発するための視覚刺激として、ディスプレイ上に急に消えたり現れたりする指標を眼で追うことや、滑動性眼球運動を誘発するため、滑らかに動く指標を眼で追うことなどが挙げられる。この際、頭部や腕部の運動と連動して眼球情報を評価するために腕部や頭部に装着する加速度計等を併用してもよく、あるいは頭部の運動要素を除去するために頭部や顎部を固定するための機器を併用してもよい。また対象は、主観的な症状を記録するための患者日誌を記載していてもよい。 The measurement time per measurement is determined to be long enough for eyeball information to be measured relatively stably, and may range from 30 seconds to 16 hours per measurement. More preferably, it is in the range of 5 minutes to 8 hours. During the measurement, the subject may be engaged in unrestricted daily life, or may be performing a task to measure specific eye movements. Examples of tasks include following an indicator that suddenly disappears or appears on a display as a visual stimulus to induce a saccade, or following a smoothly moving indicator to induce a gliding eye movement. Examples include chasing. At this time, an accelerometer, etc. attached to the arm or head may be used in conjunction with the movement of the head or arm to evaluate eyeball information, or to remove the movement element of the head. A device to immobilize the head and jaw may also be used. Subjects may also complete a patient diary to record subjective symptoms.
 ある実施形態では、デジタルデータの時間区間すなわち「時間窓」を、時系列データから抽出する。例えば、時間窓の幅は、10秒から30分の範囲であり、より好ましくは1分から10分であり、さらに好ましくは、3分である。 In some embodiments, time intervals or "time windows" of digital data are extracted from time-series data. For example, the width of the time window is in the range of 10 seconds to 30 minutes, more preferably 1 minute to 10 minutes, and even more preferably 3 minutes.
 ある実施形態では、アイトラッキングデバイスからのデータをフィルタ処理し、ノイズ除去ならびに注目データの抽出を行う。瞬目データについては、例えば一般にヒトの瞬目では起こりえないような異常に長い瞬目イベントを除外することができ、それは例えば1000ミリ秒を超える瞬目持続時間であるが、パーキンソン病患者など瞬目に異常があるユーザの使用が想定される場合には、除外基準を緩やかにすることができ、それは例えば2000ミリ秒である。眼球運動データについては、例えば眼球振戦に着目する場合には、サッケードなど移動距離の大きな眼球運動は周波数解析を妨げるノイズとなるため、移動距離の大きなデータ点を含む時間窓データを予め除外することができる。 In some embodiments, data from an eye-tracking device is filtered to remove noise and extract data of interest. For eyeblink data, it is possible to exclude abnormally long eyeblink events, which typically do not occur in human eyeblinks, such as eyeblink durations greater than 1000 ms, but can be excluded in patients with Parkinson's disease, etc. If it is assumed that the user has an abnormality in blinking, the exclusion criterion can be made more relaxed, for example, 2000 milliseconds. Regarding eye movement data, for example, when focusing on eye tremor, eye movements with large movement distances such as saccades become noise that interferes with frequency analysis, so time window data that includes data points with large movement distances are excluded in advance. be able to.
 またある実施形態では、眼球運動は離散的な瞳孔座標データとして得られるが、十分な時間解像度を得るためにデータ点をスプライン曲線などで滑らかに補完し、アップサンプリングしてもよい。 In some embodiments, eye movements are obtained as discrete pupil coordinate data, but data points may be smoothly interpolated with a spline curve or the like and upsampled to obtain sufficient temporal resolution.
 またある実施形態では、ユーザの眼球に関する測定値は、ユーザの過去の測定値や、他のユーザらの測定値に基づいて、標準化あるいは補正してもよい。 In some embodiments, the measured values regarding the user's eyeballs may be standardized or corrected based on the user's past measured values or the measured values of other users.
 またある実施形態では、ユーザの眼球に関する測定値は、加速度計等によって推定されるユーザの運動による体動や活動変化、あるいは眼球運動や心拍変動などによって推定される眠気などの生理的状態に応じて、標準化あるいは補正してもよい。 In some embodiments, the measurements regarding the user's eyes may be based on body movements or activity changes due to the user's exercise estimated by an accelerometer or the like, or physiological states such as drowsiness estimated from eye movements or heart rate variability. may be standardized or corrected.
 好ましい実施形態では、瞬目に関するパラメータとして、閉眼速度、閉眼ピーク速度、開眼速度、開眼ピーク速度、閉眼時間、開眼時振幅、閉眼時振幅、瞬目間時間、開眼度、瞬目持続時間、および瞬目回数のうちの少なくとも1つまたは組み合わせが取得される。瞬目に関するパラメータとして、閉眼速度、閉眼ピーク速度、開眼速度、開眼ピーク速度、閉眼時間、開眼時振幅、閉眼時振幅、瞬目間時間、瞬目持続時間、および瞬目回数のうちの少なくとも1つの演算値が取得されるようにしてもよい。より好ましい実施形態では、瞬目に関するパラメータとして、瞬目コンフィデンス、瞬目インターバル、瞬目深度、および瞬目エネルギーのうちの少なくとも1つが取得される。より好ましい実施形態では、瞬目に関するパラメータとして、瞬目コンフィデンスおよび瞬目インターバルが取得される。 In a preferred embodiment, the blink-related parameters include eye-closing velocity, eye-closing peak velocity, eye-opening velocity, eye-opening peak velocity, eye-closing time, eye-opening amplitude, eye-closing amplitude, inter-blink time, eye-opening degree, blink duration, and At least one or a combination of blink counts is obtained. As a parameter related to blinking, at least one of the following: eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, inter-blink time, blink duration, and number of blinks. Two calculated values may be obtained. In a more preferred embodiment, at least one of blink confidence, blink interval, blink depth, and blink energy is acquired as the blink-related parameter. In a more preferred embodiment, a blink confidence and a blink interval are obtained as blink-related parameters.
 好ましい実施形態では、ステップS101では、対象の眼球情報に加えて、薬剤(より具体的には、L-DOPA、L-DOPA関連化合物またはドパミン作動薬)を対象に投与した後の経過時間を示す情報も取得されることができる。 In a preferred embodiment, in step S101, in addition to the subject's eyeball information, the elapsed time after administering the drug (more specifically, L-DOPA, L-DOPA-related compound, or dopamine agonist) to the subject is indicated. Information can also be obtained.
 ステップS102では、少なくとも、ステップS101で取得された眼球情報に基づいて、対象の状態を推定または予測する。好ましくは、瞬目に関するパラメータの値に基づいて、対象の状態を推定または予測する。 In step S102, the state of the target is estimated or predicted based on at least the eyeball information acquired in step S101. Preferably, the state of the object is estimated or predicted based on the value of a parameter related to blinking.
 一実施形態において、対象の状態は、対象の眼球情報と対象の状態との相関から推定または予測されることができる。特に、対象の状態は、対象の瞬目に関するパラメータの値と、対象の状態との相関から推定または予測されることができる。具体的には、瞬目に関するパラメータのうち、適切に選択された少なくとも1つのパラメータの値を特徴量として、学習済モデルに入力することで、学習済モデルの出力から、対象の状態を推定または予測することができる。このとき、学習済モデルは、瞬目に関するパラメータのうちの少なくとも1つのパラメータの値と、対象の状態との関係を学習している。 In one embodiment, the state of the subject can be estimated or predicted from the correlation between the eye information of the subject and the state of the subject. In particular, the state of the target can be estimated or predicted from the correlation between the value of the parameter related to the blink of the target and the state of the target. Specifically, by inputting the value of at least one appropriately selected parameter among blink-related parameters into a trained model as a feature, the state of the target can be estimated or Can be predicted. At this time, the learned model has learned the relationship between the value of at least one of the blink-related parameters and the state of the object.
 好ましい実施形態において、対象の状態は、対象の眼球情報および薬剤を対象に投与した後の経過時間と、対象の状態との相関から推定または予測されることができる。特に、対象の状態は、対象の瞬目に関するパラメータの値および薬剤を対象に投与した後の経過時間と、対象の状態との相関から推定または予測されることができる。具体的には、瞬目に関するパラメータのうち、適切に選択された少なくとも1つのパラメータの値と薬剤を対象に投与した後の経過時間とを特徴量として、学習済モデルに入力することで、学習済モデルの出力から、対象の状態を推定または予測することができる。このとき、学習済モデルは、瞬目に関するパラメータのうちの少なくとも1つのパラメータの値および薬剤を対象に投与した後の経過時間と、対象の状態との関係を学習している。 In a preferred embodiment, the condition of the subject can be estimated or predicted from the correlation between the subject's eyeball information and the elapsed time after administering the drug to the subject, and the subject's condition. In particular, the condition of the subject can be estimated or predicted from the correlation between the value of the parameter related to the blink of the subject and the elapsed time after administering the drug to the subject, and the condition of the subject. Specifically, the value of at least one appropriately selected parameter related to blinking and the elapsed time after administering the drug to the subject are input as features into the trained model, and the learning is performed. The state of the target can be estimated or predicted from the output of the model. At this time, the learned model has learned the relationship between the value of at least one of the blink-related parameters, the elapsed time after administering the drug to the subject, and the state of the subject.
 瞬目に関するパラメータのうちの少なくとも1つのパラメータは、閉眼速度、閉眼ピーク速度、開眼速度、開眼ピーク速度、閉眼時間、開眼時振幅、閉眼時振幅、瞬目持続時間、瞬目回数、瞬目コンフィデンス、瞬目インターバル、および瞬目エネルギーのうちの少なくとも1つであり得、好ましくは、瞬目コンフィデンス、瞬目インターバル、および瞬目エネルギーのうちの少なくとも1つであり得、より好ましくは、瞬目コンフィデンスおよび瞬目インターバルであり得る。 At least one of the blink-related parameters includes eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, blink duration, number of blinks, and blink confidence. , blink interval, and blink energy, preferably at least one of blink confidence, blink interval, and blink energy, and more preferably, blink confidence, blink interval, and blink energy. Can be confidence and blink interval.
 瞬目に関するパラメータのうちの少なくとも1つのパラメータは、推定または予測される対象の状態に応じて適切に選択され得る。例えば、対象の状態として、ジスキネジアの有無を推定または予測する場合、予測精度への寄与が高いパラメータ、例えば、瞬目コンフィデンス、瞬目回数、瞬目持続時間等が選択され得る。薬剤を対象に投与した後の経過時間も推定または予測に利用される場合には、選択される瞬目に関するパラメータが変動し得る。例えば、薬剤を対象に投与した後の経過時間と瞬目に関するパラメータとに基づいて、対象の状態として、ジスキネジアの有無を推定または予測する場合、予測精度への寄与が高いパラメータ、例えば、瞬目コンフィデンス、瞬目回数、瞬目エネルギー等が選択され得る。 At least one parameter among the blink-related parameters may be appropriately selected depending on the estimated or predicted state of the target. For example, when estimating or predicting the presence or absence of dyskinesia as a target condition, parameters that highly contribute to prediction accuracy, such as blink confidence, blink count, blink duration, etc., may be selected. If the elapsed time after administering the drug to the subject is also used for estimation or prediction, the selected blink-related parameters may vary. For example, when estimating or predicting the presence or absence of dyskinesia as a condition of a subject based on the elapsed time after administering a drug to the subject and parameters related to blinking, parameters that have a high contribution to prediction accuracy, such as blinking. Confidence, blink frequency, blink energy, etc. may be selected.
 ステップS102で推定または予測された対象の状態は、対象の健康管理方法に応用することができる。対象の健康管理方法では、ステップS101~ステップS102により、対象の状態を推定または予測した後、その結果に基づいて、対象に処理をすべきか否かを判断することと、対象に対して処理をすべきと判断される場合に、対象の健康管理のためのアクションを行うこととを含む。 The condition of the subject estimated or predicted in step S102 can be applied to the subject's health management method. In the target health management method, after estimating or predicting the condition of the target in steps S101 and S102, based on the result, it is determined whether or not the target should be treated, and the process is performed on the target. This includes taking actions for the health management of the subject when it is determined that it is necessary.
 対象の健康管理のためのアクションは、例えば、対象に対して処置を施すこと、対象に対して処置を施すべきことのアラートを発出すること、対象に対して所定の薬剤または療法を施与することのうちの少なくとも1つを含む。ここで、処置とは、何らかの医療的な処置のことをいい、典型的には、医師による介入のことであり得る。 Actions for health management of a target include, for example, administering a treatment to the target, issuing an alert that a treatment should be performed to the target, administering a prescribed drug or therapy to the target. Contains at least one of the following. Here, treatment refers to some kind of medical treatment, and typically may refer to intervention by a doctor.
 例えば、対象に対して処置を施すべきことのアラートは、対象が所有するユーザ端末から発出されるようにしてもよいし、対象を診ている医師の端末装置から発出されるようにしてもよいし、他の装置から発出されるようにしてもよい。これにより、対象、医師または他の人物は、対象に対して処置を施すための行動をとることができる。 For example, an alert that a treatment should be performed on a subject may be issued from a user terminal owned by the subject, or may be issued from a terminal device of a doctor who is examining the subject. However, it may also be emitted from another device. This allows the subject, physician, or other person to take action to perform treatment on the subject.
 (対象に対する治療薬または予防薬あるいは医療技術を評価する方法)
 本開示の別の局面において、対象に対する治療薬または予防薬あるいは他の医療技術を評価する方法、これを実現するためのコンピュータプログラムもしくはこれを格納する記憶媒体、およびシステムあるいはそのシステムの一部を構成するユーザ機器などが提供される。この局面において、対象に対する治療薬または予防薬あるいは他の医療技術を評価する方法が提供される。
(Method of evaluating therapeutic or preventive drugs or medical technology for a target)
In another aspect of the present disclosure, a method for evaluating therapeutic or preventive drugs or other medical techniques for a subject, a computer program for realizing the same, a storage medium storing the same, and a system or a part of the system are provided. Configuring user equipment, etc. are provided. In this aspect, methods are provided for evaluating therapeutic or prophylactic agents or other medical techniques for a subject.
 図1Bは、対象に対する治療薬または予防薬あるいは他の医療技術を評価する方法のフローチャートを示す。 FIG. 1B shows a flowchart of a method for evaluating therapeutic or prophylactic drugs or other medical techniques for a subject.
 この局面において評価される「治療薬または予防薬あるいは他の医療技術」は、瞬目と何らかの関係を有し得る治療薬または予防薬あるいは他の医療技術であり得る。治療薬または予防薬あるいは他の医療技術は、例えば、L-DOPAまたはL-DOPA関連化合物、L-DOPAの助剤(adjunct)、ドパミン神経機能回復剤、ドパミン産生細胞医薬品もしくは、ドパミン産生遺伝子治療、あるいは手術療法(脳深部刺激療法や定位的破壊術等)であり得る。 The "therapeutic drug or preventive drug or other medical technology" evaluated in this aspect may be a therapeutic drug or preventive drug or other medical technology that may have some relation to blinking. Therapeutic or prophylactic drugs or other medical techniques include, for example, L-DOPA or L-DOPA-related compounds, adjuncts of L-DOPA, dopamine nerve function restoring agents, dopamine-producing cell medicines, or dopamine-producing gene therapy. , or surgical therapy (such as deep brain stimulation or stereotaxic destruction).
 ステップS111では、対象の眼球情報を取得する。好ましくは、対象の瞬目に関するパラメータの値を取得する。ステップS111は、ステップS101と同様の工程であり、説明を省略する。 In step S111, target eyeball information is acquired. Preferably, the value of a parameter related to the subject's blink is acquired. Step S111 is a process similar to step S101, and its explanation will be omitted.
 ステップS112では、少なくとも、ステップS111で取得された眼球情報に基づいて、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出する。好ましくは、瞬目に関するパラメータの値に基づいて、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出する。 In step S112, an estimated effective amount or effective level of the therapeutic drug, preventive drug, or other medical technology is calculated based on at least the eyeball information acquired in step S111. Preferably, an estimated effective amount or level of a therapeutic or prophylactic drug or other medical technique is calculated based on the value of the blink-related parameter.
 一実施形態において、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルは、対象の眼球情報と治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルとの相関から算出されることができる。特に、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルは、対象の瞬目に関するパラメータの値と、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルとの相関から算出されることができる。具体的には、瞬目に関するパラメータのうち、適切に選択された少なくとも1つのパラメータの値を特徴量として、学習済モデルに入力することで、学習済モデルの出力から、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出することができる。このとき、学習済モデルは、瞬目に関するパラメータのうちの少なくとも1つのパラメータの値と、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルとの関係を学習している。 In one embodiment, the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technology is determined from a correlation between the subject's ocular information and the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technology. can be calculated. In particular, the estimated effective amount or level of a therapeutic or prophylactic drug or other medical technology is determined by the relationship between the value of the blink-related parameter in question and the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technology. It can be calculated from the correlation. Specifically, by inputting the value of at least one appropriately selected parameter among blink-related parameters into a trained model as a feature quantity, therapeutic drugs, preventive drugs, or Estimated effective amounts or levels of other medical techniques can be calculated. At this time, the trained model has learned the relationship between the value of at least one of the blink-related parameters and the estimated effective amount or effective level of the therapeutic or preventive drug or other medical technology.
 好ましい実施形態において、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルは、対象の眼球情報および薬剤を対象に投与した後の経過時間と、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルとの相関から算出されることができる。特に、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルは、対象の瞬目に関するパラメータの値および薬剤を対象に投与した後の経過時間と、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルとの相関から算出されることができる。具体的には、瞬目に関するパラメータのうち、適切に選択された少なくとも1つのパラメータの値と薬剤を対象に投与した後の経過時間とを特徴量として、学習済モデルに入力することで、学習済モデルの出力から、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出することができる。このとき、学習済モデルは、瞬目に関するパラメータのうちの少なくとも1つのパラメータの値および薬剤を対象に投与した後の経過時間と、治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルとの関係を学習している。 In a preferred embodiment, the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technique is based on the subject's ocular information and the elapsed time since administering the drug to the subject, and the therapeutic or prophylactic drug or other medical technique. It can be calculated from a correlation with the estimated effective amount or level of effectiveness of the technology. In particular, the estimated effective amount or level of a therapeutic or prophylactic drug or other medical technique depends on the value of the subject's eyeblink parameters and the elapsed time after administering the drug to the subject and It can be calculated from a correlation with an estimated effective amount or level of medical technology. Specifically, the value of at least one appropriately selected parameter related to blinking and the elapsed time after administering the drug to the subject are input as features into the trained model, and the learning is performed. From the output of the model, an estimated effective amount or level of a therapeutic or prophylactic drug or other medical technology can be calculated. At this time, the trained model calculates the value of at least one of the blink-related parameters, the elapsed time after administering the drug to the subject, and the estimated effective amount or effective amount of the therapeutic or preventive drug or other medical technology. Learning the relationship with level.
 瞬目に関するパラメータのうちの少なくとも1つのパラメータは、閉眼速度、閉眼ピーク速度、開眼速度、開眼ピーク速度、閉眼時間、開眼時振幅、閉眼時振幅、開眼度、瞬目持続時間、瞬目回数、瞬目コンフィデンス、瞬目インターバル、瞬目深度、および瞬目エネルギーのうちの少なくとも1つであり得、好ましくは、瞬目コンフィデンス、瞬目インターバル、瞬目深度、および瞬目エネルギーのうちの少なくとも1つであり得、より好ましくは、瞬目コンフィデンスおよび瞬目インターバルであり得る。 At least one of the blink-related parameters includes eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, degree of eye opening, blink duration, number of blinks, It may be at least one of blink confidence, blink interval, blink depth, and blink energy, preferably at least one of blink confidence, blink interval, blink depth, and blink energy. more preferably blink confidence and blink interval.
 ステップS112では、推定有効量または有効レベルに加えて、または、推定有効量または有効レベルに代えて、治療薬または予防薬あるいは他の医療技術の有効な用法または用量を同様に算出することもできる。 In step S112, in addition to or in place of the estimated effective amount or level, the effective usage or dosage of the therapeutic or prophylactic drug or other medical technology may be calculated as well. .
 ステップS112で算出された、治療薬または予防薬あるいは他の医療技術の推定有効量もしくは有効レベルまたは用法もしくは用量は、対象に対して推奨される治療薬または予防薬あるいは他の医療技術を決定するために利用されることができる。 The estimated effective amount or effective level or usage or dosage of the therapeutic or preventive drug or other medical technique calculated in step S112 determines the therapeutic or preventive drug or other medical technique recommended for the subject. can be used for.
 例えば、第1の治療薬について、推定有効量もしくは有効レベルを算出し、第2の治療薬について、推定有効量もしくは有効レベルを算出し、・・・第nの治療薬について、推定有効量もしくは有効レベルを算出したとき、それぞれの推定有効量もしくは有効レベルを比較して、対象にとって最も適切な推定有効量もしくは有効レベルを有する治療薬を、対象に対して推奨される治療薬として決定することができる。最も適切な推定有効量もしくは有効レベルは、例えば、最も少ない量またはレベルであり得る。予防薬あるいは他の医療技術についても同様にして、対象にとって最も適切な推定有効量もしくは有効レベルを有する予防薬あるいは他の医療技術を、対象に対して推奨される予防薬あるいは他の医療技術として決定することができる。 For example, an estimated effective amount or effective level is calculated for the first therapeutic agent, an estimated effective amount or effective level is calculated for the second therapeutic agent, and an estimated effective amount or effective level is calculated for the nth therapeutic agent. When the effective level is calculated, each estimated effective amount or effective level is compared, and the therapeutic drug with the most appropriate estimated effective amount or effective level for the subject is determined as the therapeutic drug recommended for the subject. Can be done. The most appropriate estimated effective amount or level can be, for example, the lowest amount or level. Similarly, for prophylactic drugs or other medical techniques, the prophylactic drug or other medical technique that has the most appropriate estimated effective amount or level for the subject is the recommended prophylactic drug or other medical technique for the subject. can be determined.
 このように、対象に対する治療薬または予防薬あるいは他の医療技術を評価することにより、対象に対して有効な治療薬または予防薬あるいは他の医療技術は何であるかを推定して、提案することができる。 In this way, by evaluating therapeutic drugs, preventive drugs, or other medical techniques for the subject, it is possible to estimate and propose effective therapeutic drugs, preventive drugs, or other medical techniques for the subject. Can be done.
 (対象の状態を推定または予測するためのシステム)
 上述した対象の状態を推定または予測する方法は、例えば、本開示のシステム10を用いて実行される。
(System for estimating or predicting the state of a target)
The method of estimating or predicting the state of a target described above is performed using, for example, the system 10 of the present disclosure.
 システム10は、対象の眼球情報、より好ましくは、対象の瞬目に関するパラメータに基づいて、対象の状態を推定または予測するように構成されている。 The system 10 is configured to estimate or predict the state of the target based on eyeball information of the target, more preferably parameters related to the blink of the target.
 図2は、システム10の構成の一例を示す。システム10は、少なくとも、取得手段11と、推定/予測手段12とを備える。 FIG. 2 shows an example of the configuration of the system 10. The system 10 includes at least an acquisition means 11 and an estimation/prediction means 12.
 取得手段11は、対象の眼球情報を取得するように構成されている。情報取得手段11は、任意の手段によって眼球情報を取得することができる。情報取得手段11は、例えば、システム10の外部または内部の記憶手段に格納されている眼球情報を取得するようにしてもよいし、眼球情報源から眼球情報を抽出することにより、眼球情報を取得するようにしてもよい。眼球情報源は、対象の眼球の光学的情報(画像や反射光)、物理的情報(振動など)または電気的情報(電位、電流など)、化学的情報またはそれらの複数の組み合わせを含む。眼球情報源は、例えば、対象の眼球を撮影した少なくとも1つの画像であってもよいし、眼電位測定値であってもよいし、対象の身体部位の運動情報(例えば、加速度測定値)であってもよいし、眼球(角膜および/または強膜)に照射した照明光に対する反射光情報であってもよいし、サーチコイル法により取得される電流情報であってもよいし、眼球に直接接触したピエゾ素子プローブから得られる起電量情報であってもよい。反射光情報は、例えば、光ダイオードのような単純なセンサで取得される情報であってもよいし、画像解析により取得される情報であってもよい。運動情報は、例えば、画像解析によって取得される情報であってもよいし、距離測定法によって取得される情報であってもよい。 The acquisition means 11 is configured to acquire eyeball information of the target. The information acquisition means 11 can acquire eyeball information by any means. The information acquisition means 11 may acquire eyeball information stored in a storage means external or internal to the system 10, or may acquire eyeball information by extracting eyeball information from an eyeball information source. You may also do so. The ocular information source includes optical information (image or reflected light), physical information (vibration, etc.) or electrical information (potential, current, etc.), chemical information, or a combination of multiple thereof, of the subject's eyeball. The ocular information source may be, for example, at least one image taken of the subject's eyeball, electrooculography measurements, or motion information (e.g., acceleration measurements) of the subject's body part. It may be reflected light information from illumination light irradiated onto the eyeball (cornea and/or sclera), current information obtained by a search coil method, or information directly applied to the eyeball. The amount of electromotive force information obtained from a piezo element probe in contact may be used. The reflected light information may be information obtained by a simple sensor such as a photodiode, or may be information obtained by image analysis. The motion information may be, for example, information obtained by image analysis or information obtained by distance measurement.
 好ましくは、取得手段11は、対象の瞬目に関するパラメータの値を取得することができる。取得手段11は、例えば、対象の眼球を撮影した動画または複数の静止画から、対象の瞬目に関するパラメータの値を取得することができる。このために、取得手段11は、アイトラッキングデバイス等の対象の眼球画像を取得可能なデバイスと通信することができる。あるいは、取得手段11自体が、アイトラッキングデバイス等の対象の眼球画像を取得可能なデバイスによって実装されてもよい。 Preferably, the acquisition means 11 can acquire the value of the parameter related to the subject's blink. The acquisition means 11 can acquire the value of a parameter related to the subject's blinking, for example, from a moving image or a plurality of still images of the subject's eyeball. For this purpose, the acquisition means 11 can communicate with a device capable of acquiring an eyeball image of the object, such as an eye tracking device. Alternatively, the acquisition means 11 itself may be implemented by a device capable of acquiring an eyeball image of a target, such as an eye tracking device.
 瞬目に関するパラメータの値は、眼球画像においては、画像中の瞳孔または眼瞼に基づいて取得することが可能である。例えば赤外線を眼球に照射し眼球を撮影し、適切な閾値で二値化すると、瞳孔は眼球画像中において輝度情報が相対的に低い楕円として抽出される。二値化した眼球画像に対して楕円フィッティングを行い、一定以上の精度で楕円フィッティングがなされた(画像内に楕円が認識される)場合は開眼時、一定精度未満(画像内に楕円が認識されない)であれば閉眼時であると推測できる。瞬目は、例えば0.25sの時間窓において、上記楕円フィッティングの精度が一定水準以下に減少し、再び一定水準以上に増加するというイベントとして表すことができる。瞬目に関する情報は、眼の上下および/または左右に装着した電極を用いて、眼球運動や眼瞼が移動する際の網膜―角膜間の電位差(眼電位)を取得・解析することによって取得することも可能である。瞬目に関する情報は、瞬目に特徴的な眼電位波形を抽出することで取得することも可能である。具体的には瞬目時の眼電位の微分波形は、まずマイナス側への鋭いピークが出現した後、ベースラインを超えてプラス側へのピークが生じる。これは眼瞼の往復動作に対応しており、典型的な眼球運動ではこのような微分波形の正負反転は見られない。 In an eyeball image, the value of the parameter related to blinking can be obtained based on the pupil or eyelid in the image. For example, when an eyeball is photographed by irradiating the eyeball with infrared rays and then binarized using an appropriate threshold value, the pupil is extracted as an ellipse with relatively low brightness information in the eyeball image. Ellipse fitting is performed on the binarized eyeball image, and if the ellipse fitting is achieved with a certain level of accuracy or higher (an ellipse is recognized in the image), when the eyes are opened, the ellipse fitting is performed with less than a certain level of accuracy (an ellipse is not recognized in the image). ), it can be inferred that the eyes are closed. A blink can be expressed as an event in which the accuracy of the ellipse fitting decreases below a certain level and increases again above the certain level in a time window of 0.25 seconds, for example. Information about blinking can be obtained by using electrodes attached to the top and bottom and/or left and right sides of the eye to capture and analyze the potential difference between the retina and cornea (electrooculography) during eye movement and eyelid movement. is also possible. Information regarding blinks can also be obtained by extracting an electro-oculography waveform characteristic of blinks. Specifically, in the differential waveform of the electrooculogram during blinking, a sharp peak on the negative side first appears, and then a peak on the positive side occurs beyond the baseline. This corresponds to the reciprocating movement of the eyelids, and such a positive/negative reversal of the differential waveform is not seen in typical eye movements.
 好ましい実施形態では、取得手段11は、眼球情報に加えて、薬剤(より具体的には、L-DOPA、L-DOPA関連化合物またはドパミン作動薬)を対象に投与した後の経過時間を示す情報も取得する。薬剤を対象に投与した後の経過時間を示す情報は、例えば、ユーザが服薬時間をユーザ装置(例えば、スマートフォン、タブレット、スマートウォッチ等)に入力し、入力された服薬時間をユーザ装置から受信して、服薬時間から経過時間を導出することによって取得されることができる。あるいは、薬剤を対象に投与した後の経過時間を示す情報は、例えば、ユーザがユーザ装置に服薬したタイミングを入力し(例えば、服薬したことを示すボタンを押下する)、入力されたタイミングをユーザ装置から受信して、服薬したタイミングから経過時間を導出することによって取得されることができる。あるいは、薬剤を対象に投与した後の経過時間を示す情報は、例えば、薬剤に組み込まれたセンサから服薬したタイミングを示す信号を受信し、受信された信号から経過時間を導出することによって取得されることができる。 In a preferred embodiment, the acquisition means 11 includes, in addition to the eyeball information, information indicating the elapsed time after administering the drug (more specifically, L-DOPA, an L-DOPA-related compound, or a dopamine agonist) to the subject. Also get. Information indicating the elapsed time after administering a drug to a target can be obtained, for example, when a user inputs a medication administration time into a user device (e.g., a smartphone, tablet, smart watch, etc.) and receives the input medication administration time from the user device. The elapsed time can be obtained by deriving the elapsed time from the medication administration time. Alternatively, the information indicating the elapsed time after administering the drug to the target can be obtained by, for example, inputting the timing at which the user took the drug into the user device (for example, by pressing a button indicating that the drug has been taken), and It can be obtained by receiving the information from the device and deriving the elapsed time from the timing of taking the medication. Alternatively, information indicating the elapsed time after administering the drug to the subject may be obtained, for example, by receiving a signal indicating the timing of taking the drug from a sensor incorporated in the drug, and deriving the elapsed time from the received signal. can be done.
 取得手段11によって取得された眼球情報(瞬目に関するパラメータの値)は、推定/予測手段12に渡される。好ましい実施形態において、取得手段11によって取得された、薬剤を対象に投与した後の経過時間を示す情報も、推定/予測手段12に渡される。 The eyeball information (values of parameters related to blinking) acquired by the acquisition means 11 is passed to the estimation/prediction means 12. In a preferred embodiment, the information acquired by the acquisition means 11 indicating the elapsed time after administering the drug to the subject is also passed to the estimation/prediction means 12 .
 推定/予測手段12は、眼球情報に基づいて、対象の状態を推定または予測するように構成されている。好ましい実施形態では、推定/予測手段12は、瞬目に関するパラメータの値に基づいて、対象の状態を推定または予測するように構成されている。 The estimation/prediction means 12 is configured to estimate or predict the state of the target based on the eyeball information. In a preferred embodiment, the estimating/predicting means 12 is configured to estimate or predict the state of the object based on the value of the blink-related parameter.
 推定/予測手段12は、例えば、学習済モデルを利用して、対象の状態を推定または予測することができる。学習済モデルは、例えば、瞬目に関するパラメータの値と、対象の状態との関係を学習している。 The estimation/prediction means 12 can estimate or predict the state of the target, for example, using a learned model. The learned model has learned, for example, the relationship between the value of a parameter related to blinking and the state of the object.
 図3は、推定/予測手段12が利用し得る学習済モデルを構築するためのニューラルネットワーク20の構造の一例を示す。 FIG. 3 shows an example of the structure of a neural network 20 for constructing a learned model that can be used by the estimation/prediction means 12.
 ニューラルネットワーク20は、入力層と、少なくとも1つの隠れ層と、出力層とを有する。ニューラルネットワーク20の入力層のノード数は、入力されるデータの次元数に対応する。ニューラルネットワーク20の出力層のノード数は、出力されるデータの次元数に対応する。例えば、対象の状態として、ジスキネジアの有無を出力する場合には、出力層のノード数は、1である(例えば、出力ノードは、0~1の値を出力し、「0」がジスキネジア無を示し、「1」がジスキネジア有を示し得る)。ニューラルネットワーク20の隠れ層は、任意の数のノードを含むことができる。 The neural network 20 has an input layer, at least one hidden layer, and an output layer. The number of nodes in the input layer of the neural network 20 corresponds to the number of dimensions of input data. The number of nodes in the output layer of the neural network 20 corresponds to the number of dimensions of output data. For example, when outputting the presence or absence of dyskinesia as the target state, the number of nodes in the output layer is 1 (for example, the output node outputs a value between 0 and 1, and "0" indicates the absence of dyskinesia. ``1'' may indicate the presence of dyskinesia). The hidden layers of neural network 20 can include any number of nodes.
 ニューラルネットワーク20の隠れ層の各ノードの重み係数は、予め取得されたデータに基づいて計算され得る。この重み係数を計算する処理が、学習処理である。学習処理は、教師あり学習であってもよいし、教師なし学習であってもよい。 The weighting coefficient of each node of the hidden layer of the neural network 20 may be calculated based on data obtained in advance. The process of calculating this weighting coefficient is the learning process. The learning process may be supervised learning or unsupervised learning.
 教師あり学習の場合、例えば、ある対象の瞬目に関するパラメータの値を入力層に入力した場合の出力層の値が、その患者の状態を示す値となるように、各ノードの重み係数が計算され得る。これは、例えば、バックプロパゲーション(誤差逆伝播法)によって行われることができる。学習に用いられる訓練データセットの量は多い方が好ましくあり得るが、多すぎる場合には過学習に陥りやすくなる。 In the case of supervised learning, for example, the weighting coefficient of each node is calculated so that when the value of a parameter related to the blink of a certain subject is input to the input layer, the value of the output layer will be the value indicating the condition of the patient. can be done. This can be done, for example, by backpropagation. Although it may be preferable to have a large amount of training datasets used for learning, if the amount is too large, overfitting is likely to occur.
 例えば、教師あり学習のための(入力用教師データ,出力用教師データ)の組は、(第1の対象の瞬目に関するパラメータの値,第1の対象の状態を示す値)、(第2の対象の瞬目に関するパラメータの値,第2の対象の状態を示す値)、・・・(第iの対象の瞬目に関するパラメータの値,第iの対象の状態を示す値)、・・・等であり得る。ここで、瞬目に関するパラメータの値は、任意の次元であり得る。例えば、瞬目に関するパラメータの値は、1つの瞬目に関するパラメータについての値(すなわち、1次元)であってもよいし、2つの瞬目に関するパラメータについての値(すなわち、2次元)であってもよいし、3以上の瞬目に関するパラメータについての値(すなわち、3次元以上)であってもよい。このような学習済のニューラルネットワークモデルの入力層に新規の対象から取得された瞬目に関するパラメータの値を入力すると、その対象の状態を示す値が出力層に出力される。 For example, the set of (input supervised data, output supervised data) for supervised learning is (value of the parameter related to the blink of the first object, value indicating the state of the first object), (second (value of the parameter related to the blink of the object, value indicating the state of the second object), ... (value of the parameter related to the blink of the i-th object, value indicating the state of the i-th object), ...・etc. Here, the value of the parameter related to blinking may have any dimension. For example, the value of the blink-related parameter may be a value for one blink-related parameter (i.e., one-dimensional) or a value for two blink-related parameters (i.e., two-dimensional). Alternatively, it may be a value for three or more blink-related parameters (that is, three or more dimensions). When a value of a parameter related to blinking acquired from a new object is input to the input layer of such a trained neural network model, a value indicating the state of the object is output to the output layer.
 推定/予測手段12は、例えば、複数の学習済モデルを利用するようにしてもよい。例えば、複数の学習済モデルのうちの第1の学習済モデルは、対象の第1の状態(例えば、ジスキネジアの有無)を示す値を出力することができ、複数の学習済モデルのうちの第2の学習済モデルは、患者の第2の状態を示す値(例えば、血漿中レボドパ濃度)を出力することができ、複数の学習済モデルのうちの第3の学習済モデルは、対象の第3の状態を示す値(例えば、MDS-UPDRS Part IIIスコア)を出力することができる。推定/予測手段12は、複数の学習済モデルからの出力を総合して、対象の状態を推定または予測することができる。 The estimation/prediction means 12 may, for example, utilize a plurality of trained models. For example, the first trained model among the plurality of trained models can output a value indicating the first state of the subject (for example, the presence or absence of dyskinesia), and the first trained model among the plurality of trained models The second trained model can output a value indicating the second state of the patient (for example, plasma levodopa concentration), and the third trained model among the plurality of trained models can output a value indicating the second state of the patient. A value (for example, MDS-UPDRS Part III score) indicating the status 3 can be output. The estimation/prediction means 12 can estimate or predict the state of the object by integrating outputs from a plurality of trained models.
 好ましい実施形態では、推定/予測手段12は、瞬目に関するパラメータの値と、対象に薬剤を投与した後の経過時間に基づいて、対象の状態を推定または予測することができる。推定/予測手段12は、学習済モデルを利用して、対象の状態を推定または予測することができ、このとき、学習済モデルは、例えば、瞬目に関するパラメータの値および対象に薬剤を投与した後の経過時間と、対象の状態との関係を学習している。 In a preferred embodiment, the estimation/prediction means 12 can estimate or predict the state of the subject based on the value of the parameter related to blinking and the elapsed time after administering the drug to the subject. The estimation/prediction means 12 can estimate or predict the state of the target using the learned model, and at this time, the trained model can estimate or predict the state of the target, for example, based on the values of parameters related to blinking and whether a drug has been administered to the target. It learns the relationship between the elapsed time and the state of the target.
 例えば、教師あり学習のための(入力用教師データ,出力用教師データ)の組は、((第1の対象の瞬目に関するパラメータの値、第1の対象に薬剤を投与した後の経過時間),第1の対象の状態を示す値)、((第2の対象の瞬目に関するパラメータの値、第2の対象に薬剤を投与した後の経過時間),第2の対象の状態を示す値)、・・・((第iの対象の瞬目に関するパラメータの値、第iの対象に薬剤を投与した後の経過時間),第iの対象の状態を示す値)、・・・等であり得る。このような学習済のニューラルネットワークモデルの入力層に新規の対象から取得された瞬目に関するパラメータの値と、新規の対象に薬剤を投与した後の経過時間を入力すると、その対象の状態を示す値が出力層に出力される。 For example, the set (input supervised data, output supervised data) for supervised learning is ((value of the parameter related to the blink of the first subject, elapsed time after administering the drug to the first subject). ), value indicating the state of the first subject), ((value of parameter related to blinking of the second subject, elapsed time after administering the drug to the second subject), indicating the state of the second subject value), ... ((value of the parameter related to the blink of the i-th object, elapsed time after administering the drug to the i-th object), value indicating the state of the i-th object), ..., etc. It can be. If you input the blink-related parameter values obtained from a new subject and the elapsed time after administering the drug to the new subject into the input layer of such a trained neural network model, the state of that subject will be shown. The value is output to the output layer.
 上述した学習済モデルは、説明されたようなニューラルネットワークモデルに限定されず、他の任意の機械学習モデルを利用することができる。例えば、ランダムフォレストを利用することができる。例えば、事前の学習によって得られた重み係数を単に設定することによって構築された簡易なモデルを利用することもできる。 The trained model described above is not limited to the neural network model as described, but any other machine learning model can be used. For example, random forests can be used. For example, it is also possible to use a simple model constructed by simply setting weighting coefficients obtained through prior learning.
 例えば、推定/予測手段12は、機械学習に依らずに、ルールベースで、対象の状態を推定または予測するようにしてもよい。 For example, the estimation/prediction means 12 may estimate or predict the state of the target based on a rule without relying on machine learning.
 一例において、薬物動態モデルに基づき、薬物投与の量と時間経過から、薬物によってもたらされる対象の状態変化を予測するシステムや、運動症状のみから、対象の状態を推定するシステムを用いることで、機械学習プロセスを用いることなく本開示の技術を実施することができる。あるいは、機械学習プロセスを用いることなく実施されたシステムからのデータを収集して、仮想的な正解値としてモデルを学習させたり、あるいはそれらのデータをモデルの変数として、あるいはモデル出力値の補正のためなどに、これらのシステムを併用し、学習させた学習済みモデルを用いたりしても本開示を実施することができる。 In one example, a system that predicts changes in a subject's state caused by a drug based on the amount and time course of drug administration based on a pharmacokinetic model, or a system that estimates a subject's state solely from motor symptoms. The techniques of this disclosure can be implemented without using a learning process. Alternatively, you can collect data from a system that was implemented without using a machine learning process to train the model as virtual ground truth values, or use that data as variables in the model or in corrections to model output values. For example, the present disclosure can be implemented by using these systems together and using a trained model.
 システム10によって推定または予測された対象の状態は、任意の用途に利用されることができる。例えば、医師は、システム10によって推定または予測された対象の状態を、診断のための指標として利用することができる。例えば、対象自身は、システム10によって推定または予測された対象の状態を、自身の状態を把握するための指標として利用することができる。あるいは、システム10によって推定または予測された対象の状態は、対象の健康管理のために利用されることができる。例えば、システム10は、対象の状態を推定または予測した後、その結果に基づいて、対象に処理をすべきか否かを判断することと、対象に対して処理をすべきと判断される場合に、対象の健康管理のためのアクションを行うこととを行うことができる。 The state of the object estimated or predicted by the system 10 can be used for any purpose. For example, a doctor can use the condition of the subject estimated or predicted by the system 10 as an index for diagnosis. For example, the subject itself can use the state of the subject estimated or predicted by the system 10 as an index for understanding its own state. Alternatively, the condition of the subject estimated or predicted by the system 10 can be used for health management of the subject. For example, after estimating or predicting the state of the target, the system 10 determines whether or not the target should be processed based on the result, and when it is determined that the target should be processed. , taking actions for the health management of the subject.
 対象の健康管理のためのアクションは、例えば、対象に対して処置を施すことを含む。システム10は、対象に対して処置を施すための手段を備えるようにしてもよいし、システム10の外部の手段に、対象に対して処置を施すように指示を出すようにしてもよい。 Actions for health management of the target include, for example, administering treatment to the target. The system 10 may include means for administering a treatment to a subject, or may issue an instruction to a means external to the system 10 to administer a treatment to a subject.
 対象の健康管理のためのアクションは、例えば、対象に対して処置を施すべきことのアラートを発出することを含む。システム10は、対象に対して処置を施すべきことのアラートを発出するための手段を備えるようにしてもよいし、システム10の外部の手段に、アラートを発出するように指示を出すようにしてもよい。 Actions for health management of a subject include, for example, issuing an alert that a treatment should be performed on the subject. The system 10 may include a means for issuing an alert that a treatment should be taken against the object, or may issue an instruction to a means external to the system 10 to issue an alert. Good too.
 対象の健康管理のためのアクションは、例えば、対象に対して所定の薬剤または療法を施与することを含む。システム10は、対象に対して所定の薬剤または療法を施与するための手段を備えるようにしてもよいし、システム10の外部の手段に、対象に対して所定の薬剤または療法を施与するように指示を出すようにしてもよい。 Actions for health management of a subject include, for example, administering a predetermined drug or therapy to the subject. The system 10 may include means for administering a predetermined drug or therapy to a subject, or means external to the system 10 may be configured to administer a predetermined drug or therapy to a subject. You may also issue instructions like this.
 一実施形態において、本開示のシステム10Aは、対象に対する治療薬または予防薬あるいは他の医療技術を評価することができる。治療薬または予防薬あるいは他の医療技術を評価することは、対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出することを含む。推定有効量または有効レベルにより、治療薬または予防薬あるいは他の医療技術が、対象にとって有用であるのかを評価することができる。 In one embodiment, the system 10A of the present disclosure can evaluate therapeutic or preventive drugs or other medical techniques for a subject. Evaluating a therapeutic or prophylactic drug or other medical technology includes calculating an estimated effective amount or level of effectiveness of the therapeutic or prophylactic drug or other medical technology for a subject. The estimated effective amount or level allows one to assess whether a therapeutic or prophylactic drug or other medical technique will be useful to a subject.
 図4は、システム10Aの構成の一例を示す。 FIG. 4 shows an example of the configuration of the system 10A.
 システム10Aは、少なくとも、取得手段11と、算出手段13とを備える。システム10Aの構成は、推定/予測手段12に代えて、算出手段13を備える点を除いて、システム10の構成と同一である。図4では、図2を参照して上述した構成要素と同様の構成要素には同一の参照番号を付し、ここでは説明を省略する。 The system 10A includes at least an acquisition means 11 and a calculation means 13. The configuration of the system 10A is the same as the configuration of the system 10, except that the estimation/prediction unit 12 is replaced by a calculation unit 13. In FIG. 4, the same reference numerals are given to the same components as those described above with reference to FIG. 2, and the description thereof will be omitted here.
 算出手段13は、眼球情報に基づいて、対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出するように構成されている。好ましい実施形態では、推定/予測手段12は、瞬目に関するパラメータの値に基づいて、対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出するように構成されている。 The calculation means 13 is configured to calculate an estimated effective amount or effective level of a therapeutic or preventive drug or other medical technique for the subject based on the eyeball information. In a preferred embodiment, the estimating/predicting means 12 is configured to calculate an estimated effective amount or effective level of a therapeutic or prophylactic drug or other medical technique for the subject based on the value of the blink-related parameter. .
 算出手段13は、例えば、学習済モデルを利用して、対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出することができる。学習済モデルは、例えば、瞬目に関するパラメータの値と、推定有効量または有効レベルとの関係を学習している。 The calculation means 13 can calculate the estimated effective amount or effective level of a therapeutic or preventive drug or other medical technology for a subject, for example, using a learned model. The learned model has learned, for example, the relationship between the value of a parameter related to blinking and the estimated effective amount or effective level.
 算出手段13は、図3を参照して上述したニューラルネットワーク20と同様のニューラルネットワークを利用することができる。 The calculation means 13 can utilize a neural network similar to the neural network 20 described above with reference to FIG.
 ニューラルネットワークの隠れ層の各ノードの重み係数は、予め取得されたデータに基づいて計算され得る。この重み係数を計算する処理が、学習処理である。学習処理は、教師あり学習であってもよいし、教師なし学習であってもよい。 The weighting coefficient of each node of the hidden layer of the neural network may be calculated based on previously obtained data. The process of calculating this weighting coefficient is a learning process. The learning process may be supervised learning or unsupervised learning.
 教師あり学習の場合、例えば、ある対象の瞬目に関するパラメータの値を入力層に入力した場合の出力層の値が、その患者に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルとなるように、各ノードの重み係数が計算され得る。これは、例えば、バックプロパゲーション(誤差逆伝播法)によって行われることができる。学習に用いられる訓練データセットの量は多い方が好ましくあり得るが、多すぎる場合には過学習に陥りやすくなる。 In the case of supervised learning, for example, when the value of a parameter related to blinking of a certain subject is input to the input layer, the value of the output layer is the estimated effective amount or effective amount of a therapeutic or preventive drug or other medical technology for that patient. A weighting factor for each node may be calculated to be a level. This can be done, for example, by backpropagation. Although it may be preferable to have a large amount of training datasets used for learning, if the amount is too large, overfitting is likely to occur.
 例えば、教師あり学習のための(入力用教師データ,出力用教師データ)の組は、(第1の対象の瞬目に関するパラメータの値,第1の対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベル)、(第2の対象の瞬目に関するパラメータの値,第2の対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベル)、・・・(第iの対象の瞬目に関するパラメータの値,第iの対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベル)、・・・等であり得る。ここで、瞬目に関するパラメータの値は、任意の次元であり得る。例えば、瞬目に関するパラメータの値は、1つの瞬目に関するパラメータについての値(すなわち、1次元)であってもよいし、2つの瞬目に関するパラメータについての値(すなわち、2次元)であってもよいし、3以上の瞬目に関するパラメータについての値(すなわち、3次元以上)であってもよい。このような学習済のニューラルネットワークモデルの入力層に新規の対象から取得された瞬目に関するパラメータの値を入力すると、その対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルが出力層に出力される。 For example, the set of (input supervised data, output supervised data) for supervised learning is (value of parameter related to blink of the first target, therapeutic or preventive drug or other medical treatment for the first target). (estimated effective amount or effective level of the technology), (value of parameter related to blinking of the second subject, estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technology for the second subject),... (the value of the parameter related to the blink of the i-th subject, the estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technology for the i-th subject), etc. Here, the value of the parameter related to blinking may have any dimension. For example, the value of the blink-related parameter may be a value for one blink-related parameter (i.e., one-dimensional) or a value for two blink-related parameters (i.e., two-dimensional). Alternatively, it may be a value for three or more blink-related parameters (that is, three or more dimensions). When the values of blink-related parameters obtained from a new subject are input into the input layer of such a trained neural network model, the estimated effective amount or effective level of a therapeutic or preventive drug or other medical technology for that subject can be calculated. is output to the output layer.
 好ましい実施形態では、算出手段13は、瞬目に関するパラメータの値と、対象に薬剤を投与した後の経過時間に基づいて、対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出することができる。推定/予測手段12は、学習済モデルを利用して、対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出することができ、このとき、学習済モデルは、例えば、瞬目に関するパラメータの値および対象に薬剤を投与した後の経過時間と、対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルとの関係を学習している。 In a preferred embodiment, the calculation means 13 calculates the estimated effective amount or effective amount of the therapeutic or prophylactic drug or other medical technique for the subject based on the value of the blink-related parameter and the elapsed time after administering the drug to the subject. The level can be calculated. The estimation/prediction means 12 can calculate the estimated effective amount or effective level of a therapeutic or preventive drug or other medical technology for a subject by using the trained model, and at this time, the trained model can calculate, for example, , the relationship between the values of blink-related parameters and the elapsed time after administering the drug to the subject and the estimated effective amount or level of the therapeutic or prophylactic drug or other medical technique for the subject.
 例えば、教師あり学習のための(入力用教師データ,出力用教師データ)の組は、((第1の対象の瞬目に関するパラメータの値、第1の対象に薬剤を投与した後の経過時間),第1の対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベル)、((第2の対象の瞬目に関するパラメータの値、第2の対象に薬剤を投与した後の経過時間),第2の対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベル)、・・・((第iの対象の瞬目に関するパラメータの値、第iの対象に薬剤を投与した後の経過時間),第iの対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベル)、・・・等であり得る。このような学習済のニューラルネットワークモデルの入力層に新規の対象から取得された瞬目に関するパラメータの値と、新規の対象に薬剤を投与した後の経過時間を入力すると、その対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルが出力層に出力される。 For example, the set (input supervised data, output supervised data) for supervised learning is ((value of the parameter related to the blink of the first subject, elapsed time after administering the drug to the first subject). ), estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technique for the first subject), ((value of the blink-related parameter of the second subject, after administering the drug to the second subject) ), the estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technology for the second subject), ... the estimated effective amount or effective level of the therapeutic or prophylactic drug or other medical technique for the i-th subject), etc. By inputting the blink-related parameter values obtained from a new subject and the elapsed time since administering the drug to the new subject into the input layer of such a trained neural network model, the therapeutic agent or An estimated effective amount or level of the prophylactic drug or other medical technology is output to the output layer.
 上述した学習済モデルは、説明されたようなニューラルネットワークモデルに限定されず、他の任意の機械学習モデルを利用することができる。例えば、ランダムフォレストを利用することができる。例えば、事前の学習によって得られた重み係数を単に設定することによって構築された簡易なモデルを利用することもできる。 The trained model described above is not limited to the neural network model as described, but any other machine learning model can be used. For example, random forests can be used. For example, it is also possible to use a simple model constructed by simply setting weighting coefficients obtained through prior learning.
 例えば、算出手段13は、機械学習に依らずに、ルールベースで、対象に対する治療薬または予防薬あるいは他の医療技術の推定有効量または有効レベルを算出するようにしてもよい。 For example, the calculating means 13 may calculate the estimated effective amount or effective level of a therapeutic drug, preventive drug, or other medical technology for a subject based on a rule without relying on machine learning.
 一例において、薬物動態モデルに基づき、薬物投与の量と時間経過から、薬物によってもたらされる対象の状態変化を予測するシステムや、運動症状のみから、対象の状態を推定するシステムを用いることで、機械学習プロセスを用いることなく本開示の技術を実施することができる。あるいは、機械学習プロセスを用いることなく実施されたシステムからのデータを収集して、仮想的な正解値としてモデルを学習させたり、あるいはそれらのデータをモデルの変数として、あるいはモデル出力値の補正のためなどに、これらのシステムを併用し、学習させた学習済みモデルを用いたりしても本開示を実施することができる。 In one example, a system that predicts changes in a subject's state caused by a drug based on the amount and time course of drug administration based on a pharmacokinetic model, or a system that estimates a subject's state solely from motor symptoms. The techniques of this disclosure can be implemented without using a learning process. Alternatively, you can collect data from a system that was implemented without using a machine learning process to train the model as virtual ground truth values, or use that data as variables in the model or in corrections to model output values. For example, the present disclosure can be implemented by using these systems together and using a trained model.
 システム10Aによって算出された推定有効量または有効レベルは、任意の用途に利用されることができる。例えば、医師は、システム10Aによって算出された推定有効量または有効レベルを、治療薬もしくは予防薬の処方、または、医療技術の施与判断のための指標として利用することができる。あるいは、システム10Aによって算出された推定有効量または有効レベルは、対象に対して推奨される治療薬または予防薬あるいは他の医療技術を決定するために利用されることができる。例えば、システム10Aは、推定有効量または有効レベルを算出した後、その結果に基づいて、対象に対して推奨される治療薬または予防薬あるいは他の医療技術を決定することができる。例えば、システム10Aの算出手段13が、第1の治療薬について、推定有効量もしくは有効レベルを算出し、第2の治療薬について、推定有効量もしくは有効レベルを算出し、・・・第nの治療薬について、推定有効量もしくは有効レベルを算出したとき、システム10Aは、それぞれの推定有効量もしくは有効レベルを比較して、対象にとって最も適切な推定有効量もしくは有効レベルを有する治療薬を、対象に対して推奨される治療薬として決定することができる。システム10Aは、予防薬あるいは他の医療技術についても同様にして、対象にとって最も適切な推定有効量もしくは有効レベルを有する予防薬あるいは他の医療技術を、対象に対して推奨される予防薬あるいは他の医療技術として決定することができる。 The estimated effective amount or effective level calculated by the system 10A can be used for any purpose. For example, a doctor can use the estimated effective amount or effective level calculated by the system 10A as an index for prescribing a therapeutic or preventive drug or determining the administration of a medical technique. Alternatively, the estimated effective amount or level calculated by system 10A can be utilized to determine recommended therapeutic or prophylactic agents or other medical techniques for the subject. For example, after calculating the estimated effective amount or level, system 10A can determine a recommended therapeutic or prophylactic drug or other medical technique for the subject based on the results. For example, the calculation means 13 of the system 10A calculates the estimated effective amount or effective level for the first therapeutic agent, calculates the estimated effective amount or effective level for the second therapeutic agent, and... When the estimated effective amount or effective level of the therapeutic drug is calculated, the system 10A compares the estimated effective amount or effective level and selects the therapeutic drug with the most appropriate estimated effective amount or effective level for the subject. can be determined as the recommended treatment for. Similarly for prophylactic drugs or other medical techniques, the system 10A determines which prophylactic drugs or other medical techniques are recommended for the subject, and which have the most appropriate estimated effective amount or level for the subject. can be determined as a medical technology.
 (システムの実装例)
 上述したシステム10、10Aは、例えば、ネットワークを介して接続されたユーザ装置およびサーバ装置を含むシステム1000において実装され得る。
(System implementation example)
The systems 10 and 10A described above may be implemented, for example, in a system 1000 that includes a user device and a server device connected via a network.
 図5は、本開示のシステム1000の構成の一例を示す図である。 FIG. 5 is a diagram showing an example of the configuration of the system 1000 of the present disclosure.
 システム1000は、少なくとも1つのユーザ装置100と、少なくとも1つのユーザ装置100にネットワーク400を介して接続されているサーバ装置200と、サーバ装置200に接続されているデータベース部300とを含む。 The system 1000 includes at least one user device 100, a server device 200 connected to the at least one user device 100 via a network 400, and a database unit 300 connected to the server device 200.
 ユーザ装置100は、スマートフォン、タブレットコンピュータ、スマートグラス、スマートウォッチ、ラップトップコンピュータ、デスクトップコンピュータ、アイトラッカー等の任意の端末装置であり得る。ユーザ装置100は、ネットワーク400を介してサーバ装置200と通信することができる。ここで、ネットワーク400の種類は問わない。例えば、ユーザ装置100は、インターネットを介してサーバ装置200と通信してもよいし、LANを介してサーバ装置200と通信してもよい。図5には3つのユーザ装置100が描写されているが、ユーザ装置100の数はこれに限定されない。ユーザ装置100の数は、1以上の任意の数であり得る。 The user device 100 may be any terminal device such as a smartphone, a tablet computer, smart glasses, a smart watch, a laptop computer, a desktop computer, an eye tracker, etc. User device 100 can communicate with server device 200 via network 400. Here, the type of network 400 does not matter. For example, the user device 100 may communicate with the server device 200 via the Internet or may communicate with the server device 200 via a LAN. Although three user devices 100 are depicted in FIG. 5, the number of user devices 100 is not limited thereto. The number of user devices 100 may be any number greater than or equal to one.
 サーバ装置200は、ネットワーク400を介して少なくとも1つのユーザ装置100と通信することができる。また、サーバ装置200は、サーバ装置200に接続されているデータベース部300と通信することができる。 The server device 200 can communicate with at least one user device 100 via the network 400. Further, the server device 200 can communicate with a database unit 300 connected to the server device 200.
 例えば、サーバ装置200に接続されているデータベース部300には、事前に取得された複数の対象の眼球情報が格納され得る。格納された複数の眼球情報は、例えば、学習済モデルを構築するために利用され得る。例えば、データベース部300には、構築された学習済モデルが格納されるようにしてもよい。 For example, the database unit 300 connected to the server device 200 may store eyeball information of a plurality of targets acquired in advance. A plurality of pieces of stored eyeball information can be used, for example, to construct a learned model. For example, the database unit 300 may store constructed learned models.
 図6Aは、ユーザ装置100の構成の一例を示す。 FIG. 6A shows an example of the configuration of the user device 100.
 ユーザ装置100は、通信インターフェース部110と、入力部120と、表示部130と、メモリ部140と、プロセッサ部150とを備える。 The user device 100 includes a communication interface section 110, an input section 120, a display section 130, a memory section 140, and a processor section 150.
 通信インターフェース部110は、ネットワーク400を介した通信を制御する。ユーザ装置100のプロセッサ部150は、通信インターフェース部110を介して、ユーザ装置100の外部から情報を受信することが可能であり、ユーザ装置100の外部に情報を送信することが可能である。例えば、ユーザ装置100のプロセッサ部150は、通信インターフェース部110を介して、サーバ装置200から情報を受信することが可能であり、サーバ装置200に情報を送信することが可能である。通信インターフェース部110は、任意の方法で通信を制御し得る。 The communication interface unit 110 controls communication via the network 400. The processor unit 150 of the user device 100 can receive information from outside the user device 100 via the communication interface unit 110, and can transmit information to the outside of the user device 100. For example, the processor unit 150 of the user device 100 can receive information from the server device 200 via the communication interface unit 110, and can transmit information to the server device 200. Communication interface section 110 can control communication in any manner.
 入力部120は、ユーザが情報をユーザ装置100に入力することを可能にする。入力部120が、どのような態様で、ユーザが情報をユーザ装置100に入力することを可能にするかは問わない。例えば、入力部120がタッチパネルである場合には、ユーザがタッチパネルにタッチすることによって情報を入力するようにしてもよい。あるいは、入力部120がマウスである場合には、ユーザがマウスを操作することによって情報を入力するようにしてもよい。あるいは、入力部120がキーボードである場合には、ユーザがキーボードのキーを押下することによって情報を入力するようにしてもよい。あるいは、入力部120がマイクである場合には、ユーザが音声で情報を入力するようにしてもよい。 The input unit 120 allows the user to input information into the user device 100. It does not matter in what manner the input unit 120 allows the user to input information into the user device 100. For example, if the input unit 120 is a touch panel, the user may input information by touching the touch panel. Alternatively, if the input unit 120 is a mouse, the user may input information by operating the mouse. Alternatively, if the input unit 120 is a keyboard, the user may input information by pressing keys on the keyboard. Alternatively, if the input unit 120 is a microphone, the user may input information by voice.
 表示部130は、情報を表示するための任意のディスプレイであり得る。 The display unit 130 may be any display for displaying information.
 メモリ部140には、ユーザ装置100における処理を実行するためのプログラムやそのプログラムの実行に必要とされるデータ等が格納されている。メモリ部140には、例えば、対象の状態を推定または予測するためのプログラム(例えば、図1Aに示すステップを含む処理を行うためのプログラムまたは後述する図7~8に示される処理を実現するプログラム)、および/または、対象に対する治療薬または予防薬あるいは他の医療技術を評価するためのプログラム(例えば、図1Bに示すステップを含む処理を行うためのプログラム)の一部または全部が格納されている。メモリ部140には、任意の機能を実装するアプリケーションが格納されていてもよい。メモリ部140には、例えば、眼球画像中の瞳孔を追跡する(アイトラッキング)することにより眼球情報を取得するためのアプリケーションが格納されていてもよい。これにより、ユーザ装置100は、アイトラッキングの機能を実現する部分を有することになる。メモリ部140には、例えば、眼電位測定値から眼球情報を取得するためのアプリケーションが格納されていてもよい。これにより、ユーザ装置100は、眼電位を測定する機能を実現する部分を有することになる。その他、メモリ部140には、他の手段によって眼球情報を取得するためのアプリケーションが格納され得る。ここで、プログラムをどのようにしてメモリ部140に格納するかは問わない。例えば、プログラムは、メモリ部140にプリインストールされていてもよい。あるいは、プログラムは、ネットワーク400を経由してダウンロードされることによってメモリ部140にインストールされるようにしてもよい。メモリ部140は、任意の記憶手段によって実装され得る。 The memory unit 140 stores programs for executing processes in the user device 100, data required for executing the programs, and the like. The memory unit 140 stores, for example, a program for estimating or predicting the state of the object (for example, a program for performing processing including the steps shown in FIG. 1A or a program for implementing the processing shown in FIGS. 7 and 8, which will be described later). ), and/or a part or all of a program for evaluating a therapeutic or preventive drug or other medical technology for a subject (for example, a program for performing processing including the steps shown in FIG. 1B) is stored. There is. The memory unit 140 may store an application that implements an arbitrary function. The memory unit 140 may store, for example, an application for acquiring eyeball information by tracking a pupil in an eyeball image (eye tracking). Thereby, the user device 100 has a portion that implements the eye tracking function. The memory unit 140 may store, for example, an application for acquiring eyeball information from electro-oculogram measurements. As a result, the user device 100 has a portion that implements the function of measuring electro-oculography. In addition, the memory unit 140 may store applications for acquiring eyeball information by other means. Here, it does not matter how the program is stored in the memory unit 140. For example, the program may be preinstalled in the memory unit 140. Alternatively, the program may be installed in the memory unit 140 by being downloaded via the network 400. Memory section 140 may be implemented by any storage means.
 プロセッサ部150は、ユーザ装置100全体の動作を制御する。プロセッサ部150は、メモリ部140に格納されているプログラムを読み出し、そのプログラムを実行する。これにより、ユーザ装置100を所望のステップを実行する装置として機能させることが可能である。プロセッサ部150は、単一のプロセッサによって実装されてもよいし、複数のプロセッサによって実装されてもよい。 The processor unit 150 controls the operation of the user device 100 as a whole. The processor unit 150 reads a program stored in the memory unit 140 and executes the program. This allows the user device 100 to function as a device that executes desired steps. The processor unit 150 may be implemented by a single processor or by multiple processors.
 ユーザ装置100は、上述した構成に加えて、撮像手段160を備えることができる。撮像手段160は、画像を取得するための任意の手段である。撮像手段160は、例えば、カメラである。ここで、「画像」は、静止画および動画を含む。撮像手段160は、例えば、ユーザ装置100に内蔵のカメラであってもよいし、ユーザ装置100に取り付けられる外部カメラであってもよい。例えば、ユーザ装置100がスマートフォンである場合には、スマートフォンに内蔵のカメラを撮像手段160として利用することができる。 In addition to the configuration described above, the user device 100 can include an imaging means 160. Imaging means 160 is any means for acquiring images. The imaging means 160 is, for example, a camera. Here, "image" includes still images and moving images. The imaging means 160 may be, for example, a built-in camera in the user device 100 or an external camera attached to the user device 100. For example, when the user device 100 is a smartphone, a camera built into the smartphone can be used as the imaging means 160.
 ユーザ装置100は、上述した構成に加えて、または、上述した撮像手段160に代えて、眼電位取得手段170を備えることができる。眼電位取得手段170は、眼電位を取得するための任意の手段である。眼電位取得手段170は、例えば、眼の周辺の皮膚に設置され得る複数の電極である。例えば、眼電位取得手段170は、ユーザ装置100に内蔵の電極であってもよいし、ユーザ装置100に取り付けられる外部電極であってもよい。例えば、ユーザ装置100が眼鏡型のアイトラッカーである場合には、眼鏡型のアイトラッカーに内蔵の電極を眼電位取得手段170として利用することができる。 In addition to the above-described configuration, or in place of the above-described imaging device 160, the user device 100 can include an electro-oculography acquisition device 170. The electro-oculogram acquisition means 170 is any means for acquiring electro-oculography. The electro-oculography acquisition means 170 is, for example, a plurality of electrodes that can be placed on the skin around the eyes. For example, the electro-oculography acquisition means 170 may be an electrode built into the user device 100 or an external electrode attached to the user device 100. For example, when the user device 100 is a glasses-type eye tracker, electrodes built into the glasses-type eye tracker can be used as the electro-oculogram acquisition means 170.
 図6Aに示される例では、ユーザ装置100の各構成要素がユーザ装置100内に設けられているが、本開示はこれに限定されない。ユーザ装置100の各構成要素のいずれかがユーザ装置100の外部に設けられることも可能である。例えば、入力部120、表示部130、メモリ部140、プロセッサ部150、撮像手段160のそれぞれが別々のハードウェア部品で構成されている場合には、各ハードウェア部品が任意のネットワークを介して接続されてもよい。このとき、ネットワークの種類は問わない。各ハードウェア部品は、例えば、LANを介して接続されてもよいし、無線接続されてもよいし、有線接続されてもよい。ユーザ装置100は、特定のハードウェア構成には限定されない。例えば、プロセッサ部150をデジタル回路ではなくアナログ回路によって構成することも本開示の範囲内である。ユーザ装置100の構成は、その機能を実現できる限りにおいて上述したものに限定されない。 In the example shown in FIG. 6A, each component of the user device 100 is provided within the user device 100, but the present disclosure is not limited thereto. It is also possible for any of the components of user device 100 to be provided outside of user device 100. For example, if the input section 120, display section 130, memory section 140, processor section 150, and imaging means 160 are each composed of separate hardware components, each hardware component may be connected via an arbitrary network. may be done. At this time, the type of network does not matter. Each hardware component may be connected via a LAN, wirelessly, or wired, for example. User device 100 is not limited to a specific hardware configuration. For example, it is also within the scope of the present disclosure to configure the processor section 150 with an analog circuit rather than a digital circuit. The configuration of the user device 100 is not limited to that described above as long as its functions can be realized.
 図6Bは、サーバ装置200の構成の一例を示す。 FIG. 6B shows an example of the configuration of the server device 200.
 サーバ装置200は、通信インターフェース部210と、メモリ部220と、プロセッサ部230とを備える。 The server device 200 includes a communication interface section 210, a memory section 220, and a processor section 230.
 通信インターフェース部210は、ネットワーク400を介した通信を制御する。また、通信インターフェース部210は、データベース部300との通信も制御する。サーバ装置200のプロセッサ部230は、通信インターフェース部210を介して、サーバ装置200の外部から情報を受信することが可能であり、サーバ装置200の外部に情報を送信することが可能である。サーバ装置200のプロセッサ部230は、通信インターフェース部210を介して、ユーザ装置100から情報を受信することが可能であり、ユーザ装置100に情報を送信することが可能である。通信インターフェース部210は、任意の方法で通信を制御し得る。 The communication interface unit 210 controls communication via the network 400. The communication interface section 210 also controls communication with the database section 300. The processor unit 230 of the server device 200 can receive information from outside the server device 200 via the communication interface unit 210, and can transmit information to the outside of the server device 200. The processor section 230 of the server device 200 can receive information from the user device 100 via the communication interface section 210, and can transmit information to the user device 100. Communication interface unit 210 may control communication in any manner.
 メモリ部220には、サーバ装置200の処理の実行に必要とされるプログラムやそのプログラムの実行に必要とされるデータ等が格納されている。例えば、対象の状態を推定または予測するためのプログラム(例えば、図1Aに示すステップを含む処理を行うためのプログラムまたは後述する図7~8に示される処理を実現するプログラム)、および/または、対象に対する治療薬または予防薬あるいは他の医療技術を評価するためのプログラム(例えば、図1Bに示すステップを含む処理を行うためのプログラム)の一部または全部が格納されている。メモリ部220には、例えば、眼球画像中の瞳孔を追跡する(アイトラッキング)することにより眼球情報を取得するためのアプリケーション、眼電位測定値から眼球情報を取得するためのアプリケーションが格納されていてもよい。メモリ部220には、例えば、他の手段によって眼球情報を取得するためのアプリケーションが格納され得る。メモリ部220は、任意の記憶手段によって実装され得る。 The memory unit 220 stores programs required for executing processes of the server device 200, data required for executing the programs, and the like. For example, a program for estimating or predicting the state of a target (for example, a program for performing processing including the steps shown in FIG. 1A or a program for implementing the processing shown in FIGS. 7 and 8 described later), and/or Part or all of a program for evaluating a therapeutic drug or preventive drug or other medical technology for a subject (for example, a program for performing processing including the steps shown in FIG. 1B) is stored. The memory unit 220 stores, for example, an application for acquiring eyeball information by tracking the pupil in an eyeball image (eye tracking), and an application for acquiring eyeball information from electrooculography measurement values. Good too. The memory unit 220 may store, for example, an application for acquiring eyeball information by other means. Memory section 220 may be implemented by any storage means.
 プロセッサ部230は、サーバ装置200全体の動作を制御する。プロセッサ部230は、メモリ部220に格納されているプログラムを読み出し、そのプログラムを実行する。これにより、サーバ装置200を所望のステップを実行する装置として機能させることが可能である。プロセッサ部230は、単一のプロセッサによって実装されてもよいし、複数のプロセッサによって実装されてもよい。 The processor unit 230 controls the operation of the server device 200 as a whole. The processor unit 230 reads a program stored in the memory unit 220 and executes the program. This allows the server device 200 to function as a device that executes desired steps. The processor unit 230 may be implemented by a single processor or by multiple processors.
 図6Bに示される例では、サーバ装置200の各構成要素がサーバ装置200内に設けられているが、本開示はこれに限定されない。サーバ装置200の各構成要素のいずれかがサーバ装置200の外部に設けられることも可能である。例えば、メモリ部220、プロセッサ部230のそれぞれが別々のハードウェア部品で構成されている場合には、各ハードウェア部品が任意のネットワークを介して接続されてもよい。このとき、ネットワークの種類は問わない。各ハードウェア部品は、例えば、LANを介して接続されてもよいし、無線接続されてもよいし、有線接続されてもよい。サーバ装置200は、特定のハードウェア構成には限定されない。例えば、プロセッサ部230をデジタル回路ではなくアナログ回路によって構成することも本開示の範囲内である。サーバ装置200の構成は、その機能を実現できる限りにおいて上述したものに限定されない。 In the example shown in FIG. 6B, each component of the server device 200 is provided within the server device 200, but the present disclosure is not limited thereto. It is also possible for any of the components of the server device 200 to be provided outside the server device 200. For example, if the memory section 220 and the processor section 230 are each composed of separate hardware components, each of the hardware components may be connected via an arbitrary network. At this time, the type of network does not matter. Each hardware component may be connected via a LAN, wirelessly, or wired, for example. Server device 200 is not limited to a specific hardware configuration. For example, it is also within the scope of the present disclosure to configure the processor section 230 with an analog circuit rather than a digital circuit. The configuration of the server device 200 is not limited to that described above as long as its functions can be realized.
 図5、図6Bに示される例では、データベース部300は、サーバ装置200の外部に設けられているが、本開示はこれに限定されない。データベース部300をサーバ装置200の内部に設けることも可能である。このとき、データベース部300は、メモリ部220を実装する記憶手段と同一の記憶手段によって実装されてもよいし、メモリ部220を実装する記憶手段とは別の記憶手段によって実装されてもよい。いずれにせよ、データベース部300は、サーバ装置200のための格納部として構成される。データベース部300の構成は、特定のハードウェア構成に限定されない。例えば、データベース部300は、単一のハードウェア部品で構成されてもよいし、複数のハードウェア部品で構成されてもよい。例えば、データベース部300は、サーバ装置200の外付けハードディスク装置として構成されてもよいし、ネットワークを介して接続されるクラウド上のストレージとして構成されてもよい。 In the examples shown in FIGS. 5 and 6B, the database unit 300 is provided outside the server device 200, but the present disclosure is not limited thereto. It is also possible to provide the database unit 300 inside the server device 200. At this time, the database unit 300 may be implemented by the same storage unit that implements the memory unit 220, or may be implemented by a different storage unit from the storage unit that implements the memory unit 220. In any case, the database unit 300 is configured as a storage unit for the server device 200. The configuration of the database unit 300 is not limited to a specific hardware configuration. For example, the database unit 300 may be composed of a single hardware component or a plurality of hardware components. For example, the database unit 300 may be configured as an external hard disk device of the server device 200, or may be configured as a storage on a cloud connected via a network.
 システム10の構成要素は、例えば、ユーザ装置100が備えるようにしてもよいし、サーバ装置200が備えるようにしてもよいし、ユーザ装置100およびサーバ装置200の両方に分散されてもよい。システム10の構成要素がユーザ装置100およびサーバ装置200の両方に分散される場合、取得手段11をユーザ装置100が備え、推定/予測手段12をサーバ装置200が備えることができる。 The components of the system 10 may be included in the user device 100, the server device 200, or distributed in both the user device 100 and the server device 200, for example. When the components of the system 10 are distributed to both the user device 100 and the server device 200, the user device 100 can be provided with the acquisition means 11, and the server device 200 can be provided with the estimation/prediction means 12.
 同様に、システム10Aの構成要素は、例えば、ユーザ装置100が備えるようにしてもよいし、サーバ装置200が備えるようにしてもよいし、ユーザ装置100およびサーバ装置200の両方に分散されてもよい。システム10Aの構成要素がユーザ装置100およびサーバ装置200の両方に分散される場合、取得手段11をユーザ装置100が備え、算出手段13をサーバ装置200が備えるようにしてもよい。 Similarly, the components of the system 10A may be included in the user device 100, the server device 200, or distributed in both the user device 100 and the server device 200, for example. good. When the components of the system 10A are distributed to both the user device 100 and the server device 200, the user device 100 may include the acquisition means 11, and the server device 200 may include the calculation means 13.
 一実施形態において、システム10のうち、取得手段11をユーザ装置100が備え、推定/予測手段12をサーバ装置200が備える。 In one embodiment, in the system 10, the user device 100 includes the acquisition unit 11, and the server device 200 includes the estimation/prediction unit 12.
 図7は、この実施形態におけるユーザ装置100とサーバ装置200との間のデータのやり取りを示すデータフロー図である。 FIG. 7 is a data flow diagram showing data exchange between the user device 100 and the server device 200 in this embodiment.
 ステップS701では、ユーザ装置100が、眼球情報源を取得する。眼球情報源は、例えば、対象の眼球を撮影した少なくとも1つの画像であってもよいし、眼電位測定値であってもよい。好ましくは、眼球情報源は、対象の眼球を撮影した複数の画像または時系列の眼電位測定値であり得る。複数の画像または時系列の眼電位測定値は、眼球情報の時間成分を含むことができるからである。 In step S701, the user device 100 acquires an eyeball information source. The eyeball information source may be, for example, at least one image taken of the subject's eyeball, or may be an electrooculography measurement value. Preferably, the eyeball information source may be a plurality of images taken of the subject's eyeball or a time series of electro-oculography measurements. This is because a plurality of images or time-series electro-oculography measurement values can include a time component of eyeball information.
 例えば、ユーザ装置100の撮像手段160が、眼球を撮影することにより、少なくとも1つの画像を取得することができる。例えば、ユーザ装置100の撮像手段160は、対象が撮像手段160を凝視する等、対象が認識しているときに対象の眼球を撮影するようにしてもよいし、対象が撮像手段160の視野内に入っているとき等、対象が認識していないときに対象の眼球を撮影するようにしてもよい。対象が認識していないときに対象の眼球を撮影することにより、対象に負担をかけることなく、眼球情報源を取得することができる。 For example, the imaging unit 160 of the user device 100 can acquire at least one image by photographing the eyeball. For example, the imaging means 160 of the user device 100 may photograph the eyeball of the target when the target is aware, such as when the target is staring at the imaging means 160, or when the target is within the field of view of the imaging means 160. The subject's eyeballs may be photographed when the subject is not recognized, such as when the subject is in the room. By photographing the subject's eyeballs when the subject is not aware of the situation, it is possible to obtain an eyeball information source without placing a burden on the subject.
 例えば、ユーザ装置100の眼電位取得手段170が、眼の周囲の電位を測定することにより、眼電位測定値を取得することができる。例えば、ユーザ装置100の眼電位取得手段170は、対象が電極を眼の周囲に取り付ける等、対象が認識しているときに眼電位測定値を取得するようにしてもよいし、対象が装着している眼鏡型デバイスに内蔵された電極等を用いて、対象が認識していないときに眼電位測定値を取得するようにしてもよい。対象が認識していないときに対象の眼球を撮影することにより、対象に負担をかけることなく、眼球情報源を取得することができる。 For example, the electro-oculogram acquisition unit 170 of the user device 100 can acquire an electro-oculogram measurement value by measuring the electric potential around the eyes. For example, the electro-oculogram acquisition means 170 of the user device 100 may acquire the electro-oculogram measurement value when the subject is aware of the situation, such as by attaching electrodes around the eyes, or when the subject is wearing them. Electro-oculography measurements may be obtained using electrodes or the like built into a glasses-type device, when the object is not recognized. By photographing the subject's eyeballs when the subject is not aware of the situation, it is possible to obtain an eyeball information source without placing a burden on the subject.
 ステップS702では、ユーザ装置100が、眼球情報を取得する。例えば、ユーザ装置100のプロセッサ部150が備え得る取得手段11が、ステップS701で取得された眼球情報源から、眼球情報を取得する。眼球情報は、例えば、瞬目に関する情報、瞳孔座標または眼球の相対位置に関する情報、眼球運動に関する情報を含む。取得手段11は、例えば、公知の任意の手法により、眼球情報源から眼球情報を取得することができる。取得手段11は、好ましくは、瞬目に関するパラメータの値を取得する。 In step S702, the user device 100 acquires eyeball information. For example, the acquisition unit 11 that may be included in the processor unit 150 of the user device 100 acquires eyeball information from the eyeball information source acquired in step S701. The eyeball information includes, for example, information regarding blinks, information regarding pupil coordinates or relative positions of the eyeballs, and information regarding eyeball movements. The acquisition means 11 can acquire eyeball information from an eyeball information source, for example, by any known method. The acquisition means 11 preferably acquires values of parameters related to blinking.
 ステップS703では、ユーザ装置100が、眼球情報をサーバ装置200に送信する。例えば、ユーザ装置100のプロセッサ部150が、通信インターフェース部110を介して、眼球情報をサーバ装置200に送信する。サーバ装置200は、送信された眼球情報を受信する。例えば、サーバ装置200のプロセッサ部230が、通信インターフェース部210を介して、眼球情報をユーザ装置100から受信する。 In step S703, the user device 100 transmits eyeball information to the server device 200. For example, the processor unit 150 of the user device 100 transmits eyeball information to the server device 200 via the communication interface unit 110. Server device 200 receives the transmitted eyeball information. For example, the processor unit 230 of the server device 200 receives eyeball information from the user device 100 via the communication interface unit 210.
 ステップS704では、サーバ装置200が、眼球情報に基づいて、対象の状態を推定または予測する。例えば、サーバ装置200のプロセッサ部230が備え得る推定/予測手段12が、ステップS703で受信された眼球情報に基づいて、対象の状態を推定または予測する。 In step S704, the server device 200 estimates or predicts the state of the target based on the eyeball information. For example, the estimation/prediction means 12 that may be included in the processor unit 230 of the server device 200 estimates or predicts the state of the target based on the eyeball information received in step S703.
 算出手段12は、例えば、学習済モデルを利用して、対象の状態を推定または予測することができる。学習済モデルは、眼球情報と、対象の状態との関係を学習しており、学習済モデルにステップS703で受信された眼球情報を入力すると、対応する対象の状態が出力される。 The calculation means 12 can estimate or predict the state of the target by using, for example, a trained model. The learned model has learned the relationship between the eyeball information and the state of the target, and when the eyeball information received in step S703 is input to the trained model, the corresponding state of the target is output.
 ステップS705では、サーバ装置200が、ステップS704での推定または予測の結果をユーザ装置100に送信する。例えば、サーバ装置200のプロセッサ部230が、通信インターフェース部210を介して、ステップS704での推定または予測の結果をユーザ装置100に送信する。ユーザ装置100は、送信された推定または予測の結果を受信する。例えば、ユーザ装置100のプロセッサ部150が、通信インターフェース部110を介して、推定または予測の結果をサーバ装置200から受信する。 In step S705, the server device 200 transmits the estimation or prediction result in step S704 to the user device 100. For example, the processor unit 230 of the server device 200 transmits the estimation or prediction result in step S704 to the user device 100 via the communication interface unit 210. User equipment 100 receives the transmitted estimation or prediction results. For example, the processor unit 150 of the user device 100 receives the estimation or prediction result from the server device 200 via the communication interface unit 110.
 ステップS706では、ユーザ装置100が、ステップS705で受信された推定または予測の結果を対象に提示する。提示の態様は問わない。例えば、ユーザ装置100の表示部130が、結果を表示することができる。あるいは、ユーザ装置100が備え得るまたは接続され得るマイクが、結果を音声で提示することができる。あるいは、ユーザ装置100が備え得るまたは接続され得るプリンタが、結果を印刷することができる。 In step S706, the user device 100 presents the estimation or prediction result received in step S705 to the target. The mode of presentation does not matter. For example, the display unit 130 of the user device 100 can display the results. Alternatively, a microphone that the user device 100 may include or be connected to may present the results audibly. Alternatively, a printer that the user device 100 may include or be connected to can print the results.
 これにより、対象(または、対象を診ている医師、看護師、その他医療従事者)は、対象の状態を知ることができるようになる。 This allows the subject (or the doctor, nurse, or other medical worker who is examining the subject) to know the condition of the subject.
 この実施形態では、ユーザ装置100が眼球情報を取得してサーバ装置200に送信するだけで、ユーザ装置100は眼球情報から推定または予測された結果を得ることができる。ユーザ装置100は、推定/予測手段12にかかる計算負荷も負う必要がない。 In this embodiment, the user device 100 can obtain an estimated or predicted result from the eyeball information simply by acquiring the eyeball information and transmitting it to the server device 200. The user device 100 also does not have to bear the calculation load on the estimation/prediction means 12.
 別の実施形態において、システム10の取得手段11および推定/予測手段12をサーバ装置200が備えることができる。 In another embodiment, the server device 200 can include the acquisition means 11 and the estimation/prediction means 12 of the system 10.
 図8は、この実施形態におけるユーザ装置100とサーバ装置200との間のデータのやり取りを示すデータフロー図である。 FIG. 8 is a data flow diagram showing data exchange between the user device 100 and the server device 200 in this embodiment.
 ステップS801では、ユーザ装置100が、眼球情報源を取得する。ステップS801は、ステップS701と同様のステップである。 In step S801, the user device 100 acquires an eyeball information source. Step S801 is a step similar to step S701.
 ステップS802では、ユーザ装置100が、ステップS801で取得された眼球情報源をサーバ装置200に送信する。例えば、ユーザ装置100のプロセッサ部150が、通信インターフェース部110を介して、眼球情報源をサーバ装置200に送信する。サーバ装置200は、送信された眼球情報源を受信する。例えば、サーバ装置200のプロセッサ部230が、通信インターフェース部210を介して、送信された眼球情報源をユーザ装置100から受信する。 In step S802, the user device 100 transmits the eyeball information source acquired in step S801 to the server device 200. For example, the processor unit 150 of the user device 100 transmits the eyeball information source to the server device 200 via the communication interface unit 110. The server device 200 receives the transmitted eyeball information source. For example, the processor unit 230 of the server device 200 receives the transmitted eyeball information source from the user device 100 via the communication interface unit 210.
 ステップS803では、サーバ装置200が、眼球情報を取得する。例えば、サーバ装置200のプロセッサ部230が備え得る取得手段11が、ステップS802受信された眼球情報源から、眼球情報を取得する。眼球情報は、例えば、瞬目に関する情報、瞳孔座標または眼球の相対位置に関する情報、眼球運動に関する情報を含む。取得手段11は、例えば、公知の任意の手法により、眼球情報源から眼球情報を取得することができる。取得手段11は、好ましくは、瞬目に関するパラメータの値を取得する。 In step S803, the server device 200 acquires eyeball information. For example, the acquisition unit 11 that may be included in the processor unit 230 of the server device 200 acquires eyeball information from the eyeball information source received in step S802. The eyeball information includes, for example, information regarding blinks, information regarding pupil coordinates or relative positions of the eyeballs, and information regarding eyeball movements. The acquisition means 11 can acquire eyeball information from an eyeball information source, for example, by any known method. The acquisition means 11 preferably acquires values of parameters related to blinking.
 ステップS804では、サーバ装置200が、眼球情報に基づいて、対象の状態を推定または予測する。ステップS804は、ステップS704と同様のステップである。 In step S804, the server device 200 estimates or predicts the state of the target based on the eyeball information. Step S804 is a step similar to step S704.
 ステップS805では、サーバ装置200が、ステップS804での推定または予測の結果をユーザ装置100に送信する。ステップS805は、ステップS705と同様のステップである。 In step S805, the server device 200 transmits the estimation or prediction result in step S804 to the user device 100. Step S805 is a step similar to step S705.
 ステップS806では、ユーザ装置100が、ステップS805で受信された推定または予測の結果を対象に提示する。ステップS806は、ステップS706と同様のステップである。 In step S806, the user device 100 presents the estimation or prediction result received in step S805 to the target. Step S806 is a step similar to step S706.
 これにより、対象(または、対象を診ている医師、看護師、その他医療従事者)は、対象の状態を知ることができるようになる。 This allows the subject (or the doctor, nurse, or other medical worker who is examining the subject) to know the condition of the subject.
 この実施形態では、ユーザ装置100が眼球情報源を取得してサーバ装置200に送信するだけで、ユーザ装置100は、眼球情報源から定または予測された結果を得ることができる。ユーザ装置100は、推定/予測手段12にかかる計算負荷に加えて、眼球情報を取得するための計算負荷も負う必要がない。 In this embodiment, the user device 100 can obtain a fixed or predicted result from the eyeball information source by simply acquiring the eyeball information source and transmitting it to the server device 200. The user device 100 does not have to bear the calculation load for acquiring eyeball information in addition to the calculation load placed on the estimation/prediction means 12.
 別の実施形態において、システム10の取得手段11、推定/予測手段12をユーザ装置100が備えることができる。このとき、ユーザ装置100はサーバ装置200と通信する必要がなく、スタンドアローンで動作することができる。ユーザ装置100は、例えば、ステップS703およびステップS705以外のステップS701~ステップS706の処理を行うことになる。 In another embodiment, the user device 100 can include the acquisition means 11 and the estimation/prediction means 12 of the system 10. At this time, the user device 100 does not need to communicate with the server device 200 and can operate standalone. The user device 100 performs, for example, steps S701 to S706 other than steps S703 and S705.
 図7~8を参照して上述した例では、特定の順序で処理が行われることを説明したが、各処理の順序は説明されたものに限定されず、論理的に可能な任意の順序で行われ得る。 In the examples described above with reference to FIGS. 7 and 8, it was explained that the processes are performed in a specific order, but the order of each process is not limited to that described, and can be performed in any logically possible order. It can be done.
 図7~8を参照して上述した例では、図7~8に示される各ステップの処理の少なくとも1つは、ユーザ装置100のプロセッサ部150とメモリ部140に格納されたプログラム、ならびに/または、サーバ装置200のプロセッサ部230およびメモリ部220とによって実現することができるが、本開示はこれに限定されない。図7~8に示される各ステップの処理のうちの少なくとも1つは、制御回路などのハードウェア構成によって実現されてもよい。 In the example described above with reference to FIGS. 7 to 8, at least one of the processes in each step shown in FIGS. , the processor unit 230 and the memory unit 220 of the server device 200, but the present disclosure is not limited thereto. At least one of the processes in each step shown in FIGS. 7 to 8 may be realized by a hardware configuration such as a control circuit.
 本開示のシステムは、例えば、パーキンソン病に関する指標を出力可能な手段と共に併用されることができる。 The system of the present disclosure can be used in conjunction with, for example, a means capable of outputting indicators related to Parkinson's disease.
 一例において、パーキンソン病に関する指標を出力可能な手段は、患者の身体に装着されるように構成されるウェアラブルデバイスである。 In one example, the means capable of outputting indicators related to Parkinson's disease is a wearable device configured to be worn on the patient's body.
 ウェアラブルデバイスは、患者の少なくとも1つの肢に装着され、パーキンソン病に起因する肢の運動(例えば、震え)を計測するように構成され得る。ウェアラブルデバイスは、例えば、内部に搭載された慣性センサによって、肢の運動を計測し、速度データ、加速度データ、角速度データ、および/または角加速度データを出力することができる。それらの出力されたデータが、分析され、パーキンソン病に関する指標として利用される、このようなウェアラブルデバイスは、例えば、Rob Powers1 et al.,“Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease”、Sci. Transl. Med.13, eabd7865 (2021) 3 February 2021に開示されているデバイスであり得る。 The wearable device may be configured to be attached to at least one limb of the patient and to measure limb movements (eg, tremors) due to Parkinson's disease. For example, the wearable device can measure the movement of a limb using an inertial sensor mounted therein, and can output velocity data, acceleration data, angular velocity data, and/or angular acceleration data. Such a wearable device whose output data is analyzed and used as an index regarding Parkinson's disease is described, for example, by Rob Powers1 et al. , “Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease ”, Sci. Transl. Med. 13, eabd7865 (2021) 3 February 2021.
 このようなウェアラブルデバイスを利用して、事前に患者のパーキンソン病に関する指標を取得しておくことにより、この指標を、患者の状態を推定するための閾値の算出に用いることができる。 By using such a wearable device to obtain an index related to a patient's Parkinson's disease in advance, this index can be used to calculate a threshold for estimating the patient's condition.
 例えば、ウェアラブルデバイスと、情報取得手段11とを併用して、運動測定データと、眼球情報を継続的に取得する。運動測定データがパーキンソン病の症状が出ている状態であることを示すときの眼球情報を、パーキンソン病の症状に関する閾値として設定することができる。 For example, the wearable device and the information acquisition means 11 are used together to continuously acquire movement measurement data and eyeball information. Eyeball information when movement measurement data indicates that symptoms of Parkinson's disease are present can be set as a threshold value regarding symptoms of Parkinson's disease.
 本開示のシステム、装置、デバイスは、パーキンソン病に関連する指標以外についても、ユーザの健康データを収集する1つ以上のセンサで必要に応じて構成されてもよい。健康データは、ユーザの健康に関連している任意の適したデータを含むことができる。いくつかの例では、デバイスは、ユーザから健康データをキャプチャするように構成されてよい。そのような健康データは、ユーザについて、脈拍数、心拍数、心拍数変動測定値、気温データ、歩数、立ち時間および座り時間、消費カロリー数、運動した分数、ならびに/または任意の他の適したデータを指示してよい。デバイスは、1つ以上の入力デバイスで構成されてもよく、この入力デバイスによって、ユーザはデバイスと対話できる。デバイスはまた、任意の適した出力情報を出力するための1つ以上の出力デバイスによって構成されてよい。例えば、デバイスは、視覚情報、オーディオ情報、および/または触覚情報を出力するように構成されてよい。いくつかの例では、出力情報は、呼吸に関連している1つ以上のアクションを行うようにユーザを誘導するやり方で、ユーザに提示可能である。例えば、出力情報は、変動する進行インジケータ(例えば、ある種の視覚情報)を含むことができる。進行インジケータは、本明細書に更に説明されるように、デバイスのグラフィカルユーザインターフェース上に提示可能であり、かつ、呼吸シーケンスに含まれる一連の呼吸運動を通してユーザを導くように構成可能である。出力情報は、デバイス上で作動しているアプリケーションによって提示されてよい。 The systems, apparatuses, and devices of the present disclosure may optionally be configured with one or more sensors that collect health data of the user, other than indicators related to Parkinson's disease. Health data may include any suitable data related to the user's health. In some examples, the device may be configured to capture health data from the user. Such health data may include information about the user, such as pulse rate, heart rate, heart rate variability measurements, temperature data, number of steps, standing and sitting time, number of calories burned, number of minutes exercised, and/or any other suitable information. Data may be specified. A device may be configured with one or more input devices that allow a user to interact with the device. The device may also be configured with one or more output devices for outputting any suitable output information. For example, the device may be configured to output visual, audio, and/or tactile information. In some examples, the output information can be presented to the user in a manner that guides the user to perform one or more actions related to breathing. For example, the output information may include a fluctuating progress indicator (eg, some type of visual information). A progress indicator can be presented on the device's graphical user interface and can be configured to guide the user through a series of breathing movements included in a breathing sequence, as further described herein. Output information may be presented by an application running on the device.
 デバイスは第2のデバイス(例えば、ペアリング済みデバイス(例えば、腕時計型デバイスや眼鏡型デバイス等のウェアラブルデバイス)またはホストデバイス)と関連付けられてよい。いくつかの例では、これは、任意の適したやり方で第2のデバイスとペアリング済みデバイスを含んでよい。2つのデバイスのペアリングは、任意選択的に、第2のデバイスがこのデバイスに代わるものとして機能できるようにする。このデバイス、第2のデバイス、またはこのデバイスと第2のデバイスとの任意の適した組み合わせは、健康データに少なくとも部分的に基づいて出力情報を生成することができる。任意の電極を配置してさらにパラメータを取得してもよい。電極を使用して計算可能である健康指標は、心機能(ECG、EKG)、含水量、体脂肪率、電気皮膚抵抗、およびこれらの組み合わせを含むが、これらに限定されない。 The device may be associated with a second device (e.g., a paired device (e.g., a wearable device such as a wristwatch or glasses) or a host device). In some examples, this may include a device paired with the second device in any suitable manner. Pairing two devices optionally allows the second device to function as a replacement for this device. The device, the second device, or any suitable combination of the device and the second device can generate output information based at least in part on the health data. Further parameters may be obtained by arranging arbitrary electrodes. Health indicators that can be calculated using electrodes include, but are not limited to, cardiac function (ECG, EKG), water content, body fat percentage, galvanic skin resistance, and combinations thereof.
 本開示では、本開示が利用するウェアラブルデバイスが着用されているかどうかに依存するウェアラブルデバイスの動作のための、システム、装置、および方法を応用してもよい。このようなウェアラブルデバイスは、ユーザの体の一部分に取付部材により取付けることができ、少なくとも接続状態および切断状態で動作できる。ウェアラブルデバイスおよび/または取付部材内に配置された1つ以上のセンサは、デバイスが対象に取付けられた、または対象のごく近傍にある場合を検出することができる。ウェアラブルデバイスおよび/または取付部材内に配置された1つ以上のセンサは、取付けられた対象が、存在する場合、ユーザの体の一部分であると検出することができる。このような技術は公知であり例えば、WO2015/116163に記載されている技術を用いることができる。 The present disclosure may apply systems, apparatus, and methods for operation of a wearable device that depends on whether the wearable device utilized by the present disclosure is being worn. Such a wearable device can be attached to a portion of a user's body by an attachment member and can operate in at least a connected state and a disconnected state. One or more sensors disposed within the wearable device and/or the attachment member can detect when the device is attached to or in close proximity to a subject. One or more sensors disposed within the wearable device and/or the attachment member can detect that the attached object, if present, is a part of the user's body. Such a technique is publicly known, and for example, the technique described in WO2015/116163 can be used.
 Welbyなどの電子カルテアプリケーションと連動または併用してもよい。例えば、定期的に自宅で、5分程度スマートフォンのカメラ機能あるいは据え置きのアイトラッカーで眼球運動を撮影し、パラメータを記録することができ、もともとアプリに搭載されている薬服用記録と患者日誌(症状)のデータと合わせて、症状と眼球運動パラメータの関係を最適化する。遠隔でデータを送信し、医師が薬剤処方を最適化することができる。ここでは、非接触のアイトラッカーもしくはトビー・テクノロジー社(スウェーデン)から利用可能なアイトラッカーを利用することができる。 It may be linked or used in conjunction with an electronic medical record application such as Welby. For example, you can periodically take pictures of your eye movements at home for about 5 minutes using a smartphone camera or a stationary eye tracker and record the parameters. ) to optimize the relationship between symptoms and eye movement parameters. Data can be transmitted remotely to help doctors optimize drug prescriptions. Here, a contactless eye tracker or an eye tracker available from Tobii Technology (Sweden) can be used.
 一実施態様において、本開示は、アプリケーションとして実現するためのシステムを提供し、このシステムは、治療しうる疾患の治療のために使用されるシステムであって、当該システムは、サーバおよびユーザ端末を備え、疾患に関連する患者の医学的な特性を示す医学特性が、種々の医学特性(例えば、行動医学特性、知識医学特性および認知医学特性)にクラスタ化され、前記サーバは、複数の医学特性をそれぞれ1以上の治療法に関連付けて記憶し、各医学特性は更に別の種類の医学特性(例えば、行動医学特性と知識医学特性および認知医学特性のいずれか1つ)に関連付けられ、前記サーバは更に、前記複数の医学特性から治療の対象として選択された特定の医学特性に関連付けられた治療法および前記選択された医学特性に関連付けられた各種医学特性情報の各々に関連付けられた治療法から実行するための治療法を選択し、前記選択された治療法のための治療法情報を送信し、前記ユーザ端末は、受信した治療法情報に基づいて治療法のための情報を提示するものを採用することができる。ある実施形態においては、医療従事者による治療法の選択が教師情報となり、治療法の選択確率を変更するから、効果の高いと考えられる治療法の選択確率が上昇し、より効果的な治療を行うことが可能となる。あるいは、効果情報に基づいて個別の患者についてのクラスタ因子を修正することもできる。例えば、効果が認められた治療法に関連付けられた医学特性が属するクラスタのクラスタ因子を上昇させ、効果がなかった場合には減少させる。いずれのクラスタに対する治療が効果的かは患者によって異なる場合がある。効果のあった治療法に関連付けられた医学特性が属するクラスタは、その患者にとっては効果的なクラスタである可能性が高いため、当該クラスタ因子を上昇させることにより、当該クラスタに対する治療法の選択確率を上昇させ、より効果的な治療を可能とする。 In one embodiment, the present disclosure provides a system for implementation as an application, the system being used for treatment of a treatable disease, the system comprising a server and a user terminal. wherein medical characteristics representing medical characteristics of a patient related to a disease are clustered into various medical characteristics (e.g., behavioral medical characteristics, knowledge medical characteristics, and cognitive medical characteristics), and the server are stored in association with one or more treatments, each medical characteristic is further associated with another type of medical characteristic (e.g., any one of a behavioral medical characteristic, a knowledge medical characteristic, and a cognitive medical characteristic), and the server further includes a treatment method associated with a specific medical characteristic selected as a treatment target from the plurality of medical characteristics and a treatment method associated with each of the various medical characteristic information associated with the selected medical characteristic. selecting a therapy to perform and transmitting therapy information for the selected therapy, the user terminal presenting information for a therapy based on the received therapy information; Can be adopted. In some embodiments, the selection of a treatment by a medical professional becomes training information and changes the probability of selecting a treatment, thereby increasing the probability of selecting a treatment considered to be more effective, thereby increasing the probability of selecting a treatment that is considered to be more effective. It becomes possible to do so. Alternatively, cluster factors for individual patients can be modified based on efficacy information. For example, the cluster factor of a cluster to which a medical characteristic associated with a treatment method that has been found to be effective belongs is increased, and when it is ineffective, it is decreased. Which cluster is more effective for treatment may vary depending on the patient. A cluster to which medical characteristics associated with an effective treatment belongs is likely to be an effective cluster for that patient, so by increasing the cluster factor, the probability of selecting a treatment for that cluster increases. increases, making more effective treatment possible.
 (注記)
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。
(Note)
In this specification, "or" is used when "at least one or more" of the items listed in the sentence can be employed. The same goes for "or." In this specification, when "within a range of two values" is specified, the range includes the two values themselves.
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 All references, including scientific literature, patents, patent applications, etc., cited herein are incorporated by reference in their entirety to the same extent as if each were specifically indicated.
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したのではない。以下に本発明を、参考例、実施例および試験例により、さらに具体的に説明するが、例示の目的のみに提供され、本開示はもとよりこれに限定されるものではない。尚、以下の参考例および実施例において示された化合物名は、必ずしもIUPAC命名法に従うものではない。なお、記載の簡略化のために略語を使用することもあるが、これらの略号は前記記載と同義である。本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、請求の範囲によってのみ限定される。 The present disclosure has been described above by showing preferred embodiments for ease of understanding. The present disclosure will now be described based on examples, but the above description and the following examples are provided for illustrative purposes only and are not provided for the purpose of limiting the present disclosure. The present invention will be explained in more detail below using Reference Examples, Examples, and Test Examples, but these are provided for the purpose of illustration only, and the present disclosure is not limited thereto. Note that the compound names shown in the following Reference Examples and Examples do not necessarily follow IUPAC nomenclature. Note that abbreviations may be used to simplify the description, but these abbreviations have the same meanings as in the above description. The scope of the disclosure is not limited to the embodiments or examples specifically described herein, but is limited only by the claims.
 以下に実施例を記載する。以下の実施例はヘルシンキ宣言を遵守して行った。 Examples are described below. The following examples were carried out in compliance with the Declaration of Helsinki.
(実施例1)
 パーキンソン病の患者20人に対して、非対照・非盲検・探索的臨床試験を行った。パーキンソン病の患者20人として、順天堂大学医学部附属順天堂医院 脳神経内科に通院または入院中のパーキンソン病患者(「MDSパーキンソン病(PD)の臨床診断基準(2015年)」に準じて、パーキンソン病(臨床的確定例または臨床的ほぼ確実例)と診断されている患者であって、ON時のHoehn&Yahr重症度分類がStageIII以下であり、レボドパ製剤による治療歴が6ヵ月(26週)以上で同製剤の投与開始当初に効果が認められていた患者)を対象とした。パーキンソン病の患者20人に対して、眼鏡型デバイスを装着し、瞬目に関するパラメータを取得し、そのときの患者の状態も測定した。測定された患者の状態と瞬目に関するパラメータとの関係を学習することにより、患者の状態を推定または予測することが可能な学習済モデルを作成し、推定/予測を行った。
(Example 1)
An uncontrolled, open-label, exploratory clinical trial was conducted on 20 patients with Parkinson's disease. The 20 Parkinson's disease patients attending or being hospitalized at the Department of Neurology, Juntendo Hospital, Juntendo University School of Medicine (Clinical Diagnosis Criteria for Parkinson's Disease (PD) (2015)) Patients who have been diagnosed with levodopa (confirmed or clinically probable), whose Hoehn & Yahr severity classification at the time of ON is Stage III or below, who have been treated with levodopa for at least 6 months (26 weeks) and who are not eligible for levodopa. Patients for whom efficacy was observed at the beginning of treatment were targeted. Eyeglass-type devices were worn on 20 patients with Parkinson's disease, parameters related to blinking were obtained, and the patient's condition at that time was also measured. By learning the relationship between the measured patient condition and blink-related parameters, a trained model capable of estimating or predicting the patient's condition was created, and estimation/prediction was performed.
(実施例1の手順)
 図9は、実施例1の試験の手順を図式的に示している。
(Procedure of Example 1)
FIG. 9 schematically shows the test procedure of Example 1.
 試験の28日前~8日前にスクリーニング検査を行い、本試験への適格性を確認した。 A screening test was conducted 28 to 8 days before the test to confirm eligibility for this test.
 試験の7日前~1日前まで、患者日誌の記録を行った。患者日誌には、主に患者の主訴(自覚症状などを記録)が記録されるが、これには、約30分ごとに、ジスキネジアの有無、薬が効いているか、効いていないかを記録し、また睡眠時間とレボドパの服用時間が含まれる。これと共に、患者に眼鏡型デバイスの装着に慣れてもらうために、患者に、眼鏡型デバイスを装着させた。眼鏡型デバイスとして、Pupil Coreアイトラッキンググラスを利用した(https://pupil-labs.com)。このPupil Coreアイトラッキンググラスは、撮影位置が固定された眼球画像とその撮影時刻を出力することができる。Pupil Coreアイトラッキンググラスとスマートフォン(Android OS)とを有線接続し、Pupil Coreスマートフォンをアイトラッキンググラスの電力供給、ON/OFF制御、データ収集記録のために利用した。 A patient diary was recorded from 7 days to 1 day before the test. The patient's diary mainly records the patient's chief complaint (subjective symptoms, etc.), but it also records the presence or absence of dyskinesia and whether the medication is working or not, every 30 minutes. , and also included sleep time and levodopa taking time. At the same time, the patient was made to wear the glasses-type device in order to get the patient used to wearing the glasses-type device. Pupil Core eye-tracking glasses were used as the eyeglass-type device (https://pupil-labs.com). These Pupil Core eye tracking glasses can output an eyeball image whose photographing position is fixed and the time at which it was photographed. Pupil Core eye-tracking glasses and a smartphone (Android OS) were connected by wire, and the Pupil Core smartphone was used to supply power to the eye-tracking glasses, control ON/OFF, and record data collection.
 試験の当日、患者にレボドパ製剤を服用させ、その前後の眼球情報および状態を記録した。 On the day of the test, the patient took a levodopa preparation, and ocular information and condition before and after was recorded.
 レボドパ製剤は、通常服薬している薬剤を通常通りの用法・用量で患者に服薬させた。ただし、眼球情報等評価時のレボドパ製剤は、off状態になってから服薬することとし、レボドパ製剤服薬後最大4時間はレボドパ製剤を服薬しないこととした。ただし、レボドパ製剤服薬後4時間以内に30分毎のMDS-UPDRS Part IIIスコアで2回連続してOFFが観察された場合には、評価を終了し、レボドパ製剤の服薬を可とした。 For levodopa preparations, patients were given the drugs they normally take in the usual dosage and administration. However, when evaluating eyeball information, etc., it was decided that the levodopa preparation should be taken after the patient was in the OFF state, and that the levodopa preparation should not be taken for a maximum of 4 hours after taking the levodopa preparation. However, if OFF was observed twice in a row in the MDS-UPDRS Part III score every 30 minutes within 4 hours after taking the levodopa preparation, the evaluation was terminated and the patient was allowed to take the levodopa preparation.
 レボドパ製剤服用の2時間前から、患者に眼鏡型デバイスを装着し、眼球情報の測定を行った。測定された眼球情報から瞬目に関するパラメータを導出した。 Two hours before taking the levodopa preparation, a glasses-type device was worn on the patient and eyeball information was measured. Parameters related to blinking were derived from the measured eyeball information.
 レボドパ製剤投与開始30分前、レボドパ製剤投与後30分ごとに最長で投与4時間後まで計9回、MDS-UPDRS Part IIIスコア、UDysRS Part 3及びPart 4の評価に必要な日常生活で取る動作(手を動かしたり、椅子から立ち上がったり、歩いたりなど)を実施し、ビデオに動作を録画した。録画されたビデオから、研究者および補助判定者が、UDysRSのスコアと、MDS-UPDRSのスコアとを判定した。MDS-UPDRS Part IIIスコアが2回連続でOFFになった時点で評価を終了した。レボドパ製剤投与直前、レボドパ製剤投与後1時間は15分ごと、その後は30分ごとに最長で投与4時間後まで1回4mLずつ、最大計11回(最大44mL)採血して、血漿中レボドパ濃度を測定した。なお、患者の負担軽減のために静脈留置カテーテルを用いた。留置中は生理食塩水を用いて、カテーテル中の血液逆流や凝固を防いだ。血漿中レボドパ濃度測定は、高速液体クロマトグラフィー(HPLC)を用いて測定した。 30 minutes before the start of levodopa administration, every 30 minutes after levodopa administration, a total of 9 times up to 4 hours after administration, movements performed in daily life necessary for evaluation of MDS-UPDRS Part III score, UDysRS Part 3 and Part 4 (moving their hands, getting up from a chair, walking, etc.) and recording the movements on video. UDysRS scores and MDS-UPDRS scores were determined by the researcher and an assistant judge from the recorded videos. The evaluation ended when the MDS-UPDRS Part III score became OFF twice in a row. Immediately before administration of the levodopa preparation, every 15 minutes for 1 hour after administration of the levodopa preparation, and then every 30 minutes up to 4 hours after administration, 4 mL each time, up to a total of 11 times (maximum 44 mL), blood samples were collected for a total of 11 times (maximum 44 mL), and plasma levodopa concentration was determined. was measured. In addition, an indwelling intravenous catheter was used to reduce the burden on the patient. During the catheter placement, saline was used to prevent blood backflow and clotting within the catheter. Plasma levodopa concentration was measured using high performance liquid chromatography (HPLC).
(1人の患者データの例)
 図10は、1人の患者から測定されたデータの例を示す。
(Example of one patient data)
FIG. 10 shows an example of data measured from one patient.
 一番上のグラフは、MDS-UPDRS Part IIIスコアのトータルスコアの時系列変動を示している。縦軸がMDS-UPDRS Part IIIスコアのトータルスコアの軸であり、横軸が時間軸である。 The top graph shows the time series fluctuation of the total score of MDS-UPDRS Part III score. The vertical axis is the total score of the MDS-UPDRS Part III score, and the horizontal axis is the time axis.
 上から二番目のグラフは、ON/OFFのベッドサイドスコアの時系列変動を示している。縦軸がON/OFFのベッドサイドスコアの軸であり、横軸が時間軸である。実測値は1から4の離散量であるが、線形補完して連続量としている。スコアが2.5よりも上がONであることを示し、スコアが2.5よりも下がOFFであることを示している。 The second graph from the top shows time-series fluctuations in ON/OFF bedside scores. The vertical axis is the ON/OFF bedside score axis, and the horizontal axis is the time axis. The actual measured values are discrete quantities from 1 to 4, but they are linearly interpolated to make them continuous quantities. A score above 2.5 indicates ON, and a score below 2.5 indicates OFF.
 上から三番目のグラフは、血漿中レボドパ濃度の時系列変動を示している。縦軸が血漿中レボドパ濃度の軸(ng/mL)であり、横軸が時間軸である。 The third graph from the top shows time-series fluctuations in plasma levodopa concentration. The vertical axis is the axis of plasma levodopa concentration (ng/mL), and the horizontal axis is the time axis.
 一番下のグラフは、瞬目に関するパラメータのうちの瞬目回数の時系列変動を示している。縦軸が瞬目回数の軸であり、横軸が時間軸である。色分けは、各瞬目の瞬目持続時間を表しており、濃い色ほど瞬目持続時間が長いことを示している。 The bottom graph shows time-series fluctuations in the number of blinks among the blink-related parameters. The vertical axis is the axis of the number of blinks, and the horizontal axis is the time axis. The color coding represents the blink duration of each blink, and the darker the color, the longer the blink duration.
 これらのグラフから、時刻0でレボドパ製剤が服用された後、血漿中レボドパ濃度が上昇し、運動症状に影響が出てMDS-UPDRS Part IIIスコアのトータルスコアが減少し、ONの状態に移行すると、これに従って、瞬目回数も上昇した。 From these graphs, after the levodopa preparation is taken at time 0, the plasma levodopa concentration increases, motor symptoms are affected, the total score of the MDS-UPDRS Part III score decreases, and the state shifts to ON. Accordingly, the number of blinks also increased.
 このことから、瞬目に関するパラメータ(少なくとも瞬目回数)と、MDS-UPDRS Part IIIスコアのトータルスコア、ON/OFF状態、および血漿中レボドパ濃度とが相関し得ることが確認された。 From this, it was confirmed that blink-related parameters (at least the number of blinks), the total score of the MDS-UPDRS Part III score, the ON/OFF state, and the plasma levodopa concentration can be correlated.
(データ解析の結果)
 20人のうち測定不良の1人のデータを除いて、19人分のデータを解析した。
(Results of data analysis)
Data from 19 of the 20 participants were analyzed, excluding data from one patient who had poor measurements.
 レボドパ製剤に対する瞬目回数の変化として、「増加」、「減少」、「不明瞭」の3パターンが観察された。すなわち、時刻0でレボドパ製剤が服用された後、次第に瞬目回数が増加するパターンを有する患者と、時刻0でレボドパ製剤が服用された後、次第に瞬目回数が減少するパターンを有する患者と、時刻0でレボドパ製剤が服用された後、瞬目回数の変化が不明瞭なパターンを有する患者とに分類された。 Three patterns were observed as changes in the number of blinks in response to levodopa preparations: "increase," "decrease," and "indistinct." That is, a patient has a pattern in which the number of blinks gradually increases after taking a levodopa preparation at time 0, and a patient has a pattern in which the number of blinks gradually decreases after taking a levodopa preparation at time 0. After the levodopa preparation was taken at time 0, patients were classified as having an unclear pattern of change in the number of blinks.
 ジスキネジアは、19例のうち、7例で観察された。 Dyskinesia was observed in 7 of the 19 cases.
(機械学習モデルの作成)
 取得されたデータを利用して、瞬目に関するパラメータを特徴量とし、臨床情報を推定することが可能な機械学習モデルを構築した。
(Creation of machine learning model)
Using the acquired data, we constructed a machine learning model that can estimate clinical information using blink-related parameters as features.
 機械学習プラットフォーム「DataRobot」を利用して機械学習モデルを作成した。 A machine learning model was created using the machine learning platform "DataRobot."
 特徴量として3分間の瞬目に関するパラメータを用いた。瞬目に関するパラメータは、瞬目回数、瞬目持続、瞬目コンフィデンス、瞬目エネルギー、瞬目インターバルを含む666個のパラメータを含み、学習にはこれらのパラメータのうちのいくつかを用いた。 Parameters related to blinking for 3 minutes were used as feature quantities. The blink-related parameters include 666 parameters including the number of blinks, blink duration, blink confidence, blink energy, and blink interval, and some of these parameters were used for learning.
 目的変数として、対応する3分間の臨床情報を用いた。臨床情報は、ジスキネジア有無、ON/OFF、MDS-UPDRS Part IIIスコアのトータルスコア、血漿中レボドパ濃度の各々を用いた。臨床情報のサンプリング間隔は15分から30分であるが、線形補完して3分毎の値とした。具体的には、目的変数としてジスキネジア有無を用いて、ジスキネジア有無を推定可能な機械学習モデルを作成した。目的変数としてON/OFFを用いて、ON/OFFを推定可能な機械学習モデルを作成した。目的変数としてMDS-UPDRS Part IIIスコアのトータルスコアを用いて、MDS-UPDRS Part IIIスコアのトータルスコアを推定可能な機械学習モデルを作成した。目的変数として血漿中レボドパ濃度を用いて、血漿中レボドパ濃度を推定可能な機械学習モデルを作成した。 The corresponding 3 minutes of clinical information was used as the objective variable. As clinical information, presence or absence of dyskinesia, ON/OFF, total score of MDS-UPDRS Part III score, and plasma levodopa concentration were used. Although the clinical information sampling interval is 15 to 30 minutes, linear interpolation was performed to obtain a value every 3 minutes. Specifically, we created a machine learning model that can estimate the presence or absence of dyskinesia using the presence or absence of dyskinesia as the objective variable. Using ON/OFF as the objective variable, we created a machine learning model that can estimate ON/OFF. Using the total score of the MDS-UPDRS Part III score as an objective variable, a machine learning model capable of estimating the total score of the MDS-UPDRS Part III score was created. Using plasma levodopa concentration as the objective variable, we created a machine learning model that can estimate plasma levodopa concentration.
 さらに、レボドパ製剤服用時間からの経過時間も特徴量として使用した機械学習モデルも作成した。
 上記いずれかの機械学習モデルにおいて比較的寄与の大きかった特徴量として、例えば以下のパラメータが挙げられた。
 ここでベースラインとは、レボドパ服用前、あるいはレボドパの効果が消失した後のOFFである測定時間における瞬目パラメータとする。
 ・瞬目コンフィデンスが高い瞬目の回数
 ・瞬目コンフィデンスが高い瞬目の回数のベースラインからの変化量の絶対値
 ・瞬目コンフィデンスが高い瞬目の割合
 ・瞬目コンフィデンスが低い瞬目の回数
 ・瞬目コンフィデンスが低い瞬目の割合
 ・瞬目コンフィデンスの最大値
 ・瞬目コンフィデンスの平均値
 ・瞬目コンフィデンスの平均値の二乗値
 ・瞬目コンフィデンスの平均値の平方根
 ・瞬目コンフィデンスの平均値の対数値
 ・瞬目コンフィデンスの平均値の対数値のベースラインからの変化量の絶対値
 ・瞬目コンフィデンスが平均的である瞬目の回数に対する瞬目コンフィデンスが高い瞬目の回数の比
 ・瞬目コンフィデンスが平均的である瞬目の回数に対する瞬目コンフィデンスが高い瞬目の回数の比のベースラインからの変化量の絶対値
 ・瞬目コンフィデンスが平均的である瞬目の回数に対する瞬目コンフィデンスが高い瞬目の回数の比の対数値のベースラインからの変化量の絶対値
 ・瞬目コンフィデンスの中央値
 ・瞬目コンフィデンスの標準偏差
 ・瞬目深度の標準偏差
 ・瞬目深度の最大値
 ・瞬目深度の最大値のベースラインからの変化量の絶対値
 ・瞬目深度の最小値のベースラインからの変化量の絶対値
 ・瞬目深度が大きい瞬目の割合
 ・瞬目深度が大きい瞬目の割合の対数値
 ・瞬目深度が大きい瞬目の割合のベースラインからの変化量の絶対値
 ・瞬目深度が小さい瞬目の回数のベースラインからの変化量の絶対値
 ・瞬目深度が平均的である瞬目の回数
 ・瞬目インターバルの平均値
 ・瞬目インターバルの平均値のベースラインからの変化量の絶対値
 ・瞬目インターバルの最小値のベースラインからの変化量の絶対値
 ・瞬目インターバルの中央値
 ・瞬目インターバルの中央値のベースラインからの変化量の絶対値
 ・瞬目持続時間が短い瞬目の回数
 ・瞬目持続時間が短い瞬目の回数のベースラインからの変化量の絶対値
 ・瞬目持続時間が短い瞬目の割合
 ・瞬目持続時間が短い瞬目の割合のベースラインからの変化量の絶対値
 ・瞬目持続時間の最小値
 ・瞬目持続時間の中央値
 ・瞬目持続時間が平均的である瞬目の割合
 ・瞬目持続時間が平均的である瞬目の割合のベースラインからの変化量の絶対値
 ・瞬目持続時間が長い瞬目の回数
 ・瞬目持続時間が長い瞬目の回数のベースラインからの変化量の絶対値
 ・瞬目持続時間が長い瞬目の割合
 ・瞬目エネルギー
 ・瞬目エネルギーのベースラインからの変化量の絶対値
 ・瞬目エネルギーの対数値
 ・瞬目エネルギーの対数値のベースラインからの変化量の絶対値
 ・合計瞬目回数
 ・合計瞬目回数の対数値
 ・合計瞬目回数の対数値のベースラインからの変化量の絶対値
 ・合計瞬目回数の平方根のベースラインからの変化量の絶対値
 ・合計瞬目回数の二乗値のベースラインからの変化量の絶対値
Furthermore, a machine learning model was created that also used the time elapsed since taking the levodopa preparation as a feature.
For example, the following parameters were cited as feature quantities that had a relatively large contribution in any of the above machine learning models.
Here, the baseline is defined as the blink parameter at the measurement time before taking levodopa or at the OFF time after the effect of levodopa disappears.
・Number of blinks with high blink confidence ・Absolute value of change from baseline in number of blinks with high blink confidence ・Percentage of blinks with high blink confidence ・Number of blinks with low blink confidence - Percentage of blinks with low blink confidence - Maximum value of blink confidence - Average value of blink confidence - Square value of the average value of blink confidence - Square root of the average value of blink confidence - Average value of blink confidence・Absolute value of the amount of change from the baseline in the logarithm of the average value of blink confidence ・Ratio of the number of blinks with high blink confidence to the number of blinks with average blink confidence ・Blink Absolute value of the change from the baseline in the ratio of the number of blinks with high blink confidence to the number of blinks with average eye confidence ・Blink confidence relative to the number of blinks with average eye blink confidence The absolute value of the change from the baseline in the logarithm of the ratio of the number of blinks with high ・Median value of blink confidence ・Standard deviation of blink confidence ・Standard deviation of blink depth ・Maximum value of blink depth ・Absolute value of the amount of change from the baseline in the maximum value of blink depth - Absolute value of the amount of change from the baseline in the minimum value of blink depth - Percentage of blinks with large blink depth - Blinks with large blink depth Logarithm of the percentage of eyes ・Absolute value of the change from the baseline in the percentage of blinks with large blink depth ・Absolute value of the change from the baseline in the number of blinks with small blink depth ・Blink depth is the average number of blinks - Average value of the blink interval - Absolute value of the amount of change from the baseline in the average value of the blink interval - Absolute value of the amount of change from the baseline in the minimum value of the blink interval・Median value of blink interval ・Absolute value of change from baseline in median value of blink interval ・Number of blinks with short blink duration ・Number of blinks with short blink duration from baseline・Percentage of blinks with short blink duration ・Absolute value of change from baseline in percentage of blinks with short blink duration ・Minimum value of blink duration ・Blink duration Median time ・Percentage of blinks with average blink duration ・Absolute value of change from baseline in percentage of blinks with average blink duration ・Blinks with long blink duration Number of eyes - Absolute value of change from baseline in number of blinks with long blink duration - Percentage of blinks with long blink duration - Blink energy - Amount of change in blink energy from baseline - Logarithmic value of blink energy - Absolute value of change from baseline in logarithmic value of blink energy - Total number of blinks - Logarithmic value of total blink count - Base of logarithm of total blink count Absolute value of the amount of change from the baseline - Absolute value of the amount of change from the baseline in the square root of the total number of blinks - Absolute value of the amount of change from the baseline in the square value of the total number of blinks
 (ジスキネジア有無の判定)
 ジスキネジア有無を目的変数とし、15の瞬目に関するパラメータを特徴量として機械学習モデルを作成した。
(Determination of presence or absence of dyskinesia)
A machine learning model was created using the presence or absence of dyskinesia as the objective variable and 15 blink-related parameters as features.
 さらに、ジスキネジア有無を目的変数とし、15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として別の機械学習モデルを作成した。 Furthermore, another machine learning model was created using the presence or absence of dyskinesia as the objective variable and the 15 blink-related parameters and the time elapsed since taking the levodopa preparation as feature quantities.
 比較のために、ジスキネジア有無を目的変数とし、血漿中レボドパの濃度のみを特徴量として機械学習モデルを作成した。さらに、比較のために、ジスキネジア有無を目的変数とし、レボドパ製剤服用時間からの経過時間のみを特徴量として機械学習モデルを作成した。 For comparison, a machine learning model was created using the presence or absence of dyskinesia as the objective variable and the plasma levodopa concentration as the only feature. Furthermore, for comparison, a machine learning model was created using the presence or absence of dyskinesia as the objective variable and only the time elapsed since taking the levodopa preparation as a feature.
 全患者のデータを用いて第1の機械学習モデル群を作成し、瞬目頻度が増加したパターンを有する患者のデータを用いて第2の機械学習モデル群を作成し、瞬目頻度が減少したパターンを有する患者のデータを用いて第3の機械学習モデル群を作成し、瞬目頻度の変化が不明瞭なパターンを有する患者のデータを用いて第4の機械学習モデル群を作成した。ここで、機械学習モデル群とは、ジスキネジア有無を目的変数とし、15の瞬目に関するパラメータを特徴量として作成した機械学習モデルと、ジスキネジア有無を目的変数とし、15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として作成した機械学習モデルとを含む。第1の機械学習モデル群は、これに加えて、ジスキネジア有無を目的変数とし、血漿中レボドパの濃度のみを特徴量として作成した機械学習モデルと、ジスキネジア有無を目的変数とし、レボドパ製剤服用時間からの経過時間のみを特徴量として作成した機械学習モデルとを含む。 A first group of machine learning models was created using data from all patients, and a second group of machine learning models was created using data from patients who had a pattern of increased blink frequency, and a second group of machine learning models was created using data from patients who had a pattern of increased blink frequency. A third group of machine learning models was created using data of patients with patterns, and a fourth group of machine learning models was created using data of patients with patterns in which changes in blink frequency were unclear. Here, the machine learning model group refers to a machine learning model created with the presence or absence of dyskinesia as an objective variable and 15 eyeblink-related parameters as features, a machine learning model that uses dyskinesia as an objective variable, 15 eyeblink-related parameters, and levodopa It includes a machine learning model created using the elapsed time from the time of taking the drug as a feature. In addition to this, the first machine learning model group includes a machine learning model created using the presence or absence of dyskinesia as an objective variable and only the concentration of plasma levodopa as a feature quantity, and a machine learning model that uses the presence or absence of dyskinesia as an objective variable and is based on the time of taking levodopa preparations. machine learning model created using only the elapsed time as a feature.
 第1の機械学習モデル群を作成するために、全患者(患者数N=19)のデータを用いた。ジスキネジア有りの患者は7人(Ndys=7)であり、データ点数n=1451であった。訓練:検定:ホールドアウト=16:4:5とした。以下において、15の瞬目に関するパラメータを特徴量として作成された第1の機械学習モデル群の推定精度には、例えば、下記の特徴量の寄与が高かった。
 ・瞬目コンフィデンスが高い瞬目の回数
 ・瞬目コンフィデンスの標準偏差
 ・合計瞬目回数
 ・瞬目深度の標準偏差
 ・瞬目インターバルの平均値
 ・瞬目深度の最大値
To create the first machine learning model group, data from all patients (number of patients N=19) was used. There were 7 patients with dyskinesia (N dys = 7), and the number of data points was n = 1451. Training: test: holdout = 16:4:5. In the following, for example, the following feature amounts made a large contribution to the estimation accuracy of the first machine learning model group created using the 15 blink-related parameters as feature amounts.
・Number of blinks with high blink confidence ・Standard deviation of blink confidence ・Total number of blinks ・Standard deviation of blink depth ・Average value of blink interval ・Maximum value of blink depth
 第2の機械学習モデルを作成するために、瞬目頻度が増加したパターンを有する患者(患者数N=8)のデータを用いた。ジスキネジア有りの患者は4人(Ndys=4)であり、データ点数n=596であった。 To create the second machine learning model, data from patients (number of patients N=8) with a pattern of increased blink frequency was used. There were 4 patients with dyskinesia (N dys = 4), and the number of data points was n = 596.
 第3の機械学習モデルを作成するために、瞬目頻度が減少したパターンを有する患者(患者数N=5)のデータを用いた。ジスキネジア有りの患者は1人(Ndys=1)であり、データ点数n=369であった。 To create the third machine learning model, data from patients (number of patients N=5) with a pattern of decreased blink frequency was used. There was one patient with dyskinesia (N dys = 1), and the number of data points was n = 369.
 第4の機械学習モデルを作成するために、瞬目頻度の変化が不明瞭なパターンを有する患者(患者数N=6)のデータを用いた。ジスキネジア有りの患者は2人(Ndys=2)であり、データ点数n=486であった。 In order to create the fourth machine learning model, data of patients (number of patients N=6) with unclear patterns of changes in blink frequency were used. There were 2 patients with dyskinesia (N dys = 2), and the number of data points was n = 486.
第1~第4の機械学習モデルのそれぞれの結果を比較した。
The results of the first to fourth machine learning models were compared.
 表1は、第1~第4の機械学習モデルのそれぞれの結果を比較した結果を示す。交差検定データでのRecall(真陽性率)は、ジスキネジアを取りこぼしなく推定したかどうかを示す指標であり、TP/(TP+FN)で表される。Precision(陽性的中率)は、ジスキネジアの推定がどれくらい正しかったかを示す指標であり、TP/(TP+FP)で表される。ここで、TPは真陽性(True Positive)であり、FPは偽陽性(False Positive)であり、FNは偽陰性(False Negative)である。 Table 1 shows the results of comparing the results of the first to fourth machine learning models. Recall (true positive rate) in cross-validation data is an index indicating whether dyskinesia was estimated without missing anything, and is expressed as TP/(TP+FN). Precision (positive predictive value) is an index indicating how accurate the estimation of dyskinesia was, and is expressed as TP/(TP+FP). Here, TP is true positive, FP is false positive, and FN is false negative.
 第3の機械学習モデルおよび第4の機械学習モデルでは、サンプル数が少なすぎて、比較するために十分な結果は得られなかった。 In the third machine learning model and the fourth machine learning model, the number of samples was too small to obtain sufficient results for comparison.
 表1から分かるように、ジスキネジアの有無は、瞬目に関するパラメータを特徴量とすることで、精度よく推定することができた。これに対して、血漿中レボドパ濃度のみに基づく機械学習モデル、および、レボドパ製剤服用時間からの経過時間のみを特徴量として作成した機械学習モデルでは、ジスキネジアの有無の判定は困難であった。 As can be seen from Table 1, the presence or absence of dyskinesia could be estimated with high accuracy by using parameters related to blinking as feature quantities. In contrast, it was difficult to determine the presence or absence of dyskinesia using a machine learning model based only on plasma levodopa concentration and a machine learning model created using only the time elapsed since taking the levodopa preparation as a feature.
 瞬目回数の増減パターンによる患者層別化、および、レボドパ製剤服用時間に関するパラメータの追加の影響は限定的であった。 The effects of adding parameters related to patient stratification based on the pattern of increase/decrease in the number of blinks and the time to take levodopa preparations were limited.
 次に、未知データに対する推定性能を検討した。 Next, we examined the estimation performance for unknown data.
 19人の患者のデータから、ジスキネジア有りの患者1人のデータ、および、ジスキネジア無しの患者1人のデータを除き、17人の患者のデータを用いて機械学習モデルを作成した。ジスキネジアの有無を目的変数とし、15種類の瞬目に関するパラメータとレボドパ製剤服用時間からの経過時間とを特徴量とした。訓練(患者N=17,うちジスキネジアあり患者Ndys=6,データ点数n=1291)、評価(患者N=2,うちジスキネジアあり患者Ndys=1,データ点数n=160)。 From the data of 19 patients, data of one patient with dyskinesia and data of one patient without dyskinesia were excluded, and a machine learning model was created using data of 17 patients. The presence or absence of dyskinesia was used as the objective variable, and 15 types of blink-related parameters and the elapsed time from the time of taking the levodopa preparation were used as the feature quantities. Training (N = 17 patients, including patients with dyskinesia N dys = 6, number of data points n = 1291), evaluation (N = 2 patients, including patients with dyskinesia N dys = 1, number of data points n = 160).
 図11は、未知データに対する推定性能の評価の結果を示す。 FIG. 11 shows the results of estimation performance evaluation for unknown data.
 左のグラフは、ジスキネジア無しの患者からデータ(学習に用いていない患者由来の未知データ)に対して、ジスキネジアの有無を推定した結果を示している。右のグラフは、ジスキネジア無しの患者からデータ(学習に用いていない患者由来の未知データ)に対して、ジスキネジアの有無を推定した結果を示している。縦軸は、機械学習モデルからの出力を示し、ジスキネジアらしさを0~1の値で示している。0がジスキネジアではないことを示し、1がジスキネジアであることを示している。横軸は、時間を示している。右のグラフでは、実測されたジスキネジアの期間(約90分~約220分)が示されている。 The graph on the left shows the results of estimating the presence or absence of dyskinesia for data from patients without dyskinesia (unknown data derived from patients not used for learning). The graph on the right shows the results of estimating the presence or absence of dyskinesia for data from patients without dyskinesia (unknown data derived from patients not used for learning). The vertical axis shows the output from the machine learning model, and indicates the likelihood of dyskinesia as a value from 0 to 1. 0 indicates no dyskinesia and 1 indicates dyskinesia. The horizontal axis shows time. The graph on the right shows the actually measured duration of dyskinesia (about 90 minutes to about 220 minutes).
 未知データ2例について、真陽性率(Recall)/陽性的中率(Precision)=0.77/0.88となり(5点(15分間)の移動平均に対し閾値=0.10)、未知データに対しても、ジスキネジアの有無を推定可能であった。 For the two cases of unknown data, the true positive rate (Recall)/positive precision rate (Precision) = 0.77/0.88 (threshold value = 0.10 for the moving average of 5 points (15 minutes)), and the unknown data It was also possible to estimate the presence or absence of dyskinesia.
 (ON/OFFの判定)
 ON/OFFを目的変数とし、15の瞬目に関するパラメータを特徴量として機械学習モデルを作成した。
(ON/OFF judgment)
A machine learning model was created using ON/OFF as the objective variable and 15 blink-related parameters as feature quantities.
 さらに、ON/OFFを目的変数とし、15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として別の機械学習モデルを作成した。 Furthermore, another machine learning model was created with ON/OFF as the objective variable and the 15 blink-related parameters and the elapsed time from the time of taking the levodopa preparation as the feature quantities.
 比較のために、ON/OFFを目的変数とし、血漿中レボドパの濃度のみを特徴量として機械学習モデルを作成した。さらに、比較のために、ON/OFFを目的変数とし、レボドパ製剤服用時間からの経過時間のみを特徴量として機械学習モデルを作成した。 For comparison, a machine learning model was created using ON/OFF as the objective variable and only the plasma levodopa concentration as the feature quantity. Furthermore, for comparison, a machine learning model was created using ON/OFF as the objective variable and using only the elapsed time from the time of taking the levodopa preparation as the feature quantity.
 全患者のデータを用いて第1の機械学習モデル群を作成し、瞬目頻度が増加したパターンを有する患者のデータを用いて第2の機械学習モデル群を作成し、瞬目頻度が減少したパターンを有する患者のデータを用いて第3の機械学習モデル群を作成し、瞬目頻度の変化が不明瞭なパターンを有する患者のデータを用いて第4の機械学習モデル群を作成した。ここで、機械学習モデル群とは、ON/OFFを目的変数とし、15の瞬目に関するパラメータを特徴量として作成した機械学習モデルと、ON/OFFを目的変数とし、15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として作成した機械学習モデルとを含む。第1の機械学習モデル群は、これに加えて、ON/OFFを目的変数とし、血漿中レボドパの濃度のみを特徴量として作成した機械学習モデルと、ON/OFFを目的変数とし、レボドパ製剤服用時間からの経過時間のみを特徴量として作成した機械学習モデルとを含む。 A first set of machine learning models was created using data from all patients, and a second set of machine learning models was created using data from patients who had a pattern of increased blink frequency, and a second set of machine learning models was created using data from patients who had a pattern of increased blink frequency. A third group of machine learning models was created using data of patients with patterns, and a fourth group of machine learning models was created using data of patients with patterns in which changes in blink frequency were unclear. Here, the machine learning model group is a machine learning model created with ON/OFF as the objective variable and 15 blink-related parameters as features, and a machine learning model created with ON/OFF as the objective variable and 15 blink-related parameters. , and a machine learning model created using the elapsed time from the time of taking the levodopa preparation as a feature quantity. In addition to this, the first machine learning model group includes a machine learning model created with ON/OFF as the objective variable and only the plasma levodopa concentration as a feature quantity, and a machine learning model that uses ON/OFF as the objective variable and uses levodopa preparations as the objective variable. This includes a machine learning model created using only the elapsed time as a feature.
 第1の機械学習モデル群を作成するために、全患者(患者数N=19)のデータを用いた。データ点数n=1451であった。訓練:検定:ホールドアウト=16:4:5とした。15の瞬目に関するパラメータを特徴量として作成された第1の機械学習モデル推定精度には、例えば、下記の特徴量の寄与が高かった。
 ・瞬目コンフィデンスが高い瞬目の割合
 ・瞬目インターバルの中央値
 ・合計瞬目回数
 ・瞬目コンフィデンスが高い瞬目の割合
 ・瞬目持続時間が短い瞬目の回数
 ・瞬目深度の最大値、最小値
To create the first machine learning model group, data from all patients (number of patients N=19) was used. The number of data points was n=1451. Training: test: holdout = 16:4:5. For example, the following feature amounts made a large contribution to the estimation accuracy of the first machine learning model created using the 15 blink-related parameters as feature amounts.
・Percentage of blinks with high blink confidence ・Median value of blink interval ・Total number of blinks ・Percentage of blinks with high blink confidence ・Number of blinks with short blink duration ・Maximum value of blink depth ,minimum value
 15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として作成された第1の機械学習モデル推定精度には、例えば、下記の特徴量の寄与が高かった。
 ・レボドパ製剤服用時間からの経過時間
 ・瞬目コンフィデンスが高い瞬目の割合
 ・合計瞬目回数
 ・瞬目コンフィデンスの最大値
 ・瞬目持続時間の長い瞬目回数
 ・瞬目持続時間の短い瞬目回数
 ・瞬目深度の最大値
For example, the following feature values made a large contribution to the estimation accuracy of the first machine learning model, which was created using the 15 blink-related parameters and the elapsed time from the time of taking the levodopa preparation as feature values.
・Time elapsed since taking the levodopa preparation ・Percentage of blinks with high blink confidence ・Total number of blinks ・Maximum value of blink confidence ・Number of blinks with long blink duration ・Blinks with short blink duration Number of times ・Maximum blink depth
 第2の機械学習モデルを作成するために、瞬目頻度が増加したパターンを有する患者(患者数N=8)のデータを用いた。データ点数n=596であった。 To create the second machine learning model, data from patients (number of patients N=8) with a pattern of increased blink frequency was used. The number of data points was n=596.
 第3の機械学習モデルを作成するために、瞬目頻度が減少したパターンを有する患者(患者数N=5)のデータを用いた。データ点数n=369であった。 To create the third machine learning model, data from patients (number of patients N = 5) with a pattern of decreased blink frequency was used. The number of data points was n=369.
 第4の機械学習モデルを作成するために、瞬目頻度の変化が不明瞭なパターンを有する患者(患者数N=6)のデータを用いた。データ点数n=486であった。 In order to create the fourth machine learning model, data from patients (number of patients N = 6) with unclear patterns of changes in blink frequency were used. The number of data points was n=486.
 第1~第4の機械学習モデルのそれぞれの結果を比較した。
The results of the first to fourth machine learning models were compared.
 表2は、第1~第4の機械学習モデルのそれぞれの結果を比較した結果を示す。 Table 2 shows the results of comparing the results of the first to fourth machine learning models.
 表2から分かるように、ON/OFFについて、血漿中レボドパ濃度のみに基づく機械学習モデル、および、レボドパ製剤服用時間からの経過時間のみを特徴量として作成した機械学習モデルから、ある程度の精度で推定することができた。瞬目に関するパラメータを特徴量とする機械学習モデルでも、同じ程度の精度で推定することができた。瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量とすることで、最も精度よく推定することができた。 As can be seen from Table 2, ON/OFF is estimated with a certain degree of accuracy using a machine learning model based only on plasma levodopa concentration and a machine learning model created using only the time elapsed since taking the levodopa preparation as a feature. We were able to. A machine learning model that uses blink-related parameters as features was also able to estimate with similar accuracy. The most accurate estimation was possible by using parameters related to blinking and the time elapsed since the time of taking the levodopa preparation as features.
 瞬目回数の増減パターンによる患者層別化をすることで、推定精度が多少改善された。 Estimation accuracy was somewhat improved by stratifying patients based on the pattern of increase/decrease in the number of blinks.
 次に、未知データに対する推定性能を検討した。 Next, we examined the estimation performance for unknown data.
 19人の患者のデータから、2人のデータを除き、17人の患者のデータを用いて機械学習モデルを作成した。ON/OFFを目的変数とし、15種類の瞬目に関するパラメータとレボドパ製剤服用時間からの経過時間とを特徴量とした。訓練(患者N=17,データ点数n=1291)、評価(患者N=2,データ点数n=160)。 A machine learning model was created using the data of 17 patients, excluding 2 data from the 19 patients' data. ON/OFF was used as the objective variable, and 15 types of blink-related parameters and the elapsed time from the time of taking the levodopa preparation were used as the feature quantities. Training (patient N=17, number of data points n=1291), evaluation (patient N=2, number of data points n=160).
 図12は、未知データに対する推定性能の評価の結果を示す。 FIG. 12 shows the results of estimation performance evaluation for unknown data.
 左のグラフは、#3の患者からデータ(学習に用いていない患者由来の未知データ)に対して、ON/OFFを推定した結果を示している。右のグラフは、#20の患者からデータ(学習に用いていない患者由来の未知データ)に対して、ON/OFFを推定した結果を示している。縦軸は、機械学習モデルからの出力を示し、ONらしさを0~1の値で示している。0がONではないことを示し、1がONであることを示している。横軸は、時間を示している。左右のグラフでは、実測されたONの期間が示されている。 The graph on the left shows the results of estimating ON/OFF for data from patient #3 (unknown data derived from the patient not used for learning). The graph on the right shows the result of estimating ON/OFF for data from patient #20 (unknown data derived from the patient not used for learning). The vertical axis shows the output from the machine learning model, and indicates the likelihood of being ON as a value from 0 to 1. 0 indicates that it is not ON, and 1 indicates that it is ON. The horizontal axis shows time. The graphs on the left and right show the actually measured ON periods.
 未知データ2例について、真陽性率(Recall)/陽性的中率(Precision)=0.61/0.80となり(5点(15分間)の移動平均に対し閾値=0.40)、未知データに対しても、ON/OFFを判別可能であった。 For the two cases of unknown data, the true positive rate (Recall)/positive precision rate (Precision) = 0.61/0.80 (threshold value = 0.40 for the moving average of 5 points (15 minutes)), and the unknown data It was also possible to determine whether it was ON or OFF.
 (MDS-UPDRS Part IIIスコアのトータルスコアの判定)
 MDS-UPDRS Part IIIスコアのトータルスコアを目的変数とし、15の瞬目に関するパラメータを特徴量として機械学習モデルを作成した。
(Determination of total score of MDS-UPDRS Part III score)
A machine learning model was created using the total score of the MDS-UPDRS Part III score as the objective variable and the 15 blink-related parameters as the feature quantities.
 さらに、MDS-UPDRS Part IIIスコアのトータルスコアを目的変数とし、15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として別の機械学習モデルを作成した。 Furthermore, another machine learning model was created using the total score of the MDS-UPDRS Part III score as the objective variable, and using the 15 blink-related parameters and the time elapsed since taking the levodopa preparation as feature quantities.
 比較のために、MDS-UPDRS Part IIIスコアのトータルスコアを目的変数とし、血漿中レボドパの濃度のみを特徴量として機械学習モデルを作成した。さらに、比較のために、MDS-UPDRS Part IIIスコアのトータルスコアを目的変数とし、レボドパ製剤服用時間からの経過時間のみを特徴量として機械学習モデルを作成した。 For comparison, a machine learning model was created using the total score of the MDS-UPDRS Part III score as the objective variable and using only the plasma levodopa concentration as the feature quantity. Furthermore, for comparison, a machine learning model was created using the total score of the MDS-UPDRS Part III score as an objective variable and using only the time elapsed from the time of taking the levodopa preparation as a feature quantity.
 全患者のデータを用いて第1の機械学習モデル群を作成し、瞬目頻度が増加したパターンを有する患者のデータを用いて第2の機械学習モデル群を作成し、瞬目頻度が減少したパターンを有する患者のデータを用いて第3の機械学習モデル群を作成し、瞬目頻度の変化が不明瞭なパターンを有する患者のデータを用いて第4の機械学習モデル群を作成した。ここで、機械学習モデル群とは、MDS-UPDRS Part IIIスコアのトータルスコアを目的変数とし、15の瞬目に関するパラメータを特徴量として作成した機械学習モデルと、MDS-UPDRS Part IIIスコアのトータルスコアを目的変数とし、15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として作成した機械学習モデルとを含む。第1の機械学習モデル群は、これに加えて、MDS-UPDRS Part IIIスコアのトータルスコアを目的変数とし、血漿中レボドパの濃度のみを特徴量として作成した機械学習モデルと、MDS-UPDRS Part IIIスコアのトータルスコアを目的変数とし、レボドパ製剤服用時間からの経過時間のみを特徴量として作成した機械学習モデルとを含む。 A first group of machine learning models was created using data from all patients, and a second group of machine learning models was created using data from patients who had a pattern of increased blink frequency, and a second group of machine learning models was created using data from patients who had a pattern of increased blink frequency. A third group of machine learning models was created using data of patients with patterns, and a fourth group of machine learning models was created using data of patients with patterns in which changes in blink frequency were unclear. Here, the machine learning model group refers to a machine learning model created using the total score of MDS-UPDRS Part III score as the objective variable and 15 blink-related parameters as the feature quantity, and a machine learning model created using the total score of MDS-UPDRS Part III score as the objective variable. It includes a machine learning model created with 15 blink-related parameters as variables and the elapsed time from the time of taking the levodopa preparation as features. In addition to this, the first machine learning model group includes a machine learning model created using the total score of the MDS-UPDRS Part III score as an objective variable and only the plasma levodopa concentration as a feature quantity, and the MDS-UPDRS Part III score The model includes a machine learning model created with the total score as the objective variable and only the time elapsed since taking the levodopa preparation as the feature quantity.
 第1の機械学習モデル群を作成するために、全患者(患者数N=19)のデータを用いた。データ点数n=1451であった。訓練:検定:ホールドアウト=16:4:5とした。15の瞬目に関するパラメータを特徴量として作成された第1の機械学習モデル推定精度には、例えば、下記の特徴量の寄与が高かった。
 ・瞬目持続時間の中央値
 ・瞬目持続時間が長い瞬目の割合
 ・瞬目インターバルの中央値
 ・瞬目深度の標準偏差
 ・瞬目深度が大きい瞬目の割合
 ・瞬目コンフィデンスが高い瞬目の回数
To create the first machine learning model group, data from all patients (number of patients N=19) was used. The number of data points was n=1451. Training: test: holdout = 16:4:5. For example, the following feature amounts made a large contribution to the estimation accuracy of the first machine learning model created using the 15 blink-related parameters as feature amounts.
・Median blink duration ・Percentage of blinks with long blink duration ・Median value of blink interval ・Standard deviation of blink depth ・Percentage of blinks with large blink depth ・Blinks with high blink confidence number of eyes
 15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として作成された第1の機械学習モデル推定精度には、例えば、下記の特徴量の寄与が高かった。
 ・レボドパ製剤服用時間からの経過時間
 ・瞬目コンフィデンスが高い瞬目の割合
 ・瞬目エネルギー
 ・瞬目合計回数
 ・瞬目深度の標準偏差
For example, the following feature values made a large contribution to the estimation accuracy of the first machine learning model, which was created using the 15 blink-related parameters and the elapsed time from the time of taking the levodopa preparation as feature values.
・Time elapsed since taking the levodopa preparation ・Percentage of blinks with high blink confidence ・Blink energy ・Total number of blinks ・Standard deviation of blink depth
 第2の機械学習モデルを作成するために、瞬目頻度が増加したパターンを有する患者(患者数N=8)のデータを用いた。データ点数n=596であった。 To create the second machine learning model, data from patients (number of patients N=8) with a pattern of increased blink frequency was used. The number of data points was n=596.
 第3の機械学習モデルを作成するために、瞬目頻度が減少したパターンを有する患者(患者数N=5)のデータを用いた。データ点数n=369であった。 To create the third machine learning model, data from patients (number of patients N = 5) with a pattern of decreased blink frequency was used. The number of data points was n=369.
 第4の機械学習モデルを作成するために、瞬目頻度の変化が不明瞭なパターンを有する患者(患者数N=6)のデータを用いた。データ点数n=486であった。 In order to create the fourth machine learning model, data from patients (number of patients N = 6) with unclear patterns of changes in blink frequency were used. The number of data points was n=486.
 第1~第4の機械学習モデルのそれぞれの結果を比較した。
The results of the first to fourth machine learning models were compared.
 表3は、第1~第4の機械学習モデルのそれぞれの結果を比較した結果を示す。 Table 3 shows the results of comparing the results of the first to fourth machine learning models.
 表3から分かるように、MDS-UPDRS Part IIIスコアのトータルスコアについて、瞬目に関するパラメータを特徴量とする機械学習モデルでは、出力と実測値との間に中程度の相関があることが分かった。瞬目に関するパラメータに加えて、レボドパ製剤服用時間からの経過時間を特徴量とすることで、出力と実測値との間に高い相関が得られた。 As can be seen from Table 3, with respect to the total score of the MDS-UPDRS Part III score, it was found that there was a moderate correlation between the output and the actual measured value in the machine learning model that uses blink-related parameters as the feature quantity. In addition to blink-related parameters, a high correlation between the output and the measured value was obtained by using the time elapsed since taking the levodopa preparation as a feature.
 血漿中レボドパ濃度のみに基づく機械学習モデル、および、レボドパ製剤服用時間からの経過時間のみを特徴量として作成した機械学習モデルでは、MDS-UPDRS Part IIIスコアのトータルスコアを判定することは困難であった。 It was difficult to determine the total score of the MDS-UPDRS Part III score using a machine learning model based only on plasma levodopa concentration and a machine learning model created using only the time elapsed since taking the levodopa preparation as a feature quantity. .
 瞬目回数が増加した患者群に対しては、より高い精度で推定することができた。 It was possible to estimate with higher accuracy for the patient group where the number of blinks increased.
 次に、未知データに対する推定性能を検討した。 Next, we examined the estimation performance for unknown data.
 19人の患者のデータから、2人のデータを除き、17人の患者のデータを用いて機械学習モデルを作成した。MDS-UPDRS Part IIIスコアのトータルスコアを目的変数とし、15種類の瞬目に関するパラメータとレボドパ製剤服用時間からの経過時間とを特徴量とした。訓練(患者N=17,データ点数n=1291)、評価(患者N=2,データ点数n=160)。 A machine learning model was created using the data of 17 patients, excluding 2 data from the 19 patients' data. The total score of the MDS-UPDRS Part III score was used as the objective variable, and 15 types of blink-related parameters and the elapsed time from the time of taking the levodopa preparation were used as the feature quantities. Training (patient N=17, number of data points n=1291), evaluation (patient N=2, number of data points n=160).
 図13は、未知データに対する推定性能の評価の結果を示す。 FIG. 13 shows the results of estimation performance evaluation for unknown data.
 左のグラフ(a)は、#3の患者からデータ(学習に用いていない患者由来の未知データ)に対して、MDS-UPDRS Part IIIスコアのトータルスコアを推定した結果を示している。右のグラフ(a)は、#20の患者からデータ(学習に用いていない患者由来の未知データ)に対して、MDS-UPDRS Part IIIスコアのトータルスコアを推定した結果を示している。縦軸は、MDS-UPDRS Part IIIスコアのトータルスコアを示している。横軸は、時間を示している。淡い実線がMDS-UPDRS Part IIIスコアのトータルスコアの実測値を示し、濃い実線が機械学習モデルからの出力値を示している。 The graph (a) on the left shows the results of estimating the total score of the MDS-UPDRS Part III score for data from patient #3 (unknown data derived from a patient not used for learning). The graph (a) on the right shows the result of estimating the total score of the MDS-UPDRS Part III score for data from patient #20 (unknown data derived from the patient not used for learning). The vertical axis indicates the total score of the MDS-UPDRS Part III score. The horizontal axis shows time. The light solid line indicates the actual measured value of the total score of the MDS-UPDRS Part III score, and the dark solid line indicates the output value from the machine learning model.
 未知データ2例について、実測値と、機械学習モデルからの出力との間の相関をとった。(b)がその結果を示している。いずれの場合でも、決定係数が0.77となり、未知データに対しても、臨床スコアの時間的変化を強い相関をもって推定することができた。 For two examples of unknown data, we calculated the correlation between the actual measured values and the output from the machine learning model. (b) shows the results. In either case, the coefficient of determination was 0.77, and it was possible to estimate temporal changes in clinical scores with strong correlation even for unknown data.
 (血漿中レボドパ濃度の判定)
 血漿中レボドパ濃度を目的変数とし、15の瞬目に関するパラメータを特徴量として機械学習モデルを作成した。血漿中レボドパ濃度として、瞬目測定と略同時に測定された血漿中レボドパ濃度と、瞬目測定の約30分前に測定された血漿中レボドパ濃度とをそれぞれ利用した。
(Determination of plasma levodopa concentration)
A machine learning model was created using plasma levodopa concentration as the objective variable and 15 blink-related parameters as features. As the plasma levodopa concentration, the plasma levodopa concentration measured almost simultaneously with the blink measurement and the plasma levodopa concentration measured about 30 minutes before the blink measurement were used, respectively.
 さらに、血漿中レボドパ濃度を目的変数とし、15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として別の機械学習モデルを作成した。 Furthermore, another machine learning model was created using the plasma levodopa concentration as the objective variable and the 15 blink-related parameters and the elapsed time from the time of taking the levodopa preparation as feature quantities.
 比較のために、血漿中レボドパ濃度を目的変数とし、レボドパ製剤服用時間からの経過時間のみを特徴量として機械学習モデルを作成した。 For comparison, a machine learning model was created with plasma levodopa concentration as the objective variable and only the time elapsed since taking the levodopa preparation as a feature.
 全患者のデータを用いて第1の機械学習モデル群を作成し、瞬目頻度が増加したパターンを有する患者のデータを用いて第2の機械学習モデル群を作成し、瞬目頻度が減少したパターンを有する患者のデータを用いて第3の機械学習モデル群を作成し、瞬目頻度の変化が不明瞭なパターンを有する患者のデータを用いて第4の機械学習モデル群を作成した。ここで、機械学習モデル群とは、血漿中レボドパ濃度を目的変数とし、15の瞬目に関するパラメータを特徴量として作成した機械学習モデルと、血漿中レボドパ濃度を目的変数とし、15の瞬目に関するパラメータと、レボドパ製剤服用時間からの経過時間とを特徴量として作成した機械学習モデルとを含む。第1の機械学習モデル群は、これに加えて、血漿中レボドパ濃度を目的変数とし、レボドパ製剤服用時間からの経過時間のみを特徴量として作成した機械学習モデルとを含む。 A first set of machine learning models was created using data from all patients, and a second set of machine learning models was created using data from patients who had a pattern of increased blink frequency, and a second set of machine learning models was created using data from patients who had a pattern of increased blink frequency. A third group of machine learning models was created using data of patients with patterns, and a fourth group of machine learning models was created using data of patients with patterns in which changes in blink frequency were unclear. Here, the machine learning model group refers to a machine learning model created with plasma levodopa concentration as an objective variable and 15 blink-related parameters as features, and a machine learning model created with plasma levodopa concentration as an objective variable and 15 blink-related parameters. It includes a machine learning model created using parameters and the elapsed time from the time of taking the levodopa preparation as features. In addition to this, the first machine learning model group includes a machine learning model created using plasma levodopa concentration as an objective variable and using only the elapsed time from the time of taking the levodopa preparation as a feature quantity.
 第1の機械学習モデル群を作成するために、全患者(患者数N=19)のデータを用いた。データ点数n=1451であった。訓練:検定:ホールドアウト=16:4:5とした。 To create the first machine learning model group, data from all patients (number of patients N=19) was used. The number of data points was n=1451. Training: test: holdout = 16:4:5.
 第2の機械学習モデルを作成するために、瞬目頻度が増加したパターンを有する患者(患者数N=8)のデータを用いた。データ点数n=596であった。 To create the second machine learning model, data from patients (number of patients N=8) with a pattern of increased blink frequency was used. The number of data points was n=596.
 第3の機械学習モデルを作成するために、瞬目頻度が減少したパターンを有する患者(患者数N=5)のデータを用いた。データ点数n=369であった。 To create the third machine learning model, data from patients (number of patients N=5) with a pattern of decreased blink frequency was used. The number of data points was n=369.
 第4の機械学習モデルを作成するために、瞬目頻度の変化が不明瞭なパターンを有する患者(患者数N=6)のデータを用いた。データ点数n=486であった。 In order to create the fourth machine learning model, data from patients (number of patients N = 6) with unclear patterns of changes in blink frequency were used. The number of data points was n=486.
 第1~第4の機械学習モデルのそれぞれの結果を比較した。
The results of the first to fourth machine learning models were compared.
 表4は、第1~第4の機械学習モデルのそれぞれの結果を比較した結果を示す。 Table 4 shows the results of comparing the results of the first to fourth machine learning models.
 表4から分かるように、瞬目に関するパラメータに加えて、レボドパ製剤服用時間からの経過時間を特徴量とすることで、血漿中レボドパ濃度を高い精度で推定することができた。なお、服用したレボドパが瞬目に影響を与えるには、末梢血中に取り入れられたレボドパが脳内へと移行する必要があるため、瞬目パラメータは一定のタイムラグを持った末梢血レボドパ濃度の方を強く推定できる可能性がある。そこで瞬目測定時と同時点および瞬目測定時の一律30分前の血漿中レボドパ濃度をそれぞれ推定したところ、瞬目に関するパラメータのみを特徴量とし、患者ごとに標準化された血漿中レボドパ濃度を推定した場合において、瞬目測定時の30分前の血漿中レボドパ濃度を推定する場合の方が高い精度が得られた。したがって仮説通り瞬目は血漿中のレボドパ濃度に対して一定のタイムラグを持って推移しており、血漿中レボドパ濃度ではなく脳内のレボドパ濃度とより強く相関していることが示唆された。 As can be seen from Table 4, in addition to the blink-related parameters, the plasma levodopa concentration could be estimated with high accuracy by using the elapsed time from the time of taking the levodopa preparation as a feature quantity. In addition, in order for the levodopa taken to affect blinking, the levodopa taken into the peripheral blood must move into the brain, so the blink parameter is a function of the peripheral blood levodopa concentration with a certain time lag. There is a possibility that it can be strongly estimated. Therefore, we estimated the plasma levodopa concentration at the same time as the blink measurement and uniformly 30 minutes before the blink measurement, and using only the blink-related parameters as feature quantities, we calculated the plasma levodopa concentration standardized for each patient. In the case of estimation, higher accuracy was obtained when estimating the plasma levodopa concentration 30 minutes before the blink measurement. Therefore, as hypothesized, blinking changes with a certain time lag relative to the plasma levodopa concentration, suggesting that it is more strongly correlated with the brain levodopa concentration than with the plasma levodopa concentration.
 (ジスキネジアの前兆の判定)
 図14A(a)は、患者#20の未知データに対してジスキネジアの有無を推定した結果を示す。
(Determination of signs of dyskinesia)
FIG. 14A(a) shows the results of estimating the presence or absence of dyskinesia from unknown data of patient #20.
 ジスキネジアがあると実測された約90分の時刻より約15分前に、機械学習モデルからの出力が変動していることがわかる(▼)。このことから、作成された機械学習モデルでは、ジスキネジアが出ることの予兆まで判定できていることがわかる。 It can be seen that the output from the machine learning model fluctuates about 15 minutes before the actual measurement time of about 90 minutes when dyskinesia is present (▼). This shows that the machine learning model that was created was able to determine even the signs of dyskinesia.
 図14A(b)は、学習データに対してジスキネジアの有無を判定した結果の1つを示す。濃い実線が機械学習モデルからの出力値を示し、淡い実線が実測されたジスキネジアの有無を示す。 FIG. 14A(b) shows one of the results of determining the presence or absence of dyskinesia in the learning data. The dark solid line indicates the output value from the machine learning model, and the light solid line indicates the presence or absence of actually measured dyskinesia.
 ジスキネジアがあると実測された時刻よりも数分(約3分以上)前に機械学習モデルからの出力値が変動し始めている個所が見られた(▼)。7例のジスキネジア有りのデータのうち5つのデータで、このような前兆を検出することができた。 There were places where the output value from the machine learning model started to fluctuate several minutes (about 3 minutes or more) before the actual measurement of dyskinesia (▼). We were able to detect such a precursor in five of the seven cases of dyskinesia.
 これらは、本開示による機械学習モデルを利用することで、日内におけるジスキネジアの出現を前もって予測し、服薬等により治療介入することや、またジスキネジアが発現していない患者においても、レボドパ治療が過剰であることを機械学習モデルから推察し、ジスキネジアが発症する前に未然に治療薬量を最適化することができる可能性を示唆している。 By using the machine learning model according to the present disclosure, it is possible to predict the appearance of dyskinesia during the day in advance and intervene therapeutically by taking medication, and even in patients who do not develop dyskinesia, levodopa treatment may be excessive. This is inferred from a machine learning model, suggesting that it may be possible to optimize the amount of therapeutic drugs before dyskinesia develops.
 (ON/OFFの前兆の判定)
 図14B(a)は、患者#3および患者#20の未知データに対してON/OFFを判定した結果を示す。
(Judgment of ON/OFF signs)
FIG. 14B(a) shows the results of ON/OFF determination for unknown data of patient #3 and patient #20.
 ONがOFFに切り替わるよりも前のタイミングで、機械学習モデルからの出力が変動していることがわかる(▼)。このことから、作成された機械学習モデルでは、ON/OFFが切り替わることの予兆まで判定できていることがわかる。 It can be seen that the output from the machine learning model fluctuates at the timing before ON switches to OFF (▼). From this, it can be seen that the created machine learning model is able to determine even the signs of ON/OFF switching.
 図14B(b)は、学習データに対してON/OFFの有無を判定した結果の1つを示す。濃い実線が機械学習モデルからの出力値を示し、淡い実線が実測されたON/OFFの有無を示す。 FIG. 14B(b) shows one of the results of determining whether the learning data is ON/OFF. A dark solid line indicates the output value from the machine learning model, and a light solid line indicates the presence or absence of actually measured ON/OFF.
 ONがOFFに切り替わるよりも数分(約6分以上)前に、機械学習モデルからの出力値が変動し始めている個所が見られた(▼)。19例のデータのうち14のデータで、このような前兆を検出することができた。 It was observed that the output value from the machine learning model started to fluctuate several minutes (approximately 6 minutes or more) before the ON was switched to OFF (▼). We were able to detect such a precursor in 14 of the 19 cases' data.
 これらは、本開示による機械学習モデルを利用することで、日内症状変動におけるOFFの出現を前もって予測し、服薬等により治療介入することや、運動症状が現れる前のProdromal期の患者を早期に診断し、早期介入できる可能性を示唆している。 By using the machine learning model according to the present disclosure, it is possible to predict in advance the appearance of OFF in diurnal symptom fluctuations, to intervene therapeutically by taking medication, and to diagnose patients in the prodromal stage before motor symptoms appear. This suggests the possibility of early intervention.
 (実装例2:アプリケーションでの実施例)
 これらの実施例で示したように、瞬目パラメータなどの眼球運動測定値から、パーキンソン病患者におけるジスキネジアの有無やON/OFF、MDS-UPDRS Part IIIスコアのトータルスコアといった臨床的な評価と相関する測定値を客観推定することが可能である。このことは、今日のパーキンソン病治療が抱える諸問題を解決する手段となり得る。以下にその例を示す。
(Implementation example 2: Application example)
As shown in these examples, measurements that correlate with clinical evaluations, such as the presence or absence of dyskinesia in Parkinson's disease patients, ON/OFF, and the total score of MDS-UPDRS Part III scores, from eye movement measurements such as blink parameters. It is possible to objectively estimate the value. This could be a means to solve the problems faced by today's treatments for Parkinson's disease. An example is shown below.
 (患者)
 本実装例ではパーキンソン病に関連する応用方法を示す。本実装例のユーザとしては、パーキンソン病患者においては、パーキンソン病との診断直後から進行期および後期に至るまでの患者すべてが対象となり得る。さらにはパーキンソン病とは診断されていないものの、パーキンソン病の疑いのある症例や、パーキンソン病の発症リスクが高いと考えられる人が対象となり得る。パーキンソン病の発症リスクが高いと考えられる人としては、例えば、遺伝性パーキンソン病の原因遺伝子(例えばSNCA,PARK2,PINK1など)に変異を有する人、嗅覚障害を有する人、レム睡眠行動障害を有する人、60~70歳以上の比較的高齢の人などが挙げられる。
(patient)
This implementation example shows an application method related to Parkinson's disease. The users of this implementation example may include all Parkinson's disease patients from immediately after diagnosis to advanced and late stages of Parkinson's disease. Furthermore, patients who have not been diagnosed with Parkinson's disease but are suspected of having it, or who are considered to be at high risk of developing Parkinson's disease, could be targeted. People who are considered to have a high risk of developing Parkinson's disease include, for example, people who have mutations in genes that cause hereditary Parkinson's disease (such as SNCA, PARK2, PINK1, etc.), people who have anosmia, and people who have REM sleep behavior disorder. These include people, and relatively elderly people aged 60 to 70 years or older.
 (装着)
 ある実施形態において、ユーザは眼球運動測定機能を有するスマートグラスまたは眼電位測定装置あるいは眼球運動測定機器を外付けした眼鏡などを装用することで、日常的に眼球運動を測定することが可能となる。またある実施形態においては非装用型のデバイスを使用することもでき、例えば設置型のアイトラッキングデバイスまたはカメラ機能付きのスマートフォンやタブレット端末、パーソナルコンピュータなどにより、比較的短時間の眼球運動測定を行うこともできる。
(installed)
In one embodiment, a user can measure eye movements on a daily basis by wearing smart glasses having an eye movement measuring function, an electro-oculography measuring device, or glasses with an external eye movement measuring device attached. . In some embodiments, non-wearable devices may also be used, such as stationary eye-tracking devices or camera-equipped smartphones, tablets, or personal computers to measure eye movements over relatively short periods of time. You can also do that.
 (日常生活・測定)
 ユーザは例えば一日のうち就寝時・入浴時を除く終日にわたって眼球運動測定装置を装用することで最も豊富なデータが得られることが期待されるが、比較的安定して継続的にデータを取得するため一日のうちの特定の時間、例えば起床後の服薬から1~3時間程度のみ装用してもよい。非装用型のデバイスにおいては、例えば患者の自宅あるいは医療機関において、設置型のアイトラッキングデバイスまたはカメラ機能付きのスマートフォンやタブレット端末、パーソナルコンピュータなどにより、一回あたり3~5分間の眼球運動測定を実施することもでき、一日のうちに約1~5回測定して経時変化を見てもよい。眼球運動データの測定は1日のみならず、定期的に取得してもよい。定期的に測定する場合の頻度としては、毎日測定することが最も望ましいが、実質的には週に1~3回、1~3月に1回、半年~1年に1回などの定期的な測定によっても経時的変化をとらえることができる。測定環境は測定機器の性能に影響しない限り特に問われないが、使用者の自宅あるいは医療機関あるいは定期の健康診断などが想定される。
(Daily life/measurement)
For example, users are expected to obtain the most abundant data by wearing the eye movement measurement device all day long, except when sleeping or bathing, but data is obtained relatively stably and continuously. Therefore, it may be worn only at certain times of the day, for example, for about 1 to 3 hours after taking the medication after waking up. For non-wearable devices, for example, eye movements can be measured for 3 to 5 minutes at a time using an installed eye tracking device, a smartphone with a camera function, a tablet terminal, a personal computer, etc. at the patient's home or medical institution. It is also possible to carry out measurements approximately 1 to 5 times a day to observe changes over time. Eye movement data may be measured not only on a daily basis but also periodically. When measuring regularly, it is most desirable to measure every day, but in reality, it is also possible to measure periodically, such as once to three times a week, once every January to March, or once every six months to a year. Changes over time can also be detected through measurements. The measurement environment is not particularly important as long as it does not affect the performance of the measurement device, but it is assumed that the measurement environment is the user's home, a medical institution, or a regular health checkup.
 (医師による診断・投与)
こうして取得された眼球運動データは、ユーザ装置および/あるいはサーバ装置へと蓄積され、各種の推定アルゴリズムにより、脳内ドパミン量の指標や運動症状あるいはジスキネジアなどの重症度の指標等が出力される。
(Diagnosis and administration by a doctor)
The eye movement data thus acquired is accumulated in the user device and/or the server device, and various estimation algorithms are used to output an index of the amount of dopamine in the brain, an index of the severity of motor symptoms, dyskinesia, etc.
 このような実施形態は、今日のパーキンソン病の治療が抱える諸問題を解決する手段となり得る。 Such an embodiment could be a means to solve the problems of today's treatments for Parkinson's disease.
 例えば、パーキンソン病患者の症状評価は、MDS-UPDRS、UdysRSや患者日誌といった、臨床医や患者の主観的な評価尺度によってなされている。しかしこのような主観評価指標の正確性は、臨床医の経験および訓練、患者の気質、医療者と患者との人間的関係など、多くの要因に影響され、評価者が異なれば結果も変動し得る。また主観的な評価尺度では、臨床医や患者が能動的に評価を実施しなければならないことによる様々なコストや制約が生じる。臨床医による評価は、通常では1~3月に一回程度の通院のなかで評価されるものであり、一日のうちの一時点での測定に過ぎない。しかしパーキンソン病は日内変動も日間変動も大きいため、そのような低頻度かつ短時間の評価では、真に患者の状態を反映した測定値を得ることは困難である。 For example, symptoms of Parkinson's disease patients are evaluated using subjective evaluation scales used by clinicians and patients, such as MDS-UPDRS, UdysRS, and patient diaries. However, the accuracy of such subjective evaluation indicators is influenced by many factors, such as the clinician's experience and training, the patient's temperament, and the interpersonal relationship between the provider and the patient, and the results may vary depending on the evaluator. obtain. Furthermore, subjective rating scales have various costs and limitations due to the fact that clinicians and patients must actively perform the evaluation. Evaluations by clinicians are usually performed during hospital visits once every January to March, and are only measured at one point in the day. However, since Parkinson's disease has large diurnal and day-to-day fluctuations, it is difficult to obtain measured values that truly reflect the patient's condition with such infrequent and short-term evaluations.
 本実施例の一例では、眼球運動を応用することでパーキンソン病の運動症状や運動合併症、生体内ドパミン量を客観的に評価する新たな指標を提供するものである。実施形態によって評価の頻度や時間は様々であり得るが、いずれにおいても測定は患者にとって簡便であり、臨床医や患者による能動的な症状観察がなされていない場合であっても、患者の状態を、遠隔かつ臨床に比べてはるかに高頻度かつ連続的に、客観的に、容易に測定し、解析し、報告する手段を提供する。これらのプロセスはほぼ自動的になされる。出力結果は自動的にレポート形式へと変換され、臨床医が任意に参照できる臨床ツールとして使用できる。客観的かつ連続的なデータ収集により、日内変動および日間変動を含む患者の症状をより正確に取得することが可能となる。その情報から、臨床医はジスキネジアやON/OFFといった運動症状や運動合併症の発生頻度と重症度を低減するように、より効果的に薬剤の用量や種類を調整して設定することが可能となる。これにより、臨床医と患者の負担を軽減しつつ、個人個人の症状に最適化された治療法を提供するプレシジョン・メディスンが可能となり、患者のクオリティオブライフを向上させることができる。またこの実施形態のより広い利点として、患者が医療機関を直接訪問する頻度を減らすことができ、ヘルスケアに対する患者および医療機関および国家の金銭的負担を軽減し、医療経済学的な最適化に近づくことが期待される。 An example of this embodiment provides a new index for objectively evaluating the motor symptoms and motor complications of Parkinson's disease and the amount of dopamine in the body by applying eye movements. Although the frequency and duration of assessment may vary depending on the embodiment, in all cases the measurements are convenient for the patient and provide a good indication of the patient's condition even in the absence of active observation of symptoms by the clinician or patient. , providing a means to measure, analyze, and report objectively and easily, remotely and far more frequently and continuously than clinically. These processes are almost automatic. The output results are automatically converted into a report format and can be used as a clinical tool for clinicians to refer to at any time. Objective and continuous data collection allows for more accurate capture of patient symptoms, including diurnal and day-to-day variations. From that information, clinicians can more effectively adjust and set drug doses and types to reduce the frequency and severity of motor symptoms and complications, such as dyskinesia and ON/OFF. Become. This makes it possible to provide precision medicine that provides treatments optimized to each individual's symptoms while reducing the burden on clinicians and patients, improving the quality of life of patients. A broader benefit of this embodiment is that it reduces the frequency of in-person patient visits to health care facilities, reducing the financial burden of health care on patients, health care providers, and the nation, and helping to optimize health economics. It is hoped that it will get closer.
 本実施例の一例では、前記の情報に加えて、当該ユーザや他のユーザの過去の眼球運動に基づく測定記録および患者日誌や臨床医による評価記録や服薬状況などの周辺情報を同時に参照し、解析して報告することで、臨床医のより適切な判断を促すためのさらに有益な情報を提供することもできる。 In one example of the present embodiment, in addition to the above information, peripheral information such as measurement records based on past eye movements of the user and other users, patient diaries, evaluation records by clinicians, and medication status are simultaneously referred to, By analyzing and reporting, it is possible to provide even more useful information to help clinicians make more appropriate decisions.
 また本実施例の一例では、患者が脳深部刺激療法やL-DOPA製剤の経皮あるいは経腸デバイスによる投与などのデバイス補助治療を受けている場合には、出力される運動症状や運動合併症あるいは生体内ドパミン量の推定値を、デバイス補助治療アルゴリズムへの入力値として用いることで、症状の変動に対してリアルタイムでデバイス治療の程度、例えばL-DOPA製剤の投与量や投与速度、脳深部刺激療法の刺激頻度や強度を安全な範囲において制御する、クローズドループシステムを構築することが可能である。 In addition, in one example of this embodiment, when a patient is receiving device-assisted treatment such as deep brain stimulation therapy or administration of an L-DOPA preparation through a transdermal or enteral device, motor symptoms and motor complications are output. Alternatively, by using the estimated amount of dopamine in the body as an input value to a device-assisted treatment algorithm, the degree of device treatment can be determined in real time in response to fluctuations in symptoms, such as the dose and speed of administration of L-DOPA preparations, and the It is possible to construct a closed-loop system that controls the stimulation frequency and intensity of stimulation therapy within a safe range.
 またある実施形態では患者の状態を報告するレポートの一部項目については医療者のみならず患者も参照することが可能であり、本人の症状やその改善度を可視化することにより、治療への積極的な参加を促すことができる。さらに、患者に対して現時点あるいは数分~数十分後の将来を含む症状の悪化や、服薬からの時間経過に合わせて服薬を促すアラートおよびリマインド機能を提供することもできる。 Furthermore, in some embodiments, some items in a report that reports the patient's condition can be referenced not only by medical personnel but also by the patient, and by visualizing the patient's symptoms and their degree of improvement, it is possible to be more proactive in treatment. It is possible to encourage people's participation. Furthermore, it is also possible to provide alerts and reminder functions that prompt patients to take medication based on the worsening of symptoms, including the current situation or in the future from several minutes to several tens of minutes, or when time has elapsed since taking the medication.
 なお、近年腕時計型の加速度や角速度測定デバイス(IMU)を使用したパーキンソン病症状の客観評価システムも検討されているものの、評価できる症状はジスキネジアの舞踏症や静止時振戦などに限定されるなど、多様な現れ方をするパーキンソン病の運動症状や運動合併症の一側面を捉えることしかできていない。またデバイスを装着した腕部に生じない症状には無力であるといったことからも、あらゆる患者に適応できるわけではなく、必ずしも問題の解決に繋がっていない。本開示では、脳内のドパミン機能を直接的に反映する眼球運動へと着目しており、パーキンソン病の運動症状や運動合併症を直接定量するIMUによるシステムとは一線を画している。これにより、本開示による実施形態では、病態の本質である脳内ドパミン機能の変化を鋭敏に捉えることができ得る。 In recent years, objective evaluation systems for Parkinson's disease symptoms using wristwatch-type acceleration and angular velocity measurement devices (IMUs) have been considered, but the symptoms that can be evaluated are limited to dyskinesia chorea and resting tremor. However, we have only been able to grasp one aspect of the motor symptoms and motor complications of Parkinson's disease, which manifest in a variety of ways. Furthermore, since it is ineffective against symptoms that do not occur in the arm where the device is attached, it cannot be applied to all patients and does not necessarily solve the problem. The present disclosure focuses on eye movements that directly reflect dopamine function in the brain, and is different from IMU-based systems that directly quantify motor symptoms and motor complications of Parkinson's disease. As a result, in the embodiments of the present disclosure, changes in brain dopamine function, which are the essence of pathological conditions, can be acutely grasped.
 本実施例の一例ではまた、眼球運動を用いて生体内ドパミン量および/またはL-DOPAなどの治療薬に対する反応性を経時的に測定することによって、パーキンソン病の進行度を推定することができる。したがって、パーキンソン病の疾患修飾薬や予防薬、その候補となる薬物や治療方法、再生細胞医薬などを服用または処置している患者に対して、定期的に本実施形態による測定を行うことにより、当該治療方法によるパーキンソン病の進行抑制作用を評価することができる。今日では、パーキンソン病の疾患修飾薬の作用評価には脳内ドパミン受容体やドパミントランスポーターを測定するPETやSPECTといった、侵襲的かつ高コストの画像診断による神経脱落の定量手法や、前述のような主観的であり精度が必ずしも望めない、臨床医による運動症状評価が主流である。パーキンソン病の原因物質と目されているalpha―synuclein関連物質も、血液中のバイオマーカーとして検討されてはいるが、必ずしも確立された指標は存在しない。このような疾患の進行度を評価するバイオマーカーの欠如は、疾患修飾薬の評価を困難にしており、未だパーキンソン病の根治療法が確立しない原因の一端となっている。このような状況において、眼球運動による指標は脳内ドパミン機能を直接的に評価しており、高頻度かつ連続的、客観的に、容易な測定が可能であることから、パーキンソン病の進行度合いを定量的に評価する手段となり得る。したがってこのような実施形態は疾患修飾薬の作用評価にも有用であることが期待される。 In one example of this embodiment, the degree of progression of Parkinson's disease can also be estimated by measuring the in-vivo dopamine level and/or responsiveness to a therapeutic agent such as L-DOPA over time using eye movements. . Therefore, by regularly performing measurements according to the present embodiment on patients who are taking or being treated with disease-modifying drugs, preventive drugs, candidate drugs and treatment methods, regenerative cell medicines, etc. for Parkinson's disease, The effect of the treatment method on inhibiting the progression of Parkinson's disease can be evaluated. Today, to evaluate the effects of disease-modifying drugs for Parkinson's disease, we use invasive and high-cost imaging diagnostic methods such as PET and SPECT, which measure dopamine receptors and dopamine transporters in the brain, to quantify neurological deficits, as well as the methods described above. The mainstream is the evaluation of motor symptoms by clinicians, which is subjective and cannot always be expected to be accurate. Alpha-synuclein-related substances, which are thought to be causative agents of Parkinson's disease, are also being investigated as biomarkers in the blood, but no established indicators necessarily exist. The lack of biomarkers for evaluating the progression of the disease makes it difficult to evaluate disease-modifying drugs, and is one of the reasons why no radical treatment for Parkinson's disease has yet been established. In this situation, eye movement indicators directly evaluate dopamine function in the brain and can be easily measured frequently, continuously, and objectively, making it possible to assess the degree of progression of Parkinson's disease. It can be a means of quantitative evaluation. Therefore, such embodiments are expected to be useful for evaluating the effects of disease-modifying drugs.
 また本実施例の一例では、眼球運動を測定されるユーザはパーキンソン病診断が確定した患者である必要はない。例えばパーキンソン病の疑いのある症例や、パーキンソン病の発症リスクが高いと考えられる人が対象となり得る。パーキンソン病の疑いのある症例としては、例えばパーキンソン病のほか、実際には多系統萎縮症、大脳皮質基底核変性症、核上性進行性麻痺などのパーキンソニズム症候群である患者や、本態性振戦の患者などが挙げられる。パーキンソン病以外の疾患については、L-DOPAへの反応性は限定的であることが知られている。このようなユーザにおいて、眼球運動を測定することによって生体内ドパミン量と運動症状を推定し、さらにはL-DOPAなどのパーキンソン病治療薬に対する反応性を測定することなどによって、疾患鑑別を補助して適切な治療を促すバイオマーカーとして応用し得る。また、パーキンソン病の発症リスクが高いと考えられる人としては、例えば、遺伝性パーキンソン病の原因遺伝子(例えばSNCA,PARK2,PINK1など)に変異を有する人、嗅覚障害を有する人、レム睡眠行動障害を有する人、60~70歳以上の比較的高齢の人などが挙げられる。このようなユーザにおいて、眼球運動を測定することによって脳内ドパミン機能を推定し、さらにはL-DOPAなどのパーキンソン病治療薬に対する反応性を測定することなどによってパーキンソン病の発症前からドパミン機能の低下をとらえることで、早期診断を可能にするバイオマーカーとして応用し得る。パーキンソン病患者において運動症状が現れるのは、既にドパミン神経が60%程度にまで脱落してからとも言われており、仮に神経保護に対して有効な疾患修飾薬があったとしても、運動症状が起きるほどに神経脱落が生じた後では有効性は限られる。すなわち、パーキンソン病の根治療法を実現するためには、パーキンソン病が発症する前の患者を発見して治療しなければならないという難題に直面している。眼球運動に異常が生じるドパミン神経の脱落がどの程度であるのかはまだ明らかではないが、より直接的にドパミン機能を反映すると考えられるため一般的な運動症状よりも早期に異常を判別できる可能性は高く、また本開示に示したような綿密な解析を行うことにより判別の可能性はより高まると考えられる。すなわち、眼球運動の異常があるユーザ自体がパーキンソン病のハイリスク群である可能性もある。 Furthermore, in one example of the present embodiment, the user whose eye movements are measured does not need to be a patient with a confirmed diagnosis of Parkinson's disease. For example, patients suspected of having Parkinson's disease or people considered to be at high risk of developing Parkinson's disease may be targeted. Cases suspected of having Parkinson's disease include, for example, in addition to Parkinson's disease, patients who actually have parkinsonism syndromes such as multiple system atrophy, corticobasal degeneration, and supranuclear progressive palsy, as well as patients with essential tremor. Examples include war patients. It is known that the reactivity to L-DOPA is limited for diseases other than Parkinson's disease. In such users, we can help diagnose the disease by estimating in-vivo dopamine levels and motor symptoms by measuring eye movements, and by measuring responsiveness to Parkinson's disease treatment drugs such as L-DOPA. It can be applied as a biomarker to promote appropriate treatment. In addition, people who are considered to have a high risk of developing Parkinson's disease include, for example, people with mutations in genes that cause hereditary Parkinson's disease (such as SNCA, PARK2, PINK1, etc.), people with anosmia, and people with REM sleep behavior disorder. These include people who have , and relatively elderly people aged 60 to 70 years or older. In such users, dopamine function can be estimated before the onset of Parkinson's disease by estimating dopamine function in the brain by measuring eye movements, and by measuring responsiveness to Parkinson's disease treatment drugs such as L-DOPA. By detecting the decline, it can be applied as a biomarker that enables early diagnosis. It is said that motor symptoms appear in Parkinson's disease patients after about 60% of dopaminergic neurons have been lost. Its effectiveness is limited after significant neurological deficits occur. In other words, in order to realize a radical treatment for Parkinson's disease, we are faced with the challenge of finding and treating patients before the onset of Parkinson's disease. Although it is not yet clear to what extent dopamine nerve loss causes abnormalities in eye movement, it is thought to reflect dopamine function more directly, so it is possible that abnormalities can be identified earlier than general motor symptoms. is high, and it is thought that the possibility of discrimination will be further increased by performing a thorough analysis as shown in the present disclosure. That is, there is a possibility that users who have eye movement abnormalities themselves are in a high-risk group for Parkinson's disease.
 したがってこのような例では、パーキンソン病が運動症状としては発現していない早期段階から患者をスクリーニングすることが可能となり、疾患修飾薬の有効性が期待できる段階で処方することが可能となり得る。また、このような実施形態のより広い利点としては、例えば、alpha―synucleinに対するワクチン療法や抗体医薬、核酸医薬など、パーキンソン病に対する予防措置となり得る治療方法ができた場合、それをすべての高齢者に投与することは医療経済学的観点からは現実的ではないが、眼球運動においてパーキンソン病のハイリスク群あるいは超早期患者をスクリーニングすることができれば、医療経済学的に最適な処方が実現し得る。 Therefore, in such an example, it is possible to screen patients from an early stage when Parkinson's disease has not manifested as motor symptoms, and it may be possible to prescribe disease-modifying drugs at a stage when they can be expected to be effective. In addition, a broader advantage of such an embodiment is that if a treatment method that can be used as a preventive measure against Parkinson's disease is developed, such as a vaccine therapy against alpha-synuclein, an antibody drug, or a nucleic acid drug, it will be available to all elderly people. Although it is not realistic from a medical economic point of view to administer Parkinson's disease to patients in the early stages of Parkinson's disease, if it is possible to screen high-risk patients or patients with very early stages of Parkinson's disease based on their eye movements, the most optimal prescription can be achieved from a medical economic point of view. .
 本出願は、日本国特許庁に2022年9月9日に出願された特願2022-144047号に対して優先権主張を伴うものであり、必要に応じその内容はすべて本願において参考として引用される。 This application claims priority to Japanese Patent Application No. 2022-144047 filed with the Japan Patent Office on September 9, 2022, and the contents thereof may be cited as reference in this application as necessary. Ru.
 本開示は、対象の状態を推定または予測し、生活の質を上げる治療を提供するための技術を提供する。 The present disclosure provides technology for estimating or predicting a subject's condition and providing treatment that improves the quality of life.
 10、10A、1000 システム
 11 取得手段
 12 推定/予測手段
 13 算出手段
 100 ユーザ装置
 200 サーバ装置
 300 データベース部
 400 ネットワーク
10, 10A, 1000 System 11 Acquisition means 12 Estimation/prediction means 13 Calculation means 100 User device 200 Server device 300 Database section 400 Network

Claims (21)

  1.  対象の状態を推定する方法であって、
     A)該対象の瞬目に関するパラメータの値を取得する工程と、
     B)少なくとも該瞬目に関するパラメータの値に基づいて、該対象の状態を推定する工程と
     を含む方法。
    A method of estimating a state of a target, the method comprising:
    A) obtaining the value of a parameter related to the subject's blink;
    B) estimating the state of the object based on at least the value of the parameter related to the blink.
  2.  前記瞬目に関するパラメータは、閉眼速度、閉眼ピーク速度、開眼速度、開眼ピーク速度、閉眼時間、開眼時振幅、閉眼時振幅、開眼度、瞬目持続時間、および瞬目回数のうちの少なくとも1つまたは組み合わせを含む、請求項1に記載の方法。 The parameter related to blinking is at least one of the following: eye-closing speed, eye-closing peak speed, eye-opening speed, eye-opening peak speed, eye-closing time, eye-opening amplitude, eye-closing amplitude, degree of eye opening, blink duration, and number of blinks. or a combination.
  3.  前記瞬目に関するパラメータは、瞬目コンフィデンス、瞬目インターバル、瞬目深度、および瞬目エネルギーのうちの少なくとも1つを含む、請求項1または請求項2に記載の方法。 The method according to claim 1 or 2, wherein the blink-related parameters include at least one of blink confidence, blink interval, blink depth, and blink energy.
  4.  前記瞬目に関するパラメータは、瞬目コンフィデンスと瞬目インターバルとを含む、請求項1に記載の方法。 The method according to claim 1, wherein the blink-related parameters include blink confidence and blink interval.
  5.  前記工程B)は、L-DOPA、L-DOPA関連化合物またはドパミン作動薬を前記対象に投与した後の経過時間と前記瞬目に関するパラメータとに基づいて、該対象の状態を推定することを含む、請求項1~4のいずれか一項に記載の方法。 The step B) includes estimating the state of the subject based on the elapsed time after administering L-DOPA, an L-DOPA-related compound, or a dopamine agonist to the subject and the blink-related parameter. , the method according to any one of claims 1 to 4.
  6.  前記状態は、臨床評価に活用可能な指標によって示される状態を含む、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the condition includes a condition indicated by an index that can be used for clinical evaluation.
  7.  前記状態は、ジスキネジアの有無、ON-OFF、MDS-UPDRS Part IIIスコア、UDysRSスコア、および血漿中レボドパ濃度のうちの少なくとも1つによって示される状態を含む、請求項1~6のいずれか一項に記載の方法。 Any one of claims 1 to 6, wherein the condition includes a condition indicated by at least one of the presence or absence of dyskinesia, ON-OFF, MDS-UPDRS Part III score, UDysRS score, and plasma levodopa concentration. The method described in.
  8.  前記対象は、L-DOPA、L-DOPA関連化合物またはドパミン作動薬で治療中のパーキンソン病患者である、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the subject is a Parkinson's disease patient being treated with L-DOPA, an L-DOPA-related compound, or a dopamine agonist.
  9.  対象の状態を推定する方法であって、
     A)該対象の眼球情報を取得する工程と、
     B)該眼球情報と、L-DOPA、L-DOPA関連化合物またはドパミン作動薬を該対象に投与した後の経過時間とに基づいて、該対象の状態を推定する工程と
     を含む方法。
    A method of estimating a state of a target, the method comprising:
    A) acquiring eyeball information of the subject;
    B) A method comprising the step of estimating the condition of the subject based on the eyeball information and the elapsed time after administering L-DOPA, an L-DOPA-related compound, or a dopamine agonist to the subject.
  10.  L-DOPA、L-DOPA関連化合物またはドパミン作動薬で治療中のパーキンソン病患者の状態を推定する方法であって、
     A)該患者の瞬目コンフィデンスの値を取得する工程と、
     B)該瞬目コンフィデンスの値と、L-DOPA、L-DOPA関連化合物またはドパミン作動薬を該患者に投与した後の経過時間とに基づいて、該患者の状態を推定する工程と
     を含み、該状態は、ジスキネジアの有無、ON-OFF、MDS-UPDRS Part IIIスコア、UDysRSスコア、および血漿中レボドパ濃度のうちの少なくとも1つを含む、方法。
    A method for estimating the condition of a Parkinson's disease patient being treated with L-DOPA, an L-DOPA-related compound, or a dopamine agonist, the method comprising:
    A) obtaining a blink confidence value of the patient;
    B) estimating the condition of the patient based on the blink confidence value and the elapsed time after administering L-DOPA, an L-DOPA-related compound, or a dopamine agonist to the patient; The method, wherein the condition includes at least one of the presence or absence of dyskinesia, ON-OFF, MDS-UPDRS Part III score, UDysRS score, and plasma levodopa concentration.
  11.  前記工程A)は、前記患者の瞬目インターバル、瞬目エネルギー、瞬目持続時間、瞬目回数のうちの少なくとも1つの値をさらに取得することを含み、
     前記工程B)は、前記瞬目コンフィデンスの値と、前記経過時間と、該瞬目インターバル、瞬目エネルギー、瞬目持続時間、瞬目回数のうちの少なくとも1つの値とに基づいて、該患者の状態を推定することを含む、請求項10に記載の方法。
    The step A) further includes obtaining at least one value of the patient's blink interval, blink energy, blink duration, and number of blinks,
    The step B) is based on the value of the blink confidence, the elapsed time, and the value of at least one of the blink interval, blink energy, blink duration, and number of blinks. 11. The method of claim 10, comprising estimating the state of.
  12.  対象の状態を推定するシステムであって、
     該対象の瞬目に関するパラメータの値を取得する手段と、
     少なくとも該瞬目に関するパラメータの値に基づいて、該対象の状態を推定する手段と
     を備えるシステム。
    A system for estimating the state of a target,
    means for acquiring the value of a parameter related to the blink of the subject;
    A system comprising: means for estimating a state of the object based on at least a value of a parameter related to the blink.
  13.  対象の状態を推定するプログラムであって、該プログラムは、プロセッサを備えるコンピュータにおいて実行され、該プログラムは、
     A)該対象の瞬目に関するパラメータの値を取得する工程と、
     B)少なくとも該瞬目に関するパラメータの値に基づいて、該対象の状態を推定する工程と
     を含む処理を該プロセッサに行わせる、プログラム。
    A program for estimating a state of a target, the program being executed in a computer including a processor, the program comprising:
    A) obtaining the value of a parameter related to the subject's blink;
    B) A program that causes the processor to perform a process including: estimating the state of the object based on at least the value of the parameter related to the blink.
  14.  対象に対する治療薬または予防薬あるいは他の医療技術を評価する方法であって、
     A)該対象の瞬目に関するパラメータの値を取得する工程と、
     B)少なくとも該瞬目に関するパラメータの値に基づいて、該治療薬または予防薬あるいは他の医療技術の推定有効量もしくは有効レベルまたは用法もしくは用量を算出する工程と
     を含む方法。
    A method of evaluating a therapeutic or preventive drug or other medical technology for a subject, the method comprising:
    A) obtaining the value of a parameter related to the subject's blink;
    B) calculating an estimated effective amount or effective level or usage or administration of the therapeutic or prophylactic drug or other medical technique based on at least the value of the blink-related parameter.
  15.  前記算出された推定有効量もしくは有効レベルまたは用法もしくは用量に基づいて、前記対象に対して推奨される治療薬または予防薬あるいは他の医療技術を決定すること
     をさらに含む、請求項14に記載の方法。
    15. The method according to claim 14, further comprising determining a therapeutic or prophylactic drug or other medical technique recommended for the subject based on the calculated estimated effective amount or effective level or usage or dosage. Method.
  16.  対象に対する治療薬または予防薬あるいは他の医療技術を評価するシステムであって、
     該対象の瞬目に関するパラメータの値を取得する手段と、
     少なくとも該瞬目に関するパラメータの値に基づいて、該治療薬または予防薬あるいは他の医療技術の推定有効量もしくは有効レベルまたは用法もしくは用量を算出する手段と
     を備えるシステム。
    A system for evaluating therapeutic or preventive drugs or other medical techniques for a subject,
    means for acquiring the value of a parameter related to the blink of the subject;
    and means for calculating an estimated effective amount or effective level or usage or administration of the therapeutic or prophylactic drug or other medical technique based on at least the value of the blink-related parameter.
  17.  対象に対する治療薬または予防薬あるいは他の医療技術を評価するプログラムであって、該プログラムは、プロセッサを備えるコンピュータにおいて実行され、該プログラムは、
     A)該対象の瞬目に関するパラメータの値を取得する工程と、
     B)少なくとも該瞬目に関するパラメータの値に基づいて、該治療薬または予防薬あるいは他の医療技術の推定有効量もしくは有効レベルまたは用法もしくは用量を算出する工程と
     を含む処理を該プロセッサに行わせる、プログラム。
    A program for evaluating therapeutic or preventive drugs or other medical techniques for a subject, the program being executed on a computer including a processor, the program comprising:
    A) obtaining the value of a parameter related to the subject's blink;
    B) Calculating an estimated effective amount or effective level or usage or dosage of the therapeutic or prophylactic drug or other medical technology based on at least the value of the blink-related parameter. ,program.
  18.  対象の健康管理方法であって、
     請求項1~11のいずれか一項に記載の方法を行うことと、
     該方法の結果に基づいて、該対象に処置をすべきか否かを判断することと、
     該対象に対して処置をすべきと判断される場合、該対象の健康管理のためのアクションを行うことと
    を含む、方法。
    A target health management method,
    carrying out the method according to any one of claims 1 to 11;
    determining whether or not to treat the subject based on the results of the method;
    If it is determined that treatment should be performed on the subject, taking action for health management of the subject.
  19.  前記アクションは、前記対象に対して前記処置を施すこと、前記対象に対して前記処置を施すべきことのアラートを発出すること、前記対象に対して所定の薬剤または療法を施与することのうちの少なくとも1つを含む、請求項18に記載の方法。 The action includes performing the treatment on the target, issuing an alert that the treatment should be performed on the target, and administering a predetermined drug or therapy to the target. 19. The method of claim 18, comprising at least one of:
  20.  対象の健康管理システムであって、
     請求項1~11のいずれか一項に記載の方法を行うように構成されている推定システムと、
     該推定システムからの出力に基づいて、該対象に処置をすべきか否かを判断する手段と、
     該対象に対して処置をすべきと判断される場合、該対象の健康管理のためのアクションを行う手段と
    を含む、システム。
    A target health management system,
    an estimation system configured to perform the method according to any one of claims 1 to 11;
    means for determining whether or not to treat the subject based on the output from the estimation system;
    A system comprising means for taking action for health management of the subject when it is determined that the subject should be treated.
  21.  対象の健康管理プログラムであって、該プログラムは、プロセッサを備えるコンピュータにおいて実行され、該プログラムは、
     請求項1~11のいずれか一項に記載の方法を行うことと、
     該方法の結果に基づいて、該対象に処置をすべきか否かを判断することと、
     該対象に対して処置をすべきと判断される場合、該対象の健康管理のためのアクションを行うための指示を出すことと
     を含む処理を該プロセッサに行わせる、プログラム。
    A target health management program, the program being executed on a computer comprising a processor, the program comprising:
    carrying out the method according to any one of claims 1 to 11;
    determining whether or not to treat the subject based on the results of the method;
    A program that causes the processor to perform processing including, when it is determined that treatment should be taken for the subject, issuing an instruction to take action for health management of the subject.
PCT/JP2023/032811 2022-09-09 2023-09-08 Subject state prediction and application of same WO2024053728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022144047 2022-09-09
JP2022-144047 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053728A1 true WO2024053728A1 (en) 2024-03-14

Family

ID=90191385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032811 WO2024053728A1 (en) 2022-09-09 2023-09-08 Subject state prediction and application of same

Country Status (1)

Country Link
WO (1) WO2024053728A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160374594A1 (en) * 2015-06-26 2016-12-29 Koninklijke Philips N.V. System for monitoring a dopaminergic activity
JP2019510826A (en) * 2016-04-04 2019-04-18 シノピア バイオサイエンシーズ,インク. Treatment of extrapyramidal syndrome using trapidil
WO2021048682A1 (en) * 2019-09-12 2021-03-18 株式会社半導体エネルギー研究所 Classification method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160374594A1 (en) * 2015-06-26 2016-12-29 Koninklijke Philips N.V. System for monitoring a dopaminergic activity
JP2019510826A (en) * 2016-04-04 2019-04-18 シノピア バイオサイエンシーズ,インク. Treatment of extrapyramidal syndrome using trapidil
WO2021048682A1 (en) * 2019-09-12 2021-03-18 株式会社半導体エネルギー研究所 Classification method

Similar Documents

Publication Publication Date Title
JP6676522B2 (en) Method of operating a device for tracking eye movements in a subject and method of using the same to locate central nervous system lesions of eye movement data tracked by the device
Paalasmaa et al. Unobtrusive online monitoring of sleep at home
Paradiso et al. PSYCHE: Personalised monitoring systems for care in mental health
JP6166463B2 (en) A method for assessing product effectiveness using objective and non-invasive methods for quantifying itching
JP6231500B2 (en) Method, apparatus and system for diagnosing and treating mood disorders
CN111278351A (en) System and method for capturing and analyzing pupil images to determine toxicology and neurophysiology
CA2938629A1 (en) Methods and systems for providing diagnosis or prognosis of parkinson&#39;s disease using body-fixed sensors
US20200155038A1 (en) Therapy monitoring system
WO2022191332A1 (en) Prediction of amount of in vivo dopamine etc., and application thereof
WO2024053728A1 (en) Subject state prediction and application of same
KR20220072120A (en) Method for classifying endophenotype of parkinson disease
Viqueira et al. Ocular movement and cardiac rhythm control using eeg techniques
Mechanick et al. Wearable technologies in lifestyle medicine
Tong et al. Assessment of spontaneous brain activity patterns in patients with iridocyclitis: a resting-state study
Wisti et al. Use of physiological signals to predict cybersickness
Costa Dispositivos médicos na abordagem de doentes com epilepsia
Gambardella et al. Visual Function in Children with GNAO1-Related Encephalopathy. Genes 2023, 14, 544
Scalera et al. A software system for the assessment of the sleep-wake rhythm using Axivity AX3
Montesinos-Silva Ageing and sleep in human balance and falls: the role of wearable sensors and nonlinear signal analysis
Feng Magnetic resonance imaging of saccadic eye movements in Parkinson’s disease
Costa Medical Devices for the Management of Patients With Epilepsy
Macerollo The role of somatosensory afferences in Parkinson's disease
Chin Effect of Age on Steady-State Visual Evoked Potential
KR20220072121A (en) Method for providing evidence-based interpretation contents for clinical understanding of analysis results
KR20220072122A (en) Method for filtering optimized eeg for the analysis of eeg in parkinson disease patienrs