WO2024053703A1 - Ventilation unit - Google Patents

Ventilation unit Download PDF

Info

Publication number
WO2024053703A1
WO2024053703A1 PCT/JP2023/032656 JP2023032656W WO2024053703A1 WO 2024053703 A1 WO2024053703 A1 WO 2024053703A1 JP 2023032656 W JP2023032656 W JP 2023032656W WO 2024053703 A1 WO2024053703 A1 WO 2024053703A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
ventilation
exhaust
unit
fan
Prior art date
Application number
PCT/JP2023/032656
Other languages
French (fr)
Japanese (ja)
Inventor
諒 岡元
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024053703A1 publication Critical patent/WO2024053703A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling

Definitions

  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-286432 discloses a ventilation unit that includes an adsorption member and, during exhaust operation, indoor air passes through the adsorption member and is exhausted to the outside.
  • the present disclosure proposes a ventilation unit that suppresses contamination of the adsorption member during exhaust operation.
  • the ventilation unit of the first aspect includes a blower fan, a ventilation hose, an inlet, an outlet, an adsorption member, and a control section.
  • the suction member is provided in the ventilation path from the suction port to the air outlet via the ventilation fan.
  • the control unit performs air supply operation and exhaust operation.
  • the air supply operation is an operation in which the blower fan is driven to supply outdoor air into the room from the ventilation path through the ventilation hose.
  • the exhaust operation is an operation in which the blower fan is driven in the same rotational direction as the air supply operation, and indoor air is exhausted to the outside through the ventilation hose without passing through the suction member.
  • This ventilation unit performs an air supply operation in which air is supplied from a ventilation path in which an adsorption member is provided, and an exhaust operation in which a blower fan is driven in the same rotational direction as the air supply operation to exhaust air without passing through the adsorption member. . Therefore, this ventilation unit can supply outdoor air into the room through the adsorption member, and can prevent pollutants from adsorbing to the adsorption member during exhaust operation.
  • the ventilation unit according to the second aspect is the ventilation unit according to the first aspect, in which the suction member is provided between the suction port and the blower fan in the ventilation path.
  • This ventilation unit performs air supply and exhaust operations using the suction power of the blower fan.
  • a suction member is provided between the blower fan and the air outlet during exhaust operation, it is necessary to provide a path that can utilize the suction force and does not pass the suction member. Therefore, the exhaust route of the ventilation unit becomes complicated, making it difficult to switch between air supply operation and exhaust operation.
  • this ventilation unit the suction member is provided between the suction port and the ventilation fan in the ventilation path. Therefore, this ventilation unit can easily switch between an air supply operation in which the suction member is passed and an exhaust operation in which the adsorption member is not passed.
  • the ventilation unit of the third aspect is the ventilation unit of the first aspect or the second aspect, and further includes a switching mechanism.
  • the switching mechanism switches between an air supply path that is an air path during air supply operation and an exhaust path that is an air path during exhaust operation.
  • This ventilation unit can more easily switch between air supply operation and exhaust operation using the switching mechanism that switches between the air supply route and the exhaust route.
  • the ventilation unit according to the fourth aspect is the ventilation unit according to the third aspect, and further includes an exhaust port.
  • the exhaust port exhausts indoor air to the outside during exhaust operation. Further, the switching mechanism switches the exhaust path so that the air passes through the ventilation hose and reaches the exhaust port from the air outlet via the blower fan.
  • This ventilation unit is equipped with an exhaust port that discharges indoor air to the outside during exhaust operation, in addition to an inlet that sucks in outdoor air during air supply operation. Therefore, this ventilation unit can more easily switch between air supply operation and exhaust operation using the exhaust port.
  • the ventilation unit according to the fifth aspect is the ventilation unit according to the fourth aspect, and further includes a heater.
  • the adsorption member is a humidifying rotor.
  • the heater heats the air introduced into the rotor.
  • the control unit further performs a regeneration operation in which outdoor air is sucked in, heated by the heater, passed through the rotor, and then discharged outside through the exhaust port again.
  • This ventilation unit can perform humidification by supplying moisture to the air using an adsorption member that is a humidification rotor.
  • this ventilation unit performs a regeneration operation in which the heated air removes moisture from the rotor. Therefore, the present ventilation unit can regenerate the moisture adsorption capacity of the rotor.
  • the exhaust port used during the regeneration operation is the same as the exhaust port used during the exhaust operation. This ventilation unit does not require an additional exhaust port for regeneration operation, and can perform regeneration operation using the existing structure. Therefore, the structure of this ventilation unit can be simplified.
  • the ventilation unit according to the sixth aspect is the ventilation unit according to the fifth aspect, in which the switching mechanism is such that the regeneration path that is the air path during regeneration operation is such that the air sucked from the suction port is exhausted via the blower fan. Switch so that the route goes to the mouth.
  • the present ventilation unit can more easily switch between other operations and regeneration operation using the switching mechanism.
  • the ventilation unit according to the seventh aspect is the ventilation unit according to any one of the fourth to sixth aspects, and further includes a shutter.
  • the shutter closes the exhaust port during air supply operation and opens the exhaust port during exhaust operation.
  • this ventilation unit can more easily switch between air supply operation and exhaust operation.
  • the ventilation unit according to the eighth aspect is a ventilation unit according to any one of the first to fourth aspects, and the seventh aspect, in which the adsorption member includes a humidifying rotor, a pre-filter, a dust collection filter, At least one of the deodorizing filters.
  • this ventilation unit can perform humidification that supplies moisture to the air. Further, this ventilation unit can clean the air when the adsorption members are a pre-filter, a dust collection filter, and a deodorizing filter.
  • FIG. 1 is a schematic configuration diagram showing an air conditioner 100.
  • FIG. FIG. 3 is a sectional view showing a unit main body 131.
  • FIG. FIG. 3 is a top view showing the unit main body 131.
  • FIG. 3 is a schematic configuration diagram showing a humidifying device 320.
  • FIG. 2 is a control block diagram of an indoor unit 110 and an outdoor unit 120.
  • FIG. 2 is a schematic configuration diagram showing an air supply path SU in the air conditioner 100.
  • FIG. 3 is a sectional view showing an air supply path SU in the unit body 131.
  • FIG. 3 is a top view showing an air supply path SU in the unit main body 131.
  • FIG. 3 is a schematic configuration diagram showing an air supply path SU in a humidifier 320.
  • FIG. 2 is a schematic configuration diagram showing an exhaust path EX in the air conditioner 100.
  • FIG. 3 is a cross-sectional view showing an exhaust path EX in the unit main body 131.
  • FIG. 3 is a top view showing an exhaust path EX in the unit main body 131.
  • FIG. 3 is a schematic configuration diagram showing a regeneration path RP in the air conditioner 100.
  • FIG. 7 is a sectional view showing a regeneration path RP in the unit main body 141.
  • FIG. 7 is a top view showing a regeneration path RP in the unit main body 141.
  • FIG. 1 is a schematic configuration diagram showing an air conditioner 102.
  • FIG. 5 is a perspective view showing the internal structure of a unit main body 50.
  • FIG. FIG. 5 is a perspective view showing the internal structure of a unit main body 50.
  • FIG. 3 is a perspective view of the unit main body 50 with some of its components removed.
  • FIG. 5 is a top view of the unit main body 50 with some of its components removed.
  • FIG. 5 is an exploded perspective view of a unit main body 50.
  • FIG. FIG. 5 is an exploded perspective view of some components of the unit body 50.
  • FIG. 5 is a schematic cross-sectional view of a unit main body 50.
  • FIG. It is a schematic block diagram which shows the operation
  • FIG. 7 is a schematic configuration diagram showing the operation of the shutter 74a during regeneration operation.
  • FIG. 5 is a perspective view showing the internal structure of the unit main body 50 during exhaust operation.
  • FIG. 5 is an exploded perspective view of the unit main body 50 during exhaust operation.
  • FIG. 5 is an exploded perspective view of some components of the unit main body 50 during exhaust operation.
  • FIG. 5 is a schematic cross-sectional view of the unit main body 50 during exhaust operation.
  • FIG. 7 is a schematic configuration diagram showing the operation of the shutter 74a during exhaust operation.
  • FIG. 1 is a schematic configuration diagram showing an air conditioner 100.
  • the air conditioner 100 performs air conditioning in a room ID by exchanging heat between a refrigerant and air and supplying and discharging air. Examples of air conditioning include cooling, freezing, heating, humidification, dehumidification, air purification, air blowing, and ventilation.
  • the air conditioning performed by the air conditioner 100 includes cooling, heating, humidification, and ventilation.
  • the air conditioner 100 includes an indoor unit 110 and an outdoor unit 120. Indoor unit 110 and outdoor unit 120 are electrically connected.
  • the indoor unit 110 is installed in the indoor ID.
  • the indoor unit 110 includes an indoor suction port IP1, an indoor air outlet IP2, an indoor heat exchanger (not shown), and an indoor fan (not shown).
  • the indoor suction port IP1 is an opening for sucking the air of the indoor ID into the indoor unit 110.
  • the indoor air outlet IP2 is an opening for blowing out the air inside the indoor unit 110 to the indoor ID.
  • the indoor heat exchanger exchanges heat between the refrigerant and air.
  • the indoor heat exchanger constitutes a refrigeration cycle together with an outdoor heat exchanger and the like, which will be described later.
  • Indoor heat exchangers operate as evaporators or condensers.
  • the indoor fan is rotated to generate suction power. Due to the suction force of the indoor fan, the air in the indoor ID is sucked in through the indoor suction port IP1 and blown out from the indoor air outlet IP2.
  • Outdoor unit 120 is installed in the outdoor OD.
  • the outdoor unit 120 includes a heat exchange unit 121 and a ventilation unit 130.
  • the heat exchange unit 121 includes an outdoor heat exchanger (not shown) that exchanges heat between refrigerant and air.
  • the outdoor heat exchanger constitutes a refrigeration cycle with the indoor heat exchanger and the like. Outdoor heat exchangers operate as evaporators or condensers.
  • the ventilation unit 130 supplies air from the outdoor OD to the indoor ID, discharges air from the indoor ID to the outdoor OD, and performs air conditioning for the indoor ID.
  • the ventilation unit 130 includes a unit body 131 and a ventilation hose 132.
  • the unit main body 131 is provided with a suction port SP, a blowout port BP, and an exhaust port EP.
  • the detailed configuration of the unit main body 131 will be described later.
  • the ventilation hose 132 forms an air path between the indoor unit 110 and the outdoor unit 120.
  • FIG. 2 is a sectional view showing the unit main body 131.
  • FIG. 3 is a top view showing the unit main body 131.
  • the unit body 131 includes a casing 310, a humidifier 320, a fan unit 330, a damper unit 340, a shutter 350, a control device 360, and the like.
  • the casing 310 is a housing that houses the humidifier 320, the fan unit 330, the damper unit 340, the shutter 350, the control device 360, and the like.
  • Fan unit 330 is an example of a blower fan.
  • Damper unit 340 is an example of a switching mechanism. Note that the casing 310 does not need to house the control device 360.
  • the casing 310 is placed on the top side of the heat exchange unit 121 and has a rectangular box shape.
  • a humidifier 320, a fan unit 330, a damper unit 340, a shutter 350, a control device 360, and the like are arranged in an internal space 604 formed by the casing 310.
  • the casing 310 is provided with a suction port SP, a blowout port BP, and an exhaust port EP.
  • the blowout port BP is an opening for blowing air from the unit main body 131 to the ventilation hose 132. Further, the air outlet BP is an opening for sucking air into the unit main body 131 from the ventilation hose 132.
  • the air outlet BP is provided on the bottom wall surface 601 of the casing 310. The air outlet BP is provided near one side of the casing 310.
  • the suction port SP is an opening for sucking air into the unit main body 131 from the outdoor OD.
  • the suction port SP is provided on the side wall surface 603 of the casing 310.
  • the suction port SP is provided near one side of the casing 310.
  • the suction port SP is provided at an appropriate distance from the blowout port BP.
  • the exhaust port EP is an opening for discharging air from the unit main body 131 to the outdoor OD.
  • the exhaust port EP is provided on the side wall surface 603 of the casing 310.
  • the ventilation path VP is a path from the suction port SP to the air outlet BP via the fan unit 330.
  • the side of the suction port SP in the ventilation path VP is referred to as the upstream side US.
  • the side of the air outlet BP in the ventilation path VP is referred to as the downstream side DS.
  • the socket 602 is a member that is inserted into the air outlet BP.
  • the socket 602 has a hollow cylindrical shape. Socket 602 connects to one end of ventilation hose 132. The socket 602 extends downward through the air outlet BP.
  • the humidifier 320 humidifies the air by adsorbing moisture to the air.
  • the humidifier 320 is provided in the ventilation path VP.
  • the humidifier 320 is provided near the suction port SP.
  • the humidifier 320 is provided between the suction port SP and the fan unit 330.
  • FIG. 4 is a schematic configuration diagram showing the humidifying device 320.
  • the humidifier 320 includes an adsorption member and a heater 322.
  • the adsorption member is a humidifying rotor 321.
  • the humidifying device 320 may include at least one of a humidifying tray, a humidifying tank, and a humidifying motor.
  • the rotor 321 is composed of a humidifying element (not shown).
  • humidifying elements include nonwoven fabrics, woven fabrics, and the like.
  • the humidifying element can pass the air in the ventilation path VP while adsorbing moisture.
  • the heater 322 heats the air introduced into the rotor 321.
  • the heater 322 is provided on the upstream side US with respect to the rotor 321.
  • the heater 322 is configured to allow air in the ventilation path VP to pass therethrough.
  • the heater 322 may include a plurality of heaters smaller than the heater 322.
  • the fan unit 330 generates suction force SF by rotationally driving a fan impeller 407, which will be described later.
  • the fan unit 330 includes a fan housing 405, a bell mouth plate 406, a fan impeller 407, a fan motor 408, and the like.
  • the fan housing 405 is composed of a bottom plate 403 and a side plate 404.
  • the bottom plate 403 has a scroll-like planar shape.
  • the side plate 404 surrounds the outer periphery of the bottom plate 403.
  • the bellmouth plate 406 is fixedly arranged on the open end side of the fan housing 405 so as to close the fan housing 405.
  • the bellmouth plate 406 has a rectangular flat plate shape.
  • the bell mouth plate 406 has a fan inlet 401 and a fan outlet 402 spaced apart from each other as appropriate.
  • the fan inlet 401 is an opening for sucking air into the fan unit 330 from outside the fan unit 330.
  • the fan outlet 402 is an opening for blowing air from inside the fan unit 330 to the outside of the fan unit 330.
  • the fan outlet 402 is provided coaxially with the outlet BP.
  • Fan Impeller 407 is arranged in a space surrounded by the bell mouth plate 406 and the fan housing 405. Fan impeller 407 is arranged to face fan suction port 401 .
  • the fan impeller 407 is rotationally driven by a fan motor 408, which will be described later, to generate suction force SF.
  • a fan motor 408 which will be described later.
  • Fan Motor 408 is fixed to the outer surface of the fan housing 405. Fan electric motor 408 rotates fan impeller 407 .
  • the damper unit 340 switches between an air supply path SU, which will be described later, and an exhaust path EX, which will be described later.
  • the damper unit 340 includes a damper enclosing body 341 and a damper main body 342.
  • the damper enclosing body 341 is formed by bending a plate material into a substantially “U” shape.
  • the damper enclosing body 341 includes a bottom wall 501, side walls 502, and the like.
  • the bottom wall 501 has substantially the same dimensions and shape as the bell mouth plate 406.
  • the side walls 502 are a pair of walls rising from both left and right edges of the bottom wall 501 and having the same height.
  • the damper enclosing body 341 is integrated by abutting and fixing the side wall 502 to the lower surface of the bell mouth plate 406 on the damper unit 340 side. Therefore, the bellmouth plate 406 and the damper enclosing body 341 form a penetration area 505 having a rectangular cross-section.
  • the upstream end 503 and downstream end 504, which are both ends of the penetration area 505, are openings. Therefore, the penetration area 505 is tunnel-shaped.
  • a damper main body 342 which will be described later, is arranged so as to be movable in the axial direction (penetration direction) of the penetration region 505.
  • the damper enclosing body 341 is provided with an air supply/exhaust port 515 at a position corresponding to one end of the penetration area 505.
  • the supply/exhaust port 515 has approximately the same diameter as the fan outlet 402 on the fan unit 330 side.
  • a socket 602 extending downward from the bottom wall 501 is integral with the bottom wall 501 .
  • the damper enclosing body 341 is attached to the casing 310 side by abutting and fixing the bottom wall 501 to the bottom wall surface 601 of the casing 310. Therefore, when the damper enclosure 341 is attached to the casing 310 side, the supply/exhaust port 515 on the damper enclosure 341 side and the fan outlet 402 on the bell mouth plate 406 side are arranged to substantially overlap in the vertical direction. Ru.
  • the damper body 342 includes a base portion 506, an extension portion 507, a bottom wall 508, a side wall 509, a curved wall 510, and the like.
  • the base 506 has a rectangular box shape with an open top.
  • the extending portion 507 continues from one corner of the base portion 506 and extends laterally.
  • the bottom wall 508 extends from the base 506 to the extension 507 .
  • the side wall 509 is erected around the base 506 so as to surround the base 506 .
  • the curved wall 510 covers the periphery of the extension portion 507 in a spherical shape.
  • a first opening 511 is provided in the bottom wall 508 at a position corresponding to one side of the base 506.
  • a second opening 512 is provided in the bottom wall 508 at a position corresponding to the extension portion 507 .
  • a cylindrical member 513 having a circular cross section and extending upward from the first opening 511 is formed integrally with the damper main body 342 .
  • the height of the cylindrical member 513 is set such that the upper end of the cylindrical member 513 is located at approximately the same height as the upper end of the side wall 509.
  • the height dimensions of the cylindrical member 513 and the side wall 509 are set corresponding to the height dimension of the penetration area 505 of the damper enclosing body 341.
  • the damper body 342 is slidably fitted within the penetration area 505.
  • a portion of the space surrounded by the side wall 509 of the damper body 342 excluding the cylindrical member 513 (the outer portion of the cylindrical member 513) is referred to as a damper inner space 514.
  • the sliding direction of the damper body 342 within the penetration area 505 is the axial direction of the penetration area 505 (arrow a direction, arrow b direction).
  • the relative positions of the first opening 511 and the second opening 512 in the planar direction are such that the first opening 511 and the second opening 512 can selectively communicate with the air supply/exhaust port 515 as the damper body 342 slides. is set to
  • the shutter 350 closes the exhaust port EP during an air supply operation, which will be described later, and opens the exhaust port EP during an exhaust operation, which will be described later.
  • the first side surface 351 of the shutter 350 is fixed to the side wall surface 603.
  • the shutter 350 is rotatable and moves in the direction of arrow c and the direction of arrow d.
  • the shutter 350 moves in the direction of arrow c
  • the second side surface 352 of the shutter 350 comes into contact with the bottom plate 403. Therefore, when the shutter 350 moves in the direction of arrow c, the shutter 350 opens the exhaust port EP. Further, when the shutter 350 moves in the direction of the arrow c, the shutter 350 blocks the air path in the direction of the arrow e.
  • the shutter 350 moves in the direction of the arrow d
  • the second side surface 352 comes into contact with the side wall surface 603. Therefore, when the shutter 350 moves in the direction of the arrow d, the shutter 350 closes the exhaust port EP.
  • Control device 360 performs air supply operation, exhaust operation, adsorption operation, etc. Details of the air supply operation, exhaust operation, and adsorption operation will be described later.
  • the control device 360 controls the operations of the humidifier 320, the fan unit 330, the damper unit 340, the shutter 350, and the like.
  • Control device 360 is an example of a control section.
  • the control device 360 is provided within the unit main body 131. A diagram of the unit main body 131 in which the control device 360 is arranged is omitted. FIG. 5 is a control block diagram of the indoor unit 110 and the outdoor unit 120.
  • the control device 360 is electrically connected to the humidifier 320, the fan unit 330, the damper unit 340, and the shutter 350.
  • the heat exchange unit 121 and the unit main body 131 are electrically connected.
  • Indoor unit 110 and outdoor unit 120 are electrically connected.
  • the control device 360 is realized by a computer.
  • the control device 360 includes a control calculation device and a storage device (both not shown).
  • a processor such as a CPU or a GPU can be used as the control calculation device.
  • the control arithmetic device reads a program stored in the storage device, and performs predetermined image processing and arithmetic processing according to this program. Furthermore, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to the program.
  • the storage device can be used as a database. Specific functions realized by the control device 360 will be described later.
  • control device 360 described here is only an example, and the functions of the control device 360 described below may be realized by software or hardware, or by a combination of software and hardware. It may be realized by
  • the air conditioner 100 performs cooling, heating, humidification, ventilation, etc.
  • Cooling is an operation in which a refrigerant removes heat from indoor air using a refrigerant circuit that uses an indoor heat exchanger as an evaporator and an outdoor heat exchanger as a condenser.
  • An operation in which the refrigerant removes heat from indoor air using a refrigerant circuit in which the indoor heat exchanger serves as an evaporator and the outdoor heat exchanger serves as a condenser is referred to as cooling operation. Cooling is performed by cooling operation.
  • Heating is an operation in which refrigerant supplies heat to indoor air through a refrigerant circuit that uses an indoor heat exchanger as a condenser and an outdoor heat exchanger as an evaporator.
  • An operation in which the refrigerant supplies heat to indoor air using a refrigerant circuit in which the indoor heat exchanger is the condenser and the outdoor heat exchanger is the evaporator is called heating operation. Heating is performed by heating operation.
  • Humidification is an operation of driving the fan unit 330 to supply outdoor air with moisture adsorbed to the indoor ID from the ventilation path VP through the ventilation hose 132.
  • An operation in which the fan unit 330 is driven to supply outdoor air to the indoor room ID from the ventilation path VP through the ventilation hose 132 is referred to as an air supply operation.
  • the operation that causes outdoor air to adsorb moisture is called an adsorption operation.
  • Humidification is performed by air supply operation and adsorption operation.
  • the indoor humidity may be lower than the target humidity.
  • An example of the target humidity is the appropriate humidity for the person or object in the room ID.
  • Ventilation is performed by driving the fan unit 330 to supply outdoor air from the ventilation path VP to the indoor ID through the ventilation hose 132, and by driving the fan unit 330 in the same rotational direction as the air supply operation to supply the ventilation hose without passing through the rotor 321. This is an operation for discharging indoor air to the outdoor OD through 132.
  • An operation in which the fan unit 330 is driven in the same rotational direction as the air supply operation to exhaust indoor air to the outdoor OD through the ventilation hose 132 without passing through the rotor 321 is referred to as an exhaust operation. Ventilation is performed by air supply operation and exhaust operation. Note that ventilation may be performed not only by air supply operation but also by exhaust operation.
  • Contaminants are substances that are not suitable for persons or objects in the room.
  • pollutants include substances contained in cigarette smoke, substances contained in cooking smoke, dust, PM2.5, and the like.
  • substances contained in cigarette smoke include asbestos, acetaldehyde, carbon monoxide, cadmium, tar, dioxins, and nicotine.
  • substances contained in cooking smoke include nitrogen dioxide, formaldehyde, carbon monoxide, and PM2.5.
  • FIG. 6 is a schematic configuration diagram showing the air supply path SU in the air conditioner 100.
  • the air supply route SU is an air route during air supply operation.
  • FIG. 7 is a sectional view showing the air supply path SU in the unit main body 131.
  • FIG. 8 is a top view showing the air supply path SU in the unit main body 131.
  • the damper main body 342 is moved in the direction of arrow b, and the air supply/exhaust port 515 and the fan air outlet 402 are brought into communication via the cylindrical member 513 (first opening 511).
  • the second opening 512 is closed by the bottom wall 501. Since the shutter 350 is moved in the direction of arrow d, the exhaust port EP is closed.
  • a ventilation path VP is provided from the suction port SP to the air outlet BP via the fan unit 330. Further, a humidifier 320 is provided between the suction port SP and the fan unit 330. Therefore, the outdoor air sucked through the suction port SP passes through the humidifier 320.
  • the outdoor air that has passed through the humidifier 320 reaches the penetration area 505 along the ventilation path VP.
  • the outdoor air that has reached the penetration area 505 is sucked into the fan unit 330 through the fan suction port 401.
  • the outdoor air is blown out from the fan outlet 402 toward the cylindrical member 513 with increased static pressure.
  • the outdoor air blown toward the cylindrical member 513 reaches the air supply/exhaust port 515 .
  • the outdoor air that has reached the air supply/exhaust port 515 reaches the inside of the indoor unit 110 through the ventilation hose 132.
  • the outdoor air that has reached the interior of the indoor unit 110 is supplied to the indoor ID via the indoor air outlet IP2 by the rotation of the indoor fan.
  • outdoor air is supplied from the ventilation path VP to the indoor ID through the ventilation hose 132.
  • FIG. 9 is a schematic configuration diagram showing the air supply path SU in the humidifier 320.
  • outdoor air passes through the humidifier 320 along the ventilation path VP.
  • the outdoor air reaches the heater 322 provided on the upstream side US of the rotor 321. Outdoor air is heated by the heater 322 while passing through it. The heated outdoor air reaches the rotor 321. Since the outdoor air is heated, the moisture contained in the rotor 321 is adsorbed by the outdoor air. The outdoor air adsorbs moisture contained in the rotor 321 while passing through the rotor 321 . The outdoor air that has absorbed moisture flows to the downstream side DS along the ventilation path VP. Therefore, the outdoor air adsorbs moisture due to the adsorption operation.
  • FIG. 10 is a schematic configuration diagram showing the exhaust path EX in the air conditioner 100.
  • the exhaust route EX is an air route during exhaust operation.
  • FIG. 11 is a sectional view showing the exhaust path EX in the unit main body 131.
  • FIG. 12 is a top view showing the exhaust path EX in the unit main body 131.
  • the damper main body 342 is moved in the direction of arrow a to communicate the supply/exhaust port 515 and the fan suction port 401 via the damper internal space 514 (via the outer portion of the cylindrical member 513).
  • the cylindrical member 513 is closed by the bottom wall 501. Since the shutter 350 is moved in the direction of arrow c, the exhaust port EP is opened.
  • suction force SF When the fan impeller 407 is rotationally driven, suction force SF is generated.
  • the fan impeller 407 rotates in the same rotational direction as during air supply operation. Therefore, the suction force SF generated by the fan impeller 407 also acts in the same direction as during air supply operation. Due to the suction force SF, indoor air is sucked through the damper internal space 514 from the fan suction port 401 side. Indoor air sucked into the fan unit 330 is blown out from the fan outlet 402 to the penetration area 505 side. The indoor air blown toward the penetration area 505 reaches the internal space 604.
  • the shutter 350 opens the exhaust port EP and closes the path to the suction port SP. Therefore, the indoor air that has reached the internal space 604 is discharged to the outdoor OD via the exhaust port EP. Due to the shutter 350, no air path to the suction port SP is formed. Therefore, the indoor air is discharged to the outdoor OD without passing through the humidifier 320.
  • the air conditioner 100 may perform dehumidification. Dehumidification is performed by air supply operation. Adsorption operation is not performed during dehumidification.
  • the ventilation unit 130 includes a blower fan, a ventilation hose 132, an inlet SP, an outlet BP, an adsorption member, and a control section.
  • the adsorption member is provided in the ventilation path VP from the suction port SP to the air outlet BP via the ventilation fan.
  • the control unit performs air supply operation and exhaust operation.
  • the air supply operation is an operation in which the ventilation fan is driven to supply outdoor air from the ventilation path VP to the indoor ID through the ventilation hose 132.
  • the exhaust operation is an operation in which the blower fan is driven in the same rotational direction as the air supply operation, and indoor air is exhausted to the outdoor OD through the ventilation hose 132 without passing through the adsorption member.
  • the ventilation unit 130 performs an air supply operation in which air is supplied from a ventilation path VP in which an adsorption member is provided, and an exhaust operation in which a blower fan is driven in the same rotational direction as the air supply operation to exhaust air without passing through the adsorption member. conduct. Therefore, the ventilation unit 130 can supply outdoor air through the adsorption member to the indoor ID, and can prevent pollutants from adsorbing to the adsorption member during exhaust operation.
  • an adsorption member is provided between the suction port SP and the ventilation fan in the ventilation path VP.
  • the ventilation unit 130 performs air supply operation and exhaust operation using the suction force SF of the ventilation fan.
  • a suction member is provided between the blower fan and the air outlet during exhaust operation, it is necessary to provide a path that can utilize the suction force and does not pass the suction member. Therefore, the exhaust route EX of the ventilation unit becomes complicated, making it difficult to switch between air supply operation and exhaust operation.
  • the ventilation unit 130 an adsorption member is provided between the suction port SP and the ventilation fan in the ventilation path VP. Therefore, the ventilation unit 130 can easily switch between supplying air through the suction member and exhaust operation without passing the suction member.
  • Ventilation unit 130 further includes a switching mechanism.
  • the switching mechanism switches between an air supply path SU, which is an air path during air supply operation, and an exhaust path EX, which is an air path during exhaust operation.
  • the ventilation unit 130 can more easily switch between the air supply operation and the exhaust operation using a switching mechanism that switches between the air supply route SU and the exhaust route EX.
  • the ventilation unit 130 further includes an exhaust port EP.
  • the exhaust port EP exhausts indoor air to the outside during exhaust operation. Further, the switching mechanism switches the exhaust route EX so that the air passing through the ventilation hose 132 is a route from the outlet BP to the exhaust outlet EP via the blower fan.
  • the ventilation unit 130 includes an exhaust port EP that discharges indoor air to the outside during an exhaust operation, in addition to a suction port SP that sucks in outdoor air during an air supply operation. Therefore, the ventilation unit 130 can more easily switch between air supply operation and exhaust operation using the exhaust port EP.
  • Ventilation unit 130 further includes a shutter 350.
  • the shutter 350 closes the exhaust port EP during air supply operation and opens the exhaust port EP during exhaust operation.
  • the shutter 350 closes the exhaust port EP during air supply operation.
  • the air path from the exhaust port EP is not formed, so the air path does not become complicated.
  • the ventilation unit 130 can simplify the air path during the air supply operation while performing the exhaust operation using the exhaust port EP. Therefore, the ventilation unit 130 can more easily switch between air supply operation and exhaust operation.
  • the air conditioner 100 may further perform air cleaning.
  • the adsorption member further includes at least one of a pre-filter, a dust collection filter, and a deodorizing filter.
  • the air conditioner 100 may perform air purification instead of humidification.
  • the adsorption member is at least one of a prefilter, a dust collection filter, and a deodorizing filter.
  • Humidification device 320 may be referred to as an "adsorption device.”
  • the adsorption device does not include a heater 322.
  • a pre-filter is a filter that adsorbs relatively large dust particles from outdoor air.
  • An example of the structure of a pre-filter is a structure in which a net-like sheet is sandwiched between resin frames on both sides.
  • a dust filter is a filter that adsorbs relatively small dust particles from outdoor air.
  • a deodorizing filter is a filter that adsorbs odor components from outdoor air.
  • the adsorption member is at least one of a humidifying rotor 321, a pre-filter, a dust collection filter, and a deodorizing filter.
  • the ventilation unit 130 can perform humidification that supplies moisture to the air. Further, the ventilation unit 130 can clean the air when the adsorption members are a pre-filter, a dust collection filter, and a deodorizing filter.
  • the unit body 141 of the ventilation unit 140 includes a damper unit 370 having a different structure from the damper unit 340 of the unit body 131.
  • FIG. 13 is a schematic configuration diagram showing the regeneration path RP in the air conditioner 100.
  • the regeneration route RP is an air route during regeneration operation.
  • FIG. 14 is a sectional view showing the regeneration path RP in the unit main body 141.
  • FIG. 15 is a top view showing the regeneration path RP in the unit main body 141.
  • the damper unit 370 of the unit main body 141 includes a pivotable side wall 519 instead of the fixed side wall 509 of the damper unit 340.
  • the side wall 519 is moved in the direction of arrow f and the direction of arrow g.
  • the side wall 519 is moved in the direction of arrow g during regeneration operation.
  • the side wall 519 moved in the direction of arrow g opens the path between the penetration area 505 and the damper internal space 514.
  • the penetration area 505 and the damper internal space 514 form a regeneration path RP. Therefore, in the damper unit 370, the side wall 519 switches the regeneration path RP so that the air sucked from the suction port SP becomes a path through the fan unit 330 to the exhaust port EP.
  • the side wall 519 is moved in the direction of arrow f during operations other than regeneration operation.
  • the side wall 519 moved in the direction of the arrow f blocks the path between the penetration area 505 and the damper internal space 514.
  • the air conditioner 101 performs regeneration in addition to cooling, heating, humidification, and ventilation.
  • Regeneration is an operation of sucking in outdoor air, passing the outdoor air heated by the heater 76 through the rotor 58, and exhausting it again to the outdoor OD through the exhaust port 52e.
  • the operation of sucking in outdoor air, passing the outdoor air heated by the heater 76 through the rotor 58, and discharging it to the outdoor OD again through the exhaust port 52e is referred to as a regeneration operation.
  • Regeneration is performed by regeneration operation and adsorption operation.
  • the damper main body 342 is moved in the direction of arrow a, and the supply/exhaust port 515 and the fan suction port 401 are communicated with each other via the damper internal space 514 (via the outer portion of the cylindrical member 513).
  • the cylindrical member 513 is closed by the bottom wall 501. Since the shutter 350 is moved in the direction of arrow c, the exhaust port EP is opened.
  • the side wall 519 is moved in the direction of arrow g, and the path between the penetration area 505 and the damper internal space 514 is opened.
  • the fan impeller 407 is driven in the same rotational direction as during air supply operation. Therefore, the fan impeller 407 generates the suction force SF in the same direction as during the air supply operation. The air in the outdoor OD is sucked into the internal space 604 from the suction port SP by the suction force SF.
  • a ventilation path VP is provided from the suction port SP to the air outlet BP via the fan unit 330. Further, a humidifier 320 is provided between the suction port SP and the fan unit 330. Therefore, the outdoor air sucked through the suction port SP passes through the humidifier 320.
  • the outdoor air that has passed through the humidifier 320 reaches the penetration area 505 along the ventilation path VP. Since the penetration area 505 and the damper inner space 514 are communicated with each other, outdoor air flows into the damper inner space 514. Outdoor air is sucked into the fan unit 330 through the fan suction port 401.
  • the indoor air sucked into the fan unit 330 is blown out from the fan outlet 402 to the penetration area 505 side again.
  • the indoor air blown toward the penetration area 505 reaches the internal space 604.
  • the shutter 350 opens the exhaust port EP and closes the path to the suction port SP. Therefore, the indoor air that has reached the internal space 604 is discharged to the outdoor OD via the exhaust port EP.
  • the shutter 350 does not form a path for air to the suction port SP. Therefore, the indoor air is discharged to the outdoor OD without passing through the humidifier 320.
  • Ventilation unit 140 further includes a heater 322.
  • the adsorption member is a rotor 321 for humidification.
  • the heater 322 heats the air introduced into the rotor 321.
  • the control unit further performs a regeneration operation in which outdoor air is sucked in, the outdoor air heated by the heater 322 is passed through the rotor 321, and is discharged to the outdoor OD again through the exhaust port EP.
  • the ventilation unit 140 can perform humidification that supplies moisture to the air using an adsorption member that is a humidification rotor 321. Further, the ventilation unit 140 performs a regeneration operation in which the heated air removes moisture from the rotor 321. Therefore, the ventilation unit 140 can regenerate the moisture adsorption capacity of the rotor 321. Further, in the ventilation unit 140, the exhaust port EP used during the regeneration operation is the same as the exhaust port EP used during the exhaust operation. The ventilation unit 140 does not need to further provide an exhaust port for regeneration operation, and can perform regeneration operation using the existing structure. Therefore, the structure of the ventilation unit 140 can be simplified.
  • the switching mechanism switches the regeneration path RP, which is the air path during the regeneration operation, so that the air sucked from the suction port SP passes through the ventilation fan to the exhaust port EP.
  • the ventilation unit 140 can more easily switch between other operations and regeneration operation using the switching mechanism.
  • FIG. 16 is a schematic configuration diagram showing the air conditioner 102.
  • the ventilation unit 150 includes a unit body 50 and a ventilation hose 56.
  • FIG. 17 is a perspective view showing the internal structure of the unit main body 50.
  • FIG. 18 is a perspective view of the unit main body 50 with some of its components removed.
  • FIG. 19 is a top view of the unit main body 50 with some of its components removed.
  • FIG. 20 is an exploded perspective view of the unit main body 50.
  • FIG. 21 is an exploded perspective view of some components of the unit main body 50.
  • FIG. 22 is a schematic cross-sectional view of the unit main body 50.
  • the casing 52 is provided with a suction port 52a, a suction port 52b, a first separate port 52c, an air outlet 52d, an exhaust port 52e, and a second separate port 52f.
  • the first separate port 52c is an opening for sucking outdoor air Aout from the outdoor OD into the unit main body 50.
  • a ventilation hose 56 is connected to the air outlet 52d.
  • the second separate port 52f is an opening for discharging air from the unit main body 50 to the outdoor OD.
  • the casing 52 includes a seal portion 52j on the bottom plate portion 52g of the casing 52.
  • the seal portion 52j blocks the passage of outdoor air Aout between a lower space S2, which will be described later, and a lower space S4, which will be described later.
  • the humidifier 57 includes a rotor 58, a holder 60, a motor 64, a first heater 76A, a second heater 76B, a tray 82, and the like.
  • Rotor, Holder, Motor A rotor 58 is provided at the center within the casing 52. In addition to the rotor 58, at least one of a pre-filter, a dust collection filter, and a deodorizing filter may be provided.
  • the rotor 58 is a disk-shaped member through which air can pass in the vertical direction (Z-axis direction) and rotates around a rotation center line C1 extending in the vertical direction.
  • the rotor 58 is held by a cylindrical holder 60.
  • the rotor 58 is rotated by a humidifying motor 64.
  • the motor 64 includes a gear 62 that engages with external teeth of the holder 60.
  • the rotor 58 continues to rotate at a predetermined rotational speed while the unit body 50 is in operation.
  • the humidifier 57 includes a first heater 76A and a second heater 76B.
  • the first heater 76A is provided for the flow path R1 starting from the suction port 52a.
  • the second heater 76B is provided for the flow path R2 starting from the suction port 52b.
  • the first heater 76A and the second heater 76B are arranged near the rotor 58.
  • the first heater 76A and the second heater 76B are arranged upstream of the rotor 58 in the flow path R1 and the flow path R2.
  • the first heater 76A and the second heater 76B are provided on the partition plate 78.
  • a portion of the upper surface 58a of the rotor 58 through which the first heater 76A, the second heater 76B, the flow path R1, and the flow path R2 pass is covered by a heater cover 80. Therefore, the outdoor air Aout heated by the first heater 76A and the second heater 76B can pass through the rotor 58.
  • the first heater 76A and the second heater 76B may be heaters with the same heating capacity, or may be heaters with different heating capacities.
  • the tray 82 is provided in a portion of the partition plate 78 near the first heater 76A and the second heater 76B.
  • the tray 82 receives and collects dust and the like separated from the outdoor air Aout.
  • the fan unit 65 includes a fan impeller 66, a partition plate 68, a fan housing 70, a fan motor 72, and the like.
  • the fan impeller 66 is arranged on one side of the unit main body 50 in the longitudinal direction (Y-axis direction) with respect to the rotor 58.
  • An example of the fan impeller 66 is a sirocco fan.
  • the fan impeller 66 is housed in a cylindrical portion 68a provided in a partition plate 68 that vertically divides a space on one side of the rotor 58 in the longitudinal direction.
  • the partition plate 68 forms an upper space S1 in which a portion of the upper surface 58a of the rotor 58 is in contact, and a lower space S2 in which a portion of the lower surface 58b of the rotor 58 is in contact.
  • the cylindrical portion 68a of the partition plate 68 is formed with an opening 68b connected to the air outlet 52d and an opening 68c connected to the exhaust port 52e. Furthermore, a through hole 68d is formed in the partition plate 68 for introducing air into the fan impeller 66 within the cylindrical portion 68a.
  • a first switching mechanism SN is provided near the opening 68b of the partition plate 68.
  • the first switching mechanism SN includes a fan-shaped switching member Na.
  • the switching member Na rotates around the rotation axis Nb by a motor (not shown).
  • the first switching mechanism SN can switch between closing and opening the vent SX by rotating the switching member Na around the rotation axis Nb.
  • the vent SX is opened, the air outlet 52d and the lower space S2 are communicated with each other.
  • a movable second switching mechanism SM is provided between the partition plate 68 and the bottom plate portion 52g of the casing 52.
  • the second switching mechanism SM blocks the air path between the lower space S2 and the rotor 58 during exhaust operation.
  • the second switching mechanism SM is configured to open the air path between the lower space S2 and the rotor 58 during air supply operation or regeneration operation.
  • Fan Housing 70 that covers the fan impeller 66 is attached to the cylindrical portion 68a of the partition plate 68.
  • the fan housing 70 is provided with a fan motor 72 that rotates the fan impeller 66.
  • the damper unit 74 switches the air path.
  • the damper unit 74 includes a rotatable shutter 74a.
  • the shutter 74a can rotate to open and close the opening 68b of the partition plate 68 and the path inside the cylindrical portion 68a (near the fan impeller 66).
  • the opening 68b is connected to the air outlet 52d. Therefore, the shutter 74a can rotate to open and close the air outlet 52d and the inner path of the cylindrical portion 68a.
  • the shutter 74a can rotate to open and close the opening 68c of the partition plate 68.
  • the opening 68c is connected to the exhaust port 52e. Therefore, the shutter 74a can rotate to open and close the exhaust port 52e.
  • Control device (not shown) performs replenishment operation in addition to air supply operation, exhaust operation, and regeneration operation. Details of the replenishment operation will be described later.
  • the replenishment fan 84 is a fan for performing replenishment operation, which will be described later.
  • the replenishment fan 84 is rotationally driven to generate suction force.
  • the replenishment fan 84 generates a flow of outdoor air Aout in a flow path R3, which will be described later.
  • the supplementary fan 84 is arranged on the other side of the unit body 50 in the longitudinal direction (Y-axis direction) with respect to the rotor 58 .
  • An example of the supplementary fan 84 is a sirocco fan.
  • the supplementary fan 84 is rotated by a motor 86 attached to the outer surface of the bottom plate part 52g of the casing 52.
  • the supplementary fan 84 is housed in a cylindrical portion 52h provided on the inner surface of the bottom plate portion 52g.
  • the internal space of the cylindrical portion 52h communicates with the second separate port 52f.
  • the partition plate 78 divides the space on one side of the rotor 58 in the longitudinal direction (Y-axis direction) into two parts, upper and lower.
  • the partition plate 78 is provided with a through hole 78a for taking outdoor air Aout into the supplementary fan 84.
  • the partition plate 78 is provided with a rotor accommodating portion 78b that rotatably accommodates the rotor 58 without covering the upper surface 58a.
  • the partition plate 78 includes a seal portion 78c. The seal portion 78c blocks the outdoor air Aout from flowing between the upper space S1 and the upper space S3 above the rotor 58.
  • a sealing member 88 that seals between the partition plate 78 and the top plate 54 is provided between the partition plate 78 and the top plate 54. Due to the sealing member 88, the outdoor air Aout flowing through the flow paths R1 and R2 and the outdoor air Aout flowing through the flow path R3 can pass through the rotor 58 at different positions and are not mixed with each other.
  • the air conditioner 102 performs dehumidification and replenishment in addition to cooling, heating, humidification, ventilation, and regeneration.
  • Replenishment is an operation for replenishing the rotor 58 with water.
  • Replenishment is an operation of sucking in outdoor air Aout through the first separate port 52c, passing it through the rotor 58, and discharging it to the outdoor OD again through the second separate port 52f.
  • An operation in which outdoor air Aout is sucked in through the first separate port 52c, passes through the rotor 58, and is discharged to the outdoor OD again through the second separate port 52f is referred to as a replenishment operation.
  • Replenishment is performed by replenishment operation.
  • Humidification of the air conditioner 102 may be performed by replenishment operation in addition to air supply operation and adsorption operation.
  • replenishment operation continuous humidification is possible because the rotor 58 is replenished with moisture.
  • the dehumidification of the air conditioner 102 is performed not by adsorption operation but by air supply operation.
  • the outdoor air Aout sucked in through the suction ports 52a and 52b flows into the upper space S1 above the partition plate 68, and flows toward the first heater 76A and the second heater 76B.
  • the first heater 76A and the second heater 76B are covered by a heater cover 80. Therefore, the outdoor air Aout flowing through the flow path R1 and the flow path R2 descends along the outer surface of the side wall portion 80a in order to enter the first heater 76A and the second heater 76B. Outdoor air Aout enters the gap and moves upward. The outdoor air Aout moves through the first heater 76A and the second heater 76B.
  • the outdoor air Aout descends toward the upper surface 58a.
  • the two flow paths R1 and R2 include a labyrinth through which the outdoor air Aout passes.
  • the flow path R1 and the flow path R2 can prevent dust, sand, etc. contained in the outdoor air Aout from reaching the ventilation hose 56, the indoor unit 110, and the indoor ID.
  • Outdoor air Aout passes through the rotor 58 from the upper surface 58a toward the lower surface 58b. In other words, the outdoor air Aout passes through the humidifier 57.
  • the outdoor air Aout that has passed through the rotor 58 moves in the lower space S2 below the partition plate 68, passes through the through hole 68d of the partition plate 68, and is taken into the fan impeller 66.
  • FIG. 23 is a schematic configuration diagram showing the operation of the shutter 74a during air supply operation.
  • the outdoor air Aout passes through the opening 68b and the air outlet 52d, and reaches the indoor unit 110 via the ventilation hose 56.
  • the outdoor air Aout that has reached the indoor unit 110 is supplied to the indoor ID via the indoor air outlet IP2.
  • FIG. 24 is a schematic configuration diagram showing the operation of the shutter 74a during regeneration operation.
  • the outdoor air Aout passes through the opening 68c and the exhaust port 52e, and is discharged to the outdoor OD again.
  • a flow path R3 other than flow path R1 and flow path R2 is generated as a flow path for outdoor air Aout.
  • the flow path R3 of the outdoor air Aout is different from the flow path R1 and the flow path R2, and is not connected to the inside of the indoor unit 110.
  • the flow path R3 is a flow path through which the outdoor air Aout passes through the rotor 58 and flows from the outdoor OD to the outdoor OD.
  • the flow path R3 starts from the first separate port 52c, passes through the rotor 58 from the lower surface 58b toward the upper surface 58a, and reaches the second separate port 52f.
  • outdoor air Aout flows into the casing 52 through the first separate port 52c.
  • the outdoor air Aout that has flowed in through the first separate port 52c flows into the lower space S4 below the partition plate 78, and flows toward the lower side of the rotor 58.
  • Outdoor air Aout passes through the rotor 58 from the lower surface 58b of the rotor 58 toward the upper surface 58a.
  • the outdoor air Aout that has passed through the rotor 58 moves in the upper space S3 above the partition plate 78, passes through the through hole 78a, and is taken into the supplementary fan 84.
  • the outdoor air Aout taken into the supplementary fan 84 is discharged to the outdoor OD via the second separate port 52f.
  • the unheated outdoor air Aout is dehydrated by the rotor 58.
  • the rotor 58 replenishes moisture with the outdoor air Aout.
  • the adsorption operation is performed with at least one of the first heater 76A and the second heater 76B operating.
  • at least one of the first heater 76A and the second heater 76B is operated.
  • both the first heater 76A and the second heater 76B are operated.
  • the amount of moisture in the outdoor air Aout (the amount of moisture removed from the rotor 58) can be adjusted more finely than when using one heating means. Therefore, the amount of humidification for the room ID can be precisely controlled.
  • FIG. 25 is a perspective view showing the internal structure of the unit main body 50 during exhaust operation.
  • FIG. 26 is an exploded perspective view of the unit main body 50 during exhaust operation.
  • FIG. 27 is an exploded perspective view of some components of the unit main body 50 during exhaust operation.
  • FIG. 28 is a schematic cross-sectional view of the unit main body 50 during exhaust operation.
  • the flow path generated during exhaust operation is referred to as flow path R4.
  • Indoor air is drawn into the indoor unit 110.
  • the sucked indoor air passes through the ventilation hose 56 and reaches the outlet 52d.
  • Indoor air flows into the unit main body 50 via the air outlet 52d and the opening 68b due to the suction force of the rotationally driven fan impeller 66.
  • the indoor air that has flowed into the unit main body 50 reaches the top of the partition plate 68.
  • FIG. 29 is a schematic configuration diagram showing the operation of the shutter 74a during exhaust operation.
  • the path from the air outlet 52d directly to the fan impeller 66 is blocked by the shutter 74a.
  • the vent SX is open. Therefore, the indoor air that has reached the top of the partition plate 68 flows into the lower space S2 via the vent SX.
  • the indoor air flowing into the lower space S2 reaches the vicinity of the fan impeller 66 via the through hole 68d due to the suction force.
  • the shutter 74a opens the exhaust port 52e. Therefore, the indoor air that has reached the vicinity of the fan impeller 66 is discharged to the outdoor OD via the opening 68c and the exhaust port 52e.
  • the exhaust port 52e used during the regeneration operation is the same as the exhaust port 52e used during the exhaust operation.
  • the ventilation unit 150 does not need to further provide an exhaust port for regeneration operation, and can perform regeneration operation using the existing structure. Therefore, the ventilation unit 150 can be simplified in structure.

Abstract

A ventilation unit (130) comprises a supply air fan, a ventilation hose (132), a suction port (SP), a blowing port (BP), an adsorption member, and a control unit. The adsorption member is provided in a ventilation path (VP) extending from the suction port (SP) to the blowing port (BP) through the supply air fan. The control unit performs air supply operation and air exhaust operation. The air supply operation involves driving the supply air fan to supply outdoor air to an indoor space (ID) through the ventilation hose (132) via the ventilation path (VP). The air exhaust operation involves driving the supply air fan in the same rotation direction as the air supply operation to exhaust indoor air to an outdoor space (OD) through the ventilation hose (132) without through the adsorption member.

Description

換気ユニットventilation unit
 換気ユニットに関する。 Regarding ventilation units.
 換気ホースによって室内と接続され、送風ファンが駆動することで給気運転及び排気運転を行う場合がある。 It is connected to the room through a ventilation hose, and a blower fan is driven to perform air supply and exhaust operations.
 特許文献1(特開2004-286432号公報)は、吸着部材を備え、排気運転時には室内空気が吸着部材を通過して室外へ排出される換気ユニットを開示している。 Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2004-286432) discloses a ventilation unit that includes an adsorption member and, during exhaust operation, indoor air passes through the adsorption member and is exhausted to the outside.
 特許文献1の換気ユニットでは、排気運転時に室内空気に含まれる汚染物質が吸着部材に吸着してしまう。 In the ventilation unit of Patent Document 1, pollutants contained in the indoor air are adsorbed to the adsorption member during exhaust operation.
 本開示は、排気運転時に吸着部材の汚染を抑制する換気ユニットを提案する。 The present disclosure proposes a ventilation unit that suppresses contamination of the adsorption member during exhaust operation.
 第1観点の換気ユニットは、送風ファンと、換気ホースと、吸込口と、吹出口と、吸着部材と、制御部を備える。吸着部材は、吸込口から送風ファンを介して吹出口に到達するまでの通風経路に設けられる。制御部は、給気運転と排気運転を行う。給気運転は、送風ファンを駆動して、通風経路から換気ホースを通じて室外空気を室内に供給する運転である。排気運転は、給気運転と同じ回転方向で送風ファンを駆動して、吸着部材を通さずに、換気ホースを通じて室内空気を室外へと排出する運転である。 The ventilation unit of the first aspect includes a blower fan, a ventilation hose, an inlet, an outlet, an adsorption member, and a control section. The suction member is provided in the ventilation path from the suction port to the air outlet via the ventilation fan. The control unit performs air supply operation and exhaust operation. The air supply operation is an operation in which the blower fan is driven to supply outdoor air into the room from the ventilation path through the ventilation hose. The exhaust operation is an operation in which the blower fan is driven in the same rotational direction as the air supply operation, and indoor air is exhausted to the outside through the ventilation hose without passing through the suction member.
 本換気ユニットは、吸着部材が設けられる通風経路から空気を供給する給気運転と、給気運転と同じ回転方向で送風ファンを駆動して吸着部材を通さずに空気を排出する排気運転を行う。従って、本換気ユニットは、吸着部材を通した室外空気を室内へ供給でき、排気運転時において、汚染物質が吸着部材に吸着することを防止できる。 This ventilation unit performs an air supply operation in which air is supplied from a ventilation path in which an adsorption member is provided, and an exhaust operation in which a blower fan is driven in the same rotational direction as the air supply operation to exhaust air without passing through the adsorption member. . Therefore, this ventilation unit can supply outdoor air into the room through the adsorption member, and can prevent pollutants from adsorbing to the adsorption member during exhaust operation.
 第2観点の換気ユニットは、第1観点の換気ユニットであって、吸着部材が、通風経路において、吸込口と送風ファンとの間に設けられる。 The ventilation unit according to the second aspect is the ventilation unit according to the first aspect, in which the suction member is provided between the suction port and the blower fan in the ventilation path.
 本換気ユニットは、送風ファンの吸引力により、給気運転と排気運転を行う。排気運転時において送風ファンと吹出口との間に吸着部材が設けられる場合、吸引力を利用でき、吸着部材を通さない経路が設けられる必要がある。従って、換気ユニットの排気経路が複雑になり、給気運転と排気運転との切り換えが困難になる。 This ventilation unit performs air supply and exhaust operations using the suction power of the blower fan. When a suction member is provided between the blower fan and the air outlet during exhaust operation, it is necessary to provide a path that can utilize the suction force and does not pass the suction member. Therefore, the exhaust route of the ventilation unit becomes complicated, making it difficult to switch between air supply operation and exhaust operation.
 本換気ユニットは、吸着部材が、通風経路において、吸込口と送風ファンとの間に設けられる。従って、本換気ユニットは、吸着部材を通す給気運転と、吸着部材を通さない排気運転の間での切り換えを、容易に行うことができる。 In this ventilation unit, the suction member is provided between the suction port and the ventilation fan in the ventilation path. Therefore, this ventilation unit can easily switch between an air supply operation in which the suction member is passed and an exhaust operation in which the adsorption member is not passed.
 第3観点の換気ユニットは、第1観点又は第2観点の換気ユニットであって、切換機構をさらに備える。切換機構は、給気運転時における空気の経路である給気経路と、排気運転時における空気の経路である排気経路を切り換える。 The ventilation unit of the third aspect is the ventilation unit of the first aspect or the second aspect, and further includes a switching mechanism. The switching mechanism switches between an air supply path that is an air path during air supply operation and an exhaust path that is an air path during exhaust operation.
 本換気ユニットは、給気経路と排気経路を切り換える切換機構により、給気運転と排気運転の間で切り換えを、より容易に行うことができる。 This ventilation unit can more easily switch between air supply operation and exhaust operation using the switching mechanism that switches between the air supply route and the exhaust route.
 第4観点の換気ユニットは、第3観点の換気ユニットであって、排気口をさらに備える。排気口は、排気運転時に室内空気を外部に排出する。また、切換機構は、排気経路が、換気ホースを通じた空気が、吹出口から送風ファンを介して排気口に到達するまでの経路となるように切り換える。 The ventilation unit according to the fourth aspect is the ventilation unit according to the third aspect, and further includes an exhaust port. The exhaust port exhausts indoor air to the outside during exhaust operation. Further, the switching mechanism switches the exhaust path so that the air passes through the ventilation hose and reaches the exhaust port from the air outlet via the blower fan.
 本換気ユニットは、給気運転時に室外空気を吸い込む吸込口とは別に、排気運転時に室内空気を外部に排出する排気口を備える。従って、本換気ユニットは、排気口により、給気運転と排気運転の間で切り換えを、より容易に行うことができる。 This ventilation unit is equipped with an exhaust port that discharges indoor air to the outside during exhaust operation, in addition to an inlet that sucks in outdoor air during air supply operation. Therefore, this ventilation unit can more easily switch between air supply operation and exhaust operation using the exhaust port.
 第5観点の換気ユニットは、第4観点の換気ユニットであって、ヒーターをさらに備える。吸着部材は、加湿用のローターである。ヒーターは、ローターに導入された空気を加熱する。制御部は、室外空気を吸い込んで、ヒーターにより加熱された後、ローターを通し、排気口により再び室外へと排出する再生運転、をさらに行う。 The ventilation unit according to the fifth aspect is the ventilation unit according to the fourth aspect, and further includes a heater. The adsorption member is a humidifying rotor. The heater heats the air introduced into the rotor. The control unit further performs a regeneration operation in which outdoor air is sucked in, heated by the heater, passed through the rotor, and then discharged outside through the exhaust port again.
 本換気ユニットは、加湿用のローターである吸着部材により、空気に水分を供給する加湿を行うことができる。また、本換気ユニットは、加熱された空気が、ローターから水分を奪う再生運転を行う。従って、本換気ユニットは、ローターの水分吸着能力を再生することができる。さらに、本換気ユニットは、再生運転時において用いる排気口が、排気運転時において用いる排気口と同一である。本換気ユニットは、再生運転のための排気口をさらに設ける必要がなく、既存の構造を活用した再生運転が可能である。従って、本換気ユニットは、構造を簡素化できる。 This ventilation unit can perform humidification by supplying moisture to the air using an adsorption member that is a humidification rotor. In addition, this ventilation unit performs a regeneration operation in which the heated air removes moisture from the rotor. Therefore, the present ventilation unit can regenerate the moisture adsorption capacity of the rotor. Furthermore, in this ventilation unit, the exhaust port used during the regeneration operation is the same as the exhaust port used during the exhaust operation. This ventilation unit does not require an additional exhaust port for regeneration operation, and can perform regeneration operation using the existing structure. Therefore, the structure of this ventilation unit can be simplified.
 第6観点の換気ユニットは、第5観点の換気ユニットであって、切換機構が、再生運転時における空気の経路である再生経路が、吸込口から吸い込まれた空気が、送風ファンを介して排気口までの経路となるように切り換える。 The ventilation unit according to the sixth aspect is the ventilation unit according to the fifth aspect, in which the switching mechanism is such that the regeneration path that is the air path during regeneration operation is such that the air sucked from the suction port is exhausted via the blower fan. Switch so that the route goes to the mouth.
 従って、本換気ユニットは、切換機構により、他の運転と再生運転の間で切り換えを、より容易に行うことができる。 Therefore, the present ventilation unit can more easily switch between other operations and regeneration operation using the switching mechanism.
 第7観点の換気ユニットは、第4観点から第6観点の何れかの観点の換気ユニットであって、シャッタをさらに備える。シャッタは、給気運転時に排気口を閉鎖し、排気運転時に排気口を開放する。 The ventilation unit according to the seventh aspect is the ventilation unit according to any one of the fourth to sixth aspects, and further includes a shutter. The shutter closes the exhaust port during air supply operation and opens the exhaust port during exhaust operation.
 従って、本換気ユニットは、給気運転と排気運転の間で切り換えを、より容易に行うことができる。 Therefore, this ventilation unit can more easily switch between air supply operation and exhaust operation.
 第8観点の換気ユニットは、第1観点から第4観点、第7観点の何れかの観点の換気ユニットであって、吸着部材が、加湿用のローターと、プレフィルターと、集塵フィルターと、消臭フィルターの少なくとも何れかである。 The ventilation unit according to the eighth aspect is a ventilation unit according to any one of the first to fourth aspects, and the seventh aspect, in which the adsorption member includes a humidifying rotor, a pre-filter, a dust collection filter, At least one of the deodorizing filters.
 本換気ユニットは、吸着部材が加湿用のローターである場合、空気に水分を供給する加湿を行うことができる。また、本換気ユニットは、吸着部材がプレフィルターと、集塵フィルターと、消臭フィルターである場合、空気を清浄することができる。 If the adsorption member is a humidification rotor, this ventilation unit can perform humidification that supplies moisture to the air. Further, this ventilation unit can clean the air when the adsorption members are a pre-filter, a dust collection filter, and a deodorizing filter.
空気調和機100を示す概略構成図である。1 is a schematic configuration diagram showing an air conditioner 100. FIG. ユニット本体131を示す断面図である。FIG. 3 is a sectional view showing a unit main body 131. FIG. ユニット本体131を示す上面図である。FIG. 3 is a top view showing the unit main body 131. FIG. 加湿装置320を示す概略構成図である。3 is a schematic configuration diagram showing a humidifying device 320. FIG. 室内ユニット110と室外ユニット120の制御ブロック図である。2 is a control block diagram of an indoor unit 110 and an outdoor unit 120. FIG. 空気調和機100における給気経路SUを示す概略構成図である。2 is a schematic configuration diagram showing an air supply path SU in the air conditioner 100. FIG. ユニット本体131における給気経路SUを示す断面図である。3 is a sectional view showing an air supply path SU in the unit body 131. FIG. ユニット本体131における給気経路SUを示す上面図である。3 is a top view showing an air supply path SU in the unit main body 131. FIG. 加湿装置320における給気経路SUを示す概略構成図である。3 is a schematic configuration diagram showing an air supply path SU in a humidifier 320. FIG. 空気調和機100における排気経路EXを示す概略構成図である。2 is a schematic configuration diagram showing an exhaust path EX in the air conditioner 100. FIG. ユニット本体131における排気経路EXを示す断面図である。3 is a cross-sectional view showing an exhaust path EX in the unit main body 131. FIG. ユニット本体131における排気経路EXを示す上面図である。3 is a top view showing an exhaust path EX in the unit main body 131. FIG. 空気調和機100における再生経路RPを示す概略構成図である。3 is a schematic configuration diagram showing a regeneration path RP in the air conditioner 100. FIG. ユニット本体141における再生経路RPを示す断面図である。7 is a sectional view showing a regeneration path RP in the unit main body 141. FIG. ユニット本体141における再生経路RPを示す上面図である。7 is a top view showing a regeneration path RP in the unit main body 141. FIG. 空気調和機102を示す概略構成図である。1 is a schematic configuration diagram showing an air conditioner 102. FIG. ユニット本体50の内部構造を示す斜視図である。5 is a perspective view showing the internal structure of a unit main body 50. FIG. ユニット本体50の構成要素の一部を取り外した状態の斜視図である。FIG. 3 is a perspective view of the unit main body 50 with some of its components removed. ユニット本体50の構成要素の一部を取り外した状態の上面図である。FIG. 5 is a top view of the unit main body 50 with some of its components removed. ユニット本体50の分解斜視図である。FIG. 5 is an exploded perspective view of a unit main body 50. FIG. ユニット本体50の一部の構成要素の分解斜視図である。FIG. 5 is an exploded perspective view of some components of the unit body 50. FIG. ユニット本体50の概略断面図である。5 is a schematic cross-sectional view of a unit main body 50. FIG. 給気運転時のシャッタ74aの動作を示す概略構成図である。It is a schematic block diagram which shows the operation|movement of the shutter 74a during air supply operation. 再生運転時のシャッタ74aの動作を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing the operation of the shutter 74a during regeneration operation. 排気運転時のユニット本体50の内部構造を示す斜視図である。FIG. 5 is a perspective view showing the internal structure of the unit main body 50 during exhaust operation. 排気運転時のユニット本体50の分解斜視図である。FIG. 5 is an exploded perspective view of the unit main body 50 during exhaust operation. 排気運転時のユニット本体50の一部の構成要素の分解斜視図である。FIG. 5 is an exploded perspective view of some components of the unit main body 50 during exhaust operation. 排気運転時のユニット本体50の概略断面図である。FIG. 5 is a schematic cross-sectional view of the unit main body 50 during exhaust operation. 排気運転時のシャッタ74aの動作を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing the operation of the shutter 74a during exhaust operation.
 <第1実施形態>
 (1)全体構成
 第1実施形態に係る空気調和機100について説明する。図1は、空気調和機100を示す概略構成図である。空気調和機100は、冷媒と空気との熱交換と、空気の供給及び排出により、室内IDの空気調和を行う。空気調和の例としては、冷房、冷凍、暖房、加湿、除湿、空気清浄、送風、換気などが挙げられる。本実施形態において、空気調和機100が行う空気調和は、冷房、暖房、加湿、換気である。
<First embodiment>
(1) Overall configuration The air conditioner 100 according to the first embodiment will be described. FIG. 1 is a schematic configuration diagram showing an air conditioner 100. The air conditioner 100 performs air conditioning in a room ID by exchanging heat between a refrigerant and air and supplying and discharging air. Examples of air conditioning include cooling, freezing, heating, humidification, dehumidification, air purification, air blowing, and ventilation. In this embodiment, the air conditioning performed by the air conditioner 100 includes cooling, heating, humidification, and ventilation.
 空気調和機100は、室内ユニット110と、室外ユニット120を備える。室内ユニット110と室外ユニット120は、電気的に接続する。 The air conditioner 100 includes an indoor unit 110 and an outdoor unit 120. Indoor unit 110 and outdoor unit 120 are electrically connected.
 (1-1)室内ユニット
 室内ユニット110は、室内IDに設置される。室内ユニット110は、室内吸込口IP1、室内吹出口IP2、室内熱交換器(図示省略)、室内ファン(図示省略)を備える。
(1-1) Indoor unit The indoor unit 110 is installed in the indoor ID. The indoor unit 110 includes an indoor suction port IP1, an indoor air outlet IP2, an indoor heat exchanger (not shown), and an indoor fan (not shown).
 室内吸込口IP1は、室内IDの空気を室内ユニット110内に吸い込むための開口である。室内吹出口IP2は、室内ユニット110内の空気を室内IDに吹き出すための開口である。 The indoor suction port IP1 is an opening for sucking the air of the indoor ID into the indoor unit 110. The indoor air outlet IP2 is an opening for blowing out the air inside the indoor unit 110 to the indoor ID.
 室内熱交換器は、冷媒と空気との熱交換を行う。室内熱交換器は、後述する室外熱交換器などと冷凍サイクルを構成する。室内熱交換器は、蒸発器又は凝縮器として動作する。 The indoor heat exchanger exchanges heat between the refrigerant and air. The indoor heat exchanger constitutes a refrigeration cycle together with an outdoor heat exchanger and the like, which will be described later. Indoor heat exchangers operate as evaporators or condensers.
 室内ファンは、回転駆動して吸引力を生成する。室内ファンの吸引力により、室内IDの空気は、室内吸込口IP1から吸い込まれ、室内吹出口IP2から吹き出される。 The indoor fan is rotated to generate suction power. Due to the suction force of the indoor fan, the air in the indoor ID is sucked in through the indoor suction port IP1 and blown out from the indoor air outlet IP2.
 (1-2)室外ユニット
 室外ユニット120は、室外ODに設置される。室外ユニット120は、熱交換ユニット121と、換気ユニット130を備える。
(1-2) Outdoor unit The outdoor unit 120 is installed in the outdoor OD. The outdoor unit 120 includes a heat exchange unit 121 and a ventilation unit 130.
 (1-2-1)熱交換ユニット
 熱交換ユニット121は、冷媒と空気との熱交換を行う室外熱交換器(図示省略)を備える。室外熱交換器は、室内熱交換器などと冷凍サイクルを構成する。室外熱交換器は、蒸発器又は凝縮器として動作する。
(1-2-1) Heat Exchange Unit The heat exchange unit 121 includes an outdoor heat exchanger (not shown) that exchanges heat between refrigerant and air. The outdoor heat exchanger constitutes a refrigeration cycle with the indoor heat exchanger and the like. Outdoor heat exchangers operate as evaporators or condensers.
 (1-2-2)換気ユニット
 換気ユニット130は、室外ODの空気を室内IDに供給し、室内IDの空気を室外ODに排出して、室内IDの空気調和を行う。換気ユニット130は、ユニット本体131と、換気ホース132を備える。
(1-2-2) Ventilation Unit The ventilation unit 130 supplies air from the outdoor OD to the indoor ID, discharges air from the indoor ID to the outdoor OD, and performs air conditioning for the indoor ID. The ventilation unit 130 includes a unit body 131 and a ventilation hose 132.
 ユニット本体131には、吸込口SP、吹出口BP、排気口EPが設けられる。ユニット本体131の詳細構成については後述する。 The unit main body 131 is provided with a suction port SP, a blowout port BP, and an exhaust port EP. The detailed configuration of the unit main body 131 will be described later.
 換気ホース132は、室内ユニット110と室外ユニット120との空気の経路を形成する。 The ventilation hose 132 forms an air path between the indoor unit 110 and the outdoor unit 120.
 (2)詳細構成
 ユニット本体131の詳細構成について説明する。図2は、ユニット本体131を示す断面図である。図3は、ユニット本体131を示す上面図である。ユニット本体131は、ケーシング310と、加湿装置320と、ファンユニット330と、ダンパユニット340と、シャッタ350と、制御装置360などを備える。
(2) Detailed configuration The detailed configuration of the unit main body 131 will be explained. FIG. 2 is a sectional view showing the unit main body 131. FIG. 3 is a top view showing the unit main body 131. The unit body 131 includes a casing 310, a humidifier 320, a fan unit 330, a damper unit 340, a shutter 350, a control device 360, and the like.
 (2-1)ケーシング
 ケーシング310は、加湿装置320と、ファンユニット330と、ダンパユニット340と、シャッタ350、制御装置360などを収容する筐体である。ファンユニット330は、送風ファンの一例である。ダンパユニット340は、切換機構の一例である。なお、ケーシング310は、制御装置360を収容しなくてもよい。
(2-1) Casing The casing 310 is a housing that houses the humidifier 320, the fan unit 330, the damper unit 340, the shutter 350, the control device 360, and the like. Fan unit 330 is an example of a blower fan. Damper unit 340 is an example of a switching mechanism. Note that the casing 310 does not need to house the control device 360.
 ケーシング310は、熱交換ユニット121の上面側に載置され、短形箱状形態をもつ。ケーシング310が形成する内部空間604に、加湿装置320と、ファンユニット330と、ダンパユニット340と、シャッタ350、制御装置360などが配置される。ケーシング310には、吸込口SP、吹出口BP、排気口EPが設けられる。 The casing 310 is placed on the top side of the heat exchange unit 121 and has a rectangular box shape. A humidifier 320, a fan unit 330, a damper unit 340, a shutter 350, a control device 360, and the like are arranged in an internal space 604 formed by the casing 310. The casing 310 is provided with a suction port SP, a blowout port BP, and an exhaust port EP.
 (2-1-1)吸込口、吹出口、排気口
 吹出口BPは、ユニット本体131から換気ホース132に空気を吹き出すための開口である。また、吹出口BPは、換気ホース132からユニット本体131に空気を吸い込むための開口である。吹出口BPは、ケーシング310の底壁面601に設けられる。吹出口BPは、ケーシング310の一側寄りに設けられる。
(2-1-1) Suction port, blowout port, and exhaust port The blowout port BP is an opening for blowing air from the unit main body 131 to the ventilation hose 132. Further, the air outlet BP is an opening for sucking air into the unit main body 131 from the ventilation hose 132. The air outlet BP is provided on the bottom wall surface 601 of the casing 310. The air outlet BP is provided near one side of the casing 310.
 吸込口SPは、室外ODからユニット本体131に空気を吸い込むための開口である。吸込口SPは、ケーシング310の側壁面603に設けられる。吸込口SPは、ケーシング310の一側寄りに設けられる。吸込口SPは、吹出口BPと適宜離間して設けられる。 The suction port SP is an opening for sucking air into the unit main body 131 from the outdoor OD. The suction port SP is provided on the side wall surface 603 of the casing 310. The suction port SP is provided near one side of the casing 310. The suction port SP is provided at an appropriate distance from the blowout port BP.
 排気口EPは、ユニット本体131から室外ODに空気を排出するための開口である。排気口EPは、ケーシング310の側壁面603に設けられる。 The exhaust port EP is an opening for discharging air from the unit main body 131 to the outdoor OD. The exhaust port EP is provided on the side wall surface 603 of the casing 310.
 (2-1-2)通風経路
 通風経路VPは、吸込口SPからファンユニット330を介して吹出口BPに到達するまでの経路である。通風経路VPにおける吸込口SP側を、上流側USと称する。通風経路VPにおける吹出口BP側を、下流側DSと称する。
(2-1-2) Ventilation Path The ventilation path VP is a path from the suction port SP to the air outlet BP via the fan unit 330. The side of the suction port SP in the ventilation path VP is referred to as the upstream side US. The side of the air outlet BP in the ventilation path VP is referred to as the downstream side DS.
 (2-1-3)ソケット
 ソケット602は、吹出口BPに嵌挿される部材である。ソケット602の形状は、中空洞の円筒状である。ソケット602は、換気ホース132の一端と接続する。ソケット602は、吹出口BPを通して下方へ延出される。
(2-1-3) Socket The socket 602 is a member that is inserted into the air outlet BP. The socket 602 has a hollow cylindrical shape. Socket 602 connects to one end of ventilation hose 132. The socket 602 extends downward through the air outlet BP.
 (2-2)加湿装置
 加湿装置320は、空気に水分を吸着させて加湿を行う。加湿装置320は、通風経路VPに設けられる。本実施形態において、加湿装置320は、吸込口SPの近傍に設けられる。言い換えると、加湿装置320は、吸込口SPとファンユニット330との間に設けられる。
(2-2) Humidifier The humidifier 320 humidifies the air by adsorbing moisture to the air. The humidifier 320 is provided in the ventilation path VP. In this embodiment, the humidifier 320 is provided near the suction port SP. In other words, the humidifier 320 is provided between the suction port SP and the fan unit 330.
 図4は、加湿装置320を示す概略構成図である。加湿装置320は、吸着部材と、ヒーター322を備える。本実施形態において、吸着部材は、加湿用のローター321である。なお、加湿装置320は、加湿トレイと、加湿タンクと、加湿用のモーターの少なくとも何れかを備えもよい。 FIG. 4 is a schematic configuration diagram showing the humidifying device 320. The humidifier 320 includes an adsorption member and a heater 322. In this embodiment, the adsorption member is a humidifying rotor 321. Note that the humidifying device 320 may include at least one of a humidifying tray, a humidifying tank, and a humidifying motor.
 (2-2-1)ローター
 ローター321は、加湿エレメント(図示省略)により構成される。加湿エレメントの例としては、不織布、織布などが挙げられる。加湿エレメントは、水分を吸着した状態で通風経路VPの空気を通過させることができる。
(2-2-1) Rotor The rotor 321 is composed of a humidifying element (not shown). Examples of humidifying elements include nonwoven fabrics, woven fabrics, and the like. The humidifying element can pass the air in the ventilation path VP while adsorbing moisture.
 (2-2-2)ヒーター
 ヒーター322は、ローター321に導入される空気を加熱する。ヒーター322は、ローター321に対して上流側USに設けられる。ヒーター322は、通風経路VPの空気が通過できるように構成される。ヒーター322は、ヒーター322より小さい複数のヒーターにより構成されてもよい。
(2-2-2) Heater The heater 322 heats the air introduced into the rotor 321. The heater 322 is provided on the upstream side US with respect to the rotor 321. The heater 322 is configured to allow air in the ventilation path VP to pass therethrough. The heater 322 may include a plurality of heaters smaller than the heater 322.
 (2-3)ファンユニット
 ファンユニット330は、後述するファン羽根車407の回転駆動により吸引力SFを生成する。ファンユニット330は、ファンハウジング405と、ベルマウス板406と、ファン羽根車407と、ファン電動機408などを備える。
(2-3) Fan Unit The fan unit 330 generates suction force SF by rotationally driving a fan impeller 407, which will be described later. The fan unit 330 includes a fan housing 405, a bell mouth plate 406, a fan impeller 407, a fan motor 408, and the like.
 (2-3-1)ファンハウジング
 ファンハウジング405は、底板403と、側板404で構成される。底板403は、スクロール状の平面形状をもつ。側板404は、底板403の外周を囲繞する。
(2-3-1) Fan Housing The fan housing 405 is composed of a bottom plate 403 and a side plate 404. The bottom plate 403 has a scroll-like planar shape. The side plate 404 surrounds the outer periphery of the bottom plate 403.
 (2-3-2)ベルマウス板
 ベルマウス板406は、ファンハウジング405の開口端側に、ファンハウジング405を閉塞する如く固定配置される。ベルマウス板406は、矩形平板状である。ベルマウス板406は、ファン吸込口401とファン吹出口402を適宜離間して併設する。
(2-3-2) Bellmouth Plate The bellmouth plate 406 is fixedly arranged on the open end side of the fan housing 405 so as to close the fan housing 405. The bellmouth plate 406 has a rectangular flat plate shape. The bell mouth plate 406 has a fan inlet 401 and a fan outlet 402 spaced apart from each other as appropriate.
 (2-3-2-1)ファン吸込口、ファン吹出口
 ファン吸込口401は、ファンユニット330の外からファンユニット330内に、空気を吸い込むための開口である。
(2-3-2-1) Fan Inlet, Fan Outlet The fan inlet 401 is an opening for sucking air into the fan unit 330 from outside the fan unit 330.
 ファン吹出口402は、ファンユニット330内からファンユニット330の外に、空気を吹き出すための開口である。ファン吹出口402は、吹出口BPと同軸上に位置するよう設けられる。 The fan outlet 402 is an opening for blowing air from inside the fan unit 330 to the outside of the fan unit 330. The fan outlet 402 is provided coaxially with the outlet BP.
 (2-3-3)ファン羽根車
 ファン羽根車407は、ベルマウス板406とファンハウジング405で囲繞された空間内に配置される。ファン羽根車407は、ファン吸込口401に対向するように配置される。
(2-3-3) Fan Impeller The fan impeller 407 is arranged in a space surrounded by the bell mouth plate 406 and the fan housing 405. Fan impeller 407 is arranged to face fan suction port 401 .
 ファン羽根車407は、後述するファン電動機408により回転駆動され、吸引力SFを生成する。ファンユニット330が動作する場合、運転の種類に関わらず、ファン羽根車407の回転方向は同じである。従って、ファンユニット330が動作する場合、運転の種類に関わらず、ファン羽根車407により生成される吸引力SFの方向も同じである。 The fan impeller 407 is rotationally driven by a fan motor 408, which will be described later, to generate suction force SF. When the fan unit 330 operates, the direction of rotation of the fan impeller 407 is the same regardless of the type of operation. Therefore, when the fan unit 330 operates, the direction of the suction force SF generated by the fan impeller 407 is also the same regardless of the type of operation.
 (2-3-4)ファン電動機
 ファン電動機408は、ファンハウジング405の外面側に固定される。ファン電動機408は、ファン羽根車407を回転駆動させる。
(2-3-4) Fan Motor The fan motor 408 is fixed to the outer surface of the fan housing 405. Fan electric motor 408 rotates fan impeller 407 .
 (2-4)ダンパユニット
 ダンパユニット340は、後述する給気経路SUと、後述する排気経路EXを切り換える。ダンパユニット340は、ダンパ包設体341と、ダンパ本体342を備える。
(2-4) Damper Unit The damper unit 340 switches between an air supply path SU, which will be described later, and an exhaust path EX, which will be described later. The damper unit 340 includes a damper enclosing body 341 and a damper main body 342.
 (2-4-1)ダンパ包設体
 ダンパ包設体341は、板材を略「U」字状に折曲させて形成される。ダンパ包設体341は、底壁501と、側壁502などを備える。底壁501は、ベルマウス板406と略同等の寸法形状をもつ。側壁502は、底壁501の左右両縁から立ち上がる同一高さをもつ一対の壁である。
(2-4-1) Damper Encasing Body The damper enclosing body 341 is formed by bending a plate material into a substantially “U” shape. The damper enclosing body 341 includes a bottom wall 501, side walls 502, and the like. The bottom wall 501 has substantially the same dimensions and shape as the bell mouth plate 406. The side walls 502 are a pair of walls rising from both left and right edges of the bottom wall 501 and having the same height.
 ダンパ包設体341は、側壁502をダンパユニット340側のベルマウス板406の下面に衝合固定して一体化させる。従って、ベルマウス板406とダンパ包設体341とによって矩形の断面形状をもつ貫通域505が形成される。貫通域505の両端である、上流端503及び下流端504は、開口である。従って、貫通域505は、トンネル状である。貫通域505内において、後述のダンパ本体342は、貫通域505の軸方向(貫通方向)に移動可能に配置される。 The damper enclosing body 341 is integrated by abutting and fixing the side wall 502 to the lower surface of the bell mouth plate 406 on the damper unit 340 side. Therefore, the bellmouth plate 406 and the damper enclosing body 341 form a penetration area 505 having a rectangular cross-section. The upstream end 503 and downstream end 504, which are both ends of the penetration area 505, are openings. Therefore, the penetration area 505 is tunnel-shaped. Within the penetration region 505, a damper main body 342, which will be described later, is arranged so as to be movable in the axial direction (penetration direction) of the penetration region 505.
 ダンパ包設体341は、貫通域505の一端寄りに対応する位置に、給排気口515を設ける。給排気口515は、ファンユニット330側のファン吹出口402と略同径をもつ。底壁501から下方へ延出するソケット602は、底壁501と一体を形成する。 The damper enclosing body 341 is provided with an air supply/exhaust port 515 at a position corresponding to one end of the penetration area 505. The supply/exhaust port 515 has approximately the same diameter as the fan outlet 402 on the fan unit 330 side. A socket 602 extending downward from the bottom wall 501 is integral with the bottom wall 501 .
 ダンパ包設体341は、底壁501をケーシング310の底壁面601に衝合固定することでケーシング310側に取り付けられる。従って、ダンパ包設体341をケーシング310側に取り付けた状態においては、ダンパ包設体341側の給排気口515とベルマウス板406側のファン吹出口402が上下方向に略重合して配置される。 The damper enclosing body 341 is attached to the casing 310 side by abutting and fixing the bottom wall 501 to the bottom wall surface 601 of the casing 310. Therefore, when the damper enclosure 341 is attached to the casing 310 side, the supply/exhaust port 515 on the damper enclosure 341 side and the fan outlet 402 on the bell mouth plate 406 side are arranged to substantially overlap in the vertical direction. Ru.
 (2-4-2)ダンパ本体
 ダンパ本体342は、基部506と、延設部507と、底壁508と、側壁509と、湾曲壁510などを備える。基部506は、上面が開口した矩形箱状をもつ。延設部507は、基部506の一つの隅部に連続して側方へ延設される。底壁508は、基部506から延設部507に跨がる。側壁509は、基部506の周囲に、基部506を囲繞するように立設される。湾曲壁510は、延設部507の周囲を球面状に覆う。
(2-4-2) Damper Body The damper body 342 includes a base portion 506, an extension portion 507, a bottom wall 508, a side wall 509, a curved wall 510, and the like. The base 506 has a rectangular box shape with an open top. The extending portion 507 continues from one corner of the base portion 506 and extends laterally. The bottom wall 508 extends from the base 506 to the extension 507 . The side wall 509 is erected around the base 506 so as to surround the base 506 . The curved wall 510 covers the periphery of the extension portion 507 in a spherical shape.
 底壁508のうち、基部506の一側寄りに対応する位置には、第1開口511が設けられる。底壁508のうち、延設部507に対応する位置には、第2開口512が、設けられる。第1開口511には、第1開口511から上方へ延びる断面円形の筒状部材513がダンパ本体342と一体に形成される。 A first opening 511 is provided in the bottom wall 508 at a position corresponding to one side of the base 506. A second opening 512 is provided in the bottom wall 508 at a position corresponding to the extension portion 507 . A cylindrical member 513 having a circular cross section and extending upward from the first opening 511 is formed integrally with the damper main body 342 .
 筒状部材513の高さは、筒状部材513の上端が側壁509の上端と略同等の高さに位置するように、設定される。筒状部材513及び側壁509の高さ寸法は、ダンパ包設体341の貫通域505の高さ寸法に対応して設定される。ダンパ本体342は、貫通域505内に摺動可能に嵌装配置される。 The height of the cylindrical member 513 is set such that the upper end of the cylindrical member 513 is located at approximately the same height as the upper end of the side wall 509. The height dimensions of the cylindrical member 513 and the side wall 509 are set corresponding to the height dimension of the penetration area 505 of the damper enclosing body 341. The damper body 342 is slidably fitted within the penetration area 505.
 ダンパ本体342の側壁509で囲繞された空間のうち、筒状部材513を除く部分(筒状部材513の外側部分)をダンパ内空間514と称する。 A portion of the space surrounded by the side wall 509 of the damper body 342 excluding the cylindrical member 513 (the outer portion of the cylindrical member 513) is referred to as a damper inner space 514.
 貫通域505内におけるダンパ本体342の摺動方向は、貫通域505の軸方向(矢印a方向、矢印b方向)である。第1開口511と第2開口512の平面方向における相対位置は、ダンパ本体342の摺動に伴って、第1開口511と第2開口512が択一的に給排気口515と連通し得るように設定される。 The sliding direction of the damper body 342 within the penetration area 505 is the axial direction of the penetration area 505 (arrow a direction, arrow b direction). The relative positions of the first opening 511 and the second opening 512 in the planar direction are such that the first opening 511 and the second opening 512 can selectively communicate with the air supply/exhaust port 515 as the damper body 342 slides. is set to
 第1開口511が給排気口515と連通する場合、ファン吸込口401がダンパ本体342の外側に位置するため、ファン吸込口401とダンパ本体342の連通は、遮断される。他方、第2開口512が給排気口515と連通する場合、ファン吸込口401がダンパ内空間514内に位置するため、ファン吸込口401とダンパ本体342は、連通する。 When the first opening 511 communicates with the air supply/exhaust port 515, since the fan suction port 401 is located outside the damper body 342, the communication between the fan suction port 401 and the damper body 342 is cut off. On the other hand, when the second opening 512 communicates with the supply/exhaust port 515, the fan suction port 401 is located within the damper internal space 514, so the fan suction port 401 and the damper main body 342 communicate with each other.
 (2-5)シャッタ
 シャッタ350は、後述する給気運転時に排気口EPを閉鎖し、後述する排気運転時に排気口EPを開放する。シャッタ350の第1側面351は、側壁面603に固定される。シャッタ350は、旋回可能であり、矢印c方向、矢印d方向に移動する。
(2-5) Shutter The shutter 350 closes the exhaust port EP during an air supply operation, which will be described later, and opens the exhaust port EP during an exhaust operation, which will be described later. The first side surface 351 of the shutter 350 is fixed to the side wall surface 603. The shutter 350 is rotatable and moves in the direction of arrow c and the direction of arrow d.
 シャッタ350が矢印c方向に移動した場合、シャッタ350の第2側面352は底板403と接する。従って、シャッタ350が矢印c方向に移動した場合、シャッタ350は、排気口EPを開放する。また、シャッタ350が矢印c方向に移動した場合、シャッタ350は、矢印e方向の空気の経路を遮断する。他方、シャッタ350が矢印d方向に移動した場合、第2側面352は側壁面603と接する。従って、シャッタ350が矢印d方向に移動した場合、シャッタ350は、排気口EPを閉鎖する。 When the shutter 350 moves in the direction of arrow c, the second side surface 352 of the shutter 350 comes into contact with the bottom plate 403. Therefore, when the shutter 350 moves in the direction of arrow c, the shutter 350 opens the exhaust port EP. Further, when the shutter 350 moves in the direction of the arrow c, the shutter 350 blocks the air path in the direction of the arrow e. On the other hand, when the shutter 350 moves in the direction of the arrow d, the second side surface 352 comes into contact with the side wall surface 603. Therefore, when the shutter 350 moves in the direction of the arrow d, the shutter 350 closes the exhaust port EP.
 (2-6)制御装置
 制御装置360は、給気運転と、排気運転と、吸着運転などを行う。給気運転と、排気運転と、吸着運転の詳細については後述する。制御装置360は、加湿装置320と、ファンユニット330と、ダンパユニット340と、シャッタ350などの動作を制御する。制御装置360は、制御部の一例である。
(2-6) Control device The control device 360 performs air supply operation, exhaust operation, adsorption operation, etc. Details of the air supply operation, exhaust operation, and adsorption operation will be described later. The control device 360 controls the operations of the humidifier 320, the fan unit 330, the damper unit 340, the shutter 350, and the like. Control device 360 is an example of a control section.
 制御装置360は、ユニット本体131内に設けられる。制御装置360が配置されたユニット本体131の図は省略する。図5は、室内ユニット110と室外ユニット120の制御ブロック図である。制御装置360は、加湿装置320と、ファンユニット330と、ダンパユニット340と、シャッタ350と電気的に接続する。熱交換ユニット121とユニット本体131は電気的に接続する。室内ユニット110と室外ユニット120は電気的に接続する。 The control device 360 is provided within the unit main body 131. A diagram of the unit main body 131 in which the control device 360 is arranged is omitted. FIG. 5 is a control block diagram of the indoor unit 110 and the outdoor unit 120. The control device 360 is electrically connected to the humidifier 320, the fan unit 330, the damper unit 340, and the shutter 350. The heat exchange unit 121 and the unit main body 131 are electrically connected. Indoor unit 110 and outdoor unit 120 are electrically connected.
 制御装置360は、コンピュータにより実現されるものである。制御装置360は、制御演算装置と記憶装置とを備える(いずれも図示省略)。制御演算装置には、CPU又はGPUといったプロセッサを使用できる。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。記憶装置は、データベースとして用いることができる。制御装置360により実現される具体的な機能については後述する。 The control device 360 is realized by a computer. The control device 360 includes a control calculation device and a storage device (both not shown). A processor such as a CPU or a GPU can be used as the control calculation device. The control arithmetic device reads a program stored in the storage device, and performs predetermined image processing and arithmetic processing according to this program. Furthermore, the control calculation device can write calculation results to the storage device and read information stored in the storage device according to the program. The storage device can be used as a database. Specific functions realized by the control device 360 will be described later.
 なお、ここで説明する制御装置360の構成は一例に過ぎず、以下で説明する制御装置360の機能は、ソフトウェアで実現されても、ハードウェアで実現されても、ソフトウェアとハードウェアとの組み合わせで実現されてもよい。 Note that the configuration of the control device 360 described here is only an example, and the functions of the control device 360 described below may be realized by software or hardware, or by a combination of software and hardware. It may be realized by
 (3)動作
 空気調和機100の動作について説明する。空気調和機100は、冷房、暖房、加湿、換気などを行う。
(3) Operation The operation of the air conditioner 100 will be explained. The air conditioner 100 performs cooling, heating, humidification, ventilation, etc.
 冷房は、室内熱交換器を蒸発器、室外熱交換器を凝縮器とする冷媒回路により、冷媒が室内空気から熱を奪う動作である。室内熱交換器を蒸発器、室外熱交換器を凝縮器とする冷媒回路により、冷媒が室内空気から熱を奪う運転を、冷房運転と称する。冷房は、冷房運転により行われる。 Cooling is an operation in which a refrigerant removes heat from indoor air using a refrigerant circuit that uses an indoor heat exchanger as an evaporator and an outdoor heat exchanger as a condenser. An operation in which the refrigerant removes heat from indoor air using a refrigerant circuit in which the indoor heat exchanger serves as an evaporator and the outdoor heat exchanger serves as a condenser is referred to as cooling operation. Cooling is performed by cooling operation.
 暖房は、室内熱交換器を凝縮器、室外熱交換器を蒸発器とする冷媒回路により、冷媒が室内空気に熱を供給する動作である。室内熱交換器を凝縮器、室外熱交換器を蒸発器とする冷媒回路により、冷媒が室内空気に熱を供給する運転を、暖房運転と称する。暖房は、暖房運転により行われる。 Heating is an operation in which refrigerant supplies heat to indoor air through a refrigerant circuit that uses an indoor heat exchanger as a condenser and an outdoor heat exchanger as an evaporator. An operation in which the refrigerant supplies heat to indoor air using a refrigerant circuit in which the indoor heat exchanger is the condenser and the outdoor heat exchanger is the evaporator is called heating operation. Heating is performed by heating operation.
 加湿は、ファンユニット330を駆動して、通風経路VPから換気ホース132を通じて、水分が吸着された室外空気を室内IDに供給する動作である。ファンユニット330を駆動して、通風経路VPから換気ホース132を通じて、室外空気を室内IDに供給する運転を、給気運転と称する。室外空気に水分を吸着させる運転を、吸着運転と称する。加湿は、給気運転と吸着運転により行われる。 Humidification is an operation of driving the fan unit 330 to supply outdoor air with moisture adsorbed to the indoor ID from the ventilation path VP through the ventilation hose 132. An operation in which the fan unit 330 is driven to supply outdoor air to the indoor room ID from the ventilation path VP through the ventilation hose 132 is referred to as an air supply operation. The operation that causes outdoor air to adsorb moisture is called an adsorption operation. Humidification is performed by air supply operation and adsorption operation.
 室内湿度が目標湿度より低い場合がある。目標湿度の例としては、室内IDの人又は物に適正な湿度などが挙げられる。室内湿度が目標湿度より低い場合、水分が吸着された室外空気を室内IDに供給すると、吸着した水分により室内湿度が高くなる。 The indoor humidity may be lower than the target humidity. An example of the target humidity is the appropriate humidity for the person or object in the room ID. When the indoor humidity is lower than the target humidity, when outdoor air with moisture adsorbed is supplied to the indoor ID, the indoor humidity increases due to the adsorbed moisture.
 換気は、ファンユニット330を駆動して通風経路VPから換気ホース132を通じて室外空気を室内IDに供給し、給気運転と同じ回転方向でファンユニット330を駆動してローター321を通さずに換気ホース132を通じて室内空気を室外ODへと排出する動作である。給気運転と同じ回転方向でファンユニット330を駆動して、ローター321を通さずに換気ホース132を通じて室内空気を室外ODへと排出する運転を、排気運転と称する。換気は、給気運転と排気運転により行われる。なお、換気は、給気運転によらず、排気運転により行われてもよい。 Ventilation is performed by driving the fan unit 330 to supply outdoor air from the ventilation path VP to the indoor ID through the ventilation hose 132, and by driving the fan unit 330 in the same rotational direction as the air supply operation to supply the ventilation hose without passing through the rotor 321. This is an operation for discharging indoor air to the outdoor OD through 132. An operation in which the fan unit 330 is driven in the same rotational direction as the air supply operation to exhaust indoor air to the outdoor OD through the ventilation hose 132 without passing through the rotor 321 is referred to as an exhaust operation. Ventilation is performed by air supply operation and exhaust operation. Note that ventilation may be performed not only by air supply operation but also by exhaust operation.
 室内IDの空気に汚染物質が存在する場合がある。汚染物質とは、室内IDの人又は物に適正ではない物質をいう。汚染物質の例としては、タバコの煙に含まれる物質、調理による煙に含まれる物質、埃、PM2.5などが挙げられる。タバコの煙に含まれる物質の例としては、アスベスト、アセトアルデヒド、一酸化炭素、カドミウム、タール、ダイオキシン、ニコチンなどが挙げられる。調理による煙に含まれる物質の例としては、二酸化窒素、ホルムアルデヒド、一酸化炭素、PM2.5などが挙げられる。 There may be pollutants present in the indoor ID air. Contaminants are substances that are not suitable for persons or objects in the room. Examples of pollutants include substances contained in cigarette smoke, substances contained in cooking smoke, dust, PM2.5, and the like. Examples of substances contained in cigarette smoke include asbestos, acetaldehyde, carbon monoxide, cadmium, tar, dioxins, and nicotine. Examples of substances contained in cooking smoke include nitrogen dioxide, formaldehyde, carbon monoxide, and PM2.5.
 室内IDの空気に汚染物質が存在する場合、汚染物質を除去する必要がある。室内空気を室外ODに排出すると、室内空気に含まれる汚染物質も排出される。また、室外空気を室内IDに供給すると、室内空気に含まれる汚染物質の濃度が薄まる。従って、室内IDの空気に汚染物質が存在する場合、汚染物質を排出し、汚染物質の濃度を下げるため、換気が行われる。 If pollutants are present in the indoor ID air, it is necessary to remove the pollutants. When indoor air is discharged to the outdoor OD, pollutants contained in the indoor air are also discharged. Furthermore, when outdoor air is supplied to the indoor ID, the concentration of pollutants contained in the indoor air is diluted. Therefore, if pollutants are present in the air in the room ID, ventilation is performed to expel the pollutants and reduce the concentration of the pollutants.
 加湿又は換気に関わる給気運転、吸着運転、排気運転について詳細に説明する。 The air supply operation, adsorption operation, and exhaust operation related to humidification or ventilation will be explained in detail.
 (3-1)給気運転
 給気運転について詳細に説明する。図6は、空気調和機100における給気経路SUを示す概略構成図である。給気経路SUとは、給気運転時における空気の経路である。図7は、ユニット本体131における給気経路SUを示す断面図である。図8は、ユニット本体131における給気経路SUを示す上面図である。
(3-1) Air supply operation Air supply operation will be explained in detail. FIG. 6 is a schematic configuration diagram showing the air supply path SU in the air conditioner 100. The air supply route SU is an air route during air supply operation. FIG. 7 is a sectional view showing the air supply path SU in the unit main body 131. FIG. 8 is a top view showing the air supply path SU in the unit main body 131.
 ダンパ本体342を矢印b方向へ移動させて、給排気口515とファン吹出口402を、筒状部材513(第1開口511)を介して連通させる。第2開口512は、底壁501によって閉塞される。シャッタ350が矢印d方向へ移動されるため、排気口EPは、閉鎖される。 The damper main body 342 is moved in the direction of arrow b, and the air supply/exhaust port 515 and the fan air outlet 402 are brought into communication via the cylindrical member 513 (first opening 511). The second opening 512 is closed by the bottom wall 501. Since the shutter 350 is moved in the direction of arrow d, the exhaust port EP is closed.
 ファン羽根車407が回転駆動されると、吸引力SFが生成される。室外ODの空気は、吸引力SFによって、吸込口SPから内部空間604内に吸い込まれる。室外ODの空気は、シャッタ350が排気口EPを閉鎖しているため、排気口EPから吸い込まれない。従って、排気口EPからの空気の経路は、形成されない。 When the fan impeller 407 is rotationally driven, suction force SF is generated. The air in the outdoor OD is sucked into the internal space 604 from the suction port SP by the suction force SF. Air from the outdoor OD is not sucked in from the exhaust port EP because the shutter 350 closes the exhaust port EP. Therefore, no path for air from the exhaust port EP is formed.
 吸込口SPからファンユニット330を介して吹出口BPまでは、通風経路VP設けられている。また、吸込口SPとファンユニット330の間には、加湿装置320が設けられている。従って、吸込口SPから吸い込まれた室外空気は、加湿装置320を通過する。 A ventilation path VP is provided from the suction port SP to the air outlet BP via the fan unit 330. Further, a humidifier 320 is provided between the suction port SP and the fan unit 330. Therefore, the outdoor air sucked through the suction port SP passes through the humidifier 320.
 加湿装置320を通過した室外空気は、通風経路VPに沿って、貫通域505に到達する。貫通域505に到達した室外空気は、ファン吸込口401からファンユニット330内に吸い込まれる。 The outdoor air that has passed through the humidifier 320 reaches the penetration area 505 along the ventilation path VP. The outdoor air that has reached the penetration area 505 is sucked into the fan unit 330 through the fan suction port 401.
 室外空気は、静圧が高められた状態で、ファン吹出口402から筒状部材513側に吹き出される。筒状部材513側に吹き出された室外空気は、給排気口515に到達する。給排気口515に到達した室外空気は、換気ホース132を通じて室内ユニット110内に到達する。 The outdoor air is blown out from the fan outlet 402 toward the cylindrical member 513 with increased static pressure. The outdoor air blown toward the cylindrical member 513 reaches the air supply/exhaust port 515 . The outdoor air that has reached the air supply/exhaust port 515 reaches the inside of the indoor unit 110 through the ventilation hose 132.
 室内ユニット110内に到達した室外空気は、室内ファンの回転駆動により、室内吹出口IP2を介して、室内IDに供給される。室外空気は、ファンユニット330の駆動により、通風経路VPから換気ホース132を通じて室内IDに供給される。 The outdoor air that has reached the interior of the indoor unit 110 is supplied to the indoor ID via the indoor air outlet IP2 by the rotation of the indoor fan. By driving the fan unit 330, outdoor air is supplied from the ventilation path VP to the indoor ID through the ventilation hose 132.
 (3-2)吸着運転
 吸着運転について詳細に説明する。図9は、加湿装置320における給気経路SUを示す概略構成図である。
(3-2) Adsorption operation Adsorption operation will be explained in detail. FIG. 9 is a schematic configuration diagram showing the air supply path SU in the humidifier 320.
 給気運転時において、室外空気は、通風経路VPに沿って加湿装置320を通過する。まず、室外空気は、ローター321の上流側USに設けられるヒーター322に到達する。室外空気は、ヒーター322を通過しながら、ヒーター322により加熱される。加熱された室外空気は、ローター321に到達する。室外空気が加熱されているため、ローター321が含む水分は、室外空気に吸着される。室外空気は、ローター321を通過しながら、ローター321が含む水分を吸着する。水分を吸着した室外空気は、通風経路VPに沿って下流側DSに流れる。従って、吸着運転により、室外空気は、水分を吸着する。 During air supply operation, outdoor air passes through the humidifier 320 along the ventilation path VP. First, the outdoor air reaches the heater 322 provided on the upstream side US of the rotor 321. Outdoor air is heated by the heater 322 while passing through it. The heated outdoor air reaches the rotor 321. Since the outdoor air is heated, the moisture contained in the rotor 321 is adsorbed by the outdoor air. The outdoor air adsorbs moisture contained in the rotor 321 while passing through the rotor 321 . The outdoor air that has absorbed moisture flows to the downstream side DS along the ventilation path VP. Therefore, the outdoor air adsorbs moisture due to the adsorption operation.
 (3-3)排気運転
 排気運転の詳細について説明する。図10は、空気調和機100における排気経路EXを示す概略構成図である。排気経路EXは、排気運転時における空気の経路である。図11は、ユニット本体131における排気経路EXを示す断面図である。図12は、ユニット本体131における排気経路EXを示す上面図である。
(3-3) Exhaust operation The details of exhaust operation will be explained. FIG. 10 is a schematic configuration diagram showing the exhaust path EX in the air conditioner 100. The exhaust route EX is an air route during exhaust operation. FIG. 11 is a sectional view showing the exhaust path EX in the unit main body 131. FIG. 12 is a top view showing the exhaust path EX in the unit main body 131.
 ダンパ本体342を矢印a方向へ移動させて、給排気口515とファン吸込口401を、ダンパ内空間514を介して(筒状部材513の外側部分を介して)連通させる。筒状部材513は、底壁501によって閉塞される。シャッタ350が矢印c方向へ移動されるため、排気口EPは、開放される。 The damper main body 342 is moved in the direction of arrow a to communicate the supply/exhaust port 515 and the fan suction port 401 via the damper internal space 514 (via the outer portion of the cylindrical member 513). The cylindrical member 513 is closed by the bottom wall 501. Since the shutter 350 is moved in the direction of arrow c, the exhaust port EP is opened.
 室内ファンが回転駆動されると、室内空気は、室内IDから室内ユニット110内に、室内吸込口IP1を介して吸い込まれる。室内ユニット110内の室内空気は、換気ホース132を介してユニット本体131に到達する。 When the indoor fan is driven to rotate, indoor air is sucked into the indoor unit 110 from the indoor ID through the indoor suction port IP1. Indoor air within the indoor unit 110 reaches the unit main body 131 via the ventilation hose 132.
 ファン羽根車407が回転駆動されると、吸引力SFが生成される。ファン羽根車407は、給気運転時と同じ回転方向で回転する。従って、ファン羽根車407が生成する吸引力SFも、給気運転時と同じ方向に作用する。吸引力SFにより室内空気は、ダンパ内空間514を通って、ファン吸込口401側から吸い込まれる。ファンユニット330に吸い込まれた室内空気は、ファン吹出口402からの貫通域505側に吹き出される。貫通域505側に吹き出された室内空気は、内部空間604に到達する。 When the fan impeller 407 is rotationally driven, suction force SF is generated. The fan impeller 407 rotates in the same rotational direction as during air supply operation. Therefore, the suction force SF generated by the fan impeller 407 also acts in the same direction as during air supply operation. Due to the suction force SF, indoor air is sucked through the damper internal space 514 from the fan suction port 401 side. Indoor air sucked into the fan unit 330 is blown out from the fan outlet 402 to the penetration area 505 side. The indoor air blown toward the penetration area 505 reaches the internal space 604.
 シャッタ350は、排気口EPを開放し、吸込口SPへの経路を閉鎖している。従って、内部空間604に到達した室内空気は、排気口EPを介して、室外ODに排出される。シャッタ350により、吸込口SPへの空気の経路は形成されない。従って、室内空気は、加湿装置320を通さずに、室外ODに排出される。 The shutter 350 opens the exhaust port EP and closes the path to the suction port SP. Therefore, the indoor air that has reached the internal space 604 is discharged to the outdoor OD via the exhaust port EP. Due to the shutter 350, no air path to the suction port SP is formed. Therefore, the indoor air is discharged to the outdoor OD without passing through the humidifier 320.
 (3-4)その他
 空気調和機100は、除湿を行ってもよい。除湿は、給気運転により行われる。除湿の際、吸着運転は行われない。
(3-4) Others The air conditioner 100 may perform dehumidification. Dehumidification is performed by air supply operation. Adsorption operation is not performed during dehumidification.
 給気運転が行われるため、室外空気は、加湿装置320を通過して、室内IDに供給される。加湿装置320を通過する際、吸着運転は行われない。吸着運転が行われないため、ヒーター322に到達した室外空気は、加熱されない。加熱されていない室外空気は、ローター321に水分を奪われる。水分が奪われた室外空気は、室内IDに供給される。従って、室内IDの湿度は下がる。除湿は、除湿された空気が供給されて動作するため、「除湿給気」とも称される。 Since the air supply operation is performed, outdoor air passes through the humidifier 320 and is supplied to the indoor ID. When passing through the humidifier 320, no adsorption operation is performed. Since the adsorption operation is not performed, the outdoor air that has reached the heater 322 is not heated. The unheated outdoor air is stripped of moisture by the rotor 321. The outdoor air from which moisture has been removed is supplied to the indoor ID. Therefore, the humidity in the room ID decreases. Dehumidification is also called "dehumidified air supply" because it operates by supplying dehumidified air.
 (4)特徴
 (4-1)
 換気ユニット130は、送風ファンと、換気ホース132と、吸込口SPと、吹出口BPと、吸着部材と、制御部を備える。吸着部材は、吸込口SPから送風ファンを介して吹出口BPに到達するまでの通風経路VPに設けられる。制御部は、給気運転と排気運転を行う。給気運転は、送風ファンを駆動して、通風経路VPから換気ホース132を通じて室外空気を室内IDに供給する運転である。排気運転は、給気運転と同じ回転方向で送風ファンを駆動して、吸着部材を通さずに、換気ホース132を通じて室内空気を室外ODへと排出する運転である。
(4) Features (4-1)
The ventilation unit 130 includes a blower fan, a ventilation hose 132, an inlet SP, an outlet BP, an adsorption member, and a control section. The adsorption member is provided in the ventilation path VP from the suction port SP to the air outlet BP via the ventilation fan. The control unit performs air supply operation and exhaust operation. The air supply operation is an operation in which the ventilation fan is driven to supply outdoor air from the ventilation path VP to the indoor ID through the ventilation hose 132. The exhaust operation is an operation in which the blower fan is driven in the same rotational direction as the air supply operation, and indoor air is exhausted to the outdoor OD through the ventilation hose 132 without passing through the adsorption member.
 換気ユニット130は、吸着部材が設けられる通風経路VPから空気を供給する給気運転と、給気運転と同じ回転方向で送風ファンを駆動して吸着部材を通さずに空気を排出する排気運転を行う。従って、換気ユニット130は、吸着部材を通した室外空気を室内IDへ供給でき、排気運転時において、汚染物質が吸着部材に吸着することを防止できる。 The ventilation unit 130 performs an air supply operation in which air is supplied from a ventilation path VP in which an adsorption member is provided, and an exhaust operation in which a blower fan is driven in the same rotational direction as the air supply operation to exhaust air without passing through the adsorption member. conduct. Therefore, the ventilation unit 130 can supply outdoor air through the adsorption member to the indoor ID, and can prevent pollutants from adsorbing to the adsorption member during exhaust operation.
 (4-2)
 換気ユニット130は、吸着部材が、通風経路VPにおいて、吸込口SPと送風ファンとの間に設けられる。
(4-2)
In the ventilation unit 130, an adsorption member is provided between the suction port SP and the ventilation fan in the ventilation path VP.
 換気ユニット130は、送風ファンの吸引力SFにより、給気運転と排気運転を行う。排気運転時において送風ファンと吹出口との間に吸着部材が設けられる場合、吸引力を利用でき、吸着部材を通さない経路が設けられる必要がある。従って、換気ユニットの排気経路EXが複雑になり、給気運転と排気運転との切り換えが困難になる。 The ventilation unit 130 performs air supply operation and exhaust operation using the suction force SF of the ventilation fan. When a suction member is provided between the blower fan and the air outlet during exhaust operation, it is necessary to provide a path that can utilize the suction force and does not pass the suction member. Therefore, the exhaust route EX of the ventilation unit becomes complicated, making it difficult to switch between air supply operation and exhaust operation.
 換気ユニット130は、吸着部材が、通風経路VPにおいて、吸込口SPと送風ファンとの間に設けられる。従って、換気ユニット130は、吸着部材を通す給気運転と、吸着部材を通さない排気運転の間での切り換えを、容易に行うことができる。 In the ventilation unit 130, an adsorption member is provided between the suction port SP and the ventilation fan in the ventilation path VP. Therefore, the ventilation unit 130 can easily switch between supplying air through the suction member and exhaust operation without passing the suction member.
 (4-3)
 換気ユニット130は、切換機構をさらに備える。切換機構は、給気運転時における空気の経路である給気経路SUと、排気運転時における空気の経路である排気経路EXを切り換える。
(4-3)
Ventilation unit 130 further includes a switching mechanism. The switching mechanism switches between an air supply path SU, which is an air path during air supply operation, and an exhaust path EX, which is an air path during exhaust operation.
 換気ユニット130は、給気経路SUと排気経路EXを切り換える切換機構により、給気運転と排気運転の間で切り換えを、より容易に行うことができる。 The ventilation unit 130 can more easily switch between the air supply operation and the exhaust operation using a switching mechanism that switches between the air supply route SU and the exhaust route EX.
 (4-4)
 換気ユニット130は、排気口EPをさらに備える。排気口EPは、排気運転時に室内空気を外部に排出する。また、切換機構は、排気経路EXが、換気ホース132を通じた空気が、吹出口BPから送風ファンを介して排気口EPに到達するまでの経路となるように切り換える。
(4-4)
The ventilation unit 130 further includes an exhaust port EP. The exhaust port EP exhausts indoor air to the outside during exhaust operation. Further, the switching mechanism switches the exhaust route EX so that the air passing through the ventilation hose 132 is a route from the outlet BP to the exhaust outlet EP via the blower fan.
 換気ユニット130は、給気運転時に室外空気を吸い込む吸込口SPとは別に、排気運転時に室内空気を外部に排出する排気口EPを備える。従って、換気ユニット130は、排気口EPにより、給気運転と排気運転の間で切り換えを、より容易に行うことができる。 The ventilation unit 130 includes an exhaust port EP that discharges indoor air to the outside during an exhaust operation, in addition to a suction port SP that sucks in outdoor air during an air supply operation. Therefore, the ventilation unit 130 can more easily switch between air supply operation and exhaust operation using the exhaust port EP.
 (4-5)
 換気ユニット130は、シャッタ350をさらに備える。シャッタ350は、給気運転時に排気口EPを閉鎖し、排気運転時に排気口EPを開放する。
(4-5)
Ventilation unit 130 further includes a shutter 350. The shutter 350 closes the exhaust port EP during air supply operation and opens the exhaust port EP during exhaust operation.
 シャッタ350は、給気運転時に排気口EPを閉鎖する。給気運転時において、排気口EPからの空気の経路が形成されないため、空気の経路は、複雑にならない。換気ユニット130は、排気口EPを用いた排気運転を行いつつ、給気運転時における空気の経路を単純化できる。従って、換気ユニット130は、給気運転と排気運転の間で切り換えを、より容易に行うことができる。 The shutter 350 closes the exhaust port EP during air supply operation. During the air supply operation, the air path from the exhaust port EP is not formed, so the air path does not become complicated. The ventilation unit 130 can simplify the air path during the air supply operation while performing the exhaust operation using the exhaust port EP. Therefore, the ventilation unit 130 can more easily switch between air supply operation and exhaust operation.
 (5)変形例
 空気調和機100は、さらに空気清浄を行ってもよい。吸着部材は、ローター321に加え、プレフィルターと、集塵フィルターと、消臭フィルターの少なくとも何れかをさらに含む。
(5) Modification The air conditioner 100 may further perform air cleaning. In addition to the rotor 321, the adsorption member further includes at least one of a pre-filter, a dust collection filter, and a deodorizing filter.
 また、空気調和機100は、加湿の代わりに空気清浄を行ってもよい。吸着部材は、プレフィルターと、集塵フィルターと、消臭フィルターの少なくとも何れかである。加湿装置320は、「吸着装置」と称されてもよい。吸着装置は、ヒーター322を備えない。 Additionally, the air conditioner 100 may perform air purification instead of humidification. The adsorption member is at least one of a prefilter, a dust collection filter, and a deodorizing filter. Humidification device 320 may be referred to as an "adsorption device." The adsorption device does not include a heater 322.
 プレフィルターは、室外空気から比較的大きな塵埃を吸着するフィルターである。プレフィルターの構造の例としては、ネット状のシートを両面から樹脂のフレームで挟まれた構造などが挙げられる。集塵フィルターは、室外空気から比較的小さな塵埃を吸着するフィルターである。消臭フィルターは、室外空気から臭気成分を吸着するフィルターである。 A pre-filter is a filter that adsorbs relatively large dust particles from outdoor air. An example of the structure of a pre-filter is a structure in which a net-like sheet is sandwiched between resin frames on both sides. A dust filter is a filter that adsorbs relatively small dust particles from outdoor air. A deodorizing filter is a filter that adsorbs odor components from outdoor air.
 (5-1)特徴
 換気ユニット130は、吸着部材が、加湿用のローター321と、プレフィルターと、集塵フィルターと、消臭フィルターの少なくとも何れかである。
(5-1) Features In the ventilation unit 130, the adsorption member is at least one of a humidifying rotor 321, a pre-filter, a dust collection filter, and a deodorizing filter.
 換気ユニット130は、吸着部材が加湿用のローター321である場合、空気に水分を供給する加湿を行うことができる。また、換気ユニット130は、吸着部材がプレフィルターと、集塵フィルターと、消臭フィルターである場合、空気を清浄することができる。 When the adsorption member is the humidification rotor 321, the ventilation unit 130 can perform humidification that supplies moisture to the air. Further, the ventilation unit 130 can clean the air when the adsorption members are a pre-filter, a dust collection filter, and a deodorizing filter.
 <第2実施形態>
 (1)全体構成
 第2実施形態に係る空気調和機101について、第1実施形態に係る空気調和機100と相違を中心に説明する。空気調和機101は、空気調和機100の動作に加え、さらに再生を行う。再生の詳細については後述する。
<Second embodiment>
(1) Overall Configuration The air conditioner 101 according to the second embodiment will be described with a focus on differences from the air conditioner 100 according to the first embodiment. In addition to the operations of air conditioner 100, air conditioner 101 also performs regeneration. Details of playback will be described later.
 (2)詳細構成
 換気ユニット140のユニット本体141は、ユニット本体131のダンパユニット340とは異なる構造のダンパユニット370を備える。図13は、空気調和機100における再生経路RPを示す概略構成図である。再生経路RPは、再生運転時の空気の経路である。図14は、ユニット本体141における再生経路RPを示す断面図である。図15は、ユニット本体141における再生経路RPを示す上面図である。
(2) Detailed Configuration The unit body 141 of the ventilation unit 140 includes a damper unit 370 having a different structure from the damper unit 340 of the unit body 131. FIG. 13 is a schematic configuration diagram showing the regeneration path RP in the air conditioner 100. The regeneration route RP is an air route during regeneration operation. FIG. 14 is a sectional view showing the regeneration path RP in the unit main body 141. FIG. 15 is a top view showing the regeneration path RP in the unit main body 141.
 (2-1)ダンパユニット
 ユニット本体141のダンパユニット370は、ダンパユニット340の固定の側壁509の代わりに、旋回可能な側壁519を備える。側壁519は、矢印f方向、矢印g方向に移動される。
(2-1) Damper unit The damper unit 370 of the unit main body 141 includes a pivotable side wall 519 instead of the fixed side wall 509 of the damper unit 340. The side wall 519 is moved in the direction of arrow f and the direction of arrow g.
 側壁519は、再生運転時において、矢印g方向に移動される。矢印g方向に移動された側壁519は、貫通域505とダンパ内空間514の間の経路を開放する。再生運転時において、貫通域505とダンパ内空間514は、再生経路RPを形成する。従って、ダンパユニット370は、側壁519により、再生経路RPが、吸込口SPから吸い込まれた空気が、ファンユニット330を介して排気口EPまでの経路となるように切り換える。 The side wall 519 is moved in the direction of arrow g during regeneration operation. The side wall 519 moved in the direction of arrow g opens the path between the penetration area 505 and the damper internal space 514. During regeneration operation, the penetration area 505 and the damper internal space 514 form a regeneration path RP. Therefore, in the damper unit 370, the side wall 519 switches the regeneration path RP so that the air sucked from the suction port SP becomes a path through the fan unit 330 to the exhaust port EP.
 他方、側壁519は、再生運転以外の運転時において、矢印f方向に移動される。矢印f方向に移動された側壁519は、貫通域505とダンパ内空間514の間の経路を遮断する。 On the other hand, the side wall 519 is moved in the direction of arrow f during operations other than regeneration operation. The side wall 519 moved in the direction of the arrow f blocks the path between the penetration area 505 and the damper internal space 514.
 (2-2)シャッタ
 シャッタ353は、シャッタ350の動作に加え、再生運転時において、排気口EPを開放する。
(2-2) Shutter In addition to the operation of the shutter 350, the shutter 353 opens the exhaust port EP during regeneration operation.
 (3)動作
 空気調和機101の動作について説明する。空気調和機101は、冷房、暖房、加湿、換気に加え、再生を行う。
(3) Operation The operation of the air conditioner 101 will be explained. The air conditioner 101 performs regeneration in addition to cooling, heating, humidification, and ventilation.
 再生は、室外空気を吸い込んで、ヒーター76により加熱される室外空気を、ローター58に通し、排気口52eにより再び室外ODへと排出する動作である。室外空気を吸い込んで、ヒーター76により加熱される室外空気を、ローター58を通し、排気口52eにより再び室外ODへと排出する運転を、再生運転とする。再生は、再生運転と、吸着運転により行われる。 Regeneration is an operation of sucking in outdoor air, passing the outdoor air heated by the heater 76 through the rotor 58, and exhausting it again to the outdoor OD through the exhaust port 52e. The operation of sucking in outdoor air, passing the outdoor air heated by the heater 76 through the rotor 58, and discharging it to the outdoor OD again through the exhaust port 52e is referred to as a regeneration operation. Regeneration is performed by regeneration operation and adsorption operation.
 (3-1)再生運転
 再生運転の詳細について説明する。ダンパ本体342を矢印a方向へ移動させて、給排気口515とファン吸込口401を、ダンパ内空間514を介して(筒状部材513の外側部分を介して)連通させる。筒状部材513は、底壁501によって閉塞される。シャッタ350が矢印c方向へ移動されるため、排気口EPは、開放される。側壁519が矢印g方向へ移動され、貫通域505とダンパ内空間514の間の経路は、開放される。
(3-1) Regeneration operation The details of regeneration operation will be explained. The damper main body 342 is moved in the direction of arrow a, and the supply/exhaust port 515 and the fan suction port 401 are communicated with each other via the damper internal space 514 (via the outer portion of the cylindrical member 513). The cylindrical member 513 is closed by the bottom wall 501. Since the shutter 350 is moved in the direction of arrow c, the exhaust port EP is opened. The side wall 519 is moved in the direction of arrow g, and the path between the penetration area 505 and the damper internal space 514 is opened.
 ファン羽根車407は、給気運転時と同じ回転方向で駆動する。従って、ファン羽根車407は、給気運転時と同じ方向の吸引力SFを生成する。室外ODの空気は、吸引力SFによって、吸込口SPから内部空間604内に吸い込まれる。 The fan impeller 407 is driven in the same rotational direction as during air supply operation. Therefore, the fan impeller 407 generates the suction force SF in the same direction as during the air supply operation. The air in the outdoor OD is sucked into the internal space 604 from the suction port SP by the suction force SF.
 吸込口SPからファンユニット330を介して吹出口BPまでは、通風経路VP設けられている。また、吸込口SPとファンユニット330の間には、加湿装置320が設けられている。従って、吸込口SPから吸い込まれた室外空気は、加湿装置320を通過する。 A ventilation path VP is provided from the suction port SP to the air outlet BP via the fan unit 330. Further, a humidifier 320 is provided between the suction port SP and the fan unit 330. Therefore, the outdoor air sucked through the suction port SP passes through the humidifier 320.
 加湿装置320を通過した室外空気は、通風経路VPに沿って、貫通域505に到達する。貫通域505とダンパ内空間514が連通されているため、室外空気はダンパ内空間514に流れる。室外空気は、ファン吸込口401からファンユニット330内に吸い込まれる。 The outdoor air that has passed through the humidifier 320 reaches the penetration area 505 along the ventilation path VP. Since the penetration area 505 and the damper inner space 514 are communicated with each other, outdoor air flows into the damper inner space 514. Outdoor air is sucked into the fan unit 330 through the fan suction port 401.
 ファンユニット330に吸い込まれた室内空気は、ファン吹出口402からの再び貫通域505側に吹き出される。貫通域505側に吹き出された室内空気は、内部空間604に到達する。 The indoor air sucked into the fan unit 330 is blown out from the fan outlet 402 to the penetration area 505 side again. The indoor air blown toward the penetration area 505 reaches the internal space 604.
 シャッタ350は、排気口EPを開放し、吸込口SPへの経路を閉鎖している。従って、内部空間604に到達した室内空気は、排気口EPを介して、室外ODに排出される。シャッタ350により、吸込口SPへの空気の経路は形成されない。従って、室内空気は、加湿装置320を通さずに、室外ODに排出される。 The shutter 350 opens the exhaust port EP and closes the path to the suction port SP. Therefore, the indoor air that has reached the internal space 604 is discharged to the outdoor OD via the exhaust port EP. The shutter 350 does not form a path for air to the suction port SP. Therefore, the indoor air is discharged to the outdoor OD without passing through the humidifier 320.
 (4)特徴
 (4-1)
 換気ユニット140は、ヒーター322をさらに備える。吸着部材は、加湿用のローター321である。ヒーター322は、ローター321に導入される空気を加熱する。制御部は、室外空気を吸い込んで、ヒーター322により加熱される室外空気をローター321に通し、排気口EPにより再び室外ODへと排出する再生運転、をさらに行う。
(4) Features (4-1)
Ventilation unit 140 further includes a heater 322. The adsorption member is a rotor 321 for humidification. The heater 322 heats the air introduced into the rotor 321. The control unit further performs a regeneration operation in which outdoor air is sucked in, the outdoor air heated by the heater 322 is passed through the rotor 321, and is discharged to the outdoor OD again through the exhaust port EP.
 換気ユニット140は、加湿用のローター321である吸着部材により、空気に水分を供給する加湿を行うことができる。また、換気ユニット140は、加熱された空気が、ローター321から水分を奪う再生運転を行う。従って、換気ユニット140は、ローター321の水分吸着能力を再生することができる。さらに、換気ユニット140は、再生運転時において用いる排気口EPが、排気運転時において用いる排気口EPと同一である。換気ユニット140は、再生運転のための排気口をさらに設ける必要がなく、既存の構造を活用した再生運転が可能である。従って、換気ユニット140は、構造を簡素化できる。 The ventilation unit 140 can perform humidification that supplies moisture to the air using an adsorption member that is a humidification rotor 321. Further, the ventilation unit 140 performs a regeneration operation in which the heated air removes moisture from the rotor 321. Therefore, the ventilation unit 140 can regenerate the moisture adsorption capacity of the rotor 321. Further, in the ventilation unit 140, the exhaust port EP used during the regeneration operation is the same as the exhaust port EP used during the exhaust operation. The ventilation unit 140 does not need to further provide an exhaust port for regeneration operation, and can perform regeneration operation using the existing structure. Therefore, the structure of the ventilation unit 140 can be simplified.
 (4-2)
 換気ユニット140は、切換機構が、再生運転時における空気の経路である再生経路RPが、吸込口SPから吸い込まれた空気が、送風ファンを介して排気口EPまでの経路となるように切り換える。
(4-2)
In the ventilation unit 140, the switching mechanism switches the regeneration path RP, which is the air path during the regeneration operation, so that the air sucked from the suction port SP passes through the ventilation fan to the exhaust port EP.
 従って、換気ユニット140は、切換機構により、他の運転と再生運転の間で切り換えを、より容易に行うことができる。 Therefore, the ventilation unit 140 can more easily switch between other operations and regeneration operation using the switching mechanism.
 <第3実施形態>
 (1)全体構成
 第3実施形態に係る空気調和機102について、第2実施形態に係る空気調和機101と相違を中心に説明する。空気調和機102の換気ユニット150は、空気調和機101の換気ユニット140と異なる構造をもつ。
<Third embodiment>
(1) Overall Configuration The air conditioner 102 according to the third embodiment will be described with a focus on differences from the air conditioner 101 according to the second embodiment. The ventilation unit 150 of the air conditioner 102 has a different structure from the ventilation unit 140 of the air conditioner 101.
 図16は、空気調和機102を示す概略構成図である。換気ユニット150は、ユニット本体50と換気ホース56を備える。 FIG. 16 is a schematic configuration diagram showing the air conditioner 102. The ventilation unit 150 includes a unit body 50 and a ventilation hose 56.
 (2)詳細構成
 ユニット本体50の詳細構成について説明する。図17は、ユニット本体50の内部構造を示す斜視図である。図18は、ユニット本体50の構成要素の一部を取り外した状態の斜視図である。図19は、ユニット本体50の構成要素の一部を取り外した状態の上面図である。図20は、ユニット本体50の分解斜視図である。図21は、ユニット本体50の一部の構成要素の分解斜視図である。図22は、ユニット本体50の概略断面図である。
(2) Detailed configuration The detailed configuration of the unit main body 50 will be explained. FIG. 17 is a perspective view showing the internal structure of the unit main body 50. FIG. 18 is a perspective view of the unit main body 50 with some of its components removed. FIG. 19 is a top view of the unit main body 50 with some of its components removed. FIG. 20 is an exploded perspective view of the unit main body 50. FIG. 21 is an exploded perspective view of some components of the unit main body 50. FIG. 22 is a schematic cross-sectional view of the unit main body 50.
 (2-1)ケーシング
 ケーシング52には、吸込口52a、吸込口52b、第1別口52c、吹出口52d、排気口52e、第2別口52fが設けられる。第1別口52cは、室外ODからユニット本体50に室外空気Aoutを吸い込むための開口である。吹出口52dには、換気ホース56が接続される。第2別口52fは、ユニット本体50から室外ODに空気を排出するための開口である。
(2-1) Casing The casing 52 is provided with a suction port 52a, a suction port 52b, a first separate port 52c, an air outlet 52d, an exhaust port 52e, and a second separate port 52f. The first separate port 52c is an opening for sucking outdoor air Aout from the outdoor OD into the unit main body 50. A ventilation hose 56 is connected to the air outlet 52d. The second separate port 52f is an opening for discharging air from the unit main body 50 to the outdoor OD.
 ケーシング52は、ケーシング52の底板部52gにシール部52jを備える。シール部52jは、後述する下側空間S2と後述する下側空間S4の間で室外空気Aoutの往来を遮断する。 The casing 52 includes a seal portion 52j on the bottom plate portion 52g of the casing 52. The seal portion 52j blocks the passage of outdoor air Aout between a lower space S2, which will be described later, and a lower space S4, which will be described later.
 (2-2)加湿装置
 加湿装置57は、ローター58、ホルダ60、モーター64、第1ヒーター76A、第2ヒーター76B、トレイ82などを備える。
(2-2) Humidifier The humidifier 57 includes a rotor 58, a holder 60, a motor 64, a first heater 76A, a second heater 76B, a tray 82, and the like.
 (2-2-1)ローター、ホルダ、モーター
 ケーシング52内の中央に、ローター58が設けられる。なお、ローター58に加えて、プレフィルターと、集塵フィルターと、消臭フィルターの少なくとも何れかが設けられてもよい。
(2-2-1) Rotor, Holder, Motor A rotor 58 is provided at the center within the casing 52. In addition to the rotor 58, at least one of a pre-filter, a dust collection filter, and a deodorizing filter may be provided.
 ローター58は、鉛直方向(Z軸方向)に空気が通過可能であり、鉛直方向に延在する回転中心線C1を中心にして回転する円盤状の部材である。ローター58は、円筒状のホルダ60によって保持される。ローター58は、加湿用のモーター64によって回転される。モーター64は、ホルダ60の外歯に係合するギヤ62を備える。ローター58は、ユニット本体50の運転中、所定の回転速度で回転し続ける。 The rotor 58 is a disk-shaped member through which air can pass in the vertical direction (Z-axis direction) and rotates around a rotation center line C1 extending in the vertical direction. The rotor 58 is held by a cylindrical holder 60. The rotor 58 is rotated by a humidifying motor 64. The motor 64 includes a gear 62 that engages with external teeth of the holder 60. The rotor 58 continues to rotate at a predetermined rotational speed while the unit body 50 is in operation.
 (2-2-2)ヒーター
 加湿装置57は、第1ヒーター76Aと第2ヒーター76Bを備える。第1ヒーター76Aは、吸込口52aから始まる流路R1に対して設けられる。第2ヒーター76Bは、吸込口52bから始まる流路R2に対して設けられる。
(2-2-2) Heater The humidifier 57 includes a first heater 76A and a second heater 76B. The first heater 76A is provided for the flow path R1 starting from the suction port 52a. The second heater 76B is provided for the flow path R2 starting from the suction port 52b.
 第1ヒーター76A及び第2ヒーター76Bは、ローター58近傍に配置される。第1ヒーター76A及び第2ヒーター76Bは、流路R1、流路R2におけるローター58に対して上流側に、配置される。第1ヒーター76A及び第2ヒーター76Bは、隔壁板78に設けられる。 The first heater 76A and the second heater 76B are arranged near the rotor 58. The first heater 76A and the second heater 76B are arranged upstream of the rotor 58 in the flow path R1 and the flow path R2. The first heater 76A and the second heater 76B are provided on the partition plate 78.
 第1ヒーター76A、第2ヒーター76B、流路R1及び流路R2が通過するローター58の上面58aの部分は、ヒーターカバー80によって覆われる。従って、第1ヒーター76A及び第2ヒーター76Bによって加熱される室外空気Aoutは、ローター58を通過することができる。 A portion of the upper surface 58a of the rotor 58 through which the first heater 76A, the second heater 76B, the flow path R1, and the flow path R2 pass is covered by a heater cover 80. Therefore, the outdoor air Aout heated by the first heater 76A and the second heater 76B can pass through the rotor 58.
 第1ヒーター76A及び第2ヒーター76Bは、同一の加熱能力を備えるヒーターであってもよいし、異なる加熱能力を備えるヒーターであってもよい。 The first heater 76A and the second heater 76B may be heaters with the same heating capacity, or may be heaters with different heating capacities.
 (2-2-3)トレイ
 トレイ82は、第1ヒーター76A及び第2ヒーター76B近傍の隔壁板78の部分に設けられる。トレイ82は、室外空気Aoutから分離した塵などを受け止めて回収する。
(2-2-3) Tray The tray 82 is provided in a portion of the partition plate 78 near the first heater 76A and the second heater 76B. The tray 82 receives and collects dust and the like separated from the outdoor air Aout.
 (2-3)ファンユニット
 ファンユニット65は、ファン羽根車66、隔壁板68、ファンハウジング70、ファン電動機72などを備える。
(2-3) Fan unit The fan unit 65 includes a fan impeller 66, a partition plate 68, a fan housing 70, a fan motor 72, and the like.
 (2-3-1)ファン羽根車
 ファン羽根車66は、ローター58に対してユニット本体50の長手方向(Y軸方向)の一方側に配置される。ファン羽根車66の例としては、シロッコファンなどが挙げられる。ファン羽根車66は、ローター58に対して長手方向の一方側の空間を上下に二分割する隔壁板68に設けられた円筒状部68a内に収容される。
(2-3-1) Fan Impeller The fan impeller 66 is arranged on one side of the unit main body 50 in the longitudinal direction (Y-axis direction) with respect to the rotor 58. An example of the fan impeller 66 is a sirocco fan. The fan impeller 66 is housed in a cylindrical portion 68a provided in a partition plate 68 that vertically divides a space on one side of the rotor 58 in the longitudinal direction.
 (2-3-2)隔壁板
 隔壁板68により、ローター58の上面58aの一部分が接する上側空間S1と、ローター58の下面58bの一部分が接する下側空間S2が形成される。隔壁板68の円筒状部68aには、吹出口52dに接続する開口68bと、排気口52eと接続する開口68cとが形成される。また、隔壁板68には、円筒状部68a内のファン羽根車66に空気を取り込むための貫通穴68dが形成される。 隔壁板68の開口68bの近傍には、第1切換機構SNが設けられる。第1切換機構SNは、扇状の切換部材Naを有する。切換部材Naは、モーター(図示省略)によって、回転軸Nbを中心に回転する。第1切換機構SNは、回転軸Nbを中心に切換部材Naを回転させることにより、通気口SXの閉鎖と開放を切り換え可能である。通気口SXが開放される場合、吹出口52dと下側空間S2は連通される。
(2-3-2) Partition Plate The partition plate 68 forms an upper space S1 in which a portion of the upper surface 58a of the rotor 58 is in contact, and a lower space S2 in which a portion of the lower surface 58b of the rotor 58 is in contact. The cylindrical portion 68a of the partition plate 68 is formed with an opening 68b connected to the air outlet 52d and an opening 68c connected to the exhaust port 52e. Furthermore, a through hole 68d is formed in the partition plate 68 for introducing air into the fan impeller 66 within the cylindrical portion 68a. A first switching mechanism SN is provided near the opening 68b of the partition plate 68. The first switching mechanism SN includes a fan-shaped switching member Na. The switching member Na rotates around the rotation axis Nb by a motor (not shown). The first switching mechanism SN can switch between closing and opening the vent SX by rotating the switching member Na around the rotation axis Nb. When the vent SX is opened, the air outlet 52d and the lower space S2 are communicated with each other.
 隔壁板68とケーシング52の底板部52gの間には、可動式の第2切換機構SMが設けられる。第2切換機構SMは、排気運転時において、下側空間S2とローター58の間の空気の経路を遮断する。第2切換機構SMは、給気運転時又は再生運転時においては、下側空間S2とローター58の間の空気の経路を開放するように構成される。 A movable second switching mechanism SM is provided between the partition plate 68 and the bottom plate portion 52g of the casing 52. The second switching mechanism SM blocks the air path between the lower space S2 and the rotor 58 during exhaust operation. The second switching mechanism SM is configured to open the air path between the lower space S2 and the rotor 58 during air supply operation or regeneration operation.
 (2-3-3)ファンハウジング
 隔壁板68の円筒状部68aには、ファン羽根車66を覆うファンハウジング70が取り付けられる。
(2-3-3) Fan Housing A fan housing 70 that covers the fan impeller 66 is attached to the cylindrical portion 68a of the partition plate 68.
 (2-3-4)ファン電動機
 ファンハウジング70に、ファン羽根車66を回転させるファン電動機72が設けられる。
(2-3-4) Fan Motor The fan housing 70 is provided with a fan motor 72 that rotates the fan impeller 66.
 (2-4)ダンパユニット
 ダンパユニット74は、空気の経路を切り換える。ダンパユニット74は、旋回可能なシャッタ74aを備える。
(2-4) Damper unit The damper unit 74 switches the air path. The damper unit 74 includes a rotatable shutter 74a.
 (2-4-1)シャッタ
 シャッタ74aは、旋回して隔壁板68の開口68bと円筒状部68aの内側(ファン羽根車66の近傍)の経路を開放、閉鎖できる。開口68bは吹出口52dと接続する。従って、シャッタ74aは、旋回して吹出口52dと円筒状部68aの内側の経路を開放、閉鎖できる。
(2-4-1) Shutter The shutter 74a can rotate to open and close the opening 68b of the partition plate 68 and the path inside the cylindrical portion 68a (near the fan impeller 66). The opening 68b is connected to the air outlet 52d. Therefore, the shutter 74a can rotate to open and close the air outlet 52d and the inner path of the cylindrical portion 68a.
 シャッタ74aは、旋回して隔壁板68の開口68cを開放、閉鎖できる。開口68cは排気口52eと接続する。従って、シャッタ74aは、旋回して排気口52eを開放、閉鎖できる。 The shutter 74a can rotate to open and close the opening 68c of the partition plate 68. The opening 68c is connected to the exhaust port 52e. Therefore, the shutter 74a can rotate to open and close the exhaust port 52e.
 (2-5)制御装置
 制御装置(図示省略)は、給気運転、排気運転、再生運転に加え、補充運転を行う。補充運転の詳細については後述する。
(2-5) Control device The control device (not shown) performs replenishment operation in addition to air supply operation, exhaust operation, and regeneration operation. Details of the replenishment operation will be described later.
 (2-6)補充ファン
 補充ファン84は、後述する補充運転を行うためのファンである。補充ファン84は、回転駆動して吸引力を生成する。補充ファン84は、後述する流路R3に室外空気Aoutの流れを発生させる。補充ファン84は、ローター58に対してユニット本体50の長手方向(Y軸方向)の他方側に配置される。補充ファン84の例としては、シロッコファンなどが挙げられる。
(2-6) Replenishment Fan The replenishment fan 84 is a fan for performing replenishment operation, which will be described later. The replenishment fan 84 is rotationally driven to generate suction force. The replenishment fan 84 generates a flow of outdoor air Aout in a flow path R3, which will be described later. The supplementary fan 84 is arranged on the other side of the unit body 50 in the longitudinal direction (Y-axis direction) with respect to the rotor 58 . An example of the supplementary fan 84 is a sirocco fan.
 (2-6-1)モーター、円筒状部
 補充ファン84は、ケーシング52の底板部52gの外側面に取り付けられるモーター86によって回転される。補充ファン84は、底板部52gの内側面に設けられた円筒状部52h内に収容される。円筒状部52hの内部空間は、第2別口52fに連通する。
(2-6-1) Motor, cylindrical part The supplementary fan 84 is rotated by a motor 86 attached to the outer surface of the bottom plate part 52g of the casing 52. The supplementary fan 84 is housed in a cylindrical portion 52h provided on the inner surface of the bottom plate portion 52g. The internal space of the cylindrical portion 52h communicates with the second separate port 52f.
 (2-6-2)隔壁板、シール部材
 円筒状部52h上には、補充ファン84を覆う隔壁板78が取り付けられる。隔壁板78は、ローター58に対して長手方向(Y軸方向)の一方側の空間を上下に二分割する。
(2-6-2) Partition plate, sealing member A partition plate 78 that covers the supplementary fan 84 is attached on the cylindrical portion 52h. The partition plate 78 divides the space on one side of the rotor 58 in the longitudinal direction (Y-axis direction) into two parts, upper and lower.
 隔壁板78には、室外空気Aoutを補充ファン84内に取り込むための貫通穴78aが設けられる。隔壁板78には、上面58aを覆うことなくローター58を回転可能に収容するローター収容部78bが設けられる。隔壁板78は、シール部78cを備える。シール部78cは、ローター58の上方の上側空間S1と上側空間S3の間で室外空気Aoutの往来を遮断する。 The partition plate 78 is provided with a through hole 78a for taking outdoor air Aout into the supplementary fan 84. The partition plate 78 is provided with a rotor accommodating portion 78b that rotatably accommodates the rotor 58 without covering the upper surface 58a. The partition plate 78 includes a seal portion 78c. The seal portion 78c blocks the outdoor air Aout from flowing between the upper space S1 and the upper space S3 above the rotor 58.
 隔壁板78と天板54との間をシールするシール部材88は、隔壁板78と天板54の間に設けられる。シール部材88により、流路R1、流路R2を流れる室外空気Aoutと流路R3を流れる室外空気Aoutは、異なる位置でローター58を通過でき、互いに混合されない。 A sealing member 88 that seals between the partition plate 78 and the top plate 54 is provided between the partition plate 78 and the top plate 54. Due to the sealing member 88, the outdoor air Aout flowing through the flow paths R1 and R2 and the outdoor air Aout flowing through the flow path R3 can pass through the rotor 58 at different positions and are not mixed with each other.
 (3)動作
 空気調和機102の動作について説明する。空気調和機102は、冷房、暖房、加湿、換気、再生に加え、除湿、補充を行う。
(3) Operation The operation of the air conditioner 102 will be explained. The air conditioner 102 performs dehumidification and replenishment in addition to cooling, heating, humidification, ventilation, and regeneration.
 補充は、ローター58に水分を補充させる動作である。補充は、第1別口52cで室外空気Aoutを吸い込んで、ローター58を通し、第2別口52fにより再び室外ODへと排出する動作である。第1別口52cで室外空気Aoutを吸い込んで、ローター58を通し、第2別口52fにより再び室外ODへと排出する運転を、補充運転という。補充は、補充運転により行われる。 Replenishment is an operation for replenishing the rotor 58 with water. Replenishment is an operation of sucking in outdoor air Aout through the first separate port 52c, passing it through the rotor 58, and discharging it to the outdoor OD again through the second separate port 52f. An operation in which outdoor air Aout is sucked in through the first separate port 52c, passes through the rotor 58, and is discharged to the outdoor OD again through the second separate port 52f is referred to as a replenishment operation. Replenishment is performed by replenishment operation.
 空気調和機102の加湿は、給気運転、吸着運転に加え、補充運転により行われてもよい。加湿が補充運転により行われる場合、ローター58への水分の補充のため、継続的な加湿が可能となる。 Humidification of the air conditioner 102 may be performed by replenishment operation in addition to air supply operation and adsorption operation. When humidification is performed by replenishment operation, continuous humidification is possible because the rotor 58 is replenished with moisture.
 空気調和機102の除湿は、空気調和機100と同様に、吸着運転によらず、給気運転により行われる。 Similar to the air conditioner 100, the dehumidification of the air conditioner 102 is performed not by adsorption operation but by air supply operation.
 (3-1)給気運転
 ファン電動機72がファン羽根車66を回転させると、ケーシング52の吸込口52a、吸込口52bを介して、室外空気Aoutがケーシング52内に吸い込まれる。吸込口52aと吸込口52bの間には、ファンハウジング70とファン電動機72が存在する。従って、ローター58を通過し、室外ODと室内ユニット110を接続し、室外空気Aoutが流れる流路が実質的に2つ存在する。2つの流路R1、流路R2は、ローター58の通過後に互いに合流する合流路を含み、合流路にファン羽根車66が設けられている。
(3-1) Air supply operation When the fan electric motor 72 rotates the fan impeller 66, outdoor air Aout is sucked into the casing 52 through the suction port 52a and the suction port 52b of the casing 52. A fan housing 70 and a fan motor 72 are present between the suction port 52a and the suction port 52b. Therefore, there are essentially two flow paths through which the outdoor air Aout passes through the rotor 58 and connects the outdoor OD and the indoor unit 110. The two flow paths R1 and R2 include a merging path where they merge with each other after the rotor 58 passes, and a fan impeller 66 is provided in the merging path.
 吸込口52a、吸込口52bで吸い込まれた室外空気Aoutは、隔壁板68の上方の上側空間S1に流入し、第1ヒーター76A及び第2ヒーター76Bに向かって流れる。第1ヒーター76A及び第2ヒーター76Bは、ヒーターカバー80によって覆われている。従って、流路R1、流路R2を流れる室外空気Aoutは、第1ヒーター76A及び第2ヒーター76Bに進入するために、側壁部80aの外側面に沿って降下する。室外空気Aoutは、隙間に進入して上方向に移動する。室外空気Aoutは、第1ヒーター76A及び第2ヒーター76Bを貫通して移動する。 The outdoor air Aout sucked in through the suction ports 52a and 52b flows into the upper space S1 above the partition plate 68, and flows toward the first heater 76A and the second heater 76B. The first heater 76A and the second heater 76B are covered by a heater cover 80. Therefore, the outdoor air Aout flowing through the flow path R1 and the flow path R2 descends along the outer surface of the side wall portion 80a in order to enter the first heater 76A and the second heater 76B. Outdoor air Aout enters the gap and moves upward. The outdoor air Aout moves through the first heater 76A and the second heater 76B.
 室外空気Aoutは、上面58aに向かって降下する。2つの流路R1、流路R2は、室外空気Aoutが通過するラビリンスを含んでいる。流路R1、流路R2は、室外空気Aoutが通過するラビリンスを含むことにより、室外空気Aoutに含まれる塵や砂などが換気ホース56、室内ユニット110、及び室内IDに届くことを抑制できる。室外空気Aoutがラビリンスを移動するときに塵や砂などが重力によって室外空気Aoutから分離される。 The outdoor air Aout descends toward the upper surface 58a. The two flow paths R1 and R2 include a labyrinth through which the outdoor air Aout passes. By including the labyrinth through which the outdoor air Aout passes, the flow path R1 and the flow path R2 can prevent dust, sand, etc. contained in the outdoor air Aout from reaching the ventilation hose 56, the indoor unit 110, and the indoor ID. When the outdoor air Aout moves through the labyrinth, dust, sand, etc. are separated from the outdoor air Aout by gravity.
 室外空気Aoutは、上面58aから下面58bに向かってローター58を通過する。言い換えると、室外空気Aoutは、加湿装置57を通過する。ローター58を通過した室外空気Aoutは、隔壁板68の下方の下側空間S2内を移動し、隔壁板68の貫通穴68dを通過してファン羽根車66に取り込まれる。 Outdoor air Aout passes through the rotor 58 from the upper surface 58a toward the lower surface 58b. In other words, the outdoor air Aout passes through the humidifier 57. The outdoor air Aout that has passed through the rotor 58 moves in the lower space S2 below the partition plate 68, passes through the through hole 68d of the partition plate 68, and is taken into the fan impeller 66.
 ファン羽根車66に取り込まれた室外空気Aoutは、開口68b、開口68cにおいてシャッタ74aによって閉鎖されていない方の開口を通過する。図23は、給気運転時のシャッタ74aの動作を示す概略構成図である。室外空気Aoutは、開口68b、吹出口52dを通過し、換気ホース56を介して、室内ユニット110に到達する。室内ユニット110に到達した室外空気Aoutは、室内吹出口IP2を介して、室内IDに供給される。 The outdoor air Aout taken into the fan impeller 66 passes through the opening 68b and the opening 68c that is not closed by the shutter 74a. FIG. 23 is a schematic configuration diagram showing the operation of the shutter 74a during air supply operation. The outdoor air Aout passes through the opening 68b and the air outlet 52d, and reaches the indoor unit 110 via the ventilation hose 56. The outdoor air Aout that has reached the indoor unit 110 is supplied to the indoor ID via the indoor air outlet IP2.
 (3-2)再生運転
 室外ODからファン羽根車66に取り込まれるまでの室外空気Aoutの流路は、給気運転の室外空気Aoutの流路R1、流路R2と同様である。ファン羽根車66に取り込まれた室外空気Aoutは、開口68b、開口68cにおいてシャッタ74aによって閉鎖されていない方の開口を通過する。図24は、再生運転時のシャッタ74aの動作を示す概略構成図である。室外空気Aoutは、開口68c、排気口52eを通過し、再び室外ODに排出される。
(3-2) Regeneration operation The flow path of the outdoor air Aout from the outdoor OD until it is taken into the fan impeller 66 is the same as the flow path R1 and flow path R2 of the outdoor air Aout in the air supply operation. The outdoor air Aout taken into the fan impeller 66 passes through the opening 68b and the opening 68c that is not closed by the shutter 74a. FIG. 24 is a schematic configuration diagram showing the operation of the shutter 74a during regeneration operation. The outdoor air Aout passes through the opening 68c and the exhaust port 52e, and is discharged to the outdoor OD again.
 (3-3)補充運転
 室外空気Aoutの流路として、流路R1、流路R2以外の流路R3が生成される。室外空気Aoutの流路R3は、流路R1、流路R2と異なり、室内ユニット110内に接続しない。流路R3は、ローター58を通過し、室外空気Aoutが室外ODから室外ODに流れる流路である。流路R3は、第1別口52cから始まり、ローター58を下面58bから上面58aに向かって通過し、第2別口52fに至る。
(3-3) Replenishment Operation A flow path R3 other than flow path R1 and flow path R2 is generated as a flow path for outdoor air Aout. The flow path R3 of the outdoor air Aout is different from the flow path R1 and the flow path R2, and is not connected to the inside of the indoor unit 110. The flow path R3 is a flow path through which the outdoor air Aout passes through the rotor 58 and flows from the outdoor OD to the outdoor OD. The flow path R3 starts from the first separate port 52c, passes through the rotor 58 from the lower surface 58b toward the upper surface 58a, and reaches the second separate port 52f.
 モーター86が補充ファン84を回転駆動させると、第1別口52cを介して、室外空気Aoutがケーシング52内に流入する。第1別口52cを介して流入した室外空気Aoutは、隔壁板78の下方の下側空間S4に流入し、ローター58の下方に向かって流れる。室外空気Aoutは、ローター58の下面58bから上面58aに向かってローター58を通過する。 When the motor 86 rotates the supplementary fan 84, outdoor air Aout flows into the casing 52 through the first separate port 52c. The outdoor air Aout that has flowed in through the first separate port 52c flows into the lower space S4 below the partition plate 78, and flows toward the lower side of the rotor 58. Outdoor air Aout passes through the rotor 58 from the lower surface 58b of the rotor 58 toward the upper surface 58a.
 ローター58を通過した室外空気Aoutは、隔壁板78の上方の上側空間S3内を移動し、貫通穴78aを通過して補充ファン84に取り込まれる。補充ファン84に取り込まれた室外空気Aoutは、第2別口52fを介して室外ODに排出される。 The outdoor air Aout that has passed through the rotor 58 moves in the upper space S3 above the partition plate 78, passes through the through hole 78a, and is taken into the supplementary fan 84. The outdoor air Aout taken into the supplementary fan 84 is discharged to the outdoor OD via the second separate port 52f.
 加熱されない室外空気Aoutは、ローター58により水分を奪われる。言い換えると、ローター58は、室外空気Aoutにより水分を補充する。 The unheated outdoor air Aout is dehydrated by the rotor 58. In other words, the rotor 58 replenishes moisture with the outdoor air Aout.
 (3-4)吸着運転
 吸着運転は、第1ヒーター76A、第2ヒーター76Bの少なくとも一方が作動する状態で行われる。室内IDの湿度を小さく増加させる場合、第1ヒーター76Aと第2ヒーター76Bの少なくとも一方が作動される。他方、室内IDの湿度を大きく増加させる場合、第1ヒーター76Aと第2ヒーター76Bの両方が作動される。
(3-4) Adsorption operation The adsorption operation is performed with at least one of the first heater 76A and the second heater 76B operating. When increasing the humidity in the room ID by a small amount, at least one of the first heater 76A and the second heater 76B is operated. On the other hand, when the humidity in the room ID is significantly increased, both the first heater 76A and the second heater 76B are operated.
 複数のヒーターを使用することにより、1つの加熱手段を用いる場合に比べて、室外空気Aoutの水分量(ローター58から奪う水分量)を細かく調節することができる。従って、室内IDの加湿量をきめ細やかに制御することができる。 By using a plurality of heaters, the amount of moisture in the outdoor air Aout (the amount of moisture removed from the rotor 58) can be adjusted more finely than when using one heating means. Therefore, the amount of humidification for the room ID can be precisely controlled.
 (3-5)排気運転
 図25は、排気運転時のユニット本体50の内部構造を示す斜視図である。図26は、排気運転時のユニット本体50の分解斜視図である。図27は、排気運転時のユニット本体50の一部の構成要素の分解斜視図である。図28は、排気運転時のユニット本体50の概略断面図である。排気運転時に生成される流路を流路R4と称する。
(3-5) Exhaust Operation FIG. 25 is a perspective view showing the internal structure of the unit main body 50 during exhaust operation. FIG. 26 is an exploded perspective view of the unit main body 50 during exhaust operation. FIG. 27 is an exploded perspective view of some components of the unit main body 50 during exhaust operation. FIG. 28 is a schematic cross-sectional view of the unit main body 50 during exhaust operation. The flow path generated during exhaust operation is referred to as flow path R4.
 室内空気は、室内ユニット110内に吸い込まれる。吸い込まれた室内空気は、換気ホース56を通じて、吹出口52dに到達する。室内空気は、回転駆動するファン羽根車66の吸引力により、吹出口52d、開口68bを介して、ユニット本体50内に流れる。ユニット本体50内に流れた室内空気は、隔壁板68の上に到達する。 Indoor air is drawn into the indoor unit 110. The sucked indoor air passes through the ventilation hose 56 and reaches the outlet 52d. Indoor air flows into the unit main body 50 via the air outlet 52d and the opening 68b due to the suction force of the rotationally driven fan impeller 66. The indoor air that has flowed into the unit main body 50 reaches the top of the partition plate 68.
 図29は、排気運転時のシャッタ74aの動作を示す概略構成図である。シャッタ74aにより、吹出口52dから直接ファン羽根車66に流れる経路は、遮断されている。排気運転時において、通気口SXは開放されている。従って、隔壁板68の上に到達した室内空気は、通気口SXを介して、下側空間S2に流れる。 FIG. 29 is a schematic configuration diagram showing the operation of the shutter 74a during exhaust operation. The path from the air outlet 52d directly to the fan impeller 66 is blocked by the shutter 74a. During exhaust operation, the vent SX is open. Therefore, the indoor air that has reached the top of the partition plate 68 flows into the lower space S2 via the vent SX.
 下側空間S2に流れた室内空気は、吸引力により、貫通穴68dを介してファン羽根車66の近傍に到達する。排気運転時において、シャッタ74aは、排気口52eを開放している。従って、ファン羽根車66の近傍に到達した室内空気は、開口68c、排気口52eを介して室外ODに排出される。 The indoor air flowing into the lower space S2 reaches the vicinity of the fan impeller 66 via the through hole 68d due to the suction force. During exhaust operation, the shutter 74a opens the exhaust port 52e. Therefore, the indoor air that has reached the vicinity of the fan impeller 66 is discharged to the outdoor OD via the opening 68c and the exhaust port 52e.
 換気ユニット150は、再生運転時において用いる排気口52eが、排気運転時において用いる排気口52eと同一である。換気ユニット150は、再生運転のための排気口をさらに設ける必要がなく、既存の構造を活用した再生運転が可能である。従って、換気ユニット150は、構造を簡素化できる。 In the ventilation unit 150, the exhaust port 52e used during the regeneration operation is the same as the exhaust port 52e used during the exhaust operation. The ventilation unit 150 does not need to further provide an exhaust port for regeneration operation, and can perform regeneration operation using the existing structure. Therefore, the ventilation unit 150 can be simplified in structure.
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure as described in the claims.
 52a  吸込口
 52b  吸込口
 52d  吹出口
 52e  排気口
 56   換気ホース
 58   ローター
 74a  シャッタ
 121  熱交換ユニット
 130  換気ユニット
 132  換気ホース
 140  換気ユニット
 150  換気ユニット
 321  ローター
 322  ヒーター
 350  シャッタ
 353  シャッタ
 Aout 室外空気
 BP   吹出口
 EP   排気口
 EX   排気経路
 ID   室内
 OD   室外
 RP   再生経路
 SP   吸込口
 SU   給気経路
 VP   通風経路
52a Suction port 52b Suction port 52d Air outlet 52e Exhaust port 56 Ventilation hose 58 Rotor 74a Shutter 121 Heat exchange unit 130 Ventilation unit 132 Ventilation hose 140 Ventilation unit 150 Ventilation unit 321 Rotor 322 Heater 350 Shutter 353 Shutter Aout Outdoor air BP Air outlet E P Exhaust port EX Exhaust route ID Indoor OD Outdoor RP Regeneration route SP Suction port SU Air supply route VP Ventilation route
特開2004-286432号公報Japanese Patent Application Publication No. 2004-286432

Claims (8)

  1.  送風ファンと、換気ホース(56、132)と、吸込口(52a、52b、SP)と、吹出口(52d、BP)とを備える換気ユニット(130、140、150)であって、
     前記吸込口から前記送風ファンを介して前記吹出口に到達するまでの通風経路(VP)に設けられる吸着部材と、
     前記送風ファンを駆動して、前記通風経路から前記換気ホースを通じて室外空気(Aout)を室内(ID)に供給する給気運転と、前記給気運転と同じ回転方向で前記送風ファンを駆動して、前記吸着部材を通さずに、前記換気ホースを通じて室内空気を室外(OD)へと排出する排気運転と、行う制御部と、
    を備える換気ユニット。
    A ventilation unit (130, 140, 150) comprising a blower fan, a ventilation hose (56, 132), an inlet (52a, 52b, SP), and an outlet (52d, BP),
    an adsorption member provided in a ventilation path (VP) from the suction port to the air outlet via the blower fan;
    Driving the blower fan to supply outdoor air (Aout) from the ventilation path to the room (ID) through the ventilation hose; and driving the blower fan in the same rotational direction as the air supply operation. , a control unit that performs an exhaust operation that discharges indoor air to the outside (OD) through the ventilation hose without passing through the adsorption member;
    Ventilation unit with.
  2.  前記吸着部材は、前記通風経路において、前記吸込口と前記送風ファンとの間に設けられる、
    請求項1に記載の換気ユニット。
    The suction member is provided between the suction port and the ventilation fan in the ventilation path.
    A ventilation unit according to claim 1.
  3.  前記給気運転時における空気の経路である給気経路(SU)と、前記排気運転時における空気の経路である排気経路(EX)を切り換える切換機構、
    をさらに備える請求項1又は請求項2に記載の換気ユニット。
    a switching mechanism that switches between an air supply route (SU) that is an air route during the air supply operation and an exhaust route (EX) that is an air route during the exhaust operation;
    The ventilation unit according to claim 1 or claim 2, further comprising:
  4.  前記排気運転時に前記室内空気を外部に排出するための排気口(52e、EP)、
    をさらに備え、
     前記切換機構は、前記排気経路が、前記換気ホースを通じた空気が、前記吹出口から前記送風ファンを介して前記排気口に到達するまでの経路となるように切り換える、
    請求項3に記載の換気ユニット。
    an exhaust port (52e, EP) for exhausting the indoor air to the outside during the exhaust operation;
    Furthermore,
    The switching mechanism switches the exhaust path so that the air passing through the ventilation hose reaches the exhaust port from the air outlet via the blower fan.
    A ventilation unit according to claim 3.
  5.  前記吸着部材は、加湿用のローター(58、321)であり、
     前記ローターに導入される空気を加熱するヒーター(322)、
    をさらに備え、
     前記制御部は、室外空気を吸い込んで、前記ヒーターにより加熱された後、前記ローターを通し、前記排気口により再び室外へと排出する再生運転、をさらに行う、
    請求項4に記載の換気ユニット。
    The adsorption member is a humidification rotor (58, 321),
    a heater (322) that heats the air introduced into the rotor;
    Furthermore,
    The control unit further performs a regeneration operation in which outdoor air is sucked in, heated by the heater, passed through the rotor, and then discharged outdoors again through the exhaust port.
    A ventilation unit according to claim 4.
  6.  前記切換機構は、前記再生運転時における空気の経路である再生経路(RP)が、前記吸込口から吸い込まれた空気が、前記送風ファンを介して前記排気口までの経路となるように切り換える、
    請求項5に記載の換気ユニット。
    The switching mechanism switches the regeneration path (RP), which is the air path during the regeneration operation, so that the air sucked from the suction port passes through the blower fan to the exhaust port.
    A ventilation unit according to claim 5.
  7.  前記給気運転時に前記排気口を閉鎖し、前記排気運転時に前記排気口を開放するシャッタ(74a、350、353)、
    をさらに備える請求項4から請求項6の何れか1項に記載の換気ユニット。
    a shutter (74a, 350, 353) that closes the exhaust port during the air supply operation and opens the exhaust port during the exhaust operation;
    The ventilation unit according to any one of claims 4 to 6, further comprising:
  8.  前記吸着部材は、加湿用のローターと、プレフィルターと、集塵フィルターと、消臭フィルターの少なくとも何れかである、
    請求項1から請求項4、請求項7の何れか1項に記載の換気ユニット。
    The adsorption member is at least one of a humidifying rotor, a pre-filter, a dust collection filter, and a deodorizing filter.
    The ventilation unit according to any one of claims 1 to 4 and claim 7.
PCT/JP2023/032656 2022-09-09 2023-09-07 Ventilation unit WO2024053703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144123 2022-09-09
JP2022144123A JP2024039513A (en) 2022-09-09 2022-09-09 ventilation unit

Publications (1)

Publication Number Publication Date
WO2024053703A1 true WO2024053703A1 (en) 2024-03-14

Family

ID=90191395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032656 WO2024053703A1 (en) 2022-09-09 2023-09-07 Ventilation unit

Country Status (2)

Country Link
JP (1) JP2024039513A (en)
WO (1) WO2024053703A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176944A (en) * 2001-12-07 2003-06-27 Daikin Ind Ltd Ventilation system and air conditioner
JP2003314858A (en) * 2002-04-22 2003-11-06 Daikin Ind Ltd Air conditioner
JP2006090625A (en) * 2004-09-24 2006-04-06 Hitachi Home & Life Solutions Inc Blowing device and air conditioner using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176944A (en) * 2001-12-07 2003-06-27 Daikin Ind Ltd Ventilation system and air conditioner
JP2003314858A (en) * 2002-04-22 2003-11-06 Daikin Ind Ltd Air conditioner
JP2006090625A (en) * 2004-09-24 2006-04-06 Hitachi Home & Life Solutions Inc Blowing device and air conditioner using the same

Also Published As

Publication number Publication date
JP2024039513A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
KR102359202B1 (en) Air cleaner and home appliances including air handling unit
JP5800652B2 (en) Air cleaner
KR101967279B1 (en) A Indoor air clean ventilation system
JP4392310B2 (en) Blower and air conditioner using the same
CN112503682A (en) Air conditioner
KR100577206B1 (en) Ventilation Systems
JP2630746B2 (en) Total heat exchange ventilator
KR20050080287A (en) Air cleaning system with ventilator
KR101817092B1 (en) Air cleaner
CN115956181A (en) Air conditioner
WO2024053703A1 (en) Ventilation unit
KR101403010B1 (en) Apparatus for humidification and dehumidification
JP2000314548A (en) Positive pressure air supply air cleaner
KR20210090833A (en) Air conditioner
KR20050078005A (en) Ventilation systems
JP7445148B2 (en) air treatment equipment
JP4393168B2 (en) Air conditioner
KR102238949B1 (en) Air cleaner and home appliances including air handling unit
WO2023218566A1 (en) Dehumidifier
WO2023218567A1 (en) Dehumidifier
KR101335230B1 (en) Apparatus for humidification and dehumidification
JP2002243198A (en) Dehumidifier
JPH10332174A (en) Air processing equipment
JP2017127823A (en) Bug capturing filter and ventilation device including the same
JP2024038875A (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863241

Country of ref document: EP

Kind code of ref document: A1