WO2024053667A1 - Steel sheet and plated steel sheet - Google Patents

Steel sheet and plated steel sheet Download PDF

Info

Publication number
WO2024053667A1
WO2024053667A1 PCT/JP2023/032500 JP2023032500W WO2024053667A1 WO 2024053667 A1 WO2024053667 A1 WO 2024053667A1 JP 2023032500 W JP2023032500 W JP 2023032500W WO 2024053667 A1 WO2024053667 A1 WO 2024053667A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel plate
content
steel sheet
steel
Prior art date
Application number
PCT/JP2023/032500
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 光延
卓史 横山
浩史 竹林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024053667A1 publication Critical patent/WO2024053667A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Definitions

  • the present invention relates to a steel plate and a plated steel plate. More specifically, the present invention relates to a steel plate and a plated steel plate having high LME resistance and hydrogen desorption properties.
  • LME cracking is thought to occur when the surface layer of the steel plate transforms into austenite during welding, molten zinc intrudes into the grain boundaries and embrittles the steel plate, and furthermore, tensile stress is applied to the steel plate during welding.
  • Non-Patent Document 1 it is known that ferrite phase grain boundaries have lower LME susceptibility than austenite grain boundaries with respect to LME cracking.
  • Patent Document 2 discloses that, as a steel sheet that suppresses LME cracking and improves weldability, Si oxide particles with a particle size of 20 nm or more are contained in a number density of 3000 to 6000 pieces/mm 2 in the surface layer of the steel sheet. A steel sheet having a grain size distribution is disclosed.
  • the present inventors have diligently studied means for solving the above problems. As a result, the surface layer of the steel sheet is decarburized, the ferrite ( ⁇ ) phase is stabilized, and the surface layer of the steel sheet is It has been found that the material is covered with a ferrite phase having a low solid solution amount of C, and as a result, it is possible to suppress LME. Furthermore, it has been found that by covering the surface layer of the steel sheet with a ferrite phase in which the amount of solid solution of C is low, desorption of hydrogen from the steel sheet into the atmosphere is promoted even when hydrogen enters the steel sheet.
  • the present invention has been made based on the above findings and further studies, and the gist thereof is as follows.
  • a steel plate having a tensile strength of 780 MPa or more the chemical components of which are C: 0.05 to 0.40%, Si: 0.7 to 3.0%, Mn: 0. 1-5.0%, sol. Al: 0.7-2.0%, P: 0.0300% or less, S: 0.0300% or less, N: 0.0100% or less, B: 0-0.010%, Ti: 0-0.
  • Nb 0-0.150%
  • V 0-0.150%
  • Cr 0-2.00%
  • Ni 0-2.00%
  • Cu 0-2.00%
  • Mo 0-1.00%
  • W 0-1.00%
  • Ca 0-0.100%
  • Mg 0-0.100%
  • Zr 0-0.100%
  • Hf 0-0.100 %
  • REM 0 to 0.100%, the remainder being Fe and impurities, Si and sol.
  • the total value of Al content is 1.8% or more, and the depth at which the C concentration measured by GDS is 0.05% or less in the depth direction from the steel plate surface is 10 ⁇ m or more, and A steel plate characterized in that the thickness of the layer in which the area ratio of the ferrite phase is 90% or more is 20 ⁇ m or more in the depth direction, and the steel sheet has a surface roughness Ra of 3.0 ⁇ m or less.
  • the depth at which the C concentration measured by GDS is 0.05% or less is 20 ⁇ m or more, and in the depth direction from the surface of the steel plate, a ferrite phase is formed.
  • An alloyed hot-dip galvanized layer is provided on at least a portion of the surface of the steel sheet according to any one of (1) to (4), and the plating layer contains 0 to 1.5% Al and An alloyed hot-dip galvanized steel sheet containing 3 to 15% Fe, with the remainder being Zn and impurities.
  • a steel plate and a plated steel plate having high LME resistance and hydrogen desorption properties can be obtained.
  • LME cracking occurs when the surface layer of a steel plate is heated during spot welding, the steel plate structure in the surface layer transforms into austenite, and the grain boundaries become brittle as hot-dip plating enters the steel plate structure along the austenite grain boundaries. It is caused by doing. It is thought that LME cracking occurs because tensile stress is applied to the steel plate during welding.
  • the steel sheet of the present invention improves LME resistance due to the structure formed in the surface layer. Note that in this specification, the surface layer of a steel plate refers to the range from the outermost surface of the steel plate to a depth of 100 ⁇ m.
  • the C element is contained in the surface layer of a steel sheet, LME cracking is likely to occur, so keeping the C concentration in the surface layer of the steel sheet low is effective in preventing LME cracking.
  • the C concentration in the surface layer of the steel sheet is difficult to decrease.
  • the steel plate of the present invention in the depth direction from the steel plate surface, there is a region 10 ⁇ m or more from the steel plate surface where the C concentration measured by GDS is 0.05% or less. This means that the concentration of C, which is an element that tends to cause LME, is low in the surface layer of the steel sheet.
  • the thickness of the region where the area ratio of the ferrite phase is 90% or more in the depth direction from the steel plate surface is 20 ⁇ m or more.
  • the steel sheet of the present invention contains a large amount of Si, which is conventionally known to reduce LME resistance when contained in steel. As a result of the studies conducted by the present inventors, contrary to the conventional knowledge, Si and sol. This is because it has been found that LME resistance is improved by containing a large amount of Al in a steel plate.
  • a strong strain is applied to the surface layer of the steel plate without increasing the surface roughness, and the steel plate is annealed at a high dew point.
  • This allows oxygen to diffuse into the steel sheet and form internal oxides, making it possible to suppress the formation of external oxides.
  • the C concentration in the surface layer of the steel sheet is reduced, and Si and sol. This is thought to be due to the fact that the ferrite can be stabilized by the effect of the combined addition of Al.
  • the steel plate of the present invention contains Si and sol. Due to the combined effect of high Al content, applying strain to the surface layer before annealing, and controlling the dew point during annealing, a layer with a low C concentration and a high area ratio of ferrite is formed on the surface layer of the steel sheet. This makes it possible to improve LME resistance.
  • % regarding chemical components means “% by mass”.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • C 0.05-0.40%
  • C (carbon) is an element that ensures the strength of steel.
  • the C content is set to 0.05 MPa in consideration of the balance with weldability and to prevent the C concentration in the surface layer of the steel sheet from becoming too high. ⁇ 0.40%. If the C content is too large, the C concentration in the surface layer will not be reduced even by high dew point annealing, which will be described later, and the ferrite fraction will not be high.
  • the content of C may be 0.07% or more, 0.10% or more, or 0.12% or more.
  • the content of C may be 0.35% or less, 0.30% or less, or 0.25% or less.
  • Si Si: 0.7-3.0%, sol.Al: 0.7-2.0%, Si+sol.Al ⁇ 1.8%)
  • Si silicon
  • Al aluminum
  • Si and sol. The total value of Al content is 1.8% or more. Si and sol. This is because when the Al content satisfies such a numerical range, decarburization of the surface layer of the steel sheet can be promoted and ferrite in the surface layer can be stabilized in the heat treatment of the manufacturing process of the steel sheet of this embodiment. sol.
  • Al refers to acid-soluble Al that is not converted into oxides such as Al 2 O 3 and is soluble in acids, and was measured by subtracting the insoluble residue on the filter paper that is generated during the Al analysis process.
  • the content of Si may be 0.8% or more, 0.9% or more, or 1.0% or more.
  • the content of Si may be 2.8% or less, 2.5% or less, or 2.0% or less.
  • the Al content may be 0.8% or more, 0.9% or more, or 1.0% or more. sol.
  • the Al content may be 1.8% or less, 1.6% or less, or 1.5% or less.
  • the total content of Al may be 1.9% or more, or 2.0% or more.
  • Mn manganese
  • Mn manganese
  • Mn content is set to 0.1 to 5.0%.
  • the Mn content may be 0.5% or more, 1.0% or more, or 1.5% or more.
  • the Mn content may be 4.5% or less, 4.0% or less, or 3.5% or less.
  • P 0.0300% or less
  • P phosphorus
  • the content of P may be 0.0200% or less, 0.0100% or less, or 0.0050% or less. It is preferable that P is not contained, and the lower limit of the P content is 0%. From the viewpoint of dephosphorization cost, the P content may be more than 0%, 0.0001% or more, or 0.0005% or more.
  • S sulfur
  • S is an impurity generally contained in steel. If the S content exceeds 0.0300%, weldability will decrease, and furthermore, the amount of MnS precipitated may increase, leading to a possibility that workability such as bendability will decrease. Therefore, the S content is set to 0.0300% or less.
  • the S content may be 0.0100% or less, 0.0050% or less, 0.0030% or less, 0.0020% or less, or 0.0010% or less. It is preferable that S is not contained, and the lower limit of the S content is 0%. From the viewpoint of desulfurization cost, the S content may be more than 0%, 0.0001% or more, or 0.0005% or more.
  • N nitrogen
  • nitrogen is an impurity generally contained in steel. If the N content exceeds 0.0100%, weldability may deteriorate. Therefore, the N content is set to 0.0100% or less.
  • the content of N may be 0.0080% or less, 0.0050% or less, 0.0030% or less, 0.0020% or less, or 0.0010% or less. It is preferable that N is not contained, and the lower limit of the N content is 0%. From the viewpoint of manufacturing cost, the N content may be more than 0%, 0.0001% or more, 0.0002% or more, 0.0003% or more, or 0.0005% or more.
  • B (boron) is an element that increases hardenability and contributes to improvement of strength, and also segregates at grain boundaries to strengthen grain boundaries and improve toughness, so it may be included as necessary. . Since B is not an essential element, the lower limit of the content of B is 0%. Although this effect can be obtained even when B is contained in a trace amount, it is preferable that the content of B is 0.0001% or more.
  • the content of B may be 0.0002% or more, 0.0003% or more, 0.0005% or more, 0.0007% or more, or 0.0010% or more.
  • the B content is set to 0.010% or less.
  • the content of B may be 0.0080% or less, 0.0060% or less, 0.0050% or less, 0.0040% or less, or 0.0030% or less.
  • Ti titanium
  • Ti titanium
  • Ti titanium
  • the lower limit of the content of Ti is 0%.
  • the content of Ti is preferably 0.0001% or more.
  • the content of Ti may be 0.0002% or more, 0.0003% or more, 0.0005% or more, 0.0007% or more, or 0.0010% or more.
  • coarse TiN may be generated and toughness may be impaired, so the content of Ti is set to 0.150% or less.
  • the Ti content is 0.1000% or less, 0.0500% or less, 0.0300% or less, 0.0200% or less, 0.0100% or less, 0.0050% or less, or 0.0030% or less. good.
  • Nb 0-0.150% Since Nb (niobium) is an element that contributes to improving strength through improving hardenability, it may be included as necessary. Since Nb is not an essential element, the lower limit of the content of Nb is 0%. Although this effect can be obtained even with a trace amount of Nb, the content of Nb is preferably 0.001% or more. The Nb content may be 0.002% or more, 0.003% or more, 0.005% or more, or 0.008% or more. On the other hand, from the viewpoint of ensuring sufficient toughness, the Nb content is set to 0.150% or less. The Nb content may be 0.100% or less, 0.060% or less, 0.050% or less, 0.040% or less, or 0.030% or less.
  • V vanadium
  • V vanadium
  • the lower limit of the content of V is 0%.
  • the content of V is set to 0.150% or less.
  • the V content may be 0.100% or less, 0.060% or less, 0.050% or less, 0.040% or less, or 0.030% or less.
  • Cr 0-2.00% Cr (chromium) is effective in improving the hardenability of steel and increasing the strength of steel, and therefore may be contained as necessary. Since Cr is not an essential element, the lower limit of the content of Cr is 0%. Although this effect can be obtained even with a trace amount of Cr, the content of Cr is preferably 0.001% or more.
  • the content of Cr may be 0.01% or more, 0.02% or more, 0.03% or more, 0.05% or more, or 0.08% or more.
  • the content of Cr is set to 2.00% or less.
  • the content of Cr may be 1.80% or less, 1.50% or less, 1.20% or less, 1.00% or less, 0.70% or less, 0.50% or less, or 0.30% or less. .
  • Ni nickel
  • Ni nickel
  • the lower limit of the Ni content is 0%.
  • the Ni content may be 0.01% or more, 0.02% or more, 0.03% or more, 0.05% or more, or 0.07% or more.
  • the Ni content is set to 2.00% or less.
  • the Ni content is 1.80% or less, 1.50% or less, 1.20% or less, 1.00% or less, 0.80% or less, 0.50% or less, 0.30% or less, or 0. It may be 20% or less.
  • Cu (Cu: 0-2.00%) Cu (copper) is effective in improving the hardenability of steel and increasing the strength of steel, and therefore may be contained as necessary. Since Cu is not an essential element, the lower limit of the content of Cu is 0%. Although this effect can be obtained even with a trace amount of Cu, the content of Cu is preferably 0.0001% or more. The content of Cu may be 0.0002% or more, 0.0003% or more, or 0.0005% or more. On the other hand, from the viewpoint of suppressing a decrease in toughness and cracking of the slab after casting, the content of Cu is set to 2.00% or less.
  • the Cu content is 1.8000% or less, 1.5000% or less, 1.2000% or less, 1.0000% or less, 0.5000% or less, 0.1000% or less, 0.0500% or less, 0.0100 % or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • Mo mobdenum
  • Mo mobdenum
  • the lower limit of the content of Mo is 0%.
  • the content of Mo is preferably 0.001% or more.
  • the Mo content may be 0.01% or more, 0.02% or more, 0.03% or more, 0.05% or more, or 0.08% or more.
  • the Mo content is set to 1.00% or less.
  • the Mo content may be 0.90% or less, 0.70% or less, 0.50% or less, or 0.30% or less.
  • W 0-1.00% W (tungsten) is effective in improving the hardenability of steel and increasing the strength of steel, and therefore may be included as necessary. Since W is not an essential element, the lower limit of the content of W is 0%. Although this effect can be obtained even when a small amount of W is included, it is preferable that the content of W is 0.001% or more. The content of W may be 0.002% or more, 0.003% or more, or 0.004% or more. On the other hand, from the viewpoint of suppressing a decrease in toughness, the W content is set to 1.00% or less. The content of W is 0.900% or less, 0.700% or less, 0.500% or less, 0.300% or less, 0.100% or less, 0.050% or less, 0.030% or less, or 0. It may be 0.020% or less.
  • Ca (Ca: 0-0.100%)
  • Ca (calcium) is an element that contributes to control of inclusions, particularly fine dispersion of inclusions, and has the effect of increasing toughness, and therefore may be contained as necessary. Since Ca is not an essential element, the lower limit of the content of Ca is 0%. Although this effect can be obtained even with a trace amount of Ca, the content of Ca is preferably 0.0001% or more.
  • the Ca content may be 0.0002% or more, 0.0003% or more, or 0.0004% or more.
  • the Ca content is set to 0.100% or less.
  • the Ca content is 0.0800% or less, 0.0500% or less, 0.0100% or less, 0.0050% or less, 0.0030% or less, 0.0020% or less, or 0.0010% or less. good.
  • Mg manganesium
  • Mg is an element that contributes to control of inclusions, particularly to fine dispersion of inclusions, and has the effect of increasing toughness, and therefore may be contained as necessary. Since Mg is not an essential element, the lower limit of the Mg content is 0%. Although this effect can be obtained even with a trace amount of Mg, it is preferable that the Mg content is 0.0001% or more.
  • the content of Mg may be 0.0002% or more, 0.0003% or more, 0.0005% or more, or 0.0008% or more.
  • the content of Mg is set to 0.100% or less.
  • the Mg content may be 0.090% or less, 0.080% or less, 0.050% or less, 0.010% or less, 0.005% or less, or 0.003% or less.
  • Zr zirconium
  • Zr zirconium
  • Zr zirconium
  • Zr zirconium
  • the content of Zr may be 0.002% or more, 0.003% or more, 0.005% or more, or 0.010% or more.
  • the Zr content is set to 0.100% or less.
  • the content of Zr may be 0.080% or less, 0.050% or less, 0.040% or less, or 0.030% or less.
  • Hf (hafnium) is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has the effect of increasing toughness, and therefore may be contained as necessary. Since it is not an essential element, the lower limit of the content of Hf is 0%. Although this effect can be obtained even with a trace amount of Hf, it is preferable that the Hf content is 0.0001% or more. The Hf content may be 0.0002% or more, 0.0003% or more, 0.0005% or more, or 0.0008% or more. On the other hand, since excessive Hf content may cause deterioration of surface properties, the content of Hf is set to 0.100% or less. The content of Hf is 0.050% or less, 0.030% or less, 0.010% or less, 0.005% or less, or 0.003% or less.
  • REM 0-0.100%
  • REM rare earth element
  • the lower limit of the content of REM is 0%.
  • the content of REM is preferably 0.0001% or more.
  • the content of REM may be 0.0003% or more, 0.0005% or more, or 0.0007% or more.
  • the content of REM is set to 0.100% or less.
  • the content of REM may be 0.0500% or less, 0.0300% or less, 0.0100% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • REM is an abbreviation for Rare Earth Metal, and refers to an element belonging to the lanthanide series. REM is usually added as a misch metal.
  • the remainder other than the above chemical components consists of Fe and impurities.
  • impurities are components that are mixed in due to various factors in the manufacturing process, including raw materials such as ore and scrap, when steel sheets are industrially manufactured. It means a substance that is contained within a range that does not adversely affect LME properties and hydrogen desorption properties, that is, it can provide the LME resistance and hydrogen desorption properties required for the steel sheet of the present invention.
  • the chemical components of the steel plate may be analyzed using elemental analysis methods known to those skilled in the art, such as inductively coupled plasma mass spectrometry (ICP-MS).
  • ICP-MS inductively coupled plasma mass spectrometry
  • C and S may be measured using the combustion-infrared absorption method
  • N may be measured using the inert gas melting-thermal conductivity method.
  • the depth at which the C concentration measured by GDS (glow discharge spectroscopy) is 0.05% or less is 10 ⁇ m or more in the depth direction from the steel plate surface.
  • LME resistance improves when the C concentration in the surface layer is low. Further, since C is an austenite stabilizing element, a small amount of C stabilizes the ferrite phase with low LME sensitivity, which will be described later. Furthermore, when there is less C in the surface layer, hydrogen that has entered the steel easily escapes, improving hydrogen desorption performance. This is presumed to be because the presence of less C, which is an interstitial element, in the ferrite phase makes it easier for hydrogen to pass through.
  • Such a surface structure can be obtained by changing the chemical composition of the steel sheet to a component containing a large amount of Si and Al, as described above, and by heat treatment described below.
  • the depth at which the C concentration is 0.05% or less is 10 ⁇ m or more, the effect of improving LME resistance can be obtained, so the upper limit of the depth is not particularly limited. For example, it may be 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less.
  • the depth at which the C concentration is 0.05% or less is preferably 20 ⁇ m or more.
  • the GDS measurement is performed five times in the thickness direction, and the average value of these measurements is taken as the C concentration.
  • the measurement conditions are as follows.
  • the starting point of "depth” is the surface of the steel plate for an unplated steel plate, and the interface between the steel plate and the plating layer for a plated steel plate.
  • the interface between the steel plate and the plating layer is located at a position where the Fe concentration measured by GDS measurement is 93% of the Fe concentration at a depth of 150 ⁇ m.
  • the thickness of the layer in which the area ratio of the ferrite phase is 90% or more is 20 ⁇ m or more in the depth direction from the steel sheet surface.
  • FIG. 1 shows an example of a microstructure photograph taken by SEM near the surface layer of the steel sheet of the present invention.
  • FIG. 1 is a cross section of a steel plate in the thickness direction, and the upper side of the drawing is the surface of the steel plate.
  • the surface layer of the steel sheet in FIG. 1 has a low C concentration and includes a layer with a ferrite phase area ratio of 90% or more.
  • the inside of the steel plate has a structure mainly composed of martensite and containing ferrite.
  • a layer having a ferrite phase area ratio of 90% or more exists in the surface layer with a thickness of 40 ⁇ m.
  • Non-Patent Document 1 It is known that ferrite phase grain boundaries have lower LME susceptibility than ⁇ (austenite) grain boundaries (for example, Non-Patent Document 1). Therefore, by having a thick structure mainly composed of ferrite phase in the surface layer of the steel sheet, LME is less likely to occur even when the plating melts, and LME resistance can be improved.
  • Such a surface structure can be obtained by changing the chemical composition of the steel sheet to a component containing a large amount of Si and Al, as described above, and by heat treatment described below.
  • the thickness of the region where the area ratio of the ferrite phase is 90% or more is 20 ⁇ m or more, the effect of improving LME resistance can be obtained, so the upper limit of the thickness is not particularly limited. For example, it may be 100 ⁇ m or less, 80 ⁇ m or less, or 60 ⁇ m or less.
  • the thickness of the region where the area ratio of the ferrite phase is 90% or more is preferably 30 ⁇ m or more.
  • the thickness of the region where the area ratio of the ferrite phase is 90% or more can be determined by nital etching the L cross section of the steel plate and observing it with SEM. Martensite, bainite, and ferrite can be distinguished from the structure morphology. Specifically, the cross section in the L direction is polished, and after mirror polishing, nital etching is used to expose the steel structure by corrosion. Thereafter, secondary electron images of five fields of view are photographed at equal intervals at a magnification of 1500 times in a range of 500 ⁇ m in the depth direction based on the steel surface. The area ratio of the ferrite phase is measured by a point counting method (based on ASTM E562), and the thickness of a region where the area ratio of the ferrite phase is 90% or more is measured for each photographic field of view.
  • the area ratio of the ferrite phase refers to the area ratio determined by observing the L cross section. Even if there is a local part in the thickness direction where the area ratio of the ferrite phase is less than 90% when observing the C section, the area of the ferrite phase in the L section up to a depth of 20 ⁇ m If the rate is 90% or higher, there is no problem. More specific area ratios are as follows.
  • the ferrite area ratio is measured as follows.
  • the steel plate is cut along an imaginary line on the surface of the steel plate perpendicular to the rolling direction of the steel plate, in the thickness direction, that is, perpendicular to the surface of the steel plate, and a test piece is cut out.
  • the cross section of the steel plate perpendicular to the rolling direction is polished to a mirror surface, the steel structure is exposed using a nital solution, and a secondary electron image is taken using a field emission scanning electron microscope.
  • the field of view to be observed is from the surface of the steel sheet in the case of a non-plated steel sheet, and from the interface between the steel sheet and the plating layer in the case of a plated steel sheet to a depth of 500 ⁇ m, and five fields of view are observed at equal intervals.
  • the fraction of each tissue is calculated by the point counting method. First, draw an equally spaced grid on the tissue photograph. Next, it is determined whether the structure at each lattice point corresponds to tempered martensite, pearlite, ferrite, fresh martensite, retained austenite, or bainite. By finding the number of lattice points corresponding to each tissue and dividing by the total number of lattice points, the fraction of each tissue can be measured.
  • the grid spacing is 2 ⁇ m ⁇ 2 ⁇ m
  • the total number of grid points is 1500 points.
  • the criteria for determining pearlite, ferrite, martensite, and bainite are as follows. A region that has a substructure (lath boundary, block boundary) within the grain and in which carbides are precipitated in a plurality of variants is determined to be tempered martensite. In addition, a region where cementite is precipitated in a lamellar shape is determined to be pearlite. A region with low brightness and no underlying structure is determined to be ferrite. A region where the brightness is high and the underlying structure is not exposed by etching is determined to be fresh martensite or retained austenite. Areas that do not fall under any of the above are determined to be bainite. Simply speaking, the area ratio of the ferrite phase can be determined by distinguishing between ferrite and other structures.
  • the steel plate of the present invention has a surface roughness of 3.0 ⁇ m or less in arithmetic mean height Ra defined by JIS B0601:2013. When the roughness increases, cracks are more likely to occur due to stress concentration, resulting in a decrease in LME resistance.
  • the surface roughness may be 2.5 ⁇ m or less, or 2.0 ⁇ m or less.
  • the steel plate according to the present invention has high strength. Specifically, it has a tensile strength of 780 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, but from the viewpoint of ensuring toughness, it may be, for example, 2000 MPa or less.
  • the tensile strength may be measured in accordance with JIS Z 2241:2011 by taking a JIS No. 5 tensile test piece whose longitudinal direction is perpendicular to the rolling direction.
  • the tensile strength may be 880 MPa or more, 980 MPa or more, 1080 MPa or more, or 1180 MPa or more.
  • the tensile strength may be 1900 MPa or less, or 1800 MPa or less.
  • the plated steel sheet according to the present invention has an alloyed hot-dip galvanized layer on the above-described steel sheet according to the present invention.
  • the plating layer is formed on at least a portion of the surface of the steel plate, and may be formed on one side or both sides of the steel plate.
  • Al is an element that improves the corrosion resistance of the plating layer by being included or alloyed with Zn, it may be included as necessary. Therefore, the Al content may be 0%.
  • the Al content is preferably 0.01% or more, and may be 0.1% or more.
  • the content of Al in the plating layer is preferably 0.3 to 1.5%.
  • Fe is contained in the plating layer by being diffused from the steel sheet when the plated steel sheet is heat treated after forming a plating layer containing Zn on the steel sheet.
  • the Fe content may be 3.0% or more, and may be 4.0% or more or 5.0% or more.
  • the Fe content may be 15.0% or less, for example, 12.0% or less, 10.0% or less, 8.0% or less, or 6.0% or less.
  • the remainder of the plating layer other than the above components consists of Zn and impurities.
  • Impurities in the plating layer are components that are mixed into the plating layer due to various factors in the manufacturing process, including raw materials, and are not intentionally added to the plating layer. do.
  • trace amounts of elements other than the basic components and optionally added components described above may be included as impurities within a range that does not impede the effects of the present invention.
  • the chemical composition of the plating layer can be determined by dissolving the plating layer in an acid solution containing an inhibitor that suppresses corrosion of the steel sheet, and measuring the resulting solution by ICP (inductively coupled plasma) emission spectroscopy.
  • the acid solution containing an inhibitor may be, for example, a 10% by mass hydrochloric acid solution containing 0.06% by mass of an inhibitor (manufactured by Asahi Chemical Co., Ltd., Ivit).
  • the thickness of the plating layer may be, for example, 3 to 50 ⁇ m. Further, the amount of the plating layer deposited is not particularly limited, but may be, for example, 10 to 170 g/m 2 per side. In the present invention, the amount of the plating layer deposited is determined by dissolving the plating layer in an acid solution containing an inhibitor that suppresses corrosion of the steel plate, and from the change in weight of the plating layer before and after pickling and stripping. The thickness of the plating layer may be 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more. The thickness of the plating layer may be 40 ⁇ m or less, or 30 ⁇ m or less.
  • the amount of the plating layer deposited on one side may be 20 g/m 2 or more, 30 g/m 2 or more, 40 g/m 2 or more, or 50 g/m 2 or more.
  • the amount of the plating layer deposited per side may be 150 g/m 2 or less, 130 g/m 2 or less, 120 g/m 2 or less, or 100 g/m 2 or less.
  • the roughness of the interface between the steel plate and the plating layer corresponds to the roughness of the surface of the steel plate described above, so Ra is 3.0 ⁇ m or less. Considering the adhesion of plating, Ra may be 2.5 ⁇ m or less, or 2.0 ⁇ m or less. It may be the roughness of the interface between the steel plate and the plating layer, or the surface roughness of the steel plate measured by dissolving and removing the plating.
  • the steel sheet of the present invention has the effect of improving LME resistance even if it is not galvanized.
  • LME cracking does not occur when ungalvanized steel plates are welded together.
  • molten galvanization occurs on the overlapping surfaces of the steel plates during welding. Therefore, there is a possibility that LME cracking may occur due to contact with the surface of the steel sheet that is not subjected to molten galvanization.
  • the zinc plating attached to the welding electrode melts and comes into contact with the surface of the steel plate, resulting in LME cracking.
  • the steel sheet of the present invention is used as an unplated steel sheet, even in such a case, LME cracking can be suppressed even in the welding process because the C concentration in the surface layer is low and the surface layer is a ferrite phase. Can be done.
  • the thickness of the steel plate and plated steel plate of the present invention is not particularly limited. For example, it can be 0.6 to 3.2 mm.
  • the plate thickness may be 0.8 mm or more, or 1.0 mm or more.
  • the plate thickness may be 3.0 mm or less, 2.6 mm or less, 2.4 mm or less, 2.2 mm or less, 2.0 mm or less, or 1.8 mm or less.
  • the steel plate according to the present invention can be produced, for example, by a casting process in which molten steel with adjusted chemical components is cast to form a steel billet, a hot rolling process in which a hot rolled steel plate is obtained by hot rolling a steel billet, and a hot rolling process in which a hot rolled steel plate is wound.
  • the conditions of the casting process are not particularly limited. For example, following melting in a blast furnace, electric furnace, etc., various secondary smelting may be performed, and then casting may be performed by a method such as ordinary continuous casting or ingot casting.
  • a hot rolled steel plate can be obtained by hot rolling a steel piece obtained by casting.
  • the hot rolling process is performed by directly or once cooling the cast steel billet, then reheating and hot rolling.
  • the heating temperature of the steel piece may be, for example, 1100 to 1250°C.
  • rough rolling and finish rolling are usually performed.
  • the temperature and reduction rate of each rolling may be changed as appropriate depending on the desired metal structure and plate thickness.
  • the end temperature of finish rolling may be 900 to 1050°C, and the reduction ratio of finish rolling may be 10 to 50%.
  • Hot-rolled steel sheets can be rolled up at a predetermined temperature.
  • the winding temperature may be changed as appropriate depending on the desired metal structure, etc., and may be, for example, 500 to 800°C.
  • the hot-rolled steel sheet may be subjected to a predetermined heat treatment by unwinding the hot-rolled steel sheet before or after winding.
  • the hot rolled steel sheet After pickling or the like is performed on the hot rolled steel sheet, the hot rolled steel sheet can be cold rolled to obtain a cold rolled steel sheet.
  • the rolling reduction ratio of cold rolling may be changed as appropriate depending on the desired metallographic structure and plate thickness, and may be, for example, 20 to 80%.
  • the material After the cold rolling process, the material may be cooled to room temperature by, for example, air cooling.
  • the thickness of the layer in which the area ratio of the ferrite phase is 90% or more in the depth direction is 20 ⁇ m or more, and the C concentration in the depth direction is 0.05% as measured by GDS.
  • the C concentration in the depth direction is 0.05% as measured by GDS.
  • the pretreatment includes grinding the surface of the cold rolled steel plate with a grinding brush (brush grinding process).
  • a grinding brush that can be used is M-33 manufactured by Hotani Corporation. Thereby, strain can be introduced without increasing the surface roughness.
  • it is recommended to apply a 1.0 to 5.0% NaOH aqueous solution to the surface of the steel plate.
  • the brush reduction amount is 0.5 to 10.0 mm and the rotation speed is 100 to 1000 rpm.
  • the cold rolled steel sheet is annealed.
  • Annealing is performed under a tension of 1 to 20 MPa, for example. Applying tension during annealing makes it possible to more effectively introduce strain into the steel sheet, promoting decarburization of the surface layer.
  • the holding temperature in the annealing step is 750 to 900°C.
  • the holding temperature may be 770-870°C. By setting it within such a range, decarburization can be promoted, the C concentration in the surface layer can be reduced, and the ferrite phase can be stabilized.
  • the heating rate up to the holding temperature is not particularly limited, but may be 1 to 10° C./sec.
  • the holding time at the holding temperature in the annealing step is 20 to 300 seconds.
  • the holding time may be between 30 and 250 seconds.
  • the atmosphere in the annealing step has a dew point of -30 to 20°C.
  • the dew point may be -10 to 5°C.
  • the atmosphere may be, for example, N 2 -1 to 10 vol% H 2 or N 2 -2 to 4 vol% H 2 . If the dew point is too high or too low, a phase containing oxides such as Si, Mn, and Al will be formed outside the steel sheet, and decarburization will not be promoted. Furthermore, mutual diffusion of plating components and steel components may be inhibited, resulting in insufficient plating properties.
  • the plated steel sheet according to the present invention can be obtained by a plating process and an alloying process in which an alloyed hot-dip galvanized layer is formed on a steel plate manufactured as described above.
  • the plating process and the alloying process may be performed according to hot-dip plating methods and alloying processes known to those skilled in the art.
  • the conditions for the plating process and the alloying process may be appropriately set in consideration of the desired chemical composition, thickness, adhesion amount, etc. of the plating layer. For example, it may be immersed in a hot-dip galvanizing bath at 420 to 480° C. with adjusted chemical components for 1 to 10 seconds, and then pulled out at 20 to 200 mm/sec after immersion, and the amount of plating deposited may be controlled by N 2 wiping gas.
  • the alloying treatment may be performed, for example, at 500 to 550° C. for 10 to 60 seconds.
  • the steel sheets and plated steel sheets according to the present invention have high strength, high LME resistance and hydrogen desorption properties, and therefore can be suitably used in a wide range of fields such as automobiles, home appliances, and building materials. It is particularly preferred to be used in the automotive field. Steel plates and plated steel plates used for automobiles are often spot welded, and in this case, LME cracking can become a significant problem. Therefore, when the steel sheet and plated steel sheet according to the present invention are used as steel sheets for automobiles, the effect of the present invention of having high LME resistance is suitably exhibited.
  • Example A First, preliminary experiments conducted by the inventors in obtaining the present invention will be described. Spot welding was performed on steel plates (1.2 mm thick) with varying Si and Al contents to a general alloyed hot-dip galvanized steel plate (1.6 mm thick) under the conditions shown in Table 1. Internal cracking in the LME was confirmed. Table 2 shows the results. As shown in Table 2, it was confirmed that LME was suppressed in the high Si-high Al steel.
  • Example B ⁇ Example 1> (Preparation of steel plate sample) No. of Table 3 Molten steel adjusted to have the chemical composition described in 1 was melted in a blast furnace and cast by continuous casting to obtain a steel billet. The obtained steel piece was heated to 1200°C and hot rolled at a finish rolling end temperature of 950°C and a finish rolling reduction of 30% to obtain a hot rolled steel plate. The obtained hot-rolled steel sheet was wound up at a winding temperature of 650° C., pickled, and then cold-rolled at a rolling reduction of 50% to obtain a cold-rolled steel sheet. The thickness of the cold-rolled steel plate was 1.6 mm.
  • the surface roughness of the steel plate was measured in accordance with JIS B 0601:2013. That is, 10 locations are randomly selected on the surface of the surface layer side, the surface profile at each location is measured using a contact type surface roughness meter, and the arithmetic mean roughness Ra is obtained by arithmetic averaging of the surface roughness at those locations. , was evaluated as follows.
  • Evaluation AA 2.0 ⁇ m or less Evaluation A: More than 2.0 ⁇ m, 3.0 ⁇ m or less Evaluation B: More than 3.0 ⁇ m
  • annealing was performed in a N 2 -4% H 2 gas atmosphere in a furnace with an oxygen concentration of 20 ppm or less at a dew point of 0° C., a holding temperature of 800° C., and a holding time of 100 seconds to prepare a steel plate sample.
  • the temperature increase rate during annealing was 6.0°C/sec up to 500°C, and 2.0°C/sec from 500°C to the holding temperature.
  • the annealing treatment was performed under a tension of 15 MPa.
  • Examples 2 to 25 Comparative Examples 26 to 40> A steel plate was produced in the same manner as in Example 1, except that the chemical components were as shown in Table 3, and the conditions for the pretreatment step and annealing step were as shown in Table 4. In addition, No. In No. 39, the pretreatment of brush grinding was omitted. Also, No. In No. 40, a grinding brush D-100 manufactured by Hotani Co., Ltd. was used (condition B in Table 4). D-100 is a brush with approximately twice the amount of grinding as M-33.
  • the steel sheets whose "Presence or absence of alloyed hot-dip galvanized layer" in Table 5 was "present” were subjected to plating treatment and alloying treatment to obtain alloyed hot-dip galvanized steel sheets.
  • the plating treatment was performed by immersing the sample in a hot-dip galvanizing bath (Zn-0.14% Al) at 450°C for 3 seconds. After dipping, it was pulled out at 100 mm/sec, and the amount of plating deposited was controlled to 50 g/m 2 using N 2 wiping gas. Alloying treatment was performed at 520°C for 30 seconds. Steel plates with "no alloyed galvanized layer" in Table 5 were not subjected to plating or alloying.
  • the surface of the steel plate for unplated steel sheets, and the plating for plated steel sheets were treated using a 10 mass% hydrochloric acid solution containing 0.06 mass% inhibitor (manufactured by Asahi Chemical Co., Ltd., Ivit).
  • the surface roughness of the removed and exposed steel plate was measured in the same manner as before annealing, and is shown in "Steel plate surface or steel plate/plating interface roughness" in Table 5.
  • Evaluation AAA 1180MPa or more Evaluation AA: 980MPa or more, less than 1180MPa Evaluation A: 780MPa or more, less than 980MPa
  • the LME resistance was evaluated as follows by superimposing two steel plates 1 and performing spot welding, and based on the length of the crack 11 just outside the pressure welded part of the welded part 2.
  • the term "directly outside the press-welded part of the welded part” refers to a position outside the press-welded part by spot welding on the mating surfaces of two steel plates, and in the vicinity of the press-welded part. In this example, if the evaluation was A or higher, it was determined that the LME resistance was excellent.
  • Evaluation AAA 0 ⁇ m Evaluation AA: More than 0 ⁇ m and less than 60 ⁇ m Evaluation A: More than 60 ⁇ m and less than 120 ⁇ m Evaluation B: More than 120 ⁇ m
  • Hydrogen desorption test A test piece having a size of 80 mm x 50 mm was cut out from each steel plate and electrochemically charged with hydrogen. Electricity was applied for 48 hours under constant current control (cathode current density 1 mA/cm 2 ) in a 3% NaCl+3 g/L NH 4 SCN aqueous solution. After hydrogen charging, the plated steel plate was left standing in the air at room temperature for 48 hours, and after a predetermined period of time, the amount of diffusible hydrogen contained in the plated steel plate was measured using the temperature-programmed desorption method, and the amount of diffusible hydrogen contained in the plated steel plate was measured as follows. evaluated.
  • the temperature programmed desorption method the temperature was raised to 400°C at a heating rate of 100°C/h, and the total amount of hydrogen released from room temperature to 200°C was defined as the amount of diffusible hydrogen.
  • the evaluation was A or higher, it was determined that the hydrogen desorption property was excellent.
  • both LME resistance and hydrogen desorption performance were excellent it was determined that the problem to be solved by the present invention was solved.
  • Evaluation AAA 10% or less of the initial hydrogen amount Evaluation AA: 20% or less of the initial hydrogen amount Evaluation A: Less than 50% of the initial hydrogen amount Evaluation B: 50% or more of the initial hydrogen amount
  • No. No. 26 is a comparative example in which the steel plate has a high C content. It is thought that because the steel sheet has a high C content, decarburization in the surface layer did not proceed even with high dew point annealing. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
  • No. No. 27 is a comparative example in which the steel plate has a low Si content. It is thought that because the Si content of the steel sheet was low, decarburization did not progress in the surface layer even if high dew point annealing was performed, and ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
  • No. 28 is the Si content of the steel plate, and the Si and sol.
  • This is a comparative example in which the sum of Al contents is small. Si content of steel plate and Si and sol. It is thought that because the sum of the Al contents was small, decarburization did not proceed in the surface layer even if high dew point annealing was performed, and the ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
  • No. No. 29 is a comparative example in which the steel plate has a high Si content. It is thought that because the Si content of the steel sheet was high, even if high dew point annealing was performed, external oxidation progressed and oxides (scale) were formed on the surface layer of the steel sheet, suppressing decarburization at the outermost surface. Therefore, the depth at which the C concentration was 0.05% or less was not large. As a result, the LME resistance and hydrogen desorption properties were poor.
  • No. 30 is the steel plate sol. This is a comparative example with a low Al content. Steel plate sol. It is thought that because the Al content was low, decarburization did not proceed in the surface layer even though high dew point annealing was performed, and the ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
  • No. 31 is the steel plate sol. Al content, Si and sol. This is a comparative example in which the sum of the Al contents is small. Steel plate sol. Al content and sol. It is considered that because the sum of the Al contents was small, decarburization did not progress in the surface layer even if high dew point annealing was performed, and the ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
  • No. 32 is the steel plate sol. This is a comparative example with a high content of Al. Steel plate sol. It is thought that because the Al content was high, even if high dew point annealing was performed, external oxidation progressed and oxides (scale) were formed on the surface layer of the steel sheet, suppressing decarburization at the outermost surface. Therefore, the depth at which the C concentration was 0.05% or less was not large. As a result, the LME resistance and hydrogen desorption properties were poor.
  • No. 33 is Si and sol. This is a comparative example in which the sum of the Al contents is small. Si and sol. of steel plate. It is thought that because the sum of the Al contents was small, decarburization did not proceed in the surface layer even if high dew point annealing was performed, and the ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
  • No. No. 42 is considered to be because a brush with a large amount of grinding was used in the pretreatment process, which resulted in increased roughness of the steel plate surface and unstable ferrite phase. Therefore, the thickness of the layer in which the area ratio of the ferrite phase was 90% or more did not increase. As a result, the LME resistance and hydrogen desorption properties were poor.
  • No. Examples 1 to 25 of the present invention had high LME resistance and hydrogen desorption properties. It was confirmed that examples in which the depth of the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more have particularly excellent LME resistance.
  • the present invention it is possible to provide high-strength steel sheets and plated steel sheets that have high LME resistance and hydrogen desorption properties, and the steel sheets and plated steel sheets are used for automobiles, home appliances, building materials, etc., especially for automobiles. It can be suitably used for. Therefore, the present invention has extremely high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention addresses the problem of providing a steel sheet and a plated steel sheet that have high LME resistance and hydrogen desorption. This steel sheet and plated steel sheet are characterized: by having prescribed chemical components; in that the depth in the depth direction from the surface of the steel sheets at which the C concentration as measured by GDS is no more than 0.05% is at least 10 μm; in that the thickness in the depth direction from the surface of the steel sheets of a layer that has a ferrite phase area fraction of at least 90% is at least 20 μm; and in that the Ra surface roughness of the steel sheets is no more than 3.0 μm.

Description

鋼板及びめっき鋼板Steel plate and plated steel plate
 本発明は、鋼板及びめっき鋼板に関する。より具体的には、本発明は、高い耐LME性及び水素脱離性を有する鋼板及びめっき鋼板に関する。 The present invention relates to a steel plate and a plated steel plate. More specifically, the present invention relates to a steel plate and a plated steel plate having high LME resistance and hydrogen desorption properties.
 近年、自動車、家電製品、建材等の様々な分野で使用される鋼板について高強度化が進められている。例えば、自動車分野においては、燃費向上のために車体の軽量化を目的として、高強度鋼板の使用が増加している。 In recent years, efforts have been made to increase the strength of steel plates used in various fields such as automobiles, home appliances, and building materials. For example, in the automobile field, the use of high-strength steel plates is increasing in order to reduce the weight of vehicle bodies in order to improve fuel efficiency.
 亜鉛系めっきを施した鋼板、特に高強度の鋼板の溶接では、例えば特許文献1に記載されているように、液体金属脆化(LME)割れによる溶接性の低下が問題となる場合がある。LME割れは、溶接時に鋼板の表層部がオーステナイトに変態し、その粒界に侵入した溶融亜鉛が鋼板を脆化させ、さらに溶接時に引張応力が鋼板に加わることによって、生じるものと考えられる。 When welding zinc-plated steel sheets, especially high-strength steel sheets, there may be a problem of reduced weldability due to liquid metal embrittlement (LME) cracking, as described in Patent Document 1, for example. LME cracking is thought to occur when the surface layer of the steel plate transforms into austenite during welding, molten zinc intrudes into the grain boundaries and embrittles the steel plate, and furthermore, tensile stress is applied to the steel plate during welding.
 また、非特許文献1が開示するように、LME割れに関し、フェライト相の粒界は、LME感受性がオーステナイト粒界よりも低いことが知られている。 Furthermore, as disclosed in Non-Patent Document 1, it is known that ferrite phase grain boundaries have lower LME susceptibility than austenite grain boundaries with respect to LME cracking.
 なお、特許文献2は、LME割れを抑制して溶接性を改善した鋼板として、鋼板の表層部に、粒径20nm以上のSi酸化物粒子が3000~6000個/mm2の個数密度で、適切な粒径分布で存在する鋼板を開示している。 Note that Patent Document 2 discloses that, as a steel sheet that suppresses LME cracking and improves weldability, Si oxide particles with a particle size of 20 nm or more are contained in a number density of 3000 to 6000 pieces/mm 2 in the surface layer of the steel sheet. A steel sheet having a grain size distribution is disclosed.
国際公開第2019/116531号International Publication No. 2019/116531 国際公開第2020/218575号International Publication No. 2020/218575
 LME割れを防止するために、めっき層に含まれるZn等が、オーステナイト変態した鋼板中へ侵入することを抑制することが有効である。この点においては、改善の余地がある。 In order to prevent LME cracking, it is effective to prevent Zn, etc. contained in the plating layer from penetrating into the austenite-transformed steel sheet. In this respect, there is room for improvement.
 また、高強度鋼板は、気温や湿度が大きく変動する大気腐食環境にさらされると、腐食過程で生成される水素が鋼中に侵入することが知られている。鋼中に侵入した水素は、鋼組織のマルテンサイト粒界に偏析し、粒界を脆化させることで鋼板に割れを生じさせる原因になり得る。侵入水素起因で割れが生じる現象は水素脆化割れ(遅れ破壊)と呼ばれ、鋼板の加工時に問題になることが多い。これを防ぐためには、鋼板中に水素が侵入した場合、鋼板から大気中への水素脱離を促進することが有効である。 Furthermore, it is known that when high-strength steel sheets are exposed to an atmospheric corrosive environment where temperature and humidity vary greatly, hydrogen generated during the corrosion process penetrates into the steel. Hydrogen that has penetrated into steel segregates at martensite grain boundaries in the steel structure, embrittles the grain boundaries, and can cause cracks in the steel sheet. The phenomenon in which cracks occur due to penetrating hydrogen is called hydrogen embrittlement cracking (delayed fracture), and is often a problem when processing steel sheets. In order to prevent this, when hydrogen enters the steel sheet, it is effective to promote hydrogen desorption from the steel sheet into the atmosphere.
 本発明は、このような実情に鑑み、高い耐LME性及び水素脱離性を有する鋼板及びめっき鋼板を提供することを課題とするものである。 In view of these circumstances, it is an object of the present invention to provide a steel sheet and a plated steel sheet that have high LME resistance and hydrogen desorption performance.
 本発明者らは、前記課題を解決するための手段を鋭意検討した。その結果、鋼板中にSi、Alを多量に含有させ、鋼板を適切な表面状態とし高露点焼鈍を施すことにより、鋼板表層が脱炭され、さらにフェライト(α)相が安定化し、鋼板表層がCの固溶量が低いフェライト相で覆われ、その結果、LMEを抑制することが可能となることを見出した。さらに、鋼板表層がCの固溶量が低いフェライト相で覆われることにより、鋼板中に水素が侵入した際にも、鋼板から大気中への水素脱離が促進されることを見出した。 The present inventors have diligently studied means for solving the above problems. As a result, the surface layer of the steel sheet is decarburized, the ferrite (α) phase is stabilized, and the surface layer of the steel sheet is It has been found that the material is covered with a ferrite phase having a low solid solution amount of C, and as a result, it is possible to suppress LME. Furthermore, it has been found that by covering the surface layer of the steel sheet with a ferrite phase in which the amount of solid solution of C is low, desorption of hydrogen from the steel sheet into the atmosphere is promoted even when hydrogen enters the steel sheet.
 本発明は上記の知見に基づき、さらに検討を進めてなされたものであり、その要旨は以下のとおりである。 The present invention has been made based on the above findings and further studies, and the gist thereof is as follows.
 (1)引張強さが780MPa以上である鋼板であって、化学成分が、質量%で、C:0.05~0.40%、Si:0.7~3.0%、Mn:0.1~5.0%、sol.Al:0.7~2.0%、P:0.0300%以下、S:0.0300%以下、N:0.0100%以下、B:0~0.010%、Ti:0~0.150%、Nb:0~0.150%、V:0~0.150%、Cr:0~2.00%、Ni:0~2.00%、Cu:0~2.00%、Mo:0~1.00%、W:0~1.00%、Ca:0~0.100%、Mg:0~0.100%、Zr:0~0.100%、Hf:0~0.100%、REM:0~0.100%を含有し、残部がFe及び不純物であり、Siとsol.Alの含有量の合計値が1.8%以上であり、鋼板表面からの深さ方向において、GDSで測定したC濃度が0.05%以下である深さが10μm以上であり、鋼板表面からの深さ方向において、フェライト相の面積率が90%以上である層の厚さが20μm以上であり、鋼板の表面粗さがRaで3.0μm以下であることを特徴とする鋼板。 (1) A steel plate having a tensile strength of 780 MPa or more, the chemical components of which are C: 0.05 to 0.40%, Si: 0.7 to 3.0%, Mn: 0. 1-5.0%, sol. Al: 0.7-2.0%, P: 0.0300% or less, S: 0.0300% or less, N: 0.0100% or less, B: 0-0.010%, Ti: 0-0. 150%, Nb: 0-0.150%, V: 0-0.150%, Cr: 0-2.00%, Ni: 0-2.00%, Cu: 0-2.00%, Mo: 0-1.00%, W: 0-1.00%, Ca: 0-0.100%, Mg: 0-0.100%, Zr: 0-0.100%, Hf: 0-0.100 %, REM: 0 to 0.100%, the remainder being Fe and impurities, Si and sol. The total value of Al content is 1.8% or more, and the depth at which the C concentration measured by GDS is 0.05% or less in the depth direction from the steel plate surface is 10 μm or more, and A steel plate characterized in that the thickness of the layer in which the area ratio of the ferrite phase is 90% or more is 20 μm or more in the depth direction, and the steel sheet has a surface roughness Ra of 3.0 μm or less.
 (2)前記鋼板の表面からの深さ方向において、GDSで測定したC濃度が0.05%以下である深さが20μm以上であることを特徴とする前記(1)の鋼板。 (2) The steel plate according to (1) above, wherein the depth at which the C concentration measured by GDS is 0.05% or less in the depth direction from the surface of the steel plate is 20 μm or more.
 (3)前記鋼板の表面からの深さ方向において、フェライト相の面積率が90%以上である層の厚さが30μm以上であることを特徴とする前記(1)の鋼板。 (3) The steel sheet according to (1) above, wherein the layer having a ferrite phase area ratio of 90% or more has a thickness of 30 μm or more in the depth direction from the surface of the steel sheet.
 (4)前記鋼板の表面からの深さ方向において、GDSで測定したC濃度が0.05%以下である深さが20μm以上であり、前記鋼板の表面からの深さ方向において、フェライト相の面積率が90%以上である層の厚さが30μm以上であることを特徴とする前記(1)の鋼板。 (4) In the depth direction from the surface of the steel plate, the depth at which the C concentration measured by GDS is 0.05% or less is 20 μm or more, and in the depth direction from the surface of the steel plate, a ferrite phase is formed. The steel plate according to (1) above, wherein the thickness of the layer having an area ratio of 90% or more is 30 μm or more.
 (5)前記(1)~(4)のいずれかの鋼板の表面の少なくとも一部に合金化溶融亜鉛めっき層を備え、前記めっき層が、質量%で、0~1.5%のAl及び3~15%のFeを含有し、残部がZn及び不純物であることを特徴とする合金化溶融亜鉛めっき鋼板。 (5) An alloyed hot-dip galvanized layer is provided on at least a portion of the surface of the steel sheet according to any one of (1) to (4), and the plating layer contains 0 to 1.5% Al and An alloyed hot-dip galvanized steel sheet containing 3 to 15% Fe, with the remainder being Zn and impurities.
 (6)前記合金化溶融亜鉛めっき鋼板の断面における鋼板と合金化溶融亜鉛めっき層の界面の粗さがRaで2.0μm以下であることを特徴とする前記(5)の合金化溶融亜鉛めっき鋼板。 (6) The alloyed hot-dip galvanized steel sheet according to the above (5), wherein the roughness of the interface between the steel sheet and the alloyed hot-dip galvanized layer in the cross section of the alloyed hot-dip galvanized steel sheet is 2.0 μm or less in terms of Ra. steel plate.
 本発明によれば、高い耐LME性及び水素脱離性を有する鋼板及びめっき鋼板を得ることができる。 According to the present invention, a steel plate and a plated steel plate having high LME resistance and hydrogen desorption properties can be obtained.
本発明の鋼板の表層に形成された層状のフェライト相を示す図である。It is a figure showing the layered ferrite phase formed in the surface layer of the steel plate of the present invention. 実施例における耐LME性評価を説明する図である。It is a figure explaining LME resistance evaluation in an example.
 以下、本発明について説明する。本発明は、以下の実施形態に限定されるものではない。はじめに、本発明の鋼板及びめっき鋼板において、耐LME性を向上させる概略を説明する。 The present invention will be explained below. The present invention is not limited to the following embodiments. First, an outline of improving LME resistance in the steel sheet and plated steel sheet of the present invention will be described.
 LME割れは、スポット溶接時に鋼板の表層部が加熱されて表層部の鋼板組織がオーステナイトに変態し、オーステナイトの粒界に沿って溶融めっきが鋼板組織内に進入することで結晶粒界が脆化することで生じる。溶接時には引張応力が鋼板に加わるため、LME割れが生じるものと考えられる。本発明の鋼板は、表層に形成された組織によって、耐LME性を向上させる。なお、本明細書で、鋼板の表層とは、鋼板の最表面から100μmの深さまでの範囲をいうものとする。 LME cracking occurs when the surface layer of a steel plate is heated during spot welding, the steel plate structure in the surface layer transforms into austenite, and the grain boundaries become brittle as hot-dip plating enters the steel plate structure along the austenite grain boundaries. It is caused by doing. It is thought that LME cracking occurs because tensile stress is applied to the steel plate during welding. The steel sheet of the present invention improves LME resistance due to the structure formed in the surface layer. Note that in this specification, the surface layer of a steel plate refers to the range from the outermost surface of the steel plate to a depth of 100 μm.
 C元素が鋼板表層に含まれているとLME割れが生じやすいため、鋼板表層のC濃度を低く抑えることがLME割れの防止に有効である。通常、焼鈍のように鋼板を加熱する場合には外部酸化が生じ、鋼板表面で酸化物(スケール)が形成されるため、脱炭が進みにくい。そのため鋼板表層におけるC濃度は低くなりにくい。一方、本発明の鋼板においては、鋼板表面からの深さ方向において、GDSで測定したC濃度が0.05%以下である領域が鋼板表面から10μm以上存在する。これは、鋼板の表層において、LMEを生じさせやすい元素であるCの濃度が低いことを意味する。 If the C element is contained in the surface layer of a steel sheet, LME cracking is likely to occur, so keeping the C concentration in the surface layer of the steel sheet low is effective in preventing LME cracking. Normally, when a steel plate is heated, such as during annealing, external oxidation occurs and oxides (scale) are formed on the surface of the steel plate, making it difficult for decarburization to proceed. Therefore, the C concentration in the surface layer of the steel sheet is difficult to decrease. On the other hand, in the steel plate of the present invention, in the depth direction from the steel plate surface, there is a region 10 μm or more from the steel plate surface where the C concentration measured by GDS is 0.05% or less. This means that the concentration of C, which is an element that tends to cause LME, is low in the surface layer of the steel sheet.
 ただし、鋼板表層におけるC濃度が低い場合であっても、表層の組織にLME感受性が大きいオーステナイト(γ)等が多いと、耐LME性の低下に繋がる場合があると考えられる。そこで、本実施形態における鋼板は、鋼板表面からの深さ方向において、フェライト相の面積率が90%以上である領域の厚さが20μm以上とする。また、本発明の鋼板においては、従来、鋼中に含有されると耐LME性を低下させると知られていたSiを多量に含有させる。これは、本発明者らの検討の結果、従来の知見とは反対に、Si及びsol.Alをともに鋼板に多量に含有させることで、耐LME性が向上することが見出されたことによる。 However, even if the C concentration in the surface layer of the steel sheet is low, if the structure of the surface layer contains a large amount of austenite (γ), etc., which is highly sensitive to LME, it is thought that this may lead to a decrease in LME resistance. Therefore, in the steel plate in this embodiment, the thickness of the region where the area ratio of the ferrite phase is 90% or more in the depth direction from the steel plate surface is 20 μm or more. Furthermore, the steel sheet of the present invention contains a large amount of Si, which is conventionally known to reduce LME resistance when contained in steel. As a result of the studies conducted by the present inventors, contrary to the conventional knowledge, Si and sol. This is because it has been found that LME resistance is improved by containing a large amount of Al in a steel plate.
 本発明においては、鋼板の表面粗さを大きくせずに表層に強いひずみを付与するとともに高露点下で鋼板に焼鈍を施す。このことにより、酸素が鋼板内部へ拡散して内部酸化物が形成され、外部酸化物の形成を抑えることが可能となる。これにより、鋼板表層のC濃度を低下させ、さらに、Siとsol.Alの複合添加の効果でフェライトを安定化することができることによると考えられる。 In the present invention, a strong strain is applied to the surface layer of the steel plate without increasing the surface roughness, and the steel plate is annealed at a high dew point. This allows oxygen to diffuse into the steel sheet and form internal oxides, making it possible to suppress the formation of external oxides. As a result, the C concentration in the surface layer of the steel sheet is reduced, and Si and sol. This is thought to be due to the fact that the ferrite can be stabilized by the effect of the combined addition of Al.
 すなわち、本発明の鋼板は、Si及びsol.Alの高い含有量、焼鈍前の表層へのひずみの付与、焼鈍時の露点の制御が複合した効果によって、鋼板の表層に、C濃度が低く、さらにフェライトの面積率の高い層を形成することによって、耐LME性の向上を可能としたものである。 That is, the steel plate of the present invention contains Si and sol. Due to the combined effect of high Al content, applying strain to the surface layer before annealing, and controlling the dew point during annealing, a layer with a low C concentration and a high area ratio of ferrite is formed on the surface layer of the steel sheet. This makes it possible to improve LME resistance.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be explained in detail.
 はじめに、鋼板の化学成分について説明する。以下、化学成分に関する「%」は「質量%」を意味するものとする。また、化学成分における数値範囲において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 First, the chemical composition of steel sheets will be explained. Hereinafter, "%" regarding chemical components means "% by mass". Furthermore, in numerical ranges for chemical components, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
 (C:0.05~0.40%)
 C(炭素)は、鋼の強度を確保する元素である。本発明が対象とする780MPa以上の引張強さを得るため、溶接性とのバランスを考慮して、また、鋼板の表層のC濃度が高くなりすぎないように、Cの含有量は0.05~0.40%とする。Cの含有量が大きすぎると、後述する高露点焼鈍によっても、表層のC濃度が低くならず、フェライト分率が高くならなくなる。Cの含有量は、0.07%以上、0.10%以上、又は0.12%以上であってよい。Cの含有量は0.35%以下、0.30%以下、又は0.25%以下であってよい。
(C: 0.05-0.40%)
C (carbon) is an element that ensures the strength of steel. In order to obtain a tensile strength of 780 MPa or more, which is the target of the present invention, the C content is set to 0.05 MPa in consideration of the balance with weldability and to prevent the C concentration in the surface layer of the steel sheet from becoming too high. ~0.40%. If the C content is too large, the C concentration in the surface layer will not be reduced even by high dew point annealing, which will be described later, and the ferrite fraction will not be high. The content of C may be 0.07% or more, 0.10% or more, or 0.12% or more. The content of C may be 0.35% or less, 0.30% or less, or 0.25% or less.
 (Si:0.7~3.0%、sol.Al:0.7~2.0%、Si+sol.Al≧1.8%)
 Si(ケイ素)は、Al(アルミニウム)と複合添加することにより、フェライト安定化と脱炭を促す元素である。耐LME性向上の効果を得るためには、Si:0.7~3.0%、sol.Al:0.7~2.0%を含有させ、さらに、Siとsol.Alの含有量の合計値を1.8%以上とする。Siとsol.Alの含有量がこのような数値範囲を満たすことにより、本実施形態の鋼板の製造工程の熱処理において鋼板表層部の脱炭を促すとともに表層部のフェライトを安定化させることができるためである。sol.Alとは、Al23等の酸化物になっておらず、酸に可溶する酸可溶Alを意味し、Alの分析過程で生じる、ろ紙上の不溶解残渣を控除して測定したAlとして求められる。Siの含有量は0.8%以上、0.9%以上、又は1.0%以上であってよい。Siの含有量は2.8%以下、2.5%以下、又は2.0%以下であってよい。sol.Alの含有量は、0.8%以上、0.9%以上、又は1.0%以上であってよい。sol.Alの含有量は、1.8%以下、1.6%以下、又は1.5%以下であってよい。Siとsol.Alの含有量の合計値は、1.9%以上、又は2.0%以上であってよい。
(Si: 0.7-3.0%, sol.Al: 0.7-2.0%, Si+sol.Al≧1.8%)
Si (silicon) is an element that promotes ferrite stabilization and decarburization when added in combination with Al (aluminum). In order to obtain the effect of improving LME resistance, Si: 0.7 to 3.0%, sol. Al: 0.7 to 2.0% is contained, and Si and sol. The total value of Al content is 1.8% or more. Si and sol. This is because when the Al content satisfies such a numerical range, decarburization of the surface layer of the steel sheet can be promoted and ferrite in the surface layer can be stabilized in the heat treatment of the manufacturing process of the steel sheet of this embodiment. sol. Al refers to acid-soluble Al that is not converted into oxides such as Al 2 O 3 and is soluble in acids, and was measured by subtracting the insoluble residue on the filter paper that is generated during the Al analysis process. Required as Al. The content of Si may be 0.8% or more, 0.9% or more, or 1.0% or more. The content of Si may be 2.8% or less, 2.5% or less, or 2.0% or less. sol. The Al content may be 0.8% or more, 0.9% or more, or 1.0% or more. sol. The Al content may be 1.8% or less, 1.6% or less, or 1.5% or less. Si and sol. The total content of Al may be 1.9% or more, or 2.0% or more.
 (Mn:0.1~5.0%)
 Mn(マンガン)は、硬質組織を得ることで鋼の強度を向上させるのに有効な元素である。鋼の強度と、Mn偏析による加工性の低下のバランスを考慮して、Mnの含有量は0.1~5.0%とする。Mnの含有量は、0.5%以上、1.0%以上、又は1.5%以上であってよい。Mnの含有量は、4.5%以下、4.0%以下、又は3.5%以下であってよい。
(Mn: 0.1-5.0%)
Mn (manganese) is an effective element for improving the strength of steel by creating a hard structure. Considering the balance between the strength of the steel and the deterioration of workability due to Mn segregation, the Mn content is set to 0.1 to 5.0%. The Mn content may be 0.5% or more, 1.0% or more, or 1.5% or more. The Mn content may be 4.5% or less, 4.0% or less, or 3.5% or less.
 (P:0.0300%以下)
 P(リン)は、一般に鋼に含有される不純物である。Pの含有量が0.0300%超では溶接性が低下するおそれがある。したがって、Pの含有量は0.0300%以下とする。Pの含有量は0.0200%以下、0.0100%以下、又は0.0050%以下であってよい。Pは含有されないことが好ましく、Pの含有量の下限は0%である。脱燐コストの観点から、Pの含有量は0%超、0.0001%以上、又は0.0005%以上であってもよい。
(P: 0.0300% or less)
P (phosphorus) is an impurity generally contained in steel. If the P content exceeds 0.0300%, weldability may deteriorate. Therefore, the content of P is set to 0.0300% or less. The content of P may be 0.0200% or less, 0.0100% or less, or 0.0050% or less. It is preferable that P is not contained, and the lower limit of the P content is 0%. From the viewpoint of dephosphorization cost, the P content may be more than 0%, 0.0001% or more, or 0.0005% or more.
 (S:0.0300%以下)
 S(硫黄)は、一般に鋼に含有される不純物である。Sの含有量が0.0300%超では溶接性が低下し、さらに、MnSの析出量が増加して曲げ性等の加工性が低下するおそれがある。したがって、Sの含有量は0.0300%以下とする。Sの含有量は0.0100%以下、0.0050%以下、0.0030%以下、0.0020%以下、又は0.0010%以下であってよい。Sは含有されないことが好ましく、Sの含有量の下限は0%である。脱硫コストの観点から、Sの含有量は0%超、0.0001%以上、又は0.0005%以上であってよい。
(S: 0.0300% or less)
S (sulfur) is an impurity generally contained in steel. If the S content exceeds 0.0300%, weldability will decrease, and furthermore, the amount of MnS precipitated may increase, leading to a possibility that workability such as bendability will decrease. Therefore, the S content is set to 0.0300% or less. The S content may be 0.0100% or less, 0.0050% or less, 0.0030% or less, 0.0020% or less, or 0.0010% or less. It is preferable that S is not contained, and the lower limit of the S content is 0%. From the viewpoint of desulfurization cost, the S content may be more than 0%, 0.0001% or more, or 0.0005% or more.
 (N:0.0100%以下)
 N(窒素)は、一般に鋼に含有される不純物である。Nの含有量が0.0100%超では溶接性が低下するおそれがある。したがって、Nの含有量は0.0100%以下とする。Nの含有量は0.0080%以下、0.0050%以下、0.0030%以下、0.0020%以下、又は0.0010%以下であってよい。Nは含有されないことが好ましく、Nの含有量の下限は0%である。製造コストの観点からNの含有量は0%超、0.0001%以上、0.0002%以上、0.0003%以上、又は0.0005%以上であってよい。
(N: 0.0100% or less)
N (nitrogen) is an impurity generally contained in steel. If the N content exceeds 0.0100%, weldability may deteriorate. Therefore, the N content is set to 0.0100% or less. The content of N may be 0.0080% or less, 0.0050% or less, 0.0030% or less, 0.0020% or less, or 0.0010% or less. It is preferable that N is not contained, and the lower limit of the N content is 0%. From the viewpoint of manufacturing cost, the N content may be more than 0%, 0.0001% or more, 0.0002% or more, 0.0003% or more, or 0.0005% or more.
 (B:0~0.010%)
 B(ホウ素)は、焼入れ性を高めて強度の向上に寄与し、また粒界に偏析して粒界を強化して靭性を向上させる元素であるため、必要に応じて含有していてもよい。必須の元素ではないのでBの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のBの含有量は、0.0001%以上であることが好ましい。Bの含有量は0.0002%以上、0.0003%以上、0.0005%以上、0.0007%以上、又は0.0010%以上であってよい。一方、十分な靭性を確保する観点から、Bの含有量は0.010%以下とする。Bの含有量は0.0080%以下、0.0060%以下、0.0050%以下、0.0040%以下、又は0.0030%以下であってよい。
(B: 0-0.010%)
B (boron) is an element that increases hardenability and contributes to improvement of strength, and also segregates at grain boundaries to strengthen grain boundaries and improve toughness, so it may be included as necessary. . Since B is not an essential element, the lower limit of the content of B is 0%. Although this effect can be obtained even when B is contained in a trace amount, it is preferable that the content of B is 0.0001% or more. The content of B may be 0.0002% or more, 0.0003% or more, 0.0005% or more, 0.0007% or more, or 0.0010% or more. On the other hand, from the viewpoint of ensuring sufficient toughness, the B content is set to 0.010% or less. The content of B may be 0.0080% or less, 0.0060% or less, 0.0050% or less, 0.0040% or less, or 0.0030% or less.
 (Ti:0~0.150%)
 Ti(チタン)は、TiCとして鋼の冷却中に析出し、強度の向上に寄与する元素であるため、必要に応じて含有していてもよい。必須の元素ではないのでTiの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のTiの含有量は、0.0001%以上であることが好ましい。Tiの含有量は0.0002%以上、0.0003%以上、0.0005%以上、0.0007%以上、又は0.0010%以上であってよい。一方、過剰に含有すると粗大なTiNが生成して靭性が損なわれるおそれがあるため、Tiの含有量は0.150%以下とする。Tiの含有量は0.1000%以下、0.0500%以下、0.0300%以下、0.0200%以下、0.0100%以下、0.0050%以下、又は0.0030%以下であってよい。
(Ti: 0-0.150%)
Ti (titanium) is an element that precipitates as TiC during cooling of steel and contributes to improving the strength, so it may be included as necessary. Since Ti is not an essential element, the lower limit of the content of Ti is 0%. Although this effect can be obtained even with a trace amount of Ti, the content of Ti is preferably 0.0001% or more. The content of Ti may be 0.0002% or more, 0.0003% or more, 0.0005% or more, 0.0007% or more, or 0.0010% or more. On the other hand, if excessively contained, coarse TiN may be generated and toughness may be impaired, so the content of Ti is set to 0.150% or less. The Ti content is 0.1000% or less, 0.0500% or less, 0.0300% or less, 0.0200% or less, 0.0100% or less, 0.0050% or less, or 0.0030% or less. good.
 (Nb:0~0.150%)
 Nb(ニオブ)は焼入れ性の向上を通じて強度の向上に寄与する元素であるため、必要に応じて含有していてもよい。必須の元素ではないのでNbの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のNbの含有量は、0.001%以上であることが好ましい。Nbの含有量は0.002%以上、0.003%以上、0.005%以上、又は0.008%以上であってよい。一方、十分な靭性を確保する観点から、Nbの含有量は、0.150%以下とする。Nbの含有量は0.100%以下、0.060%以下、0.050%以下、0.040%以下、又は0.030%以下であってよい。
(Nb: 0-0.150%)
Since Nb (niobium) is an element that contributes to improving strength through improving hardenability, it may be included as necessary. Since Nb is not an essential element, the lower limit of the content of Nb is 0%. Although this effect can be obtained even with a trace amount of Nb, the content of Nb is preferably 0.001% or more. The Nb content may be 0.002% or more, 0.003% or more, 0.005% or more, or 0.008% or more. On the other hand, from the viewpoint of ensuring sufficient toughness, the Nb content is set to 0.150% or less. The Nb content may be 0.100% or less, 0.060% or less, 0.050% or less, 0.040% or less, or 0.030% or less.
 (V:0~0.150%)
 V(バナジウム)は焼入れ性の向上を通じて強度の向上に寄与する元素であるため、必要に応じて含有していてもよい。必須の元素ではないのでVの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のVの含有量は、0.001%以上であることが好ましい。Vの含有量は0.002%以上、0.003%以上、又は0.005%以上であってよい。一方、十分な靭性を確保する観点から、Vの含有量は、0.150%以下とする。Vの含有量は0.100%以下、0.060%以下、0.050%以下、0.040%以下、又は0.030%以下であってよい。
(V: 0-0.150%)
Since V (vanadium) is an element that contributes to improving strength through improving hardenability, it may be contained as necessary. Since V is not an essential element, the lower limit of the content of V is 0%. Although this effect can be obtained even when V is contained in a trace amount, it is preferable that the content of V is 0.001% or more. The content of V may be 0.002% or more, 0.003% or more, or 0.005% or more. On the other hand, from the viewpoint of ensuring sufficient toughness, the V content is set to 0.150% or less. The V content may be 0.100% or less, 0.060% or less, 0.050% or less, 0.040% or less, or 0.030% or less.
 (Cr:0~2.00%)
 Cr(クロム)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。必須の元素ではないのでCrの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のCrの含有量は、0.001%以上であることが好ましい。Crの含有量は0.01%以上、0.02%以上、0.03%以上、0.05%以上、又は0.08%以上であってよい。一方、過剰に含有するとCr炭化物が多量に形成し、逆に焼入れ性が損なわれるおそれがあるため、Crの含有量は2.00%以下とする。Crの含有量は1.80%以下、1.50%以下、1.20%以下、1.00%以下、0.70%以下、0.50%以下又は0.30%以下であってよい。
(Cr: 0-2.00%)
Cr (chromium) is effective in improving the hardenability of steel and increasing the strength of steel, and therefore may be contained as necessary. Since Cr is not an essential element, the lower limit of the content of Cr is 0%. Although this effect can be obtained even with a trace amount of Cr, the content of Cr is preferably 0.001% or more. The content of Cr may be 0.01% or more, 0.02% or more, 0.03% or more, 0.05% or more, or 0.08% or more. On the other hand, if it is contained excessively, a large amount of Cr carbide will be formed, and the hardenability may be adversely affected, so the content of Cr is set to 2.00% or less. The content of Cr may be 1.80% or less, 1.50% or less, 1.20% or less, 1.00% or less, 0.70% or less, 0.50% or less, or 0.30% or less. .
 (Ni:0~2.00%)
 Ni(ニッケル)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。必須の元素ではないのでNiの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のNiの含有量は、0.001%以上であることが好ましい。Niの含有量は0.01%以上、0.02%以上、0.03%以上、0.05%以上、又は0.07%以上であってよい。一方、Niの過剰な添加はコストが上昇するため、Niの含有量は2.00%以下とする。Niの含有量は1.80%以下、1.50%以下、1.20%以下、1.00%以下、0.80%以下、0.50%以下、0.30%以下、又は0.20%以下であってよい。
(Ni: 0-2.00%)
Since Ni (nickel) is effective in improving the hardenability of steel and increasing the strength of steel, it may be contained as necessary. Since Ni is not an essential element, the lower limit of the Ni content is 0%. Although this effect can be obtained even with a trace amount of Ni, it is preferable that the Ni content is 0.001% or more. The Ni content may be 0.01% or more, 0.02% or more, 0.03% or more, 0.05% or more, or 0.07% or more. On the other hand, since excessive addition of Ni increases cost, the Ni content is set to 2.00% or less. The Ni content is 1.80% or less, 1.50% or less, 1.20% or less, 1.00% or less, 0.80% or less, 0.50% or less, 0.30% or less, or 0. It may be 20% or less.
 (Cu:0~2.00%)
 Cu(銅)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。必須の元素ではないのでCuの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のCuの含有量は、0.0001%以上であることが好ましい。Cuの含有量は0.0002%以上、0.0003%以上、又は0.0005%以上であってよい。一方、靭性低下や鋳造後のスラブの割れを抑制する観点から、Cuの含有量は2.00%以下とする。Cuの含有量は1.8000%以下、1.5000%以下、1.2000%以下、1.0000%以下、0.5000%以下、0.1000%以下、0.0500%以下、0.0100%以下、0.0050%以下、0.0030%以下、又は0.0020%以下であってよい。
(Cu: 0-2.00%)
Cu (copper) is effective in improving the hardenability of steel and increasing the strength of steel, and therefore may be contained as necessary. Since Cu is not an essential element, the lower limit of the content of Cu is 0%. Although this effect can be obtained even with a trace amount of Cu, the content of Cu is preferably 0.0001% or more. The content of Cu may be 0.0002% or more, 0.0003% or more, or 0.0005% or more. On the other hand, from the viewpoint of suppressing a decrease in toughness and cracking of the slab after casting, the content of Cu is set to 2.00% or less. The Cu content is 1.8000% or less, 1.5000% or less, 1.2000% or less, 1.0000% or less, 0.5000% or less, 0.1000% or less, 0.0500% or less, 0.0100 % or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
 (Mo:0~1.00%)
 Mo(モリブデン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。必須の元素ではないのでMoの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のMoの含有量は、0.001%以上であることが好ましい。Moの含有量は0.01%以上、0.02%以上、0.03%以上、0.05%以上、又は0.08%以上であってよい。一方、靭性の低下を抑制する観点から、Moの含有量は1.00%以下とする。Moの含有量は0.90%以下、0.70%以下、0.50%以下、又は0.30%以下であってよい。
(Mo: 0-1.00%)
Mo (molybdenum) is effective in improving the hardenability of steel and increasing the strength of steel, and therefore may be contained as necessary. Since Mo is not an essential element, the lower limit of the content of Mo is 0%. Although this effect can be obtained even with a trace amount of Mo, the content of Mo is preferably 0.001% or more. The Mo content may be 0.01% or more, 0.02% or more, 0.03% or more, 0.05% or more, or 0.08% or more. On the other hand, from the viewpoint of suppressing a decrease in toughness, the Mo content is set to 1.00% or less. The Mo content may be 0.90% or less, 0.70% or less, 0.50% or less, or 0.30% or less.
 (W:0~1.00%)
 W(タングステン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。必須の元素ではないのでWの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のWの含有量は、0.001%以上であることが好ましい。Wの含有量は0.002%以上、0.003%以上、又は0.004%以上であってよい。一方、靭性の低下を抑制する観点から、Wの含有量は1.00%以下とする。Wの含有量は0.900%以下、0.700%以下、0.500%以下、0.300%以下、0.100%以下、0.050%以下、0.030%以下、又は0.020%以下であってよい。
(W: 0-1.00%)
W (tungsten) is effective in improving the hardenability of steel and increasing the strength of steel, and therefore may be included as necessary. Since W is not an essential element, the lower limit of the content of W is 0%. Although this effect can be obtained even when a small amount of W is included, it is preferable that the content of W is 0.001% or more. The content of W may be 0.002% or more, 0.003% or more, or 0.004% or more. On the other hand, from the viewpoint of suppressing a decrease in toughness, the W content is set to 1.00% or less. The content of W is 0.900% or less, 0.700% or less, 0.500% or less, 0.300% or less, 0.100% or less, 0.050% or less, 0.030% or less, or 0. It may be 0.020% or less.
 (Ca:0~0.100%)
 Ca(カルシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。必須の元素ではないのでCaの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のCaの含有量は、0.0001%以上であることが好ましい。Caの含有量は0.0002%以上、0.0003%以上、又は0.0004%以上であってよい。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Caの含有量は0.100%以下とする。Caの含有量は0.0800%以下、0.0500%以下、0.0100%以下、0.0050%以下、0.0030%以下、0.0020%以下、又は0.0010%以下であってよい。
(Ca: 0-0.100%)
Ca (calcium) is an element that contributes to control of inclusions, particularly fine dispersion of inclusions, and has the effect of increasing toughness, and therefore may be contained as necessary. Since Ca is not an essential element, the lower limit of the content of Ca is 0%. Although this effect can be obtained even with a trace amount of Ca, the content of Ca is preferably 0.0001% or more. The Ca content may be 0.0002% or more, 0.0003% or more, or 0.0004% or more. On the other hand, since excessive Ca content may cause deterioration of surface properties, the Ca content is set to 0.100% or less. The Ca content is 0.0800% or less, 0.0500% or less, 0.0100% or less, 0.0050% or less, 0.0030% or less, 0.0020% or less, or 0.0010% or less. good.
 (Mg:0~0.100%)
 Mg(マグネシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。必須の元素ではないのでMgの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のMgの含有量は、0.0001%以上であることが好ましい。Mgの含有量は0.0002%以上、0.0003%以上、0.0005%以上、又は0.0008%以上であってよい。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Mgの含有量は0.100%以下とする。Mgの含有量は0.090%以下、0.080%以下、0.050%以下、0.010%以下、0.005%以下、又は0.003%以下であってよい。
(Mg: 0-0.100%)
Mg (magnesium) is an element that contributes to control of inclusions, particularly to fine dispersion of inclusions, and has the effect of increasing toughness, and therefore may be contained as necessary. Since Mg is not an essential element, the lower limit of the Mg content is 0%. Although this effect can be obtained even with a trace amount of Mg, it is preferable that the Mg content is 0.0001% or more. The content of Mg may be 0.0002% or more, 0.0003% or more, 0.0005% or more, or 0.0008% or more. On the other hand, since excessive Mg content may cause deterioration of surface properties, the content of Mg is set to 0.100% or less. The Mg content may be 0.090% or less, 0.080% or less, 0.050% or less, 0.010% or less, 0.005% or less, or 0.003% or less.
 (Zr:0~0.100%)
 Zr(ジルコニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。必須の元素ではないのでZrの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のZrの含有量は、0.001%以上であることが好ましい。Zrの含有量は0.002%以上、0.003%以上、0.005%以上、又は0.010%以上であってよい。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Zrの含有量は0.100%以下とする。Zrの含有量は0.080%以下、0.050%以下、0.040%以下、又は0.030%以下であってよい。
(Zr: 0-0.100%)
Zr (zirconium) is an element that contributes to control of inclusions, particularly fine dispersion of inclusions, and has the effect of increasing toughness, and therefore may be contained as necessary. Since Zr is not an essential element, the lower limit of the content of Zr is 0%. Although this effect can be obtained even when a small amount of Zr is contained, it is preferable that the content of Zr is 0.001% or more. The content of Zr may be 0.002% or more, 0.003% or more, 0.005% or more, or 0.010% or more. On the other hand, since excessive Zr content may cause deterioration of surface properties, the Zr content is set to 0.100% or less. The content of Zr may be 0.080% or less, 0.050% or less, 0.040% or less, or 0.030% or less.
 (Hf:0~0.100%)
 Hf(ハフニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。必須の元素ではないのでHfの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のHfの含有量は、0.0001%以上であることが好ましい。Hfの含有量は0.0002%以上、0.0003%以上、0.0005%以上、又は0.0008%以上であってよい。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Hfの含有量は0.100%以下とする。Hfの含有量は0.050%以下、0.030%以下、0.010%以下、0.005%以下、又は0.003%以下である。
(Hf: 0-0.100%)
Hf (hafnium) is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has the effect of increasing toughness, and therefore may be contained as necessary. Since it is not an essential element, the lower limit of the content of Hf is 0%. Although this effect can be obtained even with a trace amount of Hf, it is preferable that the Hf content is 0.0001% or more. The Hf content may be 0.0002% or more, 0.0003% or more, 0.0005% or more, or 0.0008% or more. On the other hand, since excessive Hf content may cause deterioration of surface properties, the content of Hf is set to 0.100% or less. The content of Hf is 0.050% or less, 0.030% or less, 0.010% or less, 0.005% or less, or 0.003% or less.
 (REM:0~0.100%)
 REM(希土類元素)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。必須の元素ではないのでREMの含有量の下限は0%である。この効果は微量の含有でも得られるが、含有させる場合のREMの含有量は、0.0001%以上であることが好ましい。REMの含有量は0.0003%以上、0.0005%以上、又は0.0007%以上であってよい。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、REMの含有量は0.100%以下とする。REMの含有量は0.0500%以下、0.0300%以下、0.0100%以下、0.0050%以下、0.0030%以下、又は0.0020%以下であってよい。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をいう。REMは通常ミッシュメタルとして添加される。
(REM: 0-0.100%)
REM (rare earth element) is an element that contributes to control of inclusions, particularly to fine dispersion of inclusions, and has the effect of increasing toughness, and therefore may be included as necessary. Since it is not an essential element, the lower limit of the content of REM is 0%. Although this effect can be obtained even with a trace amount of REM, the content of REM is preferably 0.0001% or more. The content of REM may be 0.0003% or more, 0.0005% or more, or 0.0007% or more. On the other hand, if excessively contained, deterioration of surface properties may become apparent, so the content of REM is set to 0.100% or less. The content of REM may be 0.0500% or less, 0.0300% or less, 0.0100% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less. Note that REM is an abbreviation for Rare Earth Metal, and refers to an element belonging to the lanthanide series. REM is usually added as a misch metal.
 本発明に係る鋼板において、上記化学成分以外の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料をはじめとして、製造工程の種々の要因によって混入する成分であって、本発明に係る鋼板の耐LME性、水素脱離性に悪影響を与えない、すなわち、本発明の鋼板に求められる耐LME性、水素脱離性が得られる範囲で含有されるものを意味する。 In the steel sheet according to the present invention, the remainder other than the above chemical components consists of Fe and impurities. Here, impurities are components that are mixed in due to various factors in the manufacturing process, including raw materials such as ore and scrap, when steel sheets are industrially manufactured. It means a substance that is contained within a range that does not adversely affect LME properties and hydrogen desorption properties, that is, it can provide the LME resistance and hydrogen desorption properties required for the steel sheet of the present invention.
 鋼板の化学成分の分析は、当業者に公知の元素分析法を用いればよく、例えば、誘導結合プラズマ質量分析法(ICP-MS法)により行われる。ただし、C及びSについては燃焼-赤外線吸収法を用い、Nについては不活性ガス融解-熱伝導度法を用いて測定するとよい。これらの分析は、鋼板からJIS G0417:1999に準拠した方法で採取したサンプルで行えばよい。 The chemical components of the steel plate may be analyzed using elemental analysis methods known to those skilled in the art, such as inductively coupled plasma mass spectrometry (ICP-MS). However, C and S may be measured using the combustion-infrared absorption method, and N may be measured using the inert gas melting-thermal conductivity method. These analyzes may be performed using samples taken from steel plates using a method compliant with JIS G0417:1999.
 次に、鋼板の表層部について説明する。 Next, the surface layer portion of the steel plate will be explained.
 [C濃度]
 本発明の鋼板においては、鋼板表面からの深さ方向において、GDS(グロー放電分光分析)で測定したC濃度が0.05%以下である深さが10μm以上である。
[C concentration]
In the steel plate of the present invention, the depth at which the C concentration measured by GDS (glow discharge spectroscopy) is 0.05% or less is 10 μm or more in the depth direction from the steel plate surface.
 LMEの感受性はC濃度が低くなると低下するので、表層のC濃度が低いことで耐LME性が向上する。また、Cはオーステナイト安定化元素であるので、これが少ないことにより、後述する、LME感受性の低いフェライト相が安定化する。さらに、表層のCが少ないと、鋼中に侵入した水素が抜けやすく、水素脱離性が向上する。これは、フェライト相中における、侵入型元素であるCの存在が少ないことにより、水素が通りやすくなるためと推測される。 Since LME sensitivity decreases as the C concentration decreases, LME resistance improves when the C concentration in the surface layer is low. Further, since C is an austenite stabilizing element, a small amount of C stabilizes the ferrite phase with low LME sensitivity, which will be described later. Furthermore, when there is less C in the surface layer, hydrogen that has entered the steel easily escapes, improving hydrogen desorption performance. This is presumed to be because the presence of less C, which is an interstitial element, in the ferrite phase makes it easier for hydrogen to pass through.
 このような表層組織は、鋼板の化学成分を、前述のとおり、Si及びAlが多量に含有される成分とし、後述する熱処理により得ることができる。 Such a surface structure can be obtained by changing the chemical composition of the steel sheet to a component containing a large amount of Si and Al, as described above, and by heat treatment described below.
 C濃度が0.05%以下である深さが10μm以上であれば耐LME性向上の効果は得られるので、その深さの上限は特に限定されない。例えば、50μm以下、40μm以下、又は30μm以下であってよい。C濃度が0.05%以下である深さは、好ましくは20μm以上である。 If the depth at which the C concentration is 0.05% or less is 10 μm or more, the effect of improving LME resistance can be obtained, so the upper limit of the depth is not particularly limited. For example, it may be 50 μm or less, 40 μm or less, or 30 μm or less. The depth at which the C concentration is 0.05% or less is preferably 20 μm or more.
 GDS測定は板厚方向に5回行い、これらの平均値をC濃度とする。測定条件は、以下のとおりとする。「深さ」の起点は、めっきが施されていない鋼板では鋼板の表面、めっきが施された鋼板では、鋼板とめっき層の界面である。鋼板とめっき層の界面は、GDS測定で測定したFeの濃度が、深さ150μmのFeの濃度の93%となる位置とする。 The GDS measurement is performed five times in the thickness direction, and the average value of these measurements is taken as the C concentration. The measurement conditions are as follows. The starting point of "depth" is the surface of the steel plate for an unplated steel plate, and the interface between the steel plate and the plating layer for a plated steel plate. The interface between the steel plate and the plating layer is located at a position where the Fe concentration measured by GDS measurement is 93% of the Fe concentration at a depth of 150 μm.
 装置:高周波グロー放電発光分析装置(LECOジャパン合同会社製、型番「GDS850A」
 Arガス圧力: 0.3MPa
 アノード径:4mmφ
 RF出力:30W
 計測時間:200~1500秒
Equipment: High frequency glow discharge emission spectrometer (manufactured by LECO Japan LLC, model number “GDS850A”)
Ar gas pressure: 0.3MPa
Anode diameter: 4mmφ
RF output: 30W
Measurement time: 200-1500 seconds
 [フェライト相]
 本発明の鋼板においては、鋼板表面からの深さ方向において、フェライト相の面積率が90%以上である層の厚さが20μm以上である。図1に、本発明の鋼板の表層付近のSEMによる組織写真の一例を示す。図1は鋼板の厚さ方向の断面であり、図面上側が鋼板表面である。図1における鋼板表層はC濃度が低く、フェライト相の面積率が90%以上の層を含む。鋼板内部は、マルテンサイトを主体とし、フェライトを含有する組織である。図1の鋼板では、表層にフェライト相の面積率が90%以上の層が40μmの厚さで存在する。
[Ferrite phase]
In the steel sheet of the present invention, the thickness of the layer in which the area ratio of the ferrite phase is 90% or more is 20 μm or more in the depth direction from the steel sheet surface. FIG. 1 shows an example of a microstructure photograph taken by SEM near the surface layer of the steel sheet of the present invention. FIG. 1 is a cross section of a steel plate in the thickness direction, and the upper side of the drawing is the surface of the steel plate. The surface layer of the steel sheet in FIG. 1 has a low C concentration and includes a layer with a ferrite phase area ratio of 90% or more. The inside of the steel plate has a structure mainly composed of martensite and containing ferrite. In the steel plate of FIG. 1, a layer having a ferrite phase area ratio of 90% or more exists in the surface layer with a thickness of 40 μm.
 フェライト相の粒界は、LME感受性がγ(オーステナイト)粒界よりも低いことが知られている(例えば、非特許文献1)。したがって、鋼板の表層部にフェライト相を主体とする組織が厚く存在させることで、めっきが溶融した場合であってもLMEが生じにくくなり、耐LME性を向上させることができる。このような表層組織は、鋼板の化学成分を、前述のとおり、Si及びAlが多量に含有される成分とし、後述する熱処理により得ることができる。 It is known that ferrite phase grain boundaries have lower LME susceptibility than γ (austenite) grain boundaries (for example, Non-Patent Document 1). Therefore, by having a thick structure mainly composed of ferrite phase in the surface layer of the steel sheet, LME is less likely to occur even when the plating melts, and LME resistance can be improved. Such a surface structure can be obtained by changing the chemical composition of the steel sheet to a component containing a large amount of Si and Al, as described above, and by heat treatment described below.
 フェライト相の面積率が90%以上である領域の厚さが20μm以上となれば耐LME性向上の効果は得られるので、その厚さの上限は特に限定されない。例えば、100μm以下、80μm以下、60μm以下としてもよい。フェライト相の面積率が90%以上である領域の厚さは、好ましくは30μm以上である。 If the thickness of the region where the area ratio of the ferrite phase is 90% or more is 20 μm or more, the effect of improving LME resistance can be obtained, so the upper limit of the thickness is not particularly limited. For example, it may be 100 μm or less, 80 μm or less, or 60 μm or less. The thickness of the region where the area ratio of the ferrite phase is 90% or more is preferably 30 μm or more.
 フェライト相の面積率が90%以上である領域の厚さは、鋼板のL断面をナイタールエッチングし、SEM観察することで、その組織形態からマルテンサイト、ベイナイト、フェライトを区別することができる。具体的には、L方向断面を研磨し、鏡面研磨後にナイタールエッチングを用いて鋼組織を腐食現出させる。その後、鋼表面を基準に深さ方向へ500μmの範囲で、倍率1500倍で等間隔で5視野の二次電子像を撮影する。フェライト相の面積率はポイントカウンティング法(ASTM E562準拠)で測定し、フェライト相の面積率が90%以上である領域の厚さを撮影視野毎に測定する。 The thickness of the region where the area ratio of the ferrite phase is 90% or more can be determined by nital etching the L cross section of the steel plate and observing it with SEM. Martensite, bainite, and ferrite can be distinguished from the structure morphology. Specifically, the cross section in the L direction is polished, and after mirror polishing, nital etching is used to expose the steel structure by corrosion. Thereafter, secondary electron images of five fields of view are photographed at equal intervals at a magnification of 1500 times in a range of 500 μm in the depth direction based on the steel surface. The area ratio of the ferrite phase is measured by a point counting method (based on ASTM E562), and the thickness of a region where the area ratio of the ferrite phase is 90% or more is measured for each photographic field of view.
 ここで、フェライト相の面積率は、L断面で観察して求められる面積率のことをいう。厚さ方向の途中に、局所的に、C断面を観察した場合にフェライト相の面積率が90%未満となるような箇所があっても、20μmまでの深さのL断面のフェライト相の面積率が90%以上であれば問題ない。より具体的な面積率は以下のとおりである。 Here, the area ratio of the ferrite phase refers to the area ratio determined by observing the L cross section. Even if there is a local part in the thickness direction where the area ratio of the ferrite phase is less than 90% when observing the C section, the area of the ferrite phase in the L section up to a depth of 20 μm If the rate is 90% or higher, there is no problem. More specific area ratios are as follows.
 フェライト面積率は、以下のとおり測定する。鋼板の圧延方向と直交する鋼板表面の仮想線に沿って、板厚方向すなわち鋼板表面に対し垂直に鋼板を切断し、試験片を切り出す。次いで鋼板の圧延方向と直交する断面を鏡面研磨後、ナイタール液により鋼組織を現出し、電界放射型走査型電子顕微鏡を用いて二次電子像を撮影する。観察する視野の範囲は、非めっき鋼板の場合は鋼板の表面、めっき鋼板の場合は鋼板とめっき層の界面から、深さ方向500μmまでの範囲とし、等間隔で5視野を観察する。得られた組織写真について、ポイントカウンティング法によって各組織の分率を算出する。まず、組織写真上に等間隔の格子を描く。次に、各格子点における組織が焼戻しマルテンサイト、パーライト、フェライト、フレッシュマルテンサイト若しくは残留オーステナイト、又はベイナイトのいずれに該当するかを判断する。各組織に該当する格子点数を求め、総格子点数で除することにより、各組織の分率を測定できる。本発明においては、格子間隔は2μm×2μmとし、総格子点数は1500点とする。 The ferrite area ratio is measured as follows. The steel plate is cut along an imaginary line on the surface of the steel plate perpendicular to the rolling direction of the steel plate, in the thickness direction, that is, perpendicular to the surface of the steel plate, and a test piece is cut out. Next, the cross section of the steel plate perpendicular to the rolling direction is polished to a mirror surface, the steel structure is exposed using a nital solution, and a secondary electron image is taken using a field emission scanning electron microscope. The field of view to be observed is from the surface of the steel sheet in the case of a non-plated steel sheet, and from the interface between the steel sheet and the plating layer in the case of a plated steel sheet to a depth of 500 μm, and five fields of view are observed at equal intervals. For the obtained tissue photographs, the fraction of each tissue is calculated by the point counting method. First, draw an equally spaced grid on the tissue photograph. Next, it is determined whether the structure at each lattice point corresponds to tempered martensite, pearlite, ferrite, fresh martensite, retained austenite, or bainite. By finding the number of lattice points corresponding to each tissue and dividing by the total number of lattice points, the fraction of each tissue can be measured. In the present invention, the grid spacing is 2 μm×2 μm, and the total number of grid points is 1500 points.
 パーライト、フェライト、マルテンサイト、ベイナイトの判断基準は、以下のとおりである。粒内に下部組織(ラス境界、ブロック境界)を有し、かつ、炭化物が複数のバリアントを持って析出している領域を焼戻しマルテンサイトと判断する。また、セメンタイトがラメラ状に析出している領域をパーライトと判断する。輝度が小さく、かつ下部組織が認められない領域をフェライトと判断する。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域をフレッシュマルテンサイト、又は残留オーステナイトと判断する。上記のいずれにも該当しない領域をベイナイトと判断する。簡易的には、フェライトとそれ以外の組織に区別すれば、フェライト相の面積率は求めることができる。 The criteria for determining pearlite, ferrite, martensite, and bainite are as follows. A region that has a substructure (lath boundary, block boundary) within the grain and in which carbides are precipitated in a plurality of variants is determined to be tempered martensite. In addition, a region where cementite is precipitated in a lamellar shape is determined to be pearlite. A region with low brightness and no underlying structure is determined to be ferrite. A region where the brightness is high and the underlying structure is not exposed by etching is determined to be fresh martensite or retained austenite. Areas that do not fall under any of the above are determined to be bainite. Simply speaking, the area ratio of the ferrite phase can be determined by distinguishing between ferrite and other structures.
 [表面粗さ]
 本発明の鋼板は、表面粗さが、JIS B0601:2013で定義される算術平均高さRaで3.0μm以下である。粗さが大きくなると応力集中により割れが生じやすくなるため、耐LME性が低下する。表面粗さは、2.5μm以下、又は2.0μm以下であってよい。
[Surface roughness]
The steel plate of the present invention has a surface roughness of 3.0 μm or less in arithmetic mean height Ra defined by JIS B0601:2013. When the roughness increases, cracks are more likely to occur due to stress concentration, resulting in a decrease in LME resistance. The surface roughness may be 2.5 μm or less, or 2.0 μm or less.
 [引張強さ]
 本発明は、高強度の鋼板で発生するLMEを抑制するものであるから、本発明に係る鋼板は高強度である。具体的には780MPa以上の引張強さを有する。引張強さの上限は特に限定されないが、靭性確保の観点から例えば2000MPa以下であればよい。引張強さの測定は、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、JIS Z 2241:2011に準拠して行えばよい。引張強さは、880MPa以上、980MPa以上、1080MPa以上、又は1180MPa以上であってよい。引張強さは、1900MPa以下、又は1800MPa以下であってよい。
[Tensile strength]
Since the present invention suppresses LME occurring in a high-strength steel plate, the steel plate according to the present invention has high strength. Specifically, it has a tensile strength of 780 MPa or more. The upper limit of the tensile strength is not particularly limited, but from the viewpoint of ensuring toughness, it may be, for example, 2000 MPa or less. The tensile strength may be measured in accordance with JIS Z 2241:2011 by taking a JIS No. 5 tensile test piece whose longitudinal direction is perpendicular to the rolling direction. The tensile strength may be 880 MPa or more, 980 MPa or more, 1080 MPa or more, or 1180 MPa or more. The tensile strength may be 1900 MPa or less, or 1800 MPa or less.
 <めっき鋼板>
 本発明に係るめっき鋼板は、上述した本発明に係る鋼板上に合金化溶融亜鉛めっき層を有するものである。めっき層は鋼板の表面の少なくとも一部に形成され、鋼板の片面に形成されていても、両面に形成されていてもよい。
<Plated steel plate>
The plated steel sheet according to the present invention has an alloyed hot-dip galvanized layer on the above-described steel sheet according to the present invention. The plating layer is formed on at least a portion of the surface of the steel plate, and may be formed on one side or both sides of the steel plate.
 [めっき層の化学成分]
 本発明における合金化溶融亜鉛めっきの化学成分について説明する。元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。めっき層についての化学成分における数値範囲において、「~」を用いて表される数値範囲は、特に指定しない限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[Chemical components of plating layer]
The chemical components of the alloyed hot-dip galvanizing in the present invention will be explained. "%" regarding the content of an element means "mass %" unless otherwise specified. In the numerical range of chemical components for the plating layer, the numerical range expressed using "~" means the range that includes the numbers written before and after "~" as the lower limit and upper limit, unless otherwise specified. do.
 (Al:0~1.5%)
 Alは、Znと共に含まれる又は合金化することでめっき層の耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Alの含有量は0%であってよい。ZnとAlとを含むめっき層を形成するために、好ましくは、Alの含有量は0.01%以上であるとよく、0.1%以上であってもよい。めっき層中のAlが0.3~1.5%の範囲にある場合、Alの効果によりZnが鋼粒界に侵入速度が大幅に低減され、耐LME性を向上させることが可能となる。したがって、耐LME性向上の観点から、めっき層中のAlは0.3~1.5%が望ましい。
(Al: 0-1.5%)
Since Al is an element that improves the corrosion resistance of the plating layer by being included or alloyed with Zn, it may be included as necessary. Therefore, the Al content may be 0%. In order to form a plating layer containing Zn and Al, the Al content is preferably 0.01% or more, and may be 0.1% or more. When Al in the plating layer is in the range of 0.3 to 1.5%, the effect of Al significantly reduces the rate at which Zn penetrates into the steel grain boundaries, making it possible to improve LME resistance. Therefore, from the viewpoint of improving LME resistance, the content of Al in the plating layer is preferably 0.3 to 1.5%.
 (Fe:3~15%)
 Feは、鋼板上にZnを含むめっき層を形成した後にめっき鋼板を熱処理した場合に鋼板から拡散することでめっき層中に含まれる。Feの含有量は3.0%以上であるとよく、4.0%以上又は5.0%以上であってもよい。一方、Feの含有量は、15.0%以下であるとよく、例えば、12.0%以下、10.0%以下、8.0%以下又は6.0%以下であってもよい。
(Fe: 3-15%)
Fe is contained in the plating layer by being diffused from the steel sheet when the plated steel sheet is heat treated after forming a plating layer containing Zn on the steel sheet. The Fe content may be 3.0% or more, and may be 4.0% or more or 5.0% or more. On the other hand, the Fe content may be 15.0% or less, for example, 12.0% or less, 10.0% or less, 8.0% or less, or 6.0% or less.
 めっき層において上記成分以外の残部はZn及び不純物からなる。めっき層における不純物とは、めっき層を製造する際に、原料をはじめとして、製造工程の種々の要因によって混入する成分であって、めっき層に対して意図的に添加した成分ではないものを意味する。めっき層においては、不純物として、上で説明した基本成分及び任意添加成分以外の元素が、本発明の効果を妨げない範囲内で微量に含まれていてもよい。 The remainder of the plating layer other than the above components consists of Zn and impurities. Impurities in the plating layer are components that are mixed into the plating layer due to various factors in the manufacturing process, including raw materials, and are not intentionally added to the plating layer. do. In the plating layer, trace amounts of elements other than the basic components and optionally added components described above may be included as impurities within a range that does not impede the effects of the present invention.
 めっき層の化学成分は、鋼板の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、得られた溶液をICP(高周波誘導結合プラズマ)発光分光法によって測定することにより決定することができる。インヒビターを加えた酸溶液は、例えば、0.06質量%インヒビター(朝日化学工業社製、イビット)を加えた10質量%塩酸溶液であってよい。 The chemical composition of the plating layer can be determined by dissolving the plating layer in an acid solution containing an inhibitor that suppresses corrosion of the steel sheet, and measuring the resulting solution by ICP (inductively coupled plasma) emission spectroscopy. can. The acid solution containing an inhibitor may be, for example, a 10% by mass hydrochloric acid solution containing 0.06% by mass of an inhibitor (manufactured by Asahi Chemical Co., Ltd., Ivit).
 めっき層の厚さは、例えば3~50μmであってよい。また、めっき層の付着量は、特に限定されないが、例えば、片面当たり10~170g/m2であってよい。本発明において、めっき層の付着量は、鋼板の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、めっき層酸洗剥離前後の重量変化から決定される。めっき層の厚さは、5μm以上、10μm以上、15μm以上、又は20μm以上であってよい。めっき層の厚さは、40μm以下、又は30μm以下であってよい。めっき層の付着量は、片面当たり、20g/m2以上、30g/m2以上、40g/m2以上、又は50g/m2以上であってよい。めっき層の付着量は、片面当たり、150g/m2以下、130g/m2以下、120g/m2以下、又は100g/m2以下であってよい。 The thickness of the plating layer may be, for example, 3 to 50 μm. Further, the amount of the plating layer deposited is not particularly limited, but may be, for example, 10 to 170 g/m 2 per side. In the present invention, the amount of the plating layer deposited is determined by dissolving the plating layer in an acid solution containing an inhibitor that suppresses corrosion of the steel plate, and from the change in weight of the plating layer before and after pickling and stripping. The thickness of the plating layer may be 5 μm or more, 10 μm or more, 15 μm or more, or 20 μm or more. The thickness of the plating layer may be 40 μm or less, or 30 μm or less. The amount of the plating layer deposited on one side may be 20 g/m 2 or more, 30 g/m 2 or more, 40 g/m 2 or more, or 50 g/m 2 or more. The amount of the plating layer deposited per side may be 150 g/m 2 or less, 130 g/m 2 or less, 120 g/m 2 or less, or 100 g/m 2 or less.
 鋼板とめっき層との界面の粗さは、上述の鋼板の表面の粗さとなるので、Raで3.0μm以下である。めっきの密着性を考慮すると、Raは2.5μm以下、又は2.0μm以下であってよい。鋼板とめっき層との界面の粗さ、めっきを溶解除去して測定した鋼板の表面粗さとしてよい。 The roughness of the interface between the steel plate and the plating layer corresponds to the roughness of the surface of the steel plate described above, so Ra is 3.0 μm or less. Considering the adhesion of plating, Ra may be 2.5 μm or less, or 2.0 μm or less. It may be the roughness of the interface between the steel plate and the plating layer, or the surface roughness of the steel plate measured by dissolving and removing the plating.
 なお、本発明の鋼板は、亜鉛めっきを備えていないものであっても、耐LME性向上の効果を奏する。亜鉛めっきが施されていない鋼板同士を溶接した場合にはLME割れが生じることはない。しかし、一方が亜鉛めっきが施された鋼板、他方が亜鉛めっきが施されていない鋼板で溶接がされた場合であっても、溶接時には鋼板の重ね合わせ面に溶融した亜鉛めっきが生じる。このため、溶融した亜鉛めっきが施さていない鋼板表面に接し、LME割れが生じる可能性がある。また、亜鉛めっきを備えた鋼板をスポット溶接した溶接電極を用いて、めっきが施されていない鋼板を溶接した場合、溶接電極に付着した亜鉛めっきが溶融し、鋼板表面に接し、LME割れが生じる可能性がある。めっきが施されていない鋼板として本発明の鋼板を用いれば、そのような場合であっても、溶接過程でも表層のC濃度が低く、また表層がフェライト相であるため、LME割れを抑制することができる。 Note that the steel sheet of the present invention has the effect of improving LME resistance even if it is not galvanized. LME cracking does not occur when ungalvanized steel plates are welded together. However, even when welding is performed between galvanized steel plates on one side and non-galvanized steel plates on the other, molten galvanization occurs on the overlapping surfaces of the steel plates during welding. Therefore, there is a possibility that LME cracking may occur due to contact with the surface of the steel sheet that is not subjected to molten galvanization. Additionally, when welding an unplated steel plate using a welding electrode used to spot weld a galvanized steel plate, the zinc plating attached to the welding electrode melts and comes into contact with the surface of the steel plate, resulting in LME cracking. there is a possibility. If the steel sheet of the present invention is used as an unplated steel sheet, even in such a case, LME cracking can be suppressed even in the welding process because the C concentration in the surface layer is low and the surface layer is a ferrite phase. Can be done.
 本発明の鋼板、めっき鋼板の板厚は、特に限定されない。例えば、0.6~3.2mmとすることができる。板厚は、0.8mm以上、又は1.0mm以上であってよい。板厚は3.0mm以下、2.6mm以下、2.4mm以下、2.2mm以下、2.0mm以下、又は1.8mm以下であってよい。 The thickness of the steel plate and plated steel plate of the present invention is not particularly limited. For example, it can be 0.6 to 3.2 mm. The plate thickness may be 0.8 mm or more, or 1.0 mm or more. The plate thickness may be 3.0 mm or less, 2.6 mm or less, 2.4 mm or less, 2.2 mm or less, 2.0 mm or less, or 1.8 mm or less.
 次に、本発明に係る鋼板の製造方法について説明する。 Next, a method for manufacturing a steel plate according to the present invention will be explained.
 本発明に係る鋼板は、例えば、化学成分を調整した溶鋼を鋳造して鋼片を形成する鋳造工程、鋼片を熱間圧延して熱延鋼板を得る熱延工程、熱延鋼板を巻取る巻取工程、巻取った熱延鋼板を冷間圧延して冷延鋼板を得る冷延工程、冷延鋼板に対してブラシ研削処理する前処理工程、及び前処理した冷延鋼板を焼鈍する焼鈍工程を備える製造方法によって得ることができる。代替的に、熱延工程後に巻取らず、酸洗してそのまま冷延を行ってもよい。 The steel plate according to the present invention can be produced, for example, by a casting process in which molten steel with adjusted chemical components is cast to form a steel billet, a hot rolling process in which a hot rolled steel plate is obtained by hot rolling a steel billet, and a hot rolling process in which a hot rolled steel plate is wound. A winding process, a cold rolling process in which a cold-rolled steel plate is obtained by cold-rolling a coiled hot-rolled steel plate, a pre-treatment process in which a cold-rolled steel plate is brush-grinded, and an annealing process in which the pre-treated cold-rolled steel plate is annealed. It can be obtained by a manufacturing method comprising steps. Alternatively, the material may be pickled and then cold-rolled without being wound up after the hot-rolling process.
 [鋳造工程]
 鋳造工程の条件は特に限定されない。例えば、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造などの方法で鋳造すればよい。
[Casting process]
The conditions of the casting process are not particularly limited. For example, following melting in a blast furnace, electric furnace, etc., various secondary smelting may be performed, and then casting may be performed by a method such as ordinary continuous casting or ingot casting.
 [熱延工程]
 鋳造により得られた鋼片を熱間圧延して熱延鋼板を得ることができる。熱延工程は、鋳造した鋼片を直接又は一旦冷却した後に再加熱して熱間圧延することにより行われる。再加熱を行う場合には、鋼片の加熱温度は、例えば1100~1250℃であればよい。熱延工程においては、通常、粗圧延と仕上圧延とが行われる。各圧延の温度や圧下率は、所望の金属組織や板厚に応じて適宜変更すればよい。例えば、仕上圧延の終了温度は900~1050℃、仕上圧延の圧下率は10~50%であってよい。
[Hot rolling process]
A hot rolled steel plate can be obtained by hot rolling a steel piece obtained by casting. The hot rolling process is performed by directly or once cooling the cast steel billet, then reheating and hot rolling. When reheating is performed, the heating temperature of the steel piece may be, for example, 1100 to 1250°C. In the hot rolling process, rough rolling and finish rolling are usually performed. The temperature and reduction rate of each rolling may be changed as appropriate depending on the desired metal structure and plate thickness. For example, the end temperature of finish rolling may be 900 to 1050°C, and the reduction ratio of finish rolling may be 10 to 50%.
 [巻取工程]
 熱延鋼板は所定の温度で巻取ることができる。巻取温度は、所望の金属組織等に応じて適宜変更すればよく、例えば500~800℃であればよい。巻取る前又は巻取った後に巻戻して、熱延鋼板に所定の熱処理を与えてもよい。代替的に、巻取は行わずに熱延工程後に酸洗して後述する冷延を行うこともできる。
[Winding process]
Hot-rolled steel sheets can be rolled up at a predetermined temperature. The winding temperature may be changed as appropriate depending on the desired metal structure, etc., and may be, for example, 500 to 800°C. The hot-rolled steel sheet may be subjected to a predetermined heat treatment by unwinding the hot-rolled steel sheet before or after winding. Alternatively, it is also possible to perform cold rolling, which will be described later, by pickling after the hot rolling process without winding.
 [冷延工程]
 熱延鋼板に酸洗等を行った後、熱延鋼板を冷間圧延して冷延鋼板を得ることができる。冷間圧延の圧下率は、所望の金属組織や板厚に応じて適宜変更すればよく、例えば、20~80%であればよい。冷延工程後は、例えば空冷して室温まで冷却すればよい。
[Cold rolling process]
After pickling or the like is performed on the hot rolled steel sheet, the hot rolled steel sheet can be cold rolled to obtain a cold rolled steel sheet. The rolling reduction ratio of cold rolling may be changed as appropriate depending on the desired metallographic structure and plate thickness, and may be, for example, 20 to 80%. After the cold rolling process, the material may be cooled to room temperature by, for example, air cooling.
 [前処理工程]
 前述したように鋼板の表層において、深さ方向において、フェライト相の面積率が90%以上である層の厚さが20μm以上とし、深さ方向において、GDS測定にてC濃度が0.05%以下である深さが10μm以上とするためには、所定の前処理を行い、その後、焼鈍を行う必要がある。
[Pre-treatment process]
As mentioned above, in the surface layer of the steel plate, the thickness of the layer in which the area ratio of the ferrite phase is 90% or more in the depth direction is 20 μm or more, and the C concentration in the depth direction is 0.05% as measured by GDS. In order to make the depth below 10 μm or more, it is necessary to perform a predetermined pretreatment and then perform annealing.
 前処理は、研削ブラシで冷延鋼板表面を研削すること(ブラシ研削処理)を含む。使用できる研削ブラシとして、例えば、ホタニ社製M-33が挙げられる。これにより、表面の粗さは大きくせずに、ひずみを導入することができる。研削する際に鋼板表面にNaOH 1.0~5.0%水溶液を塗布するとよい。ブラシ圧下量0.5~10.0mm、回転数100~1000rpmであるとよい。このような塗布液条件、ブラシ圧下量、回転数に制御してブラシ研削処理を行うことで、後述する焼鈍工程において、脱炭が促進され、フェライトが安定した組織を効率的に鋼板の表層に形成することができる。 The pretreatment includes grinding the surface of the cold rolled steel plate with a grinding brush (brush grinding process). An example of a grinding brush that can be used is M-33 manufactured by Hotani Corporation. Thereby, strain can be introduced without increasing the surface roughness. When grinding, it is recommended to apply a 1.0 to 5.0% NaOH aqueous solution to the surface of the steel plate. It is preferable that the brush reduction amount is 0.5 to 10.0 mm and the rotation speed is 100 to 1000 rpm. By controlling the coating liquid conditions, brush reduction amount, and rotation speed to perform brush grinding, decarburization is promoted in the annealing process described later, and a stable ferrite structure is efficiently formed on the surface layer of the steel sheet. can be formed.
 [焼鈍工程]
 前処理工程の後、冷延鋼板に焼鈍を行う。焼鈍は、例えば1~20MPaの張力をかけた状態で行う。焼鈍時に張力をかけると鋼板に歪みをより効果的に導入することが可能となり、表層の脱炭が促進される。
[Annealing process]
After the pretreatment step, the cold rolled steel sheet is annealed. Annealing is performed under a tension of 1 to 20 MPa, for example. Applying tension during annealing makes it possible to more effectively introduce strain into the steel sheet, promoting decarburization of the surface layer.
 焼鈍工程の保持温度は750~900℃とする。保持温度は770~870℃であってよい。このような範囲にすることで、脱炭を促進し、表層のC濃度を低下させ、フェライト相を安定化することができる。保持温度までの昇温速度は、特に限定されないが1~10℃/秒で行えばよい。 The holding temperature in the annealing step is 750 to 900°C. The holding temperature may be 770-870°C. By setting it within such a range, decarburization can be promoted, the C concentration in the surface layer can be reduced, and the ferrite phase can be stabilized. The heating rate up to the holding temperature is not particularly limited, but may be 1 to 10° C./sec.
 焼焼鈍工程の保持温度での保持時間は、20~300秒間とする。保持時間は30~250秒間であってよい。このような範囲にすることで、脱炭を促進し、表層のC濃度を低下させ、フェライト相を安定化することができる。 The holding time at the holding temperature in the annealing step is 20 to 300 seconds. The holding time may be between 30 and 250 seconds. By setting it within such a range, decarburization can be promoted, the C concentration in the surface layer can be reduced, and the ferrite phase can be stabilized.
 焼鈍工程の雰囲気は、露点-30~20℃とする。露点は-10~5℃であってよい。雰囲気は、例えば、N2-1~10vol%H2、N2-2~4vol%H2であってよい。露点が高すぎたり低すぎたりすると、鋼板の外部にSi、Mn、Alなどの酸化物を含む相が形成され、脱炭が促進されなくなる。さらに、めっき成分と鋼成分の相互拡散が阻害され、めっき性が不十分になる場合がある。 The atmosphere in the annealing step has a dew point of -30 to 20°C. The dew point may be -10 to 5°C. The atmosphere may be, for example, N 2 -1 to 10 vol% H 2 or N 2 -2 to 4 vol% H 2 . If the dew point is too high or too low, a phase containing oxides such as Si, Mn, and Al will be formed outside the steel sheet, and decarburization will not be promoted. Furthermore, mutual diffusion of plating components and steel components may be inhibited, resulting in insufficient plating properties.
 上述した各工程を備える製造方法により、鋼板の表層において、脱炭が促進され、フェライト相が安定化した鋼板を得ることができる。 By the manufacturing method including each of the steps described above, it is possible to obtain a steel plate in which decarburization is promoted and the ferrite phase is stabilized in the surface layer of the steel plate.
 <めっき鋼板の製造方法>
 本発明に係るめっき鋼板は、上述のように製造した鋼板上に、合金化溶融亜鉛めっき層を形成するめっき処理工程、合金化処理工程により得ることができる。
<Manufacturing method of plated steel sheet>
The plated steel sheet according to the present invention can be obtained by a plating process and an alloying process in which an alloyed hot-dip galvanized layer is formed on a steel plate manufactured as described above.
 めっき処理工程、合金化処理工程は、当業者に公知の溶融めっき方法、合金化処理方法に従って行えばよい。めっき処理工程、合金化処理工程の条件は、所望のめっき層の化学成分、厚さ及び付着量等を考慮して適宜設定すればよい。例えば、化学成分を調整した、420~480℃の溶融亜鉛めっき浴に1~10秒間浸漬し、浸漬後、20~200mm/秒で引き抜き、N2ワイピングガスによりめっき付着量を制御してよい。合金化処理は、例えば、500~550℃、10~60秒で行ってよい。 The plating process and the alloying process may be performed according to hot-dip plating methods and alloying processes known to those skilled in the art. The conditions for the plating process and the alloying process may be appropriately set in consideration of the desired chemical composition, thickness, adhesion amount, etc. of the plating layer. For example, it may be immersed in a hot-dip galvanizing bath at 420 to 480° C. with adjusted chemical components for 1 to 10 seconds, and then pulled out at 20 to 200 mm/sec after immersion, and the amount of plating deposited may be controlled by N 2 wiping gas. The alloying treatment may be performed, for example, at 500 to 550° C. for 10 to 60 seconds.
 本発明に係る鋼板及びめっき鋼板は、高強度であり、高い耐LME性及び水素脱離性を有するため、自動車、家電製品、建材等の広い分野において好適に使用することができる。特に自動車分野で使用されるのが好ましい。自動車用に用いられる鋼板及びめっき鋼板は、スポット溶接されることが多く、その場合にLME割れが顕著に問題になり得る。そのため、本発明に係る鋼板及びめっき鋼板を自動車用鋼板として使用した場合に、高い耐LME性を有するという本発明の効果が好適に発揮される。 The steel sheets and plated steel sheets according to the present invention have high strength, high LME resistance and hydrogen desorption properties, and therefore can be suitably used in a wide range of fields such as automobiles, home appliances, and building materials. It is particularly preferred to be used in the automotive field. Steel plates and plated steel plates used for automobiles are often spot welded, and in this case, LME cracking can become a significant problem. Therefore, when the steel sheet and plated steel sheet according to the present invention are used as steel sheets for automobiles, the effect of the present invention of having high LME resistance is suitably exhibited.
 以下、実施例によって本発明をより詳細に説明する。本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. The present invention is not limited to these examples.
 《実施例A》
 はじめに、本発明を得るにあたり、本発明者らが予備的に行った実験について説明する。Si、Alの含有量を変えた鋼板(板厚1.2mm)について、一般的な合金化溶融亜鉛めっき鋼板(板厚1.6mm)と、表1に示す条件でスポット溶接を行い、スポット溶接時のLME内割れを確認した。表2に結果を示す。表2に示すとおり、高Si-高Al鋼でLMEが抑制されていることが確認できた。
《Example A》
First, preliminary experiments conducted by the inventors in obtaining the present invention will be described. Spot welding was performed on steel plates (1.2 mm thick) with varying Si and Al contents to a general alloyed hot-dip galvanized steel plate (1.6 mm thick) under the conditions shown in Table 1. Internal cracking in the LME was confirmed. Table 2 shows the results. As shown in Table 2, it was confirmed that LME was suppressed in the high Si-high Al steel.
 《実施例B》
 <実施例1>
 (鋼板試料の作製)
 表3のNo.1に記載の化学成分に調整した溶鋼を高炉で溶製し、連続鋳造で鋳造して鋼片を得た。得られた鋼片を1200℃に加熱し、仕上圧延の終了温度を950℃、仕上圧延の圧下率を30%として熱間圧延を施し、熱延鋼板を得た。得られた熱延鋼板を巻取温度650℃で巻取り、酸洗を施した後、圧下率50%で冷間圧延を施し、冷延鋼板を得た。冷延鋼板の板厚は1.6mmとした。
《Example B》
<Example 1>
(Preparation of steel plate sample)
No. of Table 3 Molten steel adjusted to have the chemical composition described in 1 was melted in a blast furnace and cast by continuous casting to obtain a steel billet. The obtained steel piece was heated to 1200°C and hot rolled at a finish rolling end temperature of 950°C and a finish rolling reduction of 30% to obtain a hot rolled steel plate. The obtained hot-rolled steel sheet was wound up at a winding temperature of 650° C., pickled, and then cold-rolled at a rolling reduction of 50% to obtain a cold-rolled steel sheet. The thickness of the cold-rolled steel plate was 1.6 mm.
 次いで、冷延鋼板に、NaOH 2.0%水溶液を塗布し、ブラシ研削する前処理を行った。ブラシ研削は、研削ブラシとしてホタニ社製M-33を用いて、ブラシ圧下量2.0mm、回転数600rpmで行った(表4の条件A)。 Next, a 2.0% NaOH aqueous solution was applied to the cold-rolled steel sheet, and a pretreatment of brush grinding was performed. Brush grinding was performed using Hotani M-33 as a grinding brush at a brush reduction amount of 2.0 mm and a rotation speed of 600 rpm (condition A in Table 4).
 前処理工程後、焼鈍工程の前に、鋼板の表面粗さを、JIS B 0601:2013に準拠して測定した。すなわち、表層部側の表面においてランダムに10か所を選び、それぞれの箇所において表面プロファイルを接触式表面粗さ計によって測定し、それらの箇所における表面粗さを算術平均した算術平均粗さRaを、以下のように評価した。 After the pretreatment step and before the annealing step, the surface roughness of the steel plate was measured in accordance with JIS B 0601:2013. That is, 10 locations are randomly selected on the surface of the surface layer side, the surface profile at each location is measured using a contact type surface roughness meter, and the arithmetic mean roughness Ra is obtained by arithmetic averaging of the surface roughness at those locations. , was evaluated as follows.
 評価AA: 2.0μm以下
 評価A : 2.0μm超、3.0μm以下
 評価B : 3.0μm超
Evaluation AA: 2.0 μm or less Evaluation A: More than 2.0 μm, 3.0 μm or less Evaluation B: More than 3.0 μm
 その後、露点0℃、保持温度800℃、保持時間100秒とし、酸素濃度20ppm以下の炉内においてN2-4%H2ガス雰囲気で焼鈍処理を行い、鋼板試料を作製した。焼鈍時の昇温速度は、500℃までは6.0℃/秒とし、500℃から保持温度までは2.0℃/秒とした。焼鈍処理は、15MPaの張力をかけた状態で行った。 Thereafter, annealing was performed in a N 2 -4% H 2 gas atmosphere in a furnace with an oxygen concentration of 20 ppm or less at a dew point of 0° C., a holding temperature of 800° C., and a holding time of 100 seconds to prepare a steel plate sample. The temperature increase rate during annealing was 6.0°C/sec up to 500°C, and 2.0°C/sec from 500°C to the holding temperature. The annealing treatment was performed under a tension of 15 MPa.
 <実施例2~25、比較例26~40>
 化学成分を表3に記載のものとし、前処理工程、焼鈍工程の条件を表4に記載のものとした他は、実施例1と同様に鋼板を製造した。なお、No.39ではブラシ研削する前処理を省略した。また、No.40では、研削ブラシホタニ社製D-100を用いた(表4の条件B)。D-100は、研削量がM-33の2倍程度大きいブラシである。
<Examples 2 to 25, Comparative Examples 26 to 40>
A steel plate was produced in the same manner as in Example 1, except that the chemical components were as shown in Table 3, and the conditions for the pretreatment step and annealing step were as shown in Table 4. In addition, No. In No. 39, the pretreatment of brush grinding was omitted. Also, No. In No. 40, a grinding brush D-100 manufactured by Hotani Co., Ltd. was used (condition B in Table 4). D-100 is a brush with approximately twice the amount of grinding as M-33.
 焼鈍処理に続いて、表5の「合金化溶融亜鉛めっき層有無」が「有」の鋼板には、めっき処理、及び合金化処理を施し、合金化溶融亜鉛めっき鋼板を得た。めっき処理は、450℃の溶融亜鉛めっき浴(Zn-0.14%Al)に3秒間浸漬した。浸漬後、100mm/秒で引き抜き、N2ワイピングガスによりめっき付着量を50g/m2に制御した。合金化処理は520℃、30秒で行った。表5の「合金化溶融亜鉛めっき層有無」が「無」の鋼板にはめっき処理、及び合金化処理は施していない。 Following the annealing treatment, the steel sheets whose "Presence or absence of alloyed hot-dip galvanized layer" in Table 5 was "present" were subjected to plating treatment and alloying treatment to obtain alloyed hot-dip galvanized steel sheets. The plating treatment was performed by immersing the sample in a hot-dip galvanizing bath (Zn-0.14% Al) at 450°C for 3 seconds. After dipping, it was pulled out at 100 mm/sec, and the amount of plating deposited was controlled to 50 g/m 2 using N 2 wiping gas. Alloying treatment was performed at 520°C for 30 seconds. Steel plates with "no alloyed galvanized layer" in Table 5 were not subjected to plating or alloying.
 (表層組織評価)
 30mm×30mmに切断した試料を採取し、前述の条件で、板厚方向に5回のGDS測定を行い、C濃度が0.05%以下である深さを求め、表5の「C≦0.05%深さ」に示した。ここで、「深さ」の起点は、めっきが施されていない鋼板では鋼板の表面、めっきが施された鋼板では、めっき層と鋼板の界面である。
(Surface tissue evaluation)
A sample cut to 30 mm x 30 mm was taken, and GDS measurements were performed five times in the thickness direction under the conditions described above to determine the depth at which the C concentration was 0.05% or less. .05% depth". Here, the starting point of "depth" is the surface of the steel plate for an unplated steel plate, and the interface between the plating layer and the steel plate for a plated steel plate.
 また、25mm×15mmに切断した試料を採取し、ナイタールエッチングを施し、前述の方法で、フェライト相が90%以上である層の厚さを測定し、表5の「α相厚さ」に示した。 In addition, a sample cut into 25 mm x 15 mm was taken, subjected to nital etching, and the thickness of the layer containing 90% or more of the ferrite phase was measured using the method described above. Indicated.
 また、めっきが施されていない鋼板では鋼板の表面、めっきが施された鋼板では、めっきを0.06質量%インヒビター(朝日化学工業社製、イビット)を加えた10質量%塩酸溶液を用いて除去し、露出した鋼板の表面の粗さを、焼鈍前と同様の方法で測定し、表5の「鋼板表面又は鋼板/めっき界面粗さ」に示した。 In addition, the surface of the steel plate for unplated steel sheets, and the plating for plated steel sheets were treated using a 10 mass% hydrochloric acid solution containing 0.06 mass% inhibitor (manufactured by Asahi Chemical Co., Ltd., Ivit). The surface roughness of the removed and exposed steel plate was measured in the same manner as before annealing, and is shown in "Steel plate surface or steel plate/plating interface roughness" in Table 5.
 (引張強さ評価)
 各鋼板について、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、引張試験をJIS Z 2241:2011に準拠して行い、引張強さを求め、以下のように評価した。
(Tensile strength evaluation)
For each steel plate, a JIS No. 5 tensile test piece with the longitudinal direction perpendicular to the rolling direction was taken, a tensile test was conducted in accordance with JIS Z 2241:2011, the tensile strength was determined, and it was evaluated as follows. .
 評価AAA: 1180MPa以上
 評価AA : 980MPa以上、1180MPa未満
 評価A  : 780MPa以上、980MPa未満
Evaluation AAA: 1180MPa or more Evaluation AA: 980MPa or more, less than 1180MPa Evaluation A: 780MPa or more, less than 980MPa
 (耐LME性評価)
 各鋼板から50mm×100mmのサイズに切断した試料を2枚採取し、これら2枚の試料に対して、ドームラジアス型の先端直径8mmの溶接電極を用いて、打角2°、加圧力4.0kN、通電時間0.5秒、及び通電電流12kAにてスポット溶接を行い、溶接継手を製造した。なお、合金化溶融亜鉛めっきを施していない鋼板は、溶融合金めっきを施したNo.2との組み合わせでスポット溶接を行った。
(LME resistance evaluation)
Two samples cut to a size of 50 mm x 100 mm were taken from each steel plate, and these two samples were welded using a dome radius type welding electrode with a tip diameter of 8 mm at a welding angle of 2 degrees and a pressing force of 4. Spot welding was performed at 0 kN, energizing time 0.5 seconds, and energizing current 12 kA to produce a welded joint. Note that the steel sheet that has not been subjected to alloyed hot-dip galvanizing is the No. 1 steel sheet that has been subjected to hot-alloy galvanizing. Spot welding was performed in combination with 2.
 図2を参照して、耐LME性の評価について説明する。耐LME性は2枚の鋼板1を重ね合わせてスポット溶接を行い、溶接部2の圧接部直外の割れ11の長さにより、以下のとおり評価した。溶接部の圧接部直外とは、2枚の鋼板の合わせ面において、スポット溶接により圧接された部分の外側の部分であって、圧接された部分の近傍の位置をいう。本実施例では、評価A以上であれば、耐LME性に優れていると判断した。 Evaluation of LME resistance will be explained with reference to FIG. 2. The LME resistance was evaluated as follows by superimposing two steel plates 1 and performing spot welding, and based on the length of the crack 11 just outside the pressure welded part of the welded part 2. The term "directly outside the press-welded part of the welded part" refers to a position outside the press-welded part by spot welding on the mating surfaces of two steel plates, and in the vicinity of the press-welded part. In this example, if the evaluation was A or higher, it was determined that the LME resistance was excellent.
 評価AAA: 0μm
 評価AA : 0μm超、60μm未満
 評価A  : 60μm以上、120μm未満
 評価B  : 120μm以上
Evaluation AAA: 0μm
Evaluation AA: More than 0 μm and less than 60 μm Evaluation A: More than 60 μm and less than 120 μm Evaluation B: More than 120 μm
 (水素脱離試験)
 各鋼板から80mm×50mmのサイズに切断した試験片を切り出し、電気化学的に水素をチャージした。3% NaCl+3g/L NH4SCN水溶液中で、定電流制御(カソード電流密度1mA/cm2)で48時間通電した。水素チャージ後、室温でめっき鋼板を大気雰囲気48h静置し、所定時間の経過後に、昇温脱離法を用いて、めっき鋼板に含有されていた拡散性水素量を測定し、下記のように評価した。なお、昇温脱離法では、昇温速度100℃/hで400℃まで昇温し、室温~200℃までに放出された水素量の総和を拡散性水素量とした。本実施例では、評価A以上であれば、水素脱離性に優れていると判断した。耐LME性、及び水素脱離性がともに優れていると判断された場合、本発明が解決しようとする課題を解決していると判断した。
(Hydrogen desorption test)
A test piece having a size of 80 mm x 50 mm was cut out from each steel plate and electrochemically charged with hydrogen. Electricity was applied for 48 hours under constant current control (cathode current density 1 mA/cm 2 ) in a 3% NaCl+3 g/L NH 4 SCN aqueous solution. After hydrogen charging, the plated steel plate was left standing in the air at room temperature for 48 hours, and after a predetermined period of time, the amount of diffusible hydrogen contained in the plated steel plate was measured using the temperature-programmed desorption method, and the amount of diffusible hydrogen contained in the plated steel plate was measured as follows. evaluated. In the temperature programmed desorption method, the temperature was raised to 400°C at a heating rate of 100°C/h, and the total amount of hydrogen released from room temperature to 200°C was defined as the amount of diffusible hydrogen. In this example, if the evaluation was A or higher, it was determined that the hydrogen desorption property was excellent. When it was determined that both LME resistance and hydrogen desorption performance were excellent, it was determined that the problem to be solved by the present invention was solved.
 評価AAA: 初期水素量の10%以下
 評価AA : 初期水素量の20%以下
 評価A  : 初期水素量の50%未満
 評価B  : 初期水素量の50%以上
Evaluation AAA: 10% or less of the initial hydrogen amount Evaluation AA: 20% or less of the initial hydrogen amount Evaluation A: Less than 50% of the initial hydrogen amount Evaluation B: 50% or more of the initial hydrogen amount
 各評価の結果を表5に示す。 The results of each evaluation are shown in Table 5.
 No.26は、鋼板のCの含有量が多い比較例である。鋼板のCの含有量が多いため、高露点焼鈍によっても、表層での脱炭が進行しなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. No. 26 is a comparative example in which the steel plate has a high C content. It is thought that because the steel sheet has a high C content, decarburization in the surface layer did not proceed even with high dew point annealing. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.27は、鋼板のSiの含有量が少ない比較例である。鋼板のSiの含有量が少なかったため、高露点焼鈍を施しても、表層での脱炭が進行せず、フェライトが安定化しなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. No. 27 is a comparative example in which the steel plate has a low Si content. It is thought that because the Si content of the steel sheet was low, decarburization did not progress in the surface layer even if high dew point annealing was performed, and ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.28は、鋼板のSiの含有量、及びSi及びsol.Alの含有量の和が少ない比較例である。鋼板のSiの含有量及びSi及びsol.Alの含有量の和が少なかったため、高露点焼鈍を施しても、表層での脱炭が進行せず、フェライトが安定化しなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. 28 is the Si content of the steel plate, and the Si and sol. This is a comparative example in which the sum of Al contents is small. Si content of steel plate and Si and sol. It is thought that because the sum of the Al contents was small, decarburization did not proceed in the surface layer even if high dew point annealing was performed, and the ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.29は、鋼板のSiの含有量が多い比較例である。鋼板のSiの含有量が多かったため、高露点焼鈍を施しても、外部酸化が進み鋼板の表層に酸化物(スケール)が形成され、最表面での脱炭が抑制されたものと考えられる。そのため、C濃度が0.05%以下である深さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. No. 29 is a comparative example in which the steel plate has a high Si content. It is thought that because the Si content of the steel sheet was high, even if high dew point annealing was performed, external oxidation progressed and oxides (scale) were formed on the surface layer of the steel sheet, suppressing decarburization at the outermost surface. Therefore, the depth at which the C concentration was 0.05% or less was not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.30は、鋼板のsol.Alの含有量が少ない比較例である。鋼板のsol.Alの含有量が少なかったため、高露点焼鈍を施しても、表層での脱炭が進行せず、フェライトが安定化しなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. 30 is the steel plate sol. This is a comparative example with a low Al content. Steel plate sol. It is thought that because the Al content was low, decarburization did not proceed in the surface layer even though high dew point annealing was performed, and the ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.31は、鋼板のsol.Alの含有量、及びSi及びsol.Alの含有量の和が少ない比較例である。鋼板のsol.Alの含有量及びsol.Alの含有量の和が少なかったため、高露点焼鈍を施しても、表層での脱炭が進行せず、フェライトが安定化しなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. 31 is the steel plate sol. Al content, Si and sol. This is a comparative example in which the sum of the Al contents is small. Steel plate sol. Al content and sol. It is considered that because the sum of the Al contents was small, decarburization did not progress in the surface layer even if high dew point annealing was performed, and the ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.32は、鋼板のsol.Alの含有量が多い比較例である。鋼板のsol.Alの含有量が多かったため、高露点焼鈍を施しても、外部酸化が進み鋼板の表層に酸化物(スケール)が形成され、最表面での脱炭が抑制されたものと考えられる。そのため、C濃度が0.05%以下である深さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. 32 is the steel plate sol. This is a comparative example with a high content of Al. Steel plate sol. It is thought that because the Al content was high, even if high dew point annealing was performed, external oxidation progressed and oxides (scale) were formed on the surface layer of the steel sheet, suppressing decarburization at the outermost surface. Therefore, the depth at which the C concentration was 0.05% or less was not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.33は、鋼板のSi及びsol.Alの含有量の和が少ない比較例である。鋼板のSi及びsol.Alの含有量の和が少なかったため、高露点焼鈍を施しても、表層での脱炭が進行せず、フェライトが安定化しなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. 33 is Si and sol. This is a comparative example in which the sum of the Al contents is small. Si and sol. of steel plate. It is thought that because the sum of the Al contents was small, decarburization did not proceed in the surface layer even if high dew point annealing was performed, and the ferrite was not stabilized. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.34は、焼鈍時の露点が低かったため、焼鈍時に、鋼板の外部にSi、Mn、Alなどの酸化物を含む相が形成され、めっき処理時に、めっき成分と鋼成分の相互拡散が阻害されたものと考えられる。その結果、適切なめっきが得られなかった。 No. In No. 34, the dew point during annealing was low, so a phase containing oxides such as Si, Mn, and Al was formed on the outside of the steel sheet during annealing, and mutual diffusion of plating components and steel components was inhibited during plating treatment. considered to be a thing. As a result, proper plating could not be obtained.
 No.35は、焼鈍時の露点が低かったため、焼鈍時に、鋼板の外部にSi、Mn、Alなどの酸化物を含む相が形成され、脱炭が促進されず、フェライトが安定化しなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。 No. In No. 35, it is thought that because the dew point during annealing was low, a phase containing oxides such as Si, Mn, and Al was formed on the outside of the steel sheet during annealing, and decarburization was not promoted and ferrite was not stabilized. It will be done. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large.
 No.36は、焼鈍時の露点が高かったため、焼鈍時に、鋼板の外部にSi、Mn、Alなどの酸化物を含む相が形成され、脱炭が促進されず、フェライトが安定化しなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。 No. In No. 36, because the dew point during annealing was high, a phase containing oxides such as Si, Mn, and Al was formed on the outside of the steel sheet during annealing, and decarburization was not promoted and ferrite was not stabilized. It will be done. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large.
 No.37は、焼鈍時の露点が高かったため、焼鈍時に、鋼板の外部にSi、Mn、Alなどの酸化物を含む相が形成され、めっき処理時に、めっき成分と鋼成分の相互拡散が阻害されたものと考えられる。その結果、適切なめっきが得られなかった。 No. In No. 37, because the dew point during annealing was high, a phase containing oxides such as Si, Mn, and Al was formed on the outside of the steel sheet during annealing, and mutual diffusion of plating components and steel components was inhibited during plating treatment. considered to be a thing. As a result, proper plating could not be obtained.
 No.38は、焼鈍時の保持温度が低かったため、焼鈍時に脱炭が十分に促進されなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. It is considered that in No. 38, decarburization was not sufficiently promoted during annealing because the holding temperature during annealing was low. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.39は、焼鈍時の保持温度が高かったため、焼鈍時に脱炭が十分に促進されなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. It is thought that in No. 39, decarburization was not sufficiently promoted during annealing because the holding temperature during annealing was high. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.40は、焼鈍時の保持時間が短かったため、焼鈍時に脱炭が十分に促進されなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. It is considered that in No. 40, decarburization was not sufficiently promoted during annealing because the holding time during annealing was short. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.41は、前処理工程のブラシ研削を行わなかったため、鋼板の表面にひずみが導入されず、焼鈍時に脱炭が進行しなかったものと考えられる。そのため、C濃度が0.05%以下である深さ、及びフェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. It is considered that No. 41 did not carry out the brush grinding in the pretreatment process, so no strain was introduced to the surface of the steel plate, and decarburization did not proceed during annealing. Therefore, the depth where the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more were not large. As a result, the LME resistance and hydrogen desorption properties were poor.
 No.42は、前処理工程のブラシ研削で、研削量の大きいブラシを使用したため、鋼板表面の粗さが大きくなり、また、フェライト相が安定しなかったものと考えられる。そのため、フェライト相の面積率が90%以上である層の厚さが大きくならかった。その結果、耐LME性、水素脱離性が劣る結果となった。 No. No. 42 is considered to be because a brush with a large amount of grinding was used in the pretreatment process, which resulted in increased roughness of the steel plate surface and unstable ferrite phase. Therefore, the thickness of the layer in which the area ratio of the ferrite phase was 90% or more did not increase. As a result, the LME resistance and hydrogen desorption properties were poor.
 一方、No.1~25は本発明の実施例であり、高い耐LME性及び水素脱離性を有していた。C濃度が0.05%以下である深さ、フェライト相の面積率が90%以上である層の厚さが大きい実施例では、特に優れた耐LME性を有することが確認された。 On the other hand, No. Examples 1 to 25 of the present invention had high LME resistance and hydrogen desorption properties. It was confirmed that examples in which the depth of the C concentration is 0.05% or less and the thickness of the layer where the area ratio of the ferrite phase is 90% or more have particularly excellent LME resistance.
 本発明によれば、高い耐LME性及び水素脱離性を有する高強度鋼板及びめっき鋼板を提供することが可能となり、当該鋼板及びめっき鋼板は自動車、家電製品、建材等の用途、特に自動車用に好適に用いることができる。したがって、本発明は産業上の利用可能性が極めて高い発明である。 According to the present invention, it is possible to provide high-strength steel sheets and plated steel sheets that have high LME resistance and hydrogen desorption properties, and the steel sheets and plated steel sheets are used for automobiles, home appliances, building materials, etc., especially for automobiles. It can be suitably used for. Therefore, the present invention has extremely high industrial applicability.
 1  鋼板
 2  溶接部
 11 圧接部直外の割れ
1 Steel plate 2 Welded part 11 Cracks just outside the pressure welded part

Claims (6)

  1.  引張強さが780MPa以上である鋼板であって、
     化学成分が、質量%で、
      C:0.05~0.40%、
      Si:0.7~3.0%、
      Mn:0.1~5.0%、
      sol.Al:0.7~2.0%、
      P:0.0300%以下、
      S:0.0300%以下、
      N:0.0100%以下、
      B:0~0.010%、
      Ti:0~0.150%、
      Nb:0~0.150%、
      V:0~0.150%、
      Cr:0~2.00%、
      Ni:0~2.00%、
      Cu:0~2.00%、
      Mo:0~1.00%、
      W:0~1.00%、
      Ca:0~0.100%、
      Mg:0~0.100%、
      Zr:0~0.100%、
      Hf:0~0.100%、
      REM:0~0.100%
    を含有し、残部がFe及び不純物であり、
     Siとsol.Alの含有量の合計値が1.8%以上であり、
     鋼板表面からの深さ方向において、GDSで測定したC濃度が0.05%以下である深さが10μm以上であり、
     鋼板表面からの深さ方向において、フェライト相の面積率が90%以上である層の厚さが20μm以上であり、
     鋼板の表面粗さがRaで3.0μm以下である
    ことを特徴とする鋼板。
    A steel plate having a tensile strength of 780 MPa or more,
    Chemical components are mass%,
    C: 0.05-0.40%,
    Si: 0.7-3.0%,
    Mn: 0.1 to 5.0%,
    sol. Al: 0.7-2.0%,
    P: 0.0300% or less,
    S: 0.0300% or less,
    N: 0.0100% or less,
    B: 0 to 0.010%,
    Ti: 0 to 0.150%,
    Nb: 0 to 0.150%,
    V: 0 to 0.150%,
    Cr: 0-2.00%,
    Ni: 0-2.00%,
    Cu: 0-2.00%,
    Mo: 0-1.00%,
    W: 0-1.00%,
    Ca: 0-0.100%,
    Mg: 0-0.100%,
    Zr: 0 to 0.100%,
    Hf: 0-0.100%,
    REM: 0~0.100%
    , the remainder being Fe and impurities,
    Si and sol. The total value of Al content is 1.8% or more,
    In the depth direction from the steel plate surface, the depth at which the C concentration measured by GDS is 0.05% or less is 10 μm or more,
    In the depth direction from the steel plate surface, the thickness of the layer in which the area ratio of the ferrite phase is 90% or more is 20 μm or more,
    A steel plate characterized in that the surface roughness of the steel plate is 3.0 μm or less in terms of Ra.
  2.  前記鋼板の表面からの深さ方向において、GDSで測定したC濃度が0.05%以下である深さが20μm以上であることを特徴とする請求項1に記載の鋼板。 The steel plate according to claim 1, wherein the depth at which the C concentration measured by GDS is 0.05% or less in the depth direction from the surface of the steel plate is 20 μm or more.
  3.  前記鋼板の表面からの深さ方向において、フェライト相の面積率が90%以上である層の厚さが30μm以上であることを特徴とする請求項1に記載の鋼板。 The steel plate according to claim 1, wherein the layer in which the area ratio of the ferrite phase is 90% or more has a thickness of 30 μm or more in the depth direction from the surface of the steel plate.
  4.  前記鋼板の表面からの深さ方向において、GDSで測定したC濃度が0.05%以下である深さが20μm以上であり、前記鋼板の表面からの深さ方向において、フェライト相の面積率が90%以上である層の厚さが30μm以上であることを特徴とする請求項1に記載の鋼板。 In the depth direction from the surface of the steel plate, the depth at which the C concentration measured by GDS is 0.05% or less is 20 μm or more, and in the depth direction from the surface of the steel plate, the area ratio of the ferrite phase is The steel plate according to claim 1, wherein the thickness of the layer that is 90% or more is 30 μm or more.
  5.  請求項1~4のいずれか1項に記載の鋼板の表面の少なくとも一部に合金化溶融亜鉛めっき層を備え、前記合金化溶融亜鉛めっき層が、質量%で、0~1.5%のAl及び3~15%のFeを含有し、残部がZn及び不純物であることを特徴とする合金化溶融亜鉛めっき鋼板。 The steel sheet according to any one of claims 1 to 4 is provided with an alloyed hot-dip galvanized layer on at least a part of the surface thereof, and the alloyed hot-dip galvanized layer has a content of 0 to 1.5% by mass. An alloyed hot-dip galvanized steel sheet containing Al and 3 to 15% Fe, with the balance being Zn and impurities.
  6.  前記合金化溶融亜鉛めっき鋼板の断面における鋼板と合金化溶融亜鉛めっき層の界面の粗さがRaで2.0μm以下であることを特徴とする請求項5に記載の合金化溶融亜鉛めっき鋼板。 The alloyed hot-dip galvanized steel sheet according to claim 5, wherein the roughness of the interface between the steel sheet and the alloyed hot-dip galvanized layer in the cross section of the alloyed hot-dip galvanized steel sheet is 2.0 μm or less in terms of Ra.
PCT/JP2023/032500 2022-09-06 2023-09-06 Steel sheet and plated steel sheet WO2024053667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022141638 2022-09-06
JP2022-141638 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024053667A1 true WO2024053667A1 (en) 2024-03-14

Family

ID=90191241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032500 WO2024053667A1 (en) 2022-09-06 2023-09-06 Steel sheet and plated steel sheet

Country Status (1)

Country Link
WO (1) WO2024053667A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130631A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 High-strength galvanized steel sheet having excellent electrical resistance spot weldability, and method for producing same
KR20220019867A (en) * 2020-08-10 2022-02-18 주식회사 포스코 Cold rolled steel sheet having excellent spot weldability, strength and formability and method of manufacturing the same
WO2022097738A1 (en) * 2020-11-06 2022-05-12 Jfeスチール株式会社 Fe-BASED ELECTROPLATED STEEL SHEET, ALLOYED HOT-DIPPED GALVANIZED STEEL SHEET, AND METHODS FOR MANUFACTURING SAME
WO2022149507A1 (en) * 2021-01-08 2022-07-14 日本製鉄株式会社 Welding joint and automobile component
WO2022149511A1 (en) * 2021-01-08 2022-07-14 日本製鉄株式会社 Welded joint and automobile component
WO2022149505A1 (en) * 2021-01-08 2022-07-14 日本製鉄株式会社 Welded joint and vehicle component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130631A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 High-strength galvanized steel sheet having excellent electrical resistance spot weldability, and method for producing same
KR20220019867A (en) * 2020-08-10 2022-02-18 주식회사 포스코 Cold rolled steel sheet having excellent spot weldability, strength and formability and method of manufacturing the same
WO2022097738A1 (en) * 2020-11-06 2022-05-12 Jfeスチール株式会社 Fe-BASED ELECTROPLATED STEEL SHEET, ALLOYED HOT-DIPPED GALVANIZED STEEL SHEET, AND METHODS FOR MANUFACTURING SAME
WO2022149507A1 (en) * 2021-01-08 2022-07-14 日本製鉄株式会社 Welding joint and automobile component
WO2022149511A1 (en) * 2021-01-08 2022-07-14 日本製鉄株式会社 Welded joint and automobile component
WO2022149505A1 (en) * 2021-01-08 2022-07-14 日本製鉄株式会社 Welded joint and vehicle component

Similar Documents

Publication Publication Date Title
CN111492075B (en) Steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet
JP6777173B2 (en) High-strength galvanized steel sheet for spot welding
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
CN108291283B (en) High-strength hot-dip galvanized steel sheet, hot-rolled steel sheet and cold-rolled steel sheet used for same, and method for producing high-strength hot-dip galvanized steel sheet
EP2474639A1 (en) High-strength hot-dip galvanized steel sheet and process for producing same
KR101918876B1 (en) Hot-dip galvanized steel sheet
JP4932363B2 (en) High-strength galvannealed steel sheet and method for producing the same
US11492679B2 (en) Hot-rolled steel sheet and method for manufacturing same
WO2020136988A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
CN106661657A (en) Method for manufacturing high-strength hot-dip galvanized steel sheet
WO2022230064A1 (en) Steel sheet and plated steel sheet
CN116694886A (en) Method for manufacturing thin steel sheet and method for manufacturing plated steel sheet
WO2022215389A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
CN113272465B (en) High-strength cold-rolled steel sheet and method for producing same
WO2022230400A1 (en) Steel sheet and plated steel sheet
WO2023054717A1 (en) Steel welded member
JP5835547B2 (en) Method for producing Si-containing cold-rolled steel sheet
WO2024053667A1 (en) Steel sheet and plated steel sheet
WO2024053663A1 (en) Plated steel sheet
WO2024053669A1 (en) Welded joint
WO2024053665A1 (en) Welded joint
WO2022230399A1 (en) Steel sheet and plated steel sheet
WO2023054705A1 (en) Plated steel sheet
WO2022230401A1 (en) Steel sheet and plated steel sheet
WO2022230059A1 (en) Steel sheet and plated steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863205

Country of ref document: EP

Kind code of ref document: A1