WO2024053664A1 - Electroconductive composition - Google Patents

Electroconductive composition Download PDF

Info

Publication number
WO2024053664A1
WO2024053664A1 PCT/JP2023/032485 JP2023032485W WO2024053664A1 WO 2024053664 A1 WO2024053664 A1 WO 2024053664A1 JP 2023032485 W JP2023032485 W JP 2023032485W WO 2024053664 A1 WO2024053664 A1 WO 2024053664A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
mass
parts
particles
rubber
Prior art date
Application number
PCT/JP2023/032485
Other languages
French (fr)
Japanese (ja)
Inventor
直人 西村
優充 二艘木
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Publication of WO2024053664A1 publication Critical patent/WO2024053664A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a conductive composition.
  • Patent Document 1 discloses a thermosetting conductive paste composition containing conductive powder, a thermosetting component, a curing agent, and a solvent. has been done.
  • the thermosetting conductive paste composition flaky powder and spherical powder are used as the conductive powder, and the thermosetting component is composed of the following three components A to C, which are mixed into a predetermined amount. Contain in proportion.
  • Component A an epoxy resin having a cyclic structure, having an epoxy equivalent of 160 or more and 400 or less, and a viscosity at 25°C of 3,000 mPa ⁇ s or more and 55,000 mPa ⁇ s or less;
  • Component B an epoxy resin having a cyclic structure, having an epoxy equivalent of 140 or more and 300 or less and a viscosity at 25° C. of 30 mPa ⁇ s or more and less than 3,000 mPa ⁇ s,
  • Component C A resin that is polymerized using bisphenols and epichlorohydrin and is in a solid state at 25°C.
  • a mesh with a wide line width is sometimes formed on a plate, and this is used for screen printing.
  • air bubbles hereinafter also referred to as pinholes
  • pinholes air bubbles
  • the present invention has been made in view of the above, and an object of the present invention is to provide a conductive composition that has both excellent conductivity and appearance after curing.
  • a binder component containing 40 to 70 parts by mass of a solid bisphenol-type epoxy resin and 30 to 60 parts by mass of a liquid epoxy resin containing at least one selected from the group consisting of an alicyclic epoxy resin and a rubber-modified epoxy resin.
  • a conductive composition containing 1400 to 2500 parts by mass of conductive particles (B), 60 to 120 parts by mass of a blocked isocyanate curing agent (C), and a solvent (D) based on 100 parts by mass of (A). thing.
  • the conductive composition according to the present embodiment includes 40 to 70 parts by mass of a solid bisphenol-type epoxy resin and a liquid epoxy resin containing at least one selected from the group consisting of an alicyclic epoxy resin and a rubber-modified epoxy resin.
  • binder component (A) containing 30 to 60 parts by mass, 1400 to 2500 parts by mass of conductive particles (B), 60 to 120 parts by mass of blocked isocyanate curing agent (C), and solvent (D).
  • the solid epoxy resin refers to an epoxy resin that does not have fluidity in a solvent-free state at room temperature (25° C.).
  • the liquid epoxy resin refers to an epoxy resin that has fluidity in a solvent-free state at room temperature (25° C.).
  • solid bisphenol type epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc. These may be used alone, or two or more types may be used in combination. It's okay.
  • the epoxy equivalent of the solid bisphenol type epoxy resin is not particularly limited, but is preferably 1000 to 10000 g/eq, more preferably 3000 to 10000 g/eq.
  • the epoxy equivalent of an epoxy resin is measured in accordance with JIS K7236:2009, which was created based on ISO 3001 Plastics-Epoxy compounds-Determination of epoxy equivalent. Refers to mass.
  • the liquid epoxy resin contains at least one selected from the group consisting of alicyclic epoxy resins and rubber-modified epoxy resins.
  • alicyclic epoxy resin include dicyclopentadiene type epoxy resin, hydrogenated bisphenol A type epoxy resin, (3',4'-epoxycyclohexane)methyl 3,4-epoxycyclohexyl carboxylate, and ⁇ -caprolactone modified 3 , 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 1,2,8,9-diepoxylimonene, tetrahydroindene diepoxide, etc., and these may be used alone. , two or more types may be used in combination.
  • Rubber-modified epoxy resin refers to a liquid epoxy resin in which a rubber component is dispersed.
  • the liquid epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, glycidylamine type epoxy resin, glycidyl ether type epoxy resin, etc., and these may be used alone. You may use more than one species in combination. Among these, bisphenol A type epoxy resin is preferred.
  • rubber components include butadiene rubber (BR), acrylic rubber (ACM), silicone rubber, butyl rubber (IIR), isoprene rubber (IR), chloroprene rubber (CR), nitrile rubber (NBR), and styrene-butadiene rubber (SBR). ), ethylene propylene rubber (EPR), etc., and these may be used alone or in combination of two or more.
  • the rubber-modified epoxy resin an epoxy resin modified with NBR (NBR-modified epoxy resin) is preferable.
  • the liquid epoxy resin may contain liquid epoxy resins other than the alicyclic epoxy resin and the rubber-modified epoxy resin.
  • liquid epoxy resins include bisphenol A epoxy resins, bisphenol F epoxy resins, phenol novolac epoxy resins, and glycidylamine epoxy resins.
  • the total content of the alicyclic epoxy resin and rubber-modified epoxy resin in the liquid epoxy resin is preferably 60% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. is more preferable, and may be 100% by mass.
  • the epoxy equivalent of the alicyclic epoxy resin is not particularly limited, but is preferably 70 to 300 g/eq, more preferably 150 to 250 g/eq.
  • the epoxy equivalent of the rubber-modified epoxy resin is not particularly limited, but is preferably 220 to 400 g/eq, more preferably 300 to 400 g/eq.
  • 100 parts by mass of the binder component (A) contains 40 to 70 parts by mass of the solid bisphenol epoxy resin and 30 to 60 parts by mass of the liquid epoxy resin, more preferably 50 to 60 parts by mass of the solid bisphenol epoxy resin. parts and 40 to 50 parts by mass of the above liquid epoxy resin.
  • the amount of the solid bisphenol type epoxy resin is 40 parts by mass or more, the amount of pinholes can be reduced and the appearance can be improved, and when the amount is 70 parts by mass or less, the conductivity can be improved. can.
  • the proportion of the epoxy resin in the binder component (A) is particularly preferably 70 to 100% by mass, most preferably 90 to 100% by mass.
  • the binder component (A) may contain solid epoxy resins other than solid bisphenol-type epoxy resins as long as the object of the present invention is not impaired.
  • Other solid epoxy resins include spirocyclic epoxy resins, naphthalene epoxy resins, biphenyl epoxy resins, terpene epoxy resins, and glycidyl ethers such as tris(glycidyloxyphenyl)methane and tetrakis(glycidyloxyphenyl)ethane.
  • epoxy resin glycidylamine type epoxy resin such as tetraglycidyldiaminodiphenylmethane
  • novolac type epoxy resin such as cresol novolac type epoxy resin, phenol novolac type epoxy resin, ⁇ -naphthol novolac type epoxy resin, brominated phenol novolac type epoxy resin, Rubber-modified epoxy resin or the like can be used. These may be used alone or in combination of two or more. Further, the solid epoxy resin may be used after being dissolved in a solvent (D) described below.
  • the binder component (A) may contain components other than the epoxy resin as long as the object of the present invention is not impaired.
  • Components other than epoxy resins may include, for example, alkyd resins, melamine resins, xylene resins, silicone resins, urethane resins, acrylic resins, and the like.
  • the content of these in the binder component (A) is preferably 30% by mass or less, more preferably 10% by mass or less. Use of these resins provides good adhesion.
  • the content of the conductive particles (B) is not particularly limited as long as it is 1400 to 2500 parts by mass based on 100 parts by mass of the binder component (A), but it is preferably 1500 to 2500 parts by mass, and 1600 to 2400 parts by mass. More preferably, it is parts by mass.
  • Examples of the conductive particles (B) include copper particles, silver particles, nickel particles, silver-coated copper particles, gold-coated copper particles, silver-coated nickel particles, gold-coated nickel particles, silver-coated copper alloy particles, etc. These may be used alone or in combination of two or more.
  • the conductive particles (B) are preferably at least one selected from the group consisting of silver particles, silver-coated copper particles, and silver-coated copper alloy particles.
  • the silver-coated copper particles are not particularly limited as long as they include copper particles and a silver-containing layer that covers at least a portion of the copper particles.
  • the silver-coated copper alloy particles are not particularly limited as long as they include copper alloy particles and a silver-containing layer that covers at least a portion of the copper alloy particles.
  • the content ratio of the silver-containing layer in the silver-coated copper particles and the silver-coated copper alloy particles is not particularly limited, but is preferably 4 to 24% by mass. Although the silver content in the silver-containing layer is not particularly limited, it is preferably 90 to 100% by mass.
  • the copper alloy particles contain 0.5 to 25% by mass of zinc and/or 0.5 to 30% by mass of nickel, with the balance consisting of copper, and the remaining copper may contain unavoidable impurities.
  • the shape of the conductive particles (B) is not particularly limited, and spherical, flake-like, dendritic, and fibrous particles can be used; however, spherical and/or dendritic (dendritic) shapes may be used. A combination of spherical and dendritic shapes is more preferred. When a spherical shape and a dendritic shape are used together, excellent conductivity and bending resistance are likely to be obtained.
  • the "spherical" conductive particles include not only approximately true spheres (atomized powder), but also approximately spherical particles such as approximately polyhedral spheres (reduced powder) and irregularly shaped particles (electrolytic powder).
  • dendritic refers to a shape having one or more dendrites protruding from the particle surface, and the dendrites may be only main branches without branches, or branch portions branch from the main branch.
  • the shape may be formed by growing planarly or three-dimensionally.
  • the average particle diameter of the conductive particles (B) is preferably 1 to 20 ⁇ m.
  • the average particle diameter of the conductive particles is 1 ⁇ m or more, the dispersibility of the conductive particles is good, so that aggregation can be prevented.
  • the average particle diameter of the conductive particles is 20 ⁇ m or less, excellent conductivity is likely to be obtained.
  • the "average particle diameter of conductive particles” means the number-based average particle diameter D50 (median diameter) measured by a laser diffraction/scattering method.
  • blocked isocyanate curing agent (C) one prepared by blocking polyisocyanate with a sealant can be used.
  • polyisocyanates examples include aliphatic diisocyanates such as hexamethylene diisocyanate (including trimers), tetramethylene diisocyanate, and trimethylhexamethylene diisocyanate; Cyclic polyisocyanates; Aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate; Modified products of these diisocyanates (urethanized products, carbodiimides, uretdiones, uretonimines, biurets, and/or isocyanurate modifications) (things, etc.); These may be used alone or in combination of two or more.
  • sealants include monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol, methylphenyl carbinol; ethylene glycol mono Cellosolves such as hexyl ether and ethylene glycol mono-2-ethylhexyl ether; polyether-type double-terminated diols such as polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol phenol; ethylene glycol, propylene glycol, 1,4-butanediol, etc.
  • monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol, methylphenyl carbinol
  • ethylene glycol mono Cellosolves such as hexyl
  • polyester-type double-terminated polyols obtained from diols and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, and sebacic acid; phenols such as para-t-butylphenol and cresol; dimethyl ketoxime, methyl ethyl ketox Oximes such as oxime, methyl isobutyl ketoxime, methyl amyl ketoxime, and cyclohexanone oxime; and lactams represented by ⁇ -caprolactam and ⁇ -butyrolactam are preferably used. These may be used alone or in combination of two or more.
  • dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, and sebacic acid
  • phenols such as para-t-butylphenol and cresol
  • dimethyl ketoxime, methyl ethyl ketox Oximes such as oxime, methyl is
  • the content of the blocked isocyanate curing agent (C) is not particularly limited as long as it is 60 to 120 parts by weight based on 100 parts by weight of the binder component (A), but it is more preferably 80 to 110 parts by weight.
  • Examples of the solvent (D) include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, triethylene glycol Glycol ethers such as monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, terpineol, 2,2,4-trimethylpentane-1, Examples include alcohols such as 3-diol monoisobutyrate, dihydroterpineol, benzyl alcohol, and ⁇ -butyrolactone. These may be used alone or in combination of two or more.
  • the content of the solvent (D) is not particularly limited, but is preferably 100 to 220 parts by weight, more preferably 140 to 180 parts by weight, based on 100 parts by weight of the binder component (A).
  • the conductive composition of the present invention can be obtained by blending the above-mentioned components in predetermined amounts and thoroughly mixing them.
  • additives that have conventionally been added to conductive compositions of the same type can also be added to the conductive composition of the present invention within a range that does not depart from the purpose of the present invention.
  • examples include curing catalysts, defoamers, thickeners, tackifiers, fillers, antisettling agents, colorants, antioxidants, plasticizers, ultraviolet absorbers, flame retardants, and the like.
  • the viscosity of the conductive composition of the present invention may be adjusted appropriately depending on the screen printing machine used, but for example, the viscosity at a liquid temperature of 25° C. is preferably 20 to 600 Pa ⁇ s, ⁇ s is more preferable, and even more preferably 20 to 300 Pa ⁇ s.
  • the "viscosity of the conductive composition” refers to the viscosity measured at 25° C. and a rotational speed of 1 rpm using an E-type viscometer (cone plate) spindle CPA-52Z manufactured by BROOKFIELD. do.
  • each component was mixed to prepare a conductive composition.
  • ⁇ Liquid epoxy resin 1 Dicyclopentadiene type epoxy resin, “EP-4088L” manufactured by ADEKA Co., Ltd.
  • ⁇ Liquid epoxy resin 2 Rubber-modified epoxy resin, “EPR-1415-1” manufactured by ADEKA Co., Ltd.
  • ⁇ Conductive particle 1 Spherical silver-coated copper particles with an average particle size of 2 to 3 ⁇ m
  • Conductive particle 2 Dendritic silver-coated copper particles with an average particle size of 4 to 6 ⁇ m
  • Blocked isocyanate curing agent (C): Asahi Kasei Corporation "Duranate WM44-L70G” made by Manufacturer, hexamethylene diisocyanate type, NCO content 5% by mass ⁇ Imidazole curing agent: “C11Z” manufactured by Shikoku Chemical Industry Co., Ltd., 2-undecylimidazole ⁇ Thermal acid generator: “SI-110” manufactured by Sanshin Chemical Industry Co., Ltd., benzyl (4-hydroxyphenyl) ( Methyl) sulfonium hexafluorophosphate ⁇ Amine curing agent: "PN-H” manufactured by Ajinomoto Fine Techno Co., Ltd., epoxy resin amine adduct ⁇ Solvent 1
  • the volume resistivity, number of pinholes, viscosity, and bending resistance of the obtained conductive composition were evaluated, and the results are shown in Tables 1 to 7.
  • the evaluation method is as shown below.
  • ⁇ Number of pinholes> A 400-mesh screen printing plate made of stainless steel was used on a PET film having a thickness of 188 ⁇ m, and after screen printing, heat curing was performed at 130° C. for 30 minutes to form a coating film.
  • the obtained sample was photographed using an X-ray transmission device "Y.Cheetah ⁇ HD" manufactured by YXLON International under conditions of voltage 50 kV, current 80 ⁇ A, and power 4W to obtain a transmission image.
  • the number of pinholes generated within a 1 mm x 1 mm area at any position in the obtained transmitted image was counted. It was evaluated that the appearance was excellent if the number of pinholes in the predetermined area was 10 or less.
  • the conductive composition was measured using an E-type viscometer (cone plate type manufactured by BROOKFIELD) under the conditions that the spindle was CPA-52Z, the measurement temperature was 25° C., and the rotation speed was 1 rpm.
  • ⁇ Bending resistance> After screen printing (length 100 mm, width 0.8 mm) using a stainless steel 290 mesh screen printing plate on a 100 ⁇ m thick PET film, a pattern was formed by heat curing at 130° C. for 30 minutes. After bending 180° along a round bar with a bending radius of 1.5 mm with the paint film on the inside, the operation of returning to a straight line is repeated 15 times, and then the resistance between both ends of the pattern is measured in the same way as above. The value was measured. The obtained results were substituted into the following formula to determine the rate of change in resistance value. If the resistance value change rate was less than 100%, it was evaluated that the bending resistance was excellent.
  • Resistance value change rate (%) ((Resistance value after bending - Resistance value before bending) / Resistance value before bending) x 100
  • Comparative Example 1-1 and Comparative Example 1-2 are examples in which the content of solid epoxy resin is less than the lower limit, and multiple circular pinholes occur as shown in Figures 1 and 2. However, the appearance was poor. On the other hand, in Examples 1-1 and 1-2, almost no pinholes were observed as shown in FIGS. 3 and 4. The fewer pinholes were generated, the better the bending resistance was. Furthermore, Comparative Example 1-3 was an example in which the content of solid epoxy resin exceeded the upper limit, and the conductivity was poor.
  • the liquid epoxy resin contains at least one selected from the group consisting of alicyclic epoxy resins and rubber-modified epoxy resins.
  • Comparative Example 3-1 was an example in which the content of conductive particles was less than the lower limit, and the conductivity was poor.
  • Comparative Example 3-2 is an example in which the content of conductive particles exceeds the upper limit, pinholes were generated, and the appearance was poor.
  • Comparative Example 4-1 was an example in which the content of the blocked isocyanate curing agent was less than the lower limit, and the conductivity was poor.
  • Comparative Example 4-2 is an example in which the content of the blocked isocyanate curing agent exceeds the upper limit, and the conductivity was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

An electroconductive composition comprising: 100 parts by mass of a binder component comprising 40-70 parts by mass of a solid bisphenol type epoxy resin and 30-60 parts by mass of one or more liquid epoxy resins including at least one resin selected from the group consisting of alicyclic epoxy resins and rubber-modified epoxy resins; 1,400-2,500 parts by mass of electroconductive particles (B); 60-120 parts by mass of a blocked isocyanate hardener (C); and a solvent (D).

Description

導電性組成物conductive composition
 本発明は、導電性組成物に関するものである。 The present invention relates to a conductive composition.
 基板に配線を形成する方法として、導電性組成物を基板にスクリーン印刷する方法が知られている。このようなスクリーン印刷に用いる導電性組成物として、特許文献1には、導電性粉末と、熱硬化性成分と、硬化剤と、溶剤と、を含有する加熱硬化型導電性ペースト組成物が開示されている。該加熱硬化型導電性ペースト組成物では、前記導電性粉末として、フレーク状粉末および球状粉末が用いられ、前記熱硬化性成分は、下記A~C成分の3成分から構成され、これらを所定の割合で含有する。
 A成分:エポキシ当量が160以上400以下であり、25℃における粘度が3,000mPa・s以上55,000mPa・s以下である、環状構造を有するエポキシ樹脂、
 B成分:エポキシ当量が140以上300以下であり、25℃における粘度が30mPa・s以上3,000mPa・s未満である、環状構造を有するエポキシ樹脂、
 C成分:ビスフェノール類およびエピクロルヒドリンを用いて重合され、25℃において固形状態にある樹脂。
As a method of forming wiring on a substrate, a method of screen printing a conductive composition onto the substrate is known. As a conductive composition used in such screen printing, Patent Document 1 discloses a thermosetting conductive paste composition containing conductive powder, a thermosetting component, a curing agent, and a solvent. has been done. In the thermosetting conductive paste composition, flaky powder and spherical powder are used as the conductive powder, and the thermosetting component is composed of the following three components A to C, which are mixed into a predetermined amount. Contain in proportion.
Component A: an epoxy resin having a cyclic structure, having an epoxy equivalent of 160 or more and 400 or less, and a viscosity at 25°C of 3,000 mPa·s or more and 55,000 mPa·s or less;
Component B: an epoxy resin having a cyclic structure, having an epoxy equivalent of 140 or more and 300 or less and a viscosity at 25° C. of 30 mPa·s or more and less than 3,000 mPa·s,
Component C: A resin that is polymerized using bisphenols and epichlorohydrin and is in a solid state at 25°C.
 基板に幅広の配線を形成するために、線幅の広いメッシュに版を形成し、これを用いてスクリーン印刷することがある。この場合、従来の導電性組成物では、導電性組成物を塗布した後、基板から印刷版を外すと印刷面に気泡(以下、ピンホールということもある)が発生することがあり、外観性について改善の余地があった。 In order to form wide wiring on a board, a mesh with a wide line width is sometimes formed on a plate, and this is used for screen printing. In this case, with conventional conductive compositions, when the printing plate is removed from the substrate after applying the conductive composition, air bubbles (hereinafter also referred to as pinholes) may occur on the printed surface, resulting in poor appearance. There was room for improvement.
特開2013-194169号公報Japanese Patent Application Publication No. 2013-194169
 本発明は上記に鑑みてなされたものであり、硬化後の優れた導電性と外観性とを兼ね備えた導電性組成物を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a conductive composition that has both excellent conductivity and appearance after curing.
 本発明は以下に示される実施形態を含む。
[1] 固形ビスフェノール型エポキシ樹脂を40~70質量部と、脂環式エポキシ樹脂及びゴム変性エポキシ樹脂からなる群から選択される少なくとも1種を含む液状エポキシ樹脂を30~60質量部含むバインダー成分(A)100質量部に対して、導電性粒子(B)を1400~2500質量部と、ブロックイソシアネート硬化剤(C)を60~120質量部と、溶剤(D)を含有する、導電性組成物。
[2] 上記導電性粒子(B)は、球状の導電性粒子と樹枝状の導電性粒子を含む、[1]に記載の導電性組成物。
[3] 上記液状エポキシ樹脂は、脂環式エポキシ樹脂及びゴム変性エポキシ樹脂を含む、[1]又は[2]に記載の導電性組成物。
The present invention includes the embodiments shown below.
[1] A binder component containing 40 to 70 parts by mass of a solid bisphenol-type epoxy resin and 30 to 60 parts by mass of a liquid epoxy resin containing at least one selected from the group consisting of an alicyclic epoxy resin and a rubber-modified epoxy resin. A conductive composition containing 1400 to 2500 parts by mass of conductive particles (B), 60 to 120 parts by mass of a blocked isocyanate curing agent (C), and a solvent (D) based on 100 parts by mass of (A). thing.
[2] The conductive composition according to [1], wherein the conductive particles (B) include spherical conductive particles and dendritic conductive particles.
[3] The conductive composition according to [1] or [2], wherein the liquid epoxy resin includes an alicyclic epoxy resin and a rubber-modified epoxy resin.
 本発明に係る導電性組成物によれば、硬化後の優れた導電性と外観性が得られる。 According to the conductive composition according to the present invention, excellent conductivity and appearance after curing can be obtained.
比較例1-1のサンプルについて撮影したX線透過画像(50倍に拡大)。An X-ray transmission image (enlarged 50 times) taken of the sample of Comparative Example 1-1. 比較例1-2のサンプルについて撮影したX線透過画像(50倍に拡大)。An X-ray transmission image (enlarged 50 times) taken of the sample of Comparative Example 1-2. 実施例1-1のサンプルについて撮影したX線透過画像(50倍に拡大)。An X-ray transmission image (enlarged 50 times) taken of the sample of Example 1-1. 実施例1-2のサンプルについて撮影したX線透過画像(50倍に拡大)。An X-ray transmission image (enlarged 50 times) taken of the sample of Example 1-2.
 以下、本発明の実施の形態を、より具体的に説明する。 Hereinafter, embodiments of the present invention will be described in more detail.
 本実施形態に係る導電性組成物は、固形ビスフェノール型エポキシ樹脂を40~70質量部と、脂環式エポキシ樹脂及びゴム変性エポキシ樹脂からなる群から選択される少なくとも1種を含む液状エポキシ樹脂を30~60質量部含むバインダー成分(A)100質量部に対して、導電性粒子(B)を1400~2500質量部と、ブロックイソシアネート硬化剤(C)を60~120質量部と、溶剤(D)を含有する。 The conductive composition according to the present embodiment includes 40 to 70 parts by mass of a solid bisphenol-type epoxy resin and a liquid epoxy resin containing at least one selected from the group consisting of an alicyclic epoxy resin and a rubber-modified epoxy resin. For 100 parts by mass of binder component (A) containing 30 to 60 parts by mass, 1400 to 2500 parts by mass of conductive particles (B), 60 to 120 parts by mass of blocked isocyanate curing agent (C), and solvent (D). ).
 ここで、固形エポキシ樹脂とは、常温(25℃)において無溶媒状態で流動性を有さないエポキシ樹脂のことをいう。液状エポキシ樹脂とは、常温(25℃)において無溶媒状態で流動性を有するエポキシ樹脂のことをいう。 Here, the solid epoxy resin refers to an epoxy resin that does not have fluidity in a solvent-free state at room temperature (25° C.). The liquid epoxy resin refers to an epoxy resin that has fluidity in a solvent-free state at room temperature (25° C.).
 固形ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等が挙げられ、これらを1種単独で使用してもよく、2種以上を併用してもよい。 Examples of the solid bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc. These may be used alone, or two or more types may be used in combination. It's okay.
 固形ビスフェノール型エポキシ樹脂のエポキシ当量は、特に限定されないが、1000~10000g/eqであることが好ましく、3000~10000g/eqであることがより好ましい。 The epoxy equivalent of the solid bisphenol type epoxy resin is not particularly limited, but is preferably 1000 to 10000 g/eq, more preferably 3000 to 10000 g/eq.
 本明細書において、エポキシ樹脂のエポキシ当量は、ISO 3001 Plastics-Epoxy compounds-Determination of epoxy equivalentを元に作成されたJIS K7236:2009に準拠して測定される、1当量のエポキシ基を含む樹脂の質量をいう。 In this specification, the epoxy equivalent of an epoxy resin is measured in accordance with JIS K7236:2009, which was created based on ISO 3001 Plastics-Epoxy compounds-Determination of epoxy equivalent. Refers to mass.
 液状エポキシ樹脂は、脂環式エポキシ樹脂及びゴム変性エポキシ樹脂からなる群から選択される少なくとも1種を含有する。脂環式エポキシ樹脂としては、例えば、ジシクロペンタジエン型エポキシ樹脂、水素化ビスフェノールA型エポキシ樹脂、(3’,4’-エポキシシクロヘキサン)メチル3,4-エポキシシクロヘキシルカルボキシレート、ε-カプロラクトン変性3,4’-エポキシシクロへキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、1,2,8,9-ジエポキシリモネン、テトラヒドロインデンジエポキシドなどが挙げられ、これらを1種単独で使用してもよく、2種以上を併用してもよい。 The liquid epoxy resin contains at least one selected from the group consisting of alicyclic epoxy resins and rubber-modified epoxy resins. Examples of the alicyclic epoxy resin include dicyclopentadiene type epoxy resin, hydrogenated bisphenol A type epoxy resin, (3',4'-epoxycyclohexane)methyl 3,4-epoxycyclohexyl carboxylate, and ε-caprolactone modified 3 , 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 1,2,8,9-diepoxylimonene, tetrahydroindene diepoxide, etc., and these may be used alone. , two or more types may be used in combination.
 「ゴム変性エポキシ樹脂」とは、液状エポキシ樹脂中にゴム成分が分散しているものをいう。当該液状エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエーテル系エポキシ樹脂などが挙げられ、これらを1種単独で使用してもよく、2種以上を併用してもよい。これらの中でもビスフェノールA型エポキシ樹脂が好ましい。ゴム成分としては、例えば、ブタジエンゴム(BR)、アクリルゴム(ACM)、シリコーンゴム、ブチルゴム(IIR)、イソプレンゴム(IR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)、スチレンブタジエンゴム(SBR)、エチレンプロピレンゴム(EPR)などが挙げられ、これらを1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、ゴム変性エポキシ樹脂としては、NBRにより変性されたエポキシ樹脂(NBR変性エポキシ樹脂)が好ましい。 "Rubber-modified epoxy resin" refers to a liquid epoxy resin in which a rubber component is dispersed. Examples of the liquid epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, glycidylamine type epoxy resin, glycidyl ether type epoxy resin, etc., and these may be used alone. You may use more than one species in combination. Among these, bisphenol A type epoxy resin is preferred. Examples of rubber components include butadiene rubber (BR), acrylic rubber (ACM), silicone rubber, butyl rubber (IIR), isoprene rubber (IR), chloroprene rubber (CR), nitrile rubber (NBR), and styrene-butadiene rubber (SBR). ), ethylene propylene rubber (EPR), etc., and these may be used alone or in combination of two or more. Among these, as the rubber-modified epoxy resin, an epoxy resin modified with NBR (NBR-modified epoxy resin) is preferable.
 液状エポキシ樹脂は、脂環式エポキシ樹脂とゴム変性エポキシ樹脂以外の液状エポキシ樹脂を含有してもよい。このような他の液状エポキシ樹脂しては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などが挙げられる。 The liquid epoxy resin may contain liquid epoxy resins other than the alicyclic epoxy resin and the rubber-modified epoxy resin. Examples of such other liquid epoxy resins include bisphenol A epoxy resins, bisphenol F epoxy resins, phenol novolac epoxy resins, and glycidylamine epoxy resins.
 液状エポキシ樹脂における、脂環式エポキシ樹脂及びゴム変性エポキシ樹脂の合計の含有割合は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、100質量%でもよい。 The total content of the alicyclic epoxy resin and rubber-modified epoxy resin in the liquid epoxy resin is preferably 60% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. is more preferable, and may be 100% by mass.
 脂環式エポキシ樹脂のエポキシ当量は、特に限定されないが、70~300g/eqであることが好ましく、150~250g/eqであることがより好ましい。ゴム変性エポキシ樹脂のエポキシ当量は、特に限定されないが、220~400g/eqであることが好ましく、300~400g/eqであることがより好ましい。 The epoxy equivalent of the alicyclic epoxy resin is not particularly limited, but is preferably 70 to 300 g/eq, more preferably 150 to 250 g/eq. The epoxy equivalent of the rubber-modified epoxy resin is not particularly limited, but is preferably 220 to 400 g/eq, more preferably 300 to 400 g/eq.
 バインダー成分(A)100質量部は、上記固形ビスフェノール型エポキシ樹脂を40~70質量部と、上記液状エポキシ樹脂を30~60質量部含み、より好ましくは上記固形ビスフェノール型エポキシ樹脂を50~60質量部と、上記液状エポキシ樹脂40~50質量部を含む。固形ビスフェノール型エポキシ樹脂の量が、40質量部以上であることによりピンホール量を低減して外観性を向上することができ、また70質量部以下であることにより、導電性を向上することができる。 100 parts by mass of the binder component (A) contains 40 to 70 parts by mass of the solid bisphenol epoxy resin and 30 to 60 parts by mass of the liquid epoxy resin, more preferably 50 to 60 parts by mass of the solid bisphenol epoxy resin. parts and 40 to 50 parts by mass of the above liquid epoxy resin. When the amount of the solid bisphenol type epoxy resin is 40 parts by mass or more, the amount of pinholes can be reduced and the appearance can be improved, and when the amount is 70 parts by mass or less, the conductivity can be improved. can.
 バインダー成分(A)におけるエポキシ樹脂の割合は、70~100質量%であることが特に好ましく、90~100質量%であることが最も好ましい。 The proportion of the epoxy resin in the binder component (A) is particularly preferably 70 to 100% by mass, most preferably 90 to 100% by mass.
 バインダー成分(A)は、本発明の目的を損なわない範囲において、固形ビスフェノール型エポキシ樹脂以外の固形エポキシ樹脂を含有するものであってもよい。その他の固形エポキシ樹脂としては、例えば、スピロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テルペン型エポキシ樹脂、トリス(グリシジルオキシフェニル)メタン、テトラキス(グリシジルオキシフェニル)エタン等のグリシジルエーテル型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン等のグリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、α-ナフトールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ゴム変性エポキシ樹脂等を用いることができる。これらは1種を単独で使用するものであってもよく、2種以上を併用するものであってもよい。また、固形エポキシ樹脂は、後述する溶剤(D)に溶解して使用してもよい。 The binder component (A) may contain solid epoxy resins other than solid bisphenol-type epoxy resins as long as the object of the present invention is not impaired. Other solid epoxy resins include spirocyclic epoxy resins, naphthalene epoxy resins, biphenyl epoxy resins, terpene epoxy resins, and glycidyl ethers such as tris(glycidyloxyphenyl)methane and tetrakis(glycidyloxyphenyl)ethane. type epoxy resin, glycidylamine type epoxy resin such as tetraglycidyldiaminodiphenylmethane, novolac type epoxy resin such as cresol novolac type epoxy resin, phenol novolac type epoxy resin, α-naphthol novolac type epoxy resin, brominated phenol novolac type epoxy resin, Rubber-modified epoxy resin or the like can be used. These may be used alone or in combination of two or more. Further, the solid epoxy resin may be used after being dissolved in a solvent (D) described below.
 バインダー成分(A)は、本発明の目的を損なわない範囲において、エポキシ樹脂以外の成分を含有するものであってもよい。エポキシ樹脂以外の成分としては、例えば、アルキド樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂、ウレタン樹脂、アクリル樹脂などを含有することができる。これらの含有量はバインダー成分(A)中、30質量%以下であることが好ましく、10質量%以下がより好ましい。これらの樹脂を使用することで、密着性が良好となる。 The binder component (A) may contain components other than the epoxy resin as long as the object of the present invention is not impaired. Components other than epoxy resins may include, for example, alkyd resins, melamine resins, xylene resins, silicone resins, urethane resins, acrylic resins, and the like. The content of these in the binder component (A) is preferably 30% by mass or less, more preferably 10% by mass or less. Use of these resins provides good adhesion.
 導電性粒子(B)の含有量は、バインダー成分(A)100質量部に対して、1400~2500質量部であれば特に限定されないが、1500~2500質量部であることが好ましく、1600~2400質量部であることがより好ましい。 The content of the conductive particles (B) is not particularly limited as long as it is 1400 to 2500 parts by mass based on 100 parts by mass of the binder component (A), but it is preferably 1500 to 2500 parts by mass, and 1600 to 2400 parts by mass. More preferably, it is parts by mass.
 導電性粒子(B)としては、例えば、銅粒子、銀粒子、ニッケル粒子、銀被覆銅粒子、金コート銅粒子、銀コートニッケル粒子、金コートニッケル粒子、銀被覆銅合金粒子などが挙げられ、これらを1種単独で使用してもよく、2種以上を併用してもよい。導電性粒子(B)としては、銀粒子、銀被覆銅粒子、及び銀被覆銅合金粒子からなる群から選択される少なくとも1種が好ましい。銀被覆銅粒子は、銅粒子と、銅粒子の少なくとも一部を被覆する銀含有層とを有するものであれば特に限定されない。銀被覆銅合金粒子は、銅合金粒子と、銅合金粒子の少なくとも一部を被覆する銀含有層とを有するものであれば特に限定されない。銀被覆銅粒子と銀被覆銅合金粒子における銀含有層の含有割合は特に限定されないが、4~24質量%であることが好ましい。銀含有層における銀の含有量は特に限定されないが90~100質量%であることが好ましい。銅合金粒子は亜鉛0.5~25質量%及び/又はニッケル0.5~30質量%を含有し、残部が銅からなり、残部の銅は不可避不純物を含んでいてもよい。 Examples of the conductive particles (B) include copper particles, silver particles, nickel particles, silver-coated copper particles, gold-coated copper particles, silver-coated nickel particles, gold-coated nickel particles, silver-coated copper alloy particles, etc. These may be used alone or in combination of two or more. The conductive particles (B) are preferably at least one selected from the group consisting of silver particles, silver-coated copper particles, and silver-coated copper alloy particles. The silver-coated copper particles are not particularly limited as long as they include copper particles and a silver-containing layer that covers at least a portion of the copper particles. The silver-coated copper alloy particles are not particularly limited as long as they include copper alloy particles and a silver-containing layer that covers at least a portion of the copper alloy particles. The content ratio of the silver-containing layer in the silver-coated copper particles and the silver-coated copper alloy particles is not particularly limited, but is preferably 4 to 24% by mass. Although the silver content in the silver-containing layer is not particularly limited, it is preferably 90 to 100% by mass. The copper alloy particles contain 0.5 to 25% by mass of zinc and/or 0.5 to 30% by mass of nickel, with the balance consisting of copper, and the remaining copper may contain unavoidable impurities.
 導電性粒子(B)の形状は、特に限定されず、球状、フレーク状(鱗片状)、樹枝状、繊維状のものを使用することができるが、球状及び/又は樹枝状(デンドライト形状)であることが好ましく、球状と樹枝状との併用であることがより好ましい。球状と樹枝状とを併用する場合、優れた導電性と耐屈曲性が得られやすい。なお、「球状」の導電性粒子は、略真球のもの(アトマイズ粉)だけでなく、略多面体状の球体(還元粉)や、不定形状(電解粉)等の略球状のものを含む。また、「樹枝状」とは、粒子表面から突出する1以上の樹枝状突起を有する形状をいい、樹枝状突起は分岐なしの主枝のみであってもよく、主枝から枝部分が分岐して平面状或いは三次元的に成長してなる形状であってもよい。 The shape of the conductive particles (B) is not particularly limited, and spherical, flake-like, dendritic, and fibrous particles can be used; however, spherical and/or dendritic (dendritic) shapes may be used. A combination of spherical and dendritic shapes is more preferred. When a spherical shape and a dendritic shape are used together, excellent conductivity and bending resistance are likely to be obtained. Note that the "spherical" conductive particles include not only approximately true spheres (atomized powder), but also approximately spherical particles such as approximately polyhedral spheres (reduced powder) and irregularly shaped particles (electrolytic powder). In addition, "dendritic" refers to a shape having one or more dendrites protruding from the particle surface, and the dendrites may be only main branches without branches, or branch portions branch from the main branch. The shape may be formed by growing planarly or three-dimensionally.
 導電性粒子(B)の平均粒子径は、1~20μmであることが好ましい。導電性粒子の平均粒子径が1μm以上であると、導電性粒子の分散性が良好となるので、凝集を防止することができる。導電性粒子の平均粒子径が20μm以下であると、優れた導電性が得られやすい。 The average particle diameter of the conductive particles (B) is preferably 1 to 20 μm. When the average particle diameter of the conductive particles is 1 μm or more, the dispersibility of the conductive particles is good, so that aggregation can be prevented. When the average particle diameter of the conductive particles is 20 μm or less, excellent conductivity is likely to be obtained.
 本明細書において、「導電性粒子の平均粒子径」とは、レーザー回折・散乱法で測定した、個数基準の平均粒子径D50(メジアン径)のことを意味する。 In this specification, the "average particle diameter of conductive particles" means the number-based average particle diameter D50 (median diameter) measured by a laser diffraction/scattering method.
 ブロックイソシアネート硬化剤(C)としては、ポリイソシアネートを、封止剤でブロック化することによって調製したものを使用することができる。 As the blocked isocyanate curing agent (C), one prepared by blocking polyisocyanate with a sealant can be used.
 ポリイソシアネートの例としては、ヘキサメチレンジイソシアネート(3量体を含む)、テトラメチレンジイソシアネート、トリメチルヘキサメチレンジイシシアネートなどの脂肪族ジイソシアネート;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)などの脂環式ポリイソシアネート;4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネートなどの芳香族ジイソシアネート;これらのジイソシアネートの変性物(ウレタン化物、カーボジイミド、ウレトジオン、ウレトンイミン、ビューレットおよび/またはイソシアヌレート変性物など);が挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of polyisocyanates include aliphatic diisocyanates such as hexamethylene diisocyanate (including trimers), tetramethylene diisocyanate, and trimethylhexamethylene diisocyanate; Cyclic polyisocyanates; Aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate; Modified products of these diisocyanates (urethanized products, carbodiimides, uretdiones, uretonimines, biurets, and/or isocyanurate modifications) (things, etc.); These may be used alone or in combination of two or more.
 封止剤の例としては、n-ブタノール、n-ヘキシルアルコール、2-エチルヘキサノール、ラウリルアルコール、フェノールカルビノール、メチルフェニルカルビノールなどの一価のアルキル(または芳香族)アルコール類;エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2-エチルヘキシルエーテルなどのセロソルブ類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールフェノールなどのポリエーテル型両末端ジオール類;エチレングリコール、プロピレングリコール、1,4-ブタンジオールなどのジオール類と、シュウ酸、コハク酸、アジピン酸、スベリン酸、セバシン酸などのジカルボン酸類から得られるポリエステル型両末端ポリオール類;パラ-t-ブチルフェノール、クレゾールなどのフェノール類;ジメチルケトオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、メチルアミルケトオキシム、シクロヘキサノンオキシムなどのオキシム類;およびε-カプロラクタム、γ-ブチロラクタムに代表されるラクタム類が好ましく用いられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of sealants include monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol, methylphenyl carbinol; ethylene glycol mono Cellosolves such as hexyl ether and ethylene glycol mono-2-ethylhexyl ether; polyether-type double-terminated diols such as polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol phenol; ethylene glycol, propylene glycol, 1,4-butanediol, etc. polyester-type double-terminated polyols obtained from diols and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, and sebacic acid; phenols such as para-t-butylphenol and cresol; dimethyl ketoxime, methyl ethyl ketox Oximes such as oxime, methyl isobutyl ketoxime, methyl amyl ketoxime, and cyclohexanone oxime; and lactams represented by ε-caprolactam and γ-butyrolactam are preferably used. These may be used alone or in combination of two or more.
 ブロックイソシアネート硬化剤(C)の含有量は、バインダー成分(A)100質量部に対して、60~120質量部であれば特に限定されないが、80~110質量部であることがより好ましい。 The content of the blocked isocyanate curing agent (C) is not particularly limited as long as it is 60 to 120 parts by weight based on 100 parts by weight of the binder component (A), but it is more preferably 80 to 110 parts by weight.
 溶剤(D)としては、例えば、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、トリエチエレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル等のグリコールエーテル類、ターピネオール、2,2,4-トリメチルペンタン-1,3-ジオールモノイソブチラート、ジヒドロターピネオール、ベンジルアルコール等のアルコール類、γ-ブチロラクトンなどが挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the solvent (D) include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, triethylene glycol Glycol ethers such as monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, terpineol, 2,2,4-trimethylpentane-1, Examples include alcohols such as 3-diol monoisobutyrate, dihydroterpineol, benzyl alcohol, and γ-butyrolactone. These may be used alone or in combination of two or more.
 溶剤(D)の含有量は、特に限定されないが、バインダー成分(A)100質量部に対して100~220質量部であることが好ましく、140~180質量部であることがより好ましい。 The content of the solvent (D) is not particularly limited, but is preferably 100 to 220 parts by weight, more preferably 140 to 180 parts by weight, based on 100 parts by weight of the binder component (A).
 本発明の導電性組成物は、上記した各成分を所定量配合して十分混合することにより得られる。 The conductive composition of the present invention can be obtained by blending the above-mentioned components in predetermined amounts and thoroughly mixing them.
 なお、本発明の導電性組成物には、従来から同種の導電性組成物に添加されることのあった添加剤を、本発明の目的から外れない範囲内で添加することもできる。その例としては、硬化触媒、消泡剤、増粘剤、粘着付与剤、充填剤、沈降防止剤、着色剤、酸化防止剤、可塑剤、紫外線吸収剤、難燃剤等が挙げられる。 Note that additives that have conventionally been added to conductive compositions of the same type can also be added to the conductive composition of the present invention within a range that does not depart from the purpose of the present invention. Examples include curing catalysts, defoamers, thickeners, tackifiers, fillers, antisettling agents, colorants, antioxidants, plasticizers, ultraviolet absorbers, flame retardants, and the like.
 本発明の導電性組成物の粘度は、使用するスクリーン印刷機に応じて適宜調整すればよいが、例えば、液温25℃における粘度が、20~600Pa・sであることが好ましく、20~400Pa・sであることがより好ましく、20~300Pa・sであることがさらに好ましい。 The viscosity of the conductive composition of the present invention may be adjusted appropriately depending on the screen printing machine used, but for example, the viscosity at a liquid temperature of 25° C. is preferably 20 to 600 Pa·s,・s is more preferable, and even more preferably 20 to 300 Pa·s.
 なお、本明細書において「導電性組成物の粘度」とは、BROOKFIELD社製E型粘度計(コーンプレート)スピンドルCPA-52Zを用いて、25℃において回転数1rpmで測定した粘度のことを意味する。 In this specification, the "viscosity of the conductive composition" refers to the viscosity measured at 25° C. and a rotational speed of 1 rpm using an E-type viscometer (cone plate) spindle CPA-52Z manufactured by BROOKFIELD. do.
 以下に本発明の実施例を示すが、本発明は以下の実施例によって限定されるものではない。なお、以下において配合割合等は、特にことわらない限り質量基準とする。 Examples of the present invention are shown below, but the present invention is not limited to the following examples. Note that the blending ratios and the like below are based on mass unless otherwise specified.
 下記表1~7に示す配合(質量部)に従い、各成分を混合し、導電性組成物を調製した。 According to the formulations (parts by mass) shown in Tables 1 to 7 below, each component was mixed to prepare a conductive composition.
・固形エポキシ樹脂:固形ビスフェノールA型エポキシ樹脂、(株)DIC製「HM-101」、エポキシ当量=3200~3900g/eq
・液状エポキシ樹脂1:ジシクロペンタジエン型エポキシ樹脂、(株)ADEKA製「EP-4088L」
・液状エポキシ樹脂2:ゴム変性エポキシ樹脂、(株)ADEKA製「EPR-1415-1」
・導電性粒子1:平均粒径2~3μmの球状銀被覆銅粒子
・導電性粒子2:平均粒径4~6μmの樹枝状銀被覆銅粒子
・ブロックイソシアネート硬化剤(C):旭化成(株)製「デュラネートWM44-L70G」、ヘキサメチレンジイソシアネート系、NCOの含有割合=5質量%
・イミダゾール系硬化剤:四国化成工業(株)製「C11Z」、2-ウンデシルイミダゾール
・熱酸発生剤:三新化学工業(株)製「SI-110」、ベンジル(4-ヒドロキシフェニル)(メチル)スルホニウム=ヘキサフルオロホスファート
・アミン系硬化剤:味の素ファインテクノ(株)製「PN-H」、エポキシ樹脂アミンアダクト
・溶剤1:γ-ブチルラクトン
・溶剤2:ブチルカルビトール
・溶剤3:ジブチルカルビトール
・溶剤4:ジプロピレングリコールモノメチルエーテル
・Solid epoxy resin: Solid bisphenol A type epoxy resin, “HM-101” manufactured by DIC Corporation, epoxy equivalent = 3200 to 3900 g/eq
・Liquid epoxy resin 1: Dicyclopentadiene type epoxy resin, “EP-4088L” manufactured by ADEKA Co., Ltd.
・Liquid epoxy resin 2: Rubber-modified epoxy resin, “EPR-1415-1” manufactured by ADEKA Co., Ltd.
・Conductive particle 1: Spherical silver-coated copper particles with an average particle size of 2 to 3 μm ・Conductive particle 2: Dendritic silver-coated copper particles with an average particle size of 4 to 6 μm ・Blocked isocyanate curing agent (C): Asahi Kasei Corporation "Duranate WM44-L70G" made by Manufacturer, hexamethylene diisocyanate type, NCO content = 5% by mass
・Imidazole curing agent: “C11Z” manufactured by Shikoku Chemical Industry Co., Ltd., 2-undecylimidazole ・Thermal acid generator: “SI-110” manufactured by Sanshin Chemical Industry Co., Ltd., benzyl (4-hydroxyphenyl) ( Methyl) sulfonium hexafluorophosphate ・Amine curing agent: "PN-H" manufactured by Ajinomoto Fine Techno Co., Ltd., epoxy resin amine adduct ・Solvent 1: γ-butyllactone ・Solvent 2: Butyl carbitol ・Solvent 3: Dibutyl carbitol/solvent 4: dipropylene glycol monomethyl ether
 得られた導電性組成物の体積抵抗率、ピンホールの個数、粘度、及び耐屈曲性を評価し、結果を表1~7に示した。評価方法は以下に示すとおりである。 The volume resistivity, number of pinholes, viscosity, and bending resistance of the obtained conductive composition were evaluated, and the results are shown in Tables 1 to 7. The evaluation method is as shown below.
<体積抵抗率>
 厚さ188μmのPETフィルムにステンレス製の290メッシュのスクリーン印刷版を用い、スクリーン印刷(長さ100mm、幅0.8mm)後、130℃で30分間の加熱硬化を行いパターンを形成した。次いで、テスターを用いてパターンの両端間の抵抗値(R)を測定し、断面積(S、cm)と長さ(L、cm)から次式(1)により体積抵抗率を計算した。体積抵抗率が1.2×10-4Ω・cm未満であれば導電性に優れていると評価した。
 体積抵抗率=(S/L)×R   (1)
<Volume resistivity>
After screen printing (length 100 mm, width 0.8 mm) using a stainless steel 290 mesh screen printing plate on a 188 μm thick PET film, a pattern was formed by heat curing at 130° C. for 30 minutes. Next, the resistance value (R) between both ends of the pattern was measured using a tester, and the volume resistivity was calculated from the cross-sectional area (S, cm 2 ) and length (L, cm) using the following equation (1). It was evaluated that the conductivity was excellent if the volume resistivity was less than 1.2×10 −4 Ω·cm.
Volume resistivity = (S/L) x R (1)
<ピンホールの個数>
 厚さ188μmのPETフィルムにステンレス製の400メッシュのスクリーン印刷版を用い、スクリーン印刷後、130℃で30分間の加熱硬化を行い塗膜を形成した。得られたサンプルについて、YXLON International社製のX線透過装置「Y.Cheetah μHD」を用いて、電圧50kV、電流80μA、電力4Wの条件で撮影し、透過画像を得た。得られた透過画像のうち、任意の位置において1mm×1mmの領域内に発生したピンホールの個数を数えた。所定領域内におけるピンホールの個数が10個以下であれば外観性に優れていると評価した。
<Number of pinholes>
A 400-mesh screen printing plate made of stainless steel was used on a PET film having a thickness of 188 μm, and after screen printing, heat curing was performed at 130° C. for 30 minutes to form a coating film. The obtained sample was photographed using an X-ray transmission device "Y.Cheetah μHD" manufactured by YXLON International under conditions of voltage 50 kV, current 80 μA, and power 4W to obtain a transmission image. The number of pinholes generated within a 1 mm x 1 mm area at any position in the obtained transmitted image was counted. It was evaluated that the appearance was excellent if the number of pinholes in the predetermined area was 10 or less.
<粘度>
 導電性組成物をE型粘度計(BROOKFIELD社製コーンプレートタイプ)を用い、スピンドルがCPA-52Z、測定温度が25℃、回転数が1rpmの条件で測定した。
<Viscosity>
The conductive composition was measured using an E-type viscometer (cone plate type manufactured by BROOKFIELD) under the conditions that the spindle was CPA-52Z, the measurement temperature was 25° C., and the rotation speed was 1 rpm.
<耐屈曲性>
 厚さ100μmのPETフィルムにステンレス製の290メッシュのスクリーン印刷版を用い、スクリーン印刷(長さ100mm、幅0.8mm)後、130℃で30分間の加熱硬化を行いパターンを形成した。塗膜を内側にし、屈曲半径1.5mmの丸棒に沿って180°屈曲させた後、直線状に戻す操作を1回とし、15回繰り返した後、上記と同様にパターンの両端間の抵抗値を測定した。得られた結果を下記式に代入し、抵抗値変化率を求めた。抵抗値変化率が100%未満であれば、耐屈曲性に優れていると評価した。なお、耐屈曲性については、比較例1-1、比較例1-2、実施例1-1、実施例5-1についてのみ評価した。
 抵抗値変化率(%)=((屈曲後の抵抗値-屈曲前の抵抗値)/屈曲前の抵抗値)×100
<Bending resistance>
After screen printing (length 100 mm, width 0.8 mm) using a stainless steel 290 mesh screen printing plate on a 100 μm thick PET film, a pattern was formed by heat curing at 130° C. for 30 minutes. After bending 180° along a round bar with a bending radius of 1.5 mm with the paint film on the inside, the operation of returning to a straight line is repeated 15 times, and then the resistance between both ends of the pattern is measured in the same way as above. The value was measured. The obtained results were substituted into the following formula to determine the rate of change in resistance value. If the resistance value change rate was less than 100%, it was evaluated that the bending resistance was excellent. Note that the bending resistance was evaluated only for Comparative Example 1-1, Comparative Example 1-2, Example 1-1, and Example 5-1.
Resistance value change rate (%) = ((Resistance value after bending - Resistance value before bending) / Resistance value before bending) x 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、比較例1-1、比較例1-2は、固形エポキシ樹脂の含有量が下限値未満の例であり、図1,2に示すように円形のピンホールが複数発生し、外観性が劣っていた。一方、実施例1-1、実施例1-2では、図3,4に示すようにピンホールはほとんど確認されなかった。そして、ピンホールの発生が少ないほど、耐屈曲性に優れていた。また、比較例1-3は、固形エポキシ樹脂の含有量が上限値を超える例であり、導電性が劣っていた。 As shown in Table 1, Comparative Example 1-1 and Comparative Example 1-2 are examples in which the content of solid epoxy resin is less than the lower limit, and multiple circular pinholes occur as shown in Figures 1 and 2. However, the appearance was poor. On the other hand, in Examples 1-1 and 1-2, almost no pinholes were observed as shown in FIGS. 3 and 4. The fewer pinholes were generated, the better the bending resistance was. Furthermore, Comparative Example 1-3 was an example in which the content of solid epoxy resin exceeded the upper limit, and the conductivity was poor.
 表2に示す結果から、液状エポキシ樹脂は、脂環式エポキシ樹脂及びゴム変性エポキシ樹脂からなる群から選択される少なくとも1種を含有していれば本発明の効果が得られることがわかった。 From the results shown in Table 2, it was found that the effects of the present invention can be obtained if the liquid epoxy resin contains at least one selected from the group consisting of alicyclic epoxy resins and rubber-modified epoxy resins.
 表3に示すように、比較例3-1は導電性粒子の含有量が下限値未満の例であり、導電性が劣っていた。比較例3-2は導電性粒子の含有量が上限値を超える例であり、ピンホールが発生し、外観性が劣っていた。 As shown in Table 3, Comparative Example 3-1 was an example in which the content of conductive particles was less than the lower limit, and the conductivity was poor. Comparative Example 3-2 is an example in which the content of conductive particles exceeds the upper limit, pinholes were generated, and the appearance was poor.
 表4に示すように、比較例4-1は、ブロックイソシアネート硬化剤の含有量が下限値未満の例であり、導電性が劣っていた。比較例4-2は、ブロックイソシアネート硬化剤の含有量が上限値を超える例であり、導電性が劣っていた。 As shown in Table 4, Comparative Example 4-1 was an example in which the content of the blocked isocyanate curing agent was less than the lower limit, and the conductivity was poor. Comparative Example 4-2 is an example in which the content of the blocked isocyanate curing agent exceeds the upper limit, and the conductivity was poor.
 表5に示す結果から、導電性粒子として、球状のものと、樹枝状のものとを併用することでより優れた導電性が得られることがわかった。 From the results shown in Table 5, it was found that better conductivity could be obtained by using both spherical and dendritic conductive particles.
 表6に示す結果から、ピンホールの発生には、導電性組成物の粘度は影響しないことがわかった。 From the results shown in Table 6, it was found that the viscosity of the conductive composition had no effect on the generation of pinholes.
 表7に示すように、ブロックイソシアネート硬化剤以外の硬化剤を用いた場合、導電性が劣っていた。 As shown in Table 7, when a curing agent other than the blocked isocyanate curing agent was used, the conductivity was poor.

Claims (3)

  1.  固形ビスフェノール型エポキシ樹脂を40~70質量部と、脂環式エポキシ樹脂及びゴム変性エポキシ樹脂からなる群から選択される少なくとも1種を含む液状エポキシ樹脂を30~60質量部含むバインダー成分(A)100質量部に対して、
     導電性粒子(B)を1400~2500質量部と、
     ブロックイソシアネート硬化剤(C)を60~120質量部と、
     溶剤(D)を含有する、導電性組成物。
    Binder component (A) containing 40 to 70 parts by mass of a solid bisphenol type epoxy resin and 30 to 60 parts by mass of a liquid epoxy resin containing at least one selected from the group consisting of an alicyclic epoxy resin and a rubber-modified epoxy resin. For 100 parts by mass,
    1400 to 2500 parts by mass of conductive particles (B),
    60 to 120 parts by mass of blocked isocyanate curing agent (C),
    A conductive composition containing a solvent (D).
  2.  前記導電性粒子(B)は、球状の導電性粒子と樹枝状の導電性粒子を含む、請求項1に記載の導電性組成物。 The conductive composition according to claim 1, wherein the conductive particles (B) include spherical conductive particles and dendritic conductive particles.
  3.  前記液状エポキシ樹脂は、脂環式エポキシ樹脂及びゴム変性エポキシ樹脂を含む、請求項1又は2に記載の導電性組成物。

     
    The conductive composition according to claim 1 or 2, wherein the liquid epoxy resin includes an alicyclic epoxy resin and a rubber-modified epoxy resin.

PCT/JP2023/032485 2022-09-08 2023-09-06 Electroconductive composition WO2024053664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-143155 2022-09-08
JP2022143155 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024053664A1 true WO2024053664A1 (en) 2024-03-14

Family

ID=90191240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032485 WO2024053664A1 (en) 2022-09-08 2023-09-06 Electroconductive composition

Country Status (2)

Country Link
TW (1) TW202411287A (en)
WO (1) WO2024053664A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196953A (en) * 2012-03-21 2013-09-30 Kyoto Elex Kk Thermosetting conductive paste composition
JP2013194169A (en) * 2012-03-21 2013-09-30 Kyoto Elex Kk Thermosetting conductive paste composition
JP2020055977A (en) * 2018-10-04 2020-04-09 タツタ電線株式会社 Conductive coating material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196953A (en) * 2012-03-21 2013-09-30 Kyoto Elex Kk Thermosetting conductive paste composition
JP2013194169A (en) * 2012-03-21 2013-09-30 Kyoto Elex Kk Thermosetting conductive paste composition
JP2020055977A (en) * 2018-10-04 2020-04-09 タツタ電線株式会社 Conductive coating material

Also Published As

Publication number Publication date
TW202411287A (en) 2024-03-16

Similar Documents

Publication Publication Date Title
KR100804840B1 (en) Electroconductive paste and substrate using the same for mounting electronic parts
JP4893104B2 (en) Conductive paste and electronic component mounting board using the same
TW201922960A (en) Antistatic powder coating composition
JP6203783B2 (en) Conductive adhesive and method for manufacturing electronic substrate
JP5736122B2 (en) Structural adhesive
JP2009245938A (en) Conductive adhesive paste and electronic component mounting substrate
EP3125254B1 (en) Conductive paste
WO2017045119A1 (en) An adhesive composition and an article manufactured therefrom
JP2016222894A (en) Conductive adhesive and electronic substrate
JP5976382B2 (en) Die attach paste, manufacturing method thereof, and semiconductor device
JP2018092943A (en) Conductive material and connection structure
JP2013114836A (en) Heat curable conductive paste composition
WO2024053664A1 (en) Electroconductive composition
KR102318602B1 (en) Conductive adhesive, and electronic component using the same
CN109509569B (en) Method for connecting electrodes and method for manufacturing electronic substrate
JP2017050119A (en) Manufacturing method of electric conductive paste and electric conductive paste
JP6660921B2 (en) Electronic substrate manufacturing method
JP6619783B2 (en) Electrode connection method and electronic substrate manufacturing method
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP7021389B1 (en) Thermosetting conductive paste composition and solar cell, and solar cell module
WO2024048627A1 (en) Conductive coating, and method for resin molded article having shielding layer
JP2015093916A (en) Conductive epoxy resin composition, solar battery cell using the composition and method for producing the solar battery cell
EP4209562A1 (en) Conductive adhesive, electronic circuit using same, and method for producing same
WO2023044701A1 (en) Thermally conductive adhesive composition, preparation method and use thereof
JP2007042286A (en) Electroconductive paste composition, electroconductive separator and production method for electroconductive separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863202

Country of ref document: EP

Kind code of ref document: A1