WO2024053467A1 - Optical transmission module - Google Patents

Optical transmission module Download PDF

Info

Publication number
WO2024053467A1
WO2024053467A1 PCT/JP2023/031056 JP2023031056W WO2024053467A1 WO 2024053467 A1 WO2024053467 A1 WO 2024053467A1 JP 2023031056 W JP2023031056 W JP 2023031056W WO 2024053467 A1 WO2024053467 A1 WO 2024053467A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
section
optical
transmission module
lens
Prior art date
Application number
PCT/JP2023/031056
Other languages
French (fr)
Japanese (ja)
Inventor
健 菊地
寛 森田
英 大鳥居
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024053467A1 publication Critical patent/WO2024053467A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to an optical transmission module that converts an electrical signal into an optical signal or an optical signal into an electrical signal for high-speed optical communication.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • PD Photo Diode
  • the VCSEL system can multiplex signal lights of multiple wavelengths to increase speed and make it bidirectional.
  • the following technology has been disclosed as a configuration for performing multi-wavelength demultiplexing and multiplexing in order to multiplex such multi-wavelength signal light.
  • Patent Document 1 describes one or more transmitting optical elements that transmit optical signals, one or more receiving optical elements that receive optical signals, one or more optical signals emitted from an optical fiber, and An optical transmission module that has an optical member that converts the optical path of one or more optical signals that enter the optical fiber having a different wavelength from the optical signal, and has a fitting part that is mechanically fitted to the optical fiber. has two or more inclined surfaces with respect to the optical axis of the optical fiber, and one of the inclined surfaces is provided with an optical functional member that transmits a part or almost all of each optical signal or reflects a part of each optical signal.
  • a reflective surface for reflecting an optical signal is formed on the other one of the inclined surfaces, a fiber lens is provided on the end surface of the fiber facing the optical fiber, and the optical functional member is formed of a transmitting optical element and a receiving optical element.
  • An optical transmission module is disclosed in which a demultiplexing characteristic is set so that an optical signal transmitted from a transmitting optical element does not leak into the transmitting optical element of the other party depending on the arrangement.
  • Patent Document 2 describes the structure of a module used for optical transmission, including a main body substrate having a front surface and a back surface, an optical connector having a resin substrate, and a first transparent substrate disposed between the resin substrate and the main body substrate. a heat source element disposed between the resin substrate and the back surface of the main body substrate and electrically connected to the main body substrate; One or more wirings that propagate heat generated by the substrate to the main substrate, and a first space that is formed between the resin substrate and the first transparent substrate and propagates the heat generated by the heat source element and the first transparent substrate.
  • An optical transmission module is disclosed that includes: a second space that is formed between the heat source element and the back surface of the main body substrate, and that transmits heat generated by the heat source element and the first transparent substrate.
  • the resin substrate and the second space are formed. It is possible to suppress deformation due to heat and deterioration of optical coupling efficiency between the first transparent substrates.
  • the optical transmission module described in Patent Document 1 performs multiplexing of multiple wavelengths in an optical member, so each of the light sources or light receiving parts that constitute the optical function part has a correspondingly sized lens or This requires a reflecting mirror or filter. Therefore, there is a problem in that there is a limit to reducing the size of the optical transmission module, and high integration is difficult.
  • optical member since multiple wavelengths are combined using optical members, the shape and structure of the optical member becomes complex, and it is necessary to change the shape and structure of the optical function part depending on the wavelength, the number of photoelectric elements to be multiplexed, etc. This poses a problem in that it is difficult to standardize and share optical members.
  • the optical transmission module described in Patent Document 1 has problems in its manufacturing method, such as the fact that the optical receptacle must be attached after adjustment by active alignment to attach the optical receptacle.
  • the optical transmission module described in Patent Document 2 discloses a solution to this problem.
  • the optical transmission module uses an optical receptacle manufactured by the same manufacturing method as the optical transmission module described in Patent Document 1, positional displacement due to heat may become a problem. For this reason, when optical receptacles become larger due to the increase in wavelengths, there is a problem in that the possibility of positional displacement due to heat increases.
  • the present disclosure has been made in view of such problems, and aims to provide a compact and highly integrated optical transmission module that enables multiple wavelength demultiplexing and multiplexing.
  • a first aspect thereof is: a first lens portion that refracts and focuses transmitted light between the optical fiber; a second lens section disposed on the optical axis of the first lens section and facing the first lens section; a receptacle board having a plug for connecting the optical fiber, which positions the end face of the optical fiber at the focal point of the second lens part; a first light guide disposed on a surface of the first lens section that does not face the second lens section; a demultiplexing/combining part disposed on a surface of the first light guide where the first lens part is not disposed, and demultiplexing or combining light transmitted through the first lens part; A plurality of lights disposed in the demultiplexing/combining section and performing at least one of emitting light to the first lens section and receiving light from the first lens section via the demultiplexing/multiplexing section and the first light guide.
  • a photoelectric element This is an optical transmission module with
  • the demultiplexing/multiplexing section is laminated into two layers, an upper stage and a lower stage, and the upper division/multiplexing part reflects light in a predetermined wavelength band so that one of the photoelectric elements
  • the light in a predetermined wavelength band is split/combined, and the light of other wavelengths is transmitted from the upper splitting/combining section to the lower splitting/multiplexing section.
  • the demultiplexing/multiplexing section includes a first reflective/transmissive section having a first wavelength selective film formed on an inclined surface having a predetermined inclination angle on the optical axis of the first lens section. , a second reflective/transmissive part or a reflective mirror having a second wavelength selective film formed on an inclined surface having a predetermined inclination angle and arranged in parallel with the first reflective/transmissive part; a third light guide arranged in parallel between the first reflective transmitting section and the second reflective transmitting section; A second light guide may be provided in parallel at a position opposite to the third light guide with the first reflective/transmissive portion interposed therebetween.
  • the first wavelength selection film may be configured to transmit light in a predetermined wavelength band and reflect light in other wavelengths.
  • the second wavelength selective film may be configured to reflect light in a predetermined wavelength band and transmit light in other wavelengths.
  • the plurality of photoelectric elements disposed in the demultiplexing/multiplexing section are capable of emitting or receiving light in the same wavelength band, and some of the photoelectric elements among the plurality of photoelectric elements are capable of emitting or receiving light in the same wavelength band. It may be configured such that one photoelectric element is used regularly, and some of the other photoelectric elements are used as a spare, and furthermore, the regular use and the spare can be switched.
  • the third light guide is formed of a high refractive index resin, and the second light guide is formed of a low refractive index resin, so that each of the plurality of photoelectric elements is It may be arranged at the focal point of one lens section.
  • the first reflective transmitting section is formed in a plane mirror shape with respect to the incident light
  • the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section.
  • Each of the plurality of photoelectric elements may be disposed at a focal point of the first lens portion.
  • the first reflective transmitting section is formed in a convex mirror shape with respect to the incident light
  • the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section.
  • Each of the plurality of photoelectric elements may be disposed at a focal point of the first lens portion.
  • the demultiplexing/combining section may have wiring connecting the photoelectric elements.
  • the photoelectric element may be soldered to the wiring.
  • the wiring may include a solder ball for connection to an external circuit.
  • any of the transmitted light between the second lens part and the first lens part disposed on the optical axis to face the second lens part is
  • the light may be configured to be parallel light.
  • a plurality of second lens portions are arranged to face each other on the optical axis of each of the plurality of first lens portions, each of which transmits the demultiplexed and multiplexed light; a reflecting mirror that reflects the transmitted light of each of the plurality of second lens parts,
  • the receptacle board has a plurality of sockets for connecting a plurality of optical fibers corresponding to a plurality of reflected lights or incident lights on the reflecting mirror, and the optical fibers connected and fixed to the respective sockets.
  • the light may be configured to be focused on the end face of the fiber.
  • FIG. 2 is a front view of the basic form of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 2 is a side view of the basic form of the first embodiment of the optical transmission module according to the present disclosure. It is a front view of the 1st modification of 1st Embodiment of the optical transmission module based on this indication.
  • FIG. 7 is a front view of a second modification of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 7 is a front view of a third modification of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 2 is an explanatory diagram (part 1) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 3 is an explanatory diagram (Part 2) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 3 is an explanatory diagram (Part 3) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 4 is an explanatory diagram (part 4) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 5 is an explanatory diagram (part 5) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 6 is an explanatory diagram (part 6) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 7 is an explanatory diagram (part 7) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 8 is an explanatory diagram (Part 8) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure.
  • FIG. 3 is a front view of a photoelectric conversion section of a second embodiment of an optical transmission module according to the present disclosure.
  • FIG. 7 is a front view of a photoelectric conversion section of a third embodiment of an optical transmission module according to the present disclosure.
  • FIG. 7 is a front view of a photoelectric conversion section of a fourth embodiment of an optical transmission module according to the present disclosure.
  • FIG. 7 is an explanatory diagram of a difference in refractive index and an optical path in a fourth embodiment of the optical transmission module according to the present disclosure.
  • FIG. 7 is a front view of a photoelectric conversion section of a fifth embodiment of an optical transmission module according to the present disclosure.
  • FIG. 7 is a front view of a photoelectric conversion section of a sixth embodiment of an optical transmission module according to the present disclosure. It is a front view of the photoelectric conversion part of the modification of 6th Embodiment of the optical transmission module based on this indication. It is a top view of the photoelectric conversion part of 7th Embodiment of the optical transmission module based on this indication. It is a side view of the photoelectric conversion part of 7th Embodiment of the optical transmission module based on this indication.
  • FIG. 6 is a plan view and a front view of a comparative example for explaining the effect of the demultiplexing/multiplexing section of the optical transmission module according to the present disclosure.
  • 24 is a side view of the comparative example shown in FIG. 23.
  • FIG. FIG. 6 is a plan view and a front view of a photoelectric conversion section for explaining the effect of the demultiplexing/multiplexing section of the third modification of the first embodiment shown in FIG. 5.
  • FIG. 26 is a side view of the photoelectric conversion section shown in FIG. 25.
  • FIG. FIG. 21 is a plan view and a front view for explaining the effect of the demultiplexing/combining section of the modified example of the sixth embodiment shown in FIG. 20;
  • FIG. 3 is a comparative explanatory diagram summarizing the effects of the demultiplexing/multiplexing section of the optical transmission module according to the present disclosure.
  • FIG. 1 is a front view of a basic form of a first embodiment of an optical transmission module 100 according to the present disclosure.
  • FIG. 2 is a side view thereof.
  • the optical transmission module 100 includes an optical receptacle section 50 having a substantially rectangular receptacle substrate 51 as a base, and an optical receptacle section 50 disposed on the lower surface, which is one surface of the optical receptacle section 50.
  • the photoelectric conversion section 10 is arranged to face the two lens sections 60.
  • the photoelectric conversion section 10 includes a first light guide 11 formed in a substantially rectangular shape, a first lens section 30 disposed on its upper surface, and photoelectric elements 21a and 21b disposed on its lower surface. It has a multiplexing section 20.
  • the second lens section 60 and the first lens section 30 are generally configured to be disposed facing each other on the same optical axis LA2.
  • the optical receptacle section 50 side will be referred to as the upper side
  • the photoelectric conversion section 10 side will be referred to as the lower side.
  • the number of optical paths of the photoelectric elements 21a, 21b, etc. that perform photoelectric conversion is assumed to be one circuit, two circuits, etc.
  • the optical receptacle section 50 is a device for connecting an optical fiber 90 of an optical cable connected to an optical communication line, and for exchanging optical signals with the photoelectric conversion section 10.
  • the optical receptacle section 50 has a plug 52 for connecting an optical fiber 90 to one end of a substantially rectangular receptacle substrate 51 having translucent properties. The optical fiber 90 is then inserted into the connector 52 and fixedly connected thereto.
  • a reflecting mirror 53 is formed on the upper surface of the optical receptacle portion 50 and is centered on the optical axis LA1 of the optical fiber 90 and is inclined at a predetermined angle with respect to the vertical direction.
  • the reflecting mirror 53 reflects the incident light traveling along the optical axis LA1 from the optical fiber 90 in the direction of the optical axis LA2, and enters the photoelectric conversion unit 10 via the second lens 60.
  • the light beams L1 and L2 traveling along the optical axis LA2 from the photoelectric conversion unit 10 via the second lens 60 are reflected to change the optical path from the optical axis LA2 to the optical axis LA1.
  • the reflected light from the reflecting mirror 53 travels along the optical axis LA1 and is focused on the end face 91 of the optical fiber 90. In this way, the reflecting mirror 53 is a device that changes the direction of light.
  • the light ray L1 here refers to light in a predetermined wavelength band that is received or emitted by the photoelectric element 21a
  • the light ray L2 refers to light in a predetermined wavelength band that is received or emitted by the photoelectric element 21b. This also applies to the cases of light rays L3 and L4.
  • the second lens section 60 disposed on the lower surface of the optical receptacle section 50 is formed of, for example, a convex lens. It is arranged perpendicularly to the optical axis LA2 and with its optical center on the optical axis LA2.
  • the second lens section 60 refracts the reflected light from the reflecting mirror 53 and converts it into parallel light, or refracts the parallel light from the photoelectric conversion section 10 to enter the reflecting mirror 53, and converts the reflected light into parallel light.
  • the light is focused on the end face 91 of the optical fiber 90. Therefore, the end surface 91 of the optical fiber 90 is arranged at the focal point of the second lens section 60.
  • the focal length of the second lens section 60 is set so that it is located at the end surface 91 of the optical fiber 90.
  • the photoelectric conversion unit 10 has a substantially rectangular transparent first light guide 11 as a base, and has a first lens part 30 on the upper surface of the first light guide 11, that is, the surface facing the second lens part 60. is disposed, and a demultiplexing/multiplexing section 20 is disposed on the lower surface of the first light guide 11, which is the back surface thereof.
  • the first lens section 30 is disposed on the same optical axis LA2, facing the second lens section 60 of the optical receptacle section 50.
  • the first lens section 30 refracts the parallel light from the second lens section 60 with a predetermined refractive index and enters the first light guide 11, or refracts the parallel light from the second lens section 60 with a predetermined refractive index.
  • the parallel light is refracted by the refractive index and enters the second lens section 60 . That is, the first lens section 30 is an optical element that refracts and focuses the light transmitted between it and the optical fiber 90.
  • the first lens section 30, like the second lens section 60, is formed of, for example, a convex lens. It is arranged perpendicular to the optical axis LA2 and with its optical center on the optical axis LA2.
  • the second lens section 60 and the first lens section 30 may both be convex lenses, and are not limited to a biconvex lens, a plano-convex lens, a concave-convex lens, or the like.
  • the first light guide 11 is an optical element that guides light between the first lens section 30 disposed on its upper surface and the demultiplexing/combining section 20 disposed on its lower surface. Therefore, the first light guide 11 is formed using a light-transmitting material. That is, the first light guide 11 is made of, for example, sapphire, glass, transparent plastic, or the like. Although sapphire is expensive, it has low optical loss over a wide frequency band, so it generates little heat even when light passes through it, making it ideal for use as a light guide.
  • the demultiplexing/combining section 20 includes the fourth light guide 14 and the second reflective/transmissive section 23b (hereinafter referred to as "reflective/transmissive section 23b") at a predetermined interval from the left in this figure. ), the third light guide 13, the first reflective/transmissive section 23a (hereinafter referred to as the "reflective/transmissive section 23a"), and the second light guide 12 are arranged in parallel. That is, the third light guide 13 is arranged in parallel between the reflective/transmissive section 23a and the reflective/transmissive section 23b, and the second light guide 12 is arranged on the opposite side of the third light guide 13 with the reflective/transmissive section 23a in between. They are placed side by side. All of these have translucency and are made of the material forming the first light guide 11 or a material equivalent thereto.
  • the reflective/transmissive parts 23a and 23b are formed into substantially inverted right triangles when viewed from the front, and have inclined surfaces 25a and 25b inclined at a predetermined angle on their oblique sides, which are right-angled opposite sides.
  • a first wavelength selective film 24a (hereinafter referred to as “wavelength selective film 24a”) is formed on the inclined surface 25a
  • a second wavelength selective film 24b (hereinafter referred to as “wavelength selective film 24b”) is formed on the inclined surface 25b. ) is formed. That is, the reflective/transmissive parts 23a and 23b are optical elements in which wavelength selective films 24a and 24b are formed on inclined surfaces 25a and 25b of a predetermined angle.
  • the wavelength selection film 24a receives incident light from the optical fiber 90 along the optical axis LA2, transmits only the light ray L1 in a predetermined wavelength band in the direction of the optical axis LA2, and reflects light of other wavelengths. do. As a result, the transmitted light through the wavelength selection film 24a continues along the optical axis LA2 and enters the photoelectric element 21a.
  • the direction of the optical path of the light reflected by the wavelength selection film 24a is changed from the optical axis LA2 to the optical axis LA3.
  • the reflected light then travels along the optical axis LA3 and enters the wavelength selection film 24b.
  • the wavelength selection film 24b reflects only the light beam L2 in a predetermined wavelength band, and transmits the other incident light.
  • the optical path of the light beam L2 reflected by the wavelength selection film 24b is changed from the optical axis LA3 to the optical axis LA4.
  • the light beam L2 whose optical path direction has been changed travels along the optical axis LA4 and enters the photoelectric element 21b.
  • the inclined surface 25b of the reflective/transmissive part 23b is used for the wavelength selection film 24a when the light traveling along the optical axis LA3 may be totally reflected or when the photoelectric element 21b is the light emitting element 211.
  • a reflecting mirror may be formed on the inclined surface 25b instead of the wavelength selection film 24b.
  • a reflecting mirror may be formed on the inclined surface 25b instead of the wavelength selection film 24b. Therefore, hereinafter, it will be described as a "wavelength selection film 24b" including the case where a reflecting mirror is formed. However, this applies in cases where there is a special mention in the description of each embodiment or in the case of a modification of the sixth embodiment described later.
  • the light beam L1 emitted by the photoelectric element 21a travels along the optical axis LA2 in the opposite direction to the incident light, enters the wavelength selection film 24a, and is transmitted as it is. The light then finally enters the end face 91 of the optical fiber 90.
  • the light ray L2 emitted by the photoelectric element 21b travels along the optical axis LA4 in the opposite direction to the incident light, enters the wavelength selection film 24b and is reflected, and the optical path of the reflected light ray L2 starts from the optical axis LA4.
  • the direction can be changed to optical axis LA3.
  • the light ray L2 continues along the optical axis LA3, enters the wavelength selection film 24a, is reflected there, and the direction of the optical path of the reflected light ray L2 is changed from the optical axis LA3 to the optical axis LA2. Thereafter, the light ray L2 passes through the optical path opposite to that of the incident light and finally enters the end face 91 of the optical fiber 90.
  • the wavelength selection films 24a and 24b transmit or reflect light in a predetermined wavelength band, and have the function of a bandpass filter for the predetermined wavelength band. Further, the wavelength selection film 24a sequentially changes the optical path to the optical axes LA2, LA3, and LA4 by transmitting or reflecting incident light in a predetermined wavelength band. However, in order for the wavelength selection film 24b to reflect the incident light, it is necessary to allow at least the reflected light from the inclined surface 24a to travel straight through the third light guide 13 along the optical axis LA3. For this reason, it is preferable to set the inclination angle of the inclined surface 25a having the wavelength selection film 24a to 45 degrees.
  • the inclination angle of the inclined surface 25b having the wavelength selection film 24b is preferable that the inclination angles of the inclined surfaces 25a, 25b of the reflective/transmissive parts 23a, 23b are both set to the above-mentioned 45 degrees.
  • a wiring 41 is formed on the lower surface of the demultiplexing/combining section 20 .
  • the wiring 41 is, for example, an electrical connection formed of a conductive metal such as copper (Cu).
  • a conductive metal such as copper (Cu).
  • photoelectric elements 21a and 21b are soldered to the wiring 41 via solder balls 42.
  • a solder ball 43 for connecting to the circuit board 40 is formed on the predetermined wiring 41 . Therefore, the optical transmission module 100 is connected to the circuit board 40 by soldering with the solder balls 43.
  • the photoelectric elements 21a and 21b are a general term for the light receiving element 212 that converts an optical signal into an electrical signal, or the light emitting element 211 that converts an electrical signal into an optical signal.
  • the light receiving element 212 is formed of, for example, a photodiode.
  • a vertical cavity surface emitting laser called a VCSEL (Vertical Cavity Surface Emitting Laser) is used.
  • VCSEL is a type of laser, and unlike a semiconductor laser, which emits light from the end face of an active layer formed on a substrate, it is characterized by resonating light in a direction perpendicular to the substrate surface and emitting light in a direction perpendicular to the substrate surface. It is.
  • the incident light that has been refracted by the first lens section 30 and has traveled straight through the inside of the first light guide 11 along the optical axis LA2 is incident on the wavelength selection film 24a and transmitted through the wavelength selection film 24a.
  • a light beam L1 in a predetermined wavelength band is incident on the photoelectric element 21a. Therefore, in order to collect and receive the incident light from the first lens section 30, the photoelectric element 21a is preferably disposed at the focal point of the first lens section 30.
  • the light beam L2 that has traveled straight along the optical axis LA4 is incident on the photoelectric element 21b.
  • the photoelectric element 21b is disposed at the focal point of the first lens section 30, similarly to the photoelectric element 21a.
  • the optical path of the incident light that travels straight on the optical axis LA4 and enters the photoelectric element 21b is smaller than the optical path of the incident light that travels straight on the optical axis LA2 and enters the photoelectric element 21a.
  • the optical path length is increased by the length of the optical axis LA3.
  • the photoelectric element 21a since there is a difference in the optical path length of the optical axis LA3, when the photoelectric element 21a is arranged at the focal point position of the first lens section 30, the light condensed onto the photoelectric element 21b may become blurred. become. Similarly, if the photoelectric element 21b is disposed at the focal point of the first lens section 30, the light condensed onto the photoelectric element 21a will be blurred.
  • the light rays L1, L2, etc. are depicted as traveling while widening or narrowing, but in reality, the light from the VCSEL travels approximately in a straight line.
  • the light rays L1 and L2 do not widen or narrow greatly as shown in this figure.
  • the core diameter of the VCSEL/photodiode and the optical fiber 90 has a tolerance for the size of light condensation. Therefore, in practice, the blurring of light condensation is not a problem. Compensation for the difference in optical path length of the optical axis LA3 will be described in detail in the fourth embodiment, the fifth embodiment, and the sixth embodiment.
  • the photoelectric element 21a is disposed at a position near the focal point of the first lens section 30, and the photoelectric element 21b is disposed at a position at the focal point of the first lens section 30. do.
  • the focal point of the first lens section 30 may be located at the photoelectric element 21a, or at any position between the photoelectric element 21a and the photoelectric element 21b. may be set.
  • all of the photoelectric elements 21a and 21b soldered to the demultiplexing/combining section 20 via the wiring 41 may be light receiving elements 212, all of them may be light emitting elements 211, or all of them may be light receiving elements 211, or all of them may be light receiving elements 211, A combination of the element 212 and the light emitting element 211 may be used.
  • an example of the demultiplexing/combining section 20 having two photoelectric elements 21a and 21b has been described, but the number is not limited to two, and the same configuration as the photoelectric element 21b can be further added. By arranging them in parallel, it is possible to configure the demultiplexing/combining section 20 having a plurality of photoelectric elements 21a, 21b, etc. The same applies to other embodiments and modifications thereof described below.
  • the basic configuration of the first embodiment according to the present disclosure is as described above. Further, the optical transmission module 100 according to the present disclosure is naturally used while being housed in a predetermined storage case that has a light-shielding property, but the shape and the like are not particularly limited, so a description thereof will be omitted. The same applies to each embodiment below.
  • both photoelectric elements are light-receiving elements
  • the operation when both photoelectric elements 21a and 21b are light-receiving elements 212 and 212 was briefly explained in the basic configuration of the first embodiment, but it will be explained in detail again. explain.
  • the optical transmission module 100 becomes a two-circuit reception-only module.
  • the optical signal emitted from the optical fiber 90 includes all optical signals of various wavelengths transmitted from a communication device (not shown) to which the optical fiber 90 is connected. Therefore, the optical fiber 90 emits all light of these wavelengths from its end face 91. The emitted light travels within the receptacle substrate 51 along the optical axis LA1 and enters the reflecting mirror 53. The reflecting mirror 53 reflects all of these incident lights. Therefore, the optical path of the reflected light is redirected from the optical axis LA1 to the optical axis LA2.
  • the light traveling within the receptacle substrate 51 along the optical axis LA2 reaches the second lens section 60.
  • An end surface 91 of the optical fiber 90 is arranged at the focal point of the second lens section 60. Therefore, the light emitted from the end face 91 of the optical fiber 90 becomes light having a predetermined solid angle and propagates while spreading. Then, by being refracted at the second lens section 60, the light becomes parallel light when it passes through the second lens section 60.
  • the parallel light transmitted through the second lens section 60 enters the first lens section 30 of the photoelectric conversion section 10, which is disposed opposite to the second lens section 60 and on the same optical axis LA2.
  • the light incident on the first lens section 30 is refracted, and as shown in FIG.
  • the light then travels inside the reflective/transmissive section 23a and enters the wavelength selection film 24a.
  • the wavelength selection film 24a Of the light incident on the wavelength selection film 24a, light rays L1 in a predetermined wavelength band are transmitted, and light of other wavelengths is reflected in a direction along the optical axis LA3.
  • the light beam L1 transmitted through the wavelength selection film 24a continues inside the second light guide 12 along the optical axis LA2 and enters the photoelectric element 21a.
  • the photoelectric element 21a is arranged at a position near the focal point of the first lens section 30. Therefore, the light beam L1 is focused on the photoelectric element 21a. Since the light receiving element 212, which is the photoelectric element 21a, is formed of a photodiode, for example, electrons are excited by the focused light beam L1, and the optical signal is converted into an electrical signal.
  • This electrical signal is taken out and processed by a signal processing circuit or the like (not shown) formed on the circuit board 40 via the solder ball 42, wiring 41, and solder ball 43 of the demultiplexing/combining section 20.
  • the optical path of the light reflected by the wavelength selection film 24a is changed from the optical axis LA2 to the optical axis LA3.
  • the reflected light then travels inside the reflective/transmissive section 23a and the third light guide 13 along the optical axis LA3, and is incident on the wavelength selection film 24b.
  • a light ray L2 in a predetermined wavelength band is reflected in a direction along the optical axis LA4, and incident light with other wavelengths is transmitted through the wavelength selection film 24b.
  • the photoelectric element 21b Since the photoelectric element 21b is located at the focal point of the first lens section 30, the light beam L2 reflected by the wavelength selection film 24b is focused on the photoelectric element 21b. Since the light-receiving element 212, which is the photoelectric element 21b, is formed of, for example, a photodiode, electrons in the light-receiving element 212 are excited by the focused light beam L2 and generate an electric signal. This electrical signal is subjected to signal processing similarly to the photoelectric element 21a. In the basic form of the first embodiment, when both the photoelectric elements 21a and 21b are the light receiving elements 212, they operate as described above and convert the received optical signals into electrical signals.
  • both photoelectric elements 21a and 21b are light emitting elements 211 and 211
  • the optical transmission module 100 becomes a two-circuit transmission-only module.
  • a predetermined transmission signal is input from a signal processing circuit or the like (not shown) formed on the circuit board 40 to the wiring 41 via the solder ball 43, and is sent to the light emitting element which is the photoelectric element 21a via the solder ball 42. 211 is driven.
  • the drive circuit that drives the light emitting element 211 may be placed on either the wiring 41 or the circuit board 40.
  • the photoelectric element 21a is located near the focal point of the first lens section 30. Therefore, the light beam L1 in the predetermined wavelength band emitted from the photoelectric element 21a is emitted from a position near the focal point of the first lens section 30.
  • the light beam L1 emitted by the photoelectric element 21a travels along the optical axis LA2 and is incident on the wavelength selection film 24a.
  • the wavelength selection film 24a transmits the light beam L1 in the predetermined wavelength band and reflects light in other wavelengths. However, in the case of a VCSEL, it is monochromatic light having a peak at a specific wavelength, and by setting it to emit light ray L1 in a predetermined wavelength band, only the light ray L1 is transmitted through the wavelength selection film 24a.
  • the light ray L1 that has passed through the wavelength selection film 24a continues along the optical axis LA2 through the reflection-transmission section 23a and the first light guide 11, and enters the first lens section 30.
  • the light beam L1 in the predetermined wavelength band is refracted by the first lens section 30, and becomes substantially parallel light when transmitted through the first lens section 30.
  • the substantially parallel light that has passed through the first lens section 30 enters the second lens section 60 as it is.
  • the parallel light incident on the second lens section 60 is refracted by the second lens section 60, travels within the receptacle substrate 51 along the optical axis LA2 while being focused, and enters the reflecting mirror 53.
  • the reflecting mirror 53 reflects all of these light rays L1. Therefore, the optical path of the light beam L1 is changed from the optical axis LA2 to the optical axis LA1.
  • the light beam L1 then travels along the optical axis LA1 and enters the end surface 91 of the optical fiber 90.
  • the end face 91 of the optical fiber 90 is arranged at the focal point of the second lens section 60 as described above. Therefore, the light from the second lens section 60 is focused on the end surface 91 of the optical fiber 90.
  • the light beam L1 of a predetermined wavelength band focused on the end face 91 of the optical fiber 90 enters the optical fiber 90 as it is and propagates.
  • the photoelectric element 21b is located at the focal point of the first lens section 30. Therefore, the light beam L2 emitted from the photoelectric element 21b is emitted from the focal point of the first lens section 30.
  • the light beam L2 in a predetermined wavelength band emitted by the photoelectric element 21b travels along the optical axis LA4 and is incident on the wavelength selection film 24b.
  • the wavelength selection film 24b reflects the light beam L2 and transmits light of other wavelengths.
  • the light is monochromatic light having a peak at a specific wavelength, and by setting it to emit light ray L2 in a predetermined wavelength band, the reflection of the wavelength selection film 24b The light becomes only the light ray L2.
  • the optical path of the light ray L2 reflected by the wavelength selection film 24b is changed from the optical axis LA4 to the optical axis LA3, travels inside the third light guide 13 along the optical axis LA3, and enters the wavelength selection film 24a. do.
  • the wavelength selection film 24a reflects light having a wavelength other than the light ray L1 of the emission wavelength of the photoelectric element 21a, so the light ray L2 from the photoelectric element 21b is reflected. Then, the optical path of the light beam L2 is changed from the optical axis LA3 to the optical axis LA2, travels along the optical axis LA2 through the reflective/transmissive part 23a and the first light guide 11, and enters the first lens part 30. incident. The light ray L2 is refracted by the first lens section 30, and becomes parallel light when it passes through the first lens section 30.
  • the light beam is focused and incident on the end surface 91 of the optical fiber 90 via the same optical path as the light beam L1 of the photoelectric element 21a described above.
  • the wavelength of the light beam L1 emitted from the photoelectric element 21a and the wavelength of the light beam L2 emitted from the photoelectric element 21b are different from each other, but may be the same wavelength.
  • the optical transmission module 100 becomes a two-circuit transmission/reception-only module.
  • either of the photoelectric elements 21a and 21b may be the light receiving element 212 or the light emitting element 211. That is, when either the photoelectric element 21a or the photoelectric element 21b is the light receiving element 212, either the photoelectric element 21a or 21b described in "(1) When both photoelectric elements are light receiving elements" It operates in the same way as the light receiving element 212.
  • the photoelectric element 21a or the photoelectric element 21b is a light emitting element 211
  • the light emitting element 211 of the photoelectric elements 21a and 21b explained in "(2)
  • both photoelectric elements are light emitting elements” mentioned above It works the same way. That is, it is a combination of the operations of the light receiving element 212 and the light emitting element 211 described above. Therefore, the explanation will be omitted below.
  • the photoelectric elements 21a and 21b emit light to or receive light from the first lens section 30 via the demultiplexing/combining section 20 and the first light guide 11.
  • the optical fiber 90 is pulled out in the front direction. That is, in the basic form of the first embodiment, the drawing direction of the optical fiber 90 is directed toward the right side, but in the first modification, it is different from the basic form of the first embodiment in that it is configured to face the front. differ. Since the configuration other than the above is the same as the basic form of the first embodiment, the explanation will be omitted.
  • the direction in which the optical fiber 90 is drawn out in the first modification is not limited to the front direction, and may be, for example, the back direction, the left side direction, the right direction at 45 degrees, or the like. In short, the direction in which the optical fiber 90 is drawn out may be any direction on the horizontal plane.
  • the third modification of the first embodiment is configured by arranging two optical transmission modules 100 shown in the first modification in parallel. That is, the third modification is different from the first modification in that it is configured to support multi-wavelength or multi-channel optical communication by configuring two optical transmission modules 100 shown in the first modification in parallel. This is different from the basic form, the first modification, or the second modification of the embodiment.
  • the portion corresponding to the fourth light guide 14 becomes the second light guide 12 of the photoelectric conversion section 10 of the adjacent optical transmission module 100.
  • a light shielding film 28 is provided at the boundary between the adjacent second light guide 12 and the reflective/transmissive part 23b, as shown in FIG. is forming. Since the configuration other than the above is the same as the basic form of the first embodiment, the explanation will be omitted.
  • this modification shows an example in which two optical transmission modules 100 are arranged in parallel
  • the number is not limited to two, and any number of optical transmission modules 100 may be arranged in parallel. An example of multiple wavelengths exceeding two will be described later.
  • an example in which two optical transmission modules 100 are arranged in parallel will be explained in principle, but the number is not limited to two, and when two or more are arranged in parallel, is also applicable.
  • reflective/transmissive parts 23a and 23b having a substantially right triangular shape with inclined sides 25a and 25b are provided on the upper surface of the glass substrate 11A, and a first lens part is provided on the lower surface of the glass substrate 11A.
  • 30 are each molded by double-sided imprint. Imprint is a molding method in which resin or the like is pressed onto the glass substrate 11A using a so-called pressing die. The resin used for this is a translucent resin.
  • a resist 81 is applied to the upper surface of the glass substrate 11A except for the inclined surfaces 25a and 25b of the reflective and transmissive parts 23a and 23b. Then, wavelength selective films 24a and 24b are formed on the inclined surfaces 25a and 25b by vapor deposition. Furthermore, a reflecting mirror may be formed on the inclined surface 25b by vapor deposition instead of the wavelength selection film 24b.
  • the resist 81 is removed, and the third light guide 13 is placed between the reflective and transparent parts 23a and 23b, and the second light guide 12 and A fourth light guide 14 is formed.
  • the second light guide 12, the third light guide 13, and the fourth light guide 14 are all made of a translucent resin.
  • the third light guide 13 is raised to a height as described in the fourth embodiment below. It may be formed from a refractive index resin, and the second light guide 12 may be formed from a low refractive index resin.
  • wiring 41 having a predetermined pattern is formed on the surface on which the second light guide 12, third light guide 13, and fourth light guide 14 are formed.
  • the wiring 41 is for joining the photoelectric elements 21a and 21b and the solder ball 43.
  • a signal processing circuit for the light receiving element 212 which is the photoelectric element 21a, 21b, a driving circuit for the light emitting element 211, etc. may be formed.
  • the photoelectric elements 21a and 21b are soldered to the wiring 41 using solder balls 42.
  • solder bonding is performed by reflow.
  • the photoelectric elements 21a and 21b can be automatically and accurately aligned by self-alignment due to the surface tension of the molten solder. Therefore, the photoelectric elements 21a and 21b can be arranged accurately and with high precision on the optical axes LA2 and LA4, respectively.
  • a solder ball 43 for connecting the photoelectric conversion unit 10 to the circuit board 40 is bonded to a predetermined land of the wiring 41.
  • the glass substrate 11A is separated into individual pieces.
  • the photoelectric conversion section 10 of the optical transmission module 100 is completed.
  • this figure shows an example of the photoelectric conversion section 10 used in the basic form, the first modification, and the second modification of the first embodiment, the photoelectric conversion section 10 used in the third modification shown in FIG. It is also possible to separate the parts 10 into two pieces arranged side by side. Alternatively, two or more pieces may be placed side by side and then separated into pieces.
  • the photoelectric conversion section 10 is turned upside down and soldered to the circuit board 40 using the solder balls 43. Solder bonding is performed by reflow.
  • the optical transmission module 100 of the first embodiment can be formed by combining it with the optical receptacle section 50 manufactured in a separate process. Note that the combination with the optical receptacle portion 50 may be performed before or after soldering to the circuit board 40.
  • the transmitted light between the second lens section 60 of the optical receptacle section 50 and the first lens section 30 of the photoelectric conversion section 10 is basically parallel light
  • the distance from the portion 30 is independent of the focal length of both. Therefore, the arrangement interval between the second lens section 60 and the first lens section 30 may be arbitrary. Therefore, as long as the optical axes LA2 of the two coincide with each other, there is no need to strictly align the distance between the two.
  • the light emitted from the photoelectric elements 21a and 21b according to the fourth embodiment and the like becomes parallel light.
  • FIG. 14 a second embodiment of the optical transmission module 100 according to the present disclosure will be described.
  • three photoelectric elements 21a, 21b, and 21c are arranged to configure an optical transmission module 100 including a three-circuit photoelectric conversion section 10. That is, another demultiplexing/multiplexing section 70 is formed between the first light guide 11 and the demultiplexing/multiplexing section 20 described in the first embodiment, and three circuits of photoelectric elements 21a, 21b, and 21c are formed. This enables the demultiplexing and multiplexing of light.
  • another demultiplexing/multiplexing section 70 is laminated between the first light guide 11 and the demultiplexing/multiplexing section 20 .
  • the demultiplexing/multiplexing section 70 is provided with a reflective/transmissive section 73a on the optical axis LA2, which is a substantially right-angled triangle whose hypotenuse forms an inclined surface 75a, and which has a similar shape on the right side.
  • a reflective/transmissive section 73b is provided.
  • a second light guide 71 is disposed on the left side of the reflective/transmissive section 73a, and a third light guide 72 is disposed between the reflective/transmissive sections 73a and 73b.
  • wavelength selection films 74a and 74b are formed on the inclined surfaces 75a and 75b of the reflective and transmissive parts 73a and 73b, respectively.
  • the wavelength selection film 74a reflects the light beam L3 having a predetermined emission wavelength or reception wavelength of the photoelectric element 21c, and transmits light having other wavelengths.
  • the photoelectric element 21c is the light receiving element 212
  • a light ray L3 in a predetermined wavelength band is reflected by the wavelength selection film 74a.
  • the optical path of the light ray L3 reflected by the wavelength selection film 74a is changed from the optical axis LA2 to the optical axis LA5, and the light ray L3 travels along the optical axis LA5 and enters the wavelength selection film 74b.
  • the wavelength selection film 74b reflects the light beam L3 in a predetermined wavelength band.
  • a reflecting mirror that totally reflects the light ray L3 may be provided on the inclined surface 75b instead of the wavelength selection film 74b.
  • the optical path of the light ray L3 reflected by the wavelength selection film 74b is changed from the optical axis LA5 to the optical axis LA6, and the light ray L3 travels along the optical axis LA6 and passes through the second light guide of the demultiplexing/combining section 20.
  • the light passes through the body 12 and enters the photoelectric element 21c.
  • the photoelectric element 21c is arranged at a position near the focal point of the first lens section 30, as described in the basic form of the first embodiment. Therefore, the light beam L3 is focused on the light receiving element 212, which is the photoelectric element 21c, and is converted into an electrical signal. If the photoelectric element 21c is the light emitting element 211, the optical path will simply be the opposite, so the explanation will be omitted.
  • the light transmitted through the wavelength selection film 74a enters the demultiplexing/combining section 20.
  • the optical path after entering the demultiplexing/multiplexing unit 20 is the same as that described in the basic form of the first embodiment, and therefore the description thereof will be omitted. The same applies to the case of outputting from the demultiplexing/combining section 20. Further, the configuration other than the above is the same as that described in the basic form of the first embodiment, so the description will be omitted.
  • the second embodiment is configured as described above, it is possible to perform demultiplexing and multiplexing of light from three circuits.
  • FIG. 14 it has been explained that the optical transmission module 100 having three circuits of photoelectric elements 21a, 21b, and 21c can be formed. An optical transmission module 100 can also be formed.
  • the upper division/multiplexing section 70 is further laminated on the upper surface of the division/multiplexing section 70 of the photoelectric conversion section 10 in FIG. 14 .
  • the upper-stage demultiplexing/combining section 70 reflects the light rays in a predetermined wavelength band and performs demultiplexing/combining so as to extract the light rays in the predetermined wavelength band corresponding to the upper-stage photoelectric element.
  • Light of other wavelengths is transmitted to the lower division/multiplexing section 70.
  • the lower splitting/combining unit 70 reflects the transmitted light from the upper splitting/combining unit 70 in a predetermined wavelength band and extracts the light ray in a predetermined wavelength band corresponding to the lower photoelectric element. Combine waves.
  • the lowermost division/multiplexing section 20 is configured to split the transmitted light from the lower division/multiplexing section 70 into two photoelectric elements 21a, 21b as described above, thereby creating a four-circuit optical transmission module. 100 can be formed. Similarly, by sequentially stacking further demultiplexing/combining sections 70 on the upper surface of the upper demultiplexing/multiplexing section 70, an optical transmission module 100 having five or more circuits can be formed.
  • the wavelength selection films 24a and 24b are not provided on the inclined surfaces 25a and 25b of the reflection and transmission parts 23a and 23b in the demultiplexing and multiplexing part 20, but only one of the wavelength selection films 24a and 24b is provided.
  • the photoelectric elements 21a and 21b are configured to receive incident light, or to transmit or reflect light emitted from one of the photoelectric elements 21a and 21b.
  • the photoelectric elements 21a and 21b are both light receiving elements 212 and 212.
  • part of the incident light that passes through the first lens section 30 and travels along the optical axis LA2 passes through the inclined surface 25a, and the other part is reflected. That is, the light is divided into transmitted light and reflected light.
  • the light transmitted through the inclined surface 25a continues along the optical axis LA2 and enters the light receiving element 212, which is the photoelectric element 21a.
  • the optical path of the reflected light on the inclined surface 25a is changed from the optical axis LA2 to the optical axis LA3.
  • the reflected light then travels along the optical axis LA3 and enters the inclined surface 25b.
  • the light incident on the inclined surface 25b is separated into transmitted light and reflected light.
  • the optical path of the reflected light on the inclined surface 25b is changed from the optical axis LA3 to the optical axis LA4.
  • the reflected light then travels along the optical axis LA4 and enters the light receiving element 212, which is the photoelectric element 21b.
  • both light receiving elements 212 and 212 simultaneously receive light of all wavelengths passing through the optical fiber 90.
  • the light transmitted through the inclined surface 25b continues along the optical axis LA3, but is blocked by the light shielding film 28 formed at the boundary between the reflective and transmitting portion 23b and the adjacent second light guide 12. Therefore, no light leaks to other adjacent photoelectric elements 21a, 21b. Further, since the inclined surface 25b of the reflective/transmissive portion 23b only needs to totally reflect the light traveling along the optical axis LA3, there is no need to consider transmitted light. Therefore, a reflecting mirror may be formed on the inclined surface 25b instead of the wavelength selection film 24b.
  • the wavelength selection films 24a and 24b are not provided on the inclined surfaces 25a and 25b, when both the photoelectric elements 21a and 21b are light receiving elements 212 and 212, they receive light of all wavelengths. Discrimination of the received optical signals may be performed using a signal processing circuit, signal processing software, or the like. Furthermore, when it is desired to perform demultiplexing of a predetermined wavelength band in the photoelectric conversion section 10, a wavelength selection film 24k is formed at the boundary between the first light guide 11 and the reflective/transmissive section 23a, as shown in FIG. , it may be configured to transmit only the light beams L1 and L2 in a predetermined wavelength band.
  • the photoelectric elements 21a and 21b are both light emitting elements 211 and 211.
  • the optical paths of the respective light rays L1 and L2 emitted by the light emitting elements 211 and 211 are in the opposite direction to those in the case where the photoelectric elements 21a and 21b are both the light receiving elements 212 and 212, so a description thereof will be omitted.
  • both the photoelectric elements 21a and 21b are light emitting elements 211 and 211, it is only necessary for either one of the light emitting elements 211 and 211 to emit light when communication is required. It is not necessary to provide the selective films 24a and 24b to combine the respective light beams L1 and L2.
  • one of the photoelectric elements 21a and 21b is used regularly and the other is used as a spare.
  • the photoelectric elements 21a and 21b may be used alternately for regular use and for backup.
  • the failed photoelectric element 21a, 21b may be separated and operated.
  • the communication system can be duplicated. Even if one of the photoelectric elements 21a, 21b breaks down, the optical receptacle unit 50 can be continuously operated until the next periodic inspection without removing it.
  • the case of two photoelectric elements 21a and 21b was demonstrated, it is not limited to two and may be three or more.
  • some of the photoelectric elements among the plurality of photoelectric elements may be used regularly, some of the other photoelectric elements may be used as spares, and furthermore, the regular use and the spares may be rotated.
  • one photoelectric element 21a is used as a regular photoelectric element, and the remaining two photoelectric elements 21b, 21c is a spare photoelectric element.
  • Everything other than the above is the same as the third modified example of the first embodiment, so the explanation will be omitted.
  • the second light guide 12 in the demultiplexing/combining section 20 is made of a low refractive index resin
  • the third light guide 13 is made of a high refractive index resin.
  • the second light guide 12 by forming the second light guide 12 with a low refractive index resin, the light ray L1 that passes through the reflection/transmission part 23a, passes through the wavelength selection film 24a, and enters the second light guide 12 is refracted, resulting in a short optical path length. It is configured so that the light is focused and incident on the photoelectric element 21a.
  • the third light guide 13 with a high refractive index resin, the reflected light on the wavelength selection film 24a of the reflective/transmissive part 23a is refracted so that the optical path is widened when it enters the third light guide 13. , the light is condensed with a long optical path length and is incident on the photoelectric element 21b.
  • the refractive index and optical path length of each of the second light guide 12 and the third light guide 13 may be determined based on the external dimensions of the photoelectric conversion section 10, the photoelectric elements 21a, 21b, etc., and their arrangement.
  • each of the photoelectric elements 21a and 21b can be arranged at the focal point of the first lens section 30 with a simple configuration.
  • the configuration other than the above is the same as that described in the basic form of the first embodiment, so the description will be omitted.
  • the refractive index of the reflective/transmissive portion 23a is n1
  • the refractive index of the second light guide 12 is n2
  • the slope of the slope 25a is 45 degrees
  • sin45° 2-1 / 2.
  • the incident angle ⁇ 1 and the refraction angle ⁇ 2 are not the same angle ( ⁇ 1 ⁇ 2). That is, the incident light when the refractive indexes of both are n1>n2 is refracted at the interface between the inclined surface 25a of the reflective-transmissive portion 23a and the second light guide 12. Then, as shown in FIG. 17, the optical path of the refracted light deviates from the straight optical path and travels while being bent at the second light guide 12.
  • the refracted light passes through the second light guide 12 and exits into the air, it is refracted again at the interface with the air.
  • the value of the sine of the refraction angle ⁇ 4 of the optical path into the air is n2 times the value of the sine of the incident angle ⁇ 3 of the optical path into the second light guide 12. Therefore, as shown in FIG. 17, the optical axis LA2 of the incident light on the inclined surface 25a is bent by an angle ⁇ 3 at the interface between the reflective and transmitting portion 23a and the second light guide 12, and bends at the interface between air and air. As a result, the optical axis LA2 is bent by an angle ⁇ 4 compared to the original straight line.
  • n2 ⁇ n1 is set in order to compensate for the difference in the optical path length of the optical axis LA3
  • the distance by which the optical axis LA2 of the transmitted light deviates from the straight optical path is calculated and the position of the photoelectric element 21a is determined.
  • adjustment may be made by setting the inclination of the inclined surface 25a to a value different from 45 degrees.
  • the second light guide 12 is formed of a low refractive index resin, it is necessary to take into account that the optical axis LA2 is bent. Thereby, the light beam L1 that passes through the reflection-transmission part 23a and the wavelength selection film 24a and enters the second light guide 12 can be refracted and focused on the photoelectric element 21a with a short optical path length. Furthermore, the photoelectric element 21a can be disposed at the focal point of the first lens section 30.
  • the third light guide 13 is made of a high refractive index resin, its refractive index is different from the refractive index n1 of the reflective/transmissive portion 23a.
  • the optical axis LA3 is perpendicular to the third light guide 13, the optical axis LA3 is not bent due to refraction. That is, as shown in FIG. 17, the reflected light takes an optical path along the optical axis LA3 direction without being affected by the difference in the refractive indexes n1 and n2 and the refractive index of the third light guide 13. Can be done.
  • the photoelectric element 21a is disposed at the focal point of the first lens section 30, and the reflective/transmissive section 23b has a concave mirror-like inclined surface having a predetermined center of curvature and radius of curvature.
  • a surface 25b and a wavelength selection film 24b are formed. The structure is such that the light incident on the concave mirror of the inclined surface 25b is reflected and focused, so that the light can be focused on the photoelectric element 21b.
  • the light ray L1 in a predetermined wavelength band is transmitted through the wavelength selection film 24a, and the light of other wavelengths is transmitted. reflected.
  • the optical path of the reflected light is changed from the optical axis LA2 to the optical axis LA3, and travels along the optical axis LA3.
  • the reflected light traveling along the optical axis LA3 is once condensed at the focal point of the first lens section 30 located on the optical axis LA3, and then spreads out to the wavelength selection film 24b of the concave mirror-like inclined surface 25b. incident on .
  • the concave mirror-shaped wavelength selection film 24b reflects the light beam L2 in a predetermined wavelength band.
  • the optical path of the reflected light beam L2 is changed from the optical axis LA3 to the optical axis LA4, and travels along the optical axis LA4 while condensing. Therefore, by arranging the photoelectric element 21b at a position where the light beam L2 is focused, the light beam L2 can be focused and received. As a result, the difference in the optical path length of the optical axis LA3 can be compensated for.
  • the second light guide 12 and the third light guide 13 can be made of a transparent material having the same refractive index as the reflective/transmissive parts 23a and 23b.
  • each of the photoelectric elements 21a and 21b can be arranged at the focal point of the first lens section 30 with a simple configuration.
  • the optical path when the photoelectric element 21b is the light emitting element 211 is simply the opposite of the optical path when receiving light, so the explanation will be omitted.
  • the configuration other than the above is the same as that described in the basic form of the first embodiment, so the description will be omitted.
  • the light ray L1 in a predetermined wavelength band is transmitted through the light wavelength selection film 24a, and the other light rays are transmitted along the optical axis LA2.
  • Light of wavelength is reflected.
  • the optical path of the reflected wave is changed in direction from the optical axis LA2 to the optical axis LA3, and becomes parallel light along the optical axis LA3.
  • the light beam L2 in a predetermined wavelength band is reflected by the wavelength selection film 24b formed in the shape of a concave mirror on the inclined surface 25b, and is focused on the photoelectric element 21b.
  • the difference in optical path length between the photoelectric elements 21a and 21b can be compensated for, and the photoelectric element 21b can be arranged at the focal point position of the first lens section 30 to condense light.
  • the inclined surface 25a formed in the shape of a concave mirror forms a convex mirror when viewed from the first lens section 30 side, when light traveling along the optical axis LA2 enters the wavelength selection film 24a, Light other than the light beam L1 in the predetermined wavelength band that passes through the wavelength selection film 24a is reflected in the spreading direction. Therefore, by appropriately setting the center of curvature and the radius of curvature of the concave mirror, as shown in FIG. 19, it is possible to reflect the incident light that has traveled while condensing to form parallel light.
  • the optical path when the photoelectric element 21b is the light emitting element 211 is simply the opposite of the optical path when receiving light, so the explanation will be omitted.
  • the optical path length is increased by the length of the optical axis LA3.
  • the difference can be compensated for.
  • the distance between the reflection-transmission parts 23a and 23b can be set to an arbitrary length. In other words, they can be arranged at arbitrary intervals.
  • the second light guide 12, the third light guide 13, and the reflective/transmissive parts 23a and 23b can be formed of materials having the same refractive index. Therefore, there are fewer manufacturing restrictions when performing double-sided imprinting, etc., the process can be simplified, and equipment investment can be reduced.
  • the configuration other than the above is the same as that of the third modification of the first embodiment, so the explanation will be omitted.
  • a modification of the sixth embodiment of the optical transmission module 100 according to the present disclosure forms reflection-transmission parts 23a and 23b similar to those in FIG. It differs from the basic shape in that reflective/transmissive parts 23c and 23d are provided, and the respective inclined surfaces 25c and 25d and wavelength selection films 24c and 24d are formed in a concave mirror shape.
  • the incident light from the optical fiber 90 travels along the optical axis LA2, the reflected light on the inclined surface 25a and the wavelength selection film 24a becomes parallel light along the optical axis LA3, and then the concave mirror-like inclined surface 25b, 25c, 25d and the wavelength selection films 24b, 24c, 24d, each reflects light rays L2, L3, L4 in a predetermined wavelength band, and each of the photoelectric elements 21b, 21c, 21d receives the respective reflected light. It consists of Thereby, the difference in optical path length between the photoelectric elements 21a to 21d can be compensated for, and each of the photoelectric elements 21b, 21c, and 21d can be arranged at the focal point of the first lens section 30.
  • the inclined surface 25d of the reflective/transmissive part 23d has a wavelength selective film 24a, There is no need to consider transmitting light like 24b and 24c. Therefore, in such a case, a reflecting mirror may be formed on the inclined surface 25d instead of the wavelength selection film 24d.
  • the inclined surface 25a and the wavelength selection film 24a form a convex mirror when viewed from the first lens section 30 side, when light traveling along the optical axis LA2 enters the wavelength selection film 24a, it falls into a predetermined wavelength band. Light other than the light ray L1 is reflected in the spreading direction. Therefore, by appropriately setting the center of curvature and the radius of curvature of the wavelength selection film 24a, as shown in FIG. 20, it is possible to refract the incident light at the first lens portion and reflect the traveling incident light to form parallel light. Can be done. In FIG. 20, a description has been given of the branching and multiplexing of light using four circuits, but by adding a similar configuration, it is possible to perform branching and multiplexing using more than four circuits.
  • any of the photoelectric elements 21b, 21c, and 21d is the light emitting element 211, the optical path is simply the opposite of that for light reception, so the explanation will be omitted.
  • the configuration other than the above is the same as that of the basic form of the sixth embodiment and the third modification of the first embodiment, so a description thereof will be omitted.
  • optical transmission module 100 As shown in the plan view of the photoelectric conversion unit 10 in FIG. 21 and the side view in FIG.
  • the sets of 30 and 30 are arranged in two horizontal rows, the front row and the back row, with four pairs in the front row of the horizontal row (referring to the lower row in Figure 21), and four pairs in the rear row of the horizontal row (referring to the upper row in Figure 21). Four sets were arranged.
  • the optical receptacle section 50 has two circuits of optical fibers 90 in each of the front and rear rows arranged in two stacks, one above the other.
  • a large reflecting mirror 53 is formed in the optical receptacle section 50 so as to reflect the light from the optical path of the second lens section 60 in each of the front and rear rows.
  • the optical receptacle section 50 includes a plurality of second lens sections 60, which are disposed facing each other on the optical axis LA2 of each of the plurality of first lens sections 30, which respectively transmit the demultiplexed and multiplexed light; It has a reflecting mirror 53 that reflects each transmitted light of the second lens part 60, and a plurality of connectors 52 that connect a plurality of optical fibers 90 corresponding to the plurality of reflected lights or incident lights on the reflecting mirror 53. and a receptacle substrate 51 configured to condense light onto an end surface 91 of an optical fiber 90 connected and fixed to each plug 52.
  • the configuration other than the above is the same as that of the basic form and the first modification of the first embodiment, so the explanation will be omitted.
  • FIG. 23 is a plan view and a front view of the photoelectric conversion unit 10 of a comparative example for explaining the effect of the demultiplexing/combining unit 20 of the optical transmission module 100 according to the present disclosure.
  • FIG. 24 is a side view thereof. That is, FIGS. 23 and 24 are diagrams showing an example in which the photoelectric conversion section 10 is not provided with the demultiplexing/multiplexing section 20.
  • first lens units 30 and 30 are provided for each of the photoelectric elements 21a and 21b.
  • first lens sections 30 are arranged corresponding to the four photoelectric elements 21a and 21b. Since the photoelectric conversion section 10 of the comparative example does not include the demultiplexing/multiplexing section 20, the optical function corresponding to the demultiplexing/multiplexing section 20 is provided in the optical receptacle section 50.
  • FIG. 25 is a plan view and a front view of a portion of the photoelectric conversion unit 10 of the third modification of the first embodiment in which the photoelectric conversion unit 10 of the optical transmission module 100 according to the present disclosure is provided with the demultiplexing/multiplexing unit 20.
  • the front view shown in FIG. 25B corresponds to the third modification of the first embodiment shown in FIG. 5 with the optical receptacle part 50 removed. Further, a side view thereof is shown in FIG. 26.
  • the photoelectric conversion section 10 is provided with one first lens section 30 corresponding to the two photoelectric elements 21a and 21b. That is, in the plan view of FIG. 23A, four first lens sections 30 are arranged corresponding to each of the four photoelectric elements 21a and 21b. In contrast, in FIG. 25A, two first lens sections 30 are provided for four photoelectric elements 21a and 21b. Therefore, it can be seen that in the third modified example of the first embodiment shown in this figure, the number of required first lens sections 30 is only half that of the comparative example shown in FIGS. 23 and 24.
  • FIG. 27 is a plan view and a front view of a portion of the photoelectric conversion unit 10 of a modification of the sixth embodiment in which the photoelectric conversion unit 10 of the optical transmission module 100 according to the present disclosure is provided with the demultiplexing/multiplexing unit 20.
  • the front view shown in FIG. 27B corresponds to FIG. 20 of the modification of the sixth embodiment.
  • one first lens section 30 is provided corresponding to the four photoelectric elements 21a, 21b, 21c, and 21d. That is, in the plan view of FIG. 27A, there are a total of four photoelectric elements 21a, 21b, 21c, and 21d, whereas one fourth of the first lens parts 30 is disposed. Therefore, it can be seen that in the modified example of the sixth embodiment, the required number of first lens sections 30 is one-fourth of that of the comparative example shown in FIG. 23.
  • FIG. 28 is a comparative diagram summarizing the effects of the demultiplexing/combining section 20 described above.
  • the upper column of the figure is a column of a plan view when the photoelectric conversion section 10 is provided with the demultiplexing/multiplexing section 20.
  • the lower column of the figure is a column of a plan view when the photoelectric conversion section 10 is not provided with the demultiplexing/multiplexing section 20.
  • the column of two wavelengths in the upper column of this figure indicates that the photoelectric conversion section 10 corresponding to FIG.
  • FIG. 6 is a plan view of a photoelectric conversion unit 10 of a third modified example (corresponding to FIG. 5).
  • the 4-wavelength column in the upper column indicates that the photoelectric conversion unit 10 corresponding to FIG.
  • FIG. 22 is a plan view of the photoelectric conversion unit 10 of an example (corresponding to FIG. 20).
  • Each column in the lower column of FIG. 28 shows, in order from the left, the case of 1 wavelength (corresponding to FIG. 23A), the case of 2 wavelengths (an example in which 2 sets of FIG. 23A are arranged side by side), and the case of 4 wavelengths.
  • 23A is a plan view of each photoelectric conversion unit 10 in the case (an example in which four sets of FIG. 23A are arranged in parallel).
  • FIG. In the comparative example in the lower column, the demultiplexing and multiplexing is performed in the optical receptacle section 50, so the number of second lens sections 60 corresponding to the number of circuits is required. Furthermore, within the optical receptacle section 50, it is necessary to provide optical elements for demultiplexing and multiplexing corresponding to the number of circuits.
  • the structure of the optical receptacle section 50 becomes complicated, and moreover, the number of types thereof increases in order to accommodate various numbers of circuits.
  • the optical receptacle section 50 is not provided with a demultiplexing/multiplexing function (that is, when the photoelectric conversion section 10 is provided with the demultiplexing/multiplexing section 20)
  • an increase in the number of second lens sections 60 can be suppressed.
  • the number of optical fibers 90 can be reduced, and the number of man-hours for wiring the optical fibers 90 can be reduced.
  • the demultiplexing/combining section 20 in the photoelectric conversion section 10, the following effects can be achieved. (1) Since the configuration is such that light is split and multiplexed in the splitting/combining unit 20 of the photoelectric conversion unit 10, the required number of first lens units 30 is significantly reduced relative to the number of photoelectric elements 21a, 21b, etc. can be reduced. Thereby, the optical transmission module 100 can be miniaturized or highly integrated. (2) By stacking multiple layers of the demultiplexing/multiplexing section 20, it is possible to perform demultiplexing and multiplexing of three or more circuits. This allows the optical transmission module 100 to be made smaller or more highly integrated.
  • Two light-emitting elements 211 or light-receiving elements 212 with the same wavelength band are arranged as the photoelectric elements 21a and 21b, and one of them is used as "regular use” and the other is used as “spare”, and furthermore, the regular use and the reserve are used. It can be configured to be switchable. As a result, optical communication can be duplicated, and even if a failure occurs in either one of the photoelectric elements 21a, 21b, continuous operation can be performed without removing the optical receptacle part 50 until the next periodic inspection. can.
  • the third light guide 13 With a high refractive index resin and the second light guide 12 with a low refractive index resin, the difference in optical path length between the photoelectric elements 21a and 21b can be compensated for. , each can be arranged at the focal point of the first lens section 30. Thereby, light emission and light reception can be performed reliably.
  • a concave mirror-shaped wavelength selection film 24b may be formed on the inclined surface 25b of the reflection/transmission section 23b in the demultiplexing/multiplexing section 20.
  • the reflected light from the wavelength selection film 24a is once condensed at the focal point of the first lens section 30 on the optical axis LA3, and then is reflected by the concave mirror-shaped wavelength selection film 24b while spreading, and reaches the focal point of the concave mirror.
  • the photoelectric element 21b is arranged at a position where the light is focused again.
  • the second light guide 12 and the third light guide 13 can be made of a transparent material having the same refractive index as the reflective/transmissive parts 23a and 23b.
  • the difference in optical path length between the photoelectric elements 21a and 21b can be compensated for, and each of the photoelectric elements 21a and 21b can be arranged at the focal point of the first lens section 30 to condense light.
  • (6) By arranging, for example, the inclined surfaces 25a to 25d of the reflection/transmission parts 23a to 23d and the wavelength selection films 24a to 24d in a concave mirror shape in the demultiplexing/multiplexing part 20, three or more circuits can be divided. Waves and wave combinations may be possible.
  • the difference in optical path length between the photoelectric elements 21a to 21d can be compensated for, and each of them can be arranged at the focal point of the first lens section 30 to condense light.
  • the optical transmission module 100 can be made smaller or more highly integrated.
  • a plurality of combinations of the photoelectric elements 21a, 21b of the plurality of circuits and the first lens section 30 are arranged, for example, in the front row and the rear row of the horizontal rows, and the optical receptacle section 50 is arranged, for example, in each of the front row and the rear row.
  • the optical transmission module 100 can be miniaturized or highly integrated.
  • the second lens section 60 of the optical receptacle section 50 and the first lens section 30 of the photoelectric conversion section 10 can be configured to couple with parallel light. Therefore, the mutual spacing may be arbitrary.
  • the optical receptacle section 50 does not need to provide the demultiplexing/multiplexing section 20 in accordance with the number of circuits, and the number of the second lens sections 60 can be reduced. can be reduced. Therefore, the structure of the optical receptacle section 50 can be simplified and standardized.
  • the present technology can also have the following configuration.
  • the demultiplexing/multiplexing section includes a first reflective/transmissive section having a first wavelength selection film formed on an inclined surface having a predetermined inclination angle on the optical axis of the first lens section; a second reflective/transmissive part or a reflective mirror having a second wavelength selective film formed on an inclined surface having a predetermined inclination angle and arranged in parallel with the first reflective/transmissive part; a third light guide arranged in parallel between the first reflective transmitting section and the second reflective transmitting section; a second light guide arranged in parallel at a position opposite to the third light guide with the first reflective/transmissive part in between;
  • the optical transmission module according to (1) or (2) above.
  • the optical transmission module according to (3) wherein the first wavelength selection film is configured to transmit light in a predetermined wavelength band and reflect light in other wavelengths.
  • the plurality of photoelectric elements disposed in the demultiplexing/combining section are capable of emitting or receiving light in the same wavelength band, and among the plurality of photoelectric elements, some of the photoelectric elements are used regularly and others are used.
  • the optical transmission module according to (1) or (2), wherein the photoelectric element in the section is a spare, and further configured to be switchable between regular use and standby.
  • each of the plurality of photoelectric elements is positioned at the focal point of the first lens portion.
  • the optical transmission module according to any one of (1) to (6) above.
  • the first reflective transmitting section is formed in a plane mirror shape with respect to the incident light
  • the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section.
  • the optical transmission module according to any one of (1) to (6), wherein each of the plurality of photoelectric elements is disposed at a focal point of the first lens section.
  • the first reflective transmitting section is formed in a convex mirror shape with respect to the incident light
  • the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section.
  • the optical transmission module according to any one of (1) to (9), wherein the demultiplexing/multiplexing section is provided with wiring connecting the photoelectric elements.
  • (11) The optical transmission module according to (10), wherein the photoelectric element is soldered to the wiring.
  • any of the transmitted light between the second lens part and the first lens part disposed on the optical axis opposite to the second lens part is configured to become parallel light.
  • the optical transmission module according to any one of (1) to (12) above.
  • (14) a plurality of second lens parts disposed opposite to each other on the optical axis of each of the plurality of first lens parts, each of which transmits the demultiplexed and multiplexed light; a reflecting mirror that reflects the transmitted light of each of the plurality of second lens parts,
  • the receptacle board has a plurality of connectors that connect a plurality of optical fibers corresponding to a plurality of reflected lights or incident lights on the reflecting mirror, and the optical fibers connected and fixed to each of the connectors.
  • the optical transmission module according to (1) above configured to condense light onto the end face of the fiber.
  • Photoelectric conversion unit 11 First light guide 11A Glass substrate 12 Second light guide 13 Third light guide 14 Fourth light guide 20 Demultiplexing unit 21a, 21b, 21c, 21d Photoelectric element 211 Light emitting element 212 Light receiving Elements 23a, 23b First and second reflective/transmissive sections 23c, 23d Reflective/transmissive sections 24a First wavelength selective film 24b Second wavelength selective film or reflective mirror 24c, 24k Wavelength selective film 24d Wavelength selective film or reflective mirror 25a, 25b Inclined Surface 28 Light shielding film 30 First lens part 40 Circuit board 41 Wiring 42 Solder ball 43 Solder ball 50 Optical receptacle part 51 Receptacle board 52 Junction 53 Reflector 60 Second lens part 70 Demultiplexing part 71 Second light guide 72 Third light guide 73a, 73b Reflective/transmissive part 74a, 74b Wavelength selection film 75a, 75b Inclined surface 81 Resist 90 Optical fiber 91 End surface 100 Optical transmission module LA1 to LA6 Optical axis L1 to

Abstract

The purpose of the present disclosure is to provide an optical transmission module which is small-sized and highly integrated and which can perform demultiplexing and multiplexing across multiple wavelengths. An optical transmission module (100) according to the present disclosure has: a first lens part (30) which refracts and focuses transmitted light between an optical fiber (90) and the first lens part; a second lens part (60) disposed on the optical axis of the first lens part (30) so as to face the first lens part; a receptacle substrate (51) having a contact plug (52) which positions an end surface of the optical fiber at the focal point of the second lens part (60) and which connects the optical fiber; a first light guide body (11) disposed on a surface, of the first lens part (30), not facing the second lens part; a demultiplexing/multiplexing part (20) which is disposed on a surface, of the first light guide body (11), not having the first lens part disposed therein and which demultiplexes or multiplexes the transmitted light of the first lens part; and a plurality of photoelectric elements (21a, 21b) which are disposed in the demultiplexing/multiplexing part (20) and which performs at least one of light emission to the first lens part and light reception from the first lens part, via the demultiplexing/multiplexing part and the first light guide body.

Description

光伝送モジュールoptical transmission module
 本開示は、高速光通信用の電気信号を光信号に又は光信号を電気信号に変換する光伝送モジュールに関する。 The present disclosure relates to an optical transmission module that converts an electrical signal into an optical signal or an optical signal into an electrical signal for high-speed optical communication.
 近年デジタルネットワーク化が急速に進展し、社会の共通インフラとしての重要性は益々増大している。そして、その中心となるデータセンターは、単なるサーバーとしての役割を超えて、スーパーコンピュータ化、人工知能(AI:artificial intelligence)化され、デジタルツインなどと呼ばれる仮想現実の実現を通して社会への貢献がますます期待されている。 In recent years, digital networking has progressed rapidly, and its importance as a common infrastructure for society is increasing. The central data center will go beyond its role as a mere server and will be equipped with supercomputers and artificial intelligence (AI), contributing to society through the realization of virtual reality called digital twins. It is expected more and more.
 しかるに半導体素子の微細化の限界によるムーアの法則の終焉も予想されており、コンピュータ単体でのこれ以上の高速化は限界に達しつつある。そこで多くのコンピュータの並列化による高速化や、AIネットワークの大規模化のために多重化可能な高速光通信の重要性がますます高まってきている。 However, it is predicted that Moore's law will come to an end due to the limits of miniaturization of semiconductor devices, and further speeding up of computers is reaching its limit. Therefore, the importance of high-speed optical communication that can be multiplexed is increasing in order to increase the speed by parallelizing many computers and to increase the scale of AI networks.
 高速光通信には多くの方式が存在するが、これに使用される光電素子として最も安価なものはVCSEL(Vertical Cavity Surface Emitting Laser)と呼ばれるレーザーを光源とし、PD(Photo Diode)を受光部とするものである。VCSELによる方式では、発光素子及び受光素子を搭載した基板に対して垂直な光を出射及び入射する。 There are many methods for high-speed optical communication, but the cheapest photoelectric device used for this uses a laser called VCSEL (Vertical Cavity Surface Emitting Laser) as the light source and a PD (Photo Diode) as the light receiving part. It is something to do. In the VCSEL method, light is emitted and incident perpendicularly to a substrate on which a light emitting element and a light receiving element are mounted.
 また、多くの高速光通信方式と同様に、VCSELによる方式は、高速化及び双方向化のために多波長の信号光の多重化を行うことができる。
 従来、かかる多波長の信号光の多重化を行うための多波長の分波及び合波を行う構成として下記のような技術が開示されている。
Also, like many high-speed optical communication systems, the VCSEL system can multiplex signal lights of multiple wavelengths to increase speed and make it bidirectional.
Conventionally, the following technology has been disclosed as a configuration for performing multi-wavelength demultiplexing and multiplexing in order to multiplex such multi-wavelength signal light.
 特許文献1には、光信号を送信する1つ以上の送信用光素子と、光信号を受信する1つ以上の受信用光素子と、光ファイバから出射する1つ以上の光信号、及びその光信号とは波長の異なる上記光ファイバに入射する1つ以上の光信号の光路を変換する光学部材とを有する光伝送モジュールにおいて、光ファイバと機械的に嵌合される嵌合部を有すると共に、光ファイバの光軸に対する傾斜面を2面以上有し、傾斜面の1つに各光信号の一部若しくは、ほぼ全部を透過、又は各光信号の一部を反射させる光機能部材を設け、傾斜面の他の1つに光信号を反射させる反射面を形成し、光ファイバと対向するファイバ側端面にファイバ用レンズを設け、光機能部材は、送信用光素子と受信用光素子の配置に応じて送信用光素子から送信した光信号が相手側の送信用光素子に漏れ込まない分波特性が設定されていることを特徴とする光伝送モジュールが開示されている。 Patent Document 1 describes one or more transmitting optical elements that transmit optical signals, one or more receiving optical elements that receive optical signals, one or more optical signals emitted from an optical fiber, and An optical transmission module that has an optical member that converts the optical path of one or more optical signals that enter the optical fiber having a different wavelength from the optical signal, and has a fitting part that is mechanically fitted to the optical fiber. has two or more inclined surfaces with respect to the optical axis of the optical fiber, and one of the inclined surfaces is provided with an optical functional member that transmits a part or almost all of each optical signal or reflects a part of each optical signal. , a reflective surface for reflecting an optical signal is formed on the other one of the inclined surfaces, a fiber lens is provided on the end surface of the fiber facing the optical fiber, and the optical functional member is formed of a transmitting optical element and a receiving optical element. An optical transmission module is disclosed in which a demultiplexing characteristic is set so that an optical signal transmitted from a transmitting optical element does not leak into the transmitting optical element of the other party depending on the arrangement.
 通常、1本の光ファイバで送信または受信を同時に行う双方向通信タイプの光伝送モジュールにおいて、送信用光素子として一般的なVCSELを使用する場合にクロストーク(例えば、VCSELに発振波長とは異なる光信号が入射するなど)が発生するおそれがある。このために、光伝送モジュールが誤作動を防止するために各光信号の一部、又は、ほぼ全部を透過または反射させる光フィルタを適切に設計する必要があった。しかし、特許文献1に記載のような構成とすることによりクロストークの発生を極力防止し、誤作動しない光伝送モジュール及び光伝送システムを提供することができるというものである。 Normally, when using a general VCSEL as a transmitting optical element in a two-way communication type optical transmission module that simultaneously transmits or receives data using a single optical fiber, crosstalk (for example, if the VCSEL has a wavelength different from the oscillation wavelength) (e.g., an optical signal may be incident). Therefore, in order to prevent the optical transmission module from malfunctioning, it is necessary to appropriately design an optical filter that transmits or reflects a portion or almost all of each optical signal. However, by adopting the configuration as described in Patent Document 1, it is possible to prevent the occurrence of crosstalk as much as possible and provide an optical transmission module and an optical transmission system that do not malfunction.
 特許文献2には、光伝送に使用するモジュールの構造として、表面及び裏面を有する本体基板と、樹脂基板を有する光コネクタと、樹脂基板と本体基板との間に配置された第1の透明基板と、樹脂基板と本体基板の裏面との間に配置され、本体基板に電気的に接続された熱源素子と、熱源素子と本体基板とを電気的に接続し、かつ熱源素子及び第1の透明基板が発する熱を本体基板に伝搬させる1又は複数の配線と、樹脂基板と第1の透明基板との間に形成され、熱源素子及び第1の透明基板が発する熱を伝搬させる第1の空間と、熱源素子と本体基板の裏面との間に形成され、熱源素子及び第1の透明基板が発する熱を伝搬させる第2の空間と、を備える光伝送モジュールが開示されている。 Patent Document 2 describes the structure of a module used for optical transmission, including a main body substrate having a front surface and a back surface, an optical connector having a resin substrate, and a first transparent substrate disposed between the resin substrate and the main body substrate. a heat source element disposed between the resin substrate and the back surface of the main body substrate and electrically connected to the main body substrate; One or more wirings that propagate heat generated by the substrate to the main substrate, and a first space that is formed between the resin substrate and the first transparent substrate and propagates the heat generated by the heat source element and the first transparent substrate. An optical transmission module is disclosed that includes: a second space that is formed between the heat source element and the back surface of the main body substrate, and that transmits heat generated by the heat source element and the first transparent substrate.
 本開示の光伝送モジュールによれば、熱の伝搬を抑止するための第1の空間と、熱を伝搬させるための機能を付加する第2の空間とを形成するようにしたので、樹脂基板と第1の透明基板間の、熱による変形や光結合効率の悪化を抑制できるというものである。 According to the optical transmission module of the present disclosure, since the first space for suppressing heat propagation and the second space for adding a function for heat propagation are formed, the resin substrate and the second space are formed. It is possible to suppress deformation due to heat and deterioration of optical coupling efficiency between the first transparent substrates.
特開2009-251375号公報Japanese Patent Application Publication No. 2009-251375 特開2015-60097号公報JP 2015-60097 Publication
 しかし、特許文献1に記載されている光伝送モジュールは、多波長の合波を光学部材において行うため、光学機能部を構成する光源または受光部の一つ一つに相応の大きさのレンズや反射鏡又はフィルタ等を必要とするものである。このため、光伝送モジュールのサイズを縮小するのに限界があり高集積化が困難であるという問題を有している。 However, the optical transmission module described in Patent Document 1 performs multiplexing of multiple wavelengths in an optical member, so each of the light sources or light receiving parts that constitute the optical function part has a correspondingly sized lens or This requires a reflecting mirror or filter. Therefore, there is a problem in that there is a limit to reducing the size of the optical transmission module, and high integration is difficult.
 また、多波長の合波を光学部材で行うため、光学部材の形状や構造が複雑となり、しかも、波長や多重化する光電素子数等に対応して光学機能部の形状や構造を変更する必要があり、光学部材の標準化や共用化が困難であるという問題を有している。 In addition, since multiple wavelengths are combined using optical members, the shape and structure of the optical member becomes complex, and it is necessary to change the shape and structure of the optical function part depending on the wavelength, the number of photoelectric elements to be multiplexed, etc. This poses a problem in that it is difficult to standardize and share optical members.
 また、特許文献1に記載されている光伝送モジュールは、光レセプタクルの取り付けにアクティブアライメントでの調整後そのまま接着しなくてはならないなど、製造方法に問題がある。 Additionally, the optical transmission module described in Patent Document 1 has problems in its manufacturing method, such as the fact that the optical receptacle must be attached after adjustment by active alignment to attach the optical receptacle.
 特許文献2に記載されている光伝送モジュールは、かかる問題点の解決策を開示したものである。しかし、当該光伝送モジュールは、特許文献1に記載されている光伝送モジュールと同様の製造方法による光レセプタクルを使用するため、熱による位置ズレが問題となり得る。このために多波長化に伴って光レセプタクルが大型化すると、熱による位置ズレの可能性が大きくなってしまうという問題がある。 The optical transmission module described in Patent Document 2 discloses a solution to this problem. However, since the optical transmission module uses an optical receptacle manufactured by the same manufacturing method as the optical transmission module described in Patent Document 1, positional displacement due to heat may become a problem. For this reason, when optical receptacles become larger due to the increase in wavelengths, there is a problem in that the possibility of positional displacement due to heat increases.
 本開示は、かかる問題点に鑑みてなされたものであり、多波長の分波及び合波を可能とする小型で高集積化された光伝送モジュールを提供することを目的とする。 The present disclosure has been made in view of such problems, and aims to provide a compact and highly integrated optical transmission module that enables multiple wavelength demultiplexing and multiplexing.
 本開示は、上述の問題点を解消するためになされたものであり、その第1の態様は、
 光ファイバとの間の透過光を屈折させて集束する第1レンズ部と、
 前記第1レンズ部の光軸上に、前記第1レンズ部に対向して配設された第2レンズ部と、
 前記第2レンズ部の焦点に前記光ファイバの端面を位置させる前記光ファイバを接続する接栓を有するレセプタクル基板と、
 前記第1レンズ部の前記第2レンズ部に対向しない面に配設された第1導光体と、
 前記第1導光体の前記第1レンズ部が配設されていない面に配設され、前記第1レンズ部の透過光を分波又は合波する分合波部と、
 前記分合波部に配設され、前記分合波部及び前記第1導光体を介して前記第1レンズ部への発光及び前記第1レンズ部からの受光の少なくともいずれか一方を行う複数の光電素子と、
を有する光伝送モジュールである。
The present disclosure has been made to solve the above-mentioned problems, and a first aspect thereof is:
a first lens portion that refracts and focuses transmitted light between the optical fiber;
a second lens section disposed on the optical axis of the first lens section and facing the first lens section;
a receptacle board having a plug for connecting the optical fiber, which positions the end face of the optical fiber at the focal point of the second lens part;
a first light guide disposed on a surface of the first lens section that does not face the second lens section;
a demultiplexing/combining part disposed on a surface of the first light guide where the first lens part is not disposed, and demultiplexing or combining light transmitted through the first lens part;
A plurality of lights disposed in the demultiplexing/combining section and performing at least one of emitting light to the first lens section and receiving light from the first lens section via the demultiplexing/multiplexing section and the first light guide. a photoelectric element,
This is an optical transmission module with
 また、第1の態様において、前記分合波部は、上段と下段の2層に積層され、前記上段の前記分合波部は、所定の波長帯の光を反射して1の前記光電素子に対する所定の波長帯の光を分合波し、それ以外の波長の光は、前記上段の前記分合波部から前記下段の前記分合波部に透過させ、当該下段の前記分合波部は、前記複数の光電素子に対するそれぞれの所定の波長帯の光を分合波するよう構成してもよい。 Further, in the first aspect, the demultiplexing/multiplexing section is laminated into two layers, an upper stage and a lower stage, and the upper division/multiplexing part reflects light in a predetermined wavelength band so that one of the photoelectric elements The light in a predetermined wavelength band is split/combined, and the light of other wavelengths is transmitted from the upper splitting/combining section to the lower splitting/multiplexing section. may be configured to separate and combine light in predetermined wavelength bands for each of the plurality of photoelectric elements.
 また、第1の態様において、前記分合波部は、前記第1レンズ部の光軸上に所定の傾斜角を有する傾斜面に形成された第1波長選択膜を有する第1反射透過部と、
 前記第1反射透過部に並設された所定の傾斜角を有する傾斜面に形成された第2波長選択膜を有する第2反射透過部又は反射鏡と、
 前記第1反射透過部と前記第2反射透過部の間に並設された第3導光体と、
 前記第1反射透過部を挟んで前記第3導光体の反対側の位置に並設された第2導光体と、を有してもよい。
In the first aspect, the demultiplexing/multiplexing section includes a first reflective/transmissive section having a first wavelength selective film formed on an inclined surface having a predetermined inclination angle on the optical axis of the first lens section. ,
a second reflective/transmissive part or a reflective mirror having a second wavelength selective film formed on an inclined surface having a predetermined inclination angle and arranged in parallel with the first reflective/transmissive part;
a third light guide arranged in parallel between the first reflective transmitting section and the second reflective transmitting section;
A second light guide may be provided in parallel at a position opposite to the third light guide with the first reflective/transmissive portion interposed therebetween.
 また、第1の態様において、前記第1波長選択膜は、所定の波長帯の光を透過し、それ以外の波長の光を反射するよう構成してもよい。 Furthermore, in the first aspect, the first wavelength selection film may be configured to transmit light in a predetermined wavelength band and reflect light in other wavelengths.
 また、第1の態様において、前記第2波長選択膜は、所定の波長帯の光を反射し、それ以外の波長の光を透過するよう構成してもよい。 Furthermore, in the first aspect, the second wavelength selective film may be configured to reflect light in a predetermined wavelength band and transmit light in other wavelengths.
 また、第1の態様において、前記分合波部に配設された前記複数の光電素子は、同一波長帯の光の発光又は受光を可能とし、前記複数の光電素子のうち、一部の前記光電素子を常用、他の一部の前記光電素子を予備とし、さらに常用と予備を切り替え可能に構成してもよい。 Further, in the first aspect, the plurality of photoelectric elements disposed in the demultiplexing/multiplexing section are capable of emitting or receiving light in the same wavelength band, and some of the photoelectric elements among the plurality of photoelectric elements are capable of emitting or receiving light in the same wavelength band. It may be configured such that one photoelectric element is used regularly, and some of the other photoelectric elements are used as a spare, and furthermore, the regular use and the spare can be switched.
 また、第1の態様において、前記第3導光体を高屈折率樹脂で形成し、前記第2導光体を低屈折率樹脂で形成することにより、前記複数の光電素子のそれぞれを前記第1レンズ部の焦点の位置に配設してもよい。 Further, in the first aspect, the third light guide is formed of a high refractive index resin, and the second light guide is formed of a low refractive index resin, so that each of the plurality of photoelectric elements is It may be arranged at the focal point of one lens section.
 また、第1の態様において、前記第1反射透過部は、入射光に対して平面鏡状に形成され、前記第2反射透過部は、前記第1反射透過部からの反射光に対して凹面鏡状に形成されることにより、前記複数の光電素子のそれぞれを前記第1レンズ部の焦点の位置に配設してもよい。 Further, in the first aspect, the first reflective transmitting section is formed in a plane mirror shape with respect to the incident light, and the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section. Each of the plurality of photoelectric elements may be disposed at a focal point of the first lens portion.
 また、第1の態様において、前記第1反射透過部は、入射光に対して凸面鏡状に形成され、前記第2反射透過部は、前記第1反射透過部からの反射光に対して凹面鏡状に形成されることにより、前記複数の光電素子のそれぞれを前記第1レンズ部の焦点の位置に配設してもよい。 Further, in the first aspect, the first reflective transmitting section is formed in a convex mirror shape with respect to the incident light, and the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section. Each of the plurality of photoelectric elements may be disposed at a focal point of the first lens portion.
 また、第1の態様において、前記分合波部は、前記光電素子を接続する配線が形成されてもよい。 Furthermore, in the first aspect, the demultiplexing/combining section may have wiring connecting the photoelectric elements.
 また、第1の態様において、前記光電素子は、前記配線にハンダ接合されてもよい。 Furthermore, in the first aspect, the photoelectric element may be soldered to the wiring.
また、第1の態様において、前記配線は、外部回路と接続するための、ハンダボールを有してもよい。 Furthermore, in the first aspect, the wiring may include a solder ball for connection to an external circuit.
 また、第1の態様において、前記第2レンズ部と、その光軸上に、前記第2レンズ部に対向して配設された前記第1レンズ部との間の透過光の何れかは、平行光となるように構成されてもよい。 Further, in the first aspect, any of the transmitted light between the second lens part and the first lens part disposed on the optical axis to face the second lens part is The light may be configured to be parallel light.
 また、第1の態様において、分合波された光をそれぞれ透過する複数の前記第1レンズ部のそれぞれの光軸上に対向して配設された複数の前記第2レンズ部と、
 複数の前記第2レンズ部のそれぞれの透過光を反射する反射鏡と、を有し、
 前記レセプタクル基板は、前記反射鏡における複数の反射光又は入射光に対応する複数のそれぞれの前記光ファイバを接続する複数の前記接栓を有し、それぞれの前記接栓に連結固定された前記光ファイバの前記端面に集光するように構成してもよい。
Further, in the first aspect, a plurality of second lens portions are arranged to face each other on the optical axis of each of the plurality of first lens portions, each of which transmits the demultiplexed and multiplexed light;
a reflecting mirror that reflects the transmitted light of each of the plurality of second lens parts,
The receptacle board has a plurality of sockets for connecting a plurality of optical fibers corresponding to a plurality of reflected lights or incident lights on the reflecting mirror, and the optical fibers connected and fixed to the respective sockets. The light may be configured to be focused on the end face of the fiber.
 上記の態様を取ることにより、多波長の分波及び合波を可能とする小型で高集積化された光伝送モジュールを提供することができる。 By adopting the above aspect, it is possible to provide a compact and highly integrated optical transmission module that enables multiple wavelength demultiplexing and multiplexing.
本開示に係る光伝送モジュールの第1実施形態の基本形の正面図である。FIG. 2 is a front view of the basic form of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の基本形の側面図である。FIG. 2 is a side view of the basic form of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の第1変形例の正面図である。It is a front view of the 1st modification of 1st Embodiment of the optical transmission module based on this indication. 本開示に係る光伝送モジュールの第1実施形態の第2変形例の正面図である。FIG. 7 is a front view of a second modification of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の第3変形例の正面図である。FIG. 7 is a front view of a third modification of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の光電変換部の製造工程の説明図である(その1)。FIG. 2 is an explanatory diagram (part 1) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の光電変換部の製造工程の説明図である(その2)。FIG. 3 is an explanatory diagram (Part 2) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の光電変換部の製造工程の説明図である(その3)。FIG. 3 is an explanatory diagram (Part 3) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の光電変換部の製造工程の説明図である(その4)。FIG. 4 is an explanatory diagram (part 4) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の光電変換部の製造工程の説明図である(その5)。FIG. 5 is an explanatory diagram (part 5) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の光電変換部の製造工程の説明図である(その6)。FIG. 6 is an explanatory diagram (part 6) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の光電変換部の製造工程の説明図である(その7)。FIG. 7 is an explanatory diagram (part 7) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第1実施形態の光電変換部の製造工程の説明図である(その8)。FIG. 8 is an explanatory diagram (Part 8) of the manufacturing process of the photoelectric conversion unit of the first embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第2実施形態の光電変換部の正面図である。FIG. 3 is a front view of a photoelectric conversion section of a second embodiment of an optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第3実施形態の光電変換部の正面図である。FIG. 7 is a front view of a photoelectric conversion section of a third embodiment of an optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第4実施形態の光電変換部の正面図である。FIG. 7 is a front view of a photoelectric conversion section of a fourth embodiment of an optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第4実施形態における屈折率の差異と光路の説明図である。FIG. 7 is an explanatory diagram of a difference in refractive index and an optical path in a fourth embodiment of the optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第5実施形態の光電変換部の正面図である。FIG. 7 is a front view of a photoelectric conversion section of a fifth embodiment of an optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第6実施形態の光電変換部の正面図である。FIG. 7 is a front view of a photoelectric conversion section of a sixth embodiment of an optical transmission module according to the present disclosure. 本開示に係る光伝送モジュールの第6実施形態の変形例の光電変換部の正面図である。It is a front view of the photoelectric conversion part of the modification of 6th Embodiment of the optical transmission module based on this indication. 本開示に係る光伝送モジュールの第7実施形態の光電変換部の平面図である。It is a top view of the photoelectric conversion part of 7th Embodiment of the optical transmission module based on this indication. 本開示に係る光伝送モジュールの第7実施形態の光電変換部の側面図である。It is a side view of the photoelectric conversion part of 7th Embodiment of the optical transmission module based on this indication. 本開示に係る光伝送モジュールの分合波部の効果を説明するための比較例の平面図及び正面図である。FIG. 6 is a plan view and a front view of a comparative example for explaining the effect of the demultiplexing/multiplexing section of the optical transmission module according to the present disclosure. 図23に示す比較例の側面図である。24 is a side view of the comparative example shown in FIG. 23. FIG. 図5に示す第1実施形態の第3変形例の分合波部の効果を説明するための光電変換部の平面図及び正面図である。FIG. 6 is a plan view and a front view of a photoelectric conversion section for explaining the effect of the demultiplexing/multiplexing section of the third modification of the first embodiment shown in FIG. 5. FIG. 図25に示す光電変換部の側面図である。26 is a side view of the photoelectric conversion section shown in FIG. 25. FIG. 図20に示す第6実施形態の変形例の分合波部の効果を説明するための平面図及び正面図である。FIG. 21 is a plan view and a front view for explaining the effect of the demultiplexing/combining section of the modified example of the sixth embodiment shown in FIG. 20; 本開示に係る光伝送モジュールの分合波部の効果をまとめた比較説明図である。FIG. 3 is a comparative explanatory diagram summarizing the effects of the demultiplexing/multiplexing section of the optical transmission module according to the present disclosure.
 次に、図面を参照して、本開示に係る光伝送モジュールを実施するための形態(以下、「実施形態」という。)を下記の順序で説明する。以下の図面において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。
 1.本開示に係る光伝送モジュールの第1実施形態
 2.本開示に係る光伝送モジュールの第1実施形態の製造工程
 3.本開示に係る光伝送モジュールの第2実施形態
 4.本開示に係る光伝送モジュールの第3実施形態
 5.本開示に係る光伝送モジュールの第4実施形態
 6.本開示に係る光伝送モジュールの第5実施形態
 7.本開示に係る光伝送モジュールの第6実施形態
 8.本開示に係る光伝送モジュールの第7実施形態
 9.本開示に係る光伝送モジュールの分合波部の効果
Next, embodiments for implementing the optical transmission module according to the present disclosure (hereinafter referred to as "embodiments") will be described in the following order with reference to the drawings. In the following drawings, the same or similar parts are designated by the same or similar symbols. However, the drawings are schematic and the proportions of dimensions of each part do not necessarily match the actual ones. Furthermore, it goes without saying that the drawings include portions with different dimensional relationships and ratios.
1. First embodiment of optical transmission module according to the present disclosure 2. Manufacturing process of the first embodiment of the optical transmission module according to the present disclosure 3. Second embodiment of optical transmission module according to the present disclosure 4. Third embodiment of optical transmission module according to the present disclosure 5. Fourth embodiment of optical transmission module according to the present disclosure 6. Fifth embodiment of optical transmission module according to the present disclosure 7. Sixth embodiment of optical transmission module according to the present disclosure 8. Seventh embodiment of optical transmission module according to the present disclosure 9. Effects of the demultiplexing/multiplexing section of the optical transmission module according to the present disclosure
<1.本開示に係る光伝送モジュールの第1実施形態>
[第1実施形態の基本形の構成]
 図1は、本開示に係る光伝送モジュール100の第1実施形態の基本形の正面図である。また、図2は、同じく、その側面図である。光伝送モジュール100は、図1及び図2に示すように、略方形状に形成されたレセプタクル基板51を基体とする光レセプタクル部50と、その一側の面である下面に配設された第2レンズ部60に対向して配設された光電変換部10とから構成されている。
 光電変換部10は、略方形状に形成された第1導光体11と、その上面に配設された第1レンズ部30と、その下面に配設された光電素子21a、21bを有する分合波部20とを有している。そして、前記の第2レンズ部60と第1レンズ部30とは、同一の光軸LA2上に対向して配設されて概略構成されている。
<1. First embodiment of optical transmission module according to the present disclosure>
[Configuration of basic form of first embodiment]
FIG. 1 is a front view of a basic form of a first embodiment of an optical transmission module 100 according to the present disclosure. Similarly, FIG. 2 is a side view thereof. As shown in FIGS. 1 and 2, the optical transmission module 100 includes an optical receptacle section 50 having a substantially rectangular receptacle substrate 51 as a base, and an optical receptacle section 50 disposed on the lower surface, which is one surface of the optical receptacle section 50. The photoelectric conversion section 10 is arranged to face the two lens sections 60.
The photoelectric conversion section 10 includes a first light guide 11 formed in a substantially rectangular shape, a first lens section 30 disposed on its upper surface, and photoelectric elements 21a and 21b disposed on its lower surface. It has a multiplexing section 20. The second lens section 60 and the first lens section 30 are generally configured to be disposed facing each other on the same optical axis LA2.
 以下に、光伝送モジュール100の第1実施形態の基本形の構成について、さらに詳しく説明する。なお、以下の説明において、光レセプタクル部50側を上方とし、光電変換部10側を下方とする。また、光電変換を行う光電素子21a、21b等の光路数を1回路、2回路等というものとする。 Below, the basic configuration of the first embodiment of the optical transmission module 100 will be described in more detail. In the following description, the optical receptacle section 50 side will be referred to as the upper side, and the photoelectric conversion section 10 side will be referred to as the lower side. Further, the number of optical paths of the photoelectric elements 21a, 21b, etc. that perform photoelectric conversion is assumed to be one circuit, two circuits, etc.
 光レセプタクル部50は、光通信回線に接続されている光ケーブルの光ファイバ90を接続し、光電変換部10との光信号の授受をするための装置である。光レセプタクル部50は、透光性を有する略矩形状のレセプタクル基板51の一端に光ファイバ90を接続するための接栓52を有している。そして、光ファイバ90は、接栓52に挿入されて連結固定されている。 The optical receptacle section 50 is a device for connecting an optical fiber 90 of an optical cable connected to an optical communication line, and for exchanging optical signals with the photoelectric conversion section 10. The optical receptacle section 50 has a plug 52 for connecting an optical fiber 90 to one end of a substantially rectangular receptacle substrate 51 having translucent properties. The optical fiber 90 is then inserted into the connector 52 and fixedly connected thereto.
 光レセプタクル部50の上面には、光ファイバ90の光軸LA1上に中心を有し、鉛直方向に対し所定の角度で傾斜した反射鏡53が形成されている。反射鏡53は、光ファイバ90から光軸LA1に沿って進行する入射光を光軸LA2の方向に反射し、第2レンズ60を介して光電変換部10に入射する。又は、光電変換部10から第2レンズ60を介して光軸LA2に沿って進行する光線L1、L2を反射して、光路を光軸LA2から光軸LA1の方向に変える。反射鏡53における反射光は、光軸LA1に沿って進行し、光ファイバ90の端面91に集光する。このように、反射鏡53は、光の向きを変える装置である。 A reflecting mirror 53 is formed on the upper surface of the optical receptacle portion 50 and is centered on the optical axis LA1 of the optical fiber 90 and is inclined at a predetermined angle with respect to the vertical direction. The reflecting mirror 53 reflects the incident light traveling along the optical axis LA1 from the optical fiber 90 in the direction of the optical axis LA2, and enters the photoelectric conversion unit 10 via the second lens 60. Alternatively, the light beams L1 and L2 traveling along the optical axis LA2 from the photoelectric conversion unit 10 via the second lens 60 are reflected to change the optical path from the optical axis LA2 to the optical axis LA1. The reflected light from the reflecting mirror 53 travels along the optical axis LA1 and is focused on the end face 91 of the optical fiber 90. In this way, the reflecting mirror 53 is a device that changes the direction of light.
 したがって、光軸の方向を直角に変える場合には、反射鏡53の傾き角度を45度に設定するのが好ましい。なお、ここで光線L1とは、光電素子21aが受光又は発光する所定の波長帯の光を指し、光線L2とは、光電素子21bが受光又は発光する所定の波長帯の光を指す。光線L3、L4の場合もこれに準ずる。 Therefore, when changing the direction of the optical axis to a right angle, it is preferable to set the inclination angle of the reflecting mirror 53 to 45 degrees. Note that the light ray L1 here refers to light in a predetermined wavelength band that is received or emitted by the photoelectric element 21a, and the light ray L2 refers to light in a predetermined wavelength band that is received or emitted by the photoelectric element 21b. This also applies to the cases of light rays L3 and L4.
 光レセプタクル部50の下面に配設された第2レンズ部60は、例えば、凸レンズで形成されている。そして、光軸LA2に垂直に、かつ、その光心が光軸LA2上にあるように配設されている。第2レンズ部60は、反射鏡53からの反射光を屈折させ、これを平行光に変換し、又は光電変換部10からの平行光を屈折して反射鏡53に入射し、その反射光を光ファイバ90の端面91に集光するものである。したがって、光ファイバ90の端面91は、第2レンズ部60の焦点の位置にあるように配設されている。又は第2レンズ部60の焦点距離は、光ファイバ90の端面91に位置するように設定されている。 The second lens section 60 disposed on the lower surface of the optical receptacle section 50 is formed of, for example, a convex lens. It is arranged perpendicularly to the optical axis LA2 and with its optical center on the optical axis LA2. The second lens section 60 refracts the reflected light from the reflecting mirror 53 and converts it into parallel light, or refracts the parallel light from the photoelectric conversion section 10 to enter the reflecting mirror 53, and converts the reflected light into parallel light. The light is focused on the end face 91 of the optical fiber 90. Therefore, the end surface 91 of the optical fiber 90 is arranged at the focal point of the second lens section 60. Alternatively, the focal length of the second lens section 60 is set so that it is located at the end surface 91 of the optical fiber 90.
 光電変換部10は、略方形状の透光性を有する第1導光体11を基体とし、第1導光体11の上面、すなわち第2レンズ部60に対向する面に第1レンズ部30が配設され、その裏面となる第1導光体11の下面には分合波部20が配設されて構成されている。 The photoelectric conversion unit 10 has a substantially rectangular transparent first light guide 11 as a base, and has a first lens part 30 on the upper surface of the first light guide 11, that is, the surface facing the second lens part 60. is disposed, and a demultiplexing/multiplexing section 20 is disposed on the lower surface of the first light guide 11, which is the back surface thereof.
 第1レンズ部30は、光レセプタクル部50の第2レンズ部60に対向して同一の光軸LA2上に配設されている。第1レンズ部30は、第2レンズ部60からの平行光を所定の屈折率で屈折させて第1導光体11に入射し、又は分合波部20からの光線L1、L2を所定の屈折率で屈折させて平行光とし、第2レンズ部60に入射する。すなわち、第1レンズ部30は、光ファイバ90との間の透過光を屈折させて集束する光学素子である。 The first lens section 30 is disposed on the same optical axis LA2, facing the second lens section 60 of the optical receptacle section 50. The first lens section 30 refracts the parallel light from the second lens section 60 with a predetermined refractive index and enters the first light guide 11, or refracts the parallel light from the second lens section 60 with a predetermined refractive index. The parallel light is refracted by the refractive index and enters the second lens section 60 . That is, the first lens section 30 is an optical element that refracts and focuses the light transmitted between it and the optical fiber 90.
 第1レンズ部30は、第2レンズ部60と同様に、例えば、凸レンズで形成されている。そして、光軸LA2に対して垂直で、かつ、その光心が光軸LA2上にあるように配設されている。
 第2レンズ部60及び第1レンズ部30は、いずれも凸レンズであればよく、両凸レンズ、平凸レンズ又は凹凸レンズ等の何れかに限定されるものではない。
The first lens section 30, like the second lens section 60, is formed of, for example, a convex lens. It is arranged perpendicular to the optical axis LA2 and with its optical center on the optical axis LA2.
The second lens section 60 and the first lens section 30 may both be convex lenses, and are not limited to a biconvex lens, a plano-convex lens, a concave-convex lens, or the like.
 第1導光体11は、その上面に配設された第1レンズ部30と、その下面に配設された分合波部20との間の導光を行う光学素子である。したがって、第1導光体11は、透光性を有する材料を用いて形成されている。すなわち、第1導光体11は、例えば、サファイア、ガラス又は透明なプラスティック等で形成されている。サファイアは、高価であるが、広い周波数帯において光損失が少ないために、光を透過しても発熱が少なく、導光体としては最適である。 The first light guide 11 is an optical element that guides light between the first lens section 30 disposed on its upper surface and the demultiplexing/combining section 20 disposed on its lower surface. Therefore, the first light guide 11 is formed using a light-transmitting material. That is, the first light guide 11 is made of, for example, sapphire, glass, transparent plastic, or the like. Although sapphire is expensive, it has low optical loss over a wide frequency band, so it generates little heat even when light passes through it, making it ideal for use as a light guide.
 分合波部20は、図1に示すように、本図の左から順に所定の間隔を置いて第4導光体14、第2反射透過部23b(以下、「反射透過部23b」という。)、第3導光体13、第1反射透過部23a(以下、「反射透過部23a」という。)及び第2導光体12が並設されている。すなわち、第3導光体13は、反射透過部23aと反射透過部23bとの間に並設され、第2導光体12は、反射透過部23aを挟んで第3導光体13の反対側の位置に並設されている。そして、これらは、いずれも透光性を有し、第1導光体11を形成する材料、又はこれと同等の材料で構成される。 As shown in FIG. 1, the demultiplexing/combining section 20 includes the fourth light guide 14 and the second reflective/transmissive section 23b (hereinafter referred to as "reflective/transmissive section 23b") at a predetermined interval from the left in this figure. ), the third light guide 13, the first reflective/transmissive section 23a (hereinafter referred to as the "reflective/transmissive section 23a"), and the second light guide 12 are arranged in parallel. That is, the third light guide 13 is arranged in parallel between the reflective/transmissive section 23a and the reflective/transmissive section 23b, and the second light guide 12 is arranged on the opposite side of the third light guide 13 with the reflective/transmissive section 23a in between. They are placed side by side. All of these have translucency and are made of the material forming the first light guide 11 or a material equivalent thereto.
 反射透過部23a、23bは、正面視略逆直角三角形に形成されており、直角の対辺であるそれぞれの斜辺に所定の角度で傾斜した傾斜面25a、25bを形成している。そして、傾斜面25aには第1波長選択膜24a(以下、「波長選択膜24a」という。)が形成され、傾斜面25bには第2波長選択膜24b(以下、「波長選択膜24b」という。)が形成されている。すなわち、反射透過部23a、23bは、その所定の角度の傾斜面25a、25bに波長選択膜24a、24bを形成する光学素子である。 The reflective/ transmissive parts 23a and 23b are formed into substantially inverted right triangles when viewed from the front, and have inclined surfaces 25a and 25b inclined at a predetermined angle on their oblique sides, which are right-angled opposite sides. A first wavelength selective film 24a (hereinafter referred to as "wavelength selective film 24a") is formed on the inclined surface 25a, and a second wavelength selective film 24b (hereinafter referred to as "wavelength selective film 24b") is formed on the inclined surface 25b. ) is formed. That is, the reflective/ transmissive parts 23a and 23b are optical elements in which wavelength selective films 24a and 24b are formed on inclined surfaces 25a and 25b of a predetermined angle.
 波長選択膜24aは、光ファイバ90からの入射光を光軸LA2に沿って入射し、所定の波長帯の光線L1のみを光軸LA2の方向に透過させ、それ以外の波長の光は、反射する。これにより波長選択膜24aにおける透過光は、そのまま光軸LA2に沿って進み、光電素子21aに入射する。 The wavelength selection film 24a receives incident light from the optical fiber 90 along the optical axis LA2, transmits only the light ray L1 in a predetermined wavelength band in the direction of the optical axis LA2, and reflects light of other wavelengths. do. As a result, the transmitted light through the wavelength selection film 24a continues along the optical axis LA2 and enters the photoelectric element 21a.
 また、波長選択膜24aにおける反射光は、その光路が光軸LA2から光軸LA3に方向が変えられる。そして、当該反射光は、光軸LA3に沿って進み、波長選択膜24bに入射する。波長選択膜24bは、所定の波長帯の光線L2のみを反射し、それ以外の入射光は透過する。波長選択膜24bにおいて反射された光線L2の光路は、光軸LA3から光軸LA4に変えられる。光路の方向が変えられた光線L2は、光軸LA4に沿って進み、光電素子21bに入射する。
 なお、反射透過部23bの傾斜面25bは、光軸LA3に沿って進んできた光を全反射してもよい場合又は光電素子21bが発光素子211である場合等には、波長選択膜24aのように光を透過させることは考慮しなくてもよい。したがって、このような場合には、傾斜面25bに波長選択膜24bに代えて反射鏡を形成してもよい。
 同様に、以下に説明する各実施形態においては、傾斜面25bに波長選択膜24bに代えて反射鏡を形成してもよい。したがって、以下、反射鏡を形成する場合も含めて「波長選択膜24b」として説明する。ただし、各実施形態の説明において特記のある場合又は後述する第6実施形態の変形例の場合はこれによる。
Further, the direction of the optical path of the light reflected by the wavelength selection film 24a is changed from the optical axis LA2 to the optical axis LA3. The reflected light then travels along the optical axis LA3 and enters the wavelength selection film 24b. The wavelength selection film 24b reflects only the light beam L2 in a predetermined wavelength band, and transmits the other incident light. The optical path of the light beam L2 reflected by the wavelength selection film 24b is changed from the optical axis LA3 to the optical axis LA4. The light beam L2 whose optical path direction has been changed travels along the optical axis LA4 and enters the photoelectric element 21b.
Incidentally, the inclined surface 25b of the reflective/transmissive part 23b is used for the wavelength selection film 24a when the light traveling along the optical axis LA3 may be totally reflected or when the photoelectric element 21b is the light emitting element 211. There is no need to consider transmitting light like this. Therefore, in such a case, a reflecting mirror may be formed on the inclined surface 25b instead of the wavelength selection film 24b.
Similarly, in each embodiment described below, a reflecting mirror may be formed on the inclined surface 25b instead of the wavelength selection film 24b. Therefore, hereinafter, it will be described as a "wavelength selection film 24b" including the case where a reflecting mirror is formed. However, this applies in cases where there is a special mention in the description of each embodiment or in the case of a modification of the sixth embodiment described later.
 次に、光電素子21aにおいて発光された光線L1は、入射光と逆方向に光軸LA2に沿って進み、波長選択膜24aに入射して、そのまま透過し、以下、入射光の逆の光路を経由して最終的には光ファイバ90の端面91に入射する。 Next, the light beam L1 emitted by the photoelectric element 21a travels along the optical axis LA2 in the opposite direction to the incident light, enters the wavelength selection film 24a, and is transmitted as it is. The light then finally enters the end face 91 of the optical fiber 90.
 また、光電素子21bにおいて発光された光線L2は、入射光と逆方向に光軸LA4に沿って進み、波長選択膜24bに入射して反射され、反射された光線L2の光路は光軸LA4から光軸LA3に方向が変えられる。光線L2は、そのまま光軸LA3に沿って進み、波長選択膜24aに入射し、そこで反射され、反射された光線L2の光路は光軸LA3から光軸LA2に方向が変えられる。以下、光線L2は、入射光の逆の光路を経由して最終的には光ファイバ90の端面91に入射する。 Further, the light ray L2 emitted by the photoelectric element 21b travels along the optical axis LA4 in the opposite direction to the incident light, enters the wavelength selection film 24b and is reflected, and the optical path of the reflected light ray L2 starts from the optical axis LA4. The direction can be changed to optical axis LA3. The light ray L2 continues along the optical axis LA3, enters the wavelength selection film 24a, is reflected there, and the direction of the optical path of the reflected light ray L2 is changed from the optical axis LA3 to the optical axis LA2. Thereafter, the light ray L2 passes through the optical path opposite to that of the incident light and finally enters the end face 91 of the optical fiber 90.
 波長選択膜24a、24bは、以上のように、所定の波長帯の光を透過又は反射させものであり、所定の波長帯に対するバンドパスフィルタの機能を有するものである。また、波長選択膜24aは、所定の波長帯の入射光を透過又は反射することにより光路を光軸LA2、LA3、LA4と順次変えるものである。しかし、波長選択膜24bが入射光を反射するためには、少なくとも傾斜面24aからの反射光を光軸LA3に沿って第3導光体13内を直進可能にすることが必要である。このため、波長選択膜24aを有する傾斜面25aの傾き角度は45度に設定するのが好ましい。 As described above, the wavelength selection films 24a and 24b transmit or reflect light in a predetermined wavelength band, and have the function of a bandpass filter for the predetermined wavelength band. Further, the wavelength selection film 24a sequentially changes the optical path to the optical axes LA2, LA3, and LA4 by transmitting or reflecting incident light in a predetermined wavelength band. However, in order for the wavelength selection film 24b to reflect the incident light, it is necessary to allow at least the reflected light from the inclined surface 24a to travel straight through the third light guide 13 along the optical axis LA3. For this reason, it is preferable to set the inclination angle of the inclined surface 25a having the wavelength selection film 24a to 45 degrees.
 波長選択膜24bを有する傾斜面25bの傾き角度も同様である。したがって、反射透過部23a、23bの傾斜面25a、25bの傾き角は、いずれも上記の45度に設定されるのが好ましい。 The same applies to the inclination angle of the inclined surface 25b having the wavelength selection film 24b. Therefore, it is preferable that the inclination angles of the inclined surfaces 25a, 25b of the reflective/ transmissive parts 23a, 23b are both set to the above-mentioned 45 degrees.
 分合波部20の下面には、配線41が形成されている。配線41は、例えば、銅(Cu)などの導電性金属により形成された電気接続である。配線41には、図1又は図2に示すように、光電素子21a、21bがハンダボール42を介してハンダ付けされている。
 また、所定の配線41には、回路基板40と接続するためのハンダボール43が形成されている。したがって、光伝送モジュール100は、ハンダボール43でハンダ付けすることにより回路基板40に接続されている。
A wiring 41 is formed on the lower surface of the demultiplexing/combining section 20 . The wiring 41 is, for example, an electrical connection formed of a conductive metal such as copper (Cu). As shown in FIG. 1 or 2, photoelectric elements 21a and 21b are soldered to the wiring 41 via solder balls 42. As shown in FIG.
Further, a solder ball 43 for connecting to the circuit board 40 is formed on the predetermined wiring 41 . Therefore, the optical transmission module 100 is connected to the circuit board 40 by soldering with the solder balls 43.
 光電素子21a、21bは、ここでは、光信号を電気信号に変換する受光素子212、又は電気信号を光信号に変換する発光素子211の総称とする。受光素子212は、例えば、フォトダイオード(Photo Diode)で形成されている。また、発光素子211は、例えば、VCSEL(Vertical Cavity Surface Emitting Laser)と呼ばれる垂直共振器型面発光レーザーが使用される。VCSELはレーザーの一種で、基板に形成された活性層の端面から発光する半導体レーザーとは異なり、基板面に対して垂直方向に光を共振させ、基板面に対し垂直方向に出射させる点が特徴である。 Here, the photoelectric elements 21a and 21b are a general term for the light receiving element 212 that converts an optical signal into an electrical signal, or the light emitting element 211 that converts an electrical signal into an optical signal. The light receiving element 212 is formed of, for example, a photodiode. Further, as the light emitting element 211, for example, a vertical cavity surface emitting laser called a VCSEL (Vertical Cavity Surface Emitting Laser) is used. VCSEL is a type of laser, and unlike a semiconductor laser, which emits light from the end face of an active layer formed on a substrate, it is characterized by resonating light in a direction perpendicular to the substrate surface and emitting light in a direction perpendicular to the substrate surface. It is.
 そこで、前記の第1レンズ部30で屈折し、光軸LA2に沿って第1導光体11の内部を直進してきた入射光は、波長選択膜24aに入射され、波長選択膜24aを透過した所定の波長帯の光線L1が光電素子21aに入射される。したがって、第1レンズ部30からの入射光を集光して受光するためには、光電素子21aは、第1レンズ部30の焦点の位置に配設されていることが好ましい。 Therefore, the incident light that has been refracted by the first lens section 30 and has traveled straight through the inside of the first light guide 11 along the optical axis LA2 is incident on the wavelength selection film 24a and transmitted through the wavelength selection film 24a. A light beam L1 in a predetermined wavelength band is incident on the photoelectric element 21a. Therefore, in order to collect and receive the incident light from the first lens section 30, the photoelectric element 21a is preferably disposed at the focal point of the first lens section 30.
 また、前記の光軸LA4を直進してきた光線L2は、光電素子21bに入射される。光電素子21bは、光電素子21aと同様に、第1レンズ部30の焦点の位置に配設されていることが好ましい。しかし、図1に示すように、光軸LA4を直進して光電素子21bに入射する入射光の光路は、光軸LA2を直進して光電素子21aに入射される入射光の光路に比して、光路長が光軸LA3の長さ分だけ長くなっている。 Furthermore, the light beam L2 that has traveled straight along the optical axis LA4 is incident on the photoelectric element 21b. It is preferable that the photoelectric element 21b is disposed at the focal point of the first lens section 30, similarly to the photoelectric element 21a. However, as shown in FIG. 1, the optical path of the incident light that travels straight on the optical axis LA4 and enters the photoelectric element 21b is smaller than the optical path of the incident light that travels straight on the optical axis LA2 and enters the photoelectric element 21a. , the optical path length is increased by the length of the optical axis LA3.
 このように、光軸LA3の光路長の差分があるために、光電素子21aを第1レンズ部30の焦点の位置に配設した場合には、光電素子21bへの集光にぼやけを生じることになる。同じく光電素子21bを第1レンズ部30の焦点の位置に配設した場合には、光電素子21aへの集光にぼやけを生じることになる。 As described above, since there is a difference in the optical path length of the optical axis LA3, when the photoelectric element 21a is arranged at the focal point position of the first lens section 30, the light condensed onto the photoelectric element 21b may become blurred. become. Similarly, if the photoelectric element 21b is disposed at the focal point of the first lens section 30, the light condensed onto the photoelectric element 21a will be blurred.
 しかし、図1以下の図面には、説明の都合上、光線L1、L2等が大きく広がりながら又は狭まりながら進行するように描いているが、実際にはVCSELの光は略直線状に進むため、光線L1、L2は、本図に示すように大きく広がったり狭くなったりすることはない。また、VCSEL/フォトダイオードや光ファイバ90のコア径には集光の大きさの許容度がある。このため、実用上は集光のぼやけは、問題になるレベルではない。かかる光軸LA3の光路長の差分の補償については、第4実施形態、第5実施形態及び第6実施形態において詳しく説明する。 However, for convenience of explanation, in the drawings from FIG. 1 onward, the light rays L1, L2, etc. are depicted as traveling while widening or narrowing, but in reality, the light from the VCSEL travels approximately in a straight line. The light rays L1 and L2 do not widen or narrow greatly as shown in this figure. Further, the core diameter of the VCSEL/photodiode and the optical fiber 90 has a tolerance for the size of light condensation. Therefore, in practice, the blurring of light condensation is not a problem. Compensation for the difference in optical path length of the optical axis LA3 will be described in detail in the fourth embodiment, the fifth embodiment, and the sixth embodiment.
 なお、特に言及がない場合には、光電素子21aを第1レンズ部30の焦点の近傍の位置に配設し、光電素子21bを第1レンズ部30の焦点の位置に配設した例について説明する。ただし、実施に際しては、第1レンズ部30の焦点は、光電素子21aに位置するように配設してもよいし、光電素子21aと光電素子21bの間の任意の位置に位置するように配設してもよい。 Note that unless otherwise mentioned, an example will be described in which the photoelectric element 21a is disposed at a position near the focal point of the first lens section 30, and the photoelectric element 21b is disposed at a position at the focal point of the first lens section 30. do. However, in actual practice, the focal point of the first lens section 30 may be located at the photoelectric element 21a, or at any position between the photoelectric element 21a and the photoelectric element 21b. may be set.
 また、分合波部20に配線41を介してハンダ接合される光電素子21a、21bは、その全てが受光素子212であってもよく、その全てが発光素子211であってもよく、又は受光素子212と発光素子211との組み合わせでもよい。
 また、本実施形態の基本形では、2個の光電素子21a、21bを有する分合波部20の例について説明したが、2個に限定されるものではなく、光電素子21bと同様の構成をさらに並設することにより、複数の光電素子21a、21b等を有する分合波部20を構成することができる。以下に説明する他の実施形態やその変形例においても同様である。
In addition, all of the photoelectric elements 21a and 21b soldered to the demultiplexing/combining section 20 via the wiring 41 may be light receiving elements 212, all of them may be light emitting elements 211, or all of them may be light receiving elements 211, or all of them may be light receiving elements 211, A combination of the element 212 and the light emitting element 211 may be used.
Furthermore, in the basic form of this embodiment, an example of the demultiplexing/combining section 20 having two photoelectric elements 21a and 21b has been described, but the number is not limited to two, and the same configuration as the photoelectric element 21b can be further added. By arranging them in parallel, it is possible to configure the demultiplexing/combining section 20 having a plurality of photoelectric elements 21a, 21b, etc. The same applies to other embodiments and modifications thereof described below.
 本開示に係る第1実施形態の基本形の構成は、以上のとおりである。また、本開示に係る光伝送モジュール100は、当然のこととして遮光性を有する所定の収納ケースに収納されて使用されるが、特段形状等が限定されるものではないので記載を省略する。以下の各実施形態においても同様とする。 The basic configuration of the first embodiment according to the present disclosure is as described above. Further, the optical transmission module 100 according to the present disclosure is naturally used while being housed in a predetermined storage case that has a light-shielding property, but the shape and the like are not particularly limited, so a description thereof will be omitted. The same applies to each embodiment below.
[第1実施形態の基本形の作動]
 次に、第1実施形態の基本形の作動について、図1又は図2に基づき、以下に詳しく説明する。
[Basic operation of the first embodiment]
Next, the operation of the basic form of the first embodiment will be explained in detail below based on FIG. 1 or FIG. 2.
(1)光電素子がいずれも受光素子の場合
 光電素子21a、21bがいずれも受光素子212、212の場合の作動については、前記の第1実施形態の基本形の構成において若干説明したが、再度詳しく説明する。
 光電素子21a、21bがいずれも受光素子212の場合は、光伝送モジュール100は2回路の受信専用モジュールとなる。
(1) When both photoelectric elements are light-receiving elements The operation when both photoelectric elements 21a and 21b are light-receiving elements 212 and 212 was briefly explained in the basic configuration of the first embodiment, but it will be explained in detail again. explain.
When the photoelectric elements 21a and 21b are both light receiving elements 212, the optical transmission module 100 becomes a two-circuit reception-only module.
 ここで、光ファイバ90から出射される光信号は、当該光ファイバ90が接続されている通信装置(不図示)から送信されてくる各種の波長の光信号の全てを含んでいる。したがって、光ファイバ90は、その端面91からこれらの波長の光を全て出射する。出射光は、レセプタクル基板51内を光軸LA1に沿って進行し、反射鏡53に入射する。反射鏡53は、これらの入射光を全て反射する。したがって、反射光の光路は、光軸LA1から光軸LA2に方向が変えられる。 Here, the optical signal emitted from the optical fiber 90 includes all optical signals of various wavelengths transmitted from a communication device (not shown) to which the optical fiber 90 is connected. Therefore, the optical fiber 90 emits all light of these wavelengths from its end face 91. The emitted light travels within the receptacle substrate 51 along the optical axis LA1 and enters the reflecting mirror 53. The reflecting mirror 53 reflects all of these incident lights. Therefore, the optical path of the reflected light is redirected from the optical axis LA1 to the optical axis LA2.
 光軸LA2に沿ってレセプタクル基板51内を進行する光は、第2レンズ部60に達する。光ファイバ90の端面91は、第2レンズ部60の焦点の位置に配設されている。したがって、光ファイバ90の端面91からの出射光は、所定の立体角の光となって広がりながら進行する。そして、第2レンズ部60において屈折することにより、第2レンズ部60を透過すると平行光となる。第2レンズ部60を透過した平行光は、第2レンズ部60に対向して同一の光軸LA2上に配設された光電変換部10の第1レンズ部30に入射する。 The light traveling within the receptacle substrate 51 along the optical axis LA2 reaches the second lens section 60. An end surface 91 of the optical fiber 90 is arranged at the focal point of the second lens section 60. Therefore, the light emitted from the end face 91 of the optical fiber 90 becomes light having a predetermined solid angle and propagates while spreading. Then, by being refracted at the second lens section 60, the light becomes parallel light when it passes through the second lens section 60. The parallel light transmitted through the second lens section 60 enters the first lens section 30 of the photoelectric conversion section 10, which is disposed opposite to the second lens section 60 and on the same optical axis LA2.
 第1レンズ部30への入射光は屈折し、当該屈折した光は、図1に示すように、光軸LA2に沿って第1導光体11の内部を進行し、反射透過部23aに入射し、反射透過部23aの内部を進行して波長選択膜24aに入射する。波長選択膜24aへの入射光は、所定の波長帯の光線L1が透過し、それ以外の波長の光は、光軸LA3に沿う方向に反射される。 The light incident on the first lens section 30 is refracted, and as shown in FIG. The light then travels inside the reflective/transmissive section 23a and enters the wavelength selection film 24a. Of the light incident on the wavelength selection film 24a, light rays L1 in a predetermined wavelength band are transmitted, and light of other wavelengths is reflected in a direction along the optical axis LA3.
 波長選択膜24aを透過した光線L1は、光軸LA2に沿って第2導光体12の内部をそのまま進行し、光電素子21aに入射する。光電素子21aは、第1レンズ部30の焦点の近傍の位置に配設されている。したがって、光線L1は、光電素子21aに集束される。光電素子21aである受光素子212は、例えば、フォトダイオードで形成されているため、当該集束された光線L1により電子が励起されて、光信号は電気信号に変換される。 The light beam L1 transmitted through the wavelength selection film 24a continues inside the second light guide 12 along the optical axis LA2 and enters the photoelectric element 21a. The photoelectric element 21a is arranged at a position near the focal point of the first lens section 30. Therefore, the light beam L1 is focused on the photoelectric element 21a. Since the light receiving element 212, which is the photoelectric element 21a, is formed of a photodiode, for example, electrons are excited by the focused light beam L1, and the optical signal is converted into an electrical signal.
 この電気信号は、分合波部20のハンダボール42、配線41及びハンダボール43を介して回路基板40に形成された信号処理回路等(不図示)に取り出され処理される。 This electrical signal is taken out and processed by a signal processing circuit or the like (not shown) formed on the circuit board 40 via the solder ball 42, wiring 41, and solder ball 43 of the demultiplexing/combining section 20.
 一方、波長選択膜24aにおける反射光は、光路が光軸LA2から光軸LA3に方向が変えられる。そして、当該反射光は光軸LA3に沿って反射透過部23a及び第3導光体13の内部を進行し、波長選択膜24bに入射される。波長選択膜24bへの入射光は、所定の波長帯の光線L2が光軸LA4に沿う方向に反射され、それ以外の波長の入射光は、波長選択膜24bを透過する。 On the other hand, the optical path of the light reflected by the wavelength selection film 24a is changed from the optical axis LA2 to the optical axis LA3. The reflected light then travels inside the reflective/transmissive section 23a and the third light guide 13 along the optical axis LA3, and is incident on the wavelength selection film 24b. Of the light incident on the wavelength selection film 24b, a light ray L2 in a predetermined wavelength band is reflected in a direction along the optical axis LA4, and incident light with other wavelengths is transmitted through the wavelength selection film 24b.
 光電素子21bは、第1レンズ部30の焦点に位置しているため、波長選択膜24bで反射された光線L2は、光電素子21bに集光される。光電素子21bである受光素子212は、例えば、フォトダイオードで形成されているため、受光素子212は、集光された光線L2により電子が励起されて電気信号を生成する。
 この電気信号は、光電素子21aと同様に、信号処理がされる。
 第1実施形態の基本形は、光電素子21a、21bがいずれも受光素子212の場合には、以上のように作動して、受光した光信号を電気信号に変換する。
Since the photoelectric element 21b is located at the focal point of the first lens section 30, the light beam L2 reflected by the wavelength selection film 24b is focused on the photoelectric element 21b. Since the light-receiving element 212, which is the photoelectric element 21b, is formed of, for example, a photodiode, electrons in the light-receiving element 212 are excited by the focused light beam L2 and generate an electric signal.
This electrical signal is subjected to signal processing similarly to the photoelectric element 21a.
In the basic form of the first embodiment, when both the photoelectric elements 21a and 21b are the light receiving elements 212, they operate as described above and convert the received optical signals into electrical signals.
(2)光電素子がいずれも発光素子の場合
 次に、光電素子21a、21bがいずれも発光素子211、211の場合について、さらに詳しく説明する。
(2) When both photoelectric elements are light emitting elements Next, the case where both photoelectric elements 21a and 21b are light emitting elements 211 and 211 will be described in more detail.
 光電素子21a、21bがいずれも発光素子211、211の場合は、光伝送モジュール100は2回路の送信専用モジュールとなる。ここで、所定の送信信号は、回路基板40に形成された信号処理回路等(不図示)からハンダボール43を介して配線41に入力され、ハンダボール42を介して光電素子21aである発光素子211を駆動する。なお、発光素子211を駆動する駆動回路は、配線41又は回路基板40のどちらに配置されてもよい。 If the photoelectric elements 21a and 21b are both light emitting elements 211 and 211, the optical transmission module 100 becomes a two-circuit transmission-only module. Here, a predetermined transmission signal is input from a signal processing circuit or the like (not shown) formed on the circuit board 40 to the wiring 41 via the solder ball 43, and is sent to the light emitting element which is the photoelectric element 21a via the solder ball 42. 211 is driven. Note that the drive circuit that drives the light emitting element 211 may be placed on either the wiring 41 or the circuit board 40.
 光電素子21aは、第1レンズ部30の焦点の近傍に位置している。したがって、光電素子21aから発光された所定の波長帯の光線L1は、第1レンズ部30の焦点の近傍の位置から出射される。光電素子21aにおいて発光された光線L1は、光軸LA2に沿って進行し、波長選択膜24aに入射される。 The photoelectric element 21a is located near the focal point of the first lens section 30. Therefore, the light beam L1 in the predetermined wavelength band emitted from the photoelectric element 21a is emitted from a position near the focal point of the first lens section 30. The light beam L1 emitted by the photoelectric element 21a travels along the optical axis LA2 and is incident on the wavelength selection film 24a.
 波長選択膜24aは、当該所定の波長帯の光線L1を透過させ、それ以外の波長の光を反射する。もっとも、VCSELの場合は、特定の波長にピークを有する単色光であり、所定の波長帯の光線L1を発光するよう設定することにより、波長選択膜24aの透過光は光線L1のみとなる。 The wavelength selection film 24a transmits the light beam L1 in the predetermined wavelength band and reflects light in other wavelengths. However, in the case of a VCSEL, it is monochromatic light having a peak at a specific wavelength, and by setting it to emit light ray L1 in a predetermined wavelength band, only the light ray L1 is transmitted through the wavelength selection film 24a.
 波長選択膜24aを透過した光線L1は、そのまま光軸LA2に沿って反射透過部23a及び第1導光体11の内部を進行し、第1レンズ部30に入射する。当該所定の波長帯の光線L1は、第1レンズ部30で屈折することにより、第1レンズ部30を透過すると略平行光となる。第1レンズ部30を透過した当該略平行光は、そのまま第2レンズ部60に入射する。 The light ray L1 that has passed through the wavelength selection film 24a continues along the optical axis LA2 through the reflection-transmission section 23a and the first light guide 11, and enters the first lens section 30. The light beam L1 in the predetermined wavelength band is refracted by the first lens section 30, and becomes substantially parallel light when transmitted through the first lens section 30. The substantially parallel light that has passed through the first lens section 30 enters the second lens section 60 as it is.
 第2レンズ部60に入射した平行光は、第2レンズ部60で屈折し、集束しながらレセプタクル基板51内を光軸LA2に沿って進行し、反射鏡53に入射する。反射鏡53は、これらの光線L1を全て反射する。したがって、光線L1の光路は、光軸LA2から光軸LA1の方向に変えられる。そして、光線L1は、光軸LA1に沿って進行し、光ファイバ90の端面91に入射する。 The parallel light incident on the second lens section 60 is refracted by the second lens section 60, travels within the receptacle substrate 51 along the optical axis LA2 while being focused, and enters the reflecting mirror 53. The reflecting mirror 53 reflects all of these light rays L1. Therefore, the optical path of the light beam L1 is changed from the optical axis LA2 to the optical axis LA1. The light beam L1 then travels along the optical axis LA1 and enters the end surface 91 of the optical fiber 90.
 ここで、光ファイバ90の端面91は、前記のとおり第2レンズ部60の焦点の位置に配設されている。したがって、第2レンズ部60からの光は、光ファイバ90の端面91に集束される。光ファイバ90の端面91に集束された所定の波長帯の光線L1は、そのまま光ファイバ90内に入射され伝搬する。 Here, the end face 91 of the optical fiber 90 is arranged at the focal point of the second lens section 60 as described above. Therefore, the light from the second lens section 60 is focused on the end surface 91 of the optical fiber 90. The light beam L1 of a predetermined wavelength band focused on the end face 91 of the optical fiber 90 enters the optical fiber 90 as it is and propagates.
 次に、光電素子21bについて説明する。光電素子21bは、第1レンズ部30の焦点に位置している。したがって、光電素子21bから発光された光線L2は、第1レンズ部30の焦点の位置から出射される。 Next, the photoelectric element 21b will be explained. The photoelectric element 21b is located at the focal point of the first lens section 30. Therefore, the light beam L2 emitted from the photoelectric element 21b is emitted from the focal point of the first lens section 30.
 光電素子21bにおいて発光された所定の波長帯の光線L2は、光軸LA4に沿って進行し、波長選択膜24bに入射される。波長選択膜24bは、当該光線L2を反射し、それ以外の波長の光を透過する。もっとも、VCSELの場合は、光電素子21aの場合と同様に、特定の波長にピークを有する単色光であり、所定の波長帯の光線L2を発光するよう設定することにより、波長選択膜24bの反射光は光線L2のみとなる。
 波長選択膜24bにおいて反射された光線L2の光路は、光軸LA4から光軸LA3の方向に変えられ、光軸LA3に沿って第3導光体13内を進行し、波長選択膜24aに入射する。
The light beam L2 in a predetermined wavelength band emitted by the photoelectric element 21b travels along the optical axis LA4 and is incident on the wavelength selection film 24b. The wavelength selection film 24b reflects the light beam L2 and transmits light of other wavelengths. However, in the case of VCSEL, as in the case of the photoelectric element 21a, the light is monochromatic light having a peak at a specific wavelength, and by setting it to emit light ray L2 in a predetermined wavelength band, the reflection of the wavelength selection film 24b The light becomes only the light ray L2.
The optical path of the light ray L2 reflected by the wavelength selection film 24b is changed from the optical axis LA4 to the optical axis LA3, travels inside the third light guide 13 along the optical axis LA3, and enters the wavelength selection film 24a. do.
 波長選択膜24aは先述のように、光電素子21aの発光波長の光線L1以外の波長の光を反射するため、光電素子21bからの光線L2は反射される。そして、光線L2の光路は、光軸LA3から光軸LA2の方向に変えられ、光軸LA2に沿って反射透過部23a及び第1導光体11の内部を進行し、第1レンズ部30に入射する。光線L2は、第1レンズ部30で屈折することにより、第1レンズ部30を透過すると平行光となる。以下、先述の光電素子21aの光線L1と同様の光路を経由して光ファイバ90の端面91に集光して入射する。
 なお、光電素子21aから発光される光線L1の波長と、光電素子21bから発光される光線L2の波長とは互いに異なるものであるが、同じ波長であっても差し支えない。
As described above, the wavelength selection film 24a reflects light having a wavelength other than the light ray L1 of the emission wavelength of the photoelectric element 21a, so the light ray L2 from the photoelectric element 21b is reflected. Then, the optical path of the light beam L2 is changed from the optical axis LA3 to the optical axis LA2, travels along the optical axis LA2 through the reflective/transmissive part 23a and the first light guide 11, and enters the first lens part 30. incident. The light ray L2 is refracted by the first lens section 30, and becomes parallel light when it passes through the first lens section 30. Thereafter, the light beam is focused and incident on the end surface 91 of the optical fiber 90 via the same optical path as the light beam L1 of the photoelectric element 21a described above.
Note that the wavelength of the light beam L1 emitted from the photoelectric element 21a and the wavelength of the light beam L2 emitted from the photoelectric element 21b are different from each other, but may be the same wavelength.
(3)光電素子の一方が発光素子、他方が受光素子の場合
 次に、光電素子21a、21bの一方が発光素子211、他方が受光素子212の場合について、さらに説明する。
(3) Case in which one of the photoelectric elements is a light emitting element and the other is a light receiving element Next, a case in which one of the photoelectric elements 21a, 21b is a light emitting element 211 and the other is a light receiving element 212 will be further described.
 光電素子21a、21bのいずれか一方が発光素子211、他方が受光素子212の場合は、光伝送モジュール100は2回路の送受信専用モジュールとなる。ここで、光電素子21a、21bは、どちらが受光素子212又は発光素子211であってもよい。
 すなわち、光電素子21a又は光電素子21bのいずれかが受光素子212である場合には、先述の「(1)光電素子がいずれも受光素子の場合」で説明した光電素子21a、21bのいずれかの受光素子212と同じ作動をする。
When one of the photoelectric elements 21a and 21b is a light emitting element 211 and the other is a light receiving element 212, the optical transmission module 100 becomes a two-circuit transmission/reception-only module. Here, either of the photoelectric elements 21a and 21b may be the light receiving element 212 or the light emitting element 211.
That is, when either the photoelectric element 21a or the photoelectric element 21b is the light receiving element 212, either the photoelectric element 21a or 21b described in "(1) When both photoelectric elements are light receiving elements" It operates in the same way as the light receiving element 212.
 また、光電素子21a又は光電素子21bのいずれかが発光素子211である場合には、先述の「(2)光電素子がいずれも発光素子の場合」で説明した光電素子21a、21bの発光素子211と同じ作動をする。すなわち、前記の受光素子212と発光素子211の作動の組み合わせとなる。したがって、以下説明を省略する。
 このように、光電素子21a、21bは、分合波部20及び第1導光体11を介して第1レンズ部30への発光又は第1レンズ部30からの受光を行う。
In addition, when either the photoelectric element 21a or the photoelectric element 21b is a light emitting element 211, the light emitting element 211 of the photoelectric elements 21a and 21b explained in "(2) When both photoelectric elements are light emitting elements" mentioned above It works the same way. That is, it is a combination of the operations of the light receiving element 212 and the light emitting element 211 described above. Therefore, the explanation will be omitted below.
In this way, the photoelectric elements 21a and 21b emit light to or receive light from the first lens section 30 via the demultiplexing/combining section 20 and the first light guide 11.
[第1実施形態の第1変形例の構成]
 次に、本開示に係る光伝送モジュール100の第1実施形態の第1変形例について説明する。第1実施形態の第1変形例は、図3に示すように、光ファイバ90の引出方向を正面方向としたものである。すなわち、第1実施形態の基本形においては、光ファイバ90の引出方向を右側面方向としているが、第1変形例においては、正面を向くように構成している点で第1実施形態の基本形と相違する。上記以外は、第1実施形態の基本形と同様であるため、説明を省略する。
[Configuration of first modification of first embodiment]
Next, a first modification of the first embodiment of the optical transmission module 100 according to the present disclosure will be described. In the first modification of the first embodiment, as shown in FIG. 3, the optical fiber 90 is pulled out in the front direction. That is, in the basic form of the first embodiment, the drawing direction of the optical fiber 90 is directed toward the right side, but in the first modification, it is different from the basic form of the first embodiment in that it is configured to face the front. differ. Since the configuration other than the above is the same as the basic form of the first embodiment, the explanation will be omitted.
 なお、第1変形例で示す光ファイバ90の引出方向は正面方向に限定されるものではなく、例えば、背面方向でも、左側面方向でも、右45度の方向等でも差し支えない。要は、光ファイバ90の引出方向は、水平面上のいかなる方向であってもよい。 Note that the direction in which the optical fiber 90 is drawn out in the first modification is not limited to the front direction, and may be, for example, the back direction, the left side direction, the right direction at 45 degrees, or the like. In short, the direction in which the optical fiber 90 is drawn out may be any direction on the horizontal plane.
[第1実施形態の第2変形例の構成]
 次に、本開示に係る光伝送モジュール100の第1実施形態の第2変形例について説明する。第1実施形態の第2変形例は、図4に示すように、光ファイバ90の引出方向を上方向としたものである。すなわち、第2変形例においては、光ファイバ90を上方向から導出するように構成している点で第1実施形態の基本形と相違する。上記以外は、第1実施形態の基本形と同様であるため、説明を省略する。
 なお、本変形例でいう上方向とは、厳密な鉛直方向に限定されるものではない。
[Configuration of second modification of first embodiment]
Next, a second modification of the first embodiment of the optical transmission module 100 according to the present disclosure will be described. In the second modification of the first embodiment, as shown in FIG. 4, the optical fiber 90 is drawn out in the upward direction. That is, the second modification differs from the basic form of the first embodiment in that the optical fiber 90 is configured to be led out from above. Since the configuration other than the above is the same as the basic form of the first embodiment, the explanation will be omitted.
Note that the upward direction in this modification is not limited to the strict vertical direction.
[第1実施形態の第3変形例の構成]
 次に、本開示に係る光伝送モジュール100の第1実施形態の第3変形例について説明する。第1実施形態の第3変形例は、図5に示すように、第1変形例に示す光伝送モジュール100を2個並設して構成したものである。すなわち、第3変形例においては、第1変形例に示す光伝送モジュール100を2個並設して構成することにより多波長又は多チャンネルの光通信に対応できるよう構成している点で第1実施形態の基本形、第1変形例又は第2変形例と相違する。
[Configuration of third modification of first embodiment]
Next, a third modification of the first embodiment of the optical transmission module 100 according to the present disclosure will be described. As shown in FIG. 5, the third modification of the first embodiment is configured by arranging two optical transmission modules 100 shown in the first modification in parallel. That is, the third modification is different from the first modification in that it is configured to support multi-wavelength or multi-channel optical communication by configuring two optical transmission modules 100 shown in the first modification in parallel. This is different from the basic form, the first modification, or the second modification of the embodiment.
 なお、光伝送モジュール100を2個並設して構成するため、第4導光体14に相当する部分は、隣の光伝送モジュール100の光電変換部10の第2導光体12となる。また、隣の第2導光体12への漏光による誤作動を防止するために、図5に示すように、隣の第2導光体12と反射透過部23bとの境界に遮光膜28を形成している。上記以外は、第1実施形態の基本形と同様であるため、説明を省略する。 Note that since two optical transmission modules 100 are arranged in parallel, the portion corresponding to the fourth light guide 14 becomes the second light guide 12 of the photoelectric conversion section 10 of the adjacent optical transmission module 100. In addition, in order to prevent malfunction due to light leakage to the adjacent second light guide 12, a light shielding film 28 is provided at the boundary between the adjacent second light guide 12 and the reflective/transmissive part 23b, as shown in FIG. is forming. Since the configuration other than the above is the same as the basic form of the first embodiment, the explanation will be omitted.
 また、本変形例では光伝送モジュール100を2個並設して構成する例を示したが、2個に限定されるものではなく、何個並設しても差し支えない。2個を超える多波長の例については、後述する。また、以下の各実施形態の説明では、原則として光伝送モジュール100を2個並設して構成する例について説明するが、2個に限定されるものではなく、2個以上並設する場合にも適用可能である。 Furthermore, although this modification shows an example in which two optical transmission modules 100 are arranged in parallel, the number is not limited to two, and any number of optical transmission modules 100 may be arranged in parallel. An example of multiple wavelengths exceeding two will be described later. In addition, in the description of each embodiment below, an example in which two optical transmission modules 100 are arranged in parallel will be explained in principle, but the number is not limited to two, and when two or more are arranged in parallel, is also applicable.
<2.本開示に係る光伝送モジュールの第1実施形態の製造工程>
 次に、本開示に係る光伝送モジュール100の第1実施形態の製造工程の例について説明する。
 まず、図6に示すように、第1導光体11となる、例えば、ガラス基板11Aを準備する。
<2. Manufacturing process of the first embodiment of the optical transmission module according to the present disclosure>
Next, an example of the manufacturing process of the first embodiment of the optical transmission module 100 according to the present disclosure will be described.
First, as shown in FIG. 6, for example, a glass substrate 11A, which will become the first light guide 11, is prepared.
 次に、図7に示すように、ガラス基板11Aの上面に略直角三角形状で斜辺が傾斜面25a、25bをなす反射透過部23a、23bを、また、ガラス基板11Aの下面に第1レンズ部30を、それぞれ両面インプリント(imprint)により成形する。インプリントとは、いわゆる押し型によりガラス基板11A上に樹脂等を押し付けることにより形成する成形方法である。これに使用する樹脂は、透光性を有する樹脂である。 Next, as shown in FIG. 7, reflective/ transmissive parts 23a and 23b having a substantially right triangular shape with inclined sides 25a and 25b are provided on the upper surface of the glass substrate 11A, and a first lens part is provided on the lower surface of the glass substrate 11A. 30 are each molded by double-sided imprint. Imprint is a molding method in which resin or the like is pressed onto the glass substrate 11A using a so-called pressing die. The resin used for this is a translucent resin.
 次に、図8に示すように、ガラス基板11Aの上面の反射透過部23a、23bの傾斜面25a、25bを除いた領域にレジスト81を塗布する。そして、傾斜面25a、25bに波長選択膜24a、24bを蒸着により形成する。また、傾斜面25bには、波長選択膜24bに代えて反射鏡を蒸着により形成してもよい。 Next, as shown in FIG. 8, a resist 81 is applied to the upper surface of the glass substrate 11A except for the inclined surfaces 25a and 25b of the reflective and transmissive parts 23a and 23b. Then, wavelength selective films 24a and 24b are formed on the inclined surfaces 25a and 25b by vapor deposition. Furthermore, a reflecting mirror may be formed on the inclined surface 25b by vapor deposition instead of the wavelength selection film 24b.
 次に、図9に示すように、レジスト81を除去し、反射透過部23a、23b間に第3導光体13を、反射透過部23a、23bのそれぞれの外側に第2導光体12及び第4導光体14を形成する。第2導光体12、第3導光体13及び第4導光体14はいずれも透光性の樹脂で形成されている。なお、光電素子21a、21b間の光路長の差となる光軸LA3の光路長の差分を補償する場合には、後述の第4実施形態において説明するように、第3導光体13を高屈折率樹脂で形成し、第2導光体12を低屈折率樹脂で形成してもよい。 Next, as shown in FIG. 9, the resist 81 is removed, and the third light guide 13 is placed between the reflective and transparent parts 23a and 23b, and the second light guide 12 and A fourth light guide 14 is formed. The second light guide 12, the third light guide 13, and the fourth light guide 14 are all made of a translucent resin. In addition, when compensating for the difference in the optical path length of the optical axis LA3, which is the difference in the optical path length between the photoelectric elements 21a and 21b, the third light guide 13 is raised to a height as described in the fourth embodiment below. It may be formed from a refractive index resin, and the second light guide 12 may be formed from a low refractive index resin.
 次に、図10に示すように、第2導光体12、第3導光体13及び第4導光体14を形成した側の面に、所定のパターンを有する配線41を形成する。配線41は、光電素子21a、21bの接合及びハンダボール43を接合するためのものである。また、光電素子21a、21bである受光素子212の信号の処理回路や発光素子211の駆動回路等を形成してもよい。 Next, as shown in FIG. 10, wiring 41 having a predetermined pattern is formed on the surface on which the second light guide 12, third light guide 13, and fourth light guide 14 are formed. The wiring 41 is for joining the photoelectric elements 21a and 21b and the solder ball 43. Further, a signal processing circuit for the light receiving element 212, which is the photoelectric element 21a, 21b, a driving circuit for the light emitting element 211, etc. may be formed.
 次に、図11に示すように、光電素子21a、21bを配線41にハンダボール42によりハンダ接合する。ハンダ接合は、リフローにより行う。リフローによるハンダ付けをすることにより、溶融したハンダの表面張力によるセルフアライメントによって、光電素子21a、21bの位置合わせを自動的に、かつ正確に行うことができる。したがって、光電素子21a、21bをそれぞれ光軸LA2、LA4上に正確かつ高精度に配置することができる。
 次に、配線41の所定のランドに光電変換部10を回路基板40と接続するためのハンダボール43を接合する。
Next, as shown in FIG. 11, the photoelectric elements 21a and 21b are soldered to the wiring 41 using solder balls 42. Then, as shown in FIG. Solder bonding is performed by reflow. By performing reflow soldering, the photoelectric elements 21a and 21b can be automatically and accurately aligned by self-alignment due to the surface tension of the molten solder. Therefore, the photoelectric elements 21a and 21b can be arranged accurately and with high precision on the optical axes LA2 and LA4, respectively.
Next, a solder ball 43 for connecting the photoelectric conversion unit 10 to the circuit board 40 is bonded to a predetermined land of the wiring 41.
 次に、図12に示すように、ガラス基板11Aを個片化する。これにより光伝送モジュール100の光電変換部10が完成する。なお、本図では、第1実施形態の基本形、第1変形例及び第2変形例に使用される光電変換部10の例を示したが、図5に示す第3変形例のように光電変換部10を2個並設した状態に個片化してもよい。また2個以上併設した状態で個片化してもよい。 Next, as shown in FIG. 12, the glass substrate 11A is separated into individual pieces. As a result, the photoelectric conversion section 10 of the optical transmission module 100 is completed. Although this figure shows an example of the photoelectric conversion section 10 used in the basic form, the first modification, and the second modification of the first embodiment, the photoelectric conversion section 10 used in the third modification shown in FIG. It is also possible to separate the parts 10 into two pieces arranged side by side. Alternatively, two or more pieces may be placed side by side and then separated into pieces.
 次に、図13に示すように、光電変換部10を上下反転させ、ハンダボール43により回路基板40にハンダ接合する。ハンダ接合は、リフローにより行う。さらに、別工程において製作された光レセプタクル部50と組み合わせることにより、第1実施形態の光伝送モジュール100を形成することができる。なお、光レセプタクル部50との組み合わせは、回路基板40とのハンダ接合前に行ってもよいし、ハンダ接合後に行ってもよい。 Next, as shown in FIG. 13, the photoelectric conversion section 10 is turned upside down and soldered to the circuit board 40 using the solder balls 43. Solder bonding is performed by reflow. Furthermore, the optical transmission module 100 of the first embodiment can be formed by combining it with the optical receptacle section 50 manufactured in a separate process. Note that the combination with the optical receptacle portion 50 may be performed before or after soldering to the circuit board 40.
 なお、光レセプタクル部50の第2レンズ部60と、光電変換部10の第1レンズ部30との間の透過光は基本的には平行光であるため、第2レンズ部60と第1レンズ部30との間隔は、両者の焦点距離には無関係になる。したがって、第2レンズ部60と第1レンズ部30との配置間隔は、任意であってよい。よって、両者の光軸LA2さえ一致しておれば、両者の間隔の厳密な位置合わせは不要となる。具体的には、第2レンズ部60から第1レンズ部30への入射光及び第1レンズ部30の焦点の位置に配設されたいずれかの光電素子21a、21bからの出射光又は後述する第4実施形態等による光電素子21a、21bからの出射光が平行光になる。 Note that since the transmitted light between the second lens section 60 of the optical receptacle section 50 and the first lens section 30 of the photoelectric conversion section 10 is basically parallel light, the second lens section 60 and the first lens section The distance from the portion 30 is independent of the focal length of both. Therefore, the arrangement interval between the second lens section 60 and the first lens section 30 may be arbitrary. Therefore, as long as the optical axes LA2 of the two coincide with each other, there is no need to strictly align the distance between the two. Specifically, the incident light from the second lens section 60 to the first lens section 30 and the output light from either of the photoelectric elements 21a and 21b disposed at the focal point position of the first lens section 30, or as will be described later. The light emitted from the photoelectric elements 21a and 21b according to the fourth embodiment and the like becomes parallel light.
<3.本開示に係る光伝送モジュールの第2実施形態>
 次に、本開示に係る光伝送モジュール100の第2実施形態について説明する。本実施形態は、図14に示すように、3個の光電素子21a、21b、21cを配設して、3回路の光電変換部10を備えた光伝送モジュール100を構成したものである。
 すなわち、第1導光体11と、前記の第1実施形態において説明した分合波部20との間にもう一つの分合波部70を形成し、光電素子21a、21b、21cの3回路の光の分波及び合波を可能としたものである。
<3. Second embodiment of optical transmission module according to the present disclosure>
Next, a second embodiment of the optical transmission module 100 according to the present disclosure will be described. In this embodiment, as shown in FIG. 14, three photoelectric elements 21a, 21b, and 21c are arranged to configure an optical transmission module 100 including a three-circuit photoelectric conversion section 10.
That is, another demultiplexing/multiplexing section 70 is formed between the first light guide 11 and the demultiplexing/multiplexing section 20 described in the first embodiment, and three circuits of photoelectric elements 21a, 21b, and 21c are formed. This enables the demultiplexing and multiplexing of light.
 具体的には、第1導光体11と、分合波部20との間にもう一つの分合波部70が積層されている。分合波部70には、光軸LA2上に反射透過部23aとは左右逆向きの略直角三角形で斜辺が傾斜面75aをなす反射透過部73aが配設され、その右隣に同様の形状の反射透過部73bを配設している。そして、反射透過部73aの左側には第2導光体71が、反射透過部73a、73b間には第3導光体72が配設されている。また、反射透過部73a、73bの傾斜面75a、75bには、それぞれ波長選択膜74a、74bが形成されている。波長選択膜74aは、光電素子21cの所定の発光波長又は受光波長の光線L3を反射し、それ以外の波長の光は透過する。 Specifically, another demultiplexing/multiplexing section 70 is laminated between the first light guide 11 and the demultiplexing/multiplexing section 20 . The demultiplexing/multiplexing section 70 is provided with a reflective/transmissive section 73a on the optical axis LA2, which is a substantially right-angled triangle whose hypotenuse forms an inclined surface 75a, and which has a similar shape on the right side. A reflective/transmissive section 73b is provided. A second light guide 71 is disposed on the left side of the reflective/transmissive section 73a, and a third light guide 72 is disposed between the reflective/ transmissive sections 73a and 73b. In addition, wavelength selection films 74a and 74b are formed on the inclined surfaces 75a and 75b of the reflective and transmissive parts 73a and 73b, respectively. The wavelength selection film 74a reflects the light beam L3 having a predetermined emission wavelength or reception wavelength of the photoelectric element 21c, and transmits light having other wavelengths.
 ここで、光電素子21cが受光素子212の場合について説明する。光軸LA2に沿って進行してきた入射光は、波長選択膜74aにおいて所定の波長帯の光線L3が反射される。波長選択膜74aにおいて反射された光線L3の光路は、光軸LA2から光軸LA5の方向に変えられ、光線L3は、光軸LA5に沿って進行し、波長選択膜74bに入射する。波長選択膜74bは、所定の波長帯の光線L3を反射する。ただし、波長選択膜74aにおいて、当該波長の光線L3のみが反射されているので、傾斜面75bには波長選択膜74bに代えて、光線L3を全反射する反射鏡を設けてもよい。 Here, a case where the photoelectric element 21c is the light receiving element 212 will be explained. Of the incident light traveling along the optical axis LA2, a light ray L3 in a predetermined wavelength band is reflected by the wavelength selection film 74a. The optical path of the light ray L3 reflected by the wavelength selection film 74a is changed from the optical axis LA2 to the optical axis LA5, and the light ray L3 travels along the optical axis LA5 and enters the wavelength selection film 74b. The wavelength selection film 74b reflects the light beam L3 in a predetermined wavelength band. However, since the wavelength selection film 74a reflects only the light ray L3 of the wavelength, a reflecting mirror that totally reflects the light ray L3 may be provided on the inclined surface 75b instead of the wavelength selection film 74b.
 波長選択膜74bにおいて反射された光線L3の光路は、光軸LA5から光軸LA6の方向に変えられ、光線L3は、光軸LA6に沿って進行し、分合波部20の第2導光体12を透過して光電素子21cに入射される。光電素子21cは、第1実施形態の基本形で説明したのと同様に、第1レンズ部30の焦点の近傍の位置に配設されている。したがって、光線L3は、光電素子21cである受光素子212に集束され、電気信号に変換される。
 光電素子21cが発光素子211の場合は、その光路がこの逆になるだけであるため、説明を省略する。
The optical path of the light ray L3 reflected by the wavelength selection film 74b is changed from the optical axis LA5 to the optical axis LA6, and the light ray L3 travels along the optical axis LA6 and passes through the second light guide of the demultiplexing/combining section 20. The light passes through the body 12 and enters the photoelectric element 21c. The photoelectric element 21c is arranged at a position near the focal point of the first lens section 30, as described in the basic form of the first embodiment. Therefore, the light beam L3 is focused on the light receiving element 212, which is the photoelectric element 21c, and is converted into an electrical signal.
If the photoelectric element 21c is the light emitting element 211, the optical path will simply be the opposite, so the explanation will be omitted.
 一方、波長選択膜74aを透過した光は、分合波部20に入射する。分合波部20に入射した後の光路は、前記の第1実施形態の基本形で説明したのと同様であるため、説明を省略する。分合波部20から出射する場合も同様である。また、上記以外の構成については、前記の第1実施形態の基本形で説明したのと同様であるため、説明を省略する。 On the other hand, the light transmitted through the wavelength selection film 74a enters the demultiplexing/combining section 20. The optical path after entering the demultiplexing/multiplexing unit 20 is the same as that described in the basic form of the first embodiment, and therefore the description thereof will be omitted. The same applies to the case of outputting from the demultiplexing/combining section 20. Further, the configuration other than the above is the same as that described in the basic form of the first embodiment, so the description will be omitted.
 第2実施形態は、以上のように構成されているために、3回路の光の分合波をすることができる。なお、図14では、3回路の光電素子21a、21b、21cを備えた光伝送モジュール100が形成できることを説明したが、さらに分合波部70を複数層に積層することによって、3回路を超える光伝送モジュール100を形成することもできる。 Since the second embodiment is configured as described above, it is possible to perform demultiplexing and multiplexing of light from three circuits. In addition, in FIG. 14, it has been explained that the optical transmission module 100 having three circuits of photoelectric elements 21a, 21b, and 21c can be formed. An optical transmission module 100 can also be formed.
 すなわち、図14における光電変換部10の分合波部70の上面に、さらに上段の分合波部70を積層する。上段の分合波部70は、所定の波長帯の光線を反射して当該上段の光電素子に対応する所定の波長帯の光線を取り出すように分合波する。それ以外の波長の光は、下段の分合波部70に透過させる。
 下段の分合波部70は、上段の分合波部70からの透過光の所定の波長帯の光線を反射して当該下段の光電素子に対応する所定の波長帯の光線を取り出すように分合波する。それ以外の波長の光は、最下段の分合波部20に透過させる。
 最下段の分合波部20は、前記のように当該下段の分合波部70からの透過光を2個の光電素子21a、21bに分波するよう構成することで4回路の光伝送モジュール100を形成することができる。
 同様に、前記の上段の分合波部70の上面にさらに分合波部70を順次積層することにより、5回路以上の光伝送モジュール100を形成することができる。
That is, the upper division/multiplexing section 70 is further laminated on the upper surface of the division/multiplexing section 70 of the photoelectric conversion section 10 in FIG. 14 . The upper-stage demultiplexing/combining section 70 reflects the light rays in a predetermined wavelength band and performs demultiplexing/combining so as to extract the light rays in the predetermined wavelength band corresponding to the upper-stage photoelectric element. Light of other wavelengths is transmitted to the lower division/multiplexing section 70.
The lower splitting/combining unit 70 reflects the transmitted light from the upper splitting/combining unit 70 in a predetermined wavelength band and extracts the light ray in a predetermined wavelength band corresponding to the lower photoelectric element. Combine waves. Light of other wavelengths is transmitted to the lowermost stage demultiplexing/combining section 20.
The lowermost division/multiplexing section 20 is configured to split the transmitted light from the lower division/multiplexing section 70 into two photoelectric elements 21a, 21b as described above, thereby creating a four-circuit optical transmission module. 100 can be formed.
Similarly, by sequentially stacking further demultiplexing/combining sections 70 on the upper surface of the upper demultiplexing/multiplexing section 70, an optical transmission module 100 having five or more circuits can be formed.
<4.本開示に係る光伝送モジュールの第3実施形態>
 次に、本開示に係る光伝送モジュール100の第3実施形態について説明する。第3実施形態は、図15に示すように、光電素子21a、21bとして同一波長帯の2個の発光素子211又は同一波長帯の2個の受光素子212を配設し、実使用時は、いずれか一方のみを使用するものである。すなわち、2個の発光素子211又は受光素子212は、一方を「常用」とし、他方を「予備」とするものであり、両者が同時に使用されることはない。
<4. Third embodiment of optical transmission module according to the present disclosure>
Next, a third embodiment of the optical transmission module 100 according to the present disclosure will be described. In the third embodiment, as shown in FIG. 15, two light emitting elements 211 of the same wavelength band or two light receiving elements 212 of the same wavelength band are arranged as photoelectric elements 21a and 21b, and in actual use, Only one of them is used. That is, one of the two light emitting elements 211 or the light receiving elements 212 is used for "regular use" and the other is used for "spare", and both are not used at the same time.
 第3実施形態は、かかる用途であるために、分合波部20には、反射透過部23a、23bのそれぞれの傾斜面25a、25bに波長選択膜24a、24bを設けないで、いずれか一方の光電素子21a、21bで入射光を受光し、又はいずれか一方の光電素子21a、21bからの出射光を透過又は反射させるように構成したものである。 In the third embodiment, for this purpose, the wavelength selection films 24a and 24b are not provided on the inclined surfaces 25a and 25b of the reflection and transmission parts 23a and 23b in the demultiplexing and multiplexing part 20, but only one of the wavelength selection films 24a and 24b is provided. The photoelectric elements 21a and 21b are configured to receive incident light, or to transmit or reflect light emitted from one of the photoelectric elements 21a and 21b.
 具体的には、光電素子21a、21bがいずれも受光素子212、212である場合を例に説明する。
 図15において、第1レンズ部30を透過して光軸LA2に沿って進行する入射光は、傾斜面25aにおいて一部は透過し、他は反射する。すなわち、透過光と反射光に分かれる。傾斜面25aを透過した光は、そのまま光軸LA2に沿って進行し、光電素子21aである受光素子212に入射される。
Specifically, an example will be described in which the photoelectric elements 21a and 21b are both light receiving elements 212 and 212.
In FIG. 15, part of the incident light that passes through the first lens section 30 and travels along the optical axis LA2 passes through the inclined surface 25a, and the other part is reflected. That is, the light is divided into transmitted light and reflected light. The light transmitted through the inclined surface 25a continues along the optical axis LA2 and enters the light receiving element 212, which is the photoelectric element 21a.
 一方、傾斜面25aにおける反射光は、光路が光軸LA2から光軸LA3の方向に変えられる。そこで当該反射光は光軸LA3に沿って進行し、傾斜面25bに入射する。傾斜面25bへの入射光は、そこで透過光と反射光に分かれる。
 傾斜面25bにおける反射光は、光路が光軸LA3から光軸LA4の方向に変えられる。そして、当該反射光は光軸LA4に沿って進行し、光電素子21bである受光素子212に入射される。このように、光電素子21a、21bがいずれも受光素子212、212の場合には、双方の受光素子212、212が光ファイバ90を行き交う全ての波長の光を同時に受光する。
On the other hand, the optical path of the reflected light on the inclined surface 25a is changed from the optical axis LA2 to the optical axis LA3. The reflected light then travels along the optical axis LA3 and enters the inclined surface 25b. The light incident on the inclined surface 25b is separated into transmitted light and reflected light.
The optical path of the reflected light on the inclined surface 25b is changed from the optical axis LA3 to the optical axis LA4. The reflected light then travels along the optical axis LA4 and enters the light receiving element 212, which is the photoelectric element 21b. In this way, when the photoelectric elements 21a and 21b are both light receiving elements 212 and 212, both light receiving elements 212 and 212 simultaneously receive light of all wavelengths passing through the optical fiber 90.
 一方、傾斜面25bでの透過光は、そのまま光軸LA3に沿って進行するが、反射透過部23bと隣の第2導光体12との境界に形成された遮光膜28により遮光される。このために、隣接する他の光電素子21a、21bに漏光することはない。また、反射透過部23bの傾斜面25bは、光軸LA3に沿って進んできた光を全反射すればよいので、透過光について考慮しなくてもよい。このため、傾斜面25bに波長選択膜24bに代えて反射鏡を形成してもよい。 On the other hand, the light transmitted through the inclined surface 25b continues along the optical axis LA3, but is blocked by the light shielding film 28 formed at the boundary between the reflective and transmitting portion 23b and the adjacent second light guide 12. Therefore, no light leaks to other adjacent photoelectric elements 21a, 21b. Further, since the inclined surface 25b of the reflective/transmissive portion 23b only needs to totally reflect the light traveling along the optical axis LA3, there is no need to consider transmitted light. Therefore, a reflecting mirror may be formed on the inclined surface 25b instead of the wavelength selection film 24b.
 このように、傾斜面25a、25bには、波長選択膜24a、24bを設けていないために、光電素子21a、21bが共に受光素子212、212の場合には、あらゆる波長の光を受光するが、受光した光信号の弁別は、信号処理回路や信号処理のソフトウエア等で行えばよい。また、所定の波長帯の分波を光電変換部10で行いたい場合には、図15に示すように、第1導光体11と反射透過部23aとの境界に波長選択膜24kを形成し、所定の波長帯の光線L1、L2のみを透過させるように構成してもよい。 In this way, since the wavelength selection films 24a and 24b are not provided on the inclined surfaces 25a and 25b, when both the photoelectric elements 21a and 21b are light receiving elements 212 and 212, they receive light of all wavelengths. Discrimination of the received optical signals may be performed using a signal processing circuit, signal processing software, or the like. Furthermore, when it is desired to perform demultiplexing of a predetermined wavelength band in the photoelectric conversion section 10, a wavelength selection film 24k is formed at the boundary between the first light guide 11 and the reflective/transmissive section 23a, as shown in FIG. , it may be configured to transmit only the light beams L1 and L2 in a predetermined wavelength band.
 次に、光電素子21a、21bがいずれも発光素子211、211の場合について説明する。この場合において発光素子211、211が発光したそれぞれの光線L1、L2の光路は、光電素子21a、21bがいずれも受光素子212、212の場合の逆方向となるため、説明を省略する。
 なお、光電素子21a、21bが共に発光素子211、211の場合には、当該発光素子211、211のいずれか一方が、通信を必要とするときに発光すればよいので、先述のように、波長選択膜24a、24bを設けてそれぞれの光線L1、L2の合波を行う必要はない。
Next, a case where the photoelectric elements 21a and 21b are both light emitting elements 211 and 211 will be described. In this case, the optical paths of the respective light rays L1 and L2 emitted by the light emitting elements 211 and 211 are in the opposite direction to those in the case where the photoelectric elements 21a and 21b are both the light receiving elements 212 and 212, so a description thereof will be omitted.
Note that when both the photoelectric elements 21a and 21b are light emitting elements 211 and 211, it is only necessary for either one of the light emitting elements 211 and 211 to emit light when communication is required. It is not necessary to provide the selective films 24a and 24b to combine the respective light beams L1 and L2.
 以上のように構成することにより、実使用においては、光電素子21a、21bのいずれか一方を常用とし、他方を予備とする。又は光電素子21a、21bを常用と予備に交互に使用してもよい。また、仮に光電素子21a、21bいずれか一方が故障した場合には、故障した光電素子21a、21bのいずれかを切り離して運用すればよい。すなわち通信系を二重化することができる。仮に、いずれか一方の光電素子21a、21bが故障したとしても次期の定期点検までは、光レセプタクル部50を取り外すことなく連続して運用することができる。
 なお、上記においては、2個の光電素子21a、21bの場合について説明したが、2個に限定されるものではなく、3個以上であってもよい。この場合には、複数の光電素子のうち、一部の光電素子を常用、他の一部の光電素子を予備とし、さらに常用と予備をローテンションさせる等、切り替え可能に構成してもよい。具体的には、例えば、3個の光電素子21a、21b、21c(不図示)を備えた構成の場合、1個の光電素子21aを常用の光電素子とし、残りの2個の光電素子21b、21cを予備の光電素子とする。
 上記以外は、第1実施形態の第3変形例と同様であるため、説明を省略する。
With the above configuration, in actual use, one of the photoelectric elements 21a and 21b is used regularly and the other is used as a spare. Alternatively, the photoelectric elements 21a and 21b may be used alternately for regular use and for backup. Furthermore, if either one of the photoelectric elements 21a, 21b is out of order, the failed photoelectric element 21a, 21b may be separated and operated. In other words, the communication system can be duplicated. Even if one of the photoelectric elements 21a, 21b breaks down, the optical receptacle unit 50 can be continuously operated until the next periodic inspection without removing it.
In addition, in the above, although the case of two photoelectric elements 21a and 21b was demonstrated, it is not limited to two and may be three or more. In this case, some of the photoelectric elements among the plurality of photoelectric elements may be used regularly, some of the other photoelectric elements may be used as spares, and furthermore, the regular use and the spares may be rotated. Specifically, for example, in the case of a configuration including three photoelectric elements 21a, 21b, and 21c (not shown), one photoelectric element 21a is used as a regular photoelectric element, and the remaining two photoelectric elements 21b, 21c is a spare photoelectric element.
Everything other than the above is the same as the third modified example of the first embodiment, so the explanation will be omitted.
<5.本開示に係る光伝送モジュールの第4実施形態>
[第4実施形態の構成]
 次に、本開示に係る光伝送モジュール100の第4実施形態について説明する。本実施形態は、図16に示すように、分合波部20内の第2導光体12を低屈折率樹脂で形成し、第3導光体13を高屈折率樹脂で形成したものである。
<5. Fourth embodiment of optical transmission module according to the present disclosure>
[Configuration of fourth embodiment]
Next, a fourth embodiment of the optical transmission module 100 according to the present disclosure will be described. In this embodiment, as shown in FIG. 16, the second light guide 12 in the demultiplexing/combining section 20 is made of a low refractive index resin, and the third light guide 13 is made of a high refractive index resin. be.
 すなわち、第2導光体12を低屈折率樹脂で形成することにより、反射透過部23aから波長選択膜24aを透過して第2導光体12に入射する光線L1を屈折させ、短い光路長で集光して光電素子21aに入射するよう構成したものである。 That is, by forming the second light guide 12 with a low refractive index resin, the light ray L1 that passes through the reflection/transmission part 23a, passes through the wavelength selection film 24a, and enters the second light guide 12 is refracted, resulting in a short optical path length. It is configured so that the light is focused and incident on the photoelectric element 21a.
 また、第3導光体13を高屈折率樹脂で形成することにより、反射透過部23aの波長選択膜24aにおける反射光が第3導光体13に入射する際に光路が広がるように屈折させ、長い光路長で集光して光電素子21bに入射するよう構成したものである。
 この場合において、第2導光体12及び第3導光体13のそれぞれの屈折率や光路長は、光電変換部10や光電素子21a、21b等の外形寸法及びその配置等から決めればよい。
Furthermore, by forming the third light guide 13 with a high refractive index resin, the reflected light on the wavelength selection film 24a of the reflective/transmissive part 23a is refracted so that the optical path is widened when it enters the third light guide 13. , the light is condensed with a long optical path length and is incident on the photoelectric element 21b.
In this case, the refractive index and optical path length of each of the second light guide 12 and the third light guide 13 may be determined based on the external dimensions of the photoelectric conversion section 10, the photoelectric elements 21a, 21b, etc., and their arrangement.
 これにより、簡単な構成で光電素子21a、21bのそれぞれを第1レンズ部30の焦点の位置に配設することができる。
 上記以外の構成については、前記の第1実施形態の基本形で説明したのと同様であるため、説明を省略する。
Thereby, each of the photoelectric elements 21a and 21b can be arranged at the focal point of the first lens section 30 with a simple configuration.
The configuration other than the above is the same as that described in the basic form of the first embodiment, so the description will be omitted.
[第4実施形態における屈折率の差異と光路]
 次に、第4実施形態において反射透過部23aの傾斜面25aから屈折率の異なる第2導光体12に光を透過又は反射させたときの光路について説明する。反射透過部23aと第2導光体12の屈折率が同一の場合には、入射光は光軸LA2に沿って直進するため、光路の屈曲は問題とならない。しかし、第2導光体12の屈折率を反射透過部23aの屈折率よりも小さくする場合には、両者の屈折率が異なり、しかも入射光が両者の接合面に斜めに入射するため、当該接合面で屈折することにより光軸LA2及び光路が折曲するという問題が生じる。
[Difference in refractive index and optical path in the fourth embodiment]
Next, an optical path when light is transmitted or reflected from the inclined surface 25a of the reflective/transmissive section 23a to the second light guide 12 having a different refractive index in the fourth embodiment will be described. When the reflective/transmissive portion 23a and the second light guide 12 have the same refractive index, the incident light travels straight along the optical axis LA2, so bending of the optical path does not pose a problem. However, if the refractive index of the second light guide 12 is made smaller than the refractive index of the reflective/transmissive part 23a, the refractive index of the two will be different and the incident light will be obliquely incident on the joint surface of the two. A problem arises in that the optical axis LA2 and the optical path are bent due to the refraction at the cemented surface.
 具体的には、図17に示すように、反射透過部23aの屈折率をn1、第2導光体12の屈折率をn2とし、傾斜面25aの傾きは45度であるとすると、傾斜面25aへの入射角θ1は、θ1=45度となるから、透過光の屈折角θ2は、スネルの法則より、
 sinθ1/sinθ2=n2/n1 が成立する。
 したがって、sinθ2=(n1/n2)sinθ1=(n1/n2)2-1/2 となる。よって、θ2=sin―1{(n1/n2)2-1/2} となる。
 ただし、sin45°=2-1/2である。
Specifically, as shown in FIG. 17, if the refractive index of the reflective/transmissive portion 23a is n1, the refractive index of the second light guide 12 is n2, and the slope of the slope 25a is 45 degrees, then the slope Since the incident angle θ1 to 25a is θ1=45 degrees, the refraction angle θ2 of the transmitted light is as follows from Snell's law:
sin θ1/sin θ2=n2/n1 holds true.
Therefore, sin θ2=(n1/n2) sin θ1=(n1/n2)2 -1/2 . Therefore, θ2=sin −1 {(n1/n2)2 −1/2 }.
However, sin45°=2-1 / 2.
 ここで、傾斜面25aにおける透過光が光軸LA2を直線としたときに、当該透過光がその光軸LA2に沿って直進するためには、屈折角θ2は45度でなければならない。したがって、この場合には、(n1/n2)=1、すなわちn2=n1であることが必要である。
 しかし、本実施形態のように、n1≠n2とした場合には、入射角θ1と屈折角θ2は同一の角度とはならない(θ1≠θ2)。
 すなわち、両者の屈折率がn1>n2のときの当該入射光は、反射透過部23aの傾斜面25aと第2導光体12との境界面において屈折する。そして、屈折光の光路は、図17に示すように、直線光路から外れて第2導光体12において屈曲して進行する。
Here, when the optical axis LA2 of the transmitted light on the inclined surface 25a is a straight line, in order for the transmitted light to travel straight along the optical axis LA2, the refraction angle θ2 must be 45 degrees. Therefore, in this case, it is necessary that (n1/n2)=1, that is, n2=n1.
However, as in this embodiment, when n1≠n2, the incident angle θ1 and the refraction angle θ2 are not the same angle (θ1≠θ2).
That is, the incident light when the refractive indexes of both are n1>n2 is refracted at the interface between the inclined surface 25a of the reflective-transmissive portion 23a and the second light guide 12. Then, as shown in FIG. 17, the optical path of the refracted light deviates from the straight optical path and travels while being bent at the second light guide 12.
 さらに、当該屈折光は、第2導光体12を透過して空気中に抜ける際に、空気との境界面で再び屈折する。具体的には、第2導光体12から空気への入射角をθ3、屈折角をθ4とし、第2導光体12の屈折率をn2、空気の屈折率をn0とし、両者の屈折率の大小関係がn2>n0とすると、
 sinθ3/sinθ4=n0/n2 が成立する。
 ここで、空気の屈折率n0を1とおくと(n0=1)、
 sinθ4=(n2/n0)sinθ3=n2sinθ3 となる。
 つまり、空気中への光路の屈折角θ4の正弦の値は、第2導光体12中への光路の入射角θ3の正弦の値のn2倍になる。したがって、傾斜面25aにおける入射光の光軸LA2は、図17に示すように、反射透過部23aと第2導光体12との境界面で角度θ3だけ屈曲し、さらに第2導光体12と空気との境界面で屈曲する。この結果、光軸LA2は、本来の直線である場合に比べて角度θ4だけ屈曲する。
Furthermore, when the refracted light passes through the second light guide 12 and exits into the air, it is refracted again at the interface with the air. Specifically, the incident angle from the second light guide 12 to the air is θ3, the refraction angle is θ4, the refractive index of the second light guide 12 is n2, the refractive index of the air is n0, and the refractive index of both is If the magnitude relationship of is n2>n0,
sin θ3/sin θ4=n0/n2 holds true.
Here, if the refractive index n0 of air is set to 1 (n0=1),
sin θ4=(n2/n0) sin θ3=n2 sin θ3.
That is, the value of the sine of the refraction angle θ4 of the optical path into the air is n2 times the value of the sine of the incident angle θ3 of the optical path into the second light guide 12. Therefore, as shown in FIG. 17, the optical axis LA2 of the incident light on the inclined surface 25a is bent by an angle θ3 at the interface between the reflective and transmitting portion 23a and the second light guide 12, and bends at the interface between air and air. As a result, the optical axis LA2 is bent by an angle θ4 compared to the original straight line.
 よって、光軸LA3の光路長の差分を補償するためにn2≠n1とするような場合には、透過光の光軸LA2が直線の光路から外れる距離を算出して、光電素子21aの位置を調整すればよい。または、傾斜面25aの傾きを45度と異なる値にすることにより調整してもよい。 Therefore, in the case where n2≠n1 is set in order to compensate for the difference in the optical path length of the optical axis LA3, the distance by which the optical axis LA2 of the transmitted light deviates from the straight optical path is calculated and the position of the photoelectric element 21a is determined. Just adjust it. Alternatively, adjustment may be made by setting the inclination of the inclined surface 25a to a value different from 45 degrees.
 以上のように、第2導光体12を低屈折率樹脂で形成する場合は、光軸LA2が屈曲することを考慮することが必要である。これにより、反射透過部23a及び波長選択膜24aを透過して第2導光体12に入射する光線L1を屈折させ、短い光路長で光電素子21aに集光することができる。さらに、光電素子21aを第1レンズ部30の焦点の位置に配設することができる。 As described above, when the second light guide 12 is formed of a low refractive index resin, it is necessary to take into account that the optical axis LA2 is bent. Thereby, the light beam L1 that passes through the reflection-transmission part 23a and the wavelength selection film 24a and enters the second light guide 12 can be refracted and focused on the photoelectric element 21a with a short optical path length. Furthermore, the photoelectric element 21a can be disposed at the focal point of the first lens section 30.
 なお、傾斜面25aの傾きを45度とした場合に、傾斜面25aへの入射角θ1は45度となる(θ1=45°)。また、入射角θ1と反射角は等しくなるから、反射角もθ1となり、同じく45度となる。したがって、波長選択膜24aへの光線L1を除く入射光は、光軸LA3の方向に反射される。本実施形態において、第3導光体13は、高屈折率樹脂であるため、その屈折率は反射透過部23aの屈折率n1と異なっている。しかし、光軸LA3は、第3導光体13に対して垂直となるため、光軸LA3が屈折により屈曲することはない。すなわち当該反射光は、図17に示すように、屈折率n1、n2及び第3導光体13の屈折率が相違してもその影響を受けることなく光軸LA3方向に沿った光路をとることができる。 Note that when the inclination of the inclined surface 25a is 45 degrees, the incident angle θ1 to the inclined surface 25a is 45 degrees (θ1=45°). Further, since the incident angle θ1 and the reflection angle are equal, the reflection angle is also θ1, which is also 45 degrees. Therefore, the incident light other than the light beam L1 to the wavelength selection film 24a is reflected in the direction of the optical axis LA3. In this embodiment, since the third light guide 13 is made of a high refractive index resin, its refractive index is different from the refractive index n1 of the reflective/transmissive portion 23a. However, since the optical axis LA3 is perpendicular to the third light guide 13, the optical axis LA3 is not bent due to refraction. That is, as shown in FIG. 17, the reflected light takes an optical path along the optical axis LA3 direction without being affected by the difference in the refractive indexes n1 and n2 and the refractive index of the third light guide 13. Can be done.
<6.本開示に係る光伝送モジュールの第5実施形態>
 次に、本開示に係る光伝送モジュール100の第5実施形態について説明する。本実施形態は、図18に示すように、光電素子21aを第1レンズ部30の焦点の位置に配設するとともに、反射透過部23bに、所定の曲率中心及び曲率半径を有する凹面鏡状の傾斜面25b及び波長選択膜24bを形成したものである。そして、傾斜面25bの凹面鏡への入射光が反射されることにより集光することを利用して、光電素子21bへの集光が可能となるよう構成したものである。
<6. Fifth embodiment of optical transmission module according to the present disclosure>
Next, a fifth embodiment of the optical transmission module 100 according to the present disclosure will be described. In this embodiment, as shown in FIG. 18, the photoelectric element 21a is disposed at the focal point of the first lens section 30, and the reflective/transmissive section 23b has a concave mirror-like inclined surface having a predetermined center of curvature and radius of curvature. A surface 25b and a wavelength selection film 24b are formed. The structure is such that the light incident on the concave mirror of the inclined surface 25b is reflected and focused, so that the light can be focused on the photoelectric element 21b.
 具体的には、第1レンズ部30で屈折し、光軸LA2に沿って進行してきた入射光は、波長選択膜24aにおいて所定の波長帯の光線L1が透過し、それ以外の波長の光は反射される。当該反射光の光路は、光軸LA2から光軸LA3の方向に変えられ、光軸LA3に沿って進行する。 Specifically, from the incident light that has been refracted by the first lens section 30 and has traveled along the optical axis LA2, the light ray L1 in a predetermined wavelength band is transmitted through the wavelength selection film 24a, and the light of other wavelengths is transmitted. reflected. The optical path of the reflected light is changed from the optical axis LA2 to the optical axis LA3, and travels along the optical axis LA3.
 ここで、光軸LA3に沿って進行する反射光は、光軸LA3上に存在する第1レンズ部30の焦点において一旦集光し、その後、広がりながら凹面鏡状の傾斜面25bの波長選択膜24bに入射する。凹面鏡状の波長選択膜24bは、所定の波長帯の光線L2を反射する。反射された光線L2の光路は、光軸LA3から光軸LA4の方向に変えられ、光軸LA4に沿って集光しながら進行する。したがって、光線L2が集光する位置に光電素子21bを配設することにより光線L2を集光して受光することができる。この結果、光軸LA3の光路長の差分を補償することができる。 Here, the reflected light traveling along the optical axis LA3 is once condensed at the focal point of the first lens section 30 located on the optical axis LA3, and then spreads out to the wavelength selection film 24b of the concave mirror-like inclined surface 25b. incident on . The concave mirror-shaped wavelength selection film 24b reflects the light beam L2 in a predetermined wavelength band. The optical path of the reflected light beam L2 is changed from the optical axis LA3 to the optical axis LA4, and travels along the optical axis LA4 while condensing. Therefore, by arranging the photoelectric element 21b at a position where the light beam L2 is focused, the light beam L2 can be focused and received. As a result, the difference in the optical path length of the optical axis LA3 can be compensated for.
 また、このように構成することにより、第2導光体12及び第3導光体13を反射透過部23a、23bと同じ屈折率の透過性材料で構成することができる。しかも、簡単な構成で光電素子21a、21bのそれぞれを、第1レンズ部30の焦点の位置に配設することができる。
 光電素子21bが発光素子211の場合の光路は、受光の場合の逆になるだけであるため、説明を省略する。
 また、上記以外の構成については、前記の第1実施形態の基本形で説明したのと同様であるため、説明を省略する。
Furthermore, with this configuration, the second light guide 12 and the third light guide 13 can be made of a transparent material having the same refractive index as the reflective/ transmissive parts 23a and 23b. Furthermore, each of the photoelectric elements 21a and 21b can be arranged at the focal point of the first lens section 30 with a simple configuration.
The optical path when the photoelectric element 21b is the light emitting element 211 is simply the opposite of the optical path when receiving light, so the explanation will be omitted.
Further, the configuration other than the above is the same as that described in the basic form of the first embodiment, so the description will be omitted.
<7.本開示に係る光伝送モジュールの第6実施形態>
[第6実施形態の基本形]
 次に、本開示に係る光伝送モジュール100の第6実施形態の基本形について説明する。本実施形態の基本形は、図19に示すように、光電素子21aを第1レンズ部30の焦点の位置に配設するとともに、分合波部20内の反射透過部23a、23bのそれぞれに、所定の曲率中心及び曲率半径を有する凹面鏡状の傾斜面25a、25b及び波長選択膜24a、24bを形成したものである。そして、傾斜面25a、25b及び波長選択膜24a、24bの双方の凹面鏡への入射光が反射されることにより集光することを利用して、光電素子21bへの集光が可能となるよう構成したものである。
<7. Sixth embodiment of optical transmission module according to the present disclosure>
[Basic form of sixth embodiment]
Next, the basic form of the sixth embodiment of the optical transmission module 100 according to the present disclosure will be described. In the basic form of this embodiment, as shown in FIG. Concave mirror-like inclined surfaces 25a and 25b having a predetermined center of curvature and radius of curvature and wavelength selection films 24a and 24b are formed. The configuration is such that the light incident on the concave mirrors of both the inclined surfaces 25a and 25b and the wavelength selection films 24a and 24b is reflected and focused, so that the light can be focused on the photoelectric element 21b. This is what I did.
 このように構成することにより、第1レンズ部30で屈折し、光軸LA2に沿って進行してきた入射光は、光の波長選択膜24aにおいて所定の波長帯の光線L1が透過し、それ以外の波長の光は反射される。当該反射波の光路は、光軸LA2から光軸LA3に方向が変えられ、光軸LA3に沿った平行光となる。そして、傾斜面25bの凹面鏡状に形成された波長選択膜24bにおいて所定の波長帯の光線L2を反射して光電素子21bに集光する。これにより、光電素子21a、21b間の光路長の差分を補償して、光電素子21bを第1レンズ部30の焦点の位置に配設して集光することができる。 With this configuration, in the incident light that has been refracted by the first lens section 30 and has proceeded along the optical axis LA2, the light ray L1 in a predetermined wavelength band is transmitted through the light wavelength selection film 24a, and the other light rays are transmitted along the optical axis LA2. Light of wavelength is reflected. The optical path of the reflected wave is changed in direction from the optical axis LA2 to the optical axis LA3, and becomes parallel light along the optical axis LA3. Then, the light beam L2 in a predetermined wavelength band is reflected by the wavelength selection film 24b formed in the shape of a concave mirror on the inclined surface 25b, and is focused on the photoelectric element 21b. Thereby, the difference in optical path length between the photoelectric elements 21a and 21b can be compensated for, and the photoelectric element 21b can be arranged at the focal point position of the first lens section 30 to condense light.
 ここで、凹面鏡状に形成された傾斜面25aは、第1レンズ部30側から見ると凸面鏡を形成しているため、光軸LA2に沿って進行してきた光が波長選択膜24aに入射すると、波長選択膜24aを透過する所定の波長帯の光線L1以外の光は、広がる方向に反射される。そこで、凹面鏡の曲率中心及び曲率半径を適切に設定することにより、図19に示すように、集光しながら進行してきた入射光を反射して平行光を形成することができる。
 光電素子21bが発光素子211の場合の光路は、受光の場合の逆になるだけであるため、説明を省略する。
Here, since the inclined surface 25a formed in the shape of a concave mirror forms a convex mirror when viewed from the first lens section 30 side, when light traveling along the optical axis LA2 enters the wavelength selection film 24a, Light other than the light beam L1 in the predetermined wavelength band that passes through the wavelength selection film 24a is reflected in the spreading direction. Therefore, by appropriately setting the center of curvature and the radius of curvature of the concave mirror, as shown in FIG. 19, it is possible to reflect the incident light that has traveled while condensing to form parallel light.
The optical path when the photoelectric element 21b is the light emitting element 211 is simply the opposite of the optical path when receiving light, so the explanation will be omitted.
 また、図19に示すように、波長選択膜24aを介して第3導光体13内に平行光を形成することにより、光路長が光軸LA3の長さ分だけ長くなっている光路長の差分を補償することができる。これにより、反射透過部23a、23b間の距離を、任意の長さにすることができる。つまり任意の間隔で配置することができる。さらに、第2導光体12、第3導光体13及び反射透過部23a、23bは、同一の屈折率を有する材料で形成することができる。このため、両面インプリント等を行う際の製造上の制約が少なくなり、工程を簡単化することができ、設備投資も少なくて済む。
 上記以外の構成については、前記の第1実施形態の第3変形例と同様であるため、説明を省略する。
Further, as shown in FIG. 19, by forming parallel light in the third light guide 13 via the wavelength selection film 24a, the optical path length is increased by the length of the optical axis LA3. The difference can be compensated for. Thereby, the distance between the reflection- transmission parts 23a and 23b can be set to an arbitrary length. In other words, they can be arranged at arbitrary intervals. Furthermore, the second light guide 12, the third light guide 13, and the reflective/ transmissive parts 23a and 23b can be formed of materials having the same refractive index. Therefore, there are fewer manufacturing restrictions when performing double-sided imprinting, etc., the process can be simplified, and equipment investment can be reduced.
The configuration other than the above is the same as that of the third modification of the first embodiment, so the explanation will be omitted.
[第6実施形態の変形例]
 次に、本開示に係る光伝送モジュール100の第6実施形態の変形例について説明する。本実施形態の変形例は、図20に示すように、分合波部20内に図19と同様の反射透過部23a、23bを形成するとともに、さらにその左隣、すなわち光軸LA3の方向に反射透過部23c、23dを配設し、それぞれの傾斜面25c、25d及び波長選択膜24c、24dを凹面鏡状に形成した点で基本形と相違する。
[Modification of the sixth embodiment]
Next, a modification of the sixth embodiment of the optical transmission module 100 according to the present disclosure will be described. As shown in FIG. 20, a modification of this embodiment forms reflection- transmission parts 23a and 23b similar to those in FIG. It differs from the basic shape in that reflective/ transmissive parts 23c and 23d are provided, and the respective inclined surfaces 25c and 25d and wavelength selection films 24c and 24d are formed in a concave mirror shape.
 すなわち、光ファイバ90からの入射光が光軸LA2に沿って進行し、傾斜面25a及び波長選択膜24aにおける反射光が光軸LA3に沿った平行光となり、その後、凹面鏡状の傾斜面25b、25c、25d及び波長選択膜24b、24c、24dにおいて、それぞれが所定の波長帯の光線L2、L3、L4を反射し、当該それぞれの反射光を光電素子21b、21c、21dのそれぞれが受光するよう構成している。これにより、光電素子21a~21d間のそれぞれの光路長の差分を補償して、光電素子21b、21c、21dのそれぞれを第1レンズ部30の焦点の位置に配設することができる。
 なお、反射透過部23dの傾斜面25dは、光軸LA3に沿って進んできた光を全反射してもよい場合又は光電素子21dが発光素子211である場合等には、波長選択膜24a、24b、24cのように光を透過させることは考慮しなくてもよい。したがって、このような場合には、傾斜面25dに波長選択膜24dに代えて反射鏡を形成してもよい。
That is, the incident light from the optical fiber 90 travels along the optical axis LA2, the reflected light on the inclined surface 25a and the wavelength selection film 24a becomes parallel light along the optical axis LA3, and then the concave mirror-like inclined surface 25b, 25c, 25d and the wavelength selection films 24b, 24c, 24d, each reflects light rays L2, L3, L4 in a predetermined wavelength band, and each of the photoelectric elements 21b, 21c, 21d receives the respective reflected light. It consists of Thereby, the difference in optical path length between the photoelectric elements 21a to 21d can be compensated for, and each of the photoelectric elements 21b, 21c, and 21d can be arranged at the focal point of the first lens section 30.
Incidentally, when the light traveling along the optical axis LA3 may be totally reflected, or when the photoelectric element 21d is the light emitting element 211, the inclined surface 25d of the reflective/transmissive part 23d has a wavelength selective film 24a, There is no need to consider transmitting light like 24b and 24c. Therefore, in such a case, a reflecting mirror may be formed on the inclined surface 25d instead of the wavelength selection film 24d.
 傾斜面25a及び波長選択膜24aは、第1レンズ部30側から見ると凸面鏡を形成しているため、光軸LA2に沿って進行してきた光が波長選択膜24aに入射すると、所定の波長帯の光線L1以外の光は広がる方向に反射される。そこで、波長選択膜24aの曲率中心及び曲率半径を適切に設定することにより、図20に示すように、第1レンズ部で屈折し、進行してきた入射光を反射して平行光を形成することができる。
 図20においては、4回路の光の分波及び合波について説明したが、同様の構成を増設することにより4回路を超える分波や合波をすることができる。
Since the inclined surface 25a and the wavelength selection film 24a form a convex mirror when viewed from the first lens section 30 side, when light traveling along the optical axis LA2 enters the wavelength selection film 24a, it falls into a predetermined wavelength band. Light other than the light ray L1 is reflected in the spreading direction. Therefore, by appropriately setting the center of curvature and the radius of curvature of the wavelength selection film 24a, as shown in FIG. 20, it is possible to refract the incident light at the first lens portion and reflect the traveling incident light to form parallel light. Can be done.
In FIG. 20, a description has been given of the branching and multiplexing of light using four circuits, but by adding a similar configuration, it is possible to perform branching and multiplexing using more than four circuits.
 また、光電素子21b、21c、21dのいずれかが発光素子211である場合は、その光路が受光の場合の逆になるだけであるため、説明を省略する。
 上記以外の構成については、前記の第6実施形態の基本形及び第1実施形態の第3変形例と同様であるため、説明を省略する。
Furthermore, if any of the photoelectric elements 21b, 21c, and 21d is the light emitting element 211, the optical path is simply the opposite of that for light reception, so the explanation will be omitted.
The configuration other than the above is the same as that of the basic form of the sixth embodiment and the third modification of the first embodiment, so a description thereof will be omitted.
<8.本開示に係る光伝送モジュールの第7実施形態>
 次に、本開示に係る光伝送モジュール100の第7実施形態について説明する。本実施形態は、図21の光電変換部10の平面図及び図22の側面図に示すように、図3の光電変換部10と同様に、2回路の光電素子21a、21bと第1レンズ部30との組を前列と後列の横2列に配列し、横列の前列(図21の下側の列をいう。)に4組、横列の後列(図21の上側の列をいう。)に4組配設したものである。
<8. Seventh embodiment of optical transmission module according to the present disclosure>
Next, a seventh embodiment of the optical transmission module 100 according to the present disclosure will be described. As shown in the plan view of the photoelectric conversion unit 10 in FIG. 21 and the side view in FIG. The sets of 30 and 30 are arranged in two horizontal rows, the front row and the back row, with four pairs in the front row of the horizontal row (referring to the lower row in Figure 21), and four pairs in the rear row of the horizontal row (referring to the upper row in Figure 21). Four sets were arranged.
 そして、光レセプタクル部50は、図22に示すように、前列と後列のそれぞれの2回路の光ファイバ90を上下2段積みに配設している。このために、光レセプタクル部50には、前列と後列のそれぞれの第2レンズ部60の光路からの光を反射できるように広い面積の反射鏡53を形成している。 As shown in FIG. 22, the optical receptacle section 50 has two circuits of optical fibers 90 in each of the front and rear rows arranged in two stacks, one above the other. For this purpose, a large reflecting mirror 53 is formed in the optical receptacle section 50 so as to reflect the light from the optical path of the second lens section 60 in each of the front and rear rows.
 すなわち、光レセプタクル部50は、分合波された光をそれぞれ透過する複数の第1レンズ部30のそれぞれの光軸LA2上に対向して配設された複数の第2レンズ部60と、複数の第2レンズ部60のそれぞれの透過光を反射する反射鏡53と、反射鏡53における複数の反射光又は入射光に対応する複数のそれぞれの光ファイバ90を接続する複数の接栓52を有し、それぞれの接栓52に連結固定された光ファイバ90の端面91に集光するように構成されたレセプタクル基板51と、を有している。
 上記以外の構成については、前記の第1実施形態の基本形及び第1変形例と同様であるため、説明を省略する。
That is, the optical receptacle section 50 includes a plurality of second lens sections 60, which are disposed facing each other on the optical axis LA2 of each of the plurality of first lens sections 30, which respectively transmit the demultiplexed and multiplexed light; It has a reflecting mirror 53 that reflects each transmitted light of the second lens part 60, and a plurality of connectors 52 that connect a plurality of optical fibers 90 corresponding to the plurality of reflected lights or incident lights on the reflecting mirror 53. and a receptacle substrate 51 configured to condense light onto an end surface 91 of an optical fiber 90 connected and fixed to each plug 52.
The configuration other than the above is the same as that of the basic form and the first modification of the first embodiment, so the explanation will be omitted.
<9.本開示に係る光伝送モジュールの分合波部の効果>
[第1実施形態の第3変形例との比較]
 次に、本開示に係る光伝送モジュール100の光電変換部10に設けた分合波部20の効果について説明する。図23は、本開示に係る光伝送モジュール100の分合波部20の効果を説明するための比較例の光電変換部10の平面図及び正面図である。また、図24は、その側面図である。すなわち、図23及び図24は、光電変換部10に分合波部20を設けていない例を示す図である。
<9. Effects of the demultiplexing and multiplexing section of the optical transmission module according to the present disclosure>
[Comparison with the third modification of the first embodiment]
Next, the effects of the demultiplexing/combining section 20 provided in the photoelectric conversion section 10 of the optical transmission module 100 according to the present disclosure will be explained. FIG. 23 is a plan view and a front view of the photoelectric conversion unit 10 of a comparative example for explaining the effect of the demultiplexing/combining unit 20 of the optical transmission module 100 according to the present disclosure. Further, FIG. 24 is a side view thereof. That is, FIGS. 23 and 24 are diagrams showing an example in which the photoelectric conversion section 10 is not provided with the demultiplexing/multiplexing section 20.
 比較例の光電変換部10には、図23Bに示すように、光電素子21a、21bのそれぞれに第1レンズ部30、30が配設されている。図23Aの平面図においては、4個の光電素子21a、21bに対応して4個の第1レンズ部30が配設されている。比較例の光電変換部10は、分合波部20を設けていないため、分合波部20に相当する光学的機能は、光レセプタクル部50に設けることになる。 In the photoelectric conversion unit 10 of the comparative example, as shown in FIG. 23B, first lens units 30 and 30 are provided for each of the photoelectric elements 21a and 21b. In the plan view of FIG. 23A, four first lens sections 30 are arranged corresponding to the four photoelectric elements 21a and 21b. Since the photoelectric conversion section 10 of the comparative example does not include the demultiplexing/multiplexing section 20, the optical function corresponding to the demultiplexing/multiplexing section 20 is provided in the optical receptacle section 50.
 図25は、本開示に係る光伝送モジュール100の光電変換部10に分合波部20を設けた第1実施形態の第3変形例の光電変換部10の部分の平面図及び正面図である。図25Bに示す正面図は、第1実施形態の第3変形例の図5から光レセプタクル部50を除いた図に相当する。また、その側面図を図26に示す。 FIG. 25 is a plan view and a front view of a portion of the photoelectric conversion unit 10 of the third modification of the first embodiment in which the photoelectric conversion unit 10 of the optical transmission module 100 according to the present disclosure is provided with the demultiplexing/multiplexing unit 20. . The front view shown in FIG. 25B corresponds to the third modification of the first embodiment shown in FIG. 5 with the optical receptacle part 50 removed. Further, a side view thereof is shown in FIG. 26.
 図25Bの正面図に示すように、光電変換部10には、2個の光電素子21a、21bに対応して1個の第1レンズ部30が配設されている。すなわち、前記の図23Aの平面図においては、4個の光電素子21a、21bのそれぞれに対応して4個の第1レンズ部30が配設されている。これに対し、図25Aでは、4個の光電素子21a、21bに対して2個の第1レンズ部30が配設されている。よって、本図に示す第1実施形態の第3変形例では、図23及び図24に示す比較例に対し、必要な第1レンズ部30の個数は、その半分で済むことがわかる。 As shown in the front view of FIG. 25B, the photoelectric conversion section 10 is provided with one first lens section 30 corresponding to the two photoelectric elements 21a and 21b. That is, in the plan view of FIG. 23A, four first lens sections 30 are arranged corresponding to each of the four photoelectric elements 21a and 21b. In contrast, in FIG. 25A, two first lens sections 30 are provided for four photoelectric elements 21a and 21b. Therefore, it can be seen that in the third modified example of the first embodiment shown in this figure, the number of required first lens sections 30 is only half that of the comparative example shown in FIGS. 23 and 24.
[第6実施形態の変形例との比較]
 図27は、本開示に係る光伝送モジュール100の光電変換部10に分合波部20を設けた第6実施形態の変形例の光電変換部10の部分の平面図及び正面図である。図27Bに示す正面図は、第6実施形態の変形例の図20に相当する。
[Comparison with modification of the sixth embodiment]
FIG. 27 is a plan view and a front view of a portion of the photoelectric conversion unit 10 of a modification of the sixth embodiment in which the photoelectric conversion unit 10 of the optical transmission module 100 according to the present disclosure is provided with the demultiplexing/multiplexing unit 20. The front view shown in FIG. 27B corresponds to FIG. 20 of the modification of the sixth embodiment.
 図27Bに示すように、分合波部20には、4個の光電素子21a、21b、21c、21dに対応して1個の第1レンズ部30が配設されている。すなわち、図27Aの平面図においては、光電素子21a、21b、21c、21dが計4個あるのに対し、第1レンズ部30は、その4分の1の1個が配設されている。よって、第6実施形態の変形例の例では、図23に示す比較例に対し、第1レンズ部30の必要個数は、その4分の1で済むことがわかる。 As shown in FIG. 27B, in the demultiplexing/combining section 20, one first lens section 30 is provided corresponding to the four photoelectric elements 21a, 21b, 21c, and 21d. That is, in the plan view of FIG. 27A, there are a total of four photoelectric elements 21a, 21b, 21c, and 21d, whereas one fourth of the first lens parts 30 is disposed. Therefore, it can be seen that in the modified example of the sixth embodiment, the required number of first lens sections 30 is one-fourth of that of the comparative example shown in FIG. 23.
[分合波部の効果のまとめ]
 図28は、上記で説明した分合波部20の効果をまとめた比較説明図である。本図の上段の欄は、光電変換部10に分合波部20を設けた場合の平面図の欄である。本図の下段の欄は、光電変換部10に分合波部20を設けない場合の平面図の欄である。
 本図の上段の欄における2波長の欄は、図25Aに対応する光電変換部10に分合波部20を設けて、そこで分合波する2波長の分合波(第1実施形態の第3変形例の図5に相当)の例の光電変換部10の平面図である。
 また、上段の欄における4波長の欄は、図27Aに対応する光電変換部10に分合波部20を設けて、そこで分合波する4波長の分合波(第6実施形態の変形例の図20に相当)の例の光電変換部10の平面図である。
[Summary of the effects of the demultiplexing and multiplexing section]
FIG. 28 is a comparative diagram summarizing the effects of the demultiplexing/combining section 20 described above. The upper column of the figure is a column of a plan view when the photoelectric conversion section 10 is provided with the demultiplexing/multiplexing section 20. The lower column of the figure is a column of a plan view when the photoelectric conversion section 10 is not provided with the demultiplexing/multiplexing section 20.
The column of two wavelengths in the upper column of this figure indicates that the photoelectric conversion section 10 corresponding to FIG. FIG. 6 is a plan view of a photoelectric conversion unit 10 of a third modified example (corresponding to FIG. 5).
In addition, the 4-wavelength column in the upper column indicates that the photoelectric conversion unit 10 corresponding to FIG. FIG. 22 is a plan view of the photoelectric conversion unit 10 of an example (corresponding to FIG. 20).
 図28の下段の欄における、それぞれの欄は、左から順番に、1波長の場合(図23Aに対応する。)、2波長の場合(図23Aを2組並設した例)、及び4波長の場合(図23Aを4組並設した例)におけるそれぞれの光電変換部10の平面図である。下段の欄の比較例において分合波は、光レセプタクル部50で行うことになるため、回路数に相当する数の第2レンズ部60が必要になる。さらに、光レセプタクル部50内には、回路数に相当する分合波用の光学素子を設ける必要がある。このため、光レセプタクル部50の構造が複雑となり、しかも各種の回路数に対応するために、その種類が多くなる。一方、光レセプタクル部50に分合波機能を設けない場合(つまり、光電変換部10に分合波部20を設けた場合)には、第2レンズ部60の個数の増加を抑制できるため、光ファイバ90の本数を削減でき、光ファイバ90の配線工事の工数を削減することができる。 Each column in the lower column of FIG. 28 shows, in order from the left, the case of 1 wavelength (corresponding to FIG. 23A), the case of 2 wavelengths (an example in which 2 sets of FIG. 23A are arranged side by side), and the case of 4 wavelengths. 23A is a plan view of each photoelectric conversion unit 10 in the case (an example in which four sets of FIG. 23A are arranged in parallel). FIG. In the comparative example in the lower column, the demultiplexing and multiplexing is performed in the optical receptacle section 50, so the number of second lens sections 60 corresponding to the number of circuits is required. Furthermore, within the optical receptacle section 50, it is necessary to provide optical elements for demultiplexing and multiplexing corresponding to the number of circuits. For this reason, the structure of the optical receptacle section 50 becomes complicated, and moreover, the number of types thereof increases in order to accommodate various numbers of circuits. On the other hand, when the optical receptacle section 50 is not provided with a demultiplexing/multiplexing function (that is, when the photoelectric conversion section 10 is provided with the demultiplexing/multiplexing section 20), an increase in the number of second lens sections 60 can be suppressed. The number of optical fibers 90 can be reduced, and the number of man-hours for wiring the optical fibers 90 can be reduced.
 図28に示すように、光電変換部10に分合波部20を設けることにより、次のような効果を奏することができる。
(1)光電変換部10の分合波部20において光の分合波を行うよう構成しているため、光電素子21a、21b等の個数に対して第1レンズ部30の必要個数を大幅に削減することができる。これにより光伝送モジュール100を小型化でき又は高集積化することができる。
(2)分合波部20を複数層積層することにより、3回路以上の分波及び合波をすることができる。これにより光伝送モジュール100の小型化又は高集積化することができる。
(3)光電素子21a、21bとして同一波長帯の2個の発光素子211又は受光素子212を配設し、いずれか一方を「常用」、他方を「予備」として使用し、さらに常用と予備を切り替え可能に構成し得る。これにより、光通信を二重化することができ、いずれか一方の光電素子21a、21bに故障が発生しても次期の定期点検までは、光レセプタクル部50を取り外すことなく連続して運用することができる。
(4)第3導光体13を高屈折率樹脂で形成し、第2導光体12を低屈折率樹脂で形成することにより、光電素子21a、21b間の光路長の差分を補償して、それぞれを第1レンズ部30の焦点の位置に配設することができる。これにより、発光及び受光を確実に行うことができる。
(5)分合波部20内の反射透過部23bの傾斜面25bに、凹面鏡状の波長選択膜24bを形成し得る。これにより、波長選択膜24aの反射光は、光軸LA3上の第1レンズ部30の焦点において一旦集光し、その後、広がりながら凹面鏡状の波長選択膜24bで反射され、当該凹面鏡の焦点に向けて再び集光する位置に光電素子21bを配設するよう構成している。このように構成することにより、第2導光体12及び第3導光体13を反射透過部23a、23bと同じ屈折率の透過性材料で構成することができる。また、簡単な構成で光電素子21a、21b間の光路長の差分を補償して、光電素子21a、21bのそれぞれを第1レンズ部30の焦点の位置に配設し集光することができる。
(6)分合波部20に、例えば、反射透過部23a~23dの傾斜面25a~25d及び波長選択膜24a~24dのそれぞれを凹面鏡状に形成して配設することにより3回路以上の分波及び合波を可能にし得る。しかも光電素子21a~21d間のそれぞれの光路長の差分を補償して、それぞれを第1レンズ部30の焦点の位置に配設し集光することができる。その結果、光伝送モジュール100の小型化又は高集積化することができる。
(7)複数回路の光電素子21a、21bと第1レンズ部30との組み合わせを、例えば、横列の前列及び後列に複数組配設し、光レセプタクル部50は、例えば、前列と後列のそれぞれの回路の光ファイバ90を上下2段積みに配設することにより、光伝送モジュール100を小型化でき又は高集積化することができる。
(8)光レセプタクル部50の第2レンズ部60と、光電変換部10の第1レンズ部30とは、平行光で結合するよう構成できる。このため、相互の間隔は任意でよい。また、位置決めの制約がなくなり実装が容易となる。しかもカップリング効率を高めることができる。
(9)光電素子21a、21b等の分合波部20との接合は、ハンダ付けによる接合であるため、セルフアライメント効果により位置ずれが生じにくく、容易に正確かつ高精度に位置決めをして接合することができる。
(10)光電変換部10に分合波部20を設けることにより、光レセプタクル部50は、回路数に対応してそれぞれ分合波部20を設ける必要はなく、第2レンズ部60の個数を削減することができる。このため、光レセプタクル部50の構造が簡略化でき、かつ標準化することができる。
(11)上記のように第2レンズ部60の個数の増加を抑制し、又は個数を削減して高集積化できる。このため、光ファイバ90の本数を削減でき、光ファイバ90の配線工事の工数を削減することができる。
As shown in FIG. 28, by providing the demultiplexing/combining section 20 in the photoelectric conversion section 10, the following effects can be achieved.
(1) Since the configuration is such that light is split and multiplexed in the splitting/combining unit 20 of the photoelectric conversion unit 10, the required number of first lens units 30 is significantly reduced relative to the number of photoelectric elements 21a, 21b, etc. can be reduced. Thereby, the optical transmission module 100 can be miniaturized or highly integrated.
(2) By stacking multiple layers of the demultiplexing/multiplexing section 20, it is possible to perform demultiplexing and multiplexing of three or more circuits. This allows the optical transmission module 100 to be made smaller or more highly integrated.
(3) Two light-emitting elements 211 or light-receiving elements 212 with the same wavelength band are arranged as the photoelectric elements 21a and 21b, and one of them is used as "regular use" and the other is used as "spare", and furthermore, the regular use and the reserve are used. It can be configured to be switchable. As a result, optical communication can be duplicated, and even if a failure occurs in either one of the photoelectric elements 21a, 21b, continuous operation can be performed without removing the optical receptacle part 50 until the next periodic inspection. can.
(4) By forming the third light guide 13 with a high refractive index resin and the second light guide 12 with a low refractive index resin, the difference in optical path length between the photoelectric elements 21a and 21b can be compensated for. , each can be arranged at the focal point of the first lens section 30. Thereby, light emission and light reception can be performed reliably.
(5) A concave mirror-shaped wavelength selection film 24b may be formed on the inclined surface 25b of the reflection/transmission section 23b in the demultiplexing/multiplexing section 20. As a result, the reflected light from the wavelength selection film 24a is once condensed at the focal point of the first lens section 30 on the optical axis LA3, and then is reflected by the concave mirror-shaped wavelength selection film 24b while spreading, and reaches the focal point of the concave mirror. The photoelectric element 21b is arranged at a position where the light is focused again. With this configuration, the second light guide 12 and the third light guide 13 can be made of a transparent material having the same refractive index as the reflective/ transmissive parts 23a and 23b. Further, with a simple configuration, the difference in optical path length between the photoelectric elements 21a and 21b can be compensated for, and each of the photoelectric elements 21a and 21b can be arranged at the focal point of the first lens section 30 to condense light.
(6) By arranging, for example, the inclined surfaces 25a to 25d of the reflection/transmission parts 23a to 23d and the wavelength selection films 24a to 24d in a concave mirror shape in the demultiplexing/multiplexing part 20, three or more circuits can be divided. Waves and wave combinations may be possible. Moreover, the difference in optical path length between the photoelectric elements 21a to 21d can be compensated for, and each of them can be arranged at the focal point of the first lens section 30 to condense light. As a result, the optical transmission module 100 can be made smaller or more highly integrated.
(7) A plurality of combinations of the photoelectric elements 21a, 21b of the plurality of circuits and the first lens section 30 are arranged, for example, in the front row and the rear row of the horizontal rows, and the optical receptacle section 50 is arranged, for example, in each of the front row and the rear row. By arranging the optical fibers 90 of the circuit in two layers, one above the other, the optical transmission module 100 can be miniaturized or highly integrated.
(8) The second lens section 60 of the optical receptacle section 50 and the first lens section 30 of the photoelectric conversion section 10 can be configured to couple with parallel light. Therefore, the mutual spacing may be arbitrary. Furthermore, there are no restrictions on positioning, making implementation easier. Moreover, coupling efficiency can be improved.
(9) Since the photoelectric elements 21a, 21b, etc. are joined to the demultiplexing/combining section 20 by soldering, positional deviation is less likely to occur due to the self-alignment effect, and it is easy to position and join them accurately and with high precision. can do.
(10) By providing the demultiplexing/multiplexing section 20 in the photoelectric conversion section 10, the optical receptacle section 50 does not need to provide the demultiplexing/multiplexing section 20 in accordance with the number of circuits, and the number of the second lens sections 60 can be reduced. can be reduced. Therefore, the structure of the optical receptacle section 50 can be simplified and standardized.
(11) As described above, it is possible to suppress an increase in the number of second lens sections 60 or reduce the number of second lens sections 60 to achieve high integration. Therefore, the number of optical fibers 90 can be reduced, and the number of man-hours for wiring the optical fibers 90 can be reduced.
 最後に、上述した各実施形態の説明は本開示の一例であり、本開示は上述の実施の形態に限定されることはない。このため、上述した各実施形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、さらに他の効果があってもよい。 Finally, the description of each embodiment described above is an example of the present disclosure, and the present disclosure is not limited to the embodiments described above. Therefore, it goes without saying that various changes can be made to the embodiments other than those described above, depending on the design, etc., as long as they do not depart from the technical idea of the present disclosure. Further, the effects described in this specification are merely examples and are not limited, and other effects may also exist.
なお、本技術は以下のような構成も取ることができる。
 (1)
 光ファイバとの間の透過光を屈折させて集束する第1レンズ部と、
 前記第1レンズ部の光軸上に、前記第1レンズ部に対向して配設された第2レンズ部と、
 前記第2レンズ部の焦点に前記光ファイバの端面を位置させる前記光ファイバを接続する接栓を有するレセプタクル基板と、
 前記第1レンズ部の前記第2レンズ部に対向しない面に配設された第1導光体と、
 前記第1導光体の前記第1レンズ部が配設されていない面に配設され、前記第1レンズ部の透過光を分波又は合波する分合波部と、
 前記分合波部に配設され、前記分合波部及び前記第1導光体を介して前記第1レンズ部への発光及び前記第1レンズ部からの受光の少なくともいずれか一方を行う複数の光電素子と、
を有する光伝送モジュール。
 (2)
 前記分合波部は、上段と下段の2層に積層され、前記上段の前記分合波部は、所定の波長帯の光を反射して1の前記光電素子に対する所定の波長帯の光を分合波し、それ以外の波長の光は、前記上段の前記分合波部から前記下段の前記分合波部に透過させ、当該下段の前記分合波部は、前記複数の光電素子に対するそれぞれの所定の波長帯の光を分合波するよう構成された前記(1)に記載の光伝送モジュール。
 (3)
 前記分合波部は、前記第1レンズ部の光軸上に所定の傾斜角を有する傾斜面に形成された第1波長選択膜を有する第1反射透過部と、
 前記第1反射透過部に並設された所定の傾斜角を有する傾斜面に形成された第2波長選択膜を有する第2反射透過部又は反射鏡と、
 前記第1反射透過部と前記第2反射透過部の間に並設された第3導光体と、
 前記第1反射透過部を挟んで前記第3導光体の反対側の位置に並設された第2導光体と、
を有する前記(1)又は(2)に記載の光伝送モジュール。
 (4)
 前記第1波長選択膜は、所定の波長帯の光を透過し、それ以外の波長の光を反射するよう構成された前記(3)に記載の光伝送モジュール。
 (5)
 前記第2波長選択膜は、所定の波長帯の光を反射し、それ以外の波長の光を透過するよう構成された前記(3)又は(4)に記載の光伝送モジュール。
 (6)
 前記分合波部に配設された前記複数の光電素子は、同一波長帯の光の発光又は受光を可能とし、前記複数の光電素子のうち、一部の前記光電素子を常用、他の一部の前記光電素子を予備とし、さらに常用と予備を切り替え可能に構成した前記(1)又は(2)に記載の光伝送モジュール。
 (7)
 前記第3導光体を高屈折率樹脂で形成し、前記第2導光体を低屈折率樹脂で形成することにより、前記複数の光電素子のそれぞれを前記第1レンズ部の焦点の位置に配設した前記(1)から(6)の何れかに記載の光伝送モジュール。
 (8)
 前記第1反射透過部は、入射光に対して平面鏡状に形成され、前記第2反射透過部は、前記第1反射透過部からの反射光に対して凹面鏡状に形成されることにより、前記複数の光電素子のそれぞれを前記第1レンズ部の焦点の位置に配設した前記(1)から(6)の何れかに記載の光伝送モジュール。
 (9)
 前記第1反射透過部は、入射光に対して凸面鏡状に形成され、前記第2反射透過部は、前記第1反射透過部からの反射光に対して凹面鏡状に形成されることにより、前記複数の光電素子のそれぞれを前記第1レンズ部の焦点の位置に配設した前記(1)から(6)の何れかに記載の光伝送モジュール。
 (10)
 前記分合波部は、前記光電素子を接続する配線が形成された前記(1)から(9)の何れかに記載の光伝送モジュール。
 (11)
 前記光電素子は、前記配線にハンダ接合された前記(10)に記載の光伝送モジュール。
 (12)
 前記配線は、外部回路と接続するための、ハンダボールを有する前記(10)又は(11)に記載の光伝送モジュール。
 (13)
 前記第2レンズ部と、その光軸上に、前記第2レンズ部に対向して配設された前記第1レンズ部との間の透過光の何れかは、平行光となるように構成された前記(1)から(12)の何れかに記載の光伝送モジュール。
 (14)
 分合波された光をそれぞれ透過する複数の前記第1レンズ部のそれぞれの光軸上に対向して配設された複数の前記第2レンズ部と、
 複数の前記第2レンズ部のそれぞれの透過光を反射する反射鏡と、を有し、
 前記レセプタクル基板は、前記反射鏡における複数の反射光又は入射光に対応する複数のそれぞれの前記光ファイバを接続する複数の前記接栓を有し、それぞれの前記接栓に連結固定された前記光ファイバの前記端面に集光するように構成された前記(1)に記載の光伝送モジュール。
Note that the present technology can also have the following configuration.
(1)
a first lens portion that refracts and focuses transmitted light between the optical fiber;
a second lens section disposed on the optical axis of the first lens section and facing the first lens section;
a receptacle board having a plug for connecting the optical fiber, which positions the end face of the optical fiber at the focal point of the second lens part;
a first light guide disposed on a surface of the first lens section that does not face the second lens section;
a demultiplexing/combining part disposed on a surface of the first light guide where the first lens part is not disposed, and demultiplexing or combining light transmitted through the first lens part;
A plurality of lights disposed in the demultiplexing/combining section and performing at least one of emitting light to the first lens section and receiving light from the first lens section via the demultiplexing/multiplexing section and the first light guide. photoelectric element,
An optical transmission module with
(2)
The demultiplexing/combining section is laminated into two layers, an upper stage and a lower stage, and the upper stage demultiplexing/multiplexing part reflects light in a predetermined wavelength band and transmits the light in a predetermined wavelength band to one of the photoelectric elements. The light of other wavelengths is transmitted from the upper division/multiplexing section to the lower division/multiplexing section. The optical transmission module according to (1) above, which is configured to separate and combine light in respective predetermined wavelength bands.
(3)
The demultiplexing/multiplexing section includes a first reflective/transmissive section having a first wavelength selection film formed on an inclined surface having a predetermined inclination angle on the optical axis of the first lens section;
a second reflective/transmissive part or a reflective mirror having a second wavelength selective film formed on an inclined surface having a predetermined inclination angle and arranged in parallel with the first reflective/transmissive part;
a third light guide arranged in parallel between the first reflective transmitting section and the second reflective transmitting section;
a second light guide arranged in parallel at a position opposite to the third light guide with the first reflective/transmissive part in between;
The optical transmission module according to (1) or (2) above.
(4)
The optical transmission module according to (3), wherein the first wavelength selection film is configured to transmit light in a predetermined wavelength band and reflect light in other wavelengths.
(5)
The optical transmission module according to (3) or (4), wherein the second wavelength selection film is configured to reflect light in a predetermined wavelength band and transmit light in other wavelengths.
(6)
The plurality of photoelectric elements disposed in the demultiplexing/combining section are capable of emitting or receiving light in the same wavelength band, and among the plurality of photoelectric elements, some of the photoelectric elements are used regularly and others are used. The optical transmission module according to (1) or (2), wherein the photoelectric element in the section is a spare, and further configured to be switchable between regular use and standby.
(7)
By forming the third light guide with a high refractive index resin and forming the second light guide with a low refractive index resin, each of the plurality of photoelectric elements is positioned at the focal point of the first lens portion. The optical transmission module according to any one of (1) to (6) above.
(8)
The first reflective transmitting section is formed in a plane mirror shape with respect to the incident light, and the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section. The optical transmission module according to any one of (1) to (6), wherein each of the plurality of photoelectric elements is disposed at a focal point of the first lens section.
(9)
The first reflective transmitting section is formed in a convex mirror shape with respect to the incident light, and the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section. The optical transmission module according to any one of (1) to (6), wherein each of the plurality of photoelectric elements is disposed at a focal point of the first lens section.
(10)
The optical transmission module according to any one of (1) to (9), wherein the demultiplexing/multiplexing section is provided with wiring connecting the photoelectric elements.
(11)
The optical transmission module according to (10), wherein the photoelectric element is soldered to the wiring.
(12)
The optical transmission module according to (10) or (11), wherein the wiring has a solder ball for connection to an external circuit.
(13)
Any of the transmitted light between the second lens part and the first lens part disposed on the optical axis opposite to the second lens part is configured to become parallel light. The optical transmission module according to any one of (1) to (12) above.
(14)
a plurality of second lens parts disposed opposite to each other on the optical axis of each of the plurality of first lens parts, each of which transmits the demultiplexed and multiplexed light;
a reflecting mirror that reflects the transmitted light of each of the plurality of second lens parts,
The receptacle board has a plurality of connectors that connect a plurality of optical fibers corresponding to a plurality of reflected lights or incident lights on the reflecting mirror, and the optical fibers connected and fixed to each of the connectors. The optical transmission module according to (1) above, configured to condense light onto the end face of the fiber.
 10  光電変換部
 11  第1導光体
 11A ガラス基板
 12  第2導光体
 13  第3導光体
 14  第4導光体
 20  分合波部
 21a、21b、21c、21d 光電素子
 211 発光素子
 212 受光素子
 23a、23b 第1、第2反射透過部
 23c、23d 反射透過部
 24a 第1波長選択膜
 24b 第2波長選択膜又は反射鏡
 24c、24k 波長選択膜
 24d 波長選択膜又は反射鏡
 25a、25b 傾斜面
 28  遮光膜
 30  第1レンズ部
 40  回路基板
 41  配線
 42  ハンダボール
 43  ハンダボール
 50  光レセプタクル部
 51  レセプタクル基板
 52  接栓
 53  反射鏡
 60  第2レンズ部
 70  分合波部
 71  第2導光体
 72  第3導光体
 73a、73b 反射透過部
 74a、74b 波長選択膜
 75a、75b 傾斜面
 81  レジスト
 90  光ファイバ
 91  端面
 100 光伝送モジュール
 LA1~LA6 光軸
 L1~L4 光線
10 Photoelectric conversion unit 11 First light guide 11A Glass substrate 12 Second light guide 13 Third light guide 14 Fourth light guide 20 Demultiplexing unit 21a, 21b, 21c, 21d Photoelectric element 211 Light emitting element 212 Light receiving Elements 23a, 23b First and second reflective/ transmissive sections 23c, 23d Reflective/transmissive sections 24a First wavelength selective film 24b Second wavelength selective film or reflective mirror 24c, 24k Wavelength selective film 24d Wavelength selective film or reflective mirror 25a, 25b Inclined Surface 28 Light shielding film 30 First lens part 40 Circuit board 41 Wiring 42 Solder ball 43 Solder ball 50 Optical receptacle part 51 Receptacle board 52 Junction 53 Reflector 60 Second lens part 70 Demultiplexing part 71 Second light guide 72 Third light guide 73a, 73b Reflective/ transmissive part 74a, 74b Wavelength selection film 75a, 75b Inclined surface 81 Resist 90 Optical fiber 91 End surface 100 Optical transmission module LA1 to LA6 Optical axis L1 to L4 Ray

Claims (14)

  1.  光ファイバとの間の透過光を屈折させて集束する第1レンズ部と、
     前記第1レンズ部の光軸上に、前記第1レンズ部に対向して配設された第2レンズ部と、
     前記第2レンズ部の焦点に前記光ファイバの端面を位置させる前記光ファイバを接続する接栓を有するレセプタクル基板と、
     前記第1レンズ部の前記第2レンズ部に対向しない面に配設された第1導光体と、
     前記第1導光体の前記第1レンズ部が配設されていない面に配設され、前記第1レンズ部の透過光を分波又は合波する分合波部と、
     前記分合波部に配設され、前記分合波部及び前記第1導光体を介して前記第1レンズ部への発光及び前記第1レンズ部からの受光の少なくともいずれか一方を行う複数の光電素子と、
    を有する光伝送モジュール。
    a first lens portion that refracts and focuses transmitted light between the optical fiber;
    a second lens section disposed on the optical axis of the first lens section and facing the first lens section;
    a receptacle board having a plug for connecting the optical fiber, which positions the end face of the optical fiber at the focal point of the second lens part;
    a first light guide disposed on a surface of the first lens section that does not face the second lens section;
    a demultiplexing/combining part disposed on a surface of the first light guide where the first lens part is not disposed, and demultiplexing or combining light transmitted through the first lens part;
    A plurality of lights disposed in the demultiplexing/combining section and performing at least one of emitting light to the first lens section and receiving light from the first lens section via the demultiplexing/multiplexing section and the first light guide. a photoelectric element,
    An optical transmission module with
  2.  前記分合波部は、上段と下段の2層に積層され、前記上段の前記分合波部は、所定の波長帯の光を反射して1の前記光電素子に対する所定の波長帯の光を分合波し、それ以外の波長の光は、前記上段の前記分合波部から前記下段の前記分合波部に透過させ、当該下段の前記分合波部は、前記複数の光電素子に対するそれぞれの所定の波長帯の光を分合波するよう構成された請求項1に記載の光伝送モジュール。 The demultiplexing/combining section is laminated into two layers, an upper stage and a lower stage, and the upper stage demultiplexing/multiplexing part reflects light in a predetermined wavelength band and transmits the light in a predetermined wavelength band to one of the photoelectric elements. The light of other wavelengths is transmitted from the upper division/multiplexing section to the lower division/multiplexing section. 2. The optical transmission module according to claim 1, wherein the optical transmission module is configured to separate and combine light in respective predetermined wavelength bands.
  3.  前記分合波部は、前記第1レンズ部の光軸上に所定の傾斜角を有する傾斜面に形成された第1波長選択膜を有する第1反射透過部と、
     前記第1反射透過部に並設された所定の傾斜角を有する傾斜面に形成された第2波長選択膜を有する第2反射透過部又は反射鏡と、
     前記第1反射透過部と前記第2反射透過部の間に並設された第3導光体と、
     前記第1反射透過部を挟んで前記第3導光体の反対側の位置に並設された第2導光体と、
    を有する請求項1に記載の光伝送モジュール。
    The demultiplexing/multiplexing section includes a first reflective/transmissive section having a first wavelength selection film formed on an inclined surface having a predetermined inclination angle on the optical axis of the first lens section;
    a second reflective/transmissive part or a reflective mirror having a second wavelength selective film formed on an inclined surface having a predetermined inclination angle and arranged in parallel with the first reflective/transmissive part;
    a third light guide arranged in parallel between the first reflective transmitting section and the second reflective transmitting section;
    a second light guide arranged in parallel at a position opposite to the third light guide with the first reflective/transmissive part in between;
    The optical transmission module according to claim 1, comprising:
  4.  前記第1波長選択膜は、所定の波長帯の光を透過し、それ以外の波長の光を反射するよう構成された請求項3に記載の光伝送モジュール。 4. The optical transmission module according to claim 3, wherein the first wavelength selective film is configured to transmit light in a predetermined wavelength band and reflect light in other wavelengths.
  5.  前記第2波長選択膜は、所定の波長帯の光を反射し、それ以外の波長の光を透過するよう構成された請求項3に記載の光伝送モジュール。 4. The optical transmission module according to claim 3, wherein the second wavelength selective film is configured to reflect light in a predetermined wavelength band and transmit light in other wavelengths.
  6.  前記分合波部に配設された前記複数の光電素子は、同一波長帯の光の発光又は受光を可能とし、前記複数の光電素子のうち、一部の前記光電素子を常用、他の一部の前記光電素子を予備とし、さらに常用と予備を切り替え可能に構成した請求項1に記載の光伝送モジュール。 The plurality of photoelectric elements disposed in the demultiplexing/combining section are capable of emitting or receiving light in the same wavelength band, and among the plurality of photoelectric elements, some of the photoelectric elements are used regularly and others are used. 2. The optical transmission module according to claim 1, wherein said photoelectric element in said section is a spare, and further configured to be switchable between regular use and standby.
  7.  前記第3導光体を高屈折率樹脂で形成し、前記第2導光体を低屈折率樹脂で形成することにより、前記複数の光電素子のそれぞれを前記第1レンズ部の焦点の位置に配設した請求項1に記載の光伝送モジュール。 By forming the third light guide with a high refractive index resin and forming the second light guide with a low refractive index resin, each of the plurality of photoelectric elements is positioned at the focal point of the first lens portion. The optical transmission module according to claim 1, wherein the optical transmission module is provided with an optical transmission module according to claim 1.
  8.  前記第1反射透過部は、入射光に対して平面鏡状に形成され、前記第2反射透過部は、前記第1反射透過部からの反射光に対して凹面鏡状に形成されることにより、前記複数の光電素子のそれぞれを前記第1レンズ部の焦点の位置に配設した請求項1に記載の光伝送モジュール。 The first reflective transmitting section is formed in a plane mirror shape with respect to the incident light, and the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section. The optical transmission module according to claim 1, wherein each of the plurality of photoelectric elements is disposed at a focal point of the first lens section.
  9.  前記第1反射透過部は、入射光に対して凸面鏡状に形成され、前記第2反射透過部は、前記第1反射透過部からの反射光に対して凹面鏡状に形成されることにより、前記複数の光電素子のそれぞれを前記第1レンズ部の焦点の位置に配設した請求項1に記載の光伝送モジュール。 The first reflective transmitting section is formed in a convex mirror shape with respect to the incident light, and the second reflective transmitting section is formed in a concave mirror shape with respect to the reflected light from the first reflective transmitting section. The optical transmission module according to claim 1, wherein each of the plurality of photoelectric elements is disposed at a focal point of the first lens section.
  10.  前記分合波部は、前記光電素子を接続する配線が形成された請求項1に記載の光伝送モジュール。 The optical transmission module according to claim 1, wherein the demultiplexing/multiplexing section is formed with wiring connecting the photoelectric elements.
  11.  前記光電素子は、前記配線にハンダ接合された請求項10に記載の光伝送モジュール。 The optical transmission module according to claim 10, wherein the photoelectric element is soldered to the wiring.
  12.  前記配線は、外部回路と接続するための、ハンダボールを有する請求項10に記載の光伝送モジュール。 The optical transmission module according to claim 10, wherein the wiring has a solder ball for connection to an external circuit.
  13.  前記第2レンズ部と、その光軸上に、前記第2レンズ部に対向して配設された前記第1レンズ部との間の透過光の何れかは、平行光となるように構成された請求項1に記載の光伝送モジュール。 Any of the transmitted light between the second lens part and the first lens part disposed on the optical axis opposite to the second lens part is configured to become parallel light. The optical transmission module according to claim 1.
  14.  分合波された光をそれぞれ透過する複数の前記第1レンズ部のそれぞれの光軸上に対向して配設された複数の前記第2レンズ部と、
     複数の前記第2レンズ部のそれぞれの透過光を反射する反射鏡と、を有し、
     前記レセプタクル基板は、前記反射鏡における複数の反射光又は入射光に対応する複数のそれぞれの前記光ファイバを接続する複数の前記接栓を有し、それぞれの前記接栓に連結固定された前記光ファイバの前記端面に集光するように構成された請求項1に記載の光伝送モジュール。
    a plurality of second lens parts disposed opposite to each other on the optical axis of each of the plurality of first lens parts, each of which transmits the demultiplexed and multiplexed light;
    a reflecting mirror that reflects the transmitted light of each of the plurality of second lens parts,
    The receptacle board has a plurality of sockets for connecting a plurality of optical fibers corresponding to a plurality of reflected lights or incident lights on the reflecting mirror, and the optical fibers connected and fixed to the respective sockets. The optical transmission module according to claim 1, wherein the optical transmission module is configured to condense light onto the end face of the fiber.
PCT/JP2023/031056 2022-09-08 2023-08-28 Optical transmission module WO2024053467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022142649 2022-09-08
JP2022-142649 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024053467A1 true WO2024053467A1 (en) 2024-03-14

Family

ID=90191138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031056 WO2024053467A1 (en) 2022-09-08 2023-08-28 Optical transmission module

Country Status (1)

Country Link
WO (1) WO2024053467A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138749A (en) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd Optical transceiver module and method for packaging the same and optical transceiver
US20050185900A1 (en) * 2004-01-22 2005-08-25 Finisar Corporation Integrated optical devices and methods of making same
JP2019515492A (en) * 2016-04-28 2019-06-06 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Transistor outline can (TO-can) type optical transceiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138749A (en) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd Optical transceiver module and method for packaging the same and optical transceiver
US20050185900A1 (en) * 2004-01-22 2005-08-25 Finisar Corporation Integrated optical devices and methods of making same
JP2019515492A (en) * 2016-04-28 2019-06-06 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Transistor outline can (TO-can) type optical transceiver

Similar Documents

Publication Publication Date Title
JP4983703B2 (en) Optical transmission system
JP5025695B2 (en) Optical module
TWI522668B (en) Optical waveguide and optical waveguide module
JP4983391B2 (en) Optical module and manufacturing method thereof
TWI612353B (en) Optical socket and optical module having the same
TWI511477B (en) Optical transceiver apparatus
TWI619980B (en) Lens array and optical module having the same
JP2020021013A (en) Wavelength multiplex optical module, wavelength separation optical module and optical module
JP2010186090A (en) Optical transceiver module
JP2010191365A (en) Optical interconnection mounting circuit
TW201512727A (en) Optical receptacle and optical module
JP2007127797A (en) Optical module
WO2021056832A1 (en) Optical module
WO2017068843A1 (en) Optical path conversion element, optical interface apparatus, and optical transmission system
JP2014074869A (en) Optical module
US20120213527A1 (en) Optoelectronic device for bidirectionally transporting information through optical fibers and method of manufacturing such a device
CN110531472A (en) A kind of light emitting devices, light receiving element and optical module
JP2007187793A (en) Optical module
CN109932780B (en) Optical wavelength division multiplexer, optical module and optical module
US20050084217A1 (en) Optical module capable of transmitting optical signal in bi-directional with single fiber
TWI393509B (en) Optoelectric hybrid circuit board and manufacture thereof
WO2024053467A1 (en) Optical transmission module
TWI498619B (en) Bidirectional optical sub-assembly
JP2007240833A (en) Optical communication device, optical connector, optical transceiver, optical transmitter, and optical receiver
JP2013012548A (en) Optical module and photo-electric hybrid board