WO2024053413A1 - Motor control device, and motor control program - Google Patents

Motor control device, and motor control program Download PDF

Info

Publication number
WO2024053413A1
WO2024053413A1 PCT/JP2023/030504 JP2023030504W WO2024053413A1 WO 2024053413 A1 WO2024053413 A1 WO 2024053413A1 JP 2023030504 W JP2023030504 W JP 2023030504W WO 2024053413 A1 WO2024053413 A1 WO 2024053413A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
command
value
torque
motor control
Prior art date
Application number
PCT/JP2023/030504
Other languages
French (fr)
Japanese (ja)
Inventor
瞭弥 橋爪
章 坂本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024053413A1 publication Critical patent/WO2024053413A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the disclosure in this specification relates to a control technology for a rotating electric machine connected to an engine.
  • Patent Document 1 discloses a driving force control device that is installed in a hybrid vehicle and controls a rotating electric machine such as a motor generator connected to an engine.
  • a rotating electric machine such as a motor generator connected to an engine.
  • the assist power by the motor generator is suppressed until the engine torque increases, taking into consideration the response delay of the engine torque.
  • the present disclosure aims to provide a motor control device and a motor control program that can suppress power consumption caused by engine response delay while avoiding complication of control.
  • a motor control device that controls a rotating electrical machine connected to an engine, and uses a rotational speed detection value that detects the rotational speed of the rotating electrical machine to control the rotational speed.
  • a control system that performs feedback control so that when the engine speed increases, the command value of the rotating electrical machine is adjusted based on the fact that the average value of engine torque output from the engine over a predetermined time exceeds a threshold value.
  • a motor control device includes a command control unit that outputs a command to raise the motor.
  • Another disclosed aspect is a motor control program that controls a rotating electrical machine connected to an engine, and uses a rotational speed detection value obtained by detecting the rotational speed of the rotating electrical machine so that the rotational speed approaches a command value. and outputting an increase command to increase the command value of the rotating electric machine based on the fact that the average value of engine torque output from the engine over a predetermined time exceeds a threshold value when the engine rotation speed increases.
  • the motor control program causes at least one processing unit to execute processing including the following.
  • the process of increasing the command value of the rotational speed of the rotating electric machine is started based on the fact that the average value of the engine torque over a predetermined period of time exceeds a threshold value. According to such processing, the increase in the rotational speed of the rotating electric machine can be started at an appropriate timing. As a result, power consumption due to engine response delay can be suppressed while avoiding complication of control.
  • FIG. 1 is a diagram showing an overall view of a control system and a power unit according to a first embodiment of the present disclosure.
  • FIG. 2 is a block diagram equivalently showing the details of motor control.
  • FIG. 2 is a block diagram showing details of a speed PI controller.
  • FIG. 3 is a diagram for explaining details of switching control gains.
  • FIG. 3 is a diagram for explaining details of control for increasing the rotation speed of a motor generator based on detection of an increase in engine torque. It is a flowchart which shows the detail of a rise control process.
  • FIG. 6 is a diagram illustrating changes in each torque when commands to increase the rotational speed of the engine and motor generator are output at the same time.
  • FIG. 6 is a diagram showing changes in each torque when increasing the rotational speed of a motor generator based on detection of an increase in engine torque.
  • 9A is an enlarged view of region IX-A in FIG. 7, and FIG. 9B is an enlarged view of region IX-A in FIG. 8.
  • FIG. It is an enlarged view of B.
  • FIG. 7 is a diagram for explaining details of control for increasing the rotation speed of a motor generator performed in a second embodiment. It is a block diagram showing details of a speed PI controller of a third embodiment. It is a block diagram showing details of a speed PI controller of a fourth embodiment. It is a block diagram showing details of a speed PI controller of a fifth embodiment. 7 is a diagram illustrating an overall view of a control system and a power unit of Modification 1. FIG.
  • a control system 100 according to the first embodiment of the present disclosure shown in FIG. 1 is applied to a power unit mounted on a vehicle.
  • the power unit is a series hybrid system that generates power for driving.
  • the power unit includes an engine 11, motor generators 12 and 14, inverters 13 and 15, a battery 16, and the like.
  • the engine 11 is an internal combustion engine that burns fuel and extracts mechanical energy.
  • the engine 11 is connected to a motor generator 12, and supplies generated mechanical energy to the motor generator 12 through the crankshaft 11c.
  • the engine 11 is a three-cylinder gasoline engine in which three cylinders are arranged in series and gasoline is sequentially burned in the combustion chamber of each cylinder. Note that the number of cylinders, cylinder arrangement, displacement, etc. of the engine 11 may be changed as appropriate. Further, a diesel engine that burns light oil, a Wankel type rotary engine, or the like may be employed as the engine 11 in the power unit.
  • the motor generators 12 and 14 are, for example, three-phase brushless motors.
  • the motor generators 12 and 14 include a stator having a coil, a rotor having a permanent magnet, a rotation angle sensor that detects the rotation angle (rotation speed) of the rotor, and the like.
  • the motor generators 12 and 14 have an outer rotor type structure in which a rotor is disposed on the outer peripheral side of a stator.
  • motor generators 12 and 14 may be inner rotor type rotating electric machines. Further, the motor generators 12 and 14 may be wound field type synchronous motors in which the rotor is provided with a field winding instead of a permanent magnet. Further, the motor generators 12 and 14 are not limited to the above-mentioned synchronous motors, but may be induction motors or the like. Further, different types of electric motors may be employed as motor generators 12 and 14.
  • the motor generator 12 is an electric motor for power generation that converts mechanical energy supplied from the engine 11 into electrical energy.
  • the motor generator 12 is provided as a rotating electrical machine dedicated to power generation.
  • Motor generator 12 has an input shaft that rotates integrally with the rotor. The input shaft is physically separated from the drive shaft 19 that transmits driving power to the tires of the vehicle. As a result, no disturbance is input to the input shaft from the road surface or the like.
  • a crankshaft 11c of the engine 11 is directly connected to the input shaft. That is, the connection configuration between the engine 11 and the motor generator 12 is a damperless configuration in which the damper DM having a buffering function is not interposed, and a gearless configuration in which the gear GR for power transmission is not interposed.
  • the damper DM is a torsional damper that damps torque fluctuations of the crankshaft 11c by, for example, expanding and contracting a torsional spring.
  • Gear GR is, for example, a speed increaser that speeds up the rotation of crankshaft 11c and transmits it to motor generator 12.
  • the motor generator 14 is an electric motor for driving the vehicle.
  • Motor generator 14 is directly or indirectly connected to a drive shaft 19 of the vehicle.
  • the motor generator 14 converts electrical energy supplied from a battery 16 or the like into mechanical energy, and rotates the drive shaft 19 .
  • the motor generator 14 works with the inverter 15 to convert mechanical energy (kinetic energy of the vehicle) input from the drive shaft 19 into electrical energy.
  • the inverters 13 and 15 are three-phase inverters including U-phase, V-phase, and W-phase arms arranged in parallel between the positive electrode line and the negative electrode line, and a switching element and a free-wheeling diode connected in series to the arms of each phase.
  • This is a drive circuit mainly consisting of a bridge circuit.
  • the switching element an IGBT (Insulated-Gate Bipolar Transistor) or a MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) is used.
  • Inverters 13 and 15 control the operation of motor generators 12 and 14 by turning on and off each switching element.
  • the inverter 13 is combined with the motor generator 12 and controls the power generation operation by the motor generator 12.
  • the inverter 13 generates a braking torque on the rotor of the motor generator 12 by forming a circulation circuit, and outputs the energy stored in the stator coil to the battery 16 or the inverter 15 as DC power.
  • the battery 16 is charged.
  • the DC power supplied to the inverter 15 is used for driving the vehicle.
  • the inverter 15 is combined with the motor generator 14 and controls power running and regeneration operations by the motor generator 14.
  • Inverter 15 converts DC power supplied from battery 16 or inverter 13 into AC power, and drives motor generator 14 .
  • Inverter 15 controls the rotation speed and torque of motor generator 14 by changing the frequency and voltage of AC power.
  • the battery 16 is an energy store system that can store electrical energy.
  • the battery 16 is mainly composed of an assembled battery formed by combining a large number of battery cells such as nickel metal hydride secondary batteries or lithium ion secondary batteries.
  • the battery 16 may include a capacitor or the like.
  • the battery 16 has a power storage capacity of, for example, about 0.5 kWh to 2 kWh.
  • the battery 16 stores the power supplied from the inverters 13 and 15 and supplies the stored power to the inverter 15.
  • the battery 16 may be capable of storing power supplied from a charging station outside the vehicle. In such a configuration, the battery 16 may have a storage capacity of about 10 kWh to 20 kWh.
  • the control system 100 includes a hybrid ECU (Electronic Control Unit) 21, an engine ECU 22, a motor generator ECU (hereinafter referred to as MG-ECU) 23, a battery ECU, and the like.
  • the ECUs 21 to 23 are connected to each other so as to be able to communicate with each other.
  • Each of the ECUs 21 to 23 has a configuration mainly consisting of a controller including at least a processor and a RAM, and functions as an on-vehicle arithmetic unit (computer).
  • each ECU 21 to 23 has a storage unit that stores programs and various input/output interfaces.
  • the hybrid ECU 21 cooperates with the engine ECU 22 and MG-ECU 23 to integrally control the power unit.
  • the hybrid ECU 21 acquires various signals (information) used to control the power train. For example, the hybrid ECU 21 sends a signal that detects the rotation speed of the engine 11, a signal from a rotation angle sensor that detects the rotation speed of the motor generators 12 and 14, a signal that indicates the accelerator opening, a signal that indicates the remaining amount of the battery 16, etc. be obtained.
  • the remaining amount information of the battery 16 is, for example, information such as SOC (State of Charge).
  • the hybrid ECU 21 switches the operation mode of the power unit among a plurality of (five) modes based on the acquired signal.
  • the hybrid ECU 21 operates in two modes: one mode in which the engine 11 is stopped and the vehicle runs only on the charging power of the battery 16, and another mode in which the vehicle runs on the power generated by the engine 11 and motor generator 12 while charging the battery 16 with surplus power. mode. Further, the hybrid ECU 21 has three modes: a mode in which all generated power is used for driving, a mode in which both generated power and charging power are used for driving, and a mode in which the engine 11 is stopped and regenerated energy is recovered into the battery 16. implement.
  • the engine ECU 22 controls the operating state of the engine 11 according to the operating mode of the power unit.
  • the engine ECU 22 calculates a target rotation speed and target torque, and controls the engine 11 to operate at the target rotation speed and target torque.
  • the engine ECU 22 operates the engine 11 at a fixed point at a high efficiency point (see Ne1 in FIG. 4).
  • the high efficiency point is one of the operating points at which the power generation efficiency of the power generation system including the engine 11, motor generator 12, and inverter 13 is highest.
  • the battery 16 is charged with the surplus of the generated power.
  • the engine ECU 22 operates the engine 11 at a fixed point at a high output point (see Ne2 in FIG. 4).
  • the MG-ECU 23 controls the operating state of each motor generator 12, 14 in cooperation with each inverter 13, 15 by performing pulse width modulation control on each inverter 13, 15. Specifically, the MG-ECU 23 calculates the target rotation speed and target torque of each motor generator 12, 14, and adjusts each inverter 13, 14 so that each motor generator 12, 14 is operated at the target rotation speed and target torque. 15.
  • the storage unit of the MG-ECU 23 stores a motor control program for controlling each motor generator 12, 14.
  • the MG-ECU 23 has a plurality of MG control systems that control each motor generator 12, 14 as a control target (plant) by executing a motor control program by a processor.
  • FIG. 2 is a block diagram equivalently showing the details of motor control performed by the MG-ECU 23, and conceptually shows a plurality of functional blocks forming the MG control system 30.
  • MG control system 30 is a control system that controls motor generator 12.
  • the MG control system 30 uses a rotation speed detection value obtained by detecting the rotation speed of the motor generator 12 to perform feedback control so that the rotation speed approaches (follows) the command value NC.
  • the MG-ECU 23 further includes an MG control system that controls the motor generator 14 (see FIG. 1), separate from the MG control system 30.
  • the MG control system 30 includes a plurality of converters 31, 33, 35, 37, 38, a plurality of subtraction units 32, 34, 36, a speed PI (Proportional-Integral) controller 40, and a current PI controller 60. There is.
  • a mechanical angular velocity command value ⁇ m* generated by the MG-ECU 23 (command control unit 80 described later) is input to the converter 31.
  • the converter 31 converts mechanical angles into electrical angles. Specifically, the converter 31 performs conversion from mechanical angle to electrical angle by multiplying by the number of magnetic pole pairs Pm of the motor generator 12, and calculates the electrical angular velocity command value ⁇ e* from the mechanical angular velocity command value ⁇ m*.
  • the converter 31 outputs the calculated electrical angular velocity command value ⁇ e* to the subtraction unit 32.
  • the latest electrical angular velocity response value ⁇ e is input to the subtraction unit 32.
  • the subtraction unit 32 calculates the deviation of the current electrical angular velocity response value ⁇ e from the electrical angular velocity command value ⁇ e* (hereinafter referred to as electrical angular velocity deviation).
  • the subtraction unit 32 outputs the calculated electrical angular velocity deviation to the speed PI controller 40.
  • the speed PI controller 40 calculates a torque command value TM* according to the electrical angular velocity deviation input from the subtraction unit 32.
  • the speed PI controller 40 operates to bring the electrical angular velocity deviation closer to zero by calculating a larger torque command value TM* as the electrical angular velocity deviation becomes larger.
  • the speed PI controller 40 includes a proportional device 41, an integrator 42, and an adder 46 (see FIG. 3).
  • the proportional device 41 outputs a value obtained by multiplying the electrical angular velocity deviation by the velocity proportional gain Kps.
  • the integrator 42 outputs a value obtained by multiplying the cumulative value (time integral value) of the electrical angular velocity deviation by the velocity integral gain Kis.
  • the adding section 46 adds the output value of the integrator 42 to the output value of the proportional device 41.
  • the speed PI controller 40 outputs the value added by the adding unit 46 to the converter 33 as a torque command value TM*.
  • the converter 33 calculates the d-axis current command value id* and the q-axis current command value by calculation using the torque command value TM* input from the speed PI controller 40 and a preset torque coefficient KT. iq* is calculated.
  • the d-axis current is a component of the applied current that is used to generate magnetic flux.
  • the q-axis current is a component of the applied current that corresponds to the torque that rotates the rotor.
  • the converter 33 outputs the calculated current command values id*, iq* to the subtraction unit 34.
  • the subtraction unit 34 calculates the deviation (hereinafter, current value deviation) of the current response values id, iq with respect to the current command values id*, iq*.
  • the subtraction unit 34 outputs the calculated current value deviation to the current PI controller 60.
  • the current PI controller 60 calculates voltage command values vd, vq according to the current value deviation input from the subtraction unit 34.
  • the current PI controller 60 operates to bring the current value deviation closer to zero by calculating larger voltage command values vd, vq as the current value deviation becomes larger.
  • the current PI controller 60 has a proportional device, an integrator, and an adder.
  • the proportional device outputs a value obtained by multiplying the current value deviation by a current proportional gain Kpc.
  • the integrator outputs a value obtained by multiplying the cumulative value (time integral value) of the current value deviation by the current integral gain Kic.
  • the addition section adds the output value of the integrator to the output value of the proportional device.
  • Current PI controller 60 outputs the added values in the adding section to motor generator 12 as voltage command values vd, vq.
  • a block (model) corresponding to the motor generator 12 is expressed as 1/(L ⁇ s+R), where L is armature inductance and R is armature resistance.
  • a d-axis current response value id and a q-axis current response value iq are detected from the motor generator 12.
  • a current control minor loop is formed in the MG control system 30 to connect the rear part of the motor generator 12 to the subtraction section 34 .
  • Each current response value id, iq is input to the subtraction unit 34 through a current control minor loop.
  • feedback control is performed to cause the current response values id, iq to follow (match) the current command values id*, iq*, which are target values.
  • the latest current response values id, iq output from the motor generator 12 are input to the converter 35.
  • the converter 35 uses the same torque coefficient KT as the converter 33 and performs processing that is exactly the opposite of that of the converter 33. Specifically, converter 35 calculates torque response value TM of motor generator 12 from current response values id and iq using torque coefficient KT. The converter 35 outputs the calculated torque response value TM to the subtractor 36.
  • the latest engine torque TE is input to the subtraction unit 36.
  • the subtraction unit 36 calculates the deviation of the current engine torque TE from the torque response value TM (hereinafter referred to as torque deviation).
  • the subtraction unit 36 outputs the calculated torque deviation to the converter 37.
  • the converter 37 calculates the mechanical angular velocity response value ⁇ m from the torque deviation input from the subtraction unit 36 using the value of the inertia JM of a component (rotor, etc.) of the motor generator 12 that rotates integrally with the crankshaft 11c. do.
  • the converter 38 is provided on the line of the speed control outer loop that connects the rear part of the converter 37 with the subtraction section 32.
  • the converter 38 uses the same magnetic pole logarithm Pm as the converter 31 to perform conversion from mechanical angle to electrical angle, and converts the mechanical angular velocity response value ⁇ m to the electrical angular velocity response value ⁇ e.
  • the electrical angular velocity response value ⁇ e is input to the subtraction unit 32 through the speed control outer loop.
  • the mechanical angular velocity response value ⁇ m is a value based on the output of the rotation angle sensor of the motor generator 12.
  • the mechanical angular velocity response value ⁇ m or the electrical angular velocity response value ⁇ e corresponds to a “rotation speed detection value”.
  • the MG control system 30 can cause the motor generator 12 to output a counter torque (damping torque, see FIG. 1) that has a phase opposite to the torque fluctuation of the engine 11.
  • the MG-ECU 23 further includes a gain switching section 70 (see FIG. 3) as a functional section based on the motor control program.
  • the gain switching unit 70 switches the control gain used in the feedback control of the MG control system 30 from among a plurality of control gains including a low gain and a high gain by performing gain switching processing.
  • the gain switching unit 70 changes at least each value of the speed proportional gain Kps and the speed integral gain Kis of the speed PI controller 40 in the gain switching process of switching between low gain and high gain.
  • the gain switching section 70 may change each value of the current proportional gain Kpc and current integral gain Kic of the current PI controller 60, as well as each value of the speed proportional gain Kps and speed integral gain Kis.
  • the MG control system 30 has a low response to pulsations in the engine torque TE.
  • the damping torque output by the motor generator 12 becomes very small or zero (see the lower left side of FIG. 4).
  • the motor generator 12 is in a state where it outputs a substantially constant torque. As a result, the effect of suppressing pulsation of engine torque TE due to feedback control also becomes smaller.
  • the MG control system 30 has a high response to pulsations in the engine torque TE.
  • the damping torque output by the motor generator 12 becomes larger compared to the low gain state (see the lower right side of FIG. 4).
  • the effect of suppressing engine torque TE pulsation due to feedback control also increases.
  • the gain switching unit 70 starts gain switching processing based on the activation of the control system 100.
  • the gain switching unit 70 continues the gain switching process until the control system 100 stops, and ends the gain switching process based on the stoppage of the control system 100.
  • the gain switching unit 70 performs post-startup initial processing and sets the gain to a low gain state.
  • the gain switching unit 70 estimates the occurrence of a scene in which the pulsation of the engine torque TE becomes large, the gain switching unit 70 establishes a switching condition to a high gain, and performs switching from a low gain to a high gain.
  • the gain switching unit 70 starts switching from low gain to high gain at the timing when the rotation speed of the engine 11 reaches the high efficiency point rotation speed (hereinafter referred to as first rotation speed Ne1) due to cranking. do.
  • first rotation speed Ne1 the high efficiency point rotation speed due to cranking.
  • ignition of the fuel is started under a high gain condition (see ENG ignition in FIG. 4). Therefore, a sudden increase in the rotational speed (see broken line in FIG. 4) accompanying the start of combustion is suppressed.
  • the gain switching unit 70 switches from low gain to high gain at the transition timing from the first rotation speed Ne1 to the high output point rotation speed (hereinafter referred to as second rotation speed Ne2). Thereby, a situation in which the number of rotations of the crankshaft 11c greatly exceeds the second number of rotations Ne2 becomes less likely to occur. Furthermore, at the timing of stopping the engine 11, the gain switching unit 70 switches from low gain to high gain. This makes it less likely that the crankshaft 11c will not stably stop rotating.
  • the gain switching unit 70 After switching to the high gain, the gain switching unit 70 performs switching from the high gain to the low gain based on the establishment of the switching condition to the low gain. For example, when a predetermined time has elapsed after switching to high gain, or when the rotational speed of crankshaft 11c becomes stable, the gain switching unit 70 establishes the conditions for switching to low gain. According to the above, high-gain vibration suppression control is applied only to the minimum necessary scenes, and in other scenes, switching to low-gain vibration suppression control realizes efficiency-oriented operation. Ru.
  • ⁇ Anti-windup control> When switching from high gain to low gain as shown in FIG. 4, a wind-up phenomenon of rotational speed may occur during the transition period.
  • the windup phenomenon occurs due to excessive addition of integral terms in the speed PI controller 40, that is, the output value of the integrator 42 becomes excessive.
  • the rotational speed may undershoot below the lower limit of the allowable variation range or overshoot above the upper limit of the allowable variation range.
  • the upper and lower thresholds that define the permissible variation range may be appropriately set to values that can be tolerated in the vehicle from the viewpoint of noise and vibration.
  • the speed PI controller 40 includes a limiter 51 and an integrator stop circuit 52 as a configuration for applying anti-windup control (hereinafter referred to as anti-windup control section 50).
  • the limiter 51 is provided after the adder 46.
  • the limiter 51 sets an upper limit value and a lower limit value of the torque command value TM* output from the adding section 46.
  • the limiter 51 outputs the upper limit value or the lower limit value in place of the torque command value TM*.
  • the integrator stop circuit 52 performs anti-windup control to stop the integrator 42 when the torque command value TM* exceeds the upper limit or lower limit of the limiter 51.
  • the integrator stop circuit 52 includes a comparator 53 and a switch 54.
  • the comparator 53 determines whether the input and output of the limiter 51 match or do not match. When the input and output of the limiter 51 match, in other words, when the limiter 51 is not operating, the comparator 53 outputs a value of "1". On the other hand, if the input and output of the limiter 51 do not match, in other words, if the limiter 51 is operating, the comparator 53 outputs a value of "0".
  • the switch 54 is turned on (True) when a value of "1" is input from the comparator 53. In this case, the electrical angular velocity deviation is input to the integrator 42, and the integrator 42 is in a normal operating state. On the other hand, when a value of "0" is input from the comparator 53, the switch 54 is turned off (false), and input of the electrical angular velocity deviation to the integrator 42 is stopped. As a result, the integrator 42 comes to a halt.
  • the limiter 51 may be provided between the integrator 42 and the addition section 46. That is, the comparator 53 compares the output value of the speed integral gain Kis1 with respect to the output value of the speed integral gain Kis1, instead of comparing the values before and after the limiter 51 with respect to the sum of the respective outputs of the speed proportional gain Kps and the speed integral gain Kis. It may be configured to compare the values before and after.
  • the MG-ECU 23 further includes a command control unit 80 (see FIG. 2) as a functional unit based on a motor control program.
  • the command control unit 80 generates a rotation speed command value NC, and inputs a mechanical angular velocity command value ⁇ m* based on the command value NC to the MG control system 30.
  • the command control unit 80 increases the rotation speed of the motor generator 12 in accordance with the increase control of the engine torque TE under the control of the engine ECU 22, as shown in FIG. .
  • the response speed of the engine 11 is slower than the response speed of the motor generator 12. Therefore, when the rotational speeds of the engine 11 and the motor generator 12 are increased together, a power operation may occur in the motor generator 12 due to the difference in response speed between the engine 11 and the motor generator 12.
  • the engine ECU 22 increases the throttle opening of the engine 11 and increases the amount of intake air based on the acquisition of the power generation increase command at time t1 (see FIGS. 5 and 10).
  • an intake delay DL of, for example, about 100 to 200 milliseconds occurs in the engine 11. That is, the engine torque TE starts to increase from time t2, which is a timing that is after the intake delay DL with respect to the power generation increase command (see the upper middle part of FIG. 5 and the lower part of FIG. 7).
  • the response delay occurring in the motor generator 12 is much smaller (shorter) than the response delay occurring in the engine 11. Therefore, if the rotational speed command value NC starts increasing immediately after the power generation increase command is issued (see the broken line in the upper part of FIG. 5, and the upper part of FIG. 7), the increase in the engine torque TE will not follow the increase in the rotational speed. As a result, during the period until time t2 when engine torque TE (average value TaE over a predetermined time) starts to increase, the torque of the motor generator 12 (average value TaM over a predetermined time) transitions to the positive side (Fig. 5. Broken lines in the middle and lower rows, see Figure 7, lower rows). This causes the motor generator 12 to perform a powering operation, and power is consumed. As described above, in a scene where the amount of power generation is increased due to a decrease in the remaining capacity of the battery 16, it becomes a problem that the power operation of the motor generator 12 wastes power.
  • the command control unit 80 performs an increase control process (see FIG. 6) when the rotational speed of the engine 11 increases based on the power generation increase command in order to suppress the occurrence of power operation while maintaining good responsiveness.
  • the increase control process is started based on the acquisition of the power generation increase command.
  • the command control unit 80 grasps the average value TaE of the engine torque TE over a predetermined period of time, and issues an increase command to increase the command value NC of the motor generator 12 based on the fact that the average value TaE exceeds the threshold value. Output.
  • the command control unit 80 acquires the value of the engine torque TE in the increase control process (S31).
  • the command control unit 80 substitutes the value of the engine torque TE with the torque compensation value of the motor generator 12 calculated by feedback control (see the lower part of FIG. 5).
  • the command control unit 80 acquires the torque command value TM* as the torque compensation value as information for estimating the engine torque TE.
  • the command control unit 80 can obtain the value of the engine torque TE by estimation using the torque command value TM*.
  • the command control unit 80 applies averaging processing to the obtained value of the engine torque TE (S32). In the averaging process, an average value TaE over a predetermined period of time is calculated.
  • the command control unit 80 sets a predetermined time according to the number of rotations based on the rotation angle of the crankshaft 11c of the engine 11. Specifically, when the engine 11 is a 4-cycle internal combustion engine, the command control unit 80 sets the predetermined time to a period during which the crankshaft 11c rotates 720 degrees (720CA), in other words, a period including combustion in all cylinders. Set. Further, the command control unit 80 sets a period corresponding to the ignition interval of the engine as a predetermined time. As an example, when the engine 11 has three cylinders, a period (240CA) during which the crankshaft 11c rotates 240 degrees is set as the predetermined time.
  • the command control unit 80 compares the average value TaE of the engine torque TE over a predetermined period of time with a preset threshold value (S33).
  • the threshold value is set to a value obtained by adding a fixed value or a variable value to the pre-increase value, based on the value of the engine torque TE before the power generation increase command is output (pre-increase value).
  • the command control unit 80 changes the threshold (variable value) according to information indicating the state of the engine 11. For example, the temperature of engine oil (hereinafter referred to as oil temperature) is used to set the threshold value. When the oil temperature is sufficiently high, the drag resistance of the engine 11 decreases. Therefore, as the oil temperature rises, the threshold value may be adjusted lower within a range that does not fall below the pre-rise value.
  • the command control unit 80 waits for the rotation speed to increase. That is, the rotation speed command value NC is maintained at its current state (first rotation speed Ne1). Then, when the average value TaE exceeds the threshold value (S33: YES), the command control unit 80 outputs an increase command to increase the command value NC (mechanical angular velocity command value ⁇ m*).
  • the rotation speed is The numerical command value NC is maintained (see the solid line in the upper row of FIG. 5, and the upper row of FIG. 8). Then, at time t2, when an increase in engine torque TE is detected (Fig. 5 middle upper row, Fig. 8 (see lower row), the command control unit 80 starts increasing the command value NC of the rotation speed. Therefore, the torque of the motor generator 12 (corresponding to the torque response value TM described above) starts to increase, or in other words, the negative torque starts to decrease.
  • the torque response value TM (average value TaM over a predetermined time) does not change to the positive side and remains within the negative range. (See Figure 5, lower middle row, and Figure 8, lower row). As a result, the power operation of the motor generator 12 is suppressed, and power consumption is also avoided.
  • FIG. 9 shows a command value NC and a response value NR of the rotation speed of the motor generator 12.
  • the response value NR is a simulation result and corresponds to the mechanical angular velocity command value ⁇ m* described above.
  • the response value NR exhibits a behavior that periodically fluctuates with respect to the command value NC when the rotational speed rises. Therefore, the motor generator 12 is able to output vibration damping torque (see FIG. 1) that is in the opposite phase to fluctuations in the engine torque TE. Further, as shown in FIG. 9B, even after application of torque detection, the response value NR is able to show a behavior that periodically fluctuates with respect to the command value NC when the rotational speed rises. After this time t2, damping can be performed at an average of 0 Nm. As described above, even if torque detection is applied, it is estimated that the motor generator 12 can exhibit the same vibration damping performance as when torque detection is not applied.
  • the process of increasing the command value NC of the rotation speed of the motor generator 12 is such that the average value TaE of the engine torque TE in a predetermined time exceeds a threshold value. It is started based on that. According to such processing, increase in the rotation speed of motor generator 12 can be started at an appropriate timing. As a result, power consumption caused by response delay of the engine 11 can be suppressed while avoiding complication of control.
  • the motor generator 12 outputs vibration damping torque that has an opposite phase to the torque fluctuations of the engine 11. Therefore, pulsations in the rotational speed of the engine 11 can be suppressed. Furthermore, even if control for detecting an increase in engine torque TE is applied, the effect of suppressing pulsation can be achieved at the same level as before application (see FIG. 9). Therefore, it is possible to simultaneously suppress power consumption and ensure vibration damping performance.
  • the torque compensation value of the motor generator 12 calculated by feedback control is used as information for estimating the engine torque TE. Therefore, a configuration such as a torque sensor that directly measures the torque of the crankshaft 11c can be omitted.
  • a period in which the crankshaft 11c of the engine 11 rotates 720 degrees is defined as a predetermined period of time, and an increase command is output based on the average value TaE of the engine torque TE for each period exceeding a threshold value.
  • the range for calculating the average value TaE at one time is 720CA, which corresponds to the crank angle of all cylinders, it becomes possible to detect an increase in torque without the influence of variations among cylinders.
  • a period corresponding to the ignition interval of the engine 11 is set as a predetermined time, and an increase command is output based on the average value TaE of the engine torque TE for each period exceeding a threshold value.
  • a predetermined time By setting such a predetermined time, the influence of rotational pulsation on torque increase detection can be suppressed.
  • the period corresponding to the ignition interval for example, 240 CA
  • the period corresponding to the ignition interval is set as the calculation range for one average value TaE, it becomes possible to detect an increase in the engine torque TE at an early stage.
  • the threshold value is changed depending on the oil temperature of the engine 11. In this way, if the threshold value that reflects the state of the engine 11 is set, the command control unit 80 can detect the start of an increase in the engine torque TE with high accuracy and early. As a result, response delay due to application of engine torque TE increase detection can be minimized.
  • anti-windup control is applied to change the operation of the integrator 42 based on the occurrence of a windup phenomenon accompanying switching of the control gain.
  • anti-windup control is applied to stop the operation of the integrator 42.
  • the command control unit 80 of the first embodiment increases the rotation speed of the motor generator 12 directly connected to the crankshaft 11c based on the fact that the average value TaE of the engine torque TE exceeds the threshold value. In this way, the motor generator 12 of the first embodiment is connected to the crankshaft 11c without using either the damper DM that damps torque fluctuations of the crankshaft 11c or the gear GR that transmits the rotation of the crankshaft 11c. ing.
  • the power unit can be simplified and reduced in cost.
  • the calculation load of vibration damping control can be reduced.
  • the axial length of the power unit can be shortened, so that the mountability on the vehicle is improved. As a result, the power unit can be accommodated even in the engine room of a small vehicle where it is difficult to secure space in the width direction.
  • the command control unit 80 of the first embodiment outputs a lift command to the motor generator 12 provided exclusively for power generation in the vehicle.
  • the command control unit 80 of the first embodiment outputs a lift command to the outer rotor type motor generator 12. Since the outer rotor type motor generator 12 easily generates large torque, it is easier to reduce the axial length than the inner rotor type configuration when the torque that can be generated is the same. Therefore, by adopting the outer rotor type motor generator 12, the mountability of the power unit can be further improved. Furthermore, in the outer rotor type motor generator 12, it is easier to ensure rotor inertia than in the inner rotor type configuration. Therefore, the pulsation reduction effect using rotor inertia is more likely to be achieved.
  • crankshaft 11c corresponds to an "output shaft”
  • the motor generator 12 corresponds to a “rotating electric machine”
  • the damper DM corresponds to a "damper section”
  • the gear GR corresponds to a "gear section.”
  • the MG-ECU 23 corresponds to a "processing section” and a “motor control device”
  • the MG control system 30 corresponds to a "control system”.
  • the second embodiment of the present disclosure shown in FIG. 10 is a modification of the first embodiment.
  • the rotational speed command value NC changes in multiple stages.
  • the command control unit 80 causes the slope of a change line (hereinafter referred to as a rotation speed change line Ln) that indicates the relationship between the elapsed time and the rotation speed command value NC to change in stages during an upward transition period UTP in which the rotation speed is increased. Outputs the ascending command as follows.
  • the command control unit 80 changes the slope of the rotation speed change line Ln in two stages.
  • the upward transition period UTP is a period from time t1 when the power generation increase command is output to time t4 when the rotational speed becomes the second rotational speed Ne2.
  • the upward transition period UTP is divided into a first period TP1 and a second period TP2.
  • the first period TP1 is the first half of the rising transition period UTP, and is a period from time t1 to time t3.
  • Time t3 is set after time t2 at which engine torque TE rises.
  • the time t3 is sequentially set a predetermined time after the time t2 based on the identification of the time t2 by torque detection similar to the first embodiment.
  • Time t3 may be set to time t1 plus a predetermined time that always comes after time t2.
  • the slope of the rotation speed change line Ln in the first period TP1 is made smaller than the slope of the rotation speed change line Ln in the second period TP2.
  • the slope of the rotation speed change line Ln is adjusted to a value such that the motor generator 12 does not perform a power operation. Therefore, even if the rotation speed starts to increase at time 1, the rate of increase is small, so the torque of the motor generator 12 during the first period TP1 is maintained within the negative range. Then, at time t2, the engine torque TE starts to increase, and at time t3, a stronger command to increase the rotational speed is output. As a result, the torque of the motor generator 12 during the second period TP2 also changes within the negative range.
  • the rotation speed of the motor generator 12 can be increased at an appropriate timing. As a result, power consumption caused by response delay of the engine 11 can be suppressed while avoiding complication of control.
  • an increase command is output so that the slope of the rotational speed change line Ln changes in stages.
  • the slope of the change line in the second period TP2 is made larger than the slope of the change line in the first period TP1. In this way, by suppressing the slope of the first period TP1, the power action immediately after rising can be appropriately suppressed. Furthermore, by increasing the slope of the second period TP2, response delay can also be suppressed.
  • the rotational speed change line Ln corresponds to a "change line”
  • the first period TP1 corresponds to the "first half of the upward transition period”
  • the second period TP2 corresponds to the "second half of the upward transition period”.
  • the third embodiment of the present disclosure shown in FIG. 11 is another modification of the first embodiment.
  • the speed PI controller 40 of the third embodiment includes an anti-windup control section 50 including subtraction sections 55, 57 and a corrector 56 as a configuration replacing the integrator stop circuit 52 (see FIG. 3) of the first embodiment. are doing.
  • Anti-windup control is applied to the speed PI controller 40 in which a limiter 51, subtraction units 55, 57, and a corrector 56 correct the integral signal output from the integrator 42 using a correction coefficient Kia.
  • the subtraction unit 55 outputs a value obtained by subtracting the output value of the limiter 51 from the input value of the limiter 51 to the corrector 56.
  • the output of the subtractor 55 becomes substantially zero.
  • the electrical angular velocity command value ⁇ e* is input from the subtraction unit 57 to the integrator 42. As a result, the integrated signal output from the integrator 42 is not corrected.
  • the subtraction unit 55 when the limiter 51 is operating, the subtraction unit 55 outputs a value according to the difference between input and output.
  • the corrector 56 outputs a value obtained by multiplying the output value of the subtraction unit 55 by the correction coefficient Kia (hereinafter referred to as a windup correction value) to the subtraction unit 57.
  • the subtraction unit 57 outputs to the integrator 42 a value obtained by subtracting the windup correction value from the electrical angular velocity command value ⁇ e*.
  • the integral signal output from the integrator 42 is corrected.
  • the windup correction value also increases. Therefore, it is possible to suppress superaddition of integral terms.
  • the limiter 51 may be placed between the integrator 42 and the adder 46. Even in such a modification, the anti-windup control unit 50 can correct the output (integral signal) of the integrator 42 using a windup correction value using the correction coefficient Kia, thereby making it difficult for the windup phenomenon to occur.
  • the fourth embodiment of the present disclosure shown in FIG. 12 is yet another modification of the first embodiment.
  • the MG control system 30 of the fourth embodiment is provided with two speed PI controllers 140a and 140b and a control switching determination section 140s instead of the speed PI controller 40 (see FIG. 2).
  • Each speed PI controller 140a, 140b is not provided with a configuration corresponding to the anti-windup control section 50 (see FIG. 3).
  • the speed PI controller 140a (hereinafter referred to as the normal controller) 140a is used during normal times when no windup phenomenon occurs, and calculates the torque command value TM* according to the electrical angular velocity deviation.
  • the normal controller 140a has a proportional device, an integrator, and an adder.
  • the proportional device outputs a value obtained by multiplying the electrical angular velocity deviation by the velocity proportional gain Kps1.
  • the integrator outputs a value obtained by multiplying the time integral value of the electrical angular velocity deviation by the velocity integral gain Kis1.
  • the addition section outputs a value obtained by adding the output value of the integrator to the output value of the proportional device as a torque command value TM*.
  • the speed PI controller 140b is used when an abnormality occurs when a windup phenomenon occurs, and calculates a torque command value TM* according to the electrical angular velocity deviation.
  • the abnormality controller 140b includes a proportional device, an integrator, and an adder.
  • the proportional device outputs a value obtained by multiplying the electrical angular velocity deviation by the velocity proportional gain Kps2.
  • the integrator outputs a value obtained by multiplying the time integral value of the electrical angular velocity deviation by the velocity integral gain Kis2.
  • the speed integral gain Kis2 is set to a value that suppresses super-addition of the integral term compared to the speed integral gain Kis1 of the normal controller 140a.
  • the addition section outputs a value obtained by adding the output value of the integrator to the output value of the proportional device as a torque command value TM*.
  • the control switching determination unit 140s applies switching from the normal controller 140a to the abnormal controller 140b based on the occurrence of a windup phenomenon accompanying switching of the control gain.
  • the control switching determination unit 140s performs switching between the normal controller 140a and the abnormal controller 140b based on a signal related to the operation of the power unit.
  • the control switching determination unit 140s compares the mechanical angular velocity command value ⁇ m* and the mechanical angular velocity response value ⁇ m, and when the difference between them exceeds a predetermined threshold value, the control switching determination unit 140s switches the control switching from the normal controller 140a to the abnormal controller 140b. Switch. Specifically, when the deviation of the rotation speed from the command value NC exceeds 100 rpm, switching to the abnormality controller 140b is performed.
  • the rotation speed of the motor generator 12 can be increased at an appropriate timing, so the same effect as in the first embodiment can be achieved, and the power consumption due to the response delay of the engine 11 can be reduced. It becomes possible to suppress it.
  • switching from the normal controller 140a to the abnormal controller 140b is applied based on the occurrence of a windup phenomenon accompanying switching of the control gain.
  • the abnormality controller 140b By switching to the abnormality controller 140b in this manner, the occurrence of superaddition of integral terms can be suppressed.
  • the occurrence of overshoots and undershoots accompanying gain changes and rotational speed changes can be suppressed, making it possible to reduce noise and vibration.
  • the fifth embodiment of the present disclosure shown in FIG. 13 is yet another modification of the first embodiment.
  • the speed PI controller 40 of the fifth embodiment has two differentiators 143.
  • the differentiator 143 is connected to each previous stage of the proportional device 41 and the integrator 42.
  • the differentiator 143 outputs a time-differentiated value of the electrical angular velocity deviation to the proportional device 41 and the integrator 42 .
  • the speed PI controller 40 becomes a speed-type control system, and improves responsiveness to electrical angular velocity deviations compared to a configuration that does not include the differentiator 143.
  • the rotation speed of the motor generator 12 can be increased at an appropriate timing, the same effects as in the first embodiment can be achieved, and power consumption caused by the delayed response of the engine 11 can be suppressed. It becomes possible.
  • the differentiator 143 before the integrator 42 by connecting the differentiator 143 before the integrator 42, super-addition of integral terms accompanying gain changes and rotational speed transitions becomes less likely to occur. As a result, overshoot and undershoot can be suppressed, and noise and vibration can be reduced.
  • the control system 100 of Modification 1 of the above embodiment is applied to a parallel hybrid system (power unit) shown in FIG. 14.
  • motor generator 12 is connected to drive shaft 19 .
  • the motor control method described in the above embodiment can also be applied to such a motor generator 12.
  • the motor generator 12 may be an electric motor connected to the engine 11 via a power transmission belt or the like, serving as both a starter and an alternator.
  • a state in which the engine 11 is connected to the drive shaft 19 and a state in which the engine 11 is connected to the motor generator 12 are mutually switchable.
  • the vehicle can travel by the output of the engine 11.
  • the motor control method described in the above embodiment can be applied in a state where the engine 11 is separated from the drive shaft 19 and connected to the motor generator 12.
  • the motor generator 12 has a configuration exclusively for power generation.
  • the motor control method described in the above embodiment can also be applied to at least one of the motor generators 12 and 14 connected to the engine 11 via a power split mechanism in a series-parallel hybrid system.
  • components such as a damper, a gear, a clutch, a transmission, etc. may be provided between the motor generator 12 and the engine 11 or between the motor generator 12 and the drive shaft 19. good.
  • some of the functional blocks related to the MG control system 30 are configured by an ECU (eg, hybrid ECU 21, etc.) that is different from the MG-ECU 23. Further, a functional unit corresponding to at least one of the gain switching unit 70 and the command control unit 80 may be provided in an ECU different from the MG-ECU 23 or in the inverter 13.
  • the processing function of the MG-ECU 23 is integrated into the hybrid ECU 21 or the engine ECU 22. Further, in the fifth modification of the above embodiment, the control system 100 is configured by one integrated ECU that has all the processing functions of the ECUs 21 to 23. Furthermore, in the sixth modification of the above embodiment, the processing function of the MG-ECU 23 is integrated into the inverter. As in Modifications 4 to 6, the configuration of the ECU included in the control system 100 may be changed as appropriate.
  • each ECU in the above embodiments can be provided by software and hardware that executes it, only software, only hardware, or a complex combination thereof. If these functions are provided by electronic circuits as hardware, each function can also be provided by digital circuits that include multiple logic circuits, or by analog circuits.
  • each ECU of the above embodiment may include at least one arithmetic core such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). Furthermore, each ECU may be provided with an FPGA (Field-Programmable Gate Array), an NPU (Neural Network Processing Unit), an IP core with other dedicated functions, etc. as a processing unit.
  • arithmetic core such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • each ECU may be provided with an FPGA (Field-Programmable Gate Array), an NPU (Neural Network Processing Unit), an IP core with other dedicated functions, etc. as a processing unit.
  • the storage medium non-transitory tangible storage medium employed as each storage unit in the above embodiments and storing the program that enables the motor control method of the present disclosure may be changed as appropriate.
  • the storage medium is not limited to the configuration provided on the circuit board of each ECU, but may be provided in the form of a memory card, etc., and configured to be inserted into a slot and electrically connected to the bus of the ECU. It's fine.
  • the storage medium may be an optical disk, a hard disk drive, a solid state drive, etc. used as a source for copying or distributing programs to a computer.
  • control unit and its method described in the present disclosure may be implemented by a dedicated computer comprising a processor programmed to perform one or more functions embodied by a computer program.
  • the apparatus and techniques described in this disclosure may be implemented with dedicated hardware logic circuits.
  • the apparatus and techniques described in this disclosure may be implemented by one or more special purpose computers configured by a combination of a processor executing a computer program and one or more hardware logic circuits.
  • the computer program may also be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.
  • a motor control device comprising: (Technical thought 2) The motor control device according to technical idea 1, wherein the control system causes the rotating electric machine to output a damping torque having a phase opposite to the torque fluctuation of the engine. (Technical thought 3) The motor control device according to technical concept 1 or 2, wherein the command control unit uses a torque compensation value (TM*) of the rotating electric machine calculated by the feedback control as information for estimating the engine torque. (Technical thought 4) The command control unit sets a period in which the output shaft (11c) of the engine rotates by 720 degrees as the predetermined time, and issues the increase command based on the fact that the average value of the engine torque for each period exceeds the threshold value.
  • TM* torque compensation value
  • the motor control device for outputting.
  • the command control unit sets a period corresponding to an ignition interval of the engine as the predetermined time, and the technical idea is to output the increase command based on the average value of the engine torque for each period exceeding the threshold value.
  • the motor control device according to any one of 1 to 3.
  • the motor control device according to any one of technical ideas 1 to 5, wherein the command control unit changes the threshold value depending on the oil temperature of the engine.
  • the command control unit is configured such that the slope of a change line (Ln) indicating the relationship between the elapsed time and the command value of the rotation speed changes in stages during a rising transition period (UTP) in which the rotation speed is increased. outputting the rising command;
  • the motor according to any one of technical ideas 1 to 6, wherein the slope of the change line in the second half of the upward transition period (TP2) is greater than the slope of the change line in the first half of the upward transition period (TP1).
  • Control device (Technical Thought 8) According to any one of technical ideas 1 to 7, the control system applies anti-windup control that changes the operation of the integrator (42) used for the feedback control based on the occurrence of the rotation speed windup phenomenon.
  • the motor control device described in . (Technical Thought 9) The motor control device according to technical idea 8, wherein the control system applies the anti-windup control that stops the operation of the integrator. (Technical Thought 10) The motor control device according to technical concept 8, wherein the control system applies the anti-windup control that corrects the integral signal output from the integrator using a correction coefficient. (Technical Thought 11) The control system adopts any one of technical ideas 1 to 7, in which switching from a normal controller (140a) to an abnormal controller (140b) is applied based on the occurrence of a windup phenomenon accompanying switching of the control gain.
  • the motor control device according to any one of technical ideas 1 to 7, wherein the control system includes a differentiator (143) connected to each preceding stage of a proportional device (41) and an integrator (42).
  • the command control unit is configured to increase the rotational speed of the rotating electric machine directly connected to the output shaft (11c) of the engine based on the fact that the average value of the engine torque exceeds the threshold value.
  • the motor control device according to any one of Ideas 1 to 12.
  • the rotating electrical machine is technically connected to the output shaft without going through at least one of a damper part (DM) that damps torque fluctuations of the output shaft and a gear part (GR) that transmits the rotation of the output shaft.
  • DM damper part
  • GR gear part
  • the motor control device according to Idea 13.
  • the motor control device according to any one of technical ideas 1 to 14, wherein the command control unit outputs the ascending command to the rotating electric machine provided exclusively for power generation in the vehicle.
  • the motor control device according to any one of technical ideas 1 to 15, wherein the command control unit outputs the ascending command to the outer rotor type rotating electric machine.

Abstract

According to the present invention, an MG-ECU functions as a motor control device for controlling a motor generator connected to an engine. The MG-ECU uses a rotational speed detected value obtained by detecting a rotational speed of the motor generator to perform feedback control such that the rotational speed approaches a command value (NC). When the rotational speed of the engine rises, if an average value, over a predetermined time, of an engine torque (TE) output from the engine exceeds a threshold, the MG-ECU, in response, outputs a rise command causing the motor generator command value (NC) to rise.

Description

モータ制御装置、及びモータ制御プログラムMotor control device and motor control program 関連出願の相互参照Cross-reference of related applications
 この出願は、2022年9月5日に日本に出願された特許出願第2022-140862号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2022-140862 filed in Japan on September 5, 2022, and the content of the underlying application is incorporated by reference in its entirety.
 この明細書による開示は、エンジンと接続される回転電機の制御技術に関する。 The disclosure in this specification relates to a control technology for a rotating electric machine connected to an engine.
 特許文献1には、ハイブリッド車両に搭載され、エンジンと接続されたモータジェネレータ等の回転電機を制御する駆動力の制御装置が開示されている。この制御装置では、ドライバの加速要求があった場合、エンジントルクの応答遅れを考慮し、エンジントルクが立ち上がるまでモータジェネレータによるアシスト電力が抑制される。 Patent Document 1 discloses a driving force control device that is installed in a hybrid vehicle and controls a rotating electric machine such as a motor generator connected to an engine. In this control device, when there is an acceleration request from the driver, the assist power by the motor generator is suppressed until the engine torque increases, taking into consideration the response delay of the engine torque.
特開2005-287234号公報JP2005-287234A
 特許文献1のように、エンジンの応答遅れ分に相当する待機時間を設定し、待機時間の経過後にモータジェネレータの回転数を上昇させる処理によれば、エンジンの回転数を上昇させるシーンでの電力消費が抑制され得る。しかし、適切な待機時間を設定するには、制御の複雑化が不可避となり得る。 As in Patent Document 1, according to a process in which a standby time corresponding to a delay in response of the engine is set and the rotation speed of the motor generator is increased after the standby time has elapsed, electric power is reduced in a scene in which the engine rotation speed is increased. Consumption can be suppressed. However, in order to set an appropriate waiting time, control may become unavoidably complicated.
 本開示は、制御の複雑化を回避しつつ、エンジンの応答遅れに起因する電力消費を抑制可能なモータ制御装置、及びモータ制御プログラムの提供を目的とする。 The present disclosure aims to provide a motor control device and a motor control program that can suppress power consumption caused by engine response delay while avoiding complication of control.
 上記目的を達成するため、開示された一つの態様は、エンジンと接続される回転電機を制御するモータ制御装置であって、回転電機の回転数を検出した回転数検出値を用いて、回転数が指令値に近づくようにフィードバック制御する制御系、エンジンの回転数が上昇するとき、エンジンから出力されるエンジントルクの所定時間における平均値が閾値を超えたことに基づき、回転電機の指令値を上昇させる上昇指令を出力する指令制御部と、を備えるモータ制御装置とされる。 In order to achieve the above object, one aspect disclosed is a motor control device that controls a rotating electrical machine connected to an engine, and uses a rotational speed detection value that detects the rotational speed of the rotating electrical machine to control the rotational speed. A control system that performs feedback control so that when the engine speed increases, the command value of the rotating electrical machine is adjusted based on the fact that the average value of engine torque output from the engine over a predetermined time exceeds a threshold value. A motor control device includes a command control unit that outputs a command to raise the motor.
 また開示された一つの態様は、エンジンと接続される回転電機を制御するモータ制御プログラムであって、回転電機の回転数を検出した回転数検出値を用いて、回転数が指令値に近づくようにフィードバック制御し、エンジンの回転数が上昇するとき、エンジンから出力されるエンジントルクの所定時間における平均値が閾値を超えたことに基づき、回転電機の指令値を上昇させる上昇指令を出力する、ことを含む処理を、少なくとも一つの処理部に実行させるモータ制御プログラムとされる。 Another disclosed aspect is a motor control program that controls a rotating electrical machine connected to an engine, and uses a rotational speed detection value obtained by detecting the rotational speed of the rotating electrical machine so that the rotational speed approaches a command value. and outputting an increase command to increase the command value of the rotating electric machine based on the fact that the average value of engine torque output from the engine over a predetermined time exceeds a threshold value when the engine rotation speed increases. The motor control program causes at least one processing unit to execute processing including the following.
 これらの態様では、エンジンの回転数を上昇させる場合、回転電機の回転数の指令値を上昇させる処理は、所定時間におけるエンジントルクの平均値が閾値を超えたことに基づき開始される。こうした処理によれば、回転電機の回転数の上昇が適切なタイミングで開始され得る。その結果、制御の複雑化を回避しつつ、エンジンの応答遅れに起因する電力消費が抑制可能となる。 In these aspects, when increasing the engine speed, the process of increasing the command value of the rotational speed of the rotating electric machine is started based on the fact that the average value of the engine torque over a predetermined period of time exceeds a threshold value. According to such processing, the increase in the rotational speed of the rotating electric machine can be started at an appropriate timing. As a result, power consumption due to engine response delay can be suppressed while avoiding complication of control.
 尚、請求の範囲における括弧内の参照番号は、後述する実施形態における具体的な構成との対応関係の一例を示すものにすぎず、技術的範囲を何ら制限するものではない。また、特に組み合わせに支障が生じなければ、請求の範囲において明示していない請求項同士の組み合せも可能である。 Note that the reference numbers in parentheses in the claims merely indicate an example of the correspondence with specific configurations in the embodiments to be described later, and do not limit the technical scope in any way. In addition, claims that are not explicitly stated in the scope of the claims may be combined if no particular problem arises in the combination.
本開示の第一実施形態による制御システム及びパワーユニットの全体像を示す図である。FIG. 1 is a diagram showing an overall view of a control system and a power unit according to a first embodiment of the present disclosure. モータ制御の内容を等価的に示したブロック図である。FIG. 2 is a block diagram equivalently showing the details of motor control. 速度PI制御器の詳細を示すブロック図である。FIG. 2 is a block diagram showing details of a speed PI controller. 制御ゲインの切り替えの詳細を説明するための図である。FIG. 3 is a diagram for explaining details of switching control gains. エンジントルクの上昇検知に基づき、モータジェネレータの回転数を上昇させる制御の詳細を説明するための図である。FIG. 3 is a diagram for explaining details of control for increasing the rotation speed of a motor generator based on detection of an increase in engine torque. 上昇制御処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of a rise control process. エンジン及びモータジェネレータの回転数を上昇させる指令を同時に出力した場合の各トルクの変化推移を示す図である。FIG. 6 is a diagram illustrating changes in each torque when commands to increase the rotational speed of the engine and motor generator are output at the same time. エンジントルクの上昇検知に基づきモータジェネレータの回転数を上昇させる場合の各トルクの変化推移を示す図である。FIG. 6 is a diagram showing changes in each torque when increasing the rotational speed of a motor generator based on detection of an increase in engine torque. トルク検知を適用する前後での制振性能の違いを比較して示す図であって、図9Aは、図7の領域IX-Aの拡大図であり、図9Bは、図8の領域IX-Bの拡大図である。9A is an enlarged view of region IX-A in FIG. 7, and FIG. 9B is an enlarged view of region IX-A in FIG. 8. FIG. It is an enlarged view of B. 第二実施形態にて実施されるモータジェネレータの回転数を上昇させる制御の詳細を説明するための図である。FIG. 7 is a diagram for explaining details of control for increasing the rotation speed of a motor generator performed in a second embodiment. 第三実施形態の速度PI制御器の詳細を示すブロック図である。It is a block diagram showing details of a speed PI controller of a third embodiment. 第四実施形態の速度PI制御器の詳細を示すブロック図である。It is a block diagram showing details of a speed PI controller of a fourth embodiment. 第五実施形態の速度PI制御器の詳細を示すブロック図である。It is a block diagram showing details of a speed PI controller of a fifth embodiment. 変形例1の制御システム及びパワーユニットの全体像を示す図である。7 is a diagram illustrating an overall view of a control system and a power unit of Modification 1. FIG.
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。 Hereinafter, multiple embodiments of the present disclosure will be described based on the drawings. Note that duplicate explanations may be omitted by assigning the same reference numerals to corresponding components in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiments previously described can be applied to other parts of the configuration. Furthermore, in addition to the combinations of configurations specified in the description of each embodiment, configurations of a plurality of embodiments may be partially combined even if not explicitly specified, as long as no particular problem arises in the combination. It is assumed that combinations of structures described in the plurality of embodiments and modifications that are not explicitly described are also disclosed in the following description.
 (第一実施形態)
 図1に示す本開示の第一実施形態による制御システム100は、車両に搭載されるパワーユニットに適用される。パワーユニットは、シリーズ方式のハイブリッドシステムであり、走行用の動力を発生させる。パワーユニットは、エンジン11、モータジェネレータ12,14、インバータ13,15、及びバッテリ16等によって構成されている。
(First embodiment)
A control system 100 according to the first embodiment of the present disclosure shown in FIG. 1 is applied to a power unit mounted on a vehicle. The power unit is a series hybrid system that generates power for driving. The power unit includes an engine 11, motor generators 12 and 14, inverters 13 and 15, a battery 16, and the like.
 エンジン11は、燃料を燃焼させて力学的エネルギを取り出す内燃機関である。エンジン11は、モータジェネレータ12と接続されており、発生させた力学的エネルギを、クランク軸11cを通じてモータジェネレータ12に供給する。一例として、エンジン11は、3つのシリンダが直列に並び、各シリンダの燃焼室にてガソリンを順に燃焼させる3気筒のガソリンエンジンである。尚、エンジン11の気筒数、気筒の配列及び排気量等は、適宜変更されてよい。また、軽油を燃焼させるディーゼルエンジン、又はヴァンケル型のロータリーエンジン等が、エンジン11としてパワーユニットに採用されていてもよい。 The engine 11 is an internal combustion engine that burns fuel and extracts mechanical energy. The engine 11 is connected to a motor generator 12, and supplies generated mechanical energy to the motor generator 12 through the crankshaft 11c. As an example, the engine 11 is a three-cylinder gasoline engine in which three cylinders are arranged in series and gasoline is sequentially burned in the combustion chamber of each cylinder. Note that the number of cylinders, cylinder arrangement, displacement, etc. of the engine 11 may be changed as appropriate. Further, a diesel engine that burns light oil, a Wankel type rotary engine, or the like may be employed as the engine 11 in the power unit.
 モータジェネレータ12,14は、例えば3相ブラシレスモータである。モータジェネレータ12,14は、コイルを有するステータ、永久磁石を有するロータ、及びロータの回転角度(回転数)を検出する回転角度センサ等によって構成されている。モータジェネレータ12,14は、ステータの外周側にロータが配置されたアウターロータ型の構成である。 The motor generators 12 and 14 are, for example, three-phase brushless motors. The motor generators 12 and 14 include a stator having a coil, a rotor having a permanent magnet, a rotation angle sensor that detects the rotation angle (rotation speed) of the rotor, and the like. The motor generators 12 and 14 have an outer rotor type structure in which a rotor is disposed on the outer peripheral side of a stator.
 尚、モータジェネレータ12,14として採用される電動機の態様は、適宜変更されてよい。例えば、モータジェネレータ12,14は、インナーロータ型の回転電機であってもよい。さらに、モータジェネレータ12,14は、永久磁石に替えて界磁巻線をロータに備える巻線界磁型の同期モータであってもよい。また、モータジェネレータ12,14は、上記のような同期モータに限定されず、誘導モータ等であってもよい。さらに、互いに異なる形式の電動機が、モータジェネレータ12,14として採用されてもよい。 Note that the aspect of the electric motors employed as the motor generators 12 and 14 may be changed as appropriate. For example, motor generators 12 and 14 may be inner rotor type rotating electric machines. Further, the motor generators 12 and 14 may be wound field type synchronous motors in which the rotor is provided with a field winding instead of a permanent magnet. Further, the motor generators 12 and 14 are not limited to the above-mentioned synchronous motors, but may be induction motors or the like. Further, different types of electric motors may be employed as motor generators 12 and 14.
 モータジェネレータ12は、エンジン11から供給される力学的エネルギを電気エネルギに変換する発電用の電動機である。モータジェネレータ12は、発電専用の回転電機として設けられている。モータジェネレータ12は、ロータと一体的に回転する入力軸を有している。入力軸は、走行用の動力を車両のタイヤに伝達する駆動軸19から物理的に切り離されている。これにより、路面等から入力軸への外乱の入力は発生しない。入力軸には、エンジン11のクランク軸11cが直接的に接続されている。即ち、エンジン11とモータジェネレータ12との接続構成は、緩衝機能を有するダンパDMを介在させないダンパレス構成であり、かつ、動力伝達のためのギヤGRを介在させないギヤレス構成である。ダンパDMは、例えばトーショナルスプリングの伸縮によってクランク軸11cのトルク変動を減衰するねじりダンパである。ギヤGRは、例えばクランク軸11cの回転を増速しつつモータジェネレータ12に伝達する増速機である。 The motor generator 12 is an electric motor for power generation that converts mechanical energy supplied from the engine 11 into electrical energy. The motor generator 12 is provided as a rotating electrical machine dedicated to power generation. Motor generator 12 has an input shaft that rotates integrally with the rotor. The input shaft is physically separated from the drive shaft 19 that transmits driving power to the tires of the vehicle. As a result, no disturbance is input to the input shaft from the road surface or the like. A crankshaft 11c of the engine 11 is directly connected to the input shaft. That is, the connection configuration between the engine 11 and the motor generator 12 is a damperless configuration in which the damper DM having a buffering function is not interposed, and a gearless configuration in which the gear GR for power transmission is not interposed. The damper DM is a torsional damper that damps torque fluctuations of the crankshaft 11c by, for example, expanding and contracting a torsional spring. Gear GR is, for example, a speed increaser that speeds up the rotation of crankshaft 11c and transmits it to motor generator 12.
 モータジェネレータ14は、車両を走行させる駆動用の電動機である。モータジェネレータ14は、車両の駆動軸19と直接的又は間接的に接続されている。モータジェネレータ14は、バッテリ16等から供給される電気エネルギを力学的エネルギに変換し、駆動軸19を回転させる。加えて、モータジェネレータ14は、車両が減速する場合、インバータ15と連携し、駆動軸19から入力される力学的エネルギ(車両の運動エネルギ)を電気エネルギに変換する。 The motor generator 14 is an electric motor for driving the vehicle. Motor generator 14 is directly or indirectly connected to a drive shaft 19 of the vehicle. The motor generator 14 converts electrical energy supplied from a battery 16 or the like into mechanical energy, and rotates the drive shaft 19 . In addition, when the vehicle decelerates, the motor generator 14 works with the inverter 15 to convert mechanical energy (kinetic energy of the vehicle) input from the drive shaft 19 into electrical energy.
 インバータ13,15は、正極ライン及び負極ライン間に並列に配置されたU相、V相、W相の各アームと、各相のアームに直列接続されたスイッチング素子及び還流ダイオードとを含む3相ブリッジ回路を主体とする駆動回路である。スイッチング素子には、IGBT(Insulated-Gate Bipolar Transistor)又はMOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor)等が用いられる。インバータ13,15は、各スイッチング素子のオンオフ動作により、モータジェネレータ12,14の動作を制御する。 The inverters 13 and 15 are three-phase inverters including U-phase, V-phase, and W-phase arms arranged in parallel between the positive electrode line and the negative electrode line, and a switching element and a free-wheeling diode connected in series to the arms of each phase. This is a drive circuit mainly consisting of a bridge circuit. As the switching element, an IGBT (Insulated-Gate Bipolar Transistor) or a MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) is used. Inverters 13 and 15 control the operation of motor generators 12 and 14 by turning on and off each switching element.
 インバータ13は、モータジェネレータ12と組み合わされ、モータジェネレータ12による発電動作を制御する。インバータ13は、還流回路の形成によってモータジェネレータ12のロータに制動方向のトルクを発生させると共に、ステータのコイルに蓄積されたエネルギをバッテリ16又はインバータ15に直流電力として出力する。バッテリ16への直流電力の供給により、バッテリ16の充電が行われる。一方、インバータ15へ供給される直流電力は、車両の走行に用いられる。 The inverter 13 is combined with the motor generator 12 and controls the power generation operation by the motor generator 12. The inverter 13 generates a braking torque on the rotor of the motor generator 12 by forming a circulation circuit, and outputs the energy stored in the stator coil to the battery 16 or the inverter 15 as DC power. By supplying DC power to the battery 16, the battery 16 is charged. On the other hand, the DC power supplied to the inverter 15 is used for driving the vehicle.
 インバータ15は、モータジェネレータ14と組み合わされ、モータジェネレータ14による力行及び回生の動作を制御する。インバータ15は、バッテリ16又はインバータ13から供給される直流電力を交流電力に変換し、モータジェネレータ14を駆動する。インバータ15は、交流電力の周波数及び電圧の変更により、モータジェネレータ14の回転速度及びトルクを制御する。 The inverter 15 is combined with the motor generator 14 and controls power running and regeneration operations by the motor generator 14. Inverter 15 converts DC power supplied from battery 16 or inverter 13 into AC power, and drives motor generator 14 . Inverter 15 controls the rotation speed and torque of motor generator 14 by changing the frequency and voltage of AC power.
 バッテリ16は、電気エネルギを蓄積可能なエナジーストアシステムである。バッテリ16は、ニッケル水素2次電池又はリチウムイオン2次電池等の電池セルを多数組み合わせてなる組電池を主体とする構成である。バッテリ16には、キャパシタ等が用いられていてもよい。バッテリ16は、例えば0.5kWh~2kWh程度の蓄電容量を有している。バッテリ16は、インバータ13,15から供給される電力を蓄積すると共に、蓄積された電力をインバータ15に供給する。バッテリ16は、車両外部の充電スタンドから供給される電力を蓄積可能であってもよい。こうした形態では、バッテリ16は、10kWh~20kWh程度の蓄電容量を有していてもよい。 The battery 16 is an energy store system that can store electrical energy. The battery 16 is mainly composed of an assembled battery formed by combining a large number of battery cells such as nickel metal hydride secondary batteries or lithium ion secondary batteries. The battery 16 may include a capacitor or the like. The battery 16 has a power storage capacity of, for example, about 0.5 kWh to 2 kWh. The battery 16 stores the power supplied from the inverters 13 and 15 and supplies the stored power to the inverter 15. The battery 16 may be capable of storing power supplied from a charging station outside the vehicle. In such a configuration, the battery 16 may have a storage capacity of about 10 kWh to 20 kWh.
 制御システム100は、ハイブリッドECU(Electronic Control Unit)21、エンジンECU22、モータジェネレータECU(以下、MG-ECU)23、及びバッテリECU等によって構成されている。各ECU21~23は、相互に通信可能に接続されている。各ECU21~23は、プロセッサ及びRAMを少なくとも含むコントローラを主体とする構成であり、車載された演算装置(コンピュータ)として機能する。各ECU21~23は、コントローラに加えて、プログラムを記憶する記憶部、及び種々の入出力インターフェースを有している。 The control system 100 includes a hybrid ECU (Electronic Control Unit) 21, an engine ECU 22, a motor generator ECU (hereinafter referred to as MG-ECU) 23, a battery ECU, and the like. The ECUs 21 to 23 are connected to each other so as to be able to communicate with each other. Each of the ECUs 21 to 23 has a configuration mainly consisting of a controller including at least a processor and a RAM, and functions as an on-vehicle arithmetic unit (computer). In addition to a controller, each ECU 21 to 23 has a storage unit that stores programs and various input/output interfaces.
 ハイブリッドECU21は、エンジンECU22及びMG-ECU23と連携し、パワーユニットを統合的に制御する。ハイブリッドECU21は、パワートレインの制御に用いる種々の信号(情報)を取得する。例えば、エンジン11の回転数を検出する信号、モータジェネレータ12,14の回転数を検出する回転角度センサの信号、アクセル開度を示す信号、及びバッテリ16の残量を示す信号等がハイブリッドECU21によって取得される。バッテリ16の残量情報は、例えばSOC(State of Charge)等の情報である。ハイブリッドECU21は、取得した信号に基づき、パワーユニットの動作モードを複数(5つ)のモードのうちで切り替える。 The hybrid ECU 21 cooperates with the engine ECU 22 and MG-ECU 23 to integrally control the power unit. The hybrid ECU 21 acquires various signals (information) used to control the power train. For example, the hybrid ECU 21 sends a signal that detects the rotation speed of the engine 11, a signal from a rotation angle sensor that detects the rotation speed of the motor generators 12 and 14, a signal that indicates the accelerator opening, a signal that indicates the remaining amount of the battery 16, etc. be obtained. The remaining amount information of the battery 16 is, for example, information such as SOC (State of Charge). The hybrid ECU 21 switches the operation mode of the power unit among a plurality of (five) modes based on the acquired signal.
 具体的に、ハイブリッドECU21は、エンジン11を停止してバッテリ16の充電電力のみで車両を走行させるモードと、エンジン11及びモータジェネレータ12の発電電力で走行しつつ、余剰電力をバッテリ16に充電するモードとを実施する。さらに、ハイブリッドECU21は、発電電力を全て走行に利用するモードと、発電電力及び充電電力の両方を使用して走行するモードと、エンジン11を停止して回生エネルギをバッテリ16に回収するモードとを実施する。 Specifically, the hybrid ECU 21 operates in two modes: one mode in which the engine 11 is stopped and the vehicle runs only on the charging power of the battery 16, and another mode in which the vehicle runs on the power generated by the engine 11 and motor generator 12 while charging the battery 16 with surplus power. mode. Further, the hybrid ECU 21 has three modes: a mode in which all generated power is used for driving, a mode in which both generated power and charging power are used for driving, and a mode in which the engine 11 is stopped and regenerated energy is recovered into the battery 16. implement.
 エンジンECU22は、パワーユニットの動作モードに応じてエンジン11の運転状態を制御する。エンジンECU22は、目標回転数及び目標トルクを演算し、目標回転数及び目標トルクでの運転となるようにエンジン11を制御する。例えば、市街地走行等、要求される駆動力が低いシーンにて、エンジンECU22は、エンジン11を高効率点(図4 Ne1参照)で定点運転する。高効率点は、エンジン11、モータジェネレータ12及びインバータ13よりなる発電システムの発電効率が最も高くなる動作点の1つである。このとき、発電電力の余剰分は、バッテリ16に充電される。また、追い越しを行う際等、要求される駆動力が高いシーンにおいて、エンジンECU22は、エンジン11を高出力点(図4 Ne2参照)で定点運転する。 The engine ECU 22 controls the operating state of the engine 11 according to the operating mode of the power unit. The engine ECU 22 calculates a target rotation speed and target torque, and controls the engine 11 to operate at the target rotation speed and target torque. For example, in a scene where the required driving force is low, such as city driving, the engine ECU 22 operates the engine 11 at a fixed point at a high efficiency point (see Ne1 in FIG. 4). The high efficiency point is one of the operating points at which the power generation efficiency of the power generation system including the engine 11, motor generator 12, and inverter 13 is highest. At this time, the battery 16 is charged with the surplus of the generated power. Furthermore, in scenes where a high driving force is required, such as when overtaking, the engine ECU 22 operates the engine 11 at a fixed point at a high output point (see Ne2 in FIG. 4).
 MG-ECU23は、各インバータ13,15に対してパルス幅変調制御を実施することで、各インバータ13,15と連携して各モータジェネレータ12,14の動作状態を制御する。具体的に、MG-ECU23は、各モータジェネレータ12,14の目標回転数及び目標トルクを演算し、目標回転数及び目標トルクにて各モータジェネレータ12,14が運転されるように各インバータ13,15を制御する。MG-ECU23の記憶部には、各モータジェネレータ12,14を制御するためのモータ制御プログラムが記憶されている。MG-ECU23は、プロセッサによるモータ制御プログラムの実行により、各モータジェネレータ12,14を制御対象(プラント)とする複数のMG制御系を有する。 The MG-ECU 23 controls the operating state of each motor generator 12, 14 in cooperation with each inverter 13, 15 by performing pulse width modulation control on each inverter 13, 15. Specifically, the MG-ECU 23 calculates the target rotation speed and target torque of each motor generator 12, 14, and adjusts each inverter 13, 14 so that each motor generator 12, 14 is operated at the target rotation speed and target torque. 15. The storage unit of the MG-ECU 23 stores a motor control program for controlling each motor generator 12, 14. The MG-ECU 23 has a plurality of MG control systems that control each motor generator 12, 14 as a control target (plant) by executing a motor control program by a processor.
 図2は、MG-ECU23の実施するモータ制御の内容を等価的に示したブロック図であり、MG制御系30を構成する複数の機能ブロックを概念的に示している。MG制御系30は、モータジェネレータ12を制御対象とする制御系である。MG制御系30は、モータジェネレータ12の回転数を検出した回転数検出値を用いて、この回転数が指令値NCに近づく(追従する)ようにフィードバック制御を実施する。尚、MG-ECU23は、モータジェネレータ14(図1参照)を制御対象とするMG制御系を、MG制御系30とは別にさらに有している。 FIG. 2 is a block diagram equivalently showing the details of motor control performed by the MG-ECU 23, and conceptually shows a plurality of functional blocks forming the MG control system 30. MG control system 30 is a control system that controls motor generator 12. The MG control system 30 uses a rotation speed detection value obtained by detecting the rotation speed of the motor generator 12 to perform feedback control so that the rotation speed approaches (follows) the command value NC. Note that the MG-ECU 23 further includes an MG control system that controls the motor generator 14 (see FIG. 1), separate from the MG control system 30.
 MG制御系30は、複数の換算器31,33,35,37,38、複数の減算部32,34,36、速度PI(Proportional-Integral)制御器40、及び電流PI制御器60を備えている。 The MG control system 30 includes a plurality of converters 31, 33, 35, 37, 38, a plurality of subtraction units 32, 34, 36, a speed PI (Proportional-Integral) controller 40, and a current PI controller 60. There is.
 換算器31には、MG-ECU23(後述の指令制御部80)にて生成される機械角速度指令値ωm*が入力される。換算器31は、機械角から電気角への換算を実施する。具体的に、換算器31は、モータジェネレータ12の磁極対数Pmの乗算により、機械角から電気角からへの換算を実施し、機械角速度指令値ωm*から電気角速度指令値ωe*を算出する。換算器31は、算出した電気角速度指令値ωe*を減算部32に出力する。 A mechanical angular velocity command value ωm* generated by the MG-ECU 23 (command control unit 80 described later) is input to the converter 31. The converter 31 converts mechanical angles into electrical angles. Specifically, the converter 31 performs conversion from mechanical angle to electrical angle by multiplying by the number of magnetic pole pairs Pm of the motor generator 12, and calculates the electrical angular velocity command value ωe* from the mechanical angular velocity command value ωm*. The converter 31 outputs the calculated electrical angular velocity command value ωe* to the subtraction unit 32.
 減算部32には、電気角速度指令値ωe*に加えて、最新の電気角速度応答値ωeが入力される。減算部32は、電気角速度指令値ωe*に対する現在の電気角速度応答値ωeの偏差(以下、電気角速度偏差)を算出する。減算部32は、算出した電気角速度偏差を速度PI制御器40に出力する。 In addition to the electrical angular velocity command value ωe*, the latest electrical angular velocity response value ωe is input to the subtraction unit 32. The subtraction unit 32 calculates the deviation of the current electrical angular velocity response value ωe from the electrical angular velocity command value ωe* (hereinafter referred to as electrical angular velocity deviation). The subtraction unit 32 outputs the calculated electrical angular velocity deviation to the speed PI controller 40.
 速度PI制御器40は、減算部32から入力される電気角速度偏差に応じたトルク指令値TM*を演算する。速度PI制御器40は、電気角速度偏差が大きくなるほど、大きな値のトルク指令値TM*を算出することで、電気角速度偏差をゼロに近づけるように動作する。速度PI制御器40は、比例器41、積分器42、及び加算部46を有している(図3参照)。比例器41は、電気角速度偏差に速度比例ゲインKpsを乗算した値を出力する。積分器42は、電気角速度偏差の累積値(時間積分値)に速度積分ゲインKisを乗算した値を出力する。加算部46は、比例器41の出力値に積分器42の出力値を加算する。速度PI制御器40は、加算部46にて足し合わされた値を、トルク指令値TM*として換算器33に出力する。 The speed PI controller 40 calculates a torque command value TM* according to the electrical angular velocity deviation input from the subtraction unit 32. The speed PI controller 40 operates to bring the electrical angular velocity deviation closer to zero by calculating a larger torque command value TM* as the electrical angular velocity deviation becomes larger. The speed PI controller 40 includes a proportional device 41, an integrator 42, and an adder 46 (see FIG. 3). The proportional device 41 outputs a value obtained by multiplying the electrical angular velocity deviation by the velocity proportional gain Kps. The integrator 42 outputs a value obtained by multiplying the cumulative value (time integral value) of the electrical angular velocity deviation by the velocity integral gain Kis. The adding section 46 adds the output value of the integrator 42 to the output value of the proportional device 41. The speed PI controller 40 outputs the value added by the adding unit 46 to the converter 33 as a torque command value TM*.
 換算器33は、速度PI制御器40から入力されるトルク指令値TM*と、予め設定されたトルク係数KTとを用いた演算により、d軸の電流指令値id*とq軸の電流指令値iq*とを算出する。d軸電流は、印加される電流のうちで、磁束発生に使用される成分である。q軸電流は、印加される電流のうちで、ロータを回転させるトルクに対応する成分である。換算器33は、算出した電流指令値id*,iq*を、減算部34に出力する。 The converter 33 calculates the d-axis current command value id* and the q-axis current command value by calculation using the torque command value TM* input from the speed PI controller 40 and a preset torque coefficient KT. iq* is calculated. The d-axis current is a component of the applied current that is used to generate magnetic flux. The q-axis current is a component of the applied current that corresponds to the torque that rotates the rotor. The converter 33 outputs the calculated current command values id*, iq* to the subtraction unit 34.
 減算部34には、電流指令値id*,iq*に加えて、最新の電流応答値id,iqが入力される。減算部34は、電流指令値id*,iq*に対する現在の電流応答値id,iqの偏差(以下、電流値偏差)を算出する。減算部34は、算出した電流値偏差を電流PI制御器60に出力する。 In addition to the current command values id*, iq*, the latest current response values id, iq are input to the subtraction unit 34. The subtraction unit 34 calculates the deviation (hereinafter, current value deviation) of the current response values id, iq with respect to the current command values id*, iq*. The subtraction unit 34 outputs the calculated current value deviation to the current PI controller 60.
 電流PI制御器60は、減算部34から入力される電流値偏差に応じた電圧指令値vd,vqを演算する。電流PI制御器60は、電流値偏差が大きくなるほど、大きな値の電圧指令値vd,vqを算出することで、電流値偏差をゼロに近づけるように動作する。電流PI制御器60は、比例器、積分器、及び加算部を有している。比例器は、電流値偏差に電流比例ゲインKpcを乗算した値を出力する。積分器は、電流値偏差の累積値(時間積分値)に電流積分ゲインKicを乗算した値を出力する。加算部は、比例器の出力値に積分器の出力値を加算する。電流PI制御器60は、加算部にて足し合わされた値を、電圧指令値vd,vqとしてモータジェネレータ12に出力する。 The current PI controller 60 calculates voltage command values vd, vq according to the current value deviation input from the subtraction unit 34. The current PI controller 60 operates to bring the current value deviation closer to zero by calculating larger voltage command values vd, vq as the current value deviation becomes larger. The current PI controller 60 has a proportional device, an integrator, and an adder. The proportional device outputs a value obtained by multiplying the current value deviation by a current proportional gain Kpc. The integrator outputs a value obtained by multiplying the cumulative value (time integral value) of the current value deviation by the current integral gain Kic. The addition section adds the output value of the integrator to the output value of the proportional device. Current PI controller 60 outputs the added values in the adding section to motor generator 12 as voltage command values vd, vq.
 モータジェネレータ12に相当するブロック(モデル)は、電機子インダクタンスをL,電機子抵抗をRとした場合に、1/(L・s+R)で表される。モータジェネレータ12からは、d軸の電流応答値idと、q軸の電流応答値iqとが検出される。MG制御系30には、モータジェネレータ12の後部を減算部34と接続する電流制御マイナーループが形成されている。各電流応答値id,iqは、電流制御マイナーループを通じて減算部34に入力される。これにより、電流応答値id,iqを目標値である電流指令値id*,iq*に追従(一致)させるフィードバック制御が実施される。 A block (model) corresponding to the motor generator 12 is expressed as 1/(L·s+R), where L is armature inductance and R is armature resistance. A d-axis current response value id and a q-axis current response value iq are detected from the motor generator 12. A current control minor loop is formed in the MG control system 30 to connect the rear part of the motor generator 12 to the subtraction section 34 . Each current response value id, iq is input to the subtraction unit 34 through a current control minor loop. As a result, feedback control is performed to cause the current response values id, iq to follow (match) the current command values id*, iq*, which are target values.
 換算器35には、モータジェネレータ12から出力される最新の電流応答値id,iqが入力される。換算器35は、換算器33と同一のトルク係数KTを用いて、換算器33とは真逆の処理を実施する。具体的に、換算器35は、トルク係数KTを用いて、電流応答値id,iqから、モータジェネレータ12のトルク応答値TMを算出する。換算器35は、算出したトルク応答値TMを減算部36に出力する。 The latest current response values id, iq output from the motor generator 12 are input to the converter 35. The converter 35 uses the same torque coefficient KT as the converter 33 and performs processing that is exactly the opposite of that of the converter 33. Specifically, converter 35 calculates torque response value TM of motor generator 12 from current response values id and iq using torque coefficient KT. The converter 35 outputs the calculated torque response value TM to the subtractor 36.
 減算部36には、トルク応答値TMに加えて、最新のエンジントルクTEが入力される。減算部36は、トルク応答値TMに対する現在のエンジントルクTEの偏差(以下、トルク偏差)を算出する。減算部36は、算出したトルク偏差を換算器37に出力する。 In addition to the torque response value TM, the latest engine torque TE is input to the subtraction unit 36. The subtraction unit 36 calculates the deviation of the current engine torque TE from the torque response value TM (hereinafter referred to as torque deviation). The subtraction unit 36 outputs the calculated torque deviation to the converter 37.
 換算器37は、モータジェネレータ12のうちでクランク軸11cと一体で回転する構成(ロータ等)のイナーシャJMの値を用いて、減算部36から入力されるトルク偏差から機械角速度応答値ωmを算出する。 The converter 37 calculates the mechanical angular velocity response value ωm from the torque deviation input from the subtraction unit 36 using the value of the inertia JM of a component (rotor, etc.) of the motor generator 12 that rotates integrally with the crankshaft 11c. do.
 換算器38は、換算器37の後部を減算部32と接続する速度制御アウターループのライン上に設けられている。換算器38は、換算器31と同一の磁極対数Pmを用いて、機械角から電気角からへの換算を実施し、機械角速度応答値ωmを電気角速度応答値ωeに変換する。電気角速度応答値ωeは、速度制御アウターループを通じて減算部32に入力される。尚、機械角速度応答値ωmは、モータジェネレータ12の回転角度センサの出力に基づく値である。機械角速度応答値ωm又は電気角速度応答値ωeは、「回転数検出値」に相当する。 The converter 38 is provided on the line of the speed control outer loop that connects the rear part of the converter 37 with the subtraction section 32. The converter 38 uses the same magnetic pole logarithm Pm as the converter 31 to perform conversion from mechanical angle to electrical angle, and converts the mechanical angular velocity response value ωm to the electrical angular velocity response value ωe. The electrical angular velocity response value ωe is input to the subtraction unit 32 through the speed control outer loop. Note that the mechanical angular velocity response value ωm is a value based on the output of the rotation angle sensor of the motor generator 12. The mechanical angular velocity response value ωm or the electrical angular velocity response value ωe corresponds to a “rotation speed detection value”.
 以上により、電気角速度応答値ωeを目標値である電気角速度指令値ωe*に追従(一致)させるフィードバック制御であって、モータジェネレータ12の回転数を指令値NCに近づけるフィードバック制御が実施される。その結果、MG制御系30は、エンジン11のトルク変動に対し逆位相となるカウンタトルク(制振トルク,図1参照)を、モータジェネレータ12に出力させることができる。 As described above, feedback control is performed to cause the electrical angular velocity response value ωe to follow (match) the electrical angular velocity command value ωe*, which is the target value, and to bring the rotation speed of the motor generator 12 closer to the command value NC. As a result, the MG control system 30 can cause the motor generator 12 to output a counter torque (damping torque, see FIG. 1) that has a phase opposite to the torque fluctuation of the engine 11.
 <制御ゲインの切替処理>
 次に、ゲイン切替部70にて実施されるゲイン切替制御の詳細を、図1~図4に基づいて説明する。
<Control gain switching process>
Next, details of the gain switching control performed by the gain switching section 70 will be explained based on FIGS. 1 to 4.
 MG-ECU23は、モータ制御プログラムに基づく機能部として、ゲイン切替部70(図3参照)をさらに備える。ゲイン切替部70は、ゲイン切替処理の実施により、MG制御系30のフィードバック制御にて用いられる制御ゲインを、低ゲイン及び高ゲインを含む複数のうちで切り替える。 The MG-ECU 23 further includes a gain switching section 70 (see FIG. 3) as a functional section based on the motor control program. The gain switching unit 70 switches the control gain used in the feedback control of the MG control system 30 from among a plurality of control gains including a low gain and a high gain by performing gain switching processing.
 ゲイン切替部70は、低ゲインと高ゲインとを切り替えるゲイン切替処理において、速度PI制御器40の速度比例ゲインKps及び速度積分ゲインKisの各値を少なくとも変更する。ゲイン切替部70は、電流PI制御器60の電流比例ゲインKpc及び電流積分ゲインKicの各値を、速度比例ゲインKps及び速度積分ゲインKisの各値と共に変更してもよい。 The gain switching unit 70 changes at least each value of the speed proportional gain Kps and the speed integral gain Kis of the speed PI controller 40 in the gain switching process of switching between low gain and high gain. The gain switching section 70 may change each value of the current proportional gain Kpc and current integral gain Kic of the current PI controller 60, as well as each value of the speed proportional gain Kps and speed integral gain Kis.
 低ゲインの状態では、エンジントルクTEの脈動に対し、MG制御系30の反応が低応答となる。この場合、モータジェネレータ12の出力する制振トルクは、ごく僅かとなるか又はゼロとなる(図4 下段左側参照)。この場合、モータジェネレータ12は、実質的に一定のトルクを出力する状態となる。その結果、フィードバック制御によるエンジントルクTEの脈動抑制効果も小さくなる。 In a low gain state, the MG control system 30 has a low response to pulsations in the engine torque TE. In this case, the damping torque output by the motor generator 12 becomes very small or zero (see the lower left side of FIG. 4). In this case, the motor generator 12 is in a state where it outputs a substantially constant torque. As a result, the effect of suppressing pulsation of engine torque TE due to feedback control also becomes smaller.
 高ゲインの状態では、エンジントルクTEの脈動に対し、MG制御系30の反応が高応答となる。この場合、モータジェネレータ12の出力する制振トルクは、低ゲインの状態と比較して大きくなる(図4 下段右側参照)。その結果、フィードバック制御によるエンジントルクTEの脈動抑制効果も大きくなる。 In a high gain state, the MG control system 30 has a high response to pulsations in the engine torque TE. In this case, the damping torque output by the motor generator 12 becomes larger compared to the low gain state (see the lower right side of FIG. 4). As a result, the effect of suppressing engine torque TE pulsation due to feedback control also increases.
 ゲイン切替部70は、制御システム100の起動に基づき、ゲイン切替処理を開始する。ゲイン切替部70は、制御システム100の停止までゲイン切替処理を継続し、制御システム100の停止に基づきゲイン切替処理を終了する。ゲイン切替部70は、ゲイン切替処理の開始後、起動後の初期処理を実施し、低ゲインの状態に設定する。ゲイン切替部70は、エンジントルクTEの脈動が大きくなるシーンの発生を推定した場合、高ゲインへの切替条件を成立させ、低ゲインから高ゲインへの切り替えを実施する。 The gain switching unit 70 starts gain switching processing based on the activation of the control system 100. The gain switching unit 70 continues the gain switching process until the control system 100 stops, and ends the gain switching process based on the stoppage of the control system 100. After starting the gain switching process, the gain switching unit 70 performs post-startup initial processing and sets the gain to a low gain state. When the gain switching unit 70 estimates the occurrence of a scene in which the pulsation of the engine torque TE becomes large, the gain switching unit 70 establishes a switching condition to a high gain, and performs switching from a low gain to a high gain.
 一例として、クランキングによってエンジン11の回転数が高効率点の回転数(以下、第1回転数Ne1)となったタイミングにて、ゲイン切替部70は、低ゲインから高ゲインへの切り替えを開始する。これにより、高ゲインの状態下にて、燃料への点火が開始される(図4 ENG点火参照)。故に、燃焼開始に伴う回転数の急激な上昇(図4 破線参照)が抑制される。 As an example, the gain switching unit 70 starts switching from low gain to high gain at the timing when the rotation speed of the engine 11 reaches the high efficiency point rotation speed (hereinafter referred to as first rotation speed Ne1) due to cranking. do. As a result, ignition of the fuel is started under a high gain condition (see ENG ignition in FIG. 4). Therefore, a sudden increase in the rotational speed (see broken line in FIG. 4) accompanying the start of combustion is suppressed.
 ゲイン切替部70は、第1回転数Ne1から高出力点の回転数(以下、第2回転数Ne2)への遷移タイミングにて、低ゲインから高ゲインへと切り替える。これにより、クランク軸11cの回転数が第2回転数Ne2を大きく超過する事態は、発生し難くなる。さらに、エンジン11を停止させるタイミングにおいても、ゲイン切替部70は、低ゲインから高ゲインへと切り替える。これにより、クランク軸11cの回転が安定的に静止しない事態が、発生し難くなる。 The gain switching unit 70 switches from low gain to high gain at the transition timing from the first rotation speed Ne1 to the high output point rotation speed (hereinafter referred to as second rotation speed Ne2). Thereby, a situation in which the number of rotations of the crankshaft 11c greatly exceeds the second number of rotations Ne2 becomes less likely to occur. Furthermore, at the timing of stopping the engine 11, the gain switching unit 70 switches from low gain to high gain. This makes it less likely that the crankshaft 11c will not stably stop rotating.
 ゲイン切替部70は、高ゲインへの切り替え後、低ゲインへの切替条件の成立に基づき、高ゲインから低ゲインへの切り替えを実施する。例えば、高ゲインへの切り替え後に所定時間が経過した場合、又はクランク軸11cの回転数が安定した場合に、ゲイン切替部70は、低ゲインへの切替条件を成立させる。以上によれば、高ゲインでの制振制御は、必要最低限のシーンに限って適用され、その他のシーンでは、低ゲインでの制振制御に切り替えられることで、効率重視の動作が実現される。 After switching to the high gain, the gain switching unit 70 performs switching from the high gain to the low gain based on the establishment of the switching condition to the low gain. For example, when a predetermined time has elapsed after switching to high gain, or when the rotational speed of crankshaft 11c becomes stable, the gain switching unit 70 establishes the conditions for switching to low gain. According to the above, high-gain vibration suppression control is applied only to the minimum necessary scenes, and in other scenes, switching to low-gain vibration suppression control realizes efficiency-oriented operation. Ru.
 <アンチワインドアップ制御>
 図4に示すように高ゲインから低ゲインへと切り替えを行う場合、遷移期間において、回転数のワインドアップ現象が発生し得る。ワインドアップ現象は、速度PI制御器40での積分項の超加算、即ち、積分器42の出力値が過大となることに起因して発生する。ワインドアップ現象が発生した場合、例えば制振トルクの不適切な増大により、回転数が許容変動範囲の下限を下回るアンダーシュート、又は許容変動範囲の上限を超えるオーバーシュートが発生し得る。尚、許容変動範囲を規定する上限及び下限の各閾値は、ノイズ及びバイブレーションの観点から、車両において許容され得る値に適宜設定されてよい。
<Anti-windup control>
When switching from high gain to low gain as shown in FIG. 4, a wind-up phenomenon of rotational speed may occur during the transition period. The windup phenomenon occurs due to excessive addition of integral terms in the speed PI controller 40, that is, the output value of the integrator 42 becomes excessive. When a windup phenomenon occurs, for example, due to an inappropriate increase in damping torque, the rotational speed may undershoot below the lower limit of the allowable variation range or overshoot above the upper limit of the allowable variation range. Note that the upper and lower thresholds that define the permissible variation range may be appropriately set to values that can be tolerated in the vehicle from the viewpoint of noise and vibration.
 こうしたワインドアップ現象の発生を抑制するため、速度PI制御器40には、積分器42の動作を変更するアンチワインドアップ制御が適用される。速度PI制御器40(図3参照)は、アンチワインドアップ制御を適用するための構成(以下、アンチワインドアップ制御部50)として、リミッタ51及び積分器停止回路52を有している。 In order to suppress the occurrence of such a windup phenomenon, anti-windup control that changes the operation of the integrator 42 is applied to the speed PI controller 40. The speed PI controller 40 (see FIG. 3) includes a limiter 51 and an integrator stop circuit 52 as a configuration for applying anti-windup control (hereinafter referred to as anti-windup control section 50).
 リミッタ51は、加算部46の後段に設けられている。リミッタ51は、加算部46から出力されるトルク指令値TM*の上限値及び下限値を設定する。リミッタ51は、トルク指令値TM*が予め設定された上限値又は下限値を超えている場合、トルク指令値TM*に替えて上限値又は下限値を出力する。 The limiter 51 is provided after the adder 46. The limiter 51 sets an upper limit value and a lower limit value of the torque command value TM* output from the adding section 46. When the torque command value TM* exceeds a preset upper limit value or lower limit value, the limiter 51 outputs the upper limit value or the lower limit value in place of the torque command value TM*.
 積分器停止回路52は、トルク指令値TM*がリミッタ51の上限値又は下限値を超えた場合、積分器42を停止するアンチワインドアップ制御を実施する。積分器停止回路52は、比較器53及びスイッチ54を有している。比較器53は、リミッタ51の入出力の一致及び不一致を判別する。リミッタ51の入出力が一致している場合、言い替えれば、リミッタ51が作動していない場合、比較器53は、「1」の値を出力する。一方、リミッタ51の入出力が不一致の場合、言い替えれば、リミッタ51が作動している場合、比較器53は、「0」の値を出力する。 The integrator stop circuit 52 performs anti-windup control to stop the integrator 42 when the torque command value TM* exceeds the upper limit or lower limit of the limiter 51. The integrator stop circuit 52 includes a comparator 53 and a switch 54. The comparator 53 determines whether the input and output of the limiter 51 match or do not match. When the input and output of the limiter 51 match, in other words, when the limiter 51 is not operating, the comparator 53 outputs a value of "1". On the other hand, if the input and output of the limiter 51 do not match, in other words, if the limiter 51 is operating, the comparator 53 outputs a value of "0".
 スイッチ54は、比較器53から「1」の値が入力される場合、オン状態(True)となる。この場合、電気角速度偏差が積分器42に入力され、積分器42は、通常動作の状態となる。一方、比較器53から「0」の値が入力される場合、スイッチ54は、オフ状態(False)となり、電気角速度偏差の積分器42への入力が停止される。その結果、積分器42は、停止状態となる。 The switch 54 is turned on (True) when a value of "1" is input from the comparator 53. In this case, the electrical angular velocity deviation is input to the integrator 42, and the integrator 42 is in a normal operating state. On the other hand, when a value of "0" is input from the comparator 53, the switch 54 is turned off (false), and input of the electrical angular velocity deviation to the integrator 42 is stopped. As a result, the integrator 42 comes to a halt.
 尚、リミッタ51は、積分器42と加算部46との間に設けられていてもよい。即ち、比較器53は、速度比例ゲインKps及び速度積分ゲインKisの各出力の合算値について、リミッタ51の前後の値を比較する構成に替えて、速度積分ゲインKis1の出力値について、リミッタ51の前後の値を比較する構成であってよい。 Note that the limiter 51 may be provided between the integrator 42 and the addition section 46. That is, the comparator 53 compares the output value of the speed integral gain Kis1 with respect to the output value of the speed integral gain Kis1, instead of comparing the values before and after the limiter 51 with respect to the sum of the respective outputs of the speed proportional gain Kps and the speed integral gain Kis. It may be configured to compare the values before and after.
 <トルク検知に基づく上昇指令出力>
 次に、指令制御部80にて実施される上昇制御処理の詳細を、図1~図9に基づいて説明する。
<Rising command output based on torque detection>
Next, details of the ascending control process performed by the command control section 80 will be explained based on FIGS. 1 to 9.
 MG-ECU23は、モータ制御プログラムに基づく機能部として、指令制御部80(図2参照)をさらに備える。指令制御部80は、回転数の指令値NCを生成し、指令値NCに基づく機械角速度指令値ωm*をMG制御系30に入力させる。指令制御部80は、ハイブリッドECU21によって発電量の増加が決定されると、図5に示すように、エンジンECU22の制御によるエンジントルクTEの上昇制御に合わせて、モータジェネレータ12の回転数を上昇させる。 The MG-ECU 23 further includes a command control unit 80 (see FIG. 2) as a functional unit based on a motor control program. The command control unit 80 generates a rotation speed command value NC, and inputs a mechanical angular velocity command value ωm* based on the command value NC to the MG control system 30. When the hybrid ECU 21 determines to increase the amount of power generation, the command control unit 80 increases the rotation speed of the motor generator 12 in accordance with the increase control of the engine torque TE under the control of the engine ECU 22, as shown in FIG. .
 ここで、エンジン11の応答速度は、モータジェネレータ12の応答速度に対して遅い。故に、エンジン11及びモータジェネレータ12の回転数を一体的に上昇させるとき、エンジン11及びモータジェネレータ12の応答速度の差に起因して、モータジェネレータ12に力行動作が発生し得る。 Here, the response speed of the engine 11 is slower than the response speed of the motor generator 12. Therefore, when the rotational speeds of the engine 11 and the motor generator 12 are increased together, a power operation may occur in the motor generator 12 due to the difference in response speed between the engine 11 and the motor generator 12.
 詳記すると、エンジンECU22は、時刻t1(図5及び図10参照)における発電増加指令の取得に基づき、エンジン11のスロットル開度を上げて、吸入空気量を増加させる動作を行う。このときエンジン11には、例えば100~200ミリ秒程度の吸気遅れDLが発生する。即ち、エンジントルクTEは、発電増加指令に対して、吸気遅れDL分だけ後のタイミングである時刻t2から上昇を開始する(図5 中上段,図7 下段参照)。 Specifically, the engine ECU 22 increases the throttle opening of the engine 11 and increases the amount of intake air based on the acquisition of the power generation increase command at time t1 (see FIGS. 5 and 10). At this time, an intake delay DL of, for example, about 100 to 200 milliseconds occurs in the engine 11. That is, the engine torque TE starts to increase from time t2, which is a timing that is after the intake delay DL with respect to the power generation increase command (see the upper middle part of FIG. 5 and the lower part of FIG. 7).
 対して、モータジェネレータ12に生じる応答遅れは、エンジン11に生じる応答遅れに対して非常に小さく(短く)なる。故に、発電増加指令の直後から回転数の指令値NCの上昇を開始させてしまうと(図5 上段の破線,図7 上段参照)、エンジントルクTEの上昇が回転数の上昇に追従しなくなる。その結果、エンジントルクTE(所定時間での平均値TaE)の上昇が開始される時刻t2までの期間において、モータジェネレータ12のトルク(所定時間での平均値TaM)がプラス側に遷移する(図5 中下段の破線,図7 下段参照)。これにより、モータジェネレータ12に力行動作が発生し、電力が消費される。以上のように、バッテリ16の残量低下によって発電量を増加させるシーンにおいて、モータジェネレータ12の力行動作が電力を無駄に消費させることは、問題となる。 On the other hand, the response delay occurring in the motor generator 12 is much smaller (shorter) than the response delay occurring in the engine 11. Therefore, if the rotational speed command value NC starts increasing immediately after the power generation increase command is issued (see the broken line in the upper part of FIG. 5, and the upper part of FIG. 7), the increase in the engine torque TE will not follow the increase in the rotational speed. As a result, during the period until time t2 when engine torque TE (average value TaE over a predetermined time) starts to increase, the torque of the motor generator 12 (average value TaM over a predetermined time) transitions to the positive side (Fig. 5. Broken lines in the middle and lower rows, see Figure 7, lower rows). This causes the motor generator 12 to perform a powering operation, and power is consumed. As described above, in a scene where the amount of power generation is increased due to a decrease in the remaining capacity of the battery 16, it becomes a problem that the power operation of the motor generator 12 wastes power.
 こうした力行動作の発生を抑制するため、エンジン11の応答遅れ分に相当する待機時間を設定し、待機時間の経過後にモータジェネレータ12の回転数を上昇させることが考えられる。こうした制御では、モータジェネレータ12の応答性がエンジン11の応答性と同等に調整される。しかし、待機時間は、エンジン11の状態によって変化し得る。そのため、待機時間を正確に設定することは難しく、適切な待機時間を設定するには、制御の複雑化が不可避となる。さらに、力行動作の抑制のために、待機時間に余裕を持たせた場合、応答性の悪化が引き起こされる。 In order to suppress the occurrence of such powering operations, it is conceivable to set a standby time corresponding to the response delay of the engine 11, and to increase the rotation speed of the motor generator 12 after the standby time has elapsed. In such control, the responsiveness of the motor generator 12 is adjusted to be equal to the responsiveness of the engine 11. However, the waiting time may vary depending on the state of the engine 11. Therefore, it is difficult to accurately set the standby time, and in order to set an appropriate standby time, control becomes unavoidably complicated. Furthermore, if a waiting time is provided with a margin in order to suppress the power action, responsiveness will deteriorate.
 指令制御部80は、応答性を良好に保ちつつ力行動作の発生を抑制するため、発電増加指令に基づきエンジン11の回転数が上昇するとき、上昇制御処理(図6参照)を実施する。上昇制御処理は、発電増加指令の取得に基づき開始される。指令制御部80は、上昇制御処理において、エンジントルクTEの所定時間における平均値TaEを把握し、平均値TaEが閾値を超えたことに基づき、モータジェネレータ12の指令値NCを上昇させる上昇指令を出力する。 The command control unit 80 performs an increase control process (see FIG. 6) when the rotational speed of the engine 11 increases based on the power generation increase command in order to suppress the occurrence of power operation while maintaining good responsiveness. The increase control process is started based on the acquisition of the power generation increase command. In the increase control process, the command control unit 80 grasps the average value TaE of the engine torque TE over a predetermined period of time, and issues an increase command to increase the command value NC of the motor generator 12 based on the fact that the average value TaE exceeds the threshold value. Output.
 詳記すると、指令制御部80は、上昇制御処理にて、エンジントルクTEの値を取得する(S31)。指令制御部80は、フィードバック制御にて算出されるモータジェネレータ12のトルク補償値により、エンジントルクTEの値を代替する(図5 下段参照)。具体的に、指令制御部80は、トルク補償値としてのトルク指令値TM*を、エンジントルクTEを推定する情報として取得する。指令制御部80は、トルク指令値TM*を用いて、エンジントルクTEの値を推定によって取得可能である。 Specifically, the command control unit 80 acquires the value of the engine torque TE in the increase control process (S31). The command control unit 80 substitutes the value of the engine torque TE with the torque compensation value of the motor generator 12 calculated by feedback control (see the lower part of FIG. 5). Specifically, the command control unit 80 acquires the torque command value TM* as the torque compensation value as information for estimating the engine torque TE. The command control unit 80 can obtain the value of the engine torque TE by estimation using the torque command value TM*.
 指令制御部80は、取得したエンジントルクTEの値に対し、平均化処理を適用する(S32)。平均化処理では、所定時間における平均値TaEが算出される。指令制御部80は、エンジン11のクランク軸11cの回転角を基準として、回転数に応じた所定時間を設定する。具体的に、指令制御部80は、エンジン11が4サイクルの内燃機関である場合、クランク軸11cが720°回転する期間(720CA)、言い替えれば、全気筒の燃焼を含む期間、を所定時間として設定する。また、指令制御部80は、エンジンの点火間隔に相当する期間を所定時間として設定する。一例として、エンジン11が3気筒である場合、クランク軸11cが240°回転する期間(240CA)が、所定時間として設定される。 The command control unit 80 applies averaging processing to the obtained value of the engine torque TE (S32). In the averaging process, an average value TaE over a predetermined period of time is calculated. The command control unit 80 sets a predetermined time according to the number of rotations based on the rotation angle of the crankshaft 11c of the engine 11. Specifically, when the engine 11 is a 4-cycle internal combustion engine, the command control unit 80 sets the predetermined time to a period during which the crankshaft 11c rotates 720 degrees (720CA), in other words, a period including combustion in all cylinders. Set. Further, the command control unit 80 sets a period corresponding to the ignition interval of the engine as a predetermined time. As an example, when the engine 11 has three cylinders, a period (240CA) during which the crankshaft 11c rotates 240 degrees is set as the predetermined time.
 指令制御部80は、所定時間におけるエンジントルクTEの平均値TaEを、予め設定した閾値と比較する(S33)。閾値は、発電増加指令が出力される前のエンジントルクTEの値(上昇前値)を基準とし、固定値又は可変値を上昇前値に加算した値に設定される。閾値の設定に可変値を用いる場合、指令制御部80は、エンジン11の状態を示す情報に応じて閾値(可変値)を変更する。例えば、エンジンオイルの温度(以下、オイル温度)等が、閾値の設定に用いられる。オイル温度が十分に高い場合、エンジン11の引きずり抵抗が低下する。故に、閾値は、オイル温度の上昇するほど、上昇前値を下回らない範囲で低く調整されてよい。 The command control unit 80 compares the average value TaE of the engine torque TE over a predetermined period of time with a preset threshold value (S33). The threshold value is set to a value obtained by adding a fixed value or a variable value to the pre-increase value, based on the value of the engine torque TE before the power generation increase command is output (pre-increase value). When using a variable value to set the threshold, the command control unit 80 changes the threshold (variable value) according to information indicating the state of the engine 11. For example, the temperature of engine oil (hereinafter referred to as oil temperature) is used to set the threshold value. When the oil temperature is sufficiently high, the drag resistance of the engine 11 decreases. Therefore, as the oil temperature rises, the threshold value may be adjusted lower within a range that does not fall below the pre-rise value.
 指令制御部80は、平均値TaEが閾値以下である場合(S33:NO)、言い替えれば、エンジントルクTEの上昇がごく僅かである場合、回転数の上昇を待機する。即ち、回転数の指令値NCは、現状(第1回転数Ne1)のまま維持される。そして、平均値TaEが閾値を超えると(S33:YES)、指令制御部80は、指令値NC(機械角速度指令値ωm*)を上昇させる上昇指令を出力する。 If the average value TaE is less than or equal to the threshold value (S33: NO), in other words, if the increase in the engine torque TE is very small, the command control unit 80 waits for the rotation speed to increase. That is, the rotation speed command value NC is maintained at its current state (first rotation speed Ne1). Then, when the average value TaE exceeds the threshold value (S33: YES), the command control unit 80 outputs an increase command to increase the command value NC (mechanical angular velocity command value ωm*).
 以上の上昇制御処理によれば、時刻t1での発電増加指令に基づき、エンジン11の吸入空気量を増加させる動作が行われた場合、吸気遅れDLに相当する時間が経過する時刻t2まで、回転数の指令値NCは、維持される(図5 上段の実線,図8 上段参照)。そして、時刻t2にて、エンジントルクTEの上昇が検知されると(図5 中上段,図8
 下段参照)、指令制御部80は、回転数の指令値NCの上昇を開始させる。故に、モータジェネレータ12のトルク(上述のトルク応答値TMに相当)の上昇、言い替えれば、マイナストルクの減少が開始される。エンジントルクTEの上昇開始後に、モータジェネレータ12のマイナストルクの減少が開始されるため、トルク応答値TM(所定時間での平均値TaM)は、プラス側に遷移せず、マイナスの範囲内に留まり得る(図5 中下段,図8 下段参照)。その結果、モータジェネレータ12の力行動作が抑制され、電力消費も回避される。
According to the above-described increase control processing, when an operation is performed to increase the intake air amount of the engine 11 based on the power generation increase command at time t1, the rotation speed is The numerical command value NC is maintained (see the solid line in the upper row of FIG. 5, and the upper row of FIG. 8). Then, at time t2, when an increase in engine torque TE is detected (Fig. 5 middle upper row, Fig. 8
(see lower row), the command control unit 80 starts increasing the command value NC of the rotation speed. Therefore, the torque of the motor generator 12 (corresponding to the torque response value TM described above) starts to increase, or in other words, the negative torque starts to decrease. Since the negative torque of the motor generator 12 starts decreasing after the engine torque TE starts increasing, the torque response value TM (average value TaM over a predetermined time) does not change to the positive side and remains within the negative range. (See Figure 5, lower middle row, and Figure 8, lower row). As a result, the power operation of the motor generator 12 is suppressed, and power consumption is also avoided.
 <トルク検知適用時の制振性能>
 次に、回転数の上昇制御にトルク検知を適用する前後での制振性能の違いを、図9に基づき説明する。図9には、モータジェネレータ12の回転数の指令値NC及び応答値NRが記載されている。応答値NRは、シミュレーション結果であり、上述の機械角速度指令値ωm*に対応する。
<Vibration damping performance when torque detection is applied>
Next, the difference in vibration damping performance before and after applying torque detection to the rotation speed increase control will be explained based on FIG. 9. FIG. 9 shows a command value NC and a response value NR of the rotation speed of the motor generator 12. The response value NR is a simulation result and corresponds to the mechanical angular velocity command value ωm* described above.
 図9Aに示すように、トルク検知の適用前では、回転数の立ち上がり時において、応答値NRは、指令値NCに対し、周期的に変動する挙動を示している。故に、モータジェネレータ12は、エンジントルクTEの変動に対して逆位相となる制振トルク(図1参照)を出力できている。また、図9Bに示すように、トルク検知の適用後でも、回転数の立ち上がり時において、応答値NRは、指令値NCに対し、周期的に変動する挙動を示すことができている。この時刻t2以降においては、平均0Nmのままでの制振が可能となっている。以上のように、トルク検知を適用しても、モータジェネレータ12は、トルク検知を適用しない場合と同等の制振性能を発揮可能であると推定される。 As shown in FIG. 9A, before torque detection is applied, the response value NR exhibits a behavior that periodically fluctuates with respect to the command value NC when the rotational speed rises. Therefore, the motor generator 12 is able to output vibration damping torque (see FIG. 1) that is in the opposite phase to fluctuations in the engine torque TE. Further, as shown in FIG. 9B, even after application of torque detection, the response value NR is able to show a behavior that periodically fluctuates with respect to the command value NC when the rotational speed rises. After this time t2, damping can be performed at an average of 0 Nm. As described above, even if torque detection is applied, it is estimated that the motor generator 12 can exhibit the same vibration damping performance as when torque detection is not applied.
 (実施形態のまとめ)
 ここまで説明した第一実施形態では、エンジン11の回転数を上昇させる場合、モータジェネレータ12の回転数の指令値NCを上昇させる処理は、所定時間におけるエンジントルクTEの平均値TaEが閾値を超えたことに基づき開始される。こうした処理によれば、モータジェネレータ12の回転数の上昇が適切なタイミングで開始され得る。その結果、制御の複雑化を回避しつつ、エンジン11の応答遅れに起因する電力消費が抑制可能となる。
(Summary of embodiments)
In the first embodiment described so far, when increasing the rotation speed of the engine 11, the process of increasing the command value NC of the rotation speed of the motor generator 12 is such that the average value TaE of the engine torque TE in a predetermined time exceeds a threshold value. It is started based on that. According to such processing, increase in the rotation speed of motor generator 12 can be started at an appropriate timing. As a result, power consumption caused by response delay of the engine 11 can be suppressed while avoiding complication of control.
 さらに、静粛性の向上又はダンパレス構成の実現のためには、ダンパ付き構成に適用するよりも高応答なゲイン設定が必要となる。しかし、高応答なゲイン設定を行うと、バッテリ16の電力が無駄に消費され易い。こうした問題に対し、エンジントルクTEを監視し、エンジントルクTEの上昇開始に基づき回転数の上昇指令を付与するという構成を採用することで、待機時間を演算するための複雑な推定モデルを不要としつつ、制振性能の維持が可能となる。 Furthermore, in order to improve quietness or realize a damperless configuration, a gain setting with higher response than that applied to a damper-equipped configuration is required. However, if high-response gain settings are made, the power of the battery 16 is likely to be wasted. To solve this problem, we have adopted a configuration that monitors the engine torque TE and issues a command to increase the rotational speed based on the start of an increase in the engine torque TE, thereby eliminating the need for a complex estimation model for calculating standby time. At the same time, vibration damping performance can be maintained.
 加えて第一実施形態では、エンジン11のトルク変動に対し逆位相となる制振トルクがモータジェネレータ12によって出力される。故に、エンジン11の回転数の脈動が抑制可能となる。さらに、脈動を抑制する効果は、エンジントルクTEの上昇を検知する制御を適用しても、適用前と同等に発揮可能となる(図9参照)。したがって、電力消費の抑制と制振性能の確保との両立が実現される。 In addition, in the first embodiment, the motor generator 12 outputs vibration damping torque that has an opposite phase to the torque fluctuations of the engine 11. Therefore, pulsations in the rotational speed of the engine 11 can be suppressed. Furthermore, even if control for detecting an increase in engine torque TE is applied, the effect of suppressing pulsation can be achieved at the same level as before application (see FIG. 9). Therefore, it is possible to simultaneously suppress power consumption and ensure vibration damping performance.
 また第一実施形態では、フィードバック制御にて算出されるモータジェネレータ12のトルク補償値、具体的には、トルク指令値TM*が、エンジントルクTEを推定する情報として用いられる。故に、クランク軸11cのトルクを直接的に計測するトルクセンサ等の構成が省略可能になる。 In the first embodiment, the torque compensation value of the motor generator 12 calculated by feedback control, specifically, the torque command value TM*, is used as information for estimating the engine torque TE. Therefore, a configuration such as a torque sensor that directly measures the torque of the crankshaft 11c can be omitted.
 さらに第一実施形態では、エンジン11のクランク軸11cが720°回転する期間を所定時間とし、当該期間毎のエンジントルクTEの平均値TaEが閾値を超えたことに基づき、上昇指令が出力される。このように、単純な時間平均ではなく、回転数に相関する角度平均を用いることにより、クランク軸11cに生じる回転脈動のトルク上昇検知への影響が、抑制され得る。また、クランク角の全気筒相当である720CAを1回の平均値TaEの算出範囲とすれば、気筒毎のばらつきの影響を除いたトルク上昇検知が可能になる。 Furthermore, in the first embodiment, a period in which the crankshaft 11c of the engine 11 rotates 720 degrees is defined as a predetermined period of time, and an increase command is output based on the average value TaE of the engine torque TE for each period exceeding a threshold value. . In this way, by using the angular average that correlates to the rotational speed rather than the simple time average, the influence of rotational pulsation occurring in the crankshaft 11c on torque increase detection can be suppressed. Further, if the range for calculating the average value TaE at one time is 720CA, which corresponds to the crank angle of all cylinders, it becomes possible to detect an increase in torque without the influence of variations among cylinders.
 加えて第一実施形態では、エンジン11の点火間隔に相当する期間を所定時間とし、当該期間毎のエンジントルクTEの平均値TaEが閾値を超えたことに基づき、上昇指令が出力される。こうした所定時間の設定によっても、回転脈動のトルク上昇検知への影響は、抑制され得る。さらに、点火間隔に相当する期間(例えば、240CA)を1回の平均値TaEの算出範囲とすれば、エンジントルクTEの上昇が早期に検知可能となる。 In addition, in the first embodiment, a period corresponding to the ignition interval of the engine 11 is set as a predetermined time, and an increase command is output based on the average value TaE of the engine torque TE for each period exceeding a threshold value. By setting such a predetermined time, the influence of rotational pulsation on torque increase detection can be suppressed. Furthermore, if the period corresponding to the ignition interval (for example, 240 CA) is set as the calculation range for one average value TaE, it becomes possible to detect an increase in the engine torque TE at an early stage.
 また第一実施形態では、エンジン11のオイル温度に応じて閾値が変更される。このように、エンジン11の状態を反映した閾値が設定されれば、指令制御部80は、エンジントルクTEの上昇開始を、精度を良く、かつ、早期に検知できる。その結果、エンジントルクTEの上昇検知の適用による応答遅れが最小化され得る。 Furthermore, in the first embodiment, the threshold value is changed depending on the oil temperature of the engine 11. In this way, if the threshold value that reflects the state of the engine 11 is set, the command control unit 80 can detect the start of an increase in the engine torque TE with high accuracy and early. As a result, response delay due to application of engine torque TE increase detection can be minimized.
 さらに第一実施形態では、制御ゲインの切り替えに伴うワインドアップ現象の発生に基づき、積分器42の動作を変更するアンチワインドアップ制御が適用される。その結果、制御ゲインの変更及び回転数の遷移等に伴うオーバーシュート及びアンダーシュートは、さらに抑制可能となる。 Furthermore, in the first embodiment, anti-windup control is applied to change the operation of the integrator 42 based on the occurrence of a windup phenomenon accompanying switching of the control gain. As a result, overshoots and undershoots caused by changes in control gain, changes in rotational speed, etc. can be further suppressed.
 加えて第一実施形態では、積分器42の動作を停止するアンチワインドアップ制御が適用される。こうした積分器42の停止によれば、積分項の超加算は、確実に回避され得る。その結果、オーバーシュート及びアンダーシュートがいっそう抑制され、騒音及び振動がさらに低減可能となる。 Additionally, in the first embodiment, anti-windup control is applied to stop the operation of the integrator 42. By stopping the integrator 42 in this manner, super-addition of integral terms can be reliably avoided. As a result, overshoot and undershoot are further suppressed, and noise and vibration can be further reduced.
 また第一実施形態の指令制御部80は、エンジントルクTEの平均値TaEが閾値を超えたことに基づき、クランク軸11cに直接的に接続されるモータジェネレータ12の回転数を上昇させる。このように、第一実施形態のモータジェネレータ12は、クランク軸11cのトルク変動を減衰するダンパDM、及びクランク軸11cの回転を伝達するギヤGRのいずれも介することなく、クランク軸11cに接続されている。 Further, the command control unit 80 of the first embodiment increases the rotation speed of the motor generator 12 directly connected to the crankshaft 11c based on the fact that the average value TaE of the engine torque TE exceeds the threshold value. In this way, the motor generator 12 of the first embodiment is connected to the crankshaft 11c without using either the damper DM that damps torque fluctuations of the crankshaft 11c or the gear GR that transmits the rotation of the crankshaft 11c. ing.
 こうしたダンパDM及びギヤGR等のレス構成では、ダンパDM及びギヤGRによる回転数脈動の減衰作用が得られない(図1 左下の下段参照)。故に、ダンパDM及びギヤGRが介在する構成(図1 左下の上段参照)と比較して、高ゲインな制振制御をモータジェネレータ12にて実施し、大きな制振トルクを発生させる必要がある。しかし、高ゲインな制振制御を継続した場合、制振制御に不要なエネルギが消費され易くなる。故に、ゲイン切替の実施により、必要最低限のシーンに限定して高ゲインな制振制御を行うことが、ダンパDM及びギヤGRのレス構成を採用した形態では特に有効となる。 With such a configuration without the damper DM and gear GR, the damping effect of the rotational speed pulsation by the damper DM and gear GR cannot be obtained (see the lower left row in FIG. 1). Therefore, compared to the configuration in which the damper DM and the gear GR are present (see the upper left corner of FIG. 1), it is necessary to perform high-gain damping control in the motor generator 12 to generate a large damping torque. However, if high-gain damping control is continued, unnecessary energy is likely to be consumed in damping control. Therefore, performing high-gain damping control limited to the minimum necessary scenes by performing gain switching is particularly effective in a configuration in which the damper DM and gear GR are not configured.
 さらに、騒音及び振動の問題を生じさせることなく、ダンパDM及びギヤGRのレス構成が採用可能になれば、パワーユニットの簡素化及び低コスト化が実現され得る。加えて、ダンパDM及びギヤGRの特性を制振トルクの演算に反映することが不要になるため、制振制御の演算負荷が軽減され得る。また、ダンパDM及びギヤGRのレス構成によれば、パワーユニットの軸長が短縮され得るため、車両への搭載性が向上する。その結果、パワーユニットは、幅方向の空間確保が難しい小型車両のエンジンルーム内にも収容可能となる。 Furthermore, if it becomes possible to adopt a structure without damper DM and gear GR without causing noise and vibration problems, the power unit can be simplified and reduced in cost. In addition, since it is not necessary to reflect the characteristics of the damper DM and gear GR in the calculation of damping torque, the calculation load of vibration damping control can be reduced. Moreover, according to the configuration without the damper DM and gear GR, the axial length of the power unit can be shortened, so that the mountability on the vehicle is improved. As a result, the power unit can be accommodated even in the engine room of a small vehicle where it is difficult to secure space in the width direction.
 さらに第一実施形態の指令制御部80は、車両において発電専用に設けられたモータジェネレータ12へ向けて上昇指令を出力する。こうした構成では、モータジェネレータ12への路面等からの外乱入力が無くなる。故に、エンジントルクTEの脈動を効果的に抑制可能な制振制御が実施される。 Further, the command control unit 80 of the first embodiment outputs a lift command to the motor generator 12 provided exclusively for power generation in the vehicle. With such a configuration, there is no disturbance input to the motor generator 12 from the road surface or the like. Therefore, vibration damping control that can effectively suppress the pulsation of the engine torque TE is performed.
 加えて第一実施形態の指令制御部80は、アウターロータ型のモータジェネレータ12へ向けて上昇指令を出力する。アウターロータ型のモータジェネレータ12は、大トルクを発生させ易いため、発生可能なトルクが同一である場合、インナーロータ型の構成よりも軸長を低減させ易い。故に、アウターロータ型のモータジェネレータ12の採用によれば、パワーユニットの搭載性がいっそう向上し得る。さらに、アウターロータ型のモータジェネレータ12では、インナーロータ型の構成よりもロータ慣性の確保が容易となる。故に、ロータ慣性を利用した脈動低減効果が発揮され易くなる。 In addition, the command control unit 80 of the first embodiment outputs a lift command to the outer rotor type motor generator 12. Since the outer rotor type motor generator 12 easily generates large torque, it is easier to reduce the axial length than the inner rotor type configuration when the torque that can be generated is the same. Therefore, by adopting the outer rotor type motor generator 12, the mountability of the power unit can be further improved. Furthermore, in the outer rotor type motor generator 12, it is easier to ensure rotor inertia than in the inner rotor type configuration. Therefore, the pulsation reduction effect using rotor inertia is more likely to be achieved.
 尚、第一実施形態では、クランク軸11cが「出力軸」に相当し、モータジェネレータ12が「回転電機」に相当し、ダンパDMが「ダンパ部」に相当し、ギヤGRが「ギヤ部」に相当する。また、MG-ECU23が「処理部」及び「モータ制御装置」に相当し、MG制御系30が「制御系」に相当する。 In the first embodiment, the crankshaft 11c corresponds to an "output shaft," the motor generator 12 corresponds to a "rotating electric machine," the damper DM corresponds to a "damper section," and the gear GR corresponds to a "gear section." corresponds to Further, the MG-ECU 23 corresponds to a "processing section" and a "motor control device", and the MG control system 30 corresponds to a "control system".
 (第二実施形態)
 図10に示す本開示の第二実施形態は、第一実施形態の変形例である。第二実施形態では、回転数の指令値NCの遷移が多段化されている。指令制御部80は、回転数を上昇させる上昇遷移期間UTPにおいて、経過時間と回転数の指令値NCとの関係を示す変化線(以下、回転数変化線Ln)の傾きが段階的に変化するように上昇指令を出力する。指令制御部80は、回転数変化線Lnの傾きを2段階に変化させる。
(Second embodiment)
The second embodiment of the present disclosure shown in FIG. 10 is a modification of the first embodiment. In the second embodiment, the rotational speed command value NC changes in multiple stages. The command control unit 80 causes the slope of a change line (hereinafter referred to as a rotation speed change line Ln) that indicates the relationship between the elapsed time and the rotation speed command value NC to change in stages during an upward transition period UTP in which the rotation speed is increased. Outputs the ascending command as follows. The command control unit 80 changes the slope of the rotation speed change line Ln in two stages.
 上昇遷移期間UTPは、発電増加指令が出力される時刻t1から、回転数が第2回転数Ne2となる時刻t4までの期間である。上昇遷移期間UTPは、第1期間TP1と、第2期間TP2とに分けられている。第1期間TP1は、上昇遷移期間UTPの前半の期間であり、時刻t1から時刻t3までの期間である。時刻t3は、エンジントルクTEが立ち上がる時刻t2よりも後に設定される。時刻t3は、第一実施形態と同様のトルク検知による時刻t2の特定に基づき、時刻t2の所定時間後に逐次設定される。時刻t3は、時刻t2よりも必ず後になるような所定時間を時刻t1に加えた時刻に設定されてもよい。 The upward transition period UTP is a period from time t1 when the power generation increase command is output to time t4 when the rotational speed becomes the second rotational speed Ne2. The upward transition period UTP is divided into a first period TP1 and a second period TP2. The first period TP1 is the first half of the rising transition period UTP, and is a period from time t1 to time t3. Time t3 is set after time t2 at which engine torque TE rises. The time t3 is sequentially set a predetermined time after the time t2 based on the identification of the time t2 by torque detection similar to the first embodiment. Time t3 may be set to time t1 plus a predetermined time that always comes after time t2.
 第1期間TP1での回転数変化線Lnの傾きは、第2期間TP2での回転数変化線Lnの傾きよりも小さくされている。回転数変化線Lnの傾きは、モータジェネレータ12が力行動作をしないような値に調整されている。故に、時刻1にて、回転数の上昇が開始されても、上昇率が小さいため、第1期間TP1におけるモータジェネレータ12のトルクは、マイナスの範囲内に維持される。そして、時刻t2にて、エンジントルクTEの上昇が開始されると、時刻t3にて、より強い回転数の上昇指令が出力される。その結果、第2期間TP2におけるモータジェネレータ12のトルクも、マイナスの範囲内で推移する。 The slope of the rotation speed change line Ln in the first period TP1 is made smaller than the slope of the rotation speed change line Ln in the second period TP2. The slope of the rotation speed change line Ln is adjusted to a value such that the motor generator 12 does not perform a power operation. Therefore, even if the rotation speed starts to increase at time 1, the rate of increase is small, so the torque of the motor generator 12 during the first period TP1 is maintained within the negative range. Then, at time t2, the engine torque TE starts to increase, and at time t3, a stronger command to increase the rotational speed is output. As a result, the torque of the motor generator 12 during the second period TP2 also changes within the negative range.
 ここまで説明した第二実施形態でも、モータジェネレータ12の回転数の上昇が適切なタイミングで実施され得る。その結果、制御の複雑化を回避しつつ、エンジン11の応答遅れに起因する電力消費が抑制可能となる。 Also in the second embodiment described so far, the rotation speed of the motor generator 12 can be increased at an appropriate timing. As a result, power consumption caused by response delay of the engine 11 can be suppressed while avoiding complication of control.
 加えて第二実施形態では、回転数を上昇させる上昇遷移期間UTPにおいて、回転数変化線Lnの傾きが段階的に変化するように上昇指令が出力される。そして、第2期間TP2における変化線の傾きは、第1期間TP1における変化線の傾きよりも大きくされる。このように、第1期間TP1の傾きを抑えることで、立ち上がり直後の力行動作が、適切に抑制され得る。さらに、第2期間TP2の傾きを大きくすることにより、応答遅れの抑制も可能になる。 In addition, in the second embodiment, during the upward transition period UTP in which the rotational speed is increased, an increase command is output so that the slope of the rotational speed change line Ln changes in stages. The slope of the change line in the second period TP2 is made larger than the slope of the change line in the first period TP1. In this way, by suppressing the slope of the first period TP1, the power action immediately after rising can be appropriately suppressed. Furthermore, by increasing the slope of the second period TP2, response delay can also be suppressed.
 尚、第二実施形態では、回転数変化線Lnが「変化線」に相当し、第1期間TP1が「上昇遷移期間の前半」に相当し、第2期間TP2が「上昇遷移期間の後半」に相当する。 In the second embodiment, the rotational speed change line Ln corresponds to a "change line", the first period TP1 corresponds to the "first half of the upward transition period", and the second period TP2 corresponds to the "second half of the upward transition period". corresponds to
 (第三実施形態)
 図11に示す本開示の第三実施形態は、第一実施形態の別の変形例である。第三実施形態の速度PI制御器40は、第一実施形態の積分器停止回路52(図3参照)に替わる構成として減算部55,57及び補正器56を含むアンチワインドアップ制御部50を有している。速度PI制御器40には、リミッタ51、減算部55,57及び補正器56により、積分器42から出力される積分信号を補正係数Kiaにより補正するアンチワインドアップ制御が適用される。
(Third embodiment)
The third embodiment of the present disclosure shown in FIG. 11 is another modification of the first embodiment. The speed PI controller 40 of the third embodiment includes an anti-windup control section 50 including subtraction sections 55, 57 and a corrector 56 as a configuration replacing the integrator stop circuit 52 (see FIG. 3) of the first embodiment. are doing. Anti-windup control is applied to the speed PI controller 40 in which a limiter 51, subtraction units 55, 57, and a corrector 56 correct the integral signal output from the integrator 42 using a correction coefficient Kia.
 減算部55は、リミッタ51の入力値からリミッタ51の出力値を減算した値を、補正器56に出力する。リミッタ51が作動していない場合、減算部55の出力は、実質的にゼロとなる。この場合、補正器56からの出力もゼロとなるため、減算部57から積分器42には、電気角速度指令値ωe*が入力される。その結果、積分器42から出力される積分信号は、補正されない状態となる。 The subtraction unit 55 outputs a value obtained by subtracting the output value of the limiter 51 from the input value of the limiter 51 to the corrector 56. When the limiter 51 is not activated, the output of the subtractor 55 becomes substantially zero. In this case, since the output from the corrector 56 is also zero, the electrical angular velocity command value ωe* is input from the subtraction unit 57 to the integrator 42. As a result, the integrated signal output from the integrator 42 is not corrected.
 一方、リミッタ51が作動している場合、減算部55は、入出力間の差分に応じた値を出力する。この場合、補正器56は、減算部55の出力値に補正係数Kiaを乗算した値(以下、ワインドアップ補正値)を、減算部57に出力する。減算部57は、電気角速度指令値ωe*からワインドアップ補正値を減算した値を、積分器42に出力する。その結果、積分器42から出力される積分信号が補正される。この場合、積分器42から加算部46への出力が過大となると、ワインドアップ補正値も増加する。故に、積分項の超加算の抑制が可能となる。 On the other hand, when the limiter 51 is operating, the subtraction unit 55 outputs a value according to the difference between input and output. In this case, the corrector 56 outputs a value obtained by multiplying the output value of the subtraction unit 55 by the correction coefficient Kia (hereinafter referred to as a windup correction value) to the subtraction unit 57. The subtraction unit 57 outputs to the integrator 42 a value obtained by subtracting the windup correction value from the electrical angular velocity command value ωe*. As a result, the integral signal output from the integrator 42 is corrected. In this case, if the output from the integrator 42 to the adder 46 becomes excessive, the windup correction value also increases. Therefore, it is possible to suppress superaddition of integral terms.
 ここまで説明した第三実施形態でも、モータジェネレータ12の回転数の上昇が適切なタイミングで実施され得るため、第一実施形態と同様の効果を奏し、エンジン11の応答遅れに起因する電力消費が抑制可能となる。加えて第三実施形態では、補正係数Kiaを用いたワインドアップ補正値により積分器42から出力される積分信号を補正するアンチワインドアップ制御が適用される。こうした補正機能の利用によれば、積分項の超加算が発生し難くなる。その結果、ゲイン変更及び回転数遷移に伴うオーバーシュート及びアンダーシュートも発生し難くなるため、騒音及び振動の低減が可能となる。 Also in the third embodiment described so far, since the rotation speed of the motor generator 12 can be increased at an appropriate timing, the same effect as the first embodiment can be achieved, and the power consumption due to the response delay of the engine 11 can be reduced. It becomes possible to suppress it. Additionally, in the third embodiment, anti-windup control is applied that corrects the integral signal output from the integrator 42 using a windup correction value using the correction coefficient Kia. By using such a correction function, super-addition of integral terms becomes less likely to occur. As a result, overshoots and undershoots associated with gain changes and rotational speed changes are less likely to occur, making it possible to reduce noise and vibration.
 尚、第三実施形態でも、リミッタ51は、積分器42と加算部46との間に配置されてもよい。こうした変形例でも、アンチワインドアップ制御部50は、積分器42の出力(積分信号)を、補正係数Kiaを用いたワインドアップ補正値によって補正し、ワインドアップ現象を発生し難くすることができる。 Note that in the third embodiment as well, the limiter 51 may be placed between the integrator 42 and the adder 46. Even in such a modification, the anti-windup control unit 50 can correct the output (integral signal) of the integrator 42 using a windup correction value using the correction coefficient Kia, thereby making it difficult for the windup phenomenon to occur.
 (第四実施形態)
 図12に示す本開示の第四実施形態は、第一実施形態のさらに別の変形例である。第四実施形態のMG制御系30には、速度PI制御器40(図2参照)に替えて、2つの速度PI制御器140a,140bと、制御切替判定部140sとが設けられている。各速度PI制御器140a,140bには、アンチワインドアップ制御部50(図3参照)に相当する構成は設けられていない。
(Fourth embodiment)
The fourth embodiment of the present disclosure shown in FIG. 12 is yet another modification of the first embodiment. The MG control system 30 of the fourth embodiment is provided with two speed PI controllers 140a and 140b and a control switching determination section 140s instead of the speed PI controller 40 (see FIG. 2). Each speed PI controller 140a, 140b is not provided with a configuration corresponding to the anti-windup control section 50 (see FIG. 3).
 速度PI制御器(以下、通常制御器)140aは、ワインドアップ現象が発生していない通常時に利用され、電気角速度偏差に応じたトルク指令値TM*を演算する。通常制御器140aは、比例器、積分器、及び加算部を有している。比例器は、電気角速度偏差に速度比例ゲインKps1を乗算した値を出力する。積分器は、電気角速度偏差の時間積分値に速度積分ゲインKis1を乗算した値を出力する。加算部は、比例器の出力値に積分器の出力値を加算した値を、トルク指令値TM*として出力する。 The speed PI controller (hereinafter referred to as the normal controller) 140a is used during normal times when no windup phenomenon occurs, and calculates the torque command value TM* according to the electrical angular velocity deviation. The normal controller 140a has a proportional device, an integrator, and an adder. The proportional device outputs a value obtained by multiplying the electrical angular velocity deviation by the velocity proportional gain Kps1. The integrator outputs a value obtained by multiplying the time integral value of the electrical angular velocity deviation by the velocity integral gain Kis1. The addition section outputs a value obtained by adding the output value of the integrator to the output value of the proportional device as a torque command value TM*.
 速度PI制御器(以下、異常制御器)140bは、ワインドアップ現象が発生した異常時に利用され、電気角速度偏差に応じたトルク指令値TM*を演算する。異常制御器140bは、比例器、積分器、及び加算部を有している。比例器は、電気角速度偏差に速度比例ゲインKps2を乗算した値を出力する。積分器は、電気角速度偏差の時間積分値に速度積分ゲインKis2を乗算した値を出力する。速度積分ゲインKis2は、通常制御器140aの速度積分ゲインKis1と比較して、積分項の超加算を抑制する値に設定されている。加算部は、比例器の出力値に積分器の出力値を加算した値を、トルク指令値TM*として出力する。 The speed PI controller (hereinafter referred to as an abnormality controller) 140b is used when an abnormality occurs when a windup phenomenon occurs, and calculates a torque command value TM* according to the electrical angular velocity deviation. The abnormality controller 140b includes a proportional device, an integrator, and an adder. The proportional device outputs a value obtained by multiplying the electrical angular velocity deviation by the velocity proportional gain Kps2. The integrator outputs a value obtained by multiplying the time integral value of the electrical angular velocity deviation by the velocity integral gain Kis2. The speed integral gain Kis2 is set to a value that suppresses super-addition of the integral term compared to the speed integral gain Kis1 of the normal controller 140a. The addition section outputs a value obtained by adding the output value of the integrator to the output value of the proportional device as a torque command value TM*.
 制御切替判定部140sは、制御ゲインの切り替えに伴うワインドアップ現象の発生に基づき、通常制御器140aから異常制御器140bへの切り替えを適用する。制御切替判定部140sは、パワーユニットの動作に関連する信号に基づき、通常制御器140a及び異常制御器140bの切り替えを実施する。一例として、制御切替判定部140sは、機械角速度指令値ωm*と機械角速度応答値ωmとを比較し、これらの差分が所定の閾値を超えた場合に、通常制御器140aから異常制御器140bに切り替える。具体的には、指令値NCからの回転数の乖離が100rpmを超えた場合に、異常制御器140bへの切り替えが実施される。 The control switching determination unit 140s applies switching from the normal controller 140a to the abnormal controller 140b based on the occurrence of a windup phenomenon accompanying switching of the control gain. The control switching determination unit 140s performs switching between the normal controller 140a and the abnormal controller 140b based on a signal related to the operation of the power unit. As an example, the control switching determination unit 140s compares the mechanical angular velocity command value ωm* and the mechanical angular velocity response value ωm, and when the difference between them exceeds a predetermined threshold value, the control switching determination unit 140s switches the control switching from the normal controller 140a to the abnormal controller 140b. Switch. Specifically, when the deviation of the rotation speed from the command value NC exceeds 100 rpm, switching to the abnormality controller 140b is performed.
 ここまで説明した第四実施形態でも、モータジェネレータ12の回転数の上昇が適切なタイミングで実施され得るため、第一実施形態と同様の効果を奏し、エンジン11の応答遅れに起因する電力消費が抑制可能となる。加えて第四実施形態では、制御ゲインの切り替えに伴うワインドアップ現象の発生に基づき、通常制御器140aから異常制御器140bへの切り替えが適用される。こうした異常制御器140bへの切り替えによれば、積分項の超加算の発生が抑制され得る。その結果、ゲイン変更及び回転数遷移に伴うオーバーシュート及びアンダーシュートの発生も抑制され得るため、騒音及び振動の低減が可能となる。 In the fourth embodiment described so far, the rotation speed of the motor generator 12 can be increased at an appropriate timing, so the same effect as in the first embodiment can be achieved, and the power consumption due to the response delay of the engine 11 can be reduced. It becomes possible to suppress it. In addition, in the fourth embodiment, switching from the normal controller 140a to the abnormal controller 140b is applied based on the occurrence of a windup phenomenon accompanying switching of the control gain. By switching to the abnormality controller 140b in this manner, the occurrence of superaddition of integral terms can be suppressed. As a result, the occurrence of overshoots and undershoots accompanying gain changes and rotational speed changes can be suppressed, making it possible to reduce noise and vibration.
 (第五実施形態)
 図13に示す本開示の第五実施形態は、第一実施形態のさらに別の変形例である。第五実施形態の速度PI制御器40は、2つの微分器143を有している。微分器143は、比例器41及び積分器42の各前段に接続されている。微分器143は、電気角速度偏差を時間微分した値を比例器41及び積分器42に出力する。微分器143を含むことにより、速度PI制御器40は、速度形式の制御系となり、微分器143を含まない構成に対して電気角速度偏差に対する応答性を向上させる。
(Fifth embodiment)
The fifth embodiment of the present disclosure shown in FIG. 13 is yet another modification of the first embodiment. The speed PI controller 40 of the fifth embodiment has two differentiators 143. The differentiator 143 is connected to each previous stage of the proportional device 41 and the integrator 42. The differentiator 143 outputs a time-differentiated value of the electrical angular velocity deviation to the proportional device 41 and the integrator 42 . By including the differentiator 143, the speed PI controller 40 becomes a speed-type control system, and improves responsiveness to electrical angular velocity deviations compared to a configuration that does not include the differentiator 143.
 このような第五実施形態でも、モータジェネレータ12の回転数の上昇が適切なタイミングで実施され得るため、第一実施形態と同様の効果を奏し、エンジン11の応答遅れに起因する電力消費が抑制可能となる。加えて第五実施形態では、積分器42の前段に微分器143が接続されることで、ゲイン変更及び回転数遷移に伴う積分項の超加算が発生し難くなる。その結果、オーバーシュート及びアンダーシュートを抑制し、騒音及び振動を低減することが可能となる。 In the fifth embodiment as well, since the rotation speed of the motor generator 12 can be increased at an appropriate timing, the same effects as in the first embodiment can be achieved, and power consumption caused by the delayed response of the engine 11 can be suppressed. It becomes possible. In addition, in the fifth embodiment, by connecting the differentiator 143 before the integrator 42, super-addition of integral terms accompanying gain changes and rotational speed transitions becomes less likely to occur. As a result, overshoot and undershoot can be suppressed, and noise and vibration can be reduced.
 (他の実施形態)
 以上、本開示による複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
(Other embodiments)
Although multiple embodiments according to the present disclosure have been described above, the present disclosure is not to be construed as being limited to the above embodiments, and may be applied to various embodiments and combinations within the scope of the gist of the present disclosure. can do.
 上記実施形態の変形例1の制御システム100は、図14に示すパラレル方式のハイブリッドシステム(パワーユニット)に適用される。変形例1のパワーユニットにおいて、モータジェネレータ12は、駆動軸19と接続されている。こうしたモータジェネレータ12に対しても、上記実施形態にて説明したモータ制御方法が適用可能となる。また、モータジェネレータ12は、スタータ及びオルタネータを兼ねた構成として、動力伝達用のベルト等を介してエンジン11と接続される電動機であってもよい。 The control system 100 of Modification 1 of the above embodiment is applied to a parallel hybrid system (power unit) shown in FIG. 14. In the power unit of Modification 1, motor generator 12 is connected to drive shaft 19 . The motor control method described in the above embodiment can also be applied to such a motor generator 12. Further, the motor generator 12 may be an electric motor connected to the engine 11 via a power transmission belt or the like, serving as both a starter and an alternator.
 上記実施形態の変形例2のパワートレインでは、エンジン11が駆動軸19と接続された状態と、エンジン11がモータジェネレータ12と接続された状態とが、相互に切り替え可能である。エンジン11が駆動軸19と接続された状態では、エンジン11の出力による走行が可能になる。こうした変形例2でも、エンジン11が駆動軸19と切り離され、モータジェネレータ12と接続された状態において、上記実施形態にて説明したモータ制御方法が適用可能になる。尚、変形例2においても、モータジェネレータ12は、発電専用の構成となる。 In the power train of Modification 2 of the above embodiment, a state in which the engine 11 is connected to the drive shaft 19 and a state in which the engine 11 is connected to the motor generator 12 are mutually switchable. When the engine 11 is connected to the drive shaft 19, the vehicle can travel by the output of the engine 11. Even in such modification 2, the motor control method described in the above embodiment can be applied in a state where the engine 11 is separated from the drive shaft 19 and connected to the motor generator 12. Note that also in the second modification, the motor generator 12 has a configuration exclusively for power generation.
 さらに、上記実施形態にて説明したモータ制御方法は、シリーズパラレル方式のハイブリッドシステムにおいて、動力分割機構を介してエンジン11と接続されるモータジェネレータ12,14の少なくとも一方にも適用可能である。また、いずれの形式のパワーユニットにおいても、モータジェネレータ12とエンジン11との間、又はモータジェネレータ12と駆動軸19との間に、ダンパ、ギヤ、クラッチ及び変速機等の構成が設けられていてもよい。 Further, the motor control method described in the above embodiment can also be applied to at least one of the motor generators 12 and 14 connected to the engine 11 via a power split mechanism in a series-parallel hybrid system. Furthermore, in any type of power unit, components such as a damper, a gear, a clutch, a transmission, etc. may be provided between the motor generator 12 and the engine 11 or between the motor generator 12 and the drive shaft 19. good.
 上記実施形態の変形例3では、MG制御系30に関連する機能ブロックの一部が、MG-ECU23とは別のECU(例えばハイブリッドECU21等)によって構成される。また、ゲイン切替部70及び指令制御部80の少なくとも1つに相当する機能部は、MG-ECU23とは別のECU、又はインバータ13に設けられていてもよい。 In the third modification of the above embodiment, some of the functional blocks related to the MG control system 30 are configured by an ECU (eg, hybrid ECU 21, etc.) that is different from the MG-ECU 23. Further, a functional unit corresponding to at least one of the gain switching unit 70 and the command control unit 80 may be provided in an ECU different from the MG-ECU 23 or in the inverter 13.
 上記実施形態の変形例4では、MG-ECU23の処理機能は、ハイブリッドECU21又はエンジンECU22に統合されている。また、上記実施形態の変形例5では、ECU21~23の処理機能を全て備えた1つの統合ECUによって制御システム100が構成されている。さらに、上記実施形態の変形例6では、MG-ECU23の処理機能は、インバータに統合されている。こうした変形例4~6のように、制御システム100に含まれるECUの構成は、適宜変更されてよい。 In the fourth modification of the above embodiment, the processing function of the MG-ECU 23 is integrated into the hybrid ECU 21 or the engine ECU 22. Further, in the fifth modification of the above embodiment, the control system 100 is configured by one integrated ECU that has all the processing functions of the ECUs 21 to 23. Furthermore, in the sixth modification of the above embodiment, the processing function of the MG-ECU 23 is integrated into the inverter. As in Modifications 4 to 6, the configuration of the ECU included in the control system 100 may be changed as appropriate.
 上記実施形態にて、各ECUによって提供されていた種々の機能は、ソフトウェア及びそれを実行するハードウェア、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの複合的な組合せによっても提供可能である。こうした機能がハードウェアとしての電子回路によって提供される場合、各機能は、多数の論理回路を含むデジタル回路、又はアナログ回路によっても提供可能である。 The various functions provided by each ECU in the above embodiments can be provided by software and hardware that executes it, only software, only hardware, or a complex combination thereof. If these functions are provided by electronic circuits as hardware, each function can also be provided by digital circuits that include multiple logic circuits, or by analog circuits.
 上記実施形態の各ECUに設けられるプロセッサは、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)等の演算コアを少なくとも一つ含む構成であってよい。さらに、FPGA(Field-Programmable Gate Array)、NPU(Neural network Processing Unit)及び他の専用機能を備えたIPコア等が処理部として各ECUに設けられていてもよい。 The processor provided in each ECU of the above embodiment may include at least one arithmetic core such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). Furthermore, each ECU may be provided with an FPGA (Field-Programmable Gate Array), an NPU (Neural Network Processing Unit), an IP core with other dedicated functions, etc. as a processing unit.
 上記実施形態の各記憶部として採用され、本開示のモータ制御方法を可能にするプログラムを記憶する記憶媒体(non-transitory tangible storage medium)の形態は、適宜変更されてよい。例えば記憶媒体は、各ECUの回路基板上に設けられた構成に限定されず、メモリカード等の形態で提供され、スロット部に挿入されて、ECUのバスに電気的に接続される構成であってよい。さらに、記憶媒体は、コンピュータへのプログラムのコピー元又は配信元として利用される光学ディスク、ハードディスクドライブ、及びソリッドステートドライブ等であってもよい。 The form of the storage medium (non-transitory tangible storage medium) employed as each storage unit in the above embodiments and storing the program that enables the motor control method of the present disclosure may be changed as appropriate. For example, the storage medium is not limited to the configuration provided on the circuit board of each ECU, but may be provided in the form of a memory card, etc., and configured to be inserted into a slot and electrically connected to the bus of the ECU. It's fine. Further, the storage medium may be an optical disk, a hard disk drive, a solid state drive, etc. used as a source for copying or distributing programs to a computer.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサを構成する専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の装置及びその手法は、専用ハードウェア論理回路により、実現されてもよい。もしくは、本開示に記載の装置及びその手法は、コンピュータプログラムを実行するプロセッサと一つ以上のハードウェア論理回路との組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The control unit and its method described in the present disclosure may be implemented by a dedicated computer comprising a processor programmed to perform one or more functions embodied by a computer program. Alternatively, the apparatus and techniques described in this disclosure may be implemented with dedicated hardware logic circuits. Alternatively, the apparatus and techniques described in this disclosure may be implemented by one or more special purpose computers configured by a combination of a processor executing a computer program and one or more hardware logic circuits. The computer program may also be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.
 (技術的思想の開示)
 この明細書は、以下に列挙する複数の項に記載された複数の技術的思想を開示している。いくつかの項は、後続の項において先行する項を択一的に引用する多項従属形式(a multiple dependent form)により記載されている場合がある。さらに、いくつかの項は、他の多項従属形式の項を引用する多項従属形式(a multiple dependent form referring to another multiple dependent form)により記載されている場合がある。これらの多項従属形式で記載された項は、複数の技術的思想を定義している。
(Disclosure of technical ideas)
This specification discloses multiple technical ideas described in multiple sections listed below. Some sections may be written in a multiple dependent form, in which subsequent sections alternatively cite preceding sections. Additionally, some terms may be written in a multiple dependent form referring to another multiple dependent form. The terms written in these multiple dependent forms define multiple technical ideas.
 (技術的思想1)
 エンジン(11)と接続される回転電機(12)を制御するモータ制御装置であって、
 前記回転電機の回転数を検出した回転数検出値を用いて、前記回転数が指令値(NC)に近づくようにフィードバック制御する制御系(30)、
 前記エンジンの前記回転数が上昇するとき、前記エンジンから出力されるエンジントルク(TE)の所定時間における平均値(TaE)が閾値を超えたことに基づき、前記回転電機の前記指令値を上昇させる上昇指令を出力する指令制御部(80)と、
 を備えるモータ制御装置。
 (技術的思想2)
 前記制御系は、前記エンジンのトルク変動に対し逆位相となる制振トルクを前記回転電機に出力させる技術的思想1に記載のモータ制御装置。
 (技術的思想3)
 前記指令制御部は、前記フィードバック制御にて算出される前記回転電機のトルク補償値(TM*)を、前記エンジントルクを推定する情報として用いる技術的思想1又は2に記載のモータ制御装置。
 (技術的思想4)
 前記指令制御部は、前記エンジンの出力軸(11c)が720°回転する期間を前記所定時間とし、当該期間毎の前記エンジントルクの前記平均値が前記閾値を超えたことに基づき前記上昇指令を出力する技術的思想1~3のいずれか一項に記載のモータ制御装置。
 (技術的思想5)
 前記指令制御部は、前記エンジンの点火間隔に相当する期間を前記所定時間とし、当該期間毎の前記エンジントルクの前記平均値が前記閾値を超えたことに基づき前記上昇指令を出力する技術的思想1~3のいずれか一項に記載のモータ制御装置。
 (技術的思想6)
 前記指令制御部は、前記エンジンのオイル温度に応じて前記閾値を変更する技術的思想1~5のいずれか一項に記載のモータ制御装置。
 (技術的思想7)
 前記指令制御部は、前記回転数を上昇させる上昇遷移期間(UTP)において、経過時間と前記回転数の前記指令値との関係を示す変化線(Ln)の傾きが段階的に変化するように前記上昇指令を出力し、
 前記上昇遷移期間の後半(TP2)における前記変化線の傾きは、前記上昇遷移期間の前半(TP1)における前記変化線の傾きよりも大きい技術的思想1~6のいずれか一項に記載のモータ制御装置。
 (技術的思想8)
 前記制御系は、前記回転数のワインドアップ現象の発生に基づき、前記フィードバック制御に用いる積分器(42)の動作を変更するアンチワインドアップ制御を適用する技術的思想1~7のいずれか一項に記載のモータ制御装置。
 (技術的思想9)
 前記制御系は、前記積分器の動作を停止する前記アンチワインドアップ制御を適用する技術的思想8に記載のモータ制御装置。
 (技術的思想10)
 前記制御系は、前記積分器から出力される積分信号を補正係数により補正する前記アンチワインドアップ制御を適用する技術的思想8に記載のモータ制御装置。
 (技術的思想11)
 前記制御系は、前記制御ゲインの切り替えに伴うワインドアップ現象の発生に基づき、通常制御器(140a)から異常制御器(140b)への切り替えを適用する技術的思想1~7のいずれか一項に記載のモータ制御装置。
 (技術的思想12)
 前記制御系は、比例器(41)及び積分器(42)の各前段に接続される微分器(143)を含む技術的思想1~7のいずれか一項に記載のモータ制御装置。
 (技術的思想13)
 前記指令制御部は、前記エンジントルクの前記平均値が前記閾値を超えたことに基づき、前記エンジンの出力軸(11c)に直接的に接続される前記回転電機の前記回転数を上昇させる技術的思想1~12のいずれか一項に記載のモータ制御装置。
 (技術的思想14)
 前記回転電機は、前記出力軸のトルク変動を減衰するダンパ部(DM)、及び前記出力軸の回転を伝達するギヤ部(GR)の少なくとも一方を介することなく前記出力軸に接続される技術的思想13に記載のモータ制御装置。
 (技術的思想15)
 前記指令制御部は、車両において発電専用に設けられた前記回転電機へ向けて前記上昇指令を出力する技術的思想1~14のいずれか一項に記載のモータ制御装置。
 (技術的思想16)
 前記指令制御部は、アウターロータ型の前記回転電機へ向けて前記上昇指令を出力する技術的思想1~15のいずれか一項に記載のモータ制御装置。
 (技術的思想17)
 エンジン(11)と接続される回転電機(12)を制御するモータ制御方法であって、
 前記回転電機の回転数を検出した回転数検出値を用いて、前記回転数が指令値(NC)に近づくようにフィードバック制御し、
 前記エンジンの前記回転数が上昇するとき、前記エンジンから出力されるエンジントルク(TE)の所定時間における平均値(TaE)が閾値を超えたことに基づき、前記回転電機の前記指令値を上昇させる上昇指令を出力する(S31~S34)、
 というステップを、少なくとも一つの処理部(23)にて実行される処理に含むモータ制御方法。
(Technical thought 1)
A motor control device that controls a rotating electric machine (12) connected to an engine (11),
a control system (30) that performs feedback control so that the rotation speed approaches a command value (NC) using a rotation speed detection value obtained by detecting the rotation speed of the rotating electrical machine;
When the rotational speed of the engine increases, the command value of the rotating electrical machine is increased based on the fact that an average value (TaE) of engine torque (TE) output from the engine over a predetermined time exceeds a threshold value. a command control unit (80) that outputs a rise command;
A motor control device comprising:
(Technical thought 2)
The motor control device according to technical idea 1, wherein the control system causes the rotating electric machine to output a damping torque having a phase opposite to the torque fluctuation of the engine.
(Technical thought 3)
The motor control device according to technical concept 1 or 2, wherein the command control unit uses a torque compensation value (TM*) of the rotating electric machine calculated by the feedback control as information for estimating the engine torque.
(Technical thought 4)
The command control unit sets a period in which the output shaft (11c) of the engine rotates by 720 degrees as the predetermined time, and issues the increase command based on the fact that the average value of the engine torque for each period exceeds the threshold value. The motor control device according to any one of technical ideas 1 to 3 for outputting.
(Technical Thought 5)
The command control unit sets a period corresponding to an ignition interval of the engine as the predetermined time, and the technical idea is to output the increase command based on the average value of the engine torque for each period exceeding the threshold value. The motor control device according to any one of 1 to 3.
(Technical Thought 6)
The motor control device according to any one of technical ideas 1 to 5, wherein the command control unit changes the threshold value depending on the oil temperature of the engine.
(Technical Thought 7)
The command control unit is configured such that the slope of a change line (Ln) indicating the relationship between the elapsed time and the command value of the rotation speed changes in stages during a rising transition period (UTP) in which the rotation speed is increased. outputting the rising command;
The motor according to any one of technical ideas 1 to 6, wherein the slope of the change line in the second half of the upward transition period (TP2) is greater than the slope of the change line in the first half of the upward transition period (TP1). Control device.
(Technical Thought 8)
According to any one of technical ideas 1 to 7, the control system applies anti-windup control that changes the operation of the integrator (42) used for the feedback control based on the occurrence of the rotation speed windup phenomenon. The motor control device described in .
(Technical Thought 9)
The motor control device according to technical idea 8, wherein the control system applies the anti-windup control that stops the operation of the integrator.
(Technical Thought 10)
The motor control device according to technical concept 8, wherein the control system applies the anti-windup control that corrects the integral signal output from the integrator using a correction coefficient.
(Technical Thought 11)
The control system adopts any one of technical ideas 1 to 7, in which switching from a normal controller (140a) to an abnormal controller (140b) is applied based on the occurrence of a windup phenomenon accompanying switching of the control gain. The motor control device described in .
(Technical Thought 12)
The motor control device according to any one of technical ideas 1 to 7, wherein the control system includes a differentiator (143) connected to each preceding stage of a proportional device (41) and an integrator (42).
(Technical Thought 13)
The command control unit is configured to increase the rotational speed of the rotating electric machine directly connected to the output shaft (11c) of the engine based on the fact that the average value of the engine torque exceeds the threshold value. The motor control device according to any one of Ideas 1 to 12.
(Technical Thought 14)
The rotating electrical machine is technically connected to the output shaft without going through at least one of a damper part (DM) that damps torque fluctuations of the output shaft and a gear part (GR) that transmits the rotation of the output shaft. The motor control device according to Idea 13.
(Technical Thought 15)
The motor control device according to any one of technical ideas 1 to 14, wherein the command control unit outputs the ascending command to the rotating electric machine provided exclusively for power generation in the vehicle.
(Technical Thought 16)
16. The motor control device according to any one of technical ideas 1 to 15, wherein the command control unit outputs the ascending command to the outer rotor type rotating electric machine.
(Technical Thought 17)
A motor control method for controlling a rotating electric machine (12) connected to an engine (11),
Feedback control is performed so that the rotation speed approaches a command value (NC) using a rotation speed detection value obtained by detecting the rotation speed of the rotating electric machine,
When the rotational speed of the engine increases, the command value of the rotating electrical machine is increased based on the fact that an average value (TaE) of engine torque (TE) output from the engine over a predetermined time exceeds a threshold value. Output a rising command (S31 to S34),
A motor control method including the steps described in the process executed by at least one processing unit (23).

Claims (15)

  1.  エンジン(11)と接続される回転電機(12)を制御するモータ制御装置であって、
     前記回転電機の回転数を検出した回転数検出値を用いて、前記回転数が指令値(NC)に近づくようにフィードバック制御する制御系(30)、
     前記エンジンの前記回転数が上昇するとき、前記エンジンから出力されるエンジントルク(TE)の所定時間における平均値(TaE)が閾値を超えたことに基づき、前記回転電機の前記指令値を上昇させる上昇指令を出力する指令制御部(80)と、
     を備えるモータ制御装置。
    A motor control device that controls a rotating electric machine (12) connected to an engine (11),
    a control system (30) that performs feedback control so that the rotation speed approaches a command value (NC) using a rotation speed detection value obtained by detecting the rotation speed of the rotating electrical machine;
    When the rotational speed of the engine increases, the command value of the rotating electrical machine is increased based on the fact that an average value (TaE) of engine torque (TE) output from the engine over a predetermined time exceeds a threshold value. a command control unit (80) that outputs a rise command;
    A motor control device comprising:
  2.  前記制御系は、前記エンジンのトルク変動に対し逆位相となる制振トルクを前記回転電機に出力させる請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the control system causes the rotating electric machine to output a damping torque that is in an opposite phase to torque fluctuations of the engine.
  3.  前記指令制御部は、前記フィードバック制御にて算出される前記回転電機のトルク補償値(TM*)を、前記エンジントルクを推定する情報として用いる請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the command control unit uses a torque compensation value (TM*) of the rotating electric machine calculated by the feedback control as information for estimating the engine torque.
  4.  前記指令制御部は、前記エンジンの出力軸(11c)が720°回転する期間を前記所定時間とし、当該期間毎の前記エンジントルクの前記平均値が前記閾値を超えたことに基づき前記上昇指令を出力する請求項1に記載のモータ制御装置。 The command control unit sets a period in which the output shaft (11c) of the engine rotates by 720 degrees as the predetermined time, and issues the increase command based on the fact that the average value of the engine torque for each period exceeds the threshold value. The motor control device according to claim 1, which outputs an output.
  5.  前記指令制御部は、前記エンジンの点火間隔に相当する期間を前記所定時間とし、当該期間毎の前記エンジントルクの前記平均値が前記閾値を超えたことに基づき前記上昇指令を出力する請求項1に記載のモータ制御装置。 The command control unit outputs the increase command based on the fact that the average value of the engine torque for each period exceeds the threshold value, with the predetermined time being a period corresponding to an ignition interval of the engine. The motor control device described in .
  6.  前記指令制御部は、前記エンジンのオイル温度に応じて前記閾値を変更する請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the command control unit changes the threshold value depending on the oil temperature of the engine.
  7.  前記指令制御部は、前記回転数を上昇させる上昇遷移期間(UTP)において、経過時間と前記回転数の前記指令値との関係を示す変化線(Ln)の傾きが段階的に変化するように前記上昇指令を出力し、
     前記上昇遷移期間の後半(TP2)における前記変化線の傾きは、前記上昇遷移期間の前半(TP1)における前記変化線の傾きよりも大きい請求項1に記載のモータ制御装置。
    The command control unit is configured such that the slope of a change line (Ln) indicating the relationship between the elapsed time and the command value of the rotation speed changes in stages during a rising transition period (UTP) in which the rotation speed is increased. outputting the rising command;
    The motor control device according to claim 1, wherein the slope of the change line in the second half (TP2) of the upward transition period is greater than the slope of the change line in the first half (TP1) of the upward transition period.
  8.  前記制御系は、前記回転数のワインドアップ現象の発生に基づき、前記フィードバック制御に用いる積分器(42)の動作を変更するアンチワインドアップ制御を適用する請求項1~7のいずれか一項に記載のモータ制御装置。 The control system according to any one of claims 1 to 7, wherein the control system applies anti-windup control that changes the operation of the integrator (42) used for the feedback control based on the occurrence of the windup phenomenon of the rotational speed. The motor control device described.
  9.  前記制御系は、前記積分器の動作を停止する前記アンチワインドアップ制御を適用する請求項8に記載のモータ制御装置。 The motor control device according to claim 8, wherein the control system applies the anti-windup control that stops the operation of the integrator.
  10.  前記制御系は、前記積分器から出力される積分信号を補正係数により補正する前記アンチワインドアップ制御を適用する請求項8に記載のモータ制御装置。 The motor control device according to claim 8, wherein the control system applies the anti-windup control that corrects the integral signal output from the integrator using a correction coefficient.
  11.  前記指令制御部は、前記エンジントルクの前記平均値が前記閾値を超えたことに基づき、前記エンジンの出力軸(11c)に直接的に接続される前記回転電機の前記回転数を上昇させる請求項1~7のいずれか一項に記載のモータ制御装置。 The command control unit increases the rotation speed of the rotating electrical machine directly connected to the output shaft (11c) of the engine based on the fact that the average value of the engine torque exceeds the threshold value. 8. The motor control device according to any one of 1 to 7.
  12.  前記回転電機は、前記出力軸のトルク変動を減衰するダンパ部(DM)、及び前記出力軸の回転を伝達するギヤ部(GR)の少なくとも一方を介することなく前記出力軸に接続される請求項11に記載のモータ制御装置。 The rotating electrical machine is connected to the output shaft without via at least one of a damper section (DM) that damps torque fluctuations of the output shaft and a gear section (GR) that transmits rotation of the output shaft. 12. The motor control device according to item 11.
  13.  前記指令制御部は、車両において発電専用に設けられた前記回転電機へ向けて前記上昇指令を出力する請求項1~7のいずれか一項に記載のモータ制御装置。 The motor control device according to any one of claims 1 to 7, wherein the command control unit outputs the ascending command to the rotating electric machine provided exclusively for power generation in the vehicle.
  14.  前記指令制御部は、アウターロータ型の前記回転電機へ向けて前記上昇指令を出力する請求項1~7のいずれか一項に記載のモータ制御装置。 The motor control device according to any one of claims 1 to 7, wherein the command control unit outputs the ascending command to the outer rotor type rotating electric machine.
  15.  エンジン(11)と接続される回転電機(12)を制御するモータ制御プログラムであって、
     前記回転電機の回転数を検出した回転数検出値を用いて、前記回転数が指令値(NC)に近づくようにフィードバック制御し、
     前記エンジンの前記回転数が上昇するとき、前記エンジンから出力されるエンジントルク(TE)の所定時間における平均値(TaE)が閾値を超えたことに基づき、前記回転電機の前記指令値を上昇させる上昇指令を出力する(S31~S34)、
     ことを含む処理を、少なくとも一つの処理部(23)に実行させるモータ制御プログラム。
    A motor control program for controlling a rotating electrical machine (12) connected to an engine (11),
    Feedback control is performed so that the rotation speed approaches a command value (NC) using a rotation speed detection value obtained by detecting the rotation speed of the rotating electric machine,
    When the rotational speed of the engine increases, the command value of the rotating electrical machine is increased based on the fact that an average value (TaE) of engine torque (TE) output from the engine over a predetermined time exceeds a threshold value. Output a rising command (S31 to S34),
    A motor control program that causes at least one processing unit (23) to execute processing including:
PCT/JP2023/030504 2022-09-05 2023-08-24 Motor control device, and motor control program WO2024053413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022140862A JP2024036126A (en) 2022-09-05 2022-09-05 Motor control device and motor control program
JP2022-140862 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024053413A1 true WO2024053413A1 (en) 2024-03-14

Family

ID=90191127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030504 WO2024053413A1 (en) 2022-09-05 2023-08-24 Motor control device, and motor control program

Country Status (2)

Country Link
JP (1) JP2024036126A (en)
WO (1) WO2024053413A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312255A (en) * 1992-05-11 1993-11-22 Mazda Motor Corp Speed change controller for continuously variable transmission
JPH11315735A (en) * 1999-03-18 1999-11-16 Aqueous Reserch:Kk Hybrid vehicle
JP2000083304A (en) * 1998-09-03 2000-03-21 Denso Corp Control device for hybrid car
JP2001057706A (en) * 1999-08-09 2001-02-27 Mazda Motor Corp Running gear for vehicle
JP2020065416A (en) * 2018-10-19 2020-04-23 株式会社ケーヒン Vector controller
JP2022064740A (en) * 2020-10-14 2022-04-26 ダイハツ工業株式会社 Hybrid vehicle control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312255A (en) * 1992-05-11 1993-11-22 Mazda Motor Corp Speed change controller for continuously variable transmission
JP2000083304A (en) * 1998-09-03 2000-03-21 Denso Corp Control device for hybrid car
JPH11315735A (en) * 1999-03-18 1999-11-16 Aqueous Reserch:Kk Hybrid vehicle
JP2001057706A (en) * 1999-08-09 2001-02-27 Mazda Motor Corp Running gear for vehicle
JP2020065416A (en) * 2018-10-19 2020-04-23 株式会社ケーヒン Vector controller
JP2022064740A (en) * 2020-10-14 2022-04-26 ダイハツ工業株式会社 Hybrid vehicle control device

Also Published As

Publication number Publication date
JP2024036126A (en) 2024-03-15

Similar Documents

Publication Publication Date Title
JP5971668B2 (en) Engine stop control device and engine stop control method
JP4591317B2 (en) Engine vibration suppression device
JP5562244B2 (en) No-load rotation speed control method and apparatus in hybrid vehicle
US10910972B2 (en) Control apparatus and onboard system
JP4974988B2 (en) Field winding type synchronous generator motor
JP2020157861A (en) Control device
US10910980B2 (en) Control device for switched reluctance motor
JP2018135047A (en) Power control method and power control device of hybrid vehicle
JP2018135044A (en) Power control method and power control device of hybrid vehicle
JP2018135046A (en) Power control method and power control device of hybrid vehicle
JP2010132015A (en) Controller for hybrid vehicle
JPH09238403A (en) Hybrid engine
WO2024053413A1 (en) Motor control device, and motor control program
WO2024053412A1 (en) Motor control device and motor control program
JP2012239339A (en) Rotary electric machine device, vehicle driving device, control method of rotary electric machine and control method of vehicle driving device
JP2024036127A (en) Motor control device and motor control program
JP6489509B2 (en) Power control method and power control apparatus for hybrid vehicle
JP6884985B2 (en) Hybrid vehicle start acceleration control system, hybrid vehicle and hybrid vehicle start acceleration control method
WO2018155617A1 (en) Drive control method and drive control device for hybrid vehicle
JP2015101299A (en) Engine control device
JP2017218090A (en) Vehicle control device
US10730508B2 (en) Hybrid vehicle and control method for hybrid vehicle
US11519375B2 (en) Hybrid vehicle and method for controlling hybrid vehicle
JP4964330B2 (en) Vehicle drive control device
JP2009023496A (en) Regenerative control device and hybrid car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862952

Country of ref document: EP

Kind code of ref document: A1