WO2024053559A1 - Information processing device, terminal device, information processing method, and communication method - Google Patents

Information processing device, terminal device, information processing method, and communication method Download PDF

Info

Publication number
WO2024053559A1
WO2024053559A1 PCT/JP2023/031852 JP2023031852W WO2024053559A1 WO 2024053559 A1 WO2024053559 A1 WO 2024053559A1 JP 2023031852 W JP2023031852 W JP 2023031852W WO 2024053559 A1 WO2024053559 A1 WO 2024053559A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication
terminal device
base station
virtual space
Prior art date
Application number
PCT/JP2023/031852
Other languages
French (fr)
Japanese (ja)
Inventor
寿之 示沢
亮 澤井
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024053559A1 publication Critical patent/WO2024053559A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to an information processing device, a terminal device, an information processing method, and a communication method.
  • suitable communication can be achieved by adaptively controlling communication parameters depending on the state of the propagation path between the base station and the terminal device.
  • the base station transmits a known signal, and the terminal device receives the known signal, so that the terminal device can estimate the state of the propagation path. Furthermore, by feeding back the state of the propagation path estimated by the terminal device to the base station, the base station can set suitable communication parameters for the terminal device.
  • the base station uses a statistical propagation model (e.g., path loss model, interference model, etc.) according to the distance from the terminal device to calculate the average propagation Able to recognize road conditions.
  • a statistical propagation model e.g., path loss model, interference model, etc.
  • radio wave propagation in wireless communication varies greatly depending on, for example, the presence or absence of obstacles between a base station, which is a transmission point, and a terminal device, which is a reception point. Furthermore, considering interference with neighboring cells and surrounding base stations, the base station determines communication parameters so that the interference is minimized.
  • the suitable wireless Communication may not be possible. For example, if a base station determines the minimum transmission power to minimize interference, and an obstacle exists between the base station and the terminal device, this obstacle will cause the signal transmitted by the base station to may not reach the terminal device.
  • the present disclosure provides a mechanism that can perform more suitable wireless communication control based on the radio wave propagation environment in real space.
  • the information processing device of the present disclosure includes a control unit.
  • the control unit uses a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space, to Virtual space estimation information regarding wireless communication between a base station and the terminal device is generated.
  • the control unit determines communication parameters for at least one of the base station and the terminal device based on the virtual space estimation information.
  • FIG. 2 is a diagram illustrating an example of radio wave propagation according to the proposed technology of the present disclosure.
  • 1 is a diagram illustrating a configuration example of a wireless communication system according to a first embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating another configuration example of the wireless communication system according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a control station according to a first embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating a configuration example of a base station according to a first embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating a configuration example of a terminal device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a virtual communication environment according to a first embodiment of the present disclosure.
  • FIG. 2 is a sequence diagram illustrating an example of the flow of parameter control processing according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram for explaining an example of communication parameters.
  • FIG. 3 is a diagram for explaining an example of communication parameters.
  • FIG. 2 is a block diagram illustrating a configuration example of a control station according to a second embodiment of the present disclosure. It is a flow chart which shows an example of the flow of decision processing concerning a 2nd embodiment of this indication.
  • FIG. 1 is a diagram illustrating an example of a virtual communication environment according to a first embodiment of the present disclosure.
  • FIG. 2 is a sequence diagram illustrating an example of the flow of parameter control processing according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram for explaining an example of communication parameters.
  • FIG. 2 is a block diagram illustrating a configuration example of a control station according to a
  • FIG. 7 is a sequence diagram illustrating an example of the flow of parameter control processing according to a second embodiment of the present disclosure.
  • FIG. 7 is a block diagram illustrating a configuration example of a control station according to a third embodiment of the present disclosure. It is a flow chart which shows an example of the flow of the 1st processing concerning a 3rd embodiment of this indication.
  • 12 is a flowchart illustrating an example of a second process flow according to a third embodiment of the present disclosure. It is a flow chart which shows an example of the flow of the 3rd processing concerning a 3rd embodiment of this indication.
  • FIG. 2 is a diagram illustrating an example of a user interface of a terminal device according to a first application example of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a user interface of a terminal device according to a second application example of the present disclosure.
  • One or more embodiments (including examples, modifications, and application examples) described below can each be implemented independently. On the other hand, at least a portion of the plurality of embodiments described below may be implemented in combination with at least a portion of other embodiments as appropriate. These multiple embodiments may include novel features that are different from each other. Therefore, these multiple embodiments may contribute to solving mutually different purposes or problems, and may produce mutually different effects.
  • communication parameters are adaptively controlled depending on the condition of the propagation path between the base station and the terminal device, thereby realizing suitable communication.
  • a terminal device estimates the status of a propagation path between the terminal device and the base station using a known signal transmitted from the base station.
  • the base station sets appropriate communication parameters for the terminal device based on the propagation path conditions fed back from the terminal device.
  • the base station uses a statistical propagation model (for example, a path loss model or an interference model) depending on the distance from the terminal device to determine the average propagation path condition. Be aware of the situation. The base station sets communication parameters for the terminal device based on the average propagation path condition even if there is no feedback regarding the propagation path condition.
  • a statistical propagation model for example, a path loss model or an interference model
  • FIG. 1 is a diagram illustrating an example of radio wave propagation according to the proposed technology of the present disclosure.
  • FIG. 1A is a diagram showing an example of radio wave propagation when there is no obstacle 600.
  • FIG. 1(b) is a diagram showing an example of radio wave propagation when there is an obstacle 600.
  • FIG. 1C is a diagram illustrating an example of radio wave propagation when there is an obstacle 600 according to the proposed technology of the present disclosure.
  • base station 300 transmits a signal with transmission power P tx .
  • the radio waves can reach farther than when there is an obstacle 600 (see FIG. 1(b)).
  • the base station determines communication parameters so that this interference is minimized, taking into account interference with neighboring cells and surrounding base stations. Become. This is because the statistical propagation model differs from the actual propagation path situation.
  • the base station 300 can determine more accurate communication parameters according to the actual transmission path situation. However, the base station 300 can only grasp the state of the propagation path at the position of the terminal device that has provided the feedback.
  • the base station 300 when using a statistical propagation model, it was difficult for the base station 300 to perform wireless communication control based on the radio wave propagation environment in real space. Furthermore, when using the propagation path conditions estimated by the terminal device, the base station can control wireless communication according to the propagation path conditions at the location where the terminal device exists, but the radio wave propagation throughout the real space where wireless communication is performed It was difficult to grasp the environment.
  • the information processing device controls wireless communication between the terminal device and the base station 300.
  • the information processing device includes a control section.
  • the control unit generates virtual space estimation information regarding wireless communication between the base station 300 and the terminal device using a virtual communication environment.
  • the virtual communication environment is generated based on position information regarding the position of at least one of the base station 300 and the terminal device in real space, and environment information regarding the communication environment in real space.
  • the control unit determines communication parameters for at least one of the base station 300 and the terminal device based on the virtual space estimation information.
  • At least one of the base station 300 and the terminal device performs wireless communication using communication parameters determined by the information processing device, so that the communication system can perform wireless communication control based on the radio wave propagation environment in real space. .
  • the information processing device virtually generates a communication environment in which an obstacle 600 exists as shown in FIG. 1(c), and based on the virtual space estimation information generated using this virtual communication environment, Assume that the communication parameters of station 300 have been determined.
  • the information processing apparatus determines the transmission power of the base station 300 to be Pty as a communication parameter.
  • the information processing apparatus determines the transmission power P ty of the base station 300 according to the communication environment in which the obstacle 600 exists. Therefore, the signal transmitted by the base station 300 can reach a longer distance compared to the case where the signal is transmitted with the transmission power P tx determined without considering the obstacle 600 (see FIG. 1(b)). Can be done.
  • the information processing device performs wireless communication control based on the radio wave propagation environment in real space (the presence or absence of the obstacle 600 in FIG. 1), so that the base station 300 can perform more suitable communication.
  • the base station 300 may be the device that determines the communication parameters. That is, base station 300 may be the information processing device described above.
  • “communication environment information” includes at least one of static or semi-static information and dynamic information.
  • Static or semi-static information is fixed information or information that is updated infrequently.
  • the static or semi-static information can be information in an upper communication layer (for example, an application layer, an RRC (Radio Resource Control) layer, etc.).
  • Dynamic information is information that is updated frequently.
  • the dynamic information can be information in a lower communication layer (for example, a physical layer, etc.).
  • the communication environment information includes, for example, at least one of the following information as static or semi-static information.
  • Map information ⁇ Structure information ⁇ Device information regarding the base station 300 or terminal device ⁇ Sensing information acquired through a sensing device ⁇ Wireless communication information regarding wireless communication
  • map information is information that allows the positions and sizes of structures, base stations 300, terminal devices, etc. to be recognized.
  • the position may be, for example, absolute position information such as latitude and longitude, or may be relative position information within an area (for example, communication coverage of a local network described below).
  • the map information includes, for example, topographical information, office layout diagrams, campus maps, and the like.
  • the structure information here includes information that affects radio wave propagation. Examples of influences on radio wave propagation include reflection, diffraction, and transmission.
  • Structures include, for example, buildings, walls, trees, roads, signboards, traffic lights, road signs, pillars, buildings, the ground, glass, windows, desks, cabinets, etc.
  • the structure information includes, for example, the position, shape, size, and material of the structure, and parameters related to radio wave propagation in the structure (dielectric constant, conductivity, etc.).
  • the structure information is generated and constructed based on, for example, the above-mentioned map information. Further, in addition to this, the structure information may be generated and constructed based on information acquired from a sensing device, etc., which will be described later.
  • the device information regarding the base station 300 or the terminal device includes, for example, at least one piece of information listed below.
  • ⁇ Antenna information regarding antennas ⁇ Capability information regarding functions and capabilities supported by wireless communication
  • ⁇ Shape information regarding the shape and weight of base station 300 and/or terminal device ⁇ Fixed base station 300 and/or fixed base station 300 Location information of terminal device
  • the antenna information regarding the antenna here includes, for example, at least one piece of information regarding the antenna configuration, beam pattern, number of antenna elements, and configuration of the antenna elements of the base station 300 and/or the terminal device.
  • the sensing information acquired through the sensing device here includes object information regarding the object detected through the sensing device and/or influence information regarding fluctuations and/or effects on wireless communication due to the detected object.
  • the sensing device includes cameras, sensors, and the like.
  • Sensors include photoelectric sensors, fiber sensors, laser sensors, color sensors, proximity sensors, overcurrent displacement sensors, contact displacement sensors, ultrasonic sensors, image discrimination sensors, pressure sensors, vibration sensors, inertial measurement sensors, etc.
  • Three-dimensional spatial information (for example, the above-mentioned structure information) is generated from sensing information obtained through the sensing device.
  • sensing information is an image or video acquired in real time by a camera
  • three-dimensional spatial information is generated in real time using, for example, photogrammetry technology or volumetric capture technology. be done.
  • Objects detected by a sensing device include various devices such as the sensing device, a device different from the sensing device, and a terminal device that transmits information acquired by the sensing device. Further, objects detected by the sensing device include the above-mentioned structures and objects other than structures.
  • the terminal device that transmits the sensing information acquired by the sensing device may or may not be equipped with the sensing device.
  • the terminal device and the sensing device are separate devices, it is preferable that the terminal device acquires sensing information from the sensing device, for example, by wired or wireless communication.
  • sensing information acquired through sensing may include various sensing information in addition to object detection information.
  • the sensing information acquired through sensing includes beam information regarding beams transmitted from the base station 300 and/or the terminal device (for example, information regarding beam patterns, beam angles, etc.).
  • the wireless communication information regarding wireless communication here includes, for example, at least one of the information listed below.
  • ⁇ Communication information regarding RAT and frequencies ⁇ Scenario information regarding communication environment scenarios ⁇ Restriction information regarding conditions and restrictions regarding wireless communications that can be used in the local network
  • the communication information regarding the RAT includes, for example, information regarding LTE, NR, wireless LAN, Bluetooth (registered trademark), and the like.
  • the communication information regarding frequency includes information regarding at least one of a frequency band, a center frequency, and a frequency bandwidth.
  • Scenario information regarding communication environment scenarios includes, for example, information regarding urban areas (urban areas), suburbs (sub-urban areas), depopulated areas (rural areas), indoor offices, indoor factories, etc.
  • the scenario information may further include information regarding a radio wave propagation model (for example, a path loss model) corresponding to the communication environment scenario.
  • a radio wave propagation model for example, a path loss model
  • the radio wave propagation model may correspond to a LOS (Line Of Sight) environment and an NLOS (Non Line Of Sight) environment.
  • the restriction information here includes information regarding conditions and restrictions regarding wireless communication permitted in the local network.
  • These conditions and constraints include, for example, information on available RATs, areas where wireless communication is possible (geographical information (spatial information including two-dimensional planar information and/or three-dimensional height, etc.)), interference outside the area.
  • the information may include the upper limit of power amount, maximum transmittable power, transmittable frequency information, transmittable time information, installation location of base station 300, and the like.
  • These conditions and constraints are, for example, set and defined in advance. Further, these conditions and constraints can be determined and/or changed based on information notified from a predetermined server or storage device (for example, a SAS (Spectrum Access System) server, etc.).
  • a predetermined server or storage device for example, a SAS (Spectrum Access System) server, etc.
  • the communication environment information includes, for example, at least one of the following information as dynamic information. ⁇ Sensing information obtained through sensing devices ⁇ Wireless communication information regarding wireless communication
  • the sensing information obtained through the sensing device here includes moving object information regarding the moving object detected through the sensing device and/or influence information regarding fluctuations and/or effects on wireless communication by the detected moving object.
  • the sensing device described above can detect moving objects such as people and robots in addition to stationary objects such as structures. For example, the sensing device transmits information regarding the detected moving object as sensing information via the terminal device.
  • the sensing device can transmit sensing information at the timing when it detects a moving object and/or at the timing when it stops detecting a moving object. Alternatively, the sensing device may transmit sensing information at regular intervals.
  • the sensing information acquired as dynamic information may be the same information as the sensing information acquired as static or quasi-static information, except that it is a moving object.
  • the wireless communication information here includes, for example, quality information regarding communication quality in wireless communication.
  • the quality information includes, for example, at least one of the following pieces of information measured or estimated by a terminal device during wireless communication.
  • ⁇ Received power ⁇ Interference power ⁇ RSRP (Reference Signal Received Power) ⁇ RSRQ (Reference Signal Received Quality) ⁇ RSSI (Received Signal Strength Indicator) ⁇ SNR (Signal-to-noise ratio) ⁇ Downlink throughput ⁇ Uplink throughput ⁇ Latency ⁇ Jitter ⁇ Ping value
  • virtual space estimation information includes, for example, information regarding radio wave propagation of at least one of the base station 300 and the terminal device.
  • the virtual space estimation information includes, for example, at least one of the information listed below. ⁇ LOS/NLOS information ⁇ Simulation information ⁇ Calculation information calculated based on LOS/NLOS information, simulation information, etc.
  • the LOS/NLOS information is information indicating whether the environment between the base station 300 and the terminal device is a LOS environment or an NLOS environment.
  • the LOS environment is also referred to as the line-of-sight environment.
  • the LOS environment indicates a situation where there are no obstacles 600 such as structures or people on a straight line between the base station 300 and the terminal device, and the base station 300 and the terminal device can directly transmit and receive waves between them. .
  • wireless communication between the base station 300 and the terminal device is performed through reflected waves, diffracted waves, etc. in addition to direct waves.
  • the NLOS environment is also called a non-line-of-sight environment.
  • the NLOS environment indicates a situation where there is an obstacle 600 such as a structure or a person on a straight line between the base station 300 and the terminal device, and the base station 300 and the terminal device cannot directly transmit or receive waves between them.
  • wireless communication between the base station 300 and the terminal device is performed through reflected waves, diffracted waves, etc. other than direct waves.
  • the simulation information includes information regarding simulation results of radio wave propagation in wireless communication between the base station 300 and the terminal device.
  • the simulation information includes, for example, path information regarding one or more paths (transmitted waves, arriving waves, rays) obtained by Ray tracing simulation.
  • This path includes direct waves, reflected waves, diffracted waves, transmitted waves, etc. between the base station 300 and the terminal device.
  • the signal (radio wave) transmitted from the transmission point passes through various routes and multiple structures. It becomes a path and reaches a receiving point (for example, a terminal device).
  • the path information regarding the path may include, for example, at least one of the following information.
  • ⁇ Received power at the receiving point ⁇ Transmitted power at the transmitting point ⁇ Path loss ⁇ Propagation distance ⁇ Number of reflections ⁇ Number of diffraction ⁇ Number of transmissions ⁇ Phase fluctuation ⁇ Emission angle at the transmitting point ⁇ Arrival angle at the receiving point ⁇ Arrival order of paths (multiple Among the paths, what time did it arrive?) ⁇ Number of passes
  • the calculation information is information generated and calculated based on the above-mentioned LOS/NLOS information, simulation information, and the like.
  • the calculation information may include, for example, at least one of the following information. ⁇ Path loss at reception point ⁇ Received power ⁇ Interference power ⁇ RSRP ⁇ RSRQ ⁇ RSSI ⁇ SNR ⁇ Downlink throughput ⁇ Uplink throughput ⁇ Latency ⁇ Jitter ⁇ Ping value
  • “communication parameters” include at least one of dynamically determined parameters and quasi-statically determined parameters.
  • the dynamically determined parameters include, for example, at least one of the following parameters. ⁇ Information on MCS (Modulation and Coding Scheme) ⁇ Information on transmission power ⁇ Information on beam control ⁇ Information on MIMO (Multiple Input Multiple Output) multiplexing number
  • the semi-statically determined parameters include, for example, the range, maximum value, minimum value, average value, median value, etc. of parameters selectable (permitted) by the base station 300 and/or the terminal device. include.
  • the semi-statically determined parameters include, for example, the maximum transmission power of the base station 300 and/or the terminal device.
  • the information regarding the location is location information of the base station 300 and/or the terminal device.
  • Information regarding the position includes absolute position information such as latitude, longitude, and/or altitude obtained by, for example, GPS (Global Positioning System) or GNSS (Global Navigation Satellite System).
  • the information regarding the location includes relative location information obtained by a beacon, UWB (Ultra-WideBand), or the like.
  • FIG. 2 is a diagram illustrating a configuration example of a wireless communication system according to the first embodiment of the present disclosure.
  • the wireless communication system shown in FIG. 2 includes a control station 100, core networks 200A, 200B, base stations 300A 1 , 300A 2 , 300B 1 , 300B 2 , and terminal devices 400A 1 , 400A 2 , 400B 1 , 400B 2 . , is provided.
  • the control station 100 connects to the core network 200A in the local network N_A through the network N_P.
  • Control station 100 connects to core network 200B in local network N_B through network N_P.
  • the network N_P is, for example, a communication network such as a LAN (Local Area Network), a WAN (Wide Area Network), a cellular network, a fixed telephone network, a local IP (Internet Protocol) network, or the Internet.
  • the network N_P may include a wired network or a wireless network.
  • the network N_P may be a data network connected to the core network.
  • the data network may be a carrier's service network, for example an IMS (IP Multimedia Subsystem) network.
  • the data network may be a private network such as an in-house network. Note that in the example of FIG. 2, only one network N_P is shown, but the number of networks N_P is not limited to one.
  • two local networks N_A and N_B are shown, but the number of local networks is not limited to two.
  • the number of local networks may be one or three or more.
  • core network 200A connects to base stations 300A 1 and 300A 2 .
  • the number of base stations 300A to which core network 200A connects is not limited to two.
  • the number of base stations 300A may be one or three or more.
  • the base station 300A 1 connects to the terminal device 400A 1 by wireless communication.
  • the base station 300A 2 connects to the terminal device 400A 2 by wireless communication.
  • the number of terminal devices 400A connected to the base station 300A is not limited to one, and may be two or more. Further, the number of terminal devices 400A 1 connected to the base station 300A 1 may be different from the number of terminal devices 400A 2 connected to the base station 300A 2 .
  • local network N_B is similar to local network N_A, so the explanation will be omitted.
  • control station 100 is an information processing device that controls a dynamic spectrum access (DSA) system.
  • the control station 100 can control radio resources and communication parameters for at least one of the local networks N_A, N_B, core networks 200A, 200B, and base stations 300A, 300B connected to the DSA.
  • the radio resource means a resource in at least one of the time, frequency, MIMO layer, and spatial domain used for radio communication.
  • control station 100 directly connects to base stations 300A and 300B.
  • the core network 200 may be placed in one of the control station 100 and the base station 300. It may be distributed and arranged in both the control station 100 and the base station 300.
  • the local networks N_A and N_B are also called private networks, and are networks whose communication coverage (an example of a communication area) is, for example, a predetermined area or premises.
  • the terminal device 400 registered in advance can connect to at least one of the base station 300, the control station 100, and the core network 200.
  • radio access technologies used for wireless communication between the base station 300 and the terminal device 400 include, for example, 4G system, 5G system, 6G system, LTE (Long Term Evolution), and NR (New Radio). ) and other cellular communication systems.
  • this wireless access technology is not limited to cellular communication systems.
  • examples of this wireless access technology include various wireless communication systems such as wireless LAN, Bluetooth (registered trademark), and LPWA (Low Power Wide Area) systems.
  • control station 100 connects to local networks N_A and N_B, but the network to which the control station 100 connects may be a public network to which subscribers can connect.
  • FIG. 3 is a diagram illustrating another configuration example of the wireless communication system according to the first embodiment of the present disclosure.
  • core network 200 may be omitted or located within control station 100 and/or base station 300.
  • the wireless communication system is a system in which the core network 200 is omitted, as shown in FIG. 3. That is, the wireless communication system of this embodiment includes a control station 100, a base station 300, and a terminal device 400.
  • FIG. 4 is a diagram illustrating a configuration example of the control station 100 according to the first embodiment of the present disclosure.
  • the control station 100 is, for example, an information processing device that controls a dynamic spectrum access (DSA) system.
  • DSA dynamic spectrum access
  • the control station 100 includes a communication section 110, a storage section 120, and a control section 130.
  • Communication unit 110 is a communication interface for communicating with other devices (eg, base station 300).
  • the communication unit 110 may be a network interface or a device connection interface.
  • the communication unit 110 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card), or a USB interface configured by a USB (Universal Serial Bus) host controller, a USB port, etc. Good too.
  • the communication unit 110 may be a wired interface or a wireless interface.
  • the communication unit 110 functions as a communication means for the control station 100.
  • the communication unit 110 communicates with the base station 300 under the control of the control unit 130.
  • the storage unit 120 is a data readable/writable storage device such as a DRAM (Dynamic Random Access Memory), an SRAM (Static Random Access Memory), a flash memory, or a hard disk.
  • the storage unit 120 functions as a storage means of the control station 100.
  • the storage unit 120 stores information (data) used by a virtual space estimation unit 132, which will be described later.
  • the storage unit 120 holds the above-mentioned static or semi-static communication environment information.
  • the storage unit 120 stores location information regarding the location of the base station 300 and/or the terminal device 400.
  • the location information stored in the storage unit 120 may be information of a communication node that is physically fixed and cannot be moved (for example, the base station 300 and/or the terminal device 400).
  • the control unit 130 is a controller that controls each part of the control station 100.
  • the control unit 130 is realized by, for example, a processor such as a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a GPU (Graphics Processing Unit).
  • a processor such as a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a GPU (Graphics Processing Unit).
  • control unit 130 is realized by a processor executing various programs stored in a storage device inside the control station 100 using a RAM (Random Access Memory) or the like as a work area.
  • control unit 130 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the control unit 130 includes an acquisition unit 131, a virtual space estimation unit 132, a parameter determination unit 133, and a notification unit 134.
  • Each block (obtaining unit 131 to notifying unit 134) constituting the control unit 130 is a functional block indicating a function of the control unit 130, respectively.
  • each of the above functional blocks may be one software module realized by software (including a microprogram), or one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the functional blocks can be configured in any way.
  • control unit 130 may be configured in a functional unit different from the above-mentioned functional blocks.
  • the acquisition unit 131 acquires information used by the virtual space estimation unit 132 via the communication unit 110.
  • the acquisition unit 131 also acquires information used by the virtual space estimation unit 132 from the storage unit 120.
  • the acquisition unit 131 receives, via the communication unit 110, information that can be transmitted from at least one of the local network, core network 200, base station 300, terminal device 400, and other communication nodes.
  • the acquisition unit 131 acquires the above-mentioned dynamic communication environment information from the base station 300 and/or the terminal device 400 via the communication unit 110. Further, for example, the acquisition unit 131 receives location information regarding the location of the base station 300 and/or the terminal device 400 via the communication unit 110. Note that the position information received by the acquisition unit 131 may be information on a movable communication node.
  • the acquisition unit 131 acquires information (data) stored in the storage unit 120.
  • the acquisition unit 131 acquires, for example, the above-mentioned static or semi-static communication environment information from the storage unit 120.
  • the acquisition unit 131 outputs the acquired information to the virtual space estimation unit 132.
  • the virtual space estimation unit 132 generates a virtual communication environment based on the information input from the acquisition unit 131.
  • the virtual space estimation unit 132 further uses the generated virtual communication environment to generate virtual space estimation information regarding wireless communication.
  • the virtual space estimation unit 132 outputs the generated virtual space estimation information to the parameter determination unit 133.
  • the parameter determination unit 133 determines at least one communication parameter of the local network, core network 200, base station 300, and terminal device 400 based on the virtual space estimation information.
  • the notification unit 134 generates control information based on the determined communication parameters.
  • the notification unit 134 transmits to at least one of the local network, core network 200, base station 300, and terminal device 400. Thereby, the notification unit 134 notifies at least one of the local network, core network 200, base station 300, and terminal device 400 of information regarding the determined communication parameters.
  • the base station 300 is a communication device that operates a cell and provides wireless communication services to one or more terminal devices 400 located within the coverage of the cell.
  • a cell is operated according to any wireless communication method, such as LTE or NR.
  • Base station 300 is connected to core network 200.
  • the core network 200 is connected to a packet data network (not shown) via a gateway device (not shown).
  • the base station 300 operates beams that can be identified by SSB (Synchronization Signal/PBCH Block), and can transmit and receive data to and from one or more terminal devices 400 via one or more beams.
  • SSB Synchrononization Signal/PBCH Block
  • the base station 300 may be composed of a set of multiple physical or logical devices.
  • the base station 300 is divided into a plurality of devices, such as a BBU (Baseband Unit) and an RU, and may be interpreted as a collection of these devices.
  • base station 300 may be one or both of BBU and RU.
  • the BBU and RU may be connected through a predetermined interface (eg, eCPRI).
  • an RU may be referred to as a Remote Radio Unit (RRU) or a Radio DoT (RD).
  • the RU may correspond to a gNB-DU described below.
  • the BBU may correspond to gNB-CU, which will be described later.
  • the RU may be connected to gNB-DU, which will be described later.
  • the BBU may correspond to a combination of gNB-CU and gNB-DU, which will be described later.
  • the RU may be a device integrally formed with the antenna.
  • the antenna possessed by the base station 300 (for example, an antenna formed integrally with the RU) may employ an Advanced Antenna System and may support MIMO (for example, FD-MIMO) or beamforming.
  • MIMO for example, FD-MIMO
  • the antenna possessed by the base station 300 may include, for example, 64 transmitting antenna ports and 64 receiving antenna ports.
  • a plurality of base stations 300 may be connected to each other.
  • One or more base stations 300 may be included in a Radio Access Network (RAN). That is, base station 300 may be simply referred to as RAN, RAN node, AN (Access Network), or AN node.
  • RAN in LTE is called EUTRAN (Enhanced Universal Terrestrial RAN).
  • RAN in NR is called NGRAN.
  • the RAN in W-CDMA (UMTS) is called UTRAN.
  • the LTE base station 300 is called an eNodeB (Evolved Node B) or eNB. That is, the EUTRAN includes one or more eNodeBs (eNBs).
  • the NR base station 300 is referred to as gNodeB or gNB.
  • the NGRAN includes one or more gNBs.
  • EUTRAN may include a gNB (en-gNB) connected to a core network (EPC) in an LTE communication system (EPS).
  • EPS LTE communication system
  • NGRAN may include an ng-eNB connected to a core network 5GC in a 5G communication system (5GS).
  • 5GS 5G communication system
  • the base station 300 is an eNB, gNB, etc., it may be referred to as 3GPP Access.
  • the base station 300 is a wireless access point (e.g., a WiFi (registered trademark) access point), it may be referred to as Non-3GPP Access.
  • a wireless access point e.g., a WiFi (registered trademark) access point
  • the base station 300 may be an optical equipment called an RRH (Remote Radio Head). Additionally or alternatively, when the base station 300 is a gNB, the base station 300 may be referred to as a combination of the above-described gNB CU (Central Unit) and gNB DU (Distributed Unit), or any one of these.
  • the gNB CU hosts multiple upper layers (eg, RRC, SDAP, PDCP) of the Access Stratum for communication with the UE.
  • the gNB-DU hosts multiple lower layers (eg, RLC, MAC, PHY) of the Access Stratum.
  • RRC signaling for example, MIB, various SIBs including SIB1, RRCSetup message, RRCReconfiguration message
  • DCI and various Physical Channels for example, gNB-DU may be generated for PDCCH, PBCH.
  • part of the configuration such as IE: cellGroupConfig in RRC signaling may be generated by the gNB-DU, and the remaining configuration may be generated by the gNB-CU.
  • configurations may be transmitted and received through the F1 interface, which will be described later.
  • the base station 300 may be configured to be able to communicate with other base stations 300.
  • the base stations 300 may be connected by an X2 interface. Additionally or alternatively, when the plurality of base stations 300 are a combination of gNBs or a gn-eNB and a gNB, the devices may be connected through an Xn interface. Additionally or alternatively, when the plurality of base stations 300 are a combination of gNB CUs and gNB DUs, the devices may be connected by the F1 interface described above. Messages and information (RRC signaling or DCI information, Physical Channel), which will be described later, may be communicated between a plurality of base stations 300 (for example, via the X2, Xn, and F1 interfaces).
  • RRC signaling or DCI information, Physical Channel which will be described later
  • the base station 300 may be configured to manage multiple cells.
  • a cell provided by base station 300 is called a serving cell.
  • Serving cells include PCells (Primary Cells) and SCells (Secondary Cells). Dual Connectivity (e.g., EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), NR-NR Dual Connectivity) 400), the PCell and zero or more SCell(s) provided by the MN (Master Node) are called a Master Cell Group.
  • the serving cell may include a PSCell (Primary Secondary Cell or Primary SCG Cell).
  • the PSCell and zero or more SCell(s) provided by the SN are called a Secondary Cell Group (SCG).
  • SCG Secondary Cell Group
  • PUCCH physical uplink control channel
  • PUCCH physical uplink control channel
  • Radio Link Failure is also detected in PCell and PSCell, but not detected in SCell (it does not need to be detected).
  • PCell and PSCell have a special role among Serving Cell(s), so they are also called Special Cell (SpCell).
  • One Downlink Component Carrier and one Uplink Component Carrier may be associated with one cell.
  • the system bandwidth corresponding to one cell may be divided into a plurality of bandwidth parts.
  • one or more Bandwidth Parts may be configured in the UE, and one Bandwidth Part may be used as an Active BWP in the UE.
  • the radio resources for example, frequency band, numerology (subcarrier spacing), slot configuration
  • the terminal device 400 may differ for each cell, each component carrier, or each BWP.
  • FIG. 5 is a block diagram illustrating a configuration example of the base station 300 according to the first embodiment of the present disclosure.
  • Base station 300 is a wireless communication device that wirelessly communicates with terminal device 400.
  • Base station 300 is a type of communication device.
  • the base station 300 is a type of information processing device.
  • the base station 300 shown in FIG. 5 includes a communication section 310, a storage section 320, a network communication section 330, and a control section 340. Note that the configuration shown in FIG. 5 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of base station 300 may be distributed and implemented in a plurality of physically separated configurations. For example, as described above, the functionality of base station 300 may be distributed among CUs and DUs or CUs, DUs, and RUs.
  • the communication unit 310 is a signal processing unit for wirelessly communicating with other wireless communication devices (for example, the terminal device 400 and other base stations 300).
  • the communication unit 310 operates under the control of the control unit 340.
  • the communication unit 310 may be a wireless transceiver compatible with one or more wireless access methods.
  • the communication unit 310 supports both NR and LTE.
  • the communication unit 310 may be compatible with W-CDMA and cdma2000 in addition to NR and LTE.
  • the communication unit 310 may support communication using NOMA.
  • the communication unit 310 may be an X2 interface, an Xn interface, or an F1 interface.
  • the communication section 310 includes a reception processing section 311, a transmission processing section 312, and an antenna 313.
  • the communication unit 310 may each include a plurality of reception processing units 311, transmission processing units 312, and antennas 313. Note that when the communication unit 310 supports multiple wireless access methods, each part of the communication unit 310 may be configured individually for each wireless access method.
  • the reception processing section 311 and the transmission processing section 312 may be configured separately for LTE and NR.
  • the reception processing unit 311 processes uplink signals received via the antenna 313.
  • the reception processing section 311 operates as a reception section that receives a reception signal.
  • the reception processing section 311 includes a radio reception section 311a, a demultiplexing section 311b, a demodulation section 311c, and a decoding section 311d.
  • the radio reception unit 311a performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to a digital signal, removal of guard intervals (cyclic prefix), and fast Fourier transformation for uplink signals.
  • the frequency domain signal is extracted by The demultiplexer 311b separates uplink channels such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and uplink reference signals from the signal output from the radio receiver 311a.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the demodulation unit 311c demodulates the received signal using a modulation method such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) on the modulation symbol of the uplink channel.
  • the modulation method used by the demodulator 311c may be 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM. In this case, the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation (NUC).
  • the decoding unit 311d performs decoding processing on the coded bits of the demodulated uplink channel.
  • the decoded uplink data and uplink control information are output to the control section 340.
  • the transmission processing unit 312 performs transmission processing of downlink control information and downlink data.
  • the transmission processing unit 312 is an acquisition unit that acquires, for example, bit sequences such as downlink control information and downlink data from the control unit 340.
  • the transmission processing section 312 includes an encoding section 312a, a modulation section 312b, a multiplexing section 312c, and a wireless transmission section 312d.
  • the encoding unit 312a encodes the downlink control information and downlink data input from the control unit 340 using encoding methods such as block encoding, convolutional encoding, and turbo encoding. Note that the encoding unit 312a may perform encoding using a polar code or an LDPC code (low density parity check code).
  • the modulator 312b modulates the encoded bits output from the encoder 312a using a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, or 256QAM.
  • a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, or 256QAM.
  • the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation.
  • the multiplexing unit 312c multiplexes the modulation symbol of each channel and the downlink reference signal, and arranges it in a predetermined resource element.
  • the wireless transmitter 312d performs various signal processing on the signal from the multiplexer 312c. For example, the wireless transmitter 312d performs conversion from the time domain to the frequency domain using fast Fourier transform, addition of a guard interval (cyclic prefix), generation of a baseband digital signal, conversion to an analog signal, orthogonal modulation, and upconversion. , removes extra frequency components, amplifies power, etc.
  • the signal generated by the transmission processing section 312 is transmitted from the antenna 313.
  • the storage unit 320 is a data readable/writable storage device such as DRAM, SRAM, flash memory, hard disk, etc.
  • the storage unit 320 functions as a storage means of the base station 300.
  • the network communication unit 330 is a communication interface for communicating with a node located higher on the network (for example, the core network 200).
  • the network communication unit 330 may be a LAN interface such as a NIC. Additionally or alternatively, the network communication unit 330 may be an S1 interface or an NG interface for connecting to a core network node.
  • Network communication section 330 may be a wired interface or a wireless interface.
  • the network communication unit 330 functions as a network communication means for the base station 300.
  • the control unit 340 is a controller that controls each part of the base station 300.
  • the control unit 340 is realized, for example, by a processor (hardware processor) such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 340 is realized by a processor executing various programs stored in a storage device inside the base station 300 using a RAM (Random Access Memory) or the like as a work area.
  • the control unit 340 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • FIG. 6 is a block diagram illustrating a configuration example of a terminal device 400 according to an embodiment of the present disclosure.
  • the terminal device 400 is a wireless communication device that wirelessly communicates with the base station 300.
  • the terminal device 400 is, for example, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer.
  • the terminal device 400 may be a device such as a professional camera equipped with a communication function, or may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device.
  • M2M Machine to Machine
  • IoT Internet of Things
  • the terminal device 400 may be capable of side-link communication with other terminal devices 400.
  • the terminal device 400 may be able to use automatic retransmission technology such as HARQ (Hybrid Automatic Repeat reQuest) when performing side link communication.
  • the terminal device 400 may be capable of NOMA (Non Orthogonal Multiple Access) communication with the base station 300.
  • NOMA Non Orthogonal Multiple Access
  • the terminal device 400 may also be capable of NOMA communication in communication (side link) with other terminal devices 400.
  • the terminal device 400 may be capable of LPWA (Low Power Wide Area) communication with other communication devices (for example, the base station 300 and other terminal devices 400).
  • the wireless communication used by the terminal device 400 may be wireless communication using millimeter waves.
  • the wireless communication (including side link communication) used by the terminal device 400 may be wireless communication using radio waves, or wireless communication using infrared rays or visible light (optical wireless). good.
  • the terminal device 400 may connect to and communicate with multiple base stations 300 or multiple cells at the same time. For example, when one base station 300 can provide multiple cells, the terminal device 400 can perform carrier aggregation by using one cell as a pCell and another cell as an sCell. In addition, when a plurality of base stations 300 can each provide one or more cells, the terminal device 400 can provide one or more cells managed by one base station 300 (MN (for example, MeNB or MgNB)) as pCell, Alternatively, one or more cells managed by the other base station 300 (SN (for example, SeNB or SgNB)) can be used as pCell (PSCell), or pCell (PSCell) and sCell (s).
  • DC Dual Connectivity
  • DC may also be called MC (Multi Connectivity).
  • CA carrier aggregation
  • DC dual connectivity
  • the base station 300 and the terminal device 400 can communicate with each other by bundling the plurality of cells using the multi-connectivity (MC) technology and the multi-connectivity (MC) technology.
  • MC multi-connectivity
  • MC multi-connectivity
  • MC multi-connectivity
  • CoMP Coordinated Multi-Point Transmission and Reception
  • the terminal device 400 includes a communication section 410, a storage section 420, a network communication section 430, an input/output section 4400, and a control section 450. Note that the configuration shown in FIG. 6 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 400 may be distributed and implemented in a plurality of physically separated configurations.
  • the communication unit 410 is a signal processing unit for wirelessly communicating with other wireless communication devices (for example, the base station 300 and other terminal devices 400).
  • the communication unit 410 operates under the control of the control unit 450.
  • the communication unit 410 may be a wireless transceiver that supports one or more wireless access methods.
  • the communication unit 410 supports both NR and LTE.
  • the communication unit 410 may be compatible with W-CDMA and cdma2000 in addition to NR and LTE.
  • the communication unit 410 may support communication using NOMA.
  • the communication unit 410 includes a reception processing unit 411, a transmission processing unit 412, and an antenna 413.
  • the communication unit 410 may each include a plurality of reception processing units 411, transmission processing units 412, and antennas 413.
  • the configurations of communication section 410, reception processing section 411, transmission processing section 412, and antenna 414 are similar to those of communication section 310, reception processing section 311, transmission processing section 312, and antenna 314 of base station 300.
  • the storage unit 420 is a data readable/writable storage device such as DRAM, SRAM, flash memory, hard disk, etc.
  • the storage unit 420 functions as a storage means of the terminal device 400.
  • the network communication unit 430 is a communication interface for communicating with other devices connected via the network.
  • the network communication unit 430 is a LAN interface such as a NIC.
  • Network communication unit 430 may be a wired interface or a wireless interface.
  • the network communication unit 430 functions as a network communication means for the terminal device 400.
  • the network communication unit 430 communicates with other devices under the control of the control unit 450.
  • the input/output unit 440 is a user interface for exchanging information with the user.
  • the input/output unit 440 is an operating device, such as a keyboard, a mouse, an operation key, a touch panel, etc., for the user to perform various operations.
  • the input/output unit 440 is a display device such as a liquid crystal display or an organic electroluminescence display.
  • the input/output unit 440 may be an audio device such as a speaker or a buzzer.
  • the input/output unit 440 may be a lighting device such as an LED (Light Emitting Diode) lamp.
  • the input/output unit 440 functions as an input/output means (input means, output means, operation means, or notification means) of the terminal device 400.
  • the control unit 450 is a controller that controls each part of the terminal device 400.
  • the control unit 450 is realized by, for example, a processor such as a CPU, MPU, or GPU.
  • the control unit 450 is realized by a processor executing various programs stored in a storage device inside the terminal device 400 using a RAM or the like as a work area.
  • the control unit 450 may be realized by an integrated circuit such as an ASIC or an FPGA.
  • CPUs, MPUs, GPUs, ASICs, and FPGAs can all be considered controllers.
  • FIG. 7 is a flowchart illustrating an example of the flow of determination processing according to the first embodiment of the present disclosure.
  • the determination process shown in FIG. 7 is executed by the control station 100, for example, before the provision of wireless communication service is started in the local network.
  • the determination process may be performed, for example, according to an instruction from a user using the terminal device 400.
  • the determination process may be executed at regular intervals.
  • the acquisition unit 131 of the control station 100 acquires environment information (communication environment information) from the storage unit 120 and/or via the communication unit 110 (step S101).
  • the virtual space estimation unit 132 of the control station 100 generates a virtual communication environment based on the position information in real space of at least one of the base station 300 and the terminal device 400 and the acquired communication environment information (step S102 ).
  • the virtual communication environment is, for example, a virtual representation of objects (such as structures and people) that exist within the communication coverage of the base station 300.
  • FIG. 8 is a diagram illustrating an example of a virtual communication environment according to the first embodiment of the present disclosure.
  • a virtual communication environment generated by the virtual space estimation unit 132 is shown when the real space communication environment in which the base station 300 and the terminal device 400 perform wireless communication is an indoor office environment.
  • the virtual space estimation unit 132 generates a communication environment including a plurality of desks as a virtual communication environment.
  • the virtual space estimation unit 132 executes a radio wave propagation simulation in a virtual communication environment (step S103).
  • the control station 100 performs a radio wave propagation simulation between the base station 300 and the terminal device 400 (between the transmission point and the reception point) in the generated virtual communication environment.
  • the base station 300 may be a reception point.
  • the terminal device 400 becomes the transmission point.
  • Radio wave propagation simulation can be performed using various techniques such as LOS/NLOS determination in virtual space or Ray tracing simulation.
  • the virtual space estimation unit 132 performs LOS/NLOS determination as a radio wave propagation simulation.
  • the virtual space estimation unit 132 determines whether the radio wave propagation environment between the base station 300 and the terminal device 400 is LOS or NLOS in the generated virtual communication environment. do.
  • the virtual space estimation unit 132 uses the result of the LOS/NLOS determination as the simulation result.
  • the virtual space estimation unit 132 generates virtual space estimation information based on the simulation results (step S104).
  • the virtual space estimating unit 132 selects a suitable radio wave propagation model (path loss model) based on the LOS/NLOS determination result, which is a simulation result, for example.
  • the virtual space estimation unit 132 estimates the path loss between the base station 300 and the terminal device 400 or the received power of the terminal device 400 using the selected radio wave propagation model.
  • the virtual space estimation unit 132 outputs the estimated path loss or received power to the parameter determination unit 133 of the control station 100 as virtual space estimation information.
  • the virtual space estimating unit 132 may output the LOS/NLOS determination result, which is a simulation result, to the parameter determining unit 133.
  • the parameter determination unit 133 determines communication parameters based on the virtual space estimation information (step S105).
  • the parameter determining unit 133 determines communication parameters using, for example, techniques such as machine learning, artificial intelligence, and deep learning.
  • machine learning, artificial intelligence, deep learning, etc. will also be simply referred to as AI (Artificial Intelligence).
  • the parameter determining unit 133 determines communication parameters using a learned AI model (machine learning model, deep learning model). It is assumed that this AI model is generated in advance by machine learning performed using, for example, information stored in the storage unit 120 and information received via the communication unit 110, in other words, information acquired by the acquisition unit 131.
  • a learned AI model machine learning model, deep learning model
  • Learning of the AI model may be performed by the control station 100 (for example, the parameter determination unit 133), or may be performed by another device. If learning of the AI model is performed in a device different from the control station 100, the parameter determining unit 133 acquires information regarding the AI model from this other device. For example, the parameter determining unit 133 obtains coefficients of the AI model from another device.
  • control station 100 When the control station 100 performs AI model learning, the control station 100 performs AI learning using, for example, part or all of the information stored in the storage unit 120 and the information received via the communication unit 110. , generate (construct) an AI model. For example, the control station 100 performs learning of an AI model using communication environment information, virtual space estimation information, and communication parameters. Alternatively, the control station 100 may learn the AI model using simulation results.
  • the AI model outputs communication parameters when at least one of communication environment information, virtual space estimation information, and simulation results is input.
  • the parameter determination unit 133 uses communication parameters output from the AI model to determine the communication parameters for wireless communication between the base station 300 and the terminal device 400. Decide on the communication parameters to be used.
  • the AI model may be a model that is trained specifically for each situation in which the base station 300 and the terminal device 400 perform wireless communication (for example, places such as outdoors or indoors), or may be a model that is trained specifically for this situation. It may be a general-purpose model that does not depend on the model.
  • the parameter determination unit 133 notifies the notification unit 134 of the determined parameters.
  • the notification unit 134 notifies control information based on the communication parameters (step S106). Notification unit 134 notifies base station 300 of control information. Furthermore, the notification unit 134 notifies the terminal device 400 of the control information via the base station 300.
  • the base station 300 and the terminal device 400 can perform wireless communication based on the radio wave propagation environment in real space.
  • the control station 100 can perform wireless communication control based on the radio wave propagation environment in real space by determining communication parameters based on virtual space estimation information.
  • the virtual space estimation unit 132 performs LOS/NLOS determination as a radio wave propagation simulation, but the simulation performed by the virtual space estimation unit 132 is not limited to this.
  • the virtual space estimation unit 132 may perform simulation using ray tracing. In this case, the virtual space estimation unit 132 performs a ray tracing simulation in step S103.
  • the virtual space estimation unit 132 simulates a path transmitted from a transmission point (a path along which radio waves propagate) in a virtual communication environment using a predetermined method. For example, the virtual space estimating unit 132 calculates a path through which radio waves transmitted from a transmission point reach a reception point through reflection, diffraction, transmission, etc. from a structure.
  • the virtual space estimation unit 132 generates the calculated propagation path conditions for each path as a simulation result.
  • the virtual space estimating unit 132 performs ray tracing simulation using various methods such as the SBR (Shooting and Bouncing Rays) method and the Image method. For example, the virtual space estimating unit 132 may calculate each path in simulation by considering the material, dielectric constant, conductivity, etc. of the structure.
  • SBR Shioting and Bouncing Rays
  • step S104 the virtual space estimating unit 132 estimates the path loss and/or received power at the receiving point based on one or more paths that are information on the simulation results.
  • the virtual space estimation unit 132 outputs the estimated path loss and/or received power to the parameter determination unit 133 as virtual space estimation information.
  • the virtual space estimation unit 132 may output information regarding the path, which is a simulation result, to the parameter determination unit 133 in addition to/in place of the virtual space estimation information.
  • FIG. 9 is a sequence diagram illustrating an example of the flow of parameter control processing according to the first embodiment of the present disclosure.
  • the parameter control process shown in FIG. 9 is executed in the wireless communication system when the control station 100 determines communication parameters.
  • the terminal device 400 transmits information regarding its own location and/or communication environment information to the base station 300 (step S201).
  • the base station 300 Upon receiving the information regarding the location and/or the communication environment information of the terminal device 400, the base station 300 transmits the information regarding the location and/or the communication environment information to the control station 100 (step S202).
  • the information regarding this location includes information regarding the location of the terminal device 400 and information regarding the location of the base station 300 itself that transmits the information.
  • the communication environment information may include communication environment information held by the base station 300.
  • the control station 100 generates control information by executing a determination process (see FIG. 7) based on the received location information and/or communication environment information.
  • the base station 300 receives control information from the control station 100 (step S203).
  • the terminal device 400 receives control information from the base station 300 (step S204).
  • this control information is the same as the control information transmitted by the control station 100.
  • the control information may be generated by the base station 300 based on the control information transmitted by the control station 100.
  • Example of communication parameters Next, an example of communication parameters determined by the parameter determination unit 133 will be explained. Here, it is assumed that the parameter determination unit 133 determines the maximum transmission power of the base station 300 located in the local network as a communication parameter.
  • an upper limit value of interference power can be set so as not to interfere with other people's land beyond the boundary of the own land (boundary of owned land).
  • FIG. 10 is a diagram for explaining an example of communication parameters. Here, it is assumed that the control station 100 estimates the interference power imparted to another person's land without using information regarding structures in real space.
  • control station 100 since the control station 100 does not use information regarding structures in real space, it uses a statistical radio wave propagation model to estimate interference power based on the most severe conditions. In other words, the control station 100 sets interference power including a predetermined margin.
  • control station 100 estimates the interference power using the most severe conditions is to avoid interfering with other people's land that exceeds the boundary of its own land (boundary of owned land) as described above.
  • the control station 100 determines the maximum transmission power of the base station 300 according to the estimated interference power.
  • the base station 300 transmits a signal with the maximum transmission power determined by the control station 100.
  • the signal transmitted by the base station 300 at the maximum transmission power is blocked by the obstacle 600 and reaches only to this side of the boundary of the base station's own land (the boundary of the owned land). That is, the base station 300 and the terminal device 400 can perform wireless communication only up to the boundary of their own land.
  • control station 100 determines communication parameters without using information about structures in real space, areas where wireless communication cannot be performed will occur near the boundaries of its own land, which will reduce the efficiency of wireless resource usage in the local network. decreases.
  • the control station 100 determines communication parameters using information regarding structures in real space.
  • the control station 100 determines the maximum transmission power according to the received power at the boundary of its own land. This allows base station 300 and terminal device 400 to perform wireless communication even near the boundaries of their own land.
  • FIG. 11 is a diagram for explaining an example of communication parameters. As described above, the control station 100 according to the present embodiment determines communication parameters using information regarding structures in real space.
  • control station 100 can more accurately estimate the received power at the boundary of the property, in other words, the interference power in the area beyond the boundary of the property, compared to the case where information regarding structures in real space is not used. .
  • control station 100 according to the present embodiment can reduce (or improve, or cancel) the margin that is set when information regarding structures in real space is not used.
  • the signal transmitted by the base station 300 at the maximum transmission power can be transmitted on its own land, as shown in FIG. It can reach the boundary (the boundary of your property). That is, base station 300 and terminal device 400 can perform wireless communication even near the boundaries of their own land.
  • control station 100 determines communication parameters using information about structures in real space, it becomes possible to perform wireless communication near the boundaries of its own land compared to a case where this information is not used. .
  • the wireless communication system can improve (improve) the usage efficiency of wireless resources in the local network.
  • FIGS. 10 and 11 show a case where the base station 300 performs wireless communication using beams (beams #1 to #3 in FIGS. 10 and 11). In this way, base station 300 can perform wireless communication using beams.
  • the control station 100 can determine communication parameters (here, maximum transmission power) for each predetermined direction (beam).
  • the control station 100 can perform wireless communication control according to more detailed radio wave propagation paths by determining communication parameters for each beam. Thereby, the communication system can further improve (improve) the utilization efficiency of radio resources.
  • the control station 100 can similarly determine the communication parameters according to the received power at the boundary of the property. .
  • the parameter determining unit 133 determines communication parameters using virtual space estimation information, but the information that the parameter determining unit 133 uses to determine communication parameters is not limited to this.
  • the parameter determination unit 133 may determine communication parameters using information acquired by the acquisition unit 131 in addition to the virtual space estimation information.
  • FIG. 12 is a block diagram illustrating a configuration example of the control station 100 according to the second embodiment of the present disclosure.
  • Control station 100 shown in FIG. 12 has the same configuration as control station 100 shown in FIG. 4 except that acquisition section 131 outputs acquired information to parameter determination section 133.
  • the acquisition information acquired by the acquisition unit 131 includes, for example, information acquired from at least one of the local network, core network 200, base station 300, terminal device 400, and other communication nodes via the communication unit 110.
  • the acquired information includes, for example, real space measurement information that is measurement information of wireless communication in real space.
  • the real space measurement information may include, for example, dynamic information among the wireless communication information related to the wireless communication described above.
  • the parameter determining unit 133 determines communication parameters using virtual space estimation information and real space measurement information. For example, when the parameter determining unit 133 determines communication parameters using an AI model, the parameter determining unit 133 uses the output when virtual space estimation information and real space measurement information are input to the AI model as the communication parameters.
  • control station 100 determines communication parameters using an AI model learned using real space measurement information in addition to the data used for learning in the first embodiment.
  • control station 100 can determine communication parameters with higher accuracy by determining communication parameters using real space measurement information in addition to virtual space estimation information.
  • FIG. 13 is a flowchart illustrating an example of the flow of determination processing according to the second embodiment of the present disclosure. Among the determination processing shown in FIG. 13, the same processing as the determination processing shown in FIG. 10 is given the same reference numeral and the explanation thereof will be omitted.
  • the acquisition unit 131 that acquired the environment information (communication environment information) in step S101 acquires real space measurement information via the communication unit 110 (step S301).
  • the acquisition unit 131 outputs the acquired real space measurement information to the parameter determination unit 133.
  • the parameter determination unit 133 determines communication parameters using real space measurement information in addition to virtual space estimation information in step S105.
  • FIG. 14 is a sequence diagram illustrating an example of the flow of parameter control processing according to the second embodiment of the present disclosure.
  • the same processes as the parameter control processes shown in FIG. 9 are given the same reference numerals, and the description thereof will be omitted.
  • the terminal device 400 transmits real space measurement information measured by itself to the base station 300 (step S401).
  • the base station 300 transmits real space measurement information to the control station 100 (step S402).
  • This real space measurement information may include real space measurement information measured by terminal device 400 and real space information measured by base station 300.
  • the terminal device 400 and the base station 300 transmit the real space measurement information and then the information regarding the position and/or the communication environment information
  • the order in which the information is transmitted is not limited to this.
  • the terminal device 400 and/or the base station 300 may transmit the real space measurement information after transmitting the information regarding the location and/or the communication environment information.
  • the control station 100 can determine communication parameters with higher accuracy by determining communication parameters using real space measurement information and virtual space estimation information. For example, when the communication parameter is the maximum transmission power of the base station 300, the base station 300 suppresses interference outside the service area provided by the local network while transmitting a signal with a power that reaches near the boundary of this area. Can be sent.
  • the communication parameter is the maximum transmission power of the base station 300
  • the base station 300 suppresses interference outside the service area provided by the local network while transmitting a signal with a power that reaches near the boundary of this area. Can be sent.
  • control station 100 determines communication parameters in one process, but the process performed by the control station 100 is not limited to this.
  • the control station 100 may perform repeated processing to determine the communication parameters.
  • the accuracy of the communication parameters determined by the parameter determination unit 133 can be improved. Furthermore, the accuracy of the virtual communication environment constructed by the virtual space estimation unit 132 can be improved. The accuracy of the radio wave propagation simulation executed by the virtual space estimation unit 132 can be improved.
  • the iterative processing according to this embodiment can be classified into the following three methods depending on which processing of the determination processing is repeated.
  • - A first process that repeats the processing of the virtual space estimation unit 132 and the parameter determination unit 133.
  • - A second process that repeats the first process further including the process of the acquisition unit 131.
  • - A second process that further includes the processing of the notification unit 134 in the second process.
  • the third process that repeats including the process
  • FIG. 15 is a block diagram illustrating a configuration example of the control station 100 according to the third embodiment of the present disclosure.
  • Control station 100 shown in FIG. 15 has the same configuration as control station 100 shown in FIG. 12, except that parameter determination section 133 outputs predetermined information to virtual space estimation section 132.
  • control station 100 As described above, the control station 100 according to the present embodiment repeatedly executes part of the determination process. The control station 100 executes at least one of the first to third processes as the determination process according to the present embodiment.
  • the first process is a process that repeats the process of the virtual space estimation unit 132 and the process of the parameter determination unit 133 in the determination process.
  • the virtual space estimating unit 132 generates virtual space estimation information assuming predetermined communication parameters (for example, specified values or initial values).
  • the parameter determining unit 133 determines communication parameters based on virtual space estimation information and real space measurement information.
  • the communication parameters determined by the parameter determination unit 133 are fed back to the virtual space estimation unit 132, so that the virtual space estimation unit 132 generates virtual space estimation information again based on the updated communication parameters. can do.
  • the parameter determination unit 133 determines communication parameters based on virtual space estimation information that is regenerated using the updated communication parameters. Thereby, the parameter determining unit 133 can determine communication parameters with higher accuracy.
  • FIG. 16 is a flowchart illustrating an example of the flow of the first process according to the third embodiment of the present disclosure. Note that among the first processing shown in FIG. 16, the same processing as the determination processing shown in FIG. 13 is given the same reference numeral, and the description thereof will be omitted.
  • the parameter determining unit 133 that determined the communication parameters in step S105 determines whether or not to repeatedly determine the communication parameters (step S501).
  • the parameter determining unit 133 determines whether or not to repeat the process depending on whether or not the communication parameters have been determined a specified number of times. .
  • the parameter determination unit 133 may determine whether to repeat the process depending on whether the accuracy of a predetermined parameter is greater than or equal to a predetermined value, and whether the accuracy of the communication environment or the like is greater than or equal to a predetermined value. It may be determined whether or not to repeat the process depending on the result.
  • the parameter determination unit 133 determines whether communication parameters are to be determined repeatedly (step S501; Yes). If it is determined that communication parameters are to be determined repeatedly (step S501; Yes), the parameter determination unit 133 provides feedback of the communication parameters (step S502), and returns to step S103. For example, the parameter determining unit 133 feeds back communication parameters to the virtual space estimating unit 132.
  • the virtual space estimation unit 132 executes a radio wave propagation simulation between the base station 300 and the terminal device 400 (between the transmission point and the reception point) based on the updated communication parameters.
  • the parameter determination unit 133 If it is determined not to repeatedly determine the communication parameters (step S501; No), the parameter determination unit 133 outputs the determined communication parameters to the notification unit 134.
  • the notification unit 134 transmits control information based on the communication parameters in step S106.
  • the second process is a process that repeats the process of the acquisition unit 131, the process of the virtual space estimation unit 132, and the process of the parameter determination unit 133 in the determination process.
  • the control station 100 is determining communication parameters
  • the real space measurement information measured by the terminal device 400, the base station 300, etc. may change. If the control station 100 determines the communication parameters through repeated processing, the processing time may become long, and in this case, there is a possibility that the real space measurement information will fluctuate.
  • the communication parameters determined by the parameter determination unit 133 are fed back to the virtual space estimation unit 132, and the acquisition unit 131 acquires the real space measurement information again.
  • the virtual space estimation unit 132 can generate virtual space estimation information again using the updated communication parameters and real space measurement information.
  • the parameter determination unit 133 can determine communication parameters with higher accuracy.
  • the terminal device 400 is a movable device
  • real space measurement information measured by the terminal device 400 at different positions may be transmitted to the control station 100.
  • the control station 100 can generate virtual space estimation information based on real space measurement information measured at various positions. Thereby, the control station 100 can improve the overall estimation accuracy of the radio wave propagation simulation within the area, and can calculate the virtual space estimation information with higher accuracy.
  • FIG. 17 is a flowchart illustrating an example of the flow of the second process according to the third embodiment of the present disclosure. Note that among the second processing shown in FIG. 17, the same processing as the first processing shown in FIG. 16 is given the same reference numeral, and the description thereof will be omitted.
  • step S501 determines in step S501 to perform repeated processing (step S501; Yes)
  • step S502 feeds back the communication parameters (step S502), and returns to step S301.
  • control station 100 feeds back the communication parameters after repeated determination, returns to step S301, and acquires real space measurement information again.
  • the virtual space estimation unit 132 can generate virtual space estimation information based on the updated communication parameters and real space measurement information. Furthermore, the parameter determination unit 133 can determine communication parameters based on the updated virtual space estimation information and real space measurement information.
  • the control station 100 can determine communication parameters based on real space measurement information measured by the terminal device 400 at the same location, for example. . Thereby, the control station 100 can determine communication parameters in consideration of long-term fluctuations in measurement information in real space.
  • control station 100 can determine the communication parameters based on real space measurement information measured by the same terminal device 400 at different locations, for example. Thereby, the control station 100 can determine communication parameters based on measurement information measured at various locations in real space, and can improve overall estimation accuracy within the area.
  • the third process is a process that repeats the process of the acquisition unit 131, the process of the virtual space estimation unit 132, the process of the parameter determination unit 133, and the process of the notification unit 134 in the determination process. Note that the third process can be executed not only by the control station 100 shown in FIG. 15 but also by the control station 100 shown in FIG. 4 or FIG. 12.
  • real space measurement information may change due to wireless communication being performed between the base station 300 and the terminal device 400 based on communication parameters determined by the control station 100.
  • the control station 100 obtains real space measurement information again after notifying control information according to the communication parameters, and determines communication parameters using the obtained real space measurement information.
  • the parameter determination unit 133 can determine communication parameters using the updated real space measurement information, and can determine communication parameters with higher accuracy.
  • FIG. 18 is a flowchart illustrating an example of the flow of the third process according to the third embodiment of the present disclosure. Note that among the third processing shown in FIG. 18, the same processing as the determination processing shown in FIG. 13 is given the same reference numeral, and a description thereof will be omitted.
  • the notification unit 134 determines whether to repeatedly determine communication parameters (step S601).
  • the notification unit 134 repeatedly performs the determination in the same manner as in step S501 of FIG. 17, for example.
  • step S601 If it is determined to repeatedly determine the communication parameters (step S601; Yes), the control station 100 returns to step S301. Thereby, the acquisition unit 131 acquires the real space measurement information measured by the base station 300 and/or the terminal device 400 after the update, that is, by applying new control information.
  • step S601 if it is determined not to repeatedly determine communication parameters (step S601; No), the control station 100 ends the third process.
  • the parameter determining unit 133 does not feedback the communication parameters during the repetitive processing, but the parameter determining unit 133 may feedback the communication parameters. In this case, the parameter determination unit 133 feeds back the communication parameters to the virtual space estimation unit 132 after it is determined that the iterative process is to be performed.
  • control station 100 repeatedly executes at least part of the determination process. Thereby, the control station 100 can determine communication parameters with higher accuracy.
  • control station 100 may re-learn the AI model in the iterative process.
  • the AI model is retrained using, for example, at least one of virtual space estimation information generated again according to the determined communication parameters, communication parameters determined again, and real space measurement information acquired again. be done.
  • the accuracy of the AI model that determines communication parameters can be further improved.
  • the determination of communication parameters is executed by the control station 100.
  • the control station 100 may determine the communication parameters according to an instruction from a user who owns the terminal device 400, for example.
  • the control station 100 can estimate communication conditions (for example, received power, interference power, etc.) according to instructions from a user.
  • the user first applies to the control station 100 to perform estimation by transmitting to the control station 100 information used (or useful) for estimation at the control station 100.
  • the user can transmit this information using the terminal device 400 that he/she owns.
  • FIG. 19 is a diagram illustrating an example of a user interface of the terminal device 400 according to the first application example of the present disclosure.
  • the terminal device 400 transmits information regarding at least one of the surrounding image of the point to be estimated, a questionnaire regarding the communication environment, the estimated point, and a map, as information used for estimation by the control station 100. .
  • the information regarding the surrounding images of the estimated point may be a still image or a moving image.
  • the terminal device 400 may transmit a peripheral image photographed in advance to the control station 100.
  • the user may take a peripheral image (photograph) using a camera (not shown) installed in the terminal device 400. good.
  • the terminal device 400 transmits surrounding images photographed by the user to the control station 100.
  • Questionnaire information regarding the communication environment is, for example, information generated based on information input by the user.
  • the terminal device 400 When the user answers the questionnaire displayed on the display device, the terminal device 400 generates questionnaire information.
  • the questionnaire to which the user responds may be of a selection format where the user selects an answer with Yes or No, or may be of a descriptive format where the user answers in free description.
  • Examples of the questionnaire include questions regarding whether the base station 300 is visible, questions regarding the surrounding environment, and questions regarding the assumed maximum transmission power of the base station 300.
  • Questions about the surrounding environment may include, for example, questions about whether the point to be estimated is outdoors or indoors, and if it is outdoors, whether it is in a depopulated area, a suburb, or an urban area.
  • the questions regarding the surrounding environment may include, for example, a question about whether the environment is indoors, whether it is a residence or an office.
  • the information regarding the estimated point includes information regarding the point at which the control station 100 estimates received power, interference power, and the like.
  • This estimated point may be the current location of the terminal device 400, or may be a location different from the current location (for example, the planned installation location of the terminal device 400).
  • the terminal device 400 can transmit absolute position information such as latitude, longitude, and altitude to the control station 100 as information regarding the estimated location.
  • the terminal device 400 may transmit relative position information such as a relative positional relationship with the base station 300 as information regarding the estimated point.
  • the terminal device 400 may transmit the location where the surrounding image was taken to the control station 100 as the estimated location. For example, when a camera installed in the terminal device 400 photographs surrounding images including information regarding the photographing location, the terminal device 400 transmits the information regarding the photographing location to the control station 100 as information regarding the estimated point.
  • the terminal device 400 may include information regarding the estimated location in the information regarding the map.
  • the information regarding the map includes, for example, information regarding the map around the estimated point.
  • the terminal device 400 can transmit map information indicating the installation location of the base station 300 to the control station 100.
  • the terminal device 400 may include information regarding its own position or estimated point in the map information and transmit it to the control station 100.
  • the control station 100 executes the above-described determination process based on the information obtained from the terminal device 400, and estimates virtual space estimation information and/or communication parameters. Control station 100 notifies terminal device 400 of the estimation result. Based on the notification, the terminal device 400 presents the estimation result to the user by displaying it on a display device.
  • Second application example> As a second application example, a case will be described in which a user who owns a terminal device 400 asks the control station 100 to estimate the coverage (communication possible) based on real space when the base station 300 is installed at a predetermined location. .
  • the user first applies to the control station 100 to perform estimation by transmitting to the control station 100 information used (or useful) for estimation at the control station 100.
  • the user can transmit this information using the terminal device 400 that he/she owns.
  • the terminal device 400 transmits at least one of information regarding the maximum transmission power assumed by the base station 300 and map information as information used for estimation by the control station 100.
  • the map information includes, for example, information regarding the location of the base station 300 (corresponding to the above-mentioned predetermined location).
  • the position of the base station 300 is a position at which the control station 100 estimates coverage based on real space. This location may be the current location of the terminal device 400, or may be a location specified by the user.
  • the control station 100 executes the above-described determination process based on the information obtained from the terminal device 400, and estimates virtual space estimation information and/or communication parameters. In other words, the control station 100 estimates an area where the interference power is equal to or greater than a predetermined value. Thereby, the control station 100 estimates the coverage of the base station 300 when the base station 300 is placed at a predetermined position.
  • the control station 100 notifies the terminal device 400 of information regarding the estimated coverage as the estimation result.
  • the terminal device 400 presents the acquired estimation results to the user by displaying them on a display device.
  • FIG. 20 is a diagram illustrating an example of a user interface of the terminal device 400 according to the second application example of the present disclosure.
  • FIG. 20 shows a case where the terminal device 400 presents the estimation result obtained from the control station 100 to the user.
  • the terminal device 400 displays information indicating the coverage estimated by the control station 100 together with the base station 300 on the map information on a display device.
  • the terminal device 400 may present to the user the assumed maximum transmission power ("estimated transmission power" in the figure) used in coverage estimation. Furthermore, the terminal device 400 may accept a change in this estimated transmission power from the user.
  • the user can freely change the number indicating the expected transmission power.
  • the terminal device 400 requests the control station 100 to re-estimate the coverage using the estimated transmission power input by the user.
  • the terminal device 400 presenting the estimated coverage of the base station 300 to the user together with the map information, the user can more easily recognize the estimated coverage of the base station 300.
  • the terminal device 400 and the base station 300 transmit various information (for example, real space measurement information, communication environment information, information used by the control station 100 for estimation, etc.) to the control station 100.
  • Conditions regarding information transmission by the terminal device 400 and the base station 300 can be individually set or defined. These conditions include, for example, the timing of transmitting information, the trigger conditions for transmitting, and the period.
  • the information may be transmitted at the timing when the terminal device 400 detects the object. That is, when the terminal device 400 detects an object as a trigger, the terminal device 400 transmits the detection information to the control station 100. In other words, the terminal device 400 does not need to transmit the detection information to the control station 100 while not detecting an object.
  • the terminal device 400 determines whether to transmit the quality information based on the difference from the previously transmitted quality information.
  • the terminal device 400 transmits the quality information to the control station 100.
  • the terminal device 400 does not need to transmit the quality information to the control station 100.
  • the terminal device 400 may transmit information indicating a difference from the previous quality information to the control station 100.
  • control device that controls the control station 100, base station 300, and terminal device 400 in the embodiment described above may be realized by a dedicated computer system or a general-purpose computer system.
  • a communication program for executing the above operations is stored and distributed in a computer-readable recording medium such as an optical disk, semiconductor memory, magnetic tape, or flexible disk. Then, for example, the program is installed on a computer and the control device is configured by executing the above-described processing.
  • the control device may be a device (for example, a personal computer) external to the control station 100, the base station 300, and the terminal device 400. Further, the control device may be a device inside the control station 100, the base station 300, and the terminal device 400 (for example, the control units 130, 340, 450).
  • the communication program may be stored in a disk device included in a server device on a network such as the Internet, so that it can be downloaded to a computer.
  • the above-mentioned functions may be realized through collaboration between an OS (Operating System) and application software.
  • the parts other than the OS may be stored on a medium and distributed, or the parts other than the OS may be stored in a server device so that they can be downloaded to a computer.
  • each component of each device shown in the drawings is functionally conceptual, and does not necessarily need to be physically configured as shown in the drawings.
  • the specific form of distributing and integrating each device is not limited to what is shown in the diagram, and all or part of the devices can be functionally or physically distributed or integrated in arbitrary units depending on various loads and usage conditions. Can be integrated and configured.
  • the present embodiment can be applied to any configuration constituting a device or system, such as a processor as a system LSI (Large Scale Integration), a module using multiple processors, a unit using multiple modules, etc. Furthermore, it can also be implemented as a set (that is, a partial configuration of the device) with additional functions.
  • a processor as a system LSI (Large Scale Integration)
  • a module using multiple processors a unit using multiple modules, etc.
  • it can also be implemented as a set (that is, a partial configuration of the device) with additional functions.
  • a system means a collection of multiple components (devices, modules (components), etc.), and it does not matter whether all the components are in the same housing or not. Therefore, multiple devices housed in separate casings and connected via a network, and one device with multiple modules housed in one casing are both systems. .
  • the present embodiment can take a cloud computing configuration in which one function is shared and jointly processed by a plurality of devices via a network.
  • control station 100 determines the transmission parameters of the base station 300 and/or the terminal device 400, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • Each of the embodiments described above is for the purpose of determining and designing the number of installed base stations 300 and/or terminal devices 400 (upper limit of installed number), installation location, and/or installation direction (horizontal direction, tilt angle, etc.). can be used.
  • the present technology can also have the following configuration.
  • (1) Using a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space, the base station and the terminal device Generate virtual space estimation information regarding wireless communication with the terminal device, a control unit that determines communication parameters of at least one of the base station and the terminal device based on the virtual space estimation information;
  • An information processing device comprising: (2) The information processing device according to (1), wherein the control unit determines the communication parameter based on measurement information of the wireless communication in the real space.
  • control unit regenerates the virtual space estimation information according to the determined communication parameters, and re-determines the communication parameters based on the regenerated virtual space estimation information.
  • the information processing device according to item 1.
  • the control unit generates the virtual space estimation information again according to the determined communication parameters and the reacquired measurement information of the wireless communication in the real space, and based on the regenerated virtual space estimation information.
  • the information processing device according to any one of (1) to (3), wherein communication parameters are determined again.
  • the control unit includes: Notifying at least one of the base station and the terminal device the determined communication parameters; acquiring measurement information in the real space of the wireless communication using the communication parameters; re-determining communication parameters based on the measurement information; The information processing device according to any one of (1) to (3).
  • the virtual space estimation information includes information indicating that a LOS (Line-Of-Sight) environment or an NLOS (Non Line-Of-Sight) environment exists between the base station and the terminal device.
  • the information processing device according to any one of (7) to (7).
  • the information processing device includes simulation information regarding a simulation result of radio wave propagation in the wireless communication.
  • the simulation information includes path estimation information regarding a result of estimating a radio wave path.
  • the information processing device includes information regarding the path of the radio wave estimated based on ray tracing.
  • the communication environment information includes information regarding any one of a structure in the real space, at least one of the base station and the terminal device, a sensing result in the real space, and the wireless communication. ) to (11).
  • control unit acquires the communication environment information from at least one of a storage unit and another device.
  • control unit determines the communication parameters using a learning model that receives at least one of the communication environment information and the virtual space estimation information as input and outputs the communication parameters;
  • the information processing device according to any one of the above.
  • learning model is learned using at least one of the communication environment information, the virtual space estimation information, the communication parameters, and the measurement information of the wireless communication in the real space. Processing equipment.
  • the learning model includes at least one of the virtual space estimation information generated again according to the determined communication parameters, communication parameters determined again, and measurement information of the wireless communication in the real space acquired again.
  • the communication parameters include information regarding the maximum transmission power of the base station, The information processing device according to any one of (1) to (16), wherein the control unit determines the maximum transmission power according to received power at a boundary of a communication area of the wireless communication.
  • the communication parameter is a parameter determined by the information processing device based on virtual space estimation information
  • the virtual space estimation information is a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space.
  • information generated by the information processing apparatus using the information processing apparatus which is information regarding wireless communication between the base station and the terminal device; Terminal device.
  • the control unit transmits the communication environment information including either a peripheral image at a predetermined position and map information including either the predetermined position or the base station to the information processing device; The terminal device described in .
  • control unit acquires the communication parameters used when performing the wireless communication at the predetermined position from the information processing device.
  • control unit displays information regarding coverage of the wireless communication on a display device based on the communication parameters.
  • the base station and the terminal device Using a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space, the base station and the terminal device Generating virtual space estimation information regarding wireless communication with a terminal device; determining communication parameters of at least one of the base station and the terminal device based on the virtual space estimation information; Information processing methods including (23) Obtaining communication parameters from the information processing device; communicating with a base station using the acquired communication parameters; including; The communication parameter is a parameter determined by the information processing device based on virtual space estimation information, The virtual space estimation information is a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space. information generated by the information processing apparatus using the information processing apparatus, which is information regarding wireless communication between the base station and the terminal device; Communication method.
  • Control station 110 310, 410 Communication unit 120, 320, 420 Storage unit 130, 340, 450 Control unit 131 Acquisition unit 132 Virtual space estimation unit 133 Parameter determination unit 134 Notification unit 300 Base station 330, 430 Network communication unit 400 Terminal Device 440 Input/output section

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An information processing device according to the present disclosure is provided with a control unit. The control unit generates virtual space estimation information relating to wireless communication between a base station and a terminal device using a virtual communication environment generated on the basis of positional information relating to the position in real space of the base station and/or the terminal device, and communication environment information relating to the communication environment of the real space. The control unit determines a communication parameter of the base station and/or the terminal device on the basis of the virtual space estimation information.

Description

情報処理装置、端末装置、情報処理方法および通信方法Information processing devices, terminal devices, information processing methods, and communication methods
 本開示は、情報処理装置、端末装置、情報処理方法および通信方法に関する。 The present disclosure relates to an information processing device, a terminal device, an information processing method, and a communication method.
 無線通信において、無線リソースや通信パラメータを適切に制御することで、より好適な通信を実現する技術が知られている。例えば、基地局と端末装置との間の伝搬路の状況に応じて適応的に通信パラメータを制御することで、好適な通信を実現することができる。 In wireless communication, there is a known technology that achieves more suitable communication by appropriately controlling wireless resources and communication parameters. For example, suitable communication can be achieved by adaptively controlling communication parameters depending on the state of the propagation path between the base station and the terminal device.
 例えば、基地局が既知の信号を送信し、端末装置がその既知の信号を受信することで、端末装置は、伝搬路の状況を推定することができる。さらに、端末装置が基地局に推定した伝搬路の状況をフィードバックすることで、基地局は、端末装置に対して好適な通信パラメータを設定することができる。 For example, the base station transmits a known signal, and the terminal device receives the known signal, so that the terminal device can estimate the state of the propagation path. Furthermore, by feeding back the state of the propagation path estimated by the terminal device to the base station, the base station can set suitable communication parameters for the terminal device.
 また、端末装置から伝搬路の状況に関するフィードバックがない場合、基地局は端末装置との距離に応じた統計的な伝搬モデル(例えば、パスロスモデル、干渉モデルなど)を用いることで、平均的な伝搬路の状況を認識することができる。 In addition, when there is no feedback from the terminal device regarding the propagation path status, the base station uses a statistical propagation model (e.g., path loss model, interference model, etc.) according to the distance from the terminal device to calculate the average propagation Able to recognize road conditions.
特開2021-108459号公報Japanese Patent Application Publication No. 2021-108459
 しかしながら、無線通信における電波伝搬は、例えば、送信点である基地局と受信点である端末装置との間の障害物の有無などによって大きく変化する。また、隣接セルや周辺基地局への干渉を考慮すると、基地局は、その干渉が最小限となるように通信パラメータを決定する。 However, radio wave propagation in wireless communication varies greatly depending on, for example, the presence or absence of obstacles between a base station, which is a transmission point, and a terminal device, which is a reception point. Furthermore, considering interference with neighboring cells and surrounding base stations, the base station determines communication parameters so that the interference is minimized.
 そのため、基地局が決定した通信パラメータで通信を行った場合、実際に基地局と端末装置とが無線通信を行う空間(以下、実空間とも記載する)に存在する障害物によっては、好適な無線通信が行えない恐れがある。例えば、基地局が、干渉が最小限となるように最小限の送信電力を決定した場合、基地局と端末装置との間に障害物が存在すると、この障害物によって、基地局が送信した信号が端末装置に届かない恐れがある。 Therefore, when communicating with the communication parameters determined by the base station, the suitable wireless Communication may not be possible. For example, if a base station determines the minimum transmission power to minimize interference, and an obstacle exists between the base station and the terminal device, this obstacle will cause the signal transmitted by the base station to may not reach the terminal device.
 そこで、障害物の有無といった実空間の電波伝搬環境に基づき、好適な無線通信制御を行うことが望まれる。 Therefore, it is desirable to perform suitable wireless communication control based on the radio wave propagation environment in real space, such as the presence or absence of obstacles.
 そこで、本開示では、実空間の電波伝搬環境に基づき、より好適な無線通信制御を行うことができる仕組みを提供する。 Therefore, the present disclosure provides a mechanism that can perform more suitable wireless communication control based on the radio wave propagation environment in real space.
 なお、上記課題または目的は、本明細書に開示される複数の実施形態が解決し得、または達成し得る複数の課題または目的の1つに過ぎない。 Note that the above-mentioned problem or object is only one of the plurality of problems or objects that can be solved or achieved by the plurality of embodiments disclosed in this specification.
 本開示の情報処理装置は制御部を備える。制御部は、基地局および端末装置の少なくとも一方の実空間における位置に関する位置情報と、前記実空間の通信環境に関する通信環境情報と、に基づいて生成された仮想的な通信環境を用いて、前記基地局および前記端末装置との間の無線通信に関する仮想空間推定情報を生成する。制御部は、前記仮想空間推定情報に基づき、前記基地局および前記端末装置の少なくとも一方の通信パラメータを決定する。 The information processing device of the present disclosure includes a control unit. The control unit uses a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space, to Virtual space estimation information regarding wireless communication between a base station and the terminal device is generated. The control unit determines communication parameters for at least one of the base station and the terminal device based on the virtual space estimation information.
本開示の提案技術に係る電波伝搬の一例を示す図である。FIG. 2 is a diagram illustrating an example of radio wave propagation according to the proposed technology of the present disclosure. 本開示の第1実施形態に係る無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system according to a first embodiment of the present disclosure. 本開示の第1実施形態に係る無線通信システムの他の構成例を示す図である。FIG. 3 is a diagram illustrating another configuration example of the wireless communication system according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る制御局の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a control station according to a first embodiment of the present disclosure. 本開示の第1実施形態に係る基地局の構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a base station according to a first embodiment of the present disclosure. 本開示の実施形態に係る端末装置の構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a terminal device according to an embodiment of the present disclosure. 本開示の第1実施形態に係る決定処理の流れの一例を示すフローチャートである。It is a flow chart which shows an example of the flow of decision processing concerning a 1st embodiment of this indication. 本開示の第1実施形態に係る仮想的な通信環境の一例を示す図である。FIG. 1 is a diagram illustrating an example of a virtual communication environment according to a first embodiment of the present disclosure. 本開示の第1実施形態に係るパラメータ制御処理の流れの一例を示すシーケンス図である。FIG. 2 is a sequence diagram illustrating an example of the flow of parameter control processing according to the first embodiment of the present disclosure. 通信パラメータの一例を説明するための図である。FIG. 3 is a diagram for explaining an example of communication parameters. 通信パラメータの一例を説明するための図である。FIG. 3 is a diagram for explaining an example of communication parameters. 本開示の第2実施形態に係る制御局の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a control station according to a second embodiment of the present disclosure. 本開示の第2実施形態に係る決定処理の流れの一例を示すフローチャートである。It is a flow chart which shows an example of the flow of decision processing concerning a 2nd embodiment of this indication. 本開示の第2実施形態に係るパラメータ制御処理の流れの一例を示すシーケンス図である。FIG. 7 is a sequence diagram illustrating an example of the flow of parameter control processing according to a second embodiment of the present disclosure. 本開示の第3実施形態に係る制御局の構成例を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration example of a control station according to a third embodiment of the present disclosure. 本開示の第3実施形態に係る第1の処理の流れの一例を示すフローチャートである。It is a flow chart which shows an example of the flow of the 1st processing concerning a 3rd embodiment of this indication. 本開示の第3実施形態に係る第2の処理の流れの一例を示すフローチャートである。12 is a flowchart illustrating an example of a second process flow according to a third embodiment of the present disclosure. 本開示の第3実施形態に係る第3の処理の流れの一例を示すフローチャートである。It is a flow chart which shows an example of the flow of the 3rd processing concerning a 3rd embodiment of this indication. 本開示の第1応用例に係る端末装置のユーザインタフェースの一例を示す図である。FIG. 2 is a diagram illustrating an example of a user interface of a terminal device according to a first application example of the present disclosure. 本開示の第2応用例に係る端末装置のユーザインタフェースの一例を示す図である。FIG. 7 is a diagram illustrating an example of a user interface of a terminal device according to a second application example of the present disclosure.
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configurations are designated by the same reference numerals and redundant explanation will be omitted.
 また、本明細書および図面において、実施形態の類似する構成要素については、同一の符号の後に異なるアルファベットまたは数字を付して区別する場合がある。ただし、類似する構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。 Furthermore, in this specification and the drawings, similar components of the embodiments may be distinguished by using different alphabets or numbers after the same reference numerals. However, if there is no particular need to distinguish between similar components, only the same reference numerals are given.
 以下に説明される1または複数の実施形態(実施例、変形例、適用例を含む)は、各々が独立に実施されることが可能である。一方で、以下に説明される複数の実施形態は少なくとも一部が他の実施形態の少なくとも一部と適宜組み合わせて実施されてもよい。これら複数の実施形態は、互いに異なる新規な特徴を含み得る。したがって、これら複数の実施形態は、互いに異なる目的または課題を解決することに寄与し得、互いに異なる効果を奏し得る。 One or more embodiments (including examples, modifications, and application examples) described below can each be implemented independently. On the other hand, at least a portion of the plurality of embodiments described below may be implemented in combination with at least a portion of other embodiments as appropriate. These multiple embodiments may include novel features that are different from each other. Therefore, these multiple embodiments may contribute to solving mutually different purposes or problems, and may produce mutually different effects.
<<1.はじめに>>
<1.1.背景>
 上述したように、無線通信において、基地局と端末装置との間の伝搬路の状況に応じて、通信パラメータが適応的に制御されることにより、好適な通信が実現される。例えば、端末装置は、基地局から送信される既知信号を用いて、基地局との間の伝搬路の状況を推定する。基地局は、端末装置からフィードバックされる伝搬路の状況に基づき、その端末装置に対して適切な通信パラメータを設定する。
<<1. Introduction >>
<1.1. Background>
As described above, in wireless communication, communication parameters are adaptively controlled depending on the condition of the propagation path between the base station and the terminal device, thereby realizing suitable communication. For example, a terminal device estimates the status of a propagation path between the terminal device and the base station using a known signal transmitted from the base station. The base station sets appropriate communication parameters for the terminal device based on the propagation path conditions fed back from the terminal device.
 また、端末装置から伝搬路の状況に関するフィードバックがない場合、基地局は、端末装置との距離に応じた統計的な伝搬モデル(例えば、パスロスモデルや干渉モデル)を用いて平均的な伝搬路の状況を認識する。基地局は、伝搬路の状況に関するフィードバックがない場合でも、平均的な伝搬路の状況に基づき、端末装置に対して通信パラメータを設定する。 Additionally, if there is no feedback from the terminal device regarding the state of the propagation path, the base station uses a statistical propagation model (for example, a path loss model or an interference model) depending on the distance from the terminal device to determine the average propagation path condition. Be aware of the situation. The base station sets communication parameters for the terminal device based on the average propagation path condition even if there is no feedback regarding the propagation path condition.
<1.2.課題>
 しかしながら、無線通信における電波伝搬は、基地局300(送信点)と端末装置(受信点)との間の障害物の有無などによって大きく変わることになる。かかる点について図1を用いて説明する。
<1.2. Challenge>
However, radio wave propagation in wireless communication varies greatly depending on the presence or absence of obstacles between the base station 300 (transmission point) and the terminal device (reception point). This point will be explained using FIG. 1.
 図1は、本開示の提案技術に係る電波伝搬の一例を示す図である。図1(a)は、障害物600がない場合の電波伝搬の一例を示す図である。図1(b)は、障害物600がある場合の電波伝搬の一例を示す図である。図1(c)は、本開示の提案技術に係る障害物600がある場合の電波伝搬の一例を示す図である。 FIG. 1 is a diagram illustrating an example of radio wave propagation according to the proposed technology of the present disclosure. FIG. 1A is a diagram showing an example of radio wave propagation when there is no obstacle 600. FIG. 1(b) is a diagram showing an example of radio wave propagation when there is an obstacle 600. FIG. 1C is a diagram illustrating an example of radio wave propagation when there is an obstacle 600 according to the proposed technology of the present disclosure.
 例えば、基地局300が送信電力Ptxで信号を送信したとする。障害物600がないと(図1(a)参照)、障害物600がある場合(図1(b)参照)と比較してより遠くまで電波が届く。 For example, assume that base station 300 transmits a signal with transmission power P tx . When there is no obstacle 600 (see FIG. 1(a)), the radio waves can reach farther than when there is an obstacle 600 (see FIG. 1(b)).
 上述した統計的な伝搬モデルを使用して通信パラメータを決定する場合、隣接セルや周辺基地局への干渉を考慮すると、基地局はこの干渉が最小限となるように通信パラメータを決定することになる。これは、統計的な伝搬モデルが実際の伝搬路の状況と異なるためである。 When determining communication parameters using the statistical propagation model described above, the base station determines communication parameters so that this interference is minimized, taking into account interference with neighboring cells and surrounding base stations. Become. This is because the statistical propagation model differs from the actual propagation path situation.
 このように、干渉が最小限となるように通信パラメータが決定されると、無線リソースの利用効率が制限されることになる。 In this way, if communication parameters are determined so that interference is minimized, the efficiency of use of radio resources will be limited.
 また、端末装置が伝搬路の状況を推定し、フィードバックを行う場合、基地局300は、実際の伝送路の状況に応じたより正確な通信パラメータを決定することができる。しかしながら、基地局300は、フィードバックを行った端末装置の位置での伝搬路の状況しか把握することができない。 Furthermore, when the terminal device estimates the propagation path situation and provides feedback, the base station 300 can determine more accurate communication parameters according to the actual transmission path situation. However, the base station 300 can only grasp the state of the propagation path at the position of the terminal device that has provided the feedback.
 そのため、端末装置が移動する場合、移動先の伝搬路状況をより正確に把握することができない。また、端末装置が存在しない場所の伝搬路状況をより正確に把握することができない。 Therefore, when the terminal device moves, it is not possible to more accurately grasp the propagation path situation at the destination. Furthermore, it is not possible to more accurately grasp the propagation path situation in a place where a terminal device is not present.
 また、多数の端末装置がそれぞれ伝搬路状況をフィードバックする場合、そのフィードバックするための通信リソースがオーバヘッドになり、通信システム全体の無線リソース利用効率を低減させる要因となる。 Further, when a large number of terminal devices each feed back the propagation path status, the communication resources for feeding back become overhead, which becomes a factor that reduces the radio resource usage efficiency of the entire communication system.
 このように、従来の無線通信では、統計的な伝搬モデルを用いる場合、基地局300は、実空間の電波伝搬環境に基づいた無線通信制御を行うことが難しかった。また、端末装置が推定した伝搬路状況を用いる場合、基地局は、端末装置が存在する位置での伝搬路状況に応じた無線通信制御を行えるが、無線通信が行われる実空間全体の電波伝搬環境を把握することが難しかった。 As described above, in conventional wireless communication, when using a statistical propagation model, it was difficult for the base station 300 to perform wireless communication control based on the radio wave propagation environment in real space. Furthermore, when using the propagation path conditions estimated by the terminal device, the base station can control wireless communication according to the propagation path conditions at the location where the terminal device exists, but the radio wave propagation throughout the real space where wireless communication is performed It was difficult to grasp the environment.
 より好適な無線通信を行うためには、実空間の電波伝搬環境に基づいた無線通信制御が行われることが望まれる。 In order to perform more suitable wireless communication, it is desirable to perform wireless communication control based on the radio wave propagation environment in real space.
<1.3.提案技術の概要>
 そこで、本開示の提案技術に係る情報処理装置(図示省略)は、端末装置と基地局300との間の無線通信を制御する。情報処理装置は、制御部を備える。制御部は、仮想的な通信環境を用いて基地局300および端末装置との間の無線通信に関する仮想空間推定情報を生成する。仮想的な通信環境は、基地局300および端末装置の少なくとも一方の実空間における位置に関する位置情報と、実空間の通信環境に関する環境情報と、に基づいて生成される。制御部は、仮想空間推定情報に基づき、基地局300および端末装置の少なくとも一方の通信パラメータを決定する。
<1.3. Overview of proposed technology>
Therefore, the information processing device (not shown) according to the proposed technology of the present disclosure controls wireless communication between the terminal device and the base station 300. The information processing device includes a control section. The control unit generates virtual space estimation information regarding wireless communication between the base station 300 and the terminal device using a virtual communication environment. The virtual communication environment is generated based on position information regarding the position of at least one of the base station 300 and the terminal device in real space, and environment information regarding the communication environment in real space. The control unit determines communication parameters for at least one of the base station 300 and the terminal device based on the virtual space estimation information.
 基地局300および端末装置の少なくとも一方が、情報処理装置が決定した通信パラメータを用いて無線通信を行うことで、通信システムは、実空間の電波伝搬環境に基づいた無線通信制御を行うことができる。 At least one of the base station 300 and the terminal device performs wireless communication using communication parameters determined by the information processing device, so that the communication system can perform wireless communication control based on the radio wave propagation environment in real space. .
 例えば、情報処理装置が、図1(c)に示すように障害物600が存在する通信環境を仮想的に生成し、この仮想的な通信環境を用いて生成した仮想空間推定情報に基づき、基地局300の通信パラメータを決定したとする。ここでは、情報処理装置が、通信パラメータとして基地局300の送信電力をPtyに決定したとする。 For example, the information processing device virtually generates a communication environment in which an obstacle 600 exists as shown in FIG. 1(c), and based on the virtual space estimation information generated using this virtual communication environment, Assume that the communication parameters of station 300 have been determined. Here, it is assumed that the information processing apparatus determines the transmission power of the base station 300 to be Pty as a communication parameter.
 上述したように、情報処理装置は、障害物600が存在する通信環境に応じて基地局300の送信電力Ptyを決定する。そのため、基地局300が送信した信号は、障害物600を考慮せずに決定した送信電力Ptxで信号を送信する場合(図1(b)参照)と比較して、より遠くまで到達することができる。 As described above, the information processing apparatus determines the transmission power P ty of the base station 300 according to the communication environment in which the obstacle 600 exists. Therefore, the signal transmitted by the base station 300 can reach a longer distance compared to the case where the signal is transmitted with the transmission power P tx determined without considering the obstacle 600 (see FIG. 1(b)). Can be done.
 このように、情報処理装置が、実空間の電波伝搬環境(図1では障害物600の有無)に基づいて無線通信制御を行うことで、基地局300はより好適な通信を行うことができる。 In this way, the information processing device performs wireless communication control based on the radio wave propagation environment in real space (the presence or absence of the obstacle 600 in FIG. 1), so that the base station 300 can perform more suitable communication.
 なお、ここでは、情報処理装置が通信パラメータを決定するとしたが、通信パラメータを決定する装置が基地局300であってもよい。すなわち、基地局300が上述した情報処理装置であってもよい。 Although it is assumed here that the information processing device determines the communication parameters, the base station 300 may be the device that determines the communication parameters. That is, base station 300 may be the information processing device described above.
<1.4.用語の定義>
 なお、本開示において使用する用語のいくつかについて、その定義を説明する。
<1.4. Definition of terms>
Note that the definitions of some of the terms used in this disclosure will be explained.
[通信環境情報]
 本開示において、「通信環境情報」は、静的または準静的な情報、および、動的な情報の少なくとも一方を含む。静的または準静的な情報は、固定的な情報または更新頻度が低い情報である。なお、静的または準静的な情報は、上位の通信レイヤー(例えば、アプリケーションレイヤー、RRC(Radio Resource Control)レイヤーなど)における情報とすることができる。動的な情報は、更新頻度が高い情報である。なお、動的な情報は、下位の通信レイヤー(例えば、物理レイヤーなど)における情報とすることができる。
[Communication environment information]
In the present disclosure, "communication environment information" includes at least one of static or semi-static information and dynamic information. Static or semi-static information is fixed information or information that is updated infrequently. Note that the static or semi-static information can be information in an upper communication layer (for example, an application layer, an RRC (Radio Resource Control) layer, etc.). Dynamic information is information that is updated frequently. Note that the dynamic information can be information in a lower communication layer (for example, a physical layer, etc.).
(静的または準静的な情報)
 通信環境情報は、静的または準静的な情報として、例えば、以下に挙げる情報を少なくとも1つ含む。
 ・地図情報
 ・構造物情報
 ・基地局300または端末装置に関する装置情報
 ・センシングデバイスを通じて取得されるセンシング情報
 ・無線通信に関する無線通信情報
(static or semi-static information)
The communication environment information includes, for example, at least one of the following information as static or semi-static information.
・Map information ・Structure information ・Device information regarding the base station 300 or terminal device ・Sensing information acquired through a sensing device ・Wireless communication information regarding wireless communication
(地図情報)
 ここでの地図情報は、構造物、基地局300、および、端末装置などの位置や大きさなどを認識可能な情報である。位置は、例えば、緯度や経度などの絶対位置情報であってもよく、エリア(例えば、後述するローカルネットワークの通信カバレッジ)内の相対的な位置情報であってもよい。
(Map information)
The map information here is information that allows the positions and sizes of structures, base stations 300, terminal devices, etc. to be recognized. The position may be, for example, absolute position information such as latitude and longitude, or may be relative position information within an area (for example, communication coverage of a local network described below).
 地図情報は、例えば、地形情報やオフィスレイアウト図、構内図などを含む。 The map information includes, for example, topographical information, office layout diagrams, campus maps, and the like.
(構造物情報)
 ここでの構造物情報は、電波伝搬に影響を及ぼすものを含む。電波伝搬に与える影響として、例えば、反射、回折、透過などが挙げられる。
(Structure information)
The structure information here includes information that affects radio wave propagation. Examples of influences on radio wave propagation include reflection, diffraction, and transmission.
 構造物は、例えば、建造物、壁面、植林、道路、看板、信号機、道路標識、柱、ビル、地面、ガラス、窓、机、キャビネットなどを含む。 Structures include, for example, buildings, walls, trees, roads, signboards, traffic lights, road signs, pillars, buildings, the ground, glass, windows, desks, cabinets, etc.
 構造物情報は、例えば、構造物の位置、形状、大きさ、材質、その構造物における電波伝搬に関連するパラメータ(誘電率や導電率など)などを含む。 The structure information includes, for example, the position, shape, size, and material of the structure, and parameters related to radio wave propagation in the structure (dielectric constant, conductivity, etc.).
 構造物情報は、例えば、上述した地図情報などに基づいて生成・構築される。また、これに加えて、構造物情報は、後述するセンシングデバイスなどから取得した情報に基づいて生成・構築されてもよい。 The structure information is generated and constructed based on, for example, the above-mentioned map information. Further, in addition to this, the structure information may be generated and constructed based on information acquired from a sensing device, etc., which will be described later.
(基地局300または端末装置に関する装置情報)
 ここでの基地局300または端末装置に関する装置情報は、例えば以下に列挙する情報を少なくとも1つ含む。
 ・アンテナに関するアンテナ情報
 ・無線通信でサポートされる機能や能力(ケイパビリティ)に関するケイパビリティ情報
 ・基地局300および/または端末装置の形状や重量に関する形状情報
 ・固定された基地局300および/または固定された端末装置の位置情報
(Device information regarding base station 300 or terminal device)
The device information regarding the base station 300 or the terminal device here includes, for example, at least one piece of information listed below.
・Antenna information regarding antennas ・Capability information regarding functions and capabilities supported by wireless communication ・Shape information regarding the shape and weight of base station 300 and/or terminal device ・Fixed base station 300 and/or fixed base station 300 Location information of terminal device
 ここでのアンテナに関するアンテナ情報は、例えば、基地局300および/または端末装置のアンテナ構成、ビームパターン、アンテナエレメント数、アンテナエレメントの構成に関する情報を少なくとも1つ含む。 The antenna information regarding the antenna here includes, for example, at least one piece of information regarding the antenna configuration, beam pattern, number of antenna elements, and configuration of the antenna elements of the base station 300 and/or the terminal device.
(センシングデバイスを通じて取得されるセンシング情報)
 ここでのセンシングデバイスを通じて取得されるセンシング情報は、センシングデバイスを通じて検出される物体に関する物体情報、および/または、検出した物体による無線通信に対する変動および/または影響に関する影響情報を含む。
(Sensing information obtained through sensing devices)
The sensing information acquired through the sensing device here includes object information regarding the object detected through the sensing device and/or influence information regarding fluctuations and/or effects on wireless communication due to the detected object.
 ここで、センシングデバイスは、カメラやセンサーなどを含む。センサーは、光電センサー、ファイバセンサー、レーザーセンサー、カラーセンサー、近接センサー、過電流式変位センサー、接触式変位センサー、超音波センサー、画像判別センサー、圧力センサー、振動センサー、慣性計測センサーなどを含む。 Here, the sensing device includes cameras, sensors, and the like. Sensors include photoelectric sensors, fiber sensors, laser sensors, color sensors, proximity sensors, overcurrent displacement sensors, contact displacement sensors, ultrasonic sensors, image discrimination sensors, pressure sensors, vibration sensors, inertial measurement sensors, etc.
 センシングデバイスを通じて取得されるセンシング情報から3次元の空間情報(例えば、上述した構造物情報)が生成される。例えば、センシング情報が、カメラによりリアルタイムに取得される画像や映像である場合、3次元の空間情報は、例えばフォトグラメトリー(Photogrammetry)技術やボリュメトリックキャプチャ(Volumetric Capture)技術を用いてリアルタイムに生成される。 Three-dimensional spatial information (for example, the above-mentioned structure information) is generated from sensing information obtained through the sensing device. For example, when sensing information is an image or video acquired in real time by a camera, three-dimensional spatial information is generated in real time using, for example, photogrammetry technology or volumetric capture technology. be done.
 センシングデバイスが検出する物体は、当該センシングデバイス、当該センシングデバイスとは異なる装置、センシングデバイスが取得した情報を送信する端末装置など様々な装置を含む。また、センシングデバイスが検出する物体は、上述した構造物や、構造物以外の物体を含む。 Objects detected by a sensing device include various devices such as the sensing device, a device different from the sensing device, and a terminal device that transmits information acquired by the sensing device. Further, objects detected by the sensing device include the above-mentioned structures and objects other than structures.
 センシングデバイスが取得したセンシング情報を送信する端末装置は、当該センシングデバイスを搭載していてもよく、搭載していなくてもよい。この端末装置とセンシングデバイスとがそれぞれ別の装置である場合、端末装置は、例えば、有線または無線通信により、センシングデバイスからセンシング情報を取得することが好ましい。 The terminal device that transmits the sensing information acquired by the sensing device may or may not be equipped with the sensing device. When the terminal device and the sensing device are separate devices, it is preferable that the terminal device acquires sensing information from the sensing device, for example, by wired or wireless communication.
 なお、センシングにより取得されるセンシング情報(センシングデバイスを通じて取得されるセンシング情報)は、物体の検出情報に加え、様々なセンシング情報を含みうる。例えば、センシングにより取得されるセンシング情報は、基地局300および/または端末装置から送出されるビームに関するビーム情報(例えば、ビームパターンやビームの角度などに関する情報)を含む。 Note that sensing information acquired through sensing (sensing information acquired through a sensing device) may include various sensing information in addition to object detection information. For example, the sensing information acquired through sensing includes beam information regarding beams transmitted from the base station 300 and/or the terminal device (for example, information regarding beam patterns, beam angles, etc.).
(無線通信に関する無線通信情報)
 ここでの無線通信に関する無線通信情報は、例えば以下に列挙する情報を少なくとも1つ含む。
 ・RATや周波数に関する通信情報
 ・通信環境シナリオに関するシナリオ情報
 ・ローカルネットワークで利用可能な無線通信に関する条件や制約に関する制約情報
(Wireless communication information regarding wireless communication)
The wireless communication information regarding wireless communication here includes, for example, at least one of the information listed below.
・Communication information regarding RAT and frequencies ・Scenario information regarding communication environment scenarios ・Restriction information regarding conditions and restrictions regarding wireless communications that can be used in the local network
 RATに関する通信情報は、例えば、LTE、NR、無線LAN、Bluetooth(登録商標)などに関する情報を含む。周波数に関する通信情報は、周波数バンド、中心周波数、および、周波数帯域幅の少なくとも1つに関する情報を含む。 The communication information regarding the RAT includes, for example, information regarding LTE, NR, wireless LAN, Bluetooth (registered trademark), and the like. The communication information regarding frequency includes information regarding at least one of a frequency band, a center frequency, and a frequency bandwidth.
 通信環境シナリオに関するシナリオ情報は、例えば、都市部(アーバンエリア)、郊外(サブアーバンエリア)、過疎地(ルーラルエリア)、屋内オフィス、屋内ファクトリーなどに関する情報を含む。 Scenario information regarding communication environment scenarios includes, for example, information regarding urban areas (urban areas), suburbs (sub-urban areas), depopulated areas (rural areas), indoor offices, indoor factories, etc.
 シナリオ情報は、さらに、通信環境シナリオに対応する電波伝搬モデル(例えばパスロスモデル)に関する情報を含みうる。なお、電波伝搬モデルは、LOS(Line Of Sight)環境およびNLOS(Non Line Of Sight)環境それぞれに対応してもよい。 The scenario information may further include information regarding a radio wave propagation model (for example, a path loss model) corresponding to the communication environment scenario. Note that the radio wave propagation model may correspond to a LOS (Line Of Sight) environment and an NLOS (Non Line Of Sight) environment.
 ここでの制約情報は、ローカルネットワークで許可された無線通信に関する条件や制約に関する情報を含む。 The restriction information here includes information regarding conditions and restrictions regarding wireless communication permitted in the local network.
 この条件や制約は、例えば、利用可能なRATに関する情報、無線通信可能なエリア(地理情報(2次元の平面情報および/または3次元の高さを含めた空間情報など))、エリア外の干渉電力量の上限、送信可能な最大送信電力、送信可能な周波数情報、送信可能な時間情報、基地局300の設置場所などを含みうる。 These conditions and constraints include, for example, information on available RATs, areas where wireless communication is possible (geographical information (spatial information including two-dimensional planar information and/or three-dimensional height, etc.)), interference outside the area. The information may include the upper limit of power amount, maximum transmittable power, transmittable frequency information, transmittable time information, installation location of base station 300, and the like.
 この条件や制約は、例えば、予め設定、規定される。また、この条件や制約は、所定のサーバーや記憶装置(例えば、SAS(Spectrum Access System)サーバーなど)から通知される情報に基づいて、決定および/または変更されうる。 These conditions and constraints are, for example, set and defined in advance. Further, these conditions and constraints can be determined and/or changed based on information notified from a predetermined server or storage device (for example, a SAS (Spectrum Access System) server, etc.).
(動的な情報)
 通信環境情報は、動的な情報として、例えば、以下に挙げる情報を少なくとも1つ含む。
 ・センシングデバイスを通じて取得されるセンシング情報
 ・無線通信に関する無線通信情報
(dynamic information)
The communication environment information includes, for example, at least one of the following information as dynamic information.
・Sensing information obtained through sensing devices ・Wireless communication information regarding wireless communication
(センシングデバイスを通じて取得されるセンシング情報)
 ここでのセンシングデバイスを通じて取得されるセンシング情報は、センシングデバイスを通じて検出される移動物体に関する移動物体情報、および/または、検出した移動物体による無線通信に対する変動および/または影響に関する影響情報を含む。
(Sensing information obtained through sensing devices)
The sensing information obtained through the sensing device here includes moving object information regarding the moving object detected through the sensing device and/or influence information regarding fluctuations and/or effects on wireless communication by the detected moving object.
 上述したセンシングデバイスは、構造物のような静止物体に加えて、人やロボットのような移動物体を検出しうる。センシングデバイスは、例えば、検出した移動物体に関する情報をセンシング情報として、端末装置を介して送信する。 The sensing device described above can detect moving objects such as people and robots in addition to stationary objects such as structures. For example, the sensing device transmits information regarding the detected moving object as sensing information via the terminal device.
 センシングデバイスは、移動物体を検出したタイミングおよび/または移動物体を検出しなくなったタイミングで、センシング情報を送信しうる。あるいは、センシングデバイスが一定周期でセンシング情報を送信してもよい。 The sensing device can transmit sensing information at the timing when it detects a moving object and/or at the timing when it stops detecting a moving object. Alternatively, the sensing device may transmit sensing information at regular intervals.
 なお、動的な情報として取得されるセンシング情報は、移動物体である点を除き、静的または準静的な情報として取得されるセンシング情報と同様の情報でありうる。 Note that the sensing information acquired as dynamic information may be the same information as the sensing information acquired as static or quasi-static information, except that it is a moving object.
(無線通信に関する無線通信情報)
 ここでの無線通信情報は、例えば、無線通信における通信品質に関する品質情報を含む。
(Wireless communication information regarding wireless communication)
The wireless communication information here includes, for example, quality information regarding communication quality in wireless communication.
 品質情報は、例えば、無線通信において端末装置が測定または推定した以下の情報を少なくとも1つ含む。
 ・受信電力
 ・干渉電力
 ・RSRP(Reference Signal Received Power)
 ・RSRQ(Reference Signal Received Quality)
 ・RSSI(Received Signal Strength Indicator)
 ・SNR(Signal-to-noise ratio)
 ・下りリンクスループット
 ・上りリンクスループット
 ・レイテンシー
 ・ジッター
 ・Ping値
The quality information includes, for example, at least one of the following pieces of information measured or estimated by a terminal device during wireless communication.
・Received power ・Interference power ・RSRP (Reference Signal Received Power)
・RSRQ (Reference Signal Received Quality)
・RSSI (Received Signal Strength Indicator)
・SNR (Signal-to-noise ratio)
・Downlink throughput ・Uplink throughput ・Latency ・Jitter ・Ping value
[仮想空間推定情報]
 本開示において、「仮想空間推定情報」は、例えば、基地局300および端末装置の少なくとも一方の電波伝搬に関する情報を含む。仮想空間推定情報は、例えば、以下に列挙する情報を少なくとも1つ含む。
 ・LOS/NLOS情報
 ・シミュレーション情報
 ・LOS/NLOS情報やシミュレーション情報などに基づいて算出される算出情報
[Virtual space estimation information]
In the present disclosure, "virtual space estimation information" includes, for example, information regarding radio wave propagation of at least one of the base station 300 and the terminal device. The virtual space estimation information includes, for example, at least one of the information listed below.
・LOS/NLOS information ・Simulation information ・Calculation information calculated based on LOS/NLOS information, simulation information, etc.
(LOS/NLOS情報)
 LOS/NLOS情報は、基地局300と端末装置との間がLOS環境であるかNLOS環境であるかを示す情報である。
(LOS/NLOS information)
The LOS/NLOS information is information indicating whether the environment between the base station 300 and the terminal device is a LOS environment or an NLOS environment.
 LOS環境は、見通し内環境とも呼称される。LOS環境は、基地局300と端末装置との間の直線上に構造物や人物などの障害物600がなく、基地局300および端末装置が、これらの間で直接波を送受しうる状況を示す。この場合、基地局300と端末装置との無線通信は、直接波に加えて、反射波や回折波などを通じて行われる。 The LOS environment is also referred to as the line-of-sight environment. The LOS environment indicates a situation where there are no obstacles 600 such as structures or people on a straight line between the base station 300 and the terminal device, and the base station 300 and the terminal device can directly transmit and receive waves between them. . In this case, wireless communication between the base station 300 and the terminal device is performed through reflected waves, diffracted waves, etc. in addition to direct waves.
 NLOS環境は、見通し外環境とも呼称される。NLOS環境は、基地局300と端末装置との間の直線上に構造物や人物などの障害物600があり、基地局300および端末装置が、これらの間で直接波を送受できない状況を示す。この場合、基地局300と端末装置との無線通信は、直接波以外の反射波や回折波などを通じて行われる。 The NLOS environment is also called a non-line-of-sight environment. The NLOS environment indicates a situation where there is an obstacle 600 such as a structure or a person on a straight line between the base station 300 and the terminal device, and the base station 300 and the terminal device cannot directly transmit or receive waves between them. In this case, wireless communication between the base station 300 and the terminal device is performed through reflected waves, diffracted waves, etc. other than direct waves.
(シミュレーション情報)
 シミュレーション情報は、基地局300と端末装置との間の無線通信における電波伝搬のシミュレーション結果に関する情報を含む。シミュレーション情報は、例えば、Ray tracingシミュレーションによって取得した1つ以上のパス(伝達波、到来波、レイ)に関するパス情報を含む。
(Simulation information)
The simulation information includes information regarding simulation results of radio wave propagation in wireless communication between the base station 300 and the terminal device. The simulation information includes, for example, path information regarding one or more paths (transmitted waves, arriving waves, rays) obtained by Ray tracing simulation.
 このパスは、基地局300と端末装置との間の直接波、反射波、回折波、透過波などを含む。一般的に、基地局300と端末装置との間には様々な構造物がある、そのため、送信点(例えば基地局300)から送信された信号(電波)は、様々な経路を通り、複数のパスとなって、受信点(例えば端末装置)に到達する。 This path includes direct waves, reflected waves, diffracted waves, transmitted waves, etc. between the base station 300 and the terminal device. In general, there are various structures between the base station 300 and the terminal device. Therefore, the signal (radio wave) transmitted from the transmission point (for example, the base station 300) passes through various routes and multiple structures. It becomes a path and reaches a receiving point (for example, a terminal device).
 パスに関するパス情報は、例えば、以下の情報を少なくとも1つ含みうる。
 ・受信点での受信電力
 ・送信点での送信電力
 ・パスロス
 ・伝搬距離
 ・反射回数
 ・回折回数
 ・透過回数
 ・位相変動
 ・送信点における発射角度
 ・受信点における到来角度
 ・パスの到来順位(複数パスのうち、時間的に何番目に到来したか)
 ・パスの数
The path information regarding the path may include, for example, at least one of the following information.
・Received power at the receiving point ・Transmitted power at the transmitting point ・Path loss ・Propagation distance ・Number of reflections ・Number of diffraction ・Number of transmissions ・Phase fluctuation ・Emission angle at the transmitting point ・Arrival angle at the receiving point ・Arrival order of paths (multiple Among the paths, what time did it arrive?)
・Number of passes
(算出情報)
 算出情報は、上述したLOS/NLOS情報やシミュレーション情報などに基づいて生成・算出される情報である。算出情報は、例えば以下の情報を少なくとも1つ含みうる。
 ・受信点におけるパスロス
 ・受信電力
 ・干渉電力
 ・RSRP
 ・RSRQ
 ・RSSI
 ・SNR
 ・下りリンクスループット
 ・上りリンクスループット
 ・レイテンシー
 ・ジッター
 ・Ping値
(calculation information)
The calculation information is information generated and calculated based on the above-mentioned LOS/NLOS information, simulation information, and the like. The calculation information may include, for example, at least one of the following information.
・Path loss at reception point ・Received power ・Interference power ・RSRP
・RSRQ
・RSSI
・SNR
・Downlink throughput ・Uplink throughput ・Latency ・Jitter ・Ping value
[通信パラメータ]
 本開示において、「通信パラメータ」は、動的に決定されるパラメータ、および、準静的に決定されるパラメータの少なくとも一方を含む。
[Communication parameters]
In the present disclosure, "communication parameters" include at least one of dynamically determined parameters and quasi-statically determined parameters.
 動的(Dynamic)に決定されるパラメータは、例えば以下のパラメータを少なくとも1つ含む。
 ・MCS(Modulation and Coding Scheme)に関する情報
 ・送信電力に関する情報
 ・ビーム制御に関する情報
 ・MIMO(Multiple Input Multiple Output)多重数に関する情報
The dynamically determined parameters include, for example, at least one of the following parameters.
・Information on MCS (Modulation and Coding Scheme) ・Information on transmission power ・Information on beam control ・Information on MIMO (Multiple Input Multiple Output) multiplexing number
 準静的(Semi-static)に決定されるパラメータは、例えば基地局300および/または端末装置が選択可能な(許可される)パラメータの範囲、最大値、最小値、平均値、中央値などを含む。準静的に決定されるパラメータは、例えば、基地局300および/または端末装置の最大送信電力を含む。 The semi-statically determined parameters include, for example, the range, maximum value, minimum value, average value, median value, etc. of parameters selectable (permitted) by the base station 300 and/or the terminal device. include. The semi-statically determined parameters include, for example, the maximum transmission power of the base station 300 and/or the terminal device.
[位置に関する情報]
 位置に関する情報は、基地局300および/または端末装置の位置情報である。位置に関する情報は、例えばGPS(Global Positioning System)やGNSS(Global Navigation Satellite System)などで取得される緯度、経度および/または標高など絶対的な位置情報を含む。
[Information regarding location]
The information regarding the location is location information of the base station 300 and/or the terminal device. Information regarding the position includes absolute position information such as latitude, longitude, and/or altitude obtained by, for example, GPS (Global Positioning System) or GNSS (Global Navigation Satellite System).
 あるいは、位置に関する情報は、ビーコンやUWB(Ultra-WideBand)などで取得される相対的な位置情報を含む。 Alternatively, the information regarding the location includes relative location information obtained by a beacon, UWB (Ultra-WideBand), or the like.
<<2.第1実施形態>>
<2.1.無線通信システムの構成例>
 図2は、本開示の第1実施形態に係る無線通信システムの構成例を示す図である。図2に示す無線通信システムは、制御局100と、コアネットワーク200A、200Bと、基地局300A、300A、300B、300Bと、端末装置400A、400A、400B、400Bと、を備える。
<<2. First embodiment >>
<2.1. Configuration example of wireless communication system>
FIG. 2 is a diagram illustrating a configuration example of a wireless communication system according to the first embodiment of the present disclosure. The wireless communication system shown in FIG. 2 includes a control station 100, core networks 200A, 200B, base stations 300A 1 , 300A 2 , 300B 1 , 300B 2 , and terminal devices 400A 1 , 400A 2 , 400B 1 , 400B 2 . , is provided.
 制御局100は、ネットワークN_Pを通じて、ローカルネットワークN_A内のコアネットワーク200Aに接続する。制御局100は、ネットワークN_Pを通じて、ローカルネットワークN_B内のコアネットワーク200Bに接続する。 The control station 100 connects to the core network 200A in the local network N_A through the network N_P. Control station 100 connects to core network 200B in local network N_B through network N_P.
 ネットワークN_Pは、例えば、LAN(Local Area Network)、WAN(Wide Area Network)、セルラーネットワーク、固定電話網、地域IP(Internet Protocol)網、インターネット等の通信ネットワークである。ネットワークN_Pには、有線ネットワークが含まれていてもよいし、無線ネットワークが含まれていてもよい。また、ネットワークN_Pは、コアネットワークに接続されるデータネットワークであってもよい。データネットワークは、通信事業者のサービスネットワーク、例えば、IMS(IP Multimedia Subsystem)ネットワークであってもよい。また、データネットワークは、企業内ネットワーク等、プライベートなネットワークであってもよい。なお、図2の例では、ネットワークN_Pが1つしか示されていないが、ネットワークN_Pは1つに限られない。 The network N_P is, for example, a communication network such as a LAN (Local Area Network), a WAN (Wide Area Network), a cellular network, a fixed telephone network, a local IP (Internet Protocol) network, or the Internet. The network N_P may include a wired network or a wireless network. Further, the network N_P may be a data network connected to the core network. The data network may be a carrier's service network, for example an IMS (IP Multimedia Subsystem) network. Further, the data network may be a private network such as an in-house network. Note that in the example of FIG. 2, only one network N_P is shown, but the number of networks N_P is not limited to one.
 また、図2の例では、2つのローカルネットワークN_A、N_Bが示されているが、ローカルネットワークの数は2つに限られない。ローカルネットワークは1つであっても3つ以上であってもよい。 Further, in the example of FIG. 2, two local networks N_A and N_B are shown, but the number of local networks is not limited to two. The number of local networks may be one or three or more.
 ローカルネットワークN_Aにおいて、コアネットワーク200Aは、基地局300A、300Aに接続する。コアネットワーク200Aが接続する基地局300Aの数は2つに限られない。基地局300Aの数は1つであっても3つ以上であってもよい。 In local network N_A, core network 200A connects to base stations 300A 1 and 300A 2 . The number of base stations 300A to which core network 200A connects is not limited to two. The number of base stations 300A may be one or three or more.
 基地局300Aは、端末装置400Aと無線通信により接続する。基地局300Aは、端末装置400Aと無線通信により接続する。基地局300Aに接続する端末装置400Aの数は1つに限定されず、2つ以上であってもよい。また、基地局300Aに接続する端末装置400Aの数と、基地局300Aに接続する端末装置400Aの数と、が異なっていてもよい。 The base station 300A 1 connects to the terminal device 400A 1 by wireless communication. The base station 300A 2 connects to the terminal device 400A 2 by wireless communication. The number of terminal devices 400A connected to the base station 300A is not limited to one, and may be two or more. Further, the number of terminal devices 400A 1 connected to the base station 300A 1 may be different from the number of terminal devices 400A 2 connected to the base station 300A 2 .
 なお、ローカルネットワークN_Bの構成は、ローカルネットワークN_Aと同様であるため、説明を省略する。 Note that the configuration of local network N_B is similar to local network N_A, so the explanation will be omitted.
 例えば、制御局100は、動的スペクトラムアクセス(DSA:Dynamic Spectrum Access)のシステムを制御する情報処理装置である。制御局100は、DSAに接続するローカルネットワークN_A、N_B、コアネットワーク200A、200B、および、基地局300A、300Bの少なくとも1つごとに、無線リソースや通信パラメータを制御しうる。ここで、無線リソースは、無線通信に用いられる時間、周波数、MIMOレイヤー、および、空間領域の少なくとも1つにおけるリソースを意味する。 For example, the control station 100 is an information processing device that controls a dynamic spectrum access (DSA) system. The control station 100 can control radio resources and communication parameters for at least one of the local networks N_A, N_B, core networks 200A, 200B, and base stations 300A, 300B connected to the DSA. Here, the radio resource means a resource in at least one of the time, frequency, MIMO layer, and spatial domain used for radio communication.
 なお、コアネットワーク200A、200Bは、設置されなくてもよい。この場合、制御局100は、基地局300A、300Bと直接接続する。 Note that the core networks 200A and 200B do not need to be installed. In this case, control station 100 directly connects to base stations 300A and 300B.
 コアネットワーク200は、制御局100および基地局300の一方の中に配置されてもよい。制御局100および基地局300の両方の中に分散して配置されてもよい。 The core network 200 may be placed in one of the control station 100 and the base station 300. It may be distributed and arranged in both the control station 100 and the base station 300.
 ローカルネットワークN_A、N_Bは、プライベートネットワークとも呼称され、例えば、所定のエリアや敷地内を通信カバレッジ(通信区域の一例)とするネットワークである。ローカルネットワークN_A、N_Bでは、予め登録された端末装置400のみが基地局300、制御局100、および、コアネットワーク200の少なくとも1つに接続しうる。 The local networks N_A and N_B are also called private networks, and are networks whose communication coverage (an example of a communication area) is, for example, a predetermined area or premises. In the local networks N_A and N_B, only the terminal device 400 registered in advance can connect to at least one of the base station 300, the control station 100, and the core network 200.
 また、基地局300と端末装置400との無線通信に用いられる無線アクセス技術(RAT:Radio Access Technology)として、例えば、4Gシステム、5Gシステム、6Gシステム、LTE(Long Term Evolution)、NR(New Radio)などのセルラー通信システムが挙げられる。また、この無線アクセス技術は、セルラー通信システムに限られない。例えば、この無線アクセス技術として、無線LAN、Bluetooth(登録商標)、LPWA(Low Power Wide Area)システムなどの様々な無線通信システムが挙げられる。 Furthermore, radio access technologies (RAT) used for wireless communication between the base station 300 and the terminal device 400 include, for example, 4G system, 5G system, 6G system, LTE (Long Term Evolution), and NR (New Radio). ) and other cellular communication systems. Also, this wireless access technology is not limited to cellular communication systems. For example, examples of this wireless access technology include various wireless communication systems such as wireless LAN, Bluetooth (registered trademark), and LPWA (Low Power Wide Area) systems.
 また、図2の例では、制御局100がローカルネットワークN_A、N_Bと接続するとしたが、制御局100が接続するネットワークが、加入者が接続しうるパブリックネットワークであってもよい。 Furthermore, in the example of FIG. 2, it is assumed that the control station 100 connects to local networks N_A and N_B, but the network to which the control station 100 connects may be a public network to which subscribers can connect.
 図3は、本開示の第1実施形態に係る無線通信システムの他の構成例を示す図である。上述したように、コアネットワーク200は、省略されたり、制御局100および/または基地局300内に配置されたりしうる。 FIG. 3 is a diagram illustrating another configuration example of the wireless communication system according to the first embodiment of the present disclosure. As described above, core network 200 may be omitted or located within control station 100 and/or base station 300.
 そこで、以下では、説明を簡略化するために、図3に示すように、無線通信システムが、コアネットワーク200を省略したシステムであるものとする。すなわち、本実施形態の無線通信システムは、制御局100と、基地局300と、端末装置400と、を含むものとする。 Therefore, in the following, in order to simplify the explanation, it is assumed that the wireless communication system is a system in which the core network 200 is omitted, as shown in FIG. 3. That is, the wireless communication system of this embodiment includes a control station 100, a base station 300, and a terminal device 400.
<2.1.2.制御局の構成例>
 図4は、本開示の第1実施形態に係る制御局100の構成例を示す図である。制御局100は、上述したように、例えば、動的スペクトラムアクセス(DSA:Dynamic Spectrum Access)のシステムを制御する情報処理装置である。図4に示すように、制御局100は、通信部110と、記憶部120と、制御部130と、を備える。
<2.1.2. Control station configuration example>
FIG. 4 is a diagram illustrating a configuration example of the control station 100 according to the first embodiment of the present disclosure. As described above, the control station 100 is, for example, an information processing device that controls a dynamic spectrum access (DSA) system. As shown in FIG. 4, the control station 100 includes a communication section 110, a storage section 120, and a control section 130.
(通信部110)
 通信部110は、他の装置(例えば基地局300)と通信するための通信インタフェースである。通信部110は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、通信部110は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよいし、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、通信部110は、有線インタフェースであってもよいし、無線インタフェースであってもよい。通信部110は、制御局100の通信手段として機能する。通信部110は、制御部130の制御に従って基地局300と通信する。
(Communication Department 110)
Communication unit 110 is a communication interface for communicating with other devices (eg, base station 300). The communication unit 110 may be a network interface or a device connection interface. For example, the communication unit 110 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card), or a USB interface configured by a USB (Universal Serial Bus) host controller, a USB port, etc. Good too. Further, the communication unit 110 may be a wired interface or a wireless interface. The communication unit 110 functions as a communication means for the control station 100. The communication unit 110 communicates with the base station 300 under the control of the control unit 130.
(記憶部120)
 記憶部120は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部120は、制御局100の記憶手段として機能する。
(Storage unit 120)
The storage unit 120 is a data readable/writable storage device such as a DRAM (Dynamic Random Access Memory), an SRAM (Static Random Access Memory), a flash memory, or a hard disk. The storage unit 120 functions as a storage means of the control station 100.
 記憶部120は、後述する仮想空間推定部132で使用される情報(データ)を記憶する。例えば、記憶部120は、上述した静的または準静的な通信環境情報を保持する。 The storage unit 120 stores information (data) used by a virtual space estimation unit 132, which will be described later. For example, the storage unit 120 holds the above-mentioned static or semi-static communication environment information.
 また、例えば、記憶部120は、基地局300および/または端末装置400の位置に関する位置情報を記憶する。なお、記憶部120が記憶する位置情報は、物理的に固定され、移動できない通信ノード(例えば、基地局300および/または端末装置400)の情報としてもよい。 Furthermore, for example, the storage unit 120 stores location information regarding the location of the base station 300 and/or the terminal device 400. Note that the location information stored in the storage unit 120 may be information of a communication node that is physically fixed and cannot be moved (for example, the base station 300 and/or the terminal device 400).
(制御部130)
 制御部130は、制御局100の各部を制御するコントローラ(controller)である。制御部130は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサにより実現される。
(Control unit 130)
The control unit 130 is a controller that controls each part of the control station 100. The control unit 130 is realized by, for example, a processor such as a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a GPU (Graphics Processing Unit).
 例えば、制御部130は、制御局100内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部130は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、GPU、ASIC、およびFPGAは何れもコントローラとみなすことができる。 For example, the control unit 130 is realized by a processor executing various programs stored in a storage device inside the control station 100 using a RAM (Random Access Memory) or the like as a work area. Note that the control unit 130 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). CPUs, MPUs, GPUs, ASICs, and FPGAs can all be considered controllers.
 制御部130は、取得部131と、仮想空間推定部132と、パラメータ決定部133と、通知部134と、を備える。制御部130を構成する各ブロック(取得部131~通知部134)はそれぞれ制御部130の機能を示す機能ブロックである。 The control unit 130 includes an acquisition unit 131, a virtual space estimation unit 132, a parameter determination unit 133, and a notification unit 134. Each block (obtaining unit 131 to notifying unit 134) constituting the control unit 130 is a functional block indicating a function of the control unit 130, respectively.
 これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサまたは1つの集積回路であってもよい。機能ブロックの構成方法は任意である。 These functional blocks may be software blocks or hardware blocks. For example, each of the above functional blocks may be one software module realized by software (including a microprogram), or one circuit block on a semiconductor chip (die). Of course, each functional block may be one processor or one integrated circuit. The functional blocks can be configured in any way.
 なお、制御部130は上述の機能ブロックとは異なる機能単位で構成されていてもよい。 Note that the control unit 130 may be configured in a functional unit different from the above-mentioned functional blocks.
(取得部131)
 取得部131は、仮想空間推定部132で用いる情報を、通信部110を介して取得する。また、取得部131は、仮想空間推定部132で用いる情報を、記憶部120から取得する。
(Acquisition unit 131)
The acquisition unit 131 acquires information used by the virtual space estimation unit 132 via the communication unit 110. The acquisition unit 131 also acquires information used by the virtual space estimation unit 132 from the storage unit 120.
 取得部131は、ローカルネットワーク、コアネットワーク200、基地局300、端末装置400、および、その他の通信ノードの少なくとも1つから送信されうる情報を、通信部110を介して受信する。 The acquisition unit 131 receives, via the communication unit 110, information that can be transmitted from at least one of the local network, core network 200, base station 300, terminal device 400, and other communication nodes.
 例えば、取得部131は、上述した動的な通信環境情報を、通信部110を介して基地局300および/または端末装置400から取得する。また、例えば、取得部131は、基地局300および/または端末装置400の位置に関する位置情報を、通信部110を介して受信する。なお、取得部131が受信する位置情報は、移動可能な通信ノードの情報としてもよい。 For example, the acquisition unit 131 acquires the above-mentioned dynamic communication environment information from the base station 300 and/or the terminal device 400 via the communication unit 110. Further, for example, the acquisition unit 131 receives location information regarding the location of the base station 300 and/or the terminal device 400 via the communication unit 110. Note that the position information received by the acquisition unit 131 may be information on a movable communication node.
 取得部131は、記憶部120が記憶する情報(データ)を取得する。取得部131は、例えば、上述した静的または準静的な通信環境情報を記憶部120から取得する。 The acquisition unit 131 acquires information (data) stored in the storage unit 120. The acquisition unit 131 acquires, for example, the above-mentioned static or semi-static communication environment information from the storage unit 120.
 取得部131は、取得した情報を仮想空間推定部132に出力する。 The acquisition unit 131 outputs the acquired information to the virtual space estimation unit 132.
(仮想空間推定部132)
 仮想空間推定部132は、取得部131から入力された情報に基づいて、仮想的な通信環境を生成する。仮想空間推定部132は、さらに、生成された仮想的な通信環境を用いて、無線通信に関する仮想空間推定情報を生成する。
(Virtual space estimation unit 132)
The virtual space estimation unit 132 generates a virtual communication environment based on the information input from the acquisition unit 131. The virtual space estimation unit 132 further uses the generated virtual communication environment to generate virtual space estimation information regarding wireless communication.
 仮想空間推定部132は、生成した仮想空間推定情報をパラメータ決定部133に出力する。 The virtual space estimation unit 132 outputs the generated virtual space estimation information to the parameter determination unit 133.
(パラメータ決定部133)
 パラメータ決定部133は、仮想空間推定情報に基づいて、ローカルネットワーク、コアネットワーク200、基地局300、および端末装置400の少なくとも1つの通信パラメータを決定する。
(Parameter determination unit 133)
The parameter determination unit 133 determines at least one communication parameter of the local network, core network 200, base station 300, and terminal device 400 based on the virtual space estimation information.
(通知部134)
 通知部134は、決定された通信パラメータに基づいて、制御情報を生成する。通知部134は、ローカルネットワーク、コアネットワーク200、基地局300、および端末装置400の少なくとも1つに送信する。これにより、通知部134は、決定された通信パラメータに関する情報をローカルネットワーク、コアネットワーク200、基地局300、および端末装置400の少なくとも1つに通知する。
(Notification section 134)
The notification unit 134 generates control information based on the determined communication parameters. The notification unit 134 transmits to at least one of the local network, core network 200, base station 300, and terminal device 400. Thereby, the notification unit 134 notifies at least one of the local network, core network 200, base station 300, and terminal device 400 of information regarding the determined communication parameters.
<2.1.3.基地局の構成例>
 次に、基地局300について説明する。基地局300は、セルを運用し、セルのカバレッジの内部に位置する1つ以上の端末装置400へ無線通信サービスを提供する通信装置である。セルは、例えばLTEまたはNR等の任意の無線通信方式に従って運用される。基地局300は、コアネットワーク200に接続される。コアネットワーク200は、ゲートウェイ装置(図示省略)を介してパケットデータネットワーク(図示省略)に接続される。また、基地局300は、SSB(Synchronization Signal/PBCH Block)で識別可能なビームを運用し、1つ以上のビームを介して1つ以上の端末装置400との間でデータを送受信しうる。
<2.1.3. Base station configuration example>
Next, base station 300 will be explained. The base station 300 is a communication device that operates a cell and provides wireless communication services to one or more terminal devices 400 located within the coverage of the cell. A cell is operated according to any wireless communication method, such as LTE or NR. Base station 300 is connected to core network 200. The core network 200 is connected to a packet data network (not shown) via a gateway device (not shown). Furthermore, the base station 300 operates beams that can be identified by SSB (Synchronization Signal/PBCH Block), and can transmit and receive data to and from one or more terminal devices 400 via one or more beams.
 なお、基地局300は、複数の物理的または論理的装置の集合で構成されていてもよい。例えば、本開示の実施形態において基地局300は、BBU(Baseband Unit)およびRUの複数の装置に区別され、これら複数の装置の集合体として解釈されてもよい。さらにまたはこれに代えて、本開示の実施形態において基地局300は、BBUおよびRUのうちいずれかまたは両方であってもよい。BBUとRUとは所定のインターフェース(例えば、eCPRI)で接続されていてもよい。さらにまたはこれに代えて、RUはRemote Radio Unit(RRU)またはRadio DoT(RD)と称されていてもよい。さらにまたはこれに代えて、RUは後述するgNB-DUに対応していてもよい。さらにまたはこれに代えてBBUは、後述するgNB-CUに対応していてもよい。これに代えて、RUは後述するgNB-DUに接続していてもよい。さらに、BBUは、後述するgNB-CUおよびgNB-DUの組合せに対応していてもよい。さらにまたはこれに代えて、RUはアンテナと一体的に形成された装置であってもよい。基地局300が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)はAdvanced Antenna Systemを採用し、MIMO(例えば、FD-MIMO)やビームフォーミングをサポートしていてもよい。Advanced Antenna Systemは、基地局300が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)は、例えば、64個の送信用アンテナポートおよび64個の受信用アンテナポートを備えていてもよい。 Note that the base station 300 may be composed of a set of multiple physical or logical devices. For example, in the embodiment of the present disclosure, the base station 300 is divided into a plurality of devices, such as a BBU (Baseband Unit) and an RU, and may be interpreted as a collection of these devices. Additionally or alternatively, in embodiments of the present disclosure, base station 300 may be one or both of BBU and RU. The BBU and RU may be connected through a predetermined interface (eg, eCPRI). Additionally or alternatively, an RU may be referred to as a Remote Radio Unit (RRU) or a Radio DoT (RD). Additionally or alternatively, the RU may correspond to a gNB-DU described below. Additionally or alternatively, the BBU may correspond to gNB-CU, which will be described later. Alternatively, the RU may be connected to gNB-DU, which will be described later. Furthermore, the BBU may correspond to a combination of gNB-CU and gNB-DU, which will be described later. Additionally or alternatively, the RU may be a device integrally formed with the antenna. The antenna possessed by the base station 300 (for example, an antenna formed integrally with the RU) may employ an Advanced Antenna System and may support MIMO (for example, FD-MIMO) or beamforming. In the Advanced Antenna System, the antenna possessed by the base station 300 (for example, an antenna formed integrally with the RU) may include, for example, 64 transmitting antenna ports and 64 receiving antenna ports.
 また、基地局300は、複数が互いに接続されていてもよい。1つまたは複数の基地局300は無線アクセスネットワーク(Radio Access Network:RAN)に含まれていてもよい。すなわち、基地局300は単にRAN、RANノード、AN(Access Network)、ANノードと称されてもよい。LTEにおけるRANはEUTRAN(Enhanced Universal Terrestrial RAN)と呼ばれる。NRにおけるRANはNGRANと呼ばれる。W-CDMA(UMTS)におけるRANはUTRANと呼ばれる。LTEの基地局300は、eNodeB(Evolved Node B)またはeNBと称される。すなわち、EUTRANは1または複数のeNodeB(eNB)を含む。また、NRの基地局300は、gNodeBまたはgNBと称される。すなわち、NGRANは1または複数のgNBを含む。さらに、EUTRANは、LTEの通信システム(EPS)におけるコアネットワーク(EPC)に接続されたgNB(en-gNB)を含んでいてもよい。同様にNGRANは5G通信システム(5GS)におけるコアネットワーク5GCに接続されたng-eNBを含んでいてもよい。さらにまたはこれに代えて、基地局300がeNB、gNBなどである場合、3GPP Accessと称されてもよい。さらにまたはこれに代えて、基地局300が無線アクセスポイント(Access Point)(e.g., WiFi(登録商標)のアクセスポイント)である場合、Non-3GPP Accessと称されてもよい。さらにまたはこれに代えて、基地局300は、RRH(Remote Radio Head)と呼ばれる光張り出し装置であってもよい。さらにまたはこれに代えて、基地局300がgNBである場合、基地局300は前述したgNB CU(Central Unit)とgNB DU(Distributed Unit)の組み合わせまたはこれらのうちいずれかと称されてもよい。gNB CUは、UEとの通信のために、Access Stratumのうち、複数の上位レイヤ(例えば、RRC、SDAP、PDCP)をホストする。一方、gNB-DUは、Access Stratumのうち、複数の下位レイヤ(例えば、RLC、MAC、PHY)をホストする。すなわち、後述されるメッセージ・情報のうち、RRC signalling(例えば、MIB、SIB1を含む各種SIB、RRCSetup message、RRCReconfiguration message)はgNB CUで生成され、一方で後述されるDCIや各種Physical Channel(例えば、PDCCH、PBCH)はgNB-DUは生成されてもよい。またはこれに代えて、RRC signallingのうち、例えばIE:cellGroupConfigなど一部のconfiguration(設定情報)についてはgNB-DUで生成され、残りのconfigurationはgNB-CUで生成されてもよい。これらのconfiguration(設定情報)は、後述されるF1インタフェースで送受信されてもよい。基地局300は、他の基地局300と通信可能に構成されていてもよい。例えば、複数の基地局300がeNB同士またはeNBとen-gNBの組み合わせである場合、当該基地局300間はX2インタフェースで接続されてもよい。さらにまたはこれに代えて、複数の基地局300がgNB同士またはgn-eNBとgNBの組み合わせである場合、当該装置間はXnインタフェースで接続されてもよい。さらにまたはこれに代えて、複数の基地局300がgNB CUとgNB DUの組み合わせである場合、当該装置間は前述したF1インタフェースで接続されてもよい。後述されるメッセージ・情報(RRC signallingまたはDCIの情報、Physical Channel)は複数の基地局300間で(例えばX2、Xn、F1インタフェースを介して)通信されてもよい。 Furthermore, a plurality of base stations 300 may be connected to each other. One or more base stations 300 may be included in a Radio Access Network (RAN). That is, base station 300 may be simply referred to as RAN, RAN node, AN (Access Network), or AN node. RAN in LTE is called EUTRAN (Enhanced Universal Terrestrial RAN). RAN in NR is called NGRAN. The RAN in W-CDMA (UMTS) is called UTRAN. The LTE base station 300 is called an eNodeB (Evolved Node B) or eNB. That is, the EUTRAN includes one or more eNodeBs (eNBs). Further, the NR base station 300 is referred to as gNodeB or gNB. That is, the NGRAN includes one or more gNBs. Furthermore, EUTRAN may include a gNB (en-gNB) connected to a core network (EPC) in an LTE communication system (EPS). Similarly, NGRAN may include an ng-eNB connected to a core network 5GC in a 5G communication system (5GS). Additionally or alternatively, if the base station 300 is an eNB, gNB, etc., it may be referred to as 3GPP Access. Additionally or alternatively, if the base station 300 is a wireless access point (e.g., a WiFi (registered trademark) access point), it may be referred to as Non-3GPP Access. Additionally or in place of this, the base station 300 may be an optical equipment called an RRH (Remote Radio Head). Additionally or alternatively, when the base station 300 is a gNB, the base station 300 may be referred to as a combination of the above-described gNB CU (Central Unit) and gNB DU (Distributed Unit), or any one of these. The gNB CU hosts multiple upper layers (eg, RRC, SDAP, PDCP) of the Access Stratum for communication with the UE. On the other hand, the gNB-DU hosts multiple lower layers (eg, RLC, MAC, PHY) of the Access Stratum. That is, among the messages and information described below, RRC signaling (for example, MIB, various SIBs including SIB1, RRCSetup message, RRCReconfiguration message) is generated by gNB CU, while DCI and various Physical Channels (for example, gNB-DU may be generated for PDCCH, PBCH). Alternatively, part of the configuration (configuration information) such as IE: cellGroupConfig in RRC signaling may be generated by the gNB-DU, and the remaining configuration may be generated by the gNB-CU. These configurations (setting information) may be transmitted and received through the F1 interface, which will be described later. The base station 300 may be configured to be able to communicate with other base stations 300. For example, when the plurality of base stations 300 are a combination of eNBs or an eNB and an en-gNB, the base stations 300 may be connected by an X2 interface. Additionally or alternatively, when the plurality of base stations 300 are a combination of gNBs or a gn-eNB and a gNB, the devices may be connected through an Xn interface. Additionally or alternatively, when the plurality of base stations 300 are a combination of gNB CUs and gNB DUs, the devices may be connected by the F1 interface described above. Messages and information (RRC signaling or DCI information, Physical Channel), which will be described later, may be communicated between a plurality of base stations 300 (for example, via the X2, Xn, and F1 interfaces).
 さらに、前述の通り、基地局300は、複数のセルを管理するように構成されていてもよい。基地局300により提供されるセルはServing cellと呼ばれる。Serving cellはPCell(Primary Cell)およびSCell(Secondary Cell)を含む。Dual Connectivity (例えば、EUTRA-EUTRA Dual Connectivity、EUTRA-NR Dual Connectivity(ENDC)、EUTRA-NR Dual Connectivity with 5GC、NR-EUTRA Dual Connectivity(NEDC)、NR-NR Dual Connectivity)がUE(例えば、端末装置400)に提供される場合、MN(Master Node)によって提供されるPCellおよびゼロまたは1以上のSCell(s)はMaster Cell Groupと呼ばれる。さらに、Serving cellはPSCell(Primary Secondary CellまたはPrimary SCG Cell)を含んでもよい。すなわち、Dual ConnectivityがUEに提供される場合、SN(Secondary Node)によって提供されるPSCellおよびゼロまたは1以上のSCell(s)はSecondary Cell Group(SCG)と呼ばれる。特別な設定(例えば、PUCCH on SCell)がされていない限り、物理上りリンク制御チャネル(PUCCH)はPCellおよびPSCellで送信されるが、SCellでは送信されない。また、Radio Link FailureもPCellおよびPSCellでは検出されるが、SCellでは検出されない(検出しなくてよい)。このようにPCellおよびPSCellは、Serving Cell(s)の中で特別な役割を持つため、Special Cell(SpCell)とも呼ばれる。1つのセルには、1つのDownlink Component Carrierと1つのUplink Component Carrierが対応付けられてもよい。また、1つのセルに対応するシステム帯域幅は、複数の帯域幅部分(Bandwidth Part)に分割されてもよい。この場合、1または複数のBandwidth Part(BWP)がUEに設定され、1つのBandwidth PartがActive BWPとして、UEに使用されてもよい。また、セル毎、コンポーネントキャリア毎またはBWPごとに、端末装置400が使用できる無線資源(例えば、周波数帯域、ヌメロロジー(サブキャリアスペーシング)、スロットフォーマット(Slot configuration))が異なっていてもよい。 Furthermore, as described above, the base station 300 may be configured to manage multiple cells. A cell provided by base station 300 is called a serving cell. Serving cells include PCells (Primary Cells) and SCells (Secondary Cells). Dual Connectivity (e.g., EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), NR-NR Dual Connectivity) 400), the PCell and zero or more SCell(s) provided by the MN (Master Node) are called a Master Cell Group. Furthermore, the serving cell may include a PSCell (Primary Secondary Cell or Primary SCG Cell). That is, when Dual Connectivity is provided to the UE, the PSCell and zero or more SCell(s) provided by the SN (Secondary Node) are called a Secondary Cell Group (SCG). Unless special settings are made (for example, PUCCH on SCell), the physical uplink control channel (PUCCH) is transmitted on PCell and PSCell, but not on SCell. Additionally, Radio Link Failure is also detected in PCell and PSCell, but not detected in SCell (it does not need to be detected). In this way, PCell and PSCell have a special role among Serving Cell(s), so they are also called Special Cell (SpCell). One Downlink Component Carrier and one Uplink Component Carrier may be associated with one cell. Further, the system bandwidth corresponding to one cell may be divided into a plurality of bandwidth parts. In this case, one or more Bandwidth Parts (BWPs) may be configured in the UE, and one Bandwidth Part may be used as an Active BWP in the UE. Further, the radio resources (for example, frequency band, numerology (subcarrier spacing), slot configuration) that can be used by the terminal device 400 may differ for each cell, each component carrier, or each BWP.
 図5は、本開示の第1実施形態に係る基地局300の構成例を示すブロック図である。基地局300は、端末装置400と無線通信する無線通信装置である。基地局300は通信装置の一種である。また、基地局300は情報処理装置の一種である。 FIG. 5 is a block diagram illustrating a configuration example of the base station 300 according to the first embodiment of the present disclosure. Base station 300 is a wireless communication device that wirelessly communicates with terminal device 400. Base station 300 is a type of communication device. Furthermore, the base station 300 is a type of information processing device.
 図5に示す基地局300は、通信部310と、記憶部320と、ネットワーク通信部330と、制御部340と、を備える。なお、図5に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、基地局300の機能は、複数の物理的に分離された構成に分散して実装されてもよい。例えば、前述のように、基地局300の機能は、CUおよびDU、または、CU、DUおよびRUに分散されうる。 The base station 300 shown in FIG. 5 includes a communication section 310, a storage section 320, a network communication section 330, and a control section 340. Note that the configuration shown in FIG. 5 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of base station 300 may be distributed and implemented in a plurality of physically separated configurations. For example, as described above, the functionality of base station 300 may be distributed among CUs and DUs or CUs, DUs, and RUs.
 通信部310は、他の無線通信装置(例えば、端末装置400および他の基地局300)と無線通信するための信号処理部である。通信部310は、制御部340の制御に従って動作する。他の無線通信装置が端末装置400の場合、通信部310は1または複数の無線アクセス方式に対応する無線トランシーバであってもよい。例えば、通信部310は、NRおよびLTEの双方に対応する。通信部310は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。また、通信部310は、NOMAを使った通信に対応していてもよい。他の無線通信装置が他の基地局300である場合、通信部310はX2インタフェース、Xnインタフェース、または、F1インタフェースであってもよい。 The communication unit 310 is a signal processing unit for wirelessly communicating with other wireless communication devices (for example, the terminal device 400 and other base stations 300). The communication unit 310 operates under the control of the control unit 340. When the other wireless communication device is the terminal device 400, the communication unit 310 may be a wireless transceiver compatible with one or more wireless access methods. For example, the communication unit 310 supports both NR and LTE. The communication unit 310 may be compatible with W-CDMA and cdma2000 in addition to NR and LTE. Furthermore, the communication unit 310 may support communication using NOMA. When the other wireless communication device is another base station 300, the communication unit 310 may be an X2 interface, an Xn interface, or an F1 interface.
 通信部310は、受信処理部311と、送信処理部312と、アンテナ313と、を備える。通信部310は、受信処理部311、送信処理部312、およびアンテナ313をそれぞれ複数備えていてもよい。なお、通信部310が複数の無線アクセス方式に対応する場合、通信部310の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部311および送信処理部312は、LTEとNRとで個別に構成されてもよい。 The communication section 310 includes a reception processing section 311, a transmission processing section 312, and an antenna 313. The communication unit 310 may each include a plurality of reception processing units 311, transmission processing units 312, and antennas 313. Note that when the communication unit 310 supports multiple wireless access methods, each part of the communication unit 310 may be configured individually for each wireless access method. For example, the reception processing section 311 and the transmission processing section 312 may be configured separately for LTE and NR.
 受信処理部311は、アンテナ313を介して受信された上りリンク信号の処理を行う。受信処理部311は、受信信号を受信する受信部として動作する。受信処理部311は、無線受信部311aと、多重分離部311bと、復調部311cと、復号部311dと、を備える。 The reception processing unit 311 processes uplink signals received via the antenna 313. The reception processing section 311 operates as a reception section that receives a reception signal. The reception processing section 311 includes a radio reception section 311a, a demultiplexing section 311b, a demodulation section 311c, and a decoding section 311d.
 無線受信部311aは、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバル(サイクリックプレフィックス)の除去、高速フーリエ変換による周波数領域信号の抽出等を行う。多重分離部311bは、無線受信部311aから出力された信号から、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)等の上りリンクチャネルおよび上りリンク参照信号を分離する。 The radio reception unit 311a performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to a digital signal, removal of guard intervals (cyclic prefix), and fast Fourier transformation for uplink signals. The frequency domain signal is extracted by The demultiplexer 311b separates uplink channels such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and uplink reference signals from the signal output from the radio receiver 311a.
 復調部311cは、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase shift Keying)等の変調方式を使って受信信号の復調を行う。復調部311cが使用する変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、または256QAMであってもよい。この場合、コンスタレーション上の信号点は必ずしも等距離である必要はない。コンスタレーションは、不均一コンスタレーション(NUC:Non Uniform Constellation)であってもよい。 The demodulation unit 311c demodulates the received signal using a modulation method such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) on the modulation symbol of the uplink channel. The modulation method used by the demodulator 311c may be 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM. In this case, the signal points on the constellation do not necessarily have to be equidistant. The constellation may be a non-uniform constellation (NUC).
 復号部311dは、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータおよび上りリンク制御情報は制御部340へ出力される。 The decoding unit 311d performs decoding processing on the coded bits of the demodulated uplink channel. The decoded uplink data and uplink control information are output to the control section 340.
 送信処理部312は、下りリンク制御情報および下りリンクデータの送信処理を行う。このように、送信処理部312は、制御部340から例えば、下りリンク制御情報や下りリンクデータ等のビット系列を取得する取得部である。送信処理部312は、符号化部312aと、変調部312bと、多重部312cと、無線送信部312dと、を備える。 The transmission processing unit 312 performs transmission processing of downlink control information and downlink data. In this way, the transmission processing unit 312 is an acquisition unit that acquires, for example, bit sequences such as downlink control information and downlink data from the control unit 340. The transmission processing section 312 includes an encoding section 312a, a modulation section 312b, a multiplexing section 312c, and a wireless transmission section 312d.
 符号化部312aは、制御部340から入力された下りリンク制御情報および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。なお、符号化部312aは、ポーラ符号(Polar code)による符号化、LDPC符号(Low Density Parity Check Code)による符号化を行ってもよい。 The encoding unit 312a encodes the downlink control information and downlink data input from the control unit 340 using encoding methods such as block encoding, convolutional encoding, and turbo encoding. Note that the encoding unit 312a may perform encoding using a polar code or an LDPC code (low density parity check code).
 変調部312bは、符号化部312aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。この場合、コンスタレーション上の信号点は必ずしも等距離である必要はない。コンスタレーションは、不均一コンスタレーションであってもよい。 The modulator 312b modulates the encoded bits output from the encoder 312a using a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, or 256QAM. In this case, the signal points on the constellation do not necessarily have to be equidistant. The constellation may be a non-uniform constellation.
 多重部312cは、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部312dは、多重部312cからの信号に対して、各種信号処理を行う。例えば、無線送信部312dは、高速フーリエ変換による時間領域から周波数領域への変換、ガードインターバル(サイクリックプレフィックス)の付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部312で生成された信号は、アンテナ313から送信される。 The multiplexing unit 312c multiplexes the modulation symbol of each channel and the downlink reference signal, and arranges it in a predetermined resource element. The wireless transmitter 312d performs various signal processing on the signal from the multiplexer 312c. For example, the wireless transmitter 312d performs conversion from the time domain to the frequency domain using fast Fourier transform, addition of a guard interval (cyclic prefix), generation of a baseband digital signal, conversion to an analog signal, orthogonal modulation, and upconversion. , removes extra frequency components, amplifies power, etc. The signal generated by the transmission processing section 312 is transmitted from the antenna 313.
 記憶部320は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部320は、基地局300の記憶手段として機能する。 The storage unit 320 is a data readable/writable storage device such as DRAM, SRAM, flash memory, hard disk, etc. The storage unit 320 functions as a storage means of the base station 300.
 ネットワーク通信部330は、ネットワーク上で上位に位置するノード(例えば、コアネットワーク200)と通信するための通信インタフェースである。例えば、ネットワーク通信部330は、NIC等のLANインタフェースであってもよい。さらにまたはこれに代えて、ネットワーク通信部330は、コアネットワークノードと接続するためのS1インタフェースまたはNGインタフェースであってもよい。ネットワーク通信部330は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部330は、基地局300のネットワーク通信手段として機能する。 The network communication unit 330 is a communication interface for communicating with a node located higher on the network (for example, the core network 200). For example, the network communication unit 330 may be a LAN interface such as a NIC. Additionally or alternatively, the network communication unit 330 may be an S1 interface or an NG interface for connecting to a core network node. Network communication section 330 may be a wired interface or a wireless interface. The network communication unit 330 functions as a network communication means for the base station 300.
 制御部340は、基地局300の各部を制御するコントローラ(controller)である。制御部340は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサ(ハードウェアプロセッサ)により実現される。例えば、制御部340は、基地局300内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部340は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、およびFPGAは何れもコントローラとみなすことができる。 The control unit 340 is a controller that controls each part of the base station 300. The control unit 340 is realized, for example, by a processor (hardware processor) such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit). For example, the control unit 340 is realized by a processor executing various programs stored in a storage device inside the base station 300 using a RAM (Random Access Memory) or the like as a work area. Note that the control unit 340 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). CPUs, MPUs, ASICs, and FPGAs can all be considered controllers.
<2.1.4.端末装置の構成例>
 次に、図6を用いて、本開示の実施形態に係る端末装置400の構成例について説明する。図6は、本開示の実施形態に係る端末装置400の構成例を示すブロック図である。
<2.1.4. Configuration example of terminal device>
Next, a configuration example of the terminal device 400 according to the embodiment of the present disclosure will be described using FIG. 6. FIG. 6 is a block diagram illustrating a configuration example of a terminal device 400 according to an embodiment of the present disclosure.
 端末装置400は、基地局300と無線通信する無線通信装置である。端末装置400は、例えば、携帯電話、スマートデバイス(スマートフォン、またはタブレット)、PDA(Personal Digital Assistant)、パーソナルコンピュータである。また、端末装置400は、通信機能が具備された業務用カメラといった機器であってもよいし、M2M(Machine to Machine)デバイス、または、IoT(Internet of Things)デバイスであってもよい。 The terminal device 400 is a wireless communication device that wirelessly communicates with the base station 300. The terminal device 400 is, for example, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer. Further, the terminal device 400 may be a device such as a professional camera equipped with a communication function, or may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device.
 また、端末装置400は、他の端末装置400とサイドリンク通信が可能であってもよい。端末装置400は、サイドリンク通信を行う際、HARQ(Hybrid Automatic Repeat reQuest)等の自動再送技術を使用可能であってもよい。端末装置400は、基地局300とNOMA(Non Orthogonal Multiple Access)通信が可能であってもよい。なお、端末装置400は、他の端末装置400との通信(サイドリンク)においてもNOMA通信が可能であってもよい。また、端末装置400は、他の通信装置(例えば、基地局300、および他の端末装置400)とLPWA(Low Power Wide Area)通信が可能であってもよい。その他、端末装置400が使用する無線通信は、ミリ波を使った無線通信であってもよい。なお、端末装置400が使用する無線通信(サイドリンク通信を含む。)は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。 Furthermore, the terminal device 400 may be capable of side-link communication with other terminal devices 400. The terminal device 400 may be able to use automatic retransmission technology such as HARQ (Hybrid Automatic Repeat reQuest) when performing side link communication. The terminal device 400 may be capable of NOMA (Non Orthogonal Multiple Access) communication with the base station 300. Note that the terminal device 400 may also be capable of NOMA communication in communication (side link) with other terminal devices 400. Furthermore, the terminal device 400 may be capable of LPWA (Low Power Wide Area) communication with other communication devices (for example, the base station 300 and other terminal devices 400). In addition, the wireless communication used by the terminal device 400 may be wireless communication using millimeter waves. Note that the wireless communication (including side link communication) used by the terminal device 400 may be wireless communication using radio waves, or wireless communication using infrared rays or visible light (optical wireless). good.
 端末装置400は、同時に複数の基地局300または複数のセルと接続して通信を実施してもよい。例えば、1つの基地局300が複数のセルを提供できる場合、端末装置400は、あるセルをpCellとして使用し、他のセルをsCellとして使用することでキャリアアグリゲーションを実行することができる。また、複数の基地局300がそれぞれ1または複数のセルを提供できる場合、端末装置400は、一方の基地局300(MN(例えば、MeNBまたはMgNB))が管理する1または複数のセルをpCell、またはpCellとsCell(s)として使用し、他方の基地局300(SN(例えば、SeNBまたはSgNB))が管理する1または複数のセルをpCell(PSCell)、またはpCell(PSCell)とsCell(s)として使用することでDC(Dual Connectivity)を実現することができる。DCはMC(Multi Connectivity)と称されてもよい。 The terminal device 400 may connect to and communicate with multiple base stations 300 or multiple cells at the same time. For example, when one base station 300 can provide multiple cells, the terminal device 400 can perform carrier aggregation by using one cell as a pCell and another cell as an sCell. In addition, when a plurality of base stations 300 can each provide one or more cells, the terminal device 400 can provide one or more cells managed by one base station 300 (MN (for example, MeNB or MgNB)) as pCell, Alternatively, one or more cells managed by the other base station 300 (SN (for example, SeNB or SgNB)) can be used as pCell (PSCell), or pCell (PSCell) and sCell (s). DC (Dual Connectivity) can be realized by using it as a DC. DC may also be called MC (Multi Connectivity).
 なお、異なる基地局300のセル(異なるセル識別子または同一セル識別子を持つ複数セル)を介して通信エリアをサポートしている場合に、キャリアアグリゲーション(CA:Carrier Aggregation)技術やデュアルコネクティビティ(DC:Dual Connectivity)技術、マルチコネクティビティ(MC:Multi-Connectivity)技術によって、それら複数のセルを束ねて基地局300と端末装置400とで通信することが可能である。或いは、異なる基地局300のセルを介して、協調送受信(CoMP:Coordinated Multi-Point Transmission and Reception)技術によって、端末装置400とそれら複数の基地局300が通信することも可能である。 Note that when supporting communication areas via cells of different base stations 300 (multiple cells with different cell identifiers or the same cell identifier), carrier aggregation (CA) technology and dual connectivity (DC) The base station 300 and the terminal device 400 can communicate with each other by bundling the plurality of cells using the multi-connectivity (MC) technology and the multi-connectivity (MC) technology. Alternatively, it is also possible for the terminal device 400 and the plurality of base stations 300 to communicate via cells of different base stations 300 using Coordinated Multi-Point Transmission and Reception (CoMP) technology.
 端末装置400は、通信部410と、記憶部420と、ネットワーク通信部430と、入出力部4400と、制御部450とを備える。なお、図6に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置400の機能は、複数の物理的に分離された構成に分散して実装されてもよい。 The terminal device 400 includes a communication section 410, a storage section 420, a network communication section 430, an input/output section 4400, and a control section 450. Note that the configuration shown in FIG. 6 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 400 may be distributed and implemented in a plurality of physically separated configurations.
 通信部410は、他の無線通信装置(例えば、基地局300および他の端末装置400)と無線通信するための信号処理部である。通信部410は、制御部450の制御に従って動作する。通信部410は1または複数の無線アクセス方式に対応する無線トランシーバであってもよい。例えば、通信部410は、NRおよびLTEの双方に対応する。通信部410は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。また、通信部410は、NOMAを使った通信に対応していてもよい。 The communication unit 410 is a signal processing unit for wirelessly communicating with other wireless communication devices (for example, the base station 300 and other terminal devices 400). The communication unit 410 operates under the control of the control unit 450. The communication unit 410 may be a wireless transceiver that supports one or more wireless access methods. For example, the communication unit 410 supports both NR and LTE. The communication unit 410 may be compatible with W-CDMA and cdma2000 in addition to NR and LTE. Furthermore, the communication unit 410 may support communication using NOMA.
 通信部410は、受信処理部411と、送信処理部412と、アンテナ413と、を備える。通信部410は、受信処理部411、送信処理部412、およびアンテナ413をそれぞれ複数備えていてもよい。通信部410、受信処理部411、送信処理部412、およびアンテナ414の構成は、基地局300の通信部310、受信処理部311、送信処理部312、およびアンテナ314と同様である。 The communication unit 410 includes a reception processing unit 411, a transmission processing unit 412, and an antenna 413. The communication unit 410 may each include a plurality of reception processing units 411, transmission processing units 412, and antennas 413. The configurations of communication section 410, reception processing section 411, transmission processing section 412, and antenna 414 are similar to those of communication section 310, reception processing section 311, transmission processing section 312, and antenna 314 of base station 300.
 記憶部420は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部420は、端末装置400の記憶手段として機能する。 The storage unit 420 is a data readable/writable storage device such as DRAM, SRAM, flash memory, hard disk, etc. The storage unit 420 functions as a storage means of the terminal device 400.
 ネットワーク通信部430は、ネットワークを介して接続する他の装置と通信するための通信インタフェースである。例えば、ネットワーク通信部430は、NIC等のLANインタフェースである。ネットワーク通信部430は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部430は、端末装置400のネットワーク通信手段として機能する。ネットワーク通信部430は、制御部450の制御に従って、他の装置と通信する。 The network communication unit 430 is a communication interface for communicating with other devices connected via the network. For example, the network communication unit 430 is a LAN interface such as a NIC. Network communication unit 430 may be a wired interface or a wireless interface. The network communication unit 430 functions as a network communication means for the terminal device 400. The network communication unit 430 communicates with other devices under the control of the control unit 450.
 入出力部440は、ユーザと情報をやりとりするためのユーザインタフェースである。例えば、入出力部440は、キーボード、マウス、操作キー、タッチパネル等、ユーザが各種操作を行うための操作装置である。または、入出力部440は、液晶ディスプレイ(Liquid Crystal Display)、有機ELディスプレイ(Organic Electroluminescence Display)等の表示装置である。入出力部440は、スピーカー、ブザー等の音響装置であってもよい。また、入出力部440は、LED(Light Emitting Diode)ランプ等の点灯装置であってもよい。入出力部440は、端末装置400の入出力手段(入力手段、出力手段、操作手段または通知手段)として機能する。 The input/output unit 440 is a user interface for exchanging information with the user. For example, the input/output unit 440 is an operating device, such as a keyboard, a mouse, an operation key, a touch panel, etc., for the user to perform various operations. Alternatively, the input/output unit 440 is a display device such as a liquid crystal display or an organic electroluminescence display. The input/output unit 440 may be an audio device such as a speaker or a buzzer. Further, the input/output unit 440 may be a lighting device such as an LED (Light Emitting Diode) lamp. The input/output unit 440 functions as an input/output means (input means, output means, operation means, or notification means) of the terminal device 400.
 制御部450は、端末装置400の各部を制御するコントローラである。制御部450は、例えば、CPU、MPU、GPU等のプロセッサにより実現される。例えば、制御部450は、端末装置400内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部450は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、GPU、ASIC、およびFPGAは何れもコントローラとみなすことができる。 The control unit 450 is a controller that controls each part of the terminal device 400. The control unit 450 is realized by, for example, a processor such as a CPU, MPU, or GPU. For example, the control unit 450 is realized by a processor executing various programs stored in a storage device inside the terminal device 400 using a RAM or the like as a work area. Note that the control unit 450 may be realized by an integrated circuit such as an ASIC or an FPGA. CPUs, MPUs, GPUs, ASICs, and FPGAs can all be considered controllers.
<2.2.通信処理>
<2.2.1.決定処理>
 図7は、本開示の第1実施形態に係る決定処理の流れの一例を示すフローチャートである。図7に示す決定処理は、例えばローカルネットワークで無線通信サービスの提供が開始されるより以前に制御局100によって実行される。あるいは、決定処理は、例えば端末装置400を使用するユーザによる指示に従って実行されてもよい。決定処理は、一定の周期で実行されてもよい。
<2.2. Communication processing>
<2.2.1. Decision processing>
FIG. 7 is a flowchart illustrating an example of the flow of determination processing according to the first embodiment of the present disclosure. The determination process shown in FIG. 7 is executed by the control station 100, for example, before the provision of wireless communication service is started in the local network. Alternatively, the determination process may be performed, for example, according to an instruction from a user using the terminal device 400. The determination process may be executed at regular intervals.
 図7に示すように、制御局100の取得部131は、記憶部120から、および/または、通信部110を介して環境情報(通信環境情報)を取得する(ステップS101)。 As shown in FIG. 7, the acquisition unit 131 of the control station 100 acquires environment information (communication environment information) from the storage unit 120 and/or via the communication unit 110 (step S101).
 制御局100の仮想空間推定部132は、基地局300および端末装置400の少なくとも一方の実空間における位置情報、および、取得した通信環境情報に基づいて、仮想的な通信環境を生成する(ステップS102)。仮想的な通信環境は、例えば、基地局300の通信カバレッジ内に存在する物体(構造物や人物など)を仮想的に表したものである。 The virtual space estimation unit 132 of the control station 100 generates a virtual communication environment based on the position information in real space of at least one of the base station 300 and the terminal device 400 and the acquired communication environment information (step S102 ). The virtual communication environment is, for example, a virtual representation of objects (such as structures and people) that exist within the communication coverage of the base station 300.
 図8は、本開示の第1実施形態に係る仮想的な通信環境の一例を示す図である。ここでは、基地局300および端末装置400が無線通信を行う実空間の通信環境が屋内のオフィス環境である場合に、仮想空間推定部132が生成する仮想的な通信環境を示している。 FIG. 8 is a diagram illustrating an example of a virtual communication environment according to the first embodiment of the present disclosure. Here, a virtual communication environment generated by the virtual space estimation unit 132 is shown when the real space communication environment in which the base station 300 and the terminal device 400 perform wireless communication is an indoor office environment.
 図8に示す例では、仮想空間推定部132は、仮想的な通信環境として複数の机を含む通信環境を生成する。 In the example shown in FIG. 8, the virtual space estimation unit 132 generates a communication environment including a plurality of desks as a virtual communication environment.
 図7に戻り、仮想空間推定部132は、仮想的な通信環境における電波伝搬シミュレーションを実行する(ステップS103)。制御局100は、生成した仮想的な通信環境において、基地局300-端末装置400間(送信点-受信点間)の電波伝搬シミュレーションを行う。なお、ここでは、基地局300が送信点である場合について説明するが、基地局300が受信点であってもよい。この場合、端末装置400が送信点となる。 Returning to FIG. 7, the virtual space estimation unit 132 executes a radio wave propagation simulation in a virtual communication environment (step S103). The control station 100 performs a radio wave propagation simulation between the base station 300 and the terminal device 400 (between the transmission point and the reception point) in the generated virtual communication environment. In addition, although the case where the base station 300 is a transmission point is demonstrated here, the base station 300 may be a reception point. In this case, the terminal device 400 becomes the transmission point.
 電波伝搬シミュレーションは、仮想空間におけるLOS/NLOS判定、または、Ray tracingシミュレーションなど様々な手法を用いて行われうる。ここでは、仮想空間推定部132が電波伝搬シミュレーションとして、LOS/NLOS判定を行うとする。 Radio wave propagation simulation can be performed using various techniques such as LOS/NLOS determination in virtual space or Ray tracing simulation. Here, it is assumed that the virtual space estimation unit 132 performs LOS/NLOS determination as a radio wave propagation simulation.
 この場合、例えば、仮想空間推定部132は、生成された仮想的な通信環境において、基地局300と端末装置400との間の電波伝搬環境がLOSであるか、または、NLOSであるかを判定する。仮想空間推定部132は、LOS/NLOS判定の結果をシミュレーション結果とする。 In this case, for example, the virtual space estimation unit 132 determines whether the radio wave propagation environment between the base station 300 and the terminal device 400 is LOS or NLOS in the generated virtual communication environment. do. The virtual space estimation unit 132 uses the result of the LOS/NLOS determination as the simulation result.
 図7に示すように、仮想空間推定部132は、シミュレーション結果に基づいて仮想空間推定情報を生成する(ステップS104)。 As shown in FIG. 7, the virtual space estimation unit 132 generates virtual space estimation information based on the simulation results (step S104).
 仮想空間推定部132は、例えば、シミュレーション結果であるLOS/NLOSの判定結果に基づき、好適な電波伝搬モデル(パスロスモデル)を選択する。仮想空間推定部132は、選択した電波伝搬モデルを用いて、基地局300-端末装置400間のパスロス、または、端末装置400の受信電力を推定する。 The virtual space estimating unit 132 selects a suitable radio wave propagation model (path loss model) based on the LOS/NLOS determination result, which is a simulation result, for example. The virtual space estimation unit 132 estimates the path loss between the base station 300 and the terminal device 400 or the received power of the terminal device 400 using the selected radio wave propagation model.
 仮想空間推定部132は、推定したパスロスまたは受信電力を仮想空間推定情報として制御局100のパラメータ決定部133に出力する。なお、仮想空間推定部132は、仮想空間推定情報に加えて/代えて、シミュレーション結果であるLOS/NLOSの判定結果をパラメータ決定部133に出力してもよい。 The virtual space estimation unit 132 outputs the estimated path loss or received power to the parameter determination unit 133 of the control station 100 as virtual space estimation information. In addition to/in place of the virtual space estimation information, the virtual space estimating unit 132 may output the LOS/NLOS determination result, which is a simulation result, to the parameter determining unit 133.
 次に、図7に示すように、仮想空間推定情報を受け取ったパラメータ決定部133は、仮想空間推定情報に基づいて通信パラメータを決定する(ステップS105)。 Next, as shown in FIG. 7, the parameter determination unit 133 that has received the virtual space estimation information determines communication parameters based on the virtual space estimation information (step S105).
 パラメータ決定部133は、例えば、機械学習や人工知能、Deep Learningなどの手法を用いて、通信パラメータを決定する。以下、機械学習や人工知能、Deep Learningなどを単にAI(Artificial Intelligence)とも記載する。 The parameter determining unit 133 determines communication parameters using, for example, techniques such as machine learning, artificial intelligence, and deep learning. Hereinafter, machine learning, artificial intelligence, deep learning, etc. will also be simply referred to as AI (Artificial Intelligence).
 例えば、パラメータ決定部133は、学習済みのAIモデル(機械学習モデル、Deep Learningモデル)を使用して通信パラメータを決定する。このAIモデルは、例えば記憶部120が記憶する情報や通信部110を介して受信する情報、換言すると取得部131が取得する情報を用いて行われる機械学習によって予め生成されているものとする。 For example, the parameter determining unit 133 determines communication parameters using a learned AI model (machine learning model, deep learning model). It is assumed that this AI model is generated in advance by machine learning performed using, for example, information stored in the storage unit 120 and information received via the communication unit 110, in other words, information acquired by the acquisition unit 131.
 AIモデルの学習は、制御局100(例えば、パラメータ決定部133)で行われてもよく、他の装置で行われてもよい。AIモデルの学習が制御局100とは異なる他の装置で行われる場合、パラメータ決定部133は、この他の装置からAIモデルに関する情報を取得する。例えば、パラメータ決定部133は、他の装置からAIモデルの係数を取得する。 Learning of the AI model may be performed by the control station 100 (for example, the parameter determination unit 133), or may be performed by another device. If learning of the AI model is performed in a device different from the control station 100, the parameter determining unit 133 acquires information regarding the AI model from this other device. For example, the parameter determining unit 133 obtains coefficients of the AI model from another device.
 制御局100がAIモデルの学習を行う場合、制御局100は、例えば、記憶部120が記憶する情報や、通信部110を介して受信する情報の一部または全部を用いてAIの学習を行い、AIモデルを生成(構築)する。例えば、制御局100は、通信環境情報や仮想空間推定情報、通信パラメータを用いてAIモデルの学習を行う。あるいは、制御局100は、シミュレーション結果を用いてAIモデルの学習を行ってもよい。 When the control station 100 performs AI model learning, the control station 100 performs AI learning using, for example, part or all of the information stored in the storage unit 120 and the information received via the communication unit 110. , generate (construct) an AI model. For example, the control station 100 performs learning of an AI model using communication environment information, virtual space estimation information, and communication parameters. Alternatively, the control station 100 may learn the AI model using simulation results.
 AIモデルは、通信環境情報、仮想空間推定情報、および、シミュレーション結果の少なくとも1つが入力された場合に、通信パラメータを出力する。パラメータ決定部133は、仮想空間推定情報、および、シミュレーション結果の少なくとも1つをAIモデルに入力した場合に、このAIモデルから出力される通信パラメータを、基地局300および端末装置400間の無線通信に使用する通信パラメータに決定する。 The AI model outputs communication parameters when at least one of communication environment information, virtual space estimation information, and simulation results is input. When at least one of the virtual space estimation information and the simulation result is input to the AI model, the parameter determination unit 133 uses communication parameters output from the AI model to determine the communication parameters for wireless communication between the base station 300 and the terminal device 400. Decide on the communication parameters to be used.
 なお、AIモデルは、基地局300および端末装置400が無線通信を行う状況(例えば、屋外や屋内などの場所)ごとに、この状況に特化して学習されたモデルであってもよく、状況によらない汎用的なモデルであってもよい。 Note that the AI model may be a model that is trained specifically for each situation in which the base station 300 and the terminal device 400 perform wireless communication (for example, places such as outdoors or indoors), or may be a model that is trained specifically for this situation. It may be a general-purpose model that does not depend on the model.
 パラメータ決定部133は、決定したパラメータを通知部134に通知する。 The parameter determination unit 133 notifies the notification unit 134 of the determined parameters.
 図7に示すように、通知部134は、通信パラメータに基づいて制御情報を通知する(ステップS106)。通知部134は、基地局300に制御情報を通知する。また、通知部134は、基地局300を介して端末装置400に制御情報を通知する。 As shown in FIG. 7, the notification unit 134 notifies control information based on the communication parameters (step S106). Notification unit 134 notifies base station 300 of control information. Furthermore, the notification unit 134 notifies the terminal device 400 of the control information via the base station 300.
 これにより、基地局300および端末装置400は、実空間の電波伝搬環境に基づいた無線通信を行うことができる。このように、制御局100は、仮想空間推定情報に基づいて通信パラメータを決定することで、実空間の電波伝搬環境に基づいた無線通信制御を行うことができる。 Thereby, the base station 300 and the terminal device 400 can perform wireless communication based on the radio wave propagation environment in real space. In this way, the control station 100 can perform wireless communication control based on the radio wave propagation environment in real space by determining communication parameters based on virtual space estimation information.
 なお、図7では、仮想空間推定部132が電波伝搬シミュレーションとして、LOS/NLOS判定を行うとしたが、仮想空間推定部132が行うシミュレーションはこれに限定されない。 Note that in FIG. 7, the virtual space estimation unit 132 performs LOS/NLOS determination as a radio wave propagation simulation, but the simulation performed by the virtual space estimation unit 132 is not limited to this.
 上述したように、仮想空間推定部132がレイトレーシングによるシミュレーションを行うようにしてもよい。この場合、仮想空間推定部132は、ステップS103においてレイトレーシングシミュレーションを行う。 As described above, the virtual space estimation unit 132 may perform simulation using ray tracing. In this case, the virtual space estimation unit 132 performs a ray tracing simulation in step S103.
 より具体的には、例えば、仮想空間推定部132は、仮想的な通信環境において、送信点から送信されるパス(電波が伝搬するパス)を所定の方法でシミュレーションを行う。例えば、仮想空間推定部132は、送信点から送信された電波が構造物に対して反射、回折、透過などして受信点まで到達するまでのパスを計算する。 More specifically, for example, the virtual space estimation unit 132 simulates a path transmitted from a transmission point (a path along which radio waves propagate) in a virtual communication environment using a predetermined method. For example, the virtual space estimating unit 132 calculates a path through which radio waves transmitted from a transmission point reach a reception point through reflection, diffraction, transmission, etc. from a structure.
 仮想空間推定部132は、計算したそれぞれのパスにおける伝搬路状況をシミュレーション結果として生成する。 The virtual space estimation unit 132 generates the calculated propagation path conditions for each path as a simulation result.
 仮想空間推定部132は、例えば、SBR(Shooting and Bouncing Rays)法やImage法などの様々な方法を用いてレイトレーシングによるシミュレーションを行う。仮想空間推定部132は、例えば、シミュレーションにおいて、構造物の材質、誘電率、伝導率などを考慮してそれぞれのパスを計算しうる。 The virtual space estimating unit 132 performs ray tracing simulation using various methods such as the SBR (Shooting and Bouncing Rays) method and the Image method. For example, the virtual space estimating unit 132 may calculate each path in simulation by considering the material, dielectric constant, conductivity, etc. of the structure.
 次に、仮想空間推定部132は、ステップS104において、シミュレーション結果の情報である1つ以上のパスに基づいて、受信点におけるパスロスおよび/または受信電力を推定する。 Next, in step S104, the virtual space estimating unit 132 estimates the path loss and/or received power at the receiving point based on one or more paths that are information on the simulation results.
 仮想空間推定部132は、推定したパスロスおよび/または受信電力を仮想空間推定情報としてパラメータ決定部133に出力する。あるいは、仮想空間推定部132は、仮想空間推定情報に加えて/代えて、シミュレーション結果であるパスに関する情報をパラメータ決定部133に出力するようにしてもよい。 The virtual space estimation unit 132 outputs the estimated path loss and/or received power to the parameter determination unit 133 as virtual space estimation information. Alternatively, the virtual space estimation unit 132 may output information regarding the path, which is a simulation result, to the parameter determination unit 133 in addition to/in place of the virtual space estimation information.
<2.2.2.パラメータ制御処理>
 図9は、本開示の第1実施形態に係るパラメータ制御処理の流れの一例を示すシーケンス図である。図9に示すパラメータ制御処理は、制御局100が通信パラメータを決定する場合に、無線通信システムで実行される。
<2.2.2. Parameter control processing>
FIG. 9 is a sequence diagram illustrating an example of the flow of parameter control processing according to the first embodiment of the present disclosure. The parameter control process shown in FIG. 9 is executed in the wireless communication system when the control station 100 determines communication parameters.
 図9に示すように、端末装置400は、基地局300に自身の位置に関する情報および/または通信環境情報を送信する(ステップS201)。 As shown in FIG. 9, the terminal device 400 transmits information regarding its own location and/or communication environment information to the base station 300 (step S201).
 基地局300は、端末装置400の位置に関する情報および/または通信環境情報を受信すると、位置に関する情報および/または通信環境情報を制御局100に送信する(ステップS202)。この位置に関する情報には、端末装置400の位置に関する情報、および、当該情報を送信する基地局300自身の位置に関する情報が含まれる。また、通信環境情報には、端末装置400から受信した通信環境情報に加え、基地局300が保持する通信環境情報が含まれうる。 Upon receiving the information regarding the location and/or the communication environment information of the terminal device 400, the base station 300 transmits the information regarding the location and/or the communication environment information to the control station 100 (step S202). The information regarding this location includes information regarding the location of the terminal device 400 and information regarding the location of the base station 300 itself that transmits the information. In addition to the communication environment information received from the terminal device 400, the communication environment information may include communication environment information held by the base station 300.
 制御局100は、受信した位置に関する情報および/または通信環境情報に基づいて決定処理(図7参照)を実行して制御情報を生成する。基地局300は制御局100から制御情報を受信する(ステップS203)。 The control station 100 generates control information by executing a determination process (see FIG. 7) based on the received location information and/or communication environment information. The base station 300 receives control information from the control station 100 (step S203).
 次に、図9に示すように、端末装置400は、基地局300から制御情報を受信する(ステップS204)。なお、この制御情報は、制御局100が送信する制御情報と同じである。あるいは、制御局100が送信する制御情報に基づいて基地局300が生成した制御情報であってもよい。 Next, as shown in FIG. 9, the terminal device 400 receives control information from the base station 300 (step S204). Note that this control information is the same as the control information transmitted by the control station 100. Alternatively, the control information may be generated by the base station 300 based on the control information transmitted by the control station 100.
<2.3.通信パラメータの一例>
 次に、パラメータ決定部133が決定する通信パラメータの一例について説明する。ここでは、パラメータ決定部133が、通信パラメータとして、ローカルネットワークに配置される基地局300の最大送信電力を決定するものとする。
<2.3. Example of communication parameters>
Next, an example of communication parameters determined by the parameter determination unit 133 will be explained. Here, it is assumed that the parameter determination unit 133 determines the maximum transmission power of the base station 300 located in the local network as a communication parameter.
 上述したように、ローカルネットワークでは、予め規定されたエリア(例えば自己土地)の中で、基地局300と端末装置400との無線通信が許可、認可されうる。そのため、この自己土地の境界(所有地の境界)を超える他者土地に干渉を与えないように、干渉電力の上限値が設定されうる。 As described above, in a local network, wireless communication between the base station 300 and the terminal device 400 can be permitted and authorized within a predefined area (for example, own land). Therefore, an upper limit value of interference power can be set so as not to interfere with other people's land beyond the boundary of the own land (boundary of owned land).
 図10は、通信パラメータの一例を説明するための図である。ここでは、制御局100が、実空間の構造物に関する情報を用いずに、他者土地に与える干渉電力を推定するものとする。 FIG. 10 is a diagram for explaining an example of communication parameters. Here, it is assumed that the control station 100 estimates the interference power imparted to another person's land without using information regarding structures in real space.
 この場合、制御局100は、実空間の構造物に関する情報を用いないため、統計的な電波伝搬モデルを用いて、最も厳しい条件に基づいて干渉電力を推定する。換言すると、制御局100は、所定のマージンを含む干渉電力を設定する。 In this case, since the control station 100 does not use information regarding structures in real space, it uses a statistical radio wave propagation model to estimate interference power based on the most severe conditions. In other words, the control station 100 sets interference power including a predetermined margin.
 制御局100が最も厳しい条件を用いて干渉電力を推定する理由は、上述した自己土地の境界(所有地の境界)を超える他者土地に干渉を与えないためである。 The reason why the control station 100 estimates the interference power using the most severe conditions is to avoid interfering with other people's land that exceeds the boundary of its own land (boundary of owned land) as described above.
 制御局100は、推定した干渉電力に応じて基地局300の最大送信電力を決定する。基地局300は、制御局100が決定した最大送信電力で信号を送信する。 The control station 100 determines the maximum transmission power of the base station 300 according to the estimated interference power. The base station 300 transmits a signal with the maximum transmission power determined by the control station 100.
 しかしながら、実空間には、例えばビルのような障害物600が存在する。そのため、図10に示すように、基地局300が最大送信電力で送信した信号は、障害物600に遮蔽され、自己土地の境界(所有地の境界)よりも手前までしか到達しない。すなわち、基地局300および端末装置400は、自己土地の境界よりも手前までしか無線通信を行えない。 However, an obstacle 600 such as a building exists in the real space. Therefore, as shown in FIG. 10, the signal transmitted by the base station 300 at the maximum transmission power is blocked by the obstacle 600 and reaches only to this side of the boundary of the base station's own land (the boundary of the owned land). That is, the base station 300 and the terminal device 400 can perform wireless communication only up to the boundary of their own land.
 このように、制御局100が実空間の構造物に関する情報を用いずに通信パラメータを決定すると、自己土地内の境界付近で無線通信が行えない領域が発生し、ローカルネットワークにおける無線リソースの利用効率が低下する。 In this way, if the control station 100 determines communication parameters without using information about structures in real space, areas where wireless communication cannot be performed will occur near the boundaries of its own land, which will reduce the efficiency of wireless resource usage in the local network. decreases.
 一方、本開示の第1実施形態に係る決定処理では、制御局100は、実空間の構造物に関する情報を用いて通信パラメータを決定する。ここでは、制御局100は、自己土地の境界における受信電力に応じて最大送信電力を決定する。これにより、基地局300および端末装置400は、自己土地の境界付近でも無線通信を行えるようになる。 On the other hand, in the determination process according to the first embodiment of the present disclosure, the control station 100 determines communication parameters using information regarding structures in real space. Here, the control station 100 determines the maximum transmission power according to the received power at the boundary of its own land. This allows base station 300 and terminal device 400 to perform wireless communication even near the boundaries of their own land.
 図11は、通信パラメータの一例を説明するための図である。上述したように、本実施形態に係る制御局100は、実空間の構造物に関する情報を用いて、通信パラメータを決定する。 FIG. 11 is a diagram for explaining an example of communication parameters. As described above, the control station 100 according to the present embodiment determines communication parameters using information regarding structures in real space.
 そのため、制御局100は、所有地境界における受信電力、換言すると所有地境界を超える領域における干渉電力を、実空間の構造物に関する情報を用いない場合と比較してより正確に推定することができる。換言すると、本実施形態に係る制御局100は、実空間の構造物に関する情報を用いない場合に設定するマージンを低減(あるいは、改善、またはキャンセル)することができる。 Therefore, the control station 100 can more accurately estimate the received power at the boundary of the property, in other words, the interference power in the area beyond the boundary of the property, compared to the case where information regarding structures in real space is not used. . In other words, the control station 100 according to the present embodiment can reduce (or improve, or cancel) the margin that is set when information regarding structures in real space is not used.
 制御局100が実空間の構造物を考慮して通信パラメータ(例えば最大送信電力)を決定することで、図11に示すように、基地局300が最大送信電力で送信した信号は、自己土地の境界(所有地の境界)まで到達しうる。すなわち、基地局300および端末装置400は、自己土地の境界付近でも無線通信を行えるようになる。 By determining communication parameters (for example, maximum transmission power) by the control station 100 in consideration of structures in real space, the signal transmitted by the base station 300 at the maximum transmission power can be transmitted on its own land, as shown in FIG. It can reach the boundary (the boundary of your property). That is, base station 300 and terminal device 400 can perform wireless communication even near the boundaries of their own land.
 このように、制御局100が実空間の構造物に関する情報を用いて通信パラメータを決定することで、この情報を用いない場合と比較して自己土地内の境界付近で無線通信が行えるようになる。これにより、無線通信システムは、ローカルネットワークにおける無線リソースの利用効率を改善(向上)することができる。 In this way, when the control station 100 determines communication parameters using information about structures in real space, it becomes possible to perform wireless communication near the boundaries of its own land compared to a case where this information is not used. . Thereby, the wireless communication system can improve (improve) the usage efficiency of wireless resources in the local network.
 なお、図10および図11では、基地局300がビーム(図10および図11ではビーム#1~#3)を用いて無線通信を行う場合が示されている。このように、基地局300は、ビームを用いて無線通信を行いうる。この場合、制御局100は、所定の方向(ビーム)ごとに通信パラメータ(ここでは、最大送信電力)を決定しうる。 Note that FIGS. 10 and 11 show a case where the base station 300 performs wireless communication using beams (beams #1 to #3 in FIGS. 10 and 11). In this way, base station 300 can perform wireless communication using beams. In this case, the control station 100 can determine communication parameters (here, maximum transmission power) for each predetermined direction (beam).
 このように、基地局300がビームを使用する場合、制御局100は、ビームごとに通信パラメータを決定することで、より細かい電波伝搬経路に応じた無線通信制御を行うことができる。これにより、通信システムは、無線リソースの利用効率をさらに改善(向上)することができる。 In this way, when the base station 300 uses beams, the control station 100 can perform wireless communication control according to more detailed radio wave propagation paths by determining communication parameters for each beam. Thereby, the communication system can further improve (improve) the utilization efficiency of radio resources.
 なお、ここでは、基地局300がビームを用いるとしたが、基地局300がビームを用いない場合も同様に、制御局100は、所有地の境界の受信電力に応じて通信パラメータを決定しうる。 Note that although it is assumed here that the base station 300 uses a beam, even if the base station 300 does not use a beam, the control station 100 can similarly determine the communication parameters according to the received power at the boundary of the property. .
<<3.第2実施形態>>
 上述した第1実施形態では、パラメータ決定部133が仮想空間推定情報を用いて通信パラメータを決定するとしたが、パラメータ決定部133が通信パラメータの決定に使用する情報はこれに限られない。例えば、パラメータ決定部133が、仮想空間推定情報に加えて、取得部131が取得した情報を用いて通信パラメータを決定してもよい。
<<3. Second embodiment >>
In the first embodiment described above, the parameter determining unit 133 determines communication parameters using virtual space estimation information, but the information that the parameter determining unit 133 uses to determine communication parameters is not limited to this. For example, the parameter determination unit 133 may determine communication parameters using information acquired by the acquisition unit 131 in addition to the virtual space estimation information.
<3.1.無線局の構成例>
 図12は、本開示の第2実施形態に係る制御局100の構成例を示すブロック図である。図12に示す制御局100は、取得部131が取得情報をパラメータ決定部133に出力する点を除き、図4に示す制御局100と同様の構成を有する。
<3.1. Wireless station configuration example>
FIG. 12 is a block diagram illustrating a configuration example of the control station 100 according to the second embodiment of the present disclosure. Control station 100 shown in FIG. 12 has the same configuration as control station 100 shown in FIG. 4 except that acquisition section 131 outputs acquired information to parameter determination section 133.
 取得部131が取得した取得情報は、例えば、通信部110を介してローカルネットワーク、コアネットワーク200、基地局300、端末装置400および他の通信ノードの少なくとも1つから取得した情報を含む。取得情報は、例えば、実空間における無線通信の測定情報である実空間測定情報を含む。実空間測定情報は、例えば、上述した無線通信に関する無線通信情報のうちの動的な情報を含みうる。 The acquisition information acquired by the acquisition unit 131 includes, for example, information acquired from at least one of the local network, core network 200, base station 300, terminal device 400, and other communication nodes via the communication unit 110. The acquired information includes, for example, real space measurement information that is measurement information of wireless communication in real space. The real space measurement information may include, for example, dynamic information among the wireless communication information related to the wireless communication described above.
 パラメータ決定部133は、仮想空間推定情報および実空間測定情報を用いて通信パラメータを決定する。例えば、パラメータ決定部133がAIモデルを用いて通信パラメータを決定する場合、パラメータ決定部133は、仮想空間推定情報および実空間測定情報をAIモデルに入力したときの出力を通信パラメータとする。 The parameter determining unit 133 determines communication parameters using virtual space estimation information and real space measurement information. For example, when the parameter determining unit 133 determines communication parameters using an AI model, the parameter determining unit 133 uses the output when virtual space estimation information and real space measurement information are input to the AI model as the communication parameters.
 この場合、制御局100は、第1実施形態において学習に使用したデータに加え、実空間測定情報を用いて学習されたAIモデルを用いて通信パラメータを決定する。 In this case, the control station 100 determines communication parameters using an AI model learned using real space measurement information in addition to the data used for learning in the first embodiment.
 このように、制御局100は、仮想空間推定情報に加えて実空間測定情報を用いて通信パラメータを決定することで、より精度の高い通信パラメータを決定することができる。 In this way, the control station 100 can determine communication parameters with higher accuracy by determining communication parameters using real space measurement information in addition to virtual space estimation information.
<3.2.通信処理>
<3.2.1.決定処理>
 図13は、本開示の第2実施形態に係る決定処理の流れの一例を示すフローチャートである。図13に示す決定処理のうち、図10に示す決定処理と同じ処理については同一符号を付し説明を省略する。
<3.2. Communication processing>
<3.2.1. Decision processing>
FIG. 13 is a flowchart illustrating an example of the flow of determination processing according to the second embodiment of the present disclosure. Among the determination processing shown in FIG. 13, the same processing as the determination processing shown in FIG. 10 is given the same reference numeral and the explanation thereof will be omitted.
 図13に示すように、ステップS101で環境情報(通信環境情報)を取得した取得部131は、通信部110を介して実空間測定情報を取得する(ステップS301)。取得部131は、取得した実空間測定情報をパラメータ決定部133に出力する。 As shown in FIG. 13, the acquisition unit 131 that acquired the environment information (communication environment information) in step S101 acquires real space measurement information via the communication unit 110 (step S301). The acquisition unit 131 outputs the acquired real space measurement information to the parameter determination unit 133.
 パラメータ決定部133は、ステップS105において仮想空間推定情報に加えて実空間測定情報を用いて通信パラメータを決定する。 The parameter determination unit 133 determines communication parameters using real space measurement information in addition to virtual space estimation information in step S105.
<3.2.2.パラメータ制御処理>
 図14は、本開示の第2実施形態に係るパラメータ制御処理の流れの一例を示すシーケンス図である。図14に示すパラメータ制御処理のうち、図9に示すパラメータ制御処理と同じ処理については同一符号を付し説明を省略する。
<3.2.2. Parameter control processing>
FIG. 14 is a sequence diagram illustrating an example of the flow of parameter control processing according to the second embodiment of the present disclosure. Among the parameter control processes shown in FIG. 14, the same processes as the parameter control processes shown in FIG. 9 are given the same reference numerals, and the description thereof will be omitted.
 端末装置400は、自身で測定した実空間測定情報を基地局300に送信する(ステップS401)。 The terminal device 400 transmits real space measurement information measured by itself to the base station 300 (step S401).
 基地局300は、実空間測定情報を制御局100に送信する(ステップS402)。この実空間測定情報には、端末装置400が測定した実空間測定情報、および、基地局300が測定した実空間情報が含まれうる。 The base station 300 transmits real space measurement information to the control station 100 (step S402). This real space measurement information may include real space measurement information measured by terminal device 400 and real space information measured by base station 300.
 なお、ここでは、端末装置400および基地局300が、実空間測定情報を送信してから位置に関する情報および/または通信環境情報を送信するとしたが、情報を送信する順番はこれに限られない。例えば、端末装置400および/または基地局300が、位置に関する情報および/または通信環境情報を送信してから実空間測定情報を送信してもよい。 Note that although it is assumed here that the terminal device 400 and the base station 300 transmit the real space measurement information and then the information regarding the position and/or the communication environment information, the order in which the information is transmitted is not limited to this. For example, the terminal device 400 and/or the base station 300 may transmit the real space measurement information after transmitting the information regarding the location and/or the communication environment information.
 以上のように、制御局100は、実空間測定情報および仮想空間推定情報を用いて通信パラメータを決定することで、より高精度に通信パラメータを決定することができる。例えば、通信パラメータが基地局300の最大送信電力である場合、基地局300は、ローカルネットワークが提供するサービスのエリア外に与える干渉を抑制しつつ、このエリアの境界付近まで到達する電力で信号を送信することができる。 As described above, the control station 100 can determine communication parameters with higher accuracy by determining communication parameters using real space measurement information and virtual space estimation information. For example, when the communication parameter is the maximum transmission power of the base station 300, the base station 300 suppresses interference outside the service area provided by the local network while transmitting a signal with a power that reaches near the boundary of this area. Can be sent.
<<4.第3実施形態>>
 上述した第1、第2実施形態では、制御局100は、一度の処理で通信パラメータを決定するとしたが、制御局100が行う処理はこれに限られない。例えば、制御局100が繰り返し処理を行って通信パラメータを決定してもよい。
<<4. Third embodiment >>
In the first and second embodiments described above, the control station 100 determines communication parameters in one process, but the process performed by the control station 100 is not limited to this. For example, the control station 100 may perform repeated processing to determine the communication parameters.
 制御局100が繰り返し処理を行うことで、パラメータ決定部133が決定する通信パラメータの精度が向上しうる。また、仮想空間推定部132が構築する仮想的な通信環境の精度が向上しうる。仮想空間推定部132が実行する電波伝搬シミュレーションの精度が向上しうる。 As the control station 100 repeatedly performs the process, the accuracy of the communication parameters determined by the parameter determination unit 133 can be improved. Furthermore, the accuracy of the virtual communication environment constructed by the virtual space estimation unit 132 can be improved. The accuracy of the radio wave propagation simulation executed by the virtual space estimation unit 132 can be improved.
 なお、繰り返し処理は、第1実施形態および第2実施形態のどちらにも適用されうる。ここでは、説明を簡略化するために、第2実施形態の処理を繰り返す場合の例について説明する。 Note that the iterative process can be applied to both the first embodiment and the second embodiment. Here, in order to simplify the explanation, an example will be described in which the processing of the second embodiment is repeated.
 また、本実施形態に係る繰り返し処理は、決定処理のどの処理を繰り返すかに応じて以下の3つの方法に分類されうる。
 ・仮想空間推定部132およびパラメータ決定部133の処理を繰り返す第1の処理
 ・第1の処理にさらに取得部131の処理を含めて繰り返す第2の処理
 ・第2の処理にさらに通知部134の処理を含めて繰り返す第3の処理
Further, the iterative processing according to this embodiment can be classified into the following three methods depending on which processing of the determination processing is repeated.
- A first process that repeats the processing of the virtual space estimation unit 132 and the parameter determination unit 133. - A second process that repeats the first process further including the process of the acquisition unit 131. - A second process that further includes the processing of the notification unit 134 in the second process. The third process that repeats including the process
<4.1.制御局の構成例>
 図15は、本開示の第3実施形態に係る制御局100の構成例を示すブロック図である。図15に示す制御局100は、パラメータ決定部133が所定の情報を仮想空間推定部132に出力する点を除き、図12に示す制御局100と同様の構成を有する。
<4.1. Control station configuration example>
FIG. 15 is a block diagram illustrating a configuration example of the control station 100 according to the third embodiment of the present disclosure. Control station 100 shown in FIG. 15 has the same configuration as control station 100 shown in FIG. 12, except that parameter determination section 133 outputs predetermined information to virtual space estimation section 132.
<4.2.決定処理>
 上述したように、本実施形態に係る制御局100は、決定処理の一部処理を繰り返し実行する。制御局100は、本実施形態に係る決定処理として、第1~第3の処理の少なくとも1つを実行する。
<4.2. Decision processing>
As described above, the control station 100 according to the present embodiment repeatedly executes part of the determination process. The control station 100 executes at least one of the first to third processes as the determination process according to the present embodiment.
<4.2.1.第1の処理>
 第1の処理は、決定処理のうち仮想空間推定部132の処理およびパラメータ決定部133の処理を繰り返す処理である。
<4.2.1. First process>
The first process is a process that repeats the process of the virtual space estimation unit 132 and the process of the parameter determination unit 133 in the determination process.
 仮想空間推定部132は、所定の通信パラメータ(例えば、規定値または初期値)を想定して仮想空間推定情報を生成する。パラメータ決定部133は、仮想空間推定情報および実空間測定情報に基づいて通信パラメータを決定する。 The virtual space estimating unit 132 generates virtual space estimation information assuming predetermined communication parameters (for example, specified values or initial values). The parameter determining unit 133 determines communication parameters based on virtual space estimation information and real space measurement information.
 このとき、仮想空間推定部132が想定した通信パラメータと、後段のパラメータ決定部133にてアップデート(変更)された通信パラメータと、が異なる可能性がある。 At this time, there is a possibility that the communication parameters assumed by the virtual space estimating unit 132 and the communication parameters updated (changed) by the parameter determining unit 133 in the subsequent stage are different.
 そこで、第1の処理では、パラメータ決定部133が決定した通信パラメータを仮想空間推定部132にフィードバックすることで、仮想空間推定部132がアップデートされた通信パラメータに基づき、仮想空間推定情報を再度生成することができる。パラメータ決定部133は、アップデートされた通信パラメータを用いて再度生成された仮想空間推定情報に基づいて通信パラメータを決定する。これにより、パラメータ決定部133は、より精度の高い通信パラメータを決定することができる。 Therefore, in the first process, the communication parameters determined by the parameter determination unit 133 are fed back to the virtual space estimation unit 132, so that the virtual space estimation unit 132 generates virtual space estimation information again based on the updated communication parameters. can do. The parameter determination unit 133 determines communication parameters based on virtual space estimation information that is regenerated using the updated communication parameters. Thereby, the parameter determining unit 133 can determine communication parameters with higher accuracy.
 図16は、本開示の第3実施形態に係る第1の処理の流れの一例を示すフローチャートである。なお、図16に示す第1の処理のうち、図13に示す決定処理と同じ処理については同一符号を付し、説明を省略する。 FIG. 16 is a flowchart illustrating an example of the flow of the first process according to the third embodiment of the present disclosure. Note that among the first processing shown in FIG. 16, the same processing as the determination processing shown in FIG. 13 is given the same reference numeral, and the description thereof will be omitted.
 図16に示すように、ステップS105で通信パラメータを決定したパラメータ決定部133は、通信パラメータの決定を繰り返し行うか否かを判定する(ステップS501)。 As shown in FIG. 16, the parameter determining unit 133 that determined the communication parameters in step S105 determines whether or not to repeatedly determine the communication parameters (step S501).
 例えば、パラメータ決定部133が規定された回数繰り返し通信パラメータを決定する場合、パラメータ決定部133は、規定された回数通信パラメータを決定したか否かに応じて、処理を繰り返すか否かを判定する。あるいは、パラメータ決定部133は、所定のパラメータの精度が所定以上であるか否かに応じて処理を繰り返すか否かを判定してもよく、通信環境などの精度が所定以上であるか否かに応じて処理を繰り返すか否かを判定してもよい。 For example, when the parameter determining unit 133 repeatedly determines communication parameters a specified number of times, the parameter determining unit 133 determines whether or not to repeat the process depending on whether or not the communication parameters have been determined a specified number of times. . Alternatively, the parameter determination unit 133 may determine whether to repeat the process depending on whether the accuracy of a predetermined parameter is greater than or equal to a predetermined value, and whether the accuracy of the communication environment or the like is greater than or equal to a predetermined value. It may be determined whether or not to repeat the process depending on the result.
 通信パラメータの決定を繰り返し行うと判定した場合(ステップS501;Yes)、パラメータ決定部133は、通信パラメータのフィードバックを行い(ステップS502)、ステップS103に戻る。例えば、パラメータ決定部133は、通信パラメータを仮想空間推定部132にフィードバックする。 If it is determined that communication parameters are to be determined repeatedly (step S501; Yes), the parameter determination unit 133 provides feedback of the communication parameters (step S502), and returns to step S103. For example, the parameter determining unit 133 feeds back communication parameters to the virtual space estimating unit 132.
 仮想空間推定部132は、アップデートされた通信パラメータに基づいて基地局300-端末装置400間(送信点-受信点間)の電波伝搬シミュレーションを実行する。 The virtual space estimation unit 132 executes a radio wave propagation simulation between the base station 300 and the terminal device 400 (between the transmission point and the reception point) based on the updated communication parameters.
 通信パラメータの決定を繰り返し行わないと判定した場合(ステップS501;No)、パラメータ決定部133は、決定した通信パラメータを通知部134に出力する。通知部134は、ステップS106において、通信パラメータに基づいた制御情報を送信する。 If it is determined not to repeatedly determine the communication parameters (step S501; No), the parameter determination unit 133 outputs the determined communication parameters to the notification unit 134. The notification unit 134 transmits control information based on the communication parameters in step S106.
<4.2.2.第2の処理>
 第2の処理は、決定処理のうち、取得部131の処理、仮想空間推定部132の処理およびパラメータ決定部133の処理を繰り返す処理である。
<4.2.2. Second process>
The second process is a process that repeats the process of the acquisition unit 131, the process of the virtual space estimation unit 132, and the process of the parameter determination unit 133 in the determination process.
 例えば、制御局100が通信パラメータを決定している間に、端末装置400や基地局300などが測定した実空間測定情報が変動する可能性がある。制御局100が繰り返し処理にて通信パラメータを決定している場合、処理時間が長くなる恐れがあり、この場合、実空間測定情報が変動する可能性がでてくる。 For example, while the control station 100 is determining communication parameters, the real space measurement information measured by the terminal device 400, the base station 300, etc. may change. If the control station 100 determines the communication parameters through repeated processing, the processing time may become long, and in this case, there is a possibility that the real space measurement information will fluctuate.
 そこで、第2の処理では、パラメータ決定部133が決定した通信パラメータを仮想空間推定部132にフィードバックするとともに、取得部131が実空間測定情報を再度取得する。これにより、仮想空間推定部132は、アップデートされた通信パラメータおよび実空間測定情報を用いて仮想空間推定情報を再度生成することができる。この仮想空間推定情報を用いて通信パラメータを決定することで、パラメータ決定部133は、より精度の高い通信パラメータを決定することができる。 Therefore, in the second process, the communication parameters determined by the parameter determination unit 133 are fed back to the virtual space estimation unit 132, and the acquisition unit 131 acquires the real space measurement information again. Thereby, the virtual space estimation unit 132 can generate virtual space estimation information again using the updated communication parameters and real space measurement information. By determining communication parameters using this virtual space estimation information, the parameter determination unit 133 can determine communication parameters with higher accuracy.
 あるいは、端末装置400が移動可能な装置である場合、端末装置400が異なる位置で測定した実空間測定情報を制御局100に送信するようにしてもよい。この場合、制御局100は、様々な位置で測定された実空間測定情報に基づいて仮想空間推定情報を生成することができる。これにより、制御局100は、エリア内における電波伝搬シミュレーションの推定精度を全体的に向上することができ、仮想空間推定情報をより高精度に算出することができる。 Alternatively, if the terminal device 400 is a movable device, real space measurement information measured by the terminal device 400 at different positions may be transmitted to the control station 100. In this case, the control station 100 can generate virtual space estimation information based on real space measurement information measured at various positions. Thereby, the control station 100 can improve the overall estimation accuracy of the radio wave propagation simulation within the area, and can calculate the virtual space estimation information with higher accuracy.
 図17は、本開示の第3実施形態に係る第2の処理の流れの一例を示すフローチャートである。なお、図17に示す第2の処理のうち、図16に示す第1の処理と同じ処理については同一符号を付し、説明を省略する。 FIG. 17 is a flowchart illustrating an example of the flow of the second process according to the third embodiment of the present disclosure. Note that among the second processing shown in FIG. 17, the same processing as the first processing shown in FIG. 16 is given the same reference numeral, and the description thereof will be omitted.
 図17に示すように、パラメータ決定部133は、ステップS501において、繰り返し処理を行うと判定した場合(ステップS501;Yes)、通信パラメータのフィードバックを行い(ステップS502)、ステップS301に戻る。 As shown in FIG. 17, if the parameter determination unit 133 determines in step S501 to perform repeated processing (step S501; Yes), it feeds back the communication parameters (step S502), and returns to step S301.
 このように、第2の処理では、制御局100は、繰り返し判定後に、通信パラメータのフィードバックを行うとともに、ステップS301に戻り、再度実空間測定情報を取得する。 In this way, in the second process, the control station 100 feeds back the communication parameters after repeated determination, returns to step S301, and acquires real space measurement information again.
 これにより、仮想空間推定部132は、アップデート後の通信パラメータおよび実空間測定情報に基づいて仮想空間推定情報を生成することができる。また、パラメータ決定部133は、更新された仮想空間推定情報および実空間測定情報に基づいて通信パラメータを決定することができる。 Thereby, the virtual space estimation unit 132 can generate virtual space estimation information based on the updated communication parameters and real space measurement information. Furthermore, the parameter determination unit 133 can determine communication parameters based on the updated virtual space estimation information and real space measurement information.
 このように、実空間測定情報の取得から繰り返し処理を実行することで、制御局100は、例えば、同じ位置の端末装置400が測定した実空間測定情報に基づいて通信パラメータを決定することができる。これにより、制御局100は、実空間における測定情報の長区間変動を考慮して通信パラメータを決定することができる。 In this way, by repeatedly performing processing from acquisition of real space measurement information, the control station 100 can determine communication parameters based on real space measurement information measured by the terminal device 400 at the same location, for example. . Thereby, the control station 100 can determine communication parameters in consideration of long-term fluctuations in measurement information in real space.
 あるいは、制御局100は、例えば、異なる位置で同じ端末装置400が測定した実空間測定情報に基づいて通信パラメータを決定することができる。これにより、制御局100は、実空間の様々な場所で測定された測定情報に基づいて通信パラメータを決定することができ、エリア内の推定精度を全体的に向上することができる。 Alternatively, the control station 100 can determine the communication parameters based on real space measurement information measured by the same terminal device 400 at different locations, for example. Thereby, the control station 100 can determine communication parameters based on measurement information measured at various locations in real space, and can improve overall estimation accuracy within the area.
<4.2.3.第3の処理>
 第3の処理は、決定処理のうち、取得部131の処理、仮想空間推定部132の処理、パラメータ決定部133の処理および通知部134の処理を繰り返す処理である。なお、第3の処理は、図15に示す制御局100だけでなく、図4や図12に示す制御局100でも実行されうる。
<4.2.3. Third process>
The third process is a process that repeats the process of the acquisition unit 131, the process of the virtual space estimation unit 132, the process of the parameter determination unit 133, and the process of the notification unit 134 in the determination process. Note that the third process can be executed not only by the control station 100 shown in FIG. 15 but also by the control station 100 shown in FIG. 4 or FIG. 12.
 例えば、制御局100が決定した通信パラメータに基づいて基地局300-端末装置400間で無線通信が行われることで、実空間測定情報が変動する可能性がある。 For example, real space measurement information may change due to wireless communication being performed between the base station 300 and the terminal device 400 based on communication parameters determined by the control station 100.
 そこで、第3の処理では、制御局100は、通信パラメータに応じた制御情報を通知した後に再度実空間測定情報を取得し、取得した実空間測定情報を用いて通信パラメータを決定する。これにより、パラメータ決定部133は、アップデートされた実空間測定情報を用いて通信パラメータを決定することができ、より精度の高い通信パラメータを決定することができる。 Therefore, in the third process, the control station 100 obtains real space measurement information again after notifying control information according to the communication parameters, and determines communication parameters using the obtained real space measurement information. Thereby, the parameter determination unit 133 can determine communication parameters using the updated real space measurement information, and can determine communication parameters with higher accuracy.
 図18は、本開示の第3実施形態に係る第3の処理の流れの一例を示すフローチャートである。なお、図18に示す第3の処理のうち、図13に示す決定処理と同じ処理については同一符号を付し、説明を省略する。 FIG. 18 is a flowchart illustrating an example of the flow of the third process according to the third embodiment of the present disclosure. Note that among the third processing shown in FIG. 18, the same processing as the determination processing shown in FIG. 13 is given the same reference numeral, and a description thereof will be omitted.
 図18に示すように、通知部134は、ステップS106において、制御情報を送信すると、繰り返し通信パラメータの決定を行うか否か判定を行う(ステップS601)。通知部134は、例えば図17のステップS501と同様にして繰り返し判定を行う。 As shown in FIG. 18, after transmitting the control information in step S106, the notification unit 134 determines whether to repeatedly determine communication parameters (step S601). The notification unit 134 repeatedly performs the determination in the same manner as in step S501 of FIG. 17, for example.
 通信パラメータの決定を繰り返し行うと判定した場合(ステップS601;Yes)、制御局100は、ステップS301に戻る。これにより、取得部131は、アップデート後、すなわち、新たな制御情報を適用して基地局300および/または端末装置400が測定した実空間測定情報を取得する。 If it is determined to repeatedly determine the communication parameters (step S601; Yes), the control station 100 returns to step S301. Thereby, the acquisition unit 131 acquires the real space measurement information measured by the base station 300 and/or the terminal device 400 after the update, that is, by applying new control information.
 一方、通信パラメータの決定を繰り返し行わないと判定した場合(ステップS601;No)、制御局100は、第3の処理を終了する。 On the other hand, if it is determined not to repeatedly determine communication parameters (step S601; No), the control station 100 ends the third process.
 なお、ここでは、繰り返し処理時に、パラメータ決定部133が通信パラメータのフィードバックを行っていないが、パラメータ決定部133が通信パラメータのフィードバックを行うようにしてもよい。この場合、パラメータ決定部133は、繰り返し処理を行うと判定された後に、通信パラメータを仮想空間推定部132にフィードバックする。 Note that here, the parameter determining unit 133 does not feedback the communication parameters during the repetitive processing, but the parameter determining unit 133 may feedback the communication parameters. In this case, the parameter determination unit 133 feeds back the communication parameters to the virtual space estimation unit 132 after it is determined that the iterative process is to be performed.
 以上のように、第3実施形態では、制御局100が決定処理の少なくとも1部を繰り返し実行する。これにより、制御局100は、より精度の高い通信パラメータを決定することができる。 As described above, in the third embodiment, the control station 100 repeatedly executes at least part of the determination process. Thereby, the control station 100 can determine communication parameters with higher accuracy.
 なお、制御局100は、繰り返し処理において、AIモデルの再学習を行ってもよい。この場合、AIモデルは、例えば決定した通信パラメータに応じて再度生成された仮想空間推定情報、再度決定された通信パラメータ、および、再度取得された実空間測定情報の少なくとも1つを用いて再学習される。このように、AIモデルの再学習を行うことで、通信パラメータを決定するAIモデルの精度をより向上させることができる。 Note that the control station 100 may re-learn the AI model in the iterative process. In this case, the AI model is retrained using, for example, at least one of virtual space estimation information generated again according to the determined communication parameters, communication parameters determined again, and real space measurement information acquired again. be done. By relearning the AI model in this way, the accuracy of the AI model that determines communication parameters can be further improved.
<<5.応用例>>
<5.1.第1応用例>
 上述したように、通信パラメータの決定は制御局100によって実行される。このとき、制御局100は、例えば、端末装置400を所持する利用者からの指示に従って通信パラメータを決定するようにしてもよい。制御局100は、利用者からの指示に従って、通信状況(例えば、受信電力や干渉電力など)の推定を行いうる。
<<5. Application example >>
<5.1. First application example>
As described above, the determination of communication parameters is executed by the control station 100. At this time, the control station 100 may determine the communication parameters according to an instruction from a user who owns the terminal device 400, for example. The control station 100 can estimate communication conditions (for example, received power, interference power, etc.) according to instructions from a user.
 この場合、利用者は、まず、制御局100での推定に用いられる(あるいは有用な)情報を制御局100に送信することで、推定を行うよう制御局100に申請する。利用者は、この情報の送信を、自身が所持する端末装置400を用いて行いうる。 In this case, the user first applies to the control station 100 to perform estimation by transmitting to the control station 100 information used (or useful) for estimation at the control station 100. The user can transmit this information using the terminal device 400 that he/she owns.
 図19は、本開示の第1応用例に係る端末装置400のユーザインタフェースの一例を示す図である。 FIG. 19 is a diagram illustrating an example of a user interface of the terminal device 400 according to the first application example of the present disclosure.
 図19の例では、端末装置400は、制御局100での推定に用いられる情報として、推定する地点の周辺画像、通信環境に関するアンケート、推定地点、および、地図の少なくとも1つに関する情報を送信する。 In the example of FIG. 19, the terminal device 400 transmits information regarding at least one of the surrounding image of the point to be estimated, a questionnaire regarding the communication environment, the estimated point, and a map, as information used for estimation by the control station 100. .
 推定地点の周辺画像に関する情報は、静止画像であっても動画像であってもよい。また、端末装置400は、予め撮影された周辺画像を制御局100に送信してもよい。あるいは、図19に示すように、制御局100に推定をリクエストする際に、利用者が端末装置400に搭載されたカメラ(図示省略)を用いて周辺画像(写真)を撮影するようにしてもよい。端末装置400は、利用者が撮影した周辺画像を制御局100に送信する。 The information regarding the surrounding images of the estimated point may be a still image or a moving image. Further, the terminal device 400 may transmit a peripheral image photographed in advance to the control station 100. Alternatively, as shown in FIG. 19, when requesting estimation from the control station 100, the user may take a peripheral image (photograph) using a camera (not shown) installed in the terminal device 400. good. The terminal device 400 transmits surrounding images photographed by the user to the control station 100.
 通信環境に関するアンケート情報は、例えば利用者が入力する情報に基づいて生成される情報である。利用者が表示装置に表示されるアンケートに回答することで、端末装置400はアンケート情報を生成する。利用者が回答するアンケートは、Yes、Noで回答を選択する選択形式であってもよく、自由記述で回答する記述形式であってもよい。 Questionnaire information regarding the communication environment is, for example, information generated based on information input by the user. When the user answers the questionnaire displayed on the display device, the terminal device 400 generates questionnaire information. The questionnaire to which the user responds may be of a selection format where the user selects an answer with Yes or No, or may be of a descriptive format where the user answers in free description.
 アンケートとして、例えば、基地局300が目視可能かどうかや、周辺環境に関する質問、想定する基地局300の最大送信電力などに関する質問などが挙げられる。周辺環境に関する質問は、例えば、推定する地点が屋外か屋内か、屋外であれば、過疎地であるか、郊外であるか、または、都市部であるかどうかの質問などを含みうる。また、周辺環境に関する質問は、例えば、屋内であれば、住居であるかオフィスであるかの質問を含みうる。 Examples of the questionnaire include questions regarding whether the base station 300 is visible, questions regarding the surrounding environment, and questions regarding the assumed maximum transmission power of the base station 300. Questions about the surrounding environment may include, for example, questions about whether the point to be estimated is outdoors or indoors, and if it is outdoors, whether it is in a depopulated area, a suburb, or an urban area. Further, the questions regarding the surrounding environment may include, for example, a question about whether the environment is indoors, whether it is a residence or an office.
 また、推定地点に関する情報は、制御局100が受信電力や干渉電力などの推定を行う地点に関する情報を含む。この推定地点は、端末装置400の現在位置でもよく、この現在位置とは異なる位置(例えば、端末装置400の設置予定位置など)であってもよい。 Additionally, the information regarding the estimated point includes information regarding the point at which the control station 100 estimates received power, interference power, and the like. This estimated point may be the current location of the terminal device 400, or may be a location different from the current location (for example, the planned installation location of the terminal device 400).
 端末装置400は、推定地点に関する情報として、緯度、経度や高度などの絶対位置情報を制御局100に送信しうる。あるいは、端末装置400は、推定地点に関する情報として、基地局300との相対的な位置関係など相対位置情報を送信してもよい。 The terminal device 400 can transmit absolute position information such as latitude, longitude, and altitude to the control station 100 as information regarding the estimated location. Alternatively, the terminal device 400 may transmit relative position information such as a relative positional relationship with the base station 300 as information regarding the estimated point.
 あるいは、端末装置400は、周辺画像を撮影した場所を推定地点として制御局100に送信しうる。例えば、端末装置400に搭載されるカメラが、撮影場所に関する情報も含めて周辺画像を撮影する場合、端末装置400は、この撮影場所に関する情報を推定地点に関する情報として制御局100に送信する。 Alternatively, the terminal device 400 may transmit the location where the surrounding image was taken to the control station 100 as the estimated location. For example, when a camera installed in the terminal device 400 photographs surrounding images including information regarding the photographing location, the terminal device 400 transmits the information regarding the photographing location to the control station 100 as information regarding the estimated point.
 また、端末装置400は、地図に関する情報に推定地点に関する情報を含めてもよい。 Additionally, the terminal device 400 may include information regarding the estimated location in the information regarding the map.
 地図に関する情報は、例えば、推定地点周辺の地図に関する情報を含む。このとき、端末装置400は、基地局300の設置位置が示された地図情報を制御局100に送信しうる。このとき、端末装置400は、自身の位置または推定地点に関する情報を地図情報に含めて制御局100に送信するようにしてもよい。 The information regarding the map includes, for example, information regarding the map around the estimated point. At this time, the terminal device 400 can transmit map information indicating the installation location of the base station 300 to the control station 100. At this time, the terminal device 400 may include information regarding its own position or estimated point in the map information and transmit it to the control station 100.
 制御局100は、端末装置400から取得したこれらの情報に基づいて上述した決定処理を実行し、仮想空間推定情報および/または通信パラメータを推定する。制御局100は、推定結果を端末装置400に通知する。端末装置400は、通知に基づき、推定結果を表示装置に表示することで利用者に提示する。 The control station 100 executes the above-described determination process based on the information obtained from the terminal device 400, and estimates virtual space estimation information and/or communication parameters. Control station 100 notifies terminal device 400 of the estimation result. Based on the notification, the terminal device 400 presents the estimation result to the user by displaying it on a display device.
<5.2.第2応用例>
 第2応用例として、端末装置400を所持する利用者が、所定の位置に基地局300を設置した場合の実空間に基づくカバレッジ(通信可能)を制御局100に推定してもらう場合について説明する。
<5.2. Second application example>
As a second application example, a case will be described in which a user who owns a terminal device 400 asks the control station 100 to estimate the coverage (communication possible) based on real space when the base station 300 is installed at a predetermined location. .
 利用者は、まず、制御局100での推定に用いられる(あるいは有用な)情報を制御局100に送信することで、推定を行うよう制御局100に申請する。利用者は、この情報の送信を、自身が所持する端末装置400を用いて行いうる。 The user first applies to the control station 100 to perform estimation by transmitting to the control station 100 information used (or useful) for estimation at the control station 100. The user can transmit this information using the terminal device 400 that he/she owns.
 端末装置400は、制御局100での推定に用いられる情報として、基地局300の想定する最大送信電力に関する情報、および、地図情報の少なくとも1つを送信する。地図情報は、例えば基地局300の位置(上述した所定の位置に相当)に関する情報を含む。基地局300の位置は、制御局100に実空間に基づくカバレッジを推定してもらう位置である。この位置は、端末装置400の現在位置であってもよく、利用者が指定する位置であってもよい。 The terminal device 400 transmits at least one of information regarding the maximum transmission power assumed by the base station 300 and map information as information used for estimation by the control station 100. The map information includes, for example, information regarding the location of the base station 300 (corresponding to the above-mentioned predetermined location). The position of the base station 300 is a position at which the control station 100 estimates coverage based on real space. This location may be the current location of the terminal device 400, or may be a location specified by the user.
 制御局100は、端末装置400から取得したこれらの情報に基づいて上述した決定処理を実行し、仮想空間推定情報および/または通信パラメータを推定する。換言すると、制御局100は、干渉電力が所定値以上となるエリアを推定する。これにより、制御局100は、所定の位置に基地局300が配置された場合の基地局300のカバレッジを推定する。 The control station 100 executes the above-described determination process based on the information obtained from the terminal device 400, and estimates virtual space estimation information and/or communication parameters. In other words, the control station 100 estimates an area where the interference power is equal to or greater than a predetermined value. Thereby, the control station 100 estimates the coverage of the base station 300 when the base station 300 is placed at a predetermined position.
 制御局100は、推定したカバレッジに関する情報を推定結果として端末装置400に通知する。端末装置400は、取得した推定結果を表示装置に表示することで利用者に提示する。 The control station 100 notifies the terminal device 400 of information regarding the estimated coverage as the estimation result. The terminal device 400 presents the acquired estimation results to the user by displaying them on a display device.
 図20は、本開示の第2応用例に係る端末装置400のユーザインタフェースの一例を示す図である。図20では、端末装置400が、制御局100から取得した推定結果を利用者に提示する場合が示される。 FIG. 20 is a diagram illustrating an example of a user interface of the terminal device 400 according to the second application example of the present disclosure. FIG. 20 shows a case where the terminal device 400 presents the estimation result obtained from the control station 100 to the user.
 図20に示すように、端末装置400は、制御局100が推定したカバレッジを示す情報を基地局300とともに地図情報に重畳して表示装置に表示する。 As shown in FIG. 20, the terminal device 400 displays information indicating the coverage estimated by the control station 100 together with the base station 300 on the map information on a display device.
 このとき、端末装置400は、カバレッジの推定で使用した想定する最大送信電力(図中の「想定送信電力」)を利用者に提示してもよい。また、端末装置400は、この想定送信電力の変更を利用者から受け付けるようにしてもよい。 At this time, the terminal device 400 may present to the user the assumed maximum transmission power ("estimated transmission power" in the figure) used in coverage estimation. Furthermore, the terminal device 400 may accept a change in this estimated transmission power from the user.
 例えば、図20に示すように、想定送信電力を示す数字を利用者が自由に変更できるようにする。利用者が想定送信電力を入力した後、「送信」ボタンを押下すると、端末装置400は、利用者が入力した想定送信電力でカバレッジを再推定するよう制御局100に要請する。 For example, as shown in FIG. 20, the user can freely change the number indicating the expected transmission power. When the user presses the "send" button after inputting the estimated transmission power, the terminal device 400 requests the control station 100 to re-estimate the coverage using the estimated transmission power input by the user.
 このように、端末装置400が基地局300の推定カバレッジを地図情報とともに利用者に提示することで、利用者は基地局300の推定カバレッジをより容易に認識することができる。 In this way, by the terminal device 400 presenting the estimated coverage of the base station 300 to the user together with the map information, the user can more easily recognize the estimated coverage of the base station 300.
<<6.その他の実施形態>>
 上述した各実施形態に係る処理は、上記各実施形態以外にも種々の異なる形態にて実施されてよい。
<<6. Other embodiments >>
The processing according to each of the embodiments described above may be implemented in various different forms other than those of the embodiments described above.
 上述した各実施形態では、端末装置400や基地局300が様々な情報(例えば、実空間測定情報や通信環境情報、制御局100が推定に使用する情報など)を制御局100に送信する。端末装置400や基地局300による情報の送信に関する条件は、個別に設定または規定されうる。この条件は、例えば、情報を送信するタイミング、送信を行うトリガーの条件、周期などを含む。 In each of the embodiments described above, the terminal device 400 and the base station 300 transmit various information (for example, real space measurement information, communication environment information, information used by the control station 100 for estimation, etc.) to the control station 100. Conditions regarding information transmission by the terminal device 400 and the base station 300 can be individually set or defined. These conditions include, for example, the timing of transmitting information, the trigger conditions for transmitting, and the period.
 例えば、端末装置400が、物体の検出情報を送信する場合、その情報は、端末装置400が物体を検出したタイミングで送信されうる。すなわち、端末装置400が物体を検出したことをトリガーとして、端末装置400は、その検出情報を制御局100に送信する。換言すると、端末装置400は、物体を検出しない間、その検出情報を制御局100に送信しなくてもよい。 For example, when the terminal device 400 transmits object detection information, the information may be transmitted at the timing when the terminal device 400 detects the object. That is, when the terminal device 400 detects an object as a trigger, the terminal device 400 transmits the detection information to the control station 100. In other words, the terminal device 400 does not need to transmit the detection information to the control station 100 while not detecting an object.
 また、例えば、端末装置400が通信品質に関する品質情報を送信する場合、端末装置400は、前回送信した品質情報との差分に応じて、品質情報を送信するか否かを判断する。 For example, when the terminal device 400 transmits quality information regarding communication quality, the terminal device 400 determines whether to transmit the quality information based on the difference from the previously transmitted quality information.
 具体的には、品質情報が前回送信した品質情報と比較して所定の値以上である(所定の値を超える)場合、端末装置400は、品質情報を制御局100に送信する。換言すると、端末装置400は、品質情報が前回送信した品質情報と比較して所定の値未満である(所定の値以上である)場合、その品質情報を制御局100に送信しなくてもよい。 Specifically, when the quality information is greater than or equal to a predetermined value (exceeds a predetermined value) compared to the quality information transmitted last time, the terminal device 400 transmits the quality information to the control station 100. In other words, if the quality information is less than a predetermined value (greater than or equal to a predetermined value) compared to the quality information transmitted last time, the terminal device 400 does not need to transmit the quality information to the control station 100. .
 なお、端末装置400は、品質情報を送信する場合、前回の品質情報との差分を示す情報を制御局100に送信するようにしてもよい。 Note that when transmitting quality information, the terminal device 400 may transmit information indicating a difference from the previous quality information to the control station 100.
 例えば、上述の実施形態の制御局100、基地局300および端末装置400を制御する制御装置は、専用のコンピュータシステムにより実現してもよいし、汎用のコンピュータシステムによって実現してもよい。 For example, the control device that controls the control station 100, base station 300, and terminal device 400 in the embodiment described above may be realized by a dedicated computer system or a general-purpose computer system.
 例えば、上述の動作を実行するための通信プログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、制御局100、基地局300および端末装置400の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、制御局100、基地局300および端末装置400の内部の装置(例えば、制御部130、340、450)であってもよい。 For example, a communication program for executing the above operations is stored and distributed in a computer-readable recording medium such as an optical disk, semiconductor memory, magnetic tape, or flexible disk. Then, for example, the program is installed on a computer and the control device is configured by executing the above-described processing. At this time, the control device may be a device (for example, a personal computer) external to the control station 100, the base station 300, and the terminal device 400. Further, the control device may be a device inside the control station 100, the base station 300, and the terminal device 400 (for example, the control units 130, 340, 450).
 また、上記通信プログラムをインターネット等のネットワーク上のサーバー装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバー装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。 Furthermore, the communication program may be stored in a disk device included in a server device on a network such as the Internet, so that it can be downloaded to a computer. Furthermore, the above-mentioned functions may be realized through collaboration between an OS (Operating System) and application software. In this case, the parts other than the OS may be stored on a medium and distributed, or the parts other than the OS may be stored in a server device so that they can be downloaded to a computer.
 また、上記各実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。 Further, among the processes described in each of the above embodiments, all or part of the processes described as being performed automatically can be performed manually, or the processes described as being performed manually All or part of this can also be performed automatically using known methods. In addition, information including the processing procedures, specific names, and various data and parameters shown in the above documents and drawings may be changed arbitrarily, unless otherwise specified. For example, the various information shown in each figure is not limited to the illustrated information.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 Furthermore, each component of each device shown in the drawings is functionally conceptual, and does not necessarily need to be physically configured as shown in the drawings. In other words, the specific form of distributing and integrating each device is not limited to what is shown in the diagram, and all or part of the devices can be functionally or physically distributed or integrated in arbitrary units depending on various loads and usage conditions. Can be integrated and configured.
 また、上述してきた各実施形態および変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Further, each of the embodiments and modifications described above can be combined as appropriate within a range that does not conflict with the processing contents.
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 Furthermore, the effects described in this specification are merely examples and are not limiting, and other effects may also exist.
 また、例えば、本実施形態は、装置またはシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。 Further, for example, the present embodiment can be applied to any configuration constituting a device or system, such as a processor as a system LSI (Large Scale Integration), a module using multiple processors, a unit using multiple modules, etc. Furthermore, it can also be implemented as a set (that is, a partial configuration of the device) with additional functions.
 なお、本実施形態において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、および、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 Note that in this embodiment, a system means a collection of multiple components (devices, modules (components), etc.), and it does not matter whether all the components are in the same housing or not. Therefore, multiple devices housed in separate casings and connected via a network, and one device with multiple modules housed in one casing are both systems. .
 また、例えば、本実施形態は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 Furthermore, for example, the present embodiment can take a cloud computing configuration in which one function is shared and jointly processed by a plurality of devices via a network.
 なお、上述してきた各実施形態では、制御局100が基地局300および/または端末装置400の送信パラメータを決定する場合を説明したが、これに限定されない。上述してきた各実施形態は、基地局300および/または端末装置400の設置数(設置上限数)、設置場所、および/または、設置方向(水平方向やチルト角など)を決定・設計する目的で用いられうる。 Note that in each of the embodiments described above, a case has been described in which the control station 100 determines the transmission parameters of the base station 300 and/or the terminal device 400, but the present invention is not limited to this. Each of the embodiments described above is for the purpose of determining and designing the number of installed base stations 300 and/or terminal devices 400 (upper limit of installed number), installation location, and/or installation direction (horizontal direction, tilt angle, etc.). can be used.
<<7.むすび>>
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態および変形例にわたる構成要素を適宜組み合わせてもよい。
<<7. Conclusion >>
Although the embodiments of the present disclosure have been described above, the technical scope of the present disclosure is not limited to the above-mentioned embodiments as they are, and various changes can be made without departing from the gist of the present disclosure. . Furthermore, components of different embodiments and modifications may be combined as appropriate.
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 Further, the effects in each embodiment described in this specification are merely examples and are not limited, and other effects may also be provided.
 なお、本技術は以下のような構成も取ることができる。
(1)
 基地局および端末装置の少なくとも一方の実空間における位置に関する位置情報と、前記実空間の通信環境に関する通信環境情報と、に基づいて生成された仮想的な通信環境を用いて、前記基地局および前記端末装置との間の無線通信に関する仮想空間推定情報を生成し、
 前記仮想空間推定情報に基づき、前記基地局および前記端末装置の少なくとも一方の通信パラメータを決定する、制御部、
 を備える情報処理装置。
(2)
 前記制御部は、前記実空間における前記無線通信の測定情報に基づき、前記通信パラメータを決定する、(1)に記載の情報処理装置。
(3)
 前記測定情報は、前記端末装置が前記実空間において前記無線通信を測定した測定結果を含む、(2)に記載の情報処理装置。
(4)
 前記制御部は、決定した前記通信パラメータに応じて前記仮想空間推定情報を再度生成し、再度生成した前記仮想空間推定情報に基づき、通信パラメータを再度決定する、(1)~(3)のいずれか1つに記載の情報処理装置。
(5)
 前記制御部は、決定した前記通信パラメータ、および、再度取得した前記実空間における前記無線通信の測定情報に応じて、前記仮想空間推定情報を再度生成し、再度生成した前記仮想空間推定情報に基づき、通信パラメータを再度決定する、(1)~(3)のいずれか1つに記載の情報処理装置。
(6)
 前記制御部は、
 決定した前記通信パラメータを、前記基地局および前記端末装置の少なくとも一方に通知し、
 前記通信パラメータを用いた前記無線通信の前記実空間における測定情報を取得し、
 前記測定情報に基づき、通信パラメータを再度決定する、
 (1)~(3)のいずれか1つに記載の情報処理装置。
(7)
 前記仮想空間推定情報は、前記基地局および前記端末装置の少なくとも一方の電波伝搬に関する情報を含む、(1)~(6)のいずれか1つに記載の情報処理装置。
(8)
 前記仮想空間推定情報は、前記基地局および前記端末装置との間がLOS(Line-Of-Sight)環境またはNLOS(Non Line-Of-Sight)環境であることを示す情報を含む、(1)~(7)のいずれか1つに記載の情報処理装置。
(9)
 前記仮想空間推定情報は、前記無線通信における電波伝搬のシミュレーション結果に関するシミュレーション情報を含む、(1)~(8)のいずれか1つに記載の情報処理装置。
(10)
 前記シミュレーション情報は、電波のパスを推定した結果に関するパス推定情報を含む、(9)に記載の情報処理装置。
(11)
 前記パス推定情報は、レイトレーシングに基づいて推定された前記電波の前記パスに関する情報を含む、(10)に記載の情報処理装置。
(12)
 前記通信環境情報は、前記実空間内の構造物、前記基地局および前記端末装置の少なくとも一方、前記実空間内のセンシング結果、および、前記無線通信のいずれか1つに関する情報を含む、(1)~(11)のいずれか1つに記載の情報処理装置。
(13)
 前記制御部は、記憶部、および、他の装置の少なくとも一方から前記通信環境情報を取得する、(1)~(12)のいずれか1つに記載の情報処理装置。
(14)
 前記制御部は、前記通信環境情報および前記仮想空間推定情報の少なくとも一方を入力とし、前記通信パラメータを出力とする学習モデルを用いて、前記通信パラメータを決定する、(1)~(13)のいずれか1つに記載の情報処理装置。
(15)
 前記学習モデルは、前記通信環境情報、前記仮想空間推定情報、前記通信パラメータ、および、前記実空間における前記無線通信の測定情報の少なくとも1つを用いて学習される、(14)に記載の情報処理装置。
(16)
 前記学習モデルは、決定した前記通信パラメータに応じて再度生成された前記仮想空間推定情報、再度決定された通信パラメータ、および、再度取得された前記実空間における前記無線通信の測定情報の少なくとも1つを用いて再学習される、(14)または(15)に記載の情報処理装置。
(17)
 前記通信パラメータは、前記基地局の最大送信電力に関する情報を含み、
 前記制御部は、前記無線通信の通信区域の境界における受信電力に応じて、前記最大送信電力を決定する、(1)~(16)のいずれか1つに記載の情報処理装置。
(18)
 情報処理装置から通信パラメータを取得し、
 取得した通信パラメータを用いて基地局と通信を行う、制御部、
 を備え、
 前記通信パラメータは、仮想空間推定情報に基づき、前記情報処理装置により決定されるパラメータであり、
 前記仮想空間推定情報は、前記基地局および端末装置の少なくとも一方の実空間における位置に関する位置情報と、前記実空間の通信環境に関する通信環境情報と、に基づいて生成された仮想的な通信環境を用いて、前記情報処理装置により生成される情報であって、前記基地局および前記端末装置との間の無線通信に関する情報である、
 端末装置。
(19)
 前記制御部は、所定位置における周辺画像、および、前記所定位置および前記基地局のいずれか一方を含む地図情報のいずれか一方を含む前記通信環境情報を前記情報処理装置に送信する、(18)に記載の端末装置。
(20)
 前記制御部は、前記所定位置で前記無線通信を行う場合に使用する前記通信パラメータを前記情報処理装置から取得する、(19)に記載の端末装置。
(21)
 前記制御部は、前記通信パラメータに基づき、前記無線通信のカバレッジに関する情報を表示装置に表示する、(18)~(20)のいずれか1つに記載の端末装置。
(22)
 基地局および端末装置の少なくとも一方の実空間における位置に関する位置情報と、前記実空間の通信環境に関する通信環境情報と、に基づいて生成された仮想的な通信環境を用いて、前記基地局および前記端末装置との間の無線通信に関する仮想空間推定情報を生成することと、
 前記仮想空間推定情報に基づき、前記基地局および前記端末装置の少なくとも一方の通信パラメータを決定することと、
 を含む情報処理方法。
(23)
 情報処理装置から通信パラメータを取得することと、
 取得した通信パラメータを用いて基地局と通信を行うことと、
 を含み、
 前記通信パラメータは、仮想空間推定情報に基づき、前記情報処理装置により決定されるパラメータであり、
 前記仮想空間推定情報は、前記基地局および端末装置の少なくとも一方の実空間における位置に関する位置情報と、前記実空間の通信環境に関する通信環境情報と、に基づいて生成された仮想的な通信環境を用いて、前記情報処理装置により生成される情報であって、前記基地局および前記端末装置との間の無線通信に関する情報である、
 通信方法。
Note that the present technology can also have the following configuration.
(1)
Using a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space, the base station and the terminal device Generate virtual space estimation information regarding wireless communication with the terminal device,
a control unit that determines communication parameters of at least one of the base station and the terminal device based on the virtual space estimation information;
An information processing device comprising:
(2)
The information processing device according to (1), wherein the control unit determines the communication parameter based on measurement information of the wireless communication in the real space.
(3)
The information processing device according to (2), wherein the measurement information includes a measurement result obtained by the terminal device measuring the wireless communication in the real space.
(4)
Any one of (1) to (3), wherein the control unit regenerates the virtual space estimation information according to the determined communication parameters, and re-determines the communication parameters based on the regenerated virtual space estimation information. The information processing device according to item 1.
(5)
The control unit generates the virtual space estimation information again according to the determined communication parameters and the reacquired measurement information of the wireless communication in the real space, and based on the regenerated virtual space estimation information. , the information processing device according to any one of (1) to (3), wherein communication parameters are determined again.
(6)
The control unit includes:
Notifying at least one of the base station and the terminal device the determined communication parameters;
acquiring measurement information in the real space of the wireless communication using the communication parameters;
re-determining communication parameters based on the measurement information;
The information processing device according to any one of (1) to (3).
(7)
The information processing device according to any one of (1) to (6), wherein the virtual space estimation information includes information regarding radio wave propagation of at least one of the base station and the terminal device.
(8)
(1) The virtual space estimation information includes information indicating that a LOS (Line-Of-Sight) environment or an NLOS (Non Line-Of-Sight) environment exists between the base station and the terminal device. The information processing device according to any one of (7) to (7).
(9)
The information processing device according to any one of (1) to (8), wherein the virtual space estimation information includes simulation information regarding a simulation result of radio wave propagation in the wireless communication.
(10)
The information processing device according to (9), wherein the simulation information includes path estimation information regarding a result of estimating a radio wave path.
(11)
The information processing device according to (10), wherein the path estimation information includes information regarding the path of the radio wave estimated based on ray tracing.
(12)
The communication environment information includes information regarding any one of a structure in the real space, at least one of the base station and the terminal device, a sensing result in the real space, and the wireless communication. ) to (11).
(13)
The information processing device according to any one of (1) to (12), wherein the control unit acquires the communication environment information from at least one of a storage unit and another device.
(14)
(1) to (13), wherein the control unit determines the communication parameters using a learning model that receives at least one of the communication environment information and the virtual space estimation information as input and outputs the communication parameters; The information processing device according to any one of the above.
(15)
The information according to (14), wherein the learning model is learned using at least one of the communication environment information, the virtual space estimation information, the communication parameters, and the measurement information of the wireless communication in the real space. Processing equipment.
(16)
The learning model includes at least one of the virtual space estimation information generated again according to the determined communication parameters, communication parameters determined again, and measurement information of the wireless communication in the real space acquired again. The information processing device according to (14) or (15), wherein the information processing device is retrained using the following.
(17)
The communication parameters include information regarding the maximum transmission power of the base station,
The information processing device according to any one of (1) to (16), wherein the control unit determines the maximum transmission power according to received power at a boundary of a communication area of the wireless communication.
(18)
Obtain communication parameters from the information processing device,
a control unit that communicates with the base station using the acquired communication parameters;
Equipped with
The communication parameter is a parameter determined by the information processing device based on virtual space estimation information,
The virtual space estimation information is a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space. information generated by the information processing apparatus using the information processing apparatus, which is information regarding wireless communication between the base station and the terminal device;
Terminal device.
(19)
(18) the control unit transmits the communication environment information including either a peripheral image at a predetermined position and map information including either the predetermined position or the base station to the information processing device; The terminal device described in .
(20)
The terminal device according to (19), wherein the control unit acquires the communication parameters used when performing the wireless communication at the predetermined position from the information processing device.
(21)
The terminal device according to any one of (18) to (20), wherein the control unit displays information regarding coverage of the wireless communication on a display device based on the communication parameters.
(22)
Using a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space, the base station and the terminal device Generating virtual space estimation information regarding wireless communication with a terminal device;
determining communication parameters of at least one of the base station and the terminal device based on the virtual space estimation information;
Information processing methods including
(23)
Obtaining communication parameters from the information processing device;
communicating with a base station using the acquired communication parameters;
including;
The communication parameter is a parameter determined by the information processing device based on virtual space estimation information,
The virtual space estimation information is a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space. information generated by the information processing apparatus using the information processing apparatus, which is information regarding wireless communication between the base station and the terminal device;
Communication method.
 100 制御局
 110,310,410 通信部
 120,320,420 記憶部
 130,340,450 制御部
 131 取得部
 132 仮想空間推定部
 133 パラメータ決定部
 134 通知部
 300 基地局
 330,430 ネットワーク通信部
 400 端末装置
 440 入出力部
100 Control station 110, 310, 410 Communication unit 120, 320, 420 Storage unit 130, 340, 450 Control unit 131 Acquisition unit 132 Virtual space estimation unit 133 Parameter determination unit 134 Notification unit 300 Base station 330, 430 Network communication unit 400 Terminal Device 440 Input/output section

Claims (19)

  1.  基地局および端末装置の少なくとも一方の実空間における位置に関する位置情報と、前記実空間の通信環境に関する通信環境情報と、に基づいて生成された仮想的な通信環境を用いて、前記基地局および前記端末装置との間の無線通信に関する仮想空間推定情報を生成し、
     前記仮想空間推定情報に基づき、前記基地局および前記端末装置の少なくとも一方の通信パラメータを決定する、制御部、
     を備える情報処理装置。
    Using a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space, the base station and the terminal device Generate virtual space estimation information regarding wireless communication with the terminal device,
    a control unit that determines communication parameters of at least one of the base station and the terminal device based on the virtual space estimation information;
    An information processing device comprising:
  2.  前記制御部は、前記実空間における前記無線通信の測定情報に基づき、前記通信パラメータを決定する、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the control unit determines the communication parameter based on measurement information of the wireless communication in the real space.
  3.  前記測定情報は、前記端末装置が前記実空間において前記無線通信を測定した測定結果を含む、請求項2に記載の情報処理装置。 The information processing device according to claim 2, wherein the measurement information includes a measurement result obtained by the terminal device measuring the wireless communication in the real space.
  4.  前記制御部は、決定した前記通信パラメータに応じて前記仮想空間推定情報を再度生成し、再度生成した前記仮想空間推定情報に基づき、通信パラメータを再度決定する、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the control unit regenerates the virtual space estimation information according to the determined communication parameters, and determines the communication parameters again based on the regenerated virtual space estimation information. .
  5.  前記制御部は、決定した前記通信パラメータ、および、再度取得した前記実空間における前記無線通信の測定情報に応じて、前記仮想空間推定情報を再度生成し、再度生成した前記仮想空間推定情報に基づき、通信パラメータを再度決定する、請求項1に記載の情報処理装置。 The control unit generates the virtual space estimation information again according to the determined communication parameters and the reacquired measurement information of the wireless communication in the real space, and based on the regenerated virtual space estimation information. , the information processing apparatus according to claim 1, wherein communication parameters are determined again.
  6.  前記制御部は、
     決定した前記通信パラメータを、前記基地局および前記端末装置の少なくとも一方に通知し、
     前記通信パラメータを用いた前記無線通信の前記実空間における測定情報を取得し、
     前記測定情報に基づき、通信パラメータを再度決定する、
     請求項1に記載の情報処理装置。
    The control unit includes:
    Notifying at least one of the base station and the terminal device the determined communication parameters;
    acquiring measurement information in the real space of the wireless communication using the communication parameters;
    re-determining communication parameters based on the measurement information;
    The information processing device according to claim 1.
  7.  前記仮想空間推定情報は、前記基地局および前記端末装置の少なくとも一方の電波伝搬に関する情報を含む、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the virtual space estimation information includes information regarding radio wave propagation of at least one of the base station and the terminal device.
  8.  前記仮想空間推定情報は、前記無線通信における電波伝搬のシミュレーション結果に関するシミュレーション情報を含む、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the virtual space estimation information includes simulation information regarding a simulation result of radio wave propagation in the wireless communication.
  9.  前記通信環境情報は、前記実空間内の構造物、前記基地局および前記端末装置の少なくとも一方、前記実空間内のセンシング結果、および、前記無線通信のいずれか1つに関する情報を含む、請求項1に記載の情報処理装置。 The communication environment information includes information regarding any one of a structure in the real space, at least one of the base station and the terminal device, a sensing result in the real space, and the wireless communication. 1. The information processing device according to 1.
  10.  前記制御部は、前記通信環境情報および前記仮想空間推定情報の少なくとも一方を入力とし、前記通信パラメータを出力とする学習モデルを用いて、前記通信パラメータを決定する、請求項1に記載の情報処理装置。 The information processing according to claim 1, wherein the control unit determines the communication parameters using a learning model that receives at least one of the communication environment information and the virtual space estimation information as input and outputs the communication parameters. Device.
  11.  前記学習モデルは、前記通信環境情報、前記仮想空間推定情報、前記通信パラメータ、および、前記実空間における前記無線通信の測定情報の少なくとも1つを用いて学習される、請求項10に記載の情報処理装置。 The information according to claim 10, wherein the learning model is learned using at least one of the communication environment information, the virtual space estimation information, the communication parameters, and the measurement information of the wireless communication in the real space. Processing equipment.
  12.  前記学習モデルは、決定した前記通信パラメータに応じて再度生成された前記仮想空間推定情報、再度決定された通信パラメータ、および、再度取得された前記実空間における前記無線通信の測定情報の少なくとも1つを用いて再学習される、請求項10に記載の情報処理装置。 The learning model includes at least one of the virtual space estimation information generated again according to the determined communication parameters, communication parameters determined again, and measurement information of the wireless communication in the real space acquired again. The information processing device according to claim 10, wherein the information processing device is retrained using.
  13.  前記通信パラメータは、前記基地局の最大送信電力に関する情報を含み、
     前記制御部は、前記無線通信の通信区域の境界における受信電力に応じて、前記最大送信電力を決定する、請求項1に記載の情報処理装置。
    The communication parameters include information regarding the maximum transmission power of the base station,
    The information processing device according to claim 1, wherein the control unit determines the maximum transmission power according to received power at a boundary of a communication area of the wireless communication.
  14.  情報処理装置から通信パラメータを取得し、
     取得した通信パラメータを用いて基地局と通信を行う、制御部、
     を備え、
     前記通信パラメータは、仮想空間推定情報に基づき、前記情報処理装置により決定されるパラメータであり、
     前記仮想空間推定情報は、前記基地局および端末装置の少なくとも一方の実空間における位置に関する位置情報と、前記実空間の通信環境に関する通信環境情報と、に基づいて生成された仮想的な通信環境を用いて、前記情報処理装置により生成される情報であって、前記基地局および前記端末装置との間の無線通信に関する情報である、
     端末装置。
    Obtain communication parameters from the information processing device,
    a control unit that communicates with a base station using the acquired communication parameters;
    Equipped with
    The communication parameter is a parameter determined by the information processing device based on virtual space estimation information,
    The virtual space estimation information is a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space. information generated by the information processing apparatus using the information processing apparatus, which is information regarding wireless communication between the base station and the terminal device;
    Terminal device.
  15.  前記制御部は、所定位置における周辺画像、および、前記所定位置および前記基地局のいずれか一方を含む地図情報のいずれか一方を含む前記通信環境情報を前記情報処理装置に送信する、請求項14に記載の端末装置。 14. The control unit transmits the communication environment information including one of a surrounding image at a predetermined position and map information including one of the predetermined position and the base station to the information processing device. The terminal device described in .
  16.  前記制御部は、前記所定位置で前記無線通信を行う場合に使用する前記通信パラメータを前記情報処理装置から取得する、請求項15に記載の端末装置。 The terminal device according to claim 15, wherein the control unit acquires the communication parameters used when performing the wireless communication at the predetermined position from the information processing device.
  17.  前記制御部は、前記通信パラメータに基づき、前記無線通信のカバレッジに関する情報を表示装置に表示する、請求項14に記載の端末装置。 The terminal device according to claim 14, wherein the control unit displays information regarding coverage of the wireless communication on a display device based on the communication parameters.
  18.  基地局および端末装置の少なくとも一方の実空間における位置に関する位置情報と、前記実空間の通信環境に関する通信環境情報と、に基づいて生成された仮想的な通信環境を用いて、前記基地局および前記端末装置との間の無線通信に関する仮想空間推定情報を生成することと、
     前記仮想空間推定情報に基づき、前記基地局および前記端末装置の少なくとも一方の通信パラメータを決定することと、
     を含む情報処理方法。
    Using a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space, the base station and the terminal device Generating virtual space estimation information regarding wireless communication with a terminal device;
    determining communication parameters of at least one of the base station and the terminal device based on the virtual space estimation information;
    Information processing methods including.
  19.  情報処理装置から通信パラメータを取得することと、
     取得した通信パラメータを用いて基地局と通信を行うことと、
     を含み、
     前記通信パラメータは、仮想空間推定情報に基づき、前記情報処理装置により決定されるパラメータであり、
     前記仮想空間推定情報は、前記基地局および端末装置の少なくとも一方の実空間における位置に関する位置情報と、前記実空間の通信環境に関する通信環境情報と、に基づいて生成された仮想的な通信環境を用いて、前記情報処理装置により生成される情報であって、前記基地局および前記端末装置との間の無線通信に関する情報である、
     通信方法。
    Obtaining communication parameters from the information processing device;
    communicating with a base station using the acquired communication parameters;
    including;
    The communication parameter is a parameter determined by the information processing device based on virtual space estimation information,
    The virtual space estimation information is a virtual communication environment generated based on position information regarding the position of at least one of the base station and the terminal device in real space, and communication environment information regarding the communication environment in the real space. information generated by the information processing apparatus using the information processing apparatus, which is information regarding wireless communication between the base station and the terminal device;
    Communication method.
PCT/JP2023/031852 2022-09-09 2023-08-31 Information processing device, terminal device, information processing method, and communication method WO2024053559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-143799 2022-09-09
JP2022143799 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053559A1 true WO2024053559A1 (en) 2024-03-14

Family

ID=90191056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031852 WO2024053559A1 (en) 2022-09-09 2023-08-31 Information processing device, terminal device, information processing method, and communication method

Country Status (1)

Country Link
WO (1) WO2024053559A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021255836A1 (en) * 2020-06-16 2021-12-23 日本電信電話株式会社 Local radio communication system, intra-area reception quality control method, control device, and program
WO2022118472A1 (en) * 2020-12-04 2022-06-09 日本電信電話株式会社 Information processing device, information processing method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021255836A1 (en) * 2020-06-16 2021-12-23 日本電信電話株式会社 Local radio communication system, intra-area reception quality control method, control device, and program
WO2022118472A1 (en) * 2020-12-04 2022-06-09 日本電信電話株式会社 Information processing device, information processing method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANEMOTO, HIDEKI ET AL.: "A Study of the Interference Control for local 5G with Shared Spectrum", 28TH MULTIMEDIA COMMUNICATION AND DISTRIBUTED PROCESSING WORKSHOP (DPSWS 2020), INFORMATION PROCESSING SOCIETY OF JAPAN (IPSJ), vol. 28, 4 November 2020 (2020-11-04), pages 82 - 89, XP009553827 *

Similar Documents

Publication Publication Date Title
US11784771B2 (en) Method for transmitting and receiving positioning reference signal and apparatus therefor
JP2022544111A (en) A Computational Complexity Framework for Positioning Reference Signal Processing
US10314039B2 (en) Interference and traffic pattern database
JP2021507620A (en) Systems and methods for multiple round trip time (RTT) estimates in wireless networks
JP2023528133A (en) Accuracy dilution assisted reporting for low-latency or on-demand positioning
US20220095250A1 (en) Method for measuring location of terminal in wireless communication system and terminal thereof
US20190320336A1 (en) Terminal apparatus, base station, method and recording medium
TW202133638A (en) Nr-light user equipment based positioning with round trip time procedure
JP2021069106A (en) Method for operating rlf-related terminal in wireless communication system
US20220330041A1 (en) Method for angle based positioning measurement and apparatus therefor
KR20240037248A (en) Sidelink auxiliary position estimation procedure
US20230379861A1 (en) Multi-port positioning reference signal (prs) for downlink angle-of-departure (aod) estimation
WO2017071136A1 (en) Method and apparatus for assisted positioning
WO2024053559A1 (en) Information processing device, terminal device, information processing method, and communication method
JP2024507158A (en) Reference signal configuration for fluctuating positioning
WO2022055788A1 (en) Configuration of on-demand sounding reference signals (srs) through association with on-demand positioning reference signals (prs) for user equipment (ue) positioning
WO2023065242A1 (en) Transmission of measurement data associated with location information
US20240063862A1 (en) Reduced overhead beam profile parametrization
US20240027227A1 (en) Usage of transformed map data with limited third party knowledge
US20230284242A1 (en) Method and apparatus for performing positioning based on congestion control in nr v2x
US20240188025A1 (en) Signaling between a perception-assistance node, a user equipment (ue), and a base station
KR20240064640A (en) Positioning method for uplink power-limited user equipment
WO2024035492A2 (en) Position estimation based on coherency status associated with at least part of a sounding reference signal for positioning instance
KR20240019768A (en) RECONFIGURABLE INTELLIGENT SURFACE (RIS) beam sweeping of sounding reference signals (SRS) for ANGLE OF DEPARTURE (AOD)-based positioning
KR20240067884A (en) Attack detection and reporting based on reference devices for user equipment (UE) positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863097

Country of ref document: EP

Kind code of ref document: A1