WO2024053110A1 - Electrode material, electrode for energy storage devices, and energy storage device - Google Patents

Electrode material, electrode for energy storage devices, and energy storage device Download PDF

Info

Publication number
WO2024053110A1
WO2024053110A1 PCT/JP2022/033953 JP2022033953W WO2024053110A1 WO 2024053110 A1 WO2024053110 A1 WO 2024053110A1 JP 2022033953 W JP2022033953 W JP 2022033953W WO 2024053110 A1 WO2024053110 A1 WO 2024053110A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
electrode
active material
energy storage
mass
Prior art date
Application number
PCT/JP2022/033953
Other languages
French (fr)
Japanese (ja)
Inventor
学 平澤
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2022/033953 priority Critical patent/WO2024053110A1/en
Publication of WO2024053110A1 publication Critical patent/WO2024053110A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present disclosure relates to electrode materials, electrodes for energy storage devices, and energy storage devices.
  • the positive and negative electrodes of such energy storage devices generally include particles of a material (active material) capable of intercalating and deintercalating alkali metal ions.
  • the volume of the active material changes as it absorbs and releases alkali metal ions, repeated charging and discharging will cause cracks in the active material and cause deterioration of the electrode. Therefore, coating the surface of the active material particles with a flexible material such as a polymer compound is considered to be an effective measure for suppressing electrode deterioration.
  • Japanese Patent Publication No. 2019-535116 describes coating active material particles with cyclized polyacrylonitrile.
  • an object of the present disclosure is to provide an electrode material, an electrode for an energy storage device, and an energy storage device that have excellent cycle characteristics.
  • Means for solving the above problems include the following embodiments.
  • An electrode comprising composite particles including particles containing a substance capable of occluding and releasing alkali metal ions, and a coating portion containing a polymeric material and a conductive agent that coats at least a portion of the surface of the particles. material.
  • the content of the conductive aid in the coating portion is 30% by mass or more.
  • the polymer material includes at least one selected from polyamideimide and polyacrylonitrile.
  • ⁇ 5> The electrode material according to ⁇ 1>, wherein the particles contain silicon.
  • ⁇ 6> The electrode material according to ⁇ 1>, wherein the conductive support agent includes particles having an aspect ratio of 10 or more.
  • ⁇ 8> An energy storage device comprising the electrode for an energy storage device according to ⁇ 7>.
  • an electrode material an electrode for an energy storage device, and an energy storage device with excellent cycle characteristics are provided.
  • Example 1 is a SEM image of composite particles produced in Example 1.
  • 1 is a cross-sectional SEM image of composite particles produced in Example 1.
  • 3 is a SEM image of composite particles produced in Example 2.
  • step includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved.
  • numerical ranges indicated using “ ⁇ ” include the numerical values written before and after " ⁇ " as minimum and maximum values, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
  • each component may contain multiple types of corresponding substances.
  • each component may include a plurality of types of particles.
  • the particle diameter of each component means a value for a mixture of the plurality of types of particles present in the composition, unless otherwise specified.
  • the term "layer" includes not only the case where the layer is formed in the entire area when observing the area where the layer exists, but also the case where the layer is formed only in a part of the area. included.
  • the electrode material of the present disclosure includes particles containing a substance capable of occluding and releasing alkali metal ions (hereinafter also referred to as active material particles), a polymer material and a conductive additive that coat at least a portion of the surface of the particles.
  • An electrode material comprising: a coating portion comprising a composite particle comprising a coating portion comprising a coating portion comprising a coating portion comprising a composite particle comprising a coating portion comprising a coating portion comprising a coating portion comprising a coating portion comprising a coating portion comprising a coating portion comprising a coating portion comprising a composite particle comprising a coating portion comprising a coating portion;
  • an energy storage device fabricated using composite particles, in which at least a portion of the surface of active material particles is coated with a coating portion containing a polymeric material and a conductive agent, as an electrode material. , it was found that it exhibited excellent cycle characteristics. The reason for this is thought to be, for example, as follows.
  • the active material particles contained in the composite particles usually undergo deterioration due to repeated expansion and contraction due to occlusion and release of alkali metal ions.
  • the electrolytic solution resistance and mechanical strength of the active material particles are improved, and deterioration due to expansion and contraction of the active material particles is suppressed.
  • the conduction paths of alkali metal ions and electrons between the active material particles are blocked by the coating, causing deterioration in cycle characteristics.
  • the entire surface of the active material particles may be covered with the coating portion, or a portion of the surface may be covered with the coating portion.
  • the coverage of the surface of the active material particles by the coating portion (hereinafter also referred to as coverage of composite particles) is preferably 50% or more, more preferably 60% or more, More preferably, it is 70% or more.
  • the coverage of the composite particles may be 100% or less, 90% or less, or 80% or less.
  • the coverage may be calculated using known image processing software such as ImageJ.
  • the content of the conductive aid contained in the coating is not particularly limited. From the perspective of ensuring sufficient conduction paths for alkali metal ions and electrons between active material particles, the content of the conductive aid is preferably 30% by mass or more of the entire coating, and should be 40% by mass or more. is more preferable, and even more preferably 45% by mass or more. From the viewpoint of suppressing deterioration due to expansion and contraction of active material particles, the content of the conductive additive is preferably 80% by mass or less of the entire coating, more preferably 70% by mass or less, and 65% by mass or less. % or less is more preferable.
  • the content of the polymer material contained in the covering portion is not particularly limited. From the viewpoint of suppressing deterioration due to expansion and contraction of active material particles, the content of the polymer material is preferably 20% by mass or more of the entire coating, more preferably 30% by mass or more, and 35% by mass or more. % or more is more preferable. From the viewpoint of ensuring sufficient conduction paths for alkali metal ions and electrons on the surface of the active material particles, the content of the polymer material is preferably 70% by mass or less of the entire coating, and is 60% by mass or less. It is more preferably 55% by mass or less.
  • the covering portion may contain only the polymeric material and the conductive aid, or may contain components other than the polymeric material and the conductive aid.
  • Components other than the polymer material and the conductive aid include a silane coupling agent and the like. By including the silane coupling agent, for example, the binding force of the coating portion to the active material particles can be increased.
  • the covering part contains components other than the polymeric material and the conductive aid, the total proportion of the polymeric material and the conductive aid to the entire covering part is preferably 80% by mass or more, and should be 85% by mass or more. is more preferable, and even more preferably 90% by mass or more.
  • the proportion of the coating portion in the entire composite particle is preferably 0.1% by mass to 50% by mass, more preferably 1% by mass to 20% by mass, and 5% by mass to 10% by mass. is even more preferable.
  • the proportion of the coated portion is 0.1% by mass or more of the entire composite particle, a sufficient effect of improving cycle characteristics can be obtained.
  • the ratio of the coating portion is 50% by mass or more of the entire composite particle, a sufficient capacity of the energy storage device is ensured.
  • the ratio of the coated part to the whole composite particle is determined by, for example, the change in mass before and after the treatment when the composite particle is heat-treated at a temperature at which the coated part thermally decomposes, or the mass before and after the treatment when the coated part is dissolved in a solvent. It can be calculated from the change.
  • the composite particles may contain only one type of active material particles or two or more types of active material particles.
  • the coating portion of the composite particle may contain only one kind of polymer material and conductive aid, or two or more kinds thereof.
  • the volume average particle diameter (D50) of the composite particles measured by a laser scattering diffraction method is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m.
  • D50 volume average particle diameter of the composite particles measured by a laser scattering diffraction method.
  • the volume average particle diameter of the composite particles is 1 ⁇ m or more, it becomes easy to prepare a slurry for forming an electrode.
  • the electrode can be easily formed into a thin film, and the input/output characteristics of the energy storage device can be easily improved.
  • the volume average particle diameter of the composite particles is measured by laser scattering diffraction method. Specifically, in the volume-based particle size distribution obtained by the laser scattering diffraction method, the particle size when the accumulation from the small diameter side is 50% is defined as the volume average particle size.
  • the method for producing composite particles is not particularly limited. For example, by mixing a predetermined amount of active material particles, a polymer material, and a conductive additive with a solvent, drying the resulting mixture, subjecting it to heat treatment as necessary, and crushing it, the surface of the active material particles can be improved.
  • Composite particles can be obtained that are at least partially coated with a coating containing a polymeric material and a conductive additive.
  • the composite particles may be in a state in which individual active material particles are each covered with a coating portion, or may be in a state in which an aggregate of a plurality of active material particles is covered with a coating portion.
  • the active material particles included in the composite particles are not particularly limited as long as they contain a substance (active material) that can occlude and release alkali metal ions.
  • alkali metal ions include lithium ions, potassium ions, sodium ions, and the like. Among these, lithium ions are preferred.
  • the active materials contained in the active material particles may be one type or a combination of two or more types.
  • Examples of the active material of the positive electrode include lithium transition metal compounds such as lithium transition metal oxides and lithium transition metal phosphates.
  • Examples of lithium transition metal oxides include compounds containing one or more transition metals such as Mn, Ni, and Co, and a portion of the transition metals contained in these compounds in combination with one or more other transition metals. Examples include lithium transition metal oxides substituted with transition metals or metal elements (typical elements) such as Mg and Al.
  • Examples of the active material of the negative electrode include carbon materials, active materials containing silicon atoms, and the like. Examples of carbon materials include graphite, hard carbon, and soft carbon. Examples of active materials containing silicon atoms include Si (metallic silicon), silicon oxide represented by SiOx (0.8 ⁇ x ⁇ 1.5), and the like.
  • the silicon oxide may have a structure in which nanosilicon is dispersed in a silicon oxide matrix by a disproportionation reaction.
  • the active material containing silicon atoms may be doped with boron, phosphorus, or the like to become a
  • the active material particles may be made of a carbon material and silicon may be present on the surface of the active material particles.
  • Examples of methods for causing silicon to be present on the surface of active material particles made of a carbon material include vapor deposition, plasma CVD (Chemical Vapor Deposition), and the like.
  • the plasma CVD method may be performed by decomposing raw materials such as silane and chlorosilane.
  • active materials containing silicon atoms have a large theoretical capacity and are expected to contribute to increasing the capacity of energy storage devices, they undergo large volume changes during charging and discharging and are susceptible to deterioration. Furthermore, active materials containing silicon atoms do not themselves have electronic conductivity. In the present disclosure, electron conductivity can be imparted to the active material particles by coating the surfaces of the active material particles with a coating portion containing a conductive additive. Therefore, it is particularly suitable when the active material particles contain silicon atoms.
  • the shape of the active material particles is not particularly limited.
  • they may be spherical particles, scaly particles, lumpy particles, secondary particles composed of a plurality of primary particles, or the like.
  • the particle size of the active material particles is not particularly limited.
  • the volume average particle diameter (D50) of the active material particles is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m.
  • D50 volume average particle diameter
  • the volume average particle diameter of the active material particles is 1 ⁇ m or more, it becomes easy to prepare a slurry for forming an electrode.
  • the volume average particle diameter of the active material particles is 50 ⁇ m or less, the electrode can be easily formed into a thin film, and the input/output characteristics of the energy storage device can be easily improved.
  • the volume average particle diameter of the active material particles is measured by laser scattering diffraction method. Specifically, in the volume-based particle size distribution obtained by the laser scattering diffraction method, the particle size when the accumulation from the small diameter side is 50% is defined as the volume average particle size.
  • the volume average particle diameter is the volume average particle diameter of the secondary particles.
  • a “secondary particle” refers to a particle that is formed by agglomeration of a plurality of primary particles and is the smallest unit in normal behavior
  • a “primary particle” refers to a particle that cannot exist alone. It means the smallest possible particle.
  • the particle diameter of the primary particles constituting the secondary particles is not particularly limited.
  • the average primary particle diameter is preferably 10 nm to 50 ⁇ m. More preferably, the thickness is 30 nm to 10 ⁇ m.
  • the average primary particle diameter of the active material particles is 10 nm or more, the influence of a natural oxide film formed on the surface can be suppressed.
  • the average primary particle diameter of the active material particles is 50 ⁇ m or less, deterioration due to charging and discharging is suppressed.
  • the primary particle diameter of active material particles means the major diameter of the primary particles observed with a scanning electron microscope. Specifically, when the primary particle is spherical, it means its maximum diameter, and when the primary particle is plate-like, it means the maximum diameter or maximum diagonal length in a projected image of the particle observed from the thickness direction.
  • the "average primary particle diameter” is the arithmetic mean value of the measured values of the major diameters of 300 or more primary particles observed with a scanning electron microscope.
  • the method for adjusting the particle size of the active material particles is not particularly limited. Examples include a method of selecting raw materials, a method of adjusting grinding conditions, a method of vapor deposition, a plasma method, a method of surface treatment with silane, etc.
  • the BET specific surface area of the active material particles is preferably 0.5 m 2 /g to 100 m 2 /g, more preferably 1 m 2 /g to 30 m 2 /g.
  • the BET specific surface area of the active material particles is preferably 0.5 m 2 /g to 100 m 2 /g, more preferably 1 m 2 /g to 30 m 2 /g.
  • the BET specific surface area of the active material particles is 0.5 m 2 /g or more, sufficient discharge capacity can be easily obtained.
  • the BET specific surface area of the active material particles is 100 m 2 /g or less, handling properties during electrode production are excellent.
  • the BET specific surface area of the active material particles can be calculated from the nitrogen adsorption isotherm at -196°C.
  • the electrode material of the present disclosure may include active material particles that are in the state of composite particles and active material particles that are not in the state of composite particles.
  • the electrode material consists of active material particles that contain silicon atoms and are covered with a coating that includes a polymeric material and a conductive agent, and a carbon material that is not covered with a coating that includes a polymeric material and a conductive agent.
  • the active material particles may also be included.
  • polymer material The polymer material contained in the covering portion is not particularly limited.
  • polymeric materials include polyamideimide (PAI), polyacrylonitrile, cyclized polyacrylonitrile, polyamide, polyimide, polyacrylic acid, polymethacrylic acid, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyacrylate, and polymethacrylate.
  • PAI polyamideimide
  • PAI polyacrylonitrile
  • cyclized polyacrylonitrile polyamide
  • polyimide polyacrylic acid
  • polymethacrylic acid polystyrene
  • polyvinyl chloride polyvinylidene chloride
  • polyacrylate polymethacrylate.
  • polyamideimide polyacrylonitrile
  • cyclized polyacrylonitrile are preferable as the polymer material.
  • Cyclized polyacrylonitrile is obtained by cyclizing polyacrylonitrile as a raw material.
  • cyclizing polyacrylonitrile as a raw material it is possible to impart electronic conductivity to polyacrylonitrile.
  • Cyclized polyacrylonitrile can be said to have properties intermediate between those of carbon and polymers, and the greater the degree of ring closure of the nitrile group, the closer the cyclized polyacrylonitrile can be said to have properties to those of carbon.
  • Infrared spectroscopy may be a transmission method or a reflection method.
  • the -C ⁇ N (nitrile) group shows a peak at 2240 cm -1 to 2243 cm -1
  • -CH 2 - before becoming a double bond can be confirmed as a peak at 2939 cm -1
  • the attribution of the above peak is The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage (Fibers and Polymers 2012, Vol.13, No.3, 295-302), Structural transformation of polyacrylonitrile fibers during st abilization and low temperature carbonization (Polymer Degradation and Stability, Volume 128, June 2016, 39-45).
  • Polyacrylonitrile may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and a polymerization component other than acrylonitrile.
  • Polymerization components other than acrylonitrile include acrylic acid, vinyl acetate, styrene, vinylidene chloride, vinyl chloride, methacrylic acid, and the like.
  • polyacrylonitrile is a copolymer of acrylonitrile and a polymerization component other than acrylonitrile
  • the proportion of acrylonitrile in the total polymerization component is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. More preferably, it is at least % by mass.
  • the conductive aid contained in the covering portion is not particularly limited.
  • Specific examples of the conductive aid include carbon materials such as carbon black, carbon fiber, carbon nanotubes, fullerenes, and carbon nanohorns, oxides exhibiting conductivity, and nitrides exhibiting conductivity.
  • the coating part preferably contains particles with an aspect ratio of 10 or more as a conductive agent, more preferably contains particles with an aspect ratio of 20 or more, and preferably contains particles with an aspect ratio of 30 or more. It is even more preferable to include. If the covering part contains particles with an aspect ratio of 10 or more as a conductive agent, even if the active material particles repeatedly expand and contract, the conduction path of alkali metal ions and electrons between the active material particles formed by the conductive agent will be maintained. is less likely to be lost, and good cycle characteristics can be obtained.
  • the aspect ratio of the particles may be 500 or less, 250 or less, or 100 or less.
  • the shape of particles having an aspect ratio of 10 or more is not particularly limited, and may be fibrous, tubular, rod-like, columnar, or the like. From the viewpoint of improving cycle characteristics, the length of the long axis of particles having an aspect ratio of 10 or more is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
  • the proportion of the particles with an aspect ratio of 10 or more in the entire conductive aid is not particularly limited. For example, it may be within the range of 1% by mass to 50% by mass.
  • the coating portion contains particles having an aspect ratio of 10 or more and particles having an aspect ratio of less than 10 as a conductive aid.
  • the coating portion includes particles having an aspect ratio of less than 10, the adhesion of the conductive additive to the surface of the active material particles is improved.
  • particles having an aspect ratio of less than 10 include carbon black.
  • the electrode for an energy storage device includes the electrode material of the present disclosure described above. If necessary, the electrode may further contain a binder, a conductive aid, and the like.
  • the type of binder is not particularly limited, and may be selected from the polymer materials used in the electrode material of the present disclosure described above.
  • the type of the conductive aid is not particularly limited, and may be selected from the conductive aids used in the electrode material of the present disclosure described above.
  • the proportion of the conductive aid in the total of the binder and the conductive aid is not particularly limited. , for example, from the range of 1% by mass to 20% by mass.
  • the above proportion of the conductive aid may be smaller than the proportion of the conductive aid in the coating of the composite particles. That is, the electrode of the present disclosure may be in a state where more conductive aid exists near the surface of the active material particles when comparing the surface vicinity of the active material particles with the other portions. Since the electrode material of the present disclosure includes active material particles coated with a conductive aid, the electrode may not further include a conductive aid.
  • the content of the active material contained in the electrode is preferably 50% by mass or more of the entire electrode (excluding the current collector), and preferably 55% by mass or more. is more preferable, and even more preferably 60% by mass or more.
  • the content of the active material contained in the electrode is preferably 95% by mass or less of the entire electrode (excluding the current collector), and more preferably 90% by mass or less.
  • the content is preferably 80% by mass or less, and more preferably 80% by mass or less.
  • the electrode may be in a state in which a layer containing an electrode material is formed on the current collector.
  • the type of current collector is not particularly limited, and examples include metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel.
  • the current collector may be carbon coated, surface roughened, or the like.
  • the energy storage device of the present disclosure comprises the electrode of the present disclosure described above.
  • the type of energy storage device is not particularly limited. Examples include devices that utilize movement of alkali metal ions between electrodes for charging and discharging, such as lithium ion batteries, sodium ion batteries, and potassium ion batteries.
  • the energy storage device of the present disclosure is comprised of a positive electrode, a negative electrode, an electrolyte, and the like.
  • the above-mentioned electrode for an energy storage device may be a positive electrode or a negative electrode, but is preferably a negative electrode.
  • an organic solvent in which an electrolyte is dissolved an ionic liquid, etc.
  • the ionic liquid include ionic liquids that are liquid at a temperature of less than 170°C, solvated ionic liquids, and the like.
  • the electrolyte salts include LiPF 6 , LiClO 4 , LiBF 4 , LiClF 4 , LiAsF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN(FSO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN( Examples include lithium salts that generate anions that are difficult to solvate, such as C 2 F 5 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiCl, and LiI.
  • the electrolyte salt may be used alone or in combination of two or more.
  • the electrolyte salt concentration in the electrolytic solution is, for example, preferably 0.3 mol or more, more preferably 0.5 mol or more, and still more preferably 0.8 mol or more per liter of electrolytic solution.
  • the electrolyte salt concentration in the electrolytic solution is, for example, preferably 5 mol or less, more preferably 3 mol or less, and still more preferably 1.5 mol or less per liter of electrolytic solution.
  • the organic solvents include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones ( ⁇ -butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), Cyclic ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, diglyme, triglyme, tetraglyme, etc.), sulfolanes (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, etc.) , benzonitrile, etc.), amides (N,N-dimethylformamide, N,N-dimethylacetamide, etc.), and polyoxyalkylene glycols (diethylene glycol, etc.).
  • the organic solvent may be used
  • the electrolyte may contain additives.
  • the additive include fluoroethylene carbonate, propane sultone, vinylene carbonate, methanesulfonic acid, cyclohexylbenzene, tert-amylbenzene, adiponitrile, and succinonitrile.
  • the amount of the additive in the electrolytic solution is, for example, preferably 0.1% by mass to 30% by mass, and preferably 0.5% by mass to 10% by mass, based on the total electrolytic solution.
  • the energy storage device may further include commonly used members such as a separator, gasket, sealing plate, and case.
  • the separator used in the energy storage device is not particularly limited, and includes polyolefin-based porous membranes such as porous polypropylene nonwoven fabric and porous polyethylene nonwoven fabric.
  • the shape of the energy storage device can be any shape such as a cylindrical shape, a square shape, a button shape, etc.
  • the use of the energy storage device is not particularly limited.
  • it can be used as a power source or auxiliary power source for electronic devices, electric devices, automobiles, power storage devices, etc.
  • Example 1 A dispersion liquid in which carbon black (CB) was dispersed in NMP and a dispersion liquid in which VGCF was dispersed in NMP were kneaded to obtain a conductive additive slurry.
  • a conductive additive slurry was added to an SiO slurry obtained by kneading SiO particles and an NMP solution of polyamideimide (PAI), and the mixture was kneaded.
  • the resulting mixture was poured into an alumina container and dried at 120°C under air to remove the solvent. Thereafter, heat treatment was performed at 350° C. for 5 hours in a nitrogen atmosphere.
  • the obtained heat-treated product was crushed and passed through a sieve to obtain the desired composite particles.
  • FIG. 1 A SEM image of the produced composite particles is shown in FIG. As shown in FIG. 1, it was observed that carbon black and fibrous VGCF were attached to the surface of the SiO particles. The coverage of the composite particles calculated by image analysis was 50% or more.
  • FIG. 2 shows a cross-sectional SEM image of the composite particles produced. As shown by the arrow in FIG. 2, it was observed that fibrous VGCF bridged between the SiO particles.
  • a slurry for a positive electrode containing a positive electrode active material (NMC811), carbon black (CB), and polyvinylidene fluoride (PVDF) was obtained using NMP.
  • the obtained slurry was coated on the surface of the current collector using a coater and dried to obtain a positive electrode with the desired coating weight (195 g/m 2 ).
  • the density was set at 2.3 g/cm 3 using a press.
  • a laminate type battery was obtained using the produced negative and positive electrodes and a separator (polypropylene porous membrane).
  • the capacity ratio (N/P) between the negative electrode (N) and the positive electrode (P) was designed to be 1.05.
  • 1M LiPF 6 was dissolved in a mixed solvent containing EC, EMC, and DEC in a ratio of 1:1:1 (volume ratio), and further containing VC (1% by mass) and FEC (2% by mass). I used the one I made.
  • Carbon black...Acetylene black with an average primary particle size of 48 nm (DENKA BLACK Li-400, manufactured by DENKA CORPORATION)
  • VGCF...Carbon fiber with an average fiber diameter of 150 nm, an average fiber length of 15.0 ⁇ m, and a carbon content of 99.99% by mass Showa Denko K.K., VGCF-H
  • SiO particles ...SiO particles with a volume average particle diameter of 8.0 ⁇ m
  • Graphite particles ...Graphite particles with a volume average particle diameter of 10.0 ⁇ m
  • Example 2 A dispersion liquid in which carbon black (CB) was dispersed in NMP was kneaded to obtain a conductive additive slurry.
  • a conductive additive slurry was added to an SiO slurry obtained by kneading SiO particles and an NMP solution of polyamideimide (PAI), and the mixture was kneaded.
  • the resulting mixture was poured into an alumina container and dried at 120°C under air to remove the solvent. Thereafter, heat treatment was performed at 350° C. for 5 hours in a nitrogen atmosphere. The obtained heat-treated product was crushed and passed through a sieve to obtain the desired composite particles.
  • a SEM image of the prepared composite particles is shown in Figure 3. As shown in FIG. 3, carbon black was observed to be attached to the surface of the SiO particles. The coverage of the composite particles calculated by image analysis was 50% or more.
  • a battery for evaluation was produced in the same manner as in Example 1 using the obtained composite particles.
  • Example 1 A battery for evaluation was produced in the same manner as in Example 1, except that the SiO particles used as the raw material for the composite particles in Example 1 were used instead of the composite particles.
  • a battery for evaluation was produced in the same manner as in Example 1 using the obtained composite particles.
  • a battery for evaluation was produced in the same manner as in Example 1 using the obtained composite particles.
  • Discharge capacity maintenance rate (%) Discharge capacity (after 300 cycles) / Discharge capacity (after 3 cycles) x 100
  • the batteries of Examples 1 and 2 in which the active material particles are coated with a polymeric material and a conductive additive the batteries of Comparative Example 1 in which the active material particles are not coated, Compared to the batteries of Comparative Examples 2 and 3 in which the coating only contained a polymeric material, the discharge capacity retention rate after 300 cycles was large and the cycle characteristics were excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An electrode material containing composite particles that include: particles which include a substance capable of occluding and releasing alkali metal ions; and a coating portion which covers at least a portion of the surfaces of the particles and includes a polymer material and a conduction aid.

Description

電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイスElectrode materials, electrodes for energy storage devices and energy storage devices
 本開示は、電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイスに関する。 The present disclosure relates to electrode materials, electrodes for energy storage devices, and energy storage devices.
 正極と負極との間をリチウムイオン等のアルカリ金属イオンが移動することによって充放電が行われるエネルギー貯蔵デバイスが広く用いられている。このようなエネルギー貯蔵デバイスの正極及び負極は一般に、アルカリ金属イオンを吸蔵及び放出可能な物質(活物質)の粒子を含んでいる。 Energy storage devices in which charging and discharging are performed by moving alkali metal ions such as lithium ions between a positive electrode and a negative electrode are widely used. The positive and negative electrodes of such energy storage devices generally include particles of a material (active material) capable of intercalating and deintercalating alkali metal ions.
 活物質はアルカリ金属イオンの吸蔵及び放出に伴って体積が変化するため、充放電を繰り返すと活物質の割れ等が生じて電極の劣化の原因となる。そこで、高分子化合物のような柔軟性を有する材料で活物質粒子の表面を被覆することが電極の劣化を抑制する有効な方策として考えられる。 Since the volume of the active material changes as it absorbs and releases alkali metal ions, repeated charging and discharging will cause cracks in the active material and cause deterioration of the electrode. Therefore, coating the surface of the active material particles with a flexible material such as a polymer compound is considered to be an effective measure for suppressing electrode deterioration.
 高分子材料で表面が被覆された活物質粒子としては、例えば、特表2019-535116号公報に活物質粒子を環化ポリアクリロニトリルでコーティングすることが記載されている。 As for active material particles whose surfaces are coated with a polymer material, for example, Japanese Patent Publication No. 2019-535116 describes coating active material particles with cyclized polyacrylonitrile.
 本発明者らの検討の結果、高分子材料で被覆された活物質粒子を含む電極を用いて製造されたエネルギー貯蔵デバイスはサイクル特性に改善の余地があることが分かった。
 上記事情に鑑み、本開示はサイクル特性に優れる電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイスを提供することを課題とする。
As a result of studies conducted by the present inventors, it was found that there is room for improvement in cycle characteristics of energy storage devices manufactured using electrodes containing active material particles coated with a polymer material.
In view of the above circumstances, an object of the present disclosure is to provide an electrode material, an electrode for an energy storage device, and an energy storage device that have excellent cycle characteristics.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子と、前記粒子の表面の少なくとも一部を被覆する高分子材料及び導電助剤を含む被覆部と、を含む複合粒子を含む、電極材料。
<2>前記被覆部による前記粒子の表面の被覆率は50%以上である、<1>に記載の電極材料。
<3>前記被覆部中の前記導電助剤の含有率は30質量%以上である、<1>に記載の電極材料。
<4>前記高分子材料はポリアミドイミド及びポリアクリロニトリルから選択される少なくとも1種を含む、<1>に記載の電極材料。
<5>前記粒子はケイ素を含む、<1>に記載の電極材料。
<6>前記導電助剤はアスペクト比が10以上の粒子を含む、<1>に記載の電極材料。
<7><1>~<6>のいずれか1項に記載の電極材料を含む、エネルギー貯蔵デバイス用電極。
<8><7>に記載のエネルギー貯蔵デバイス用電極を含む、エネルギー貯蔵デバイス。
Means for solving the above problems include the following embodiments.
<1> An electrode comprising composite particles including particles containing a substance capable of occluding and releasing alkali metal ions, and a coating portion containing a polymeric material and a conductive agent that coats at least a portion of the surface of the particles. material.
<2> The electrode material according to <1>, wherein the coating portion has a coverage rate of 50% or more of the surface of the particles.
<3> The electrode material according to <1>, wherein the content of the conductive aid in the coating portion is 30% by mass or more.
<4> The electrode material according to <1>, wherein the polymer material includes at least one selected from polyamideimide and polyacrylonitrile.
<5> The electrode material according to <1>, wherein the particles contain silicon.
<6> The electrode material according to <1>, wherein the conductive support agent includes particles having an aspect ratio of 10 or more.
<7> An electrode for an energy storage device, comprising the electrode material according to any one of <1> to <6>.
<8> An energy storage device comprising the electrode for an energy storage device according to <7>.
 本発明によれば、サイクル特性に優れる電極材料、エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイスが提供される。 According to the present invention, an electrode material, an electrode for an energy storage device, and an energy storage device with excellent cycle characteristics are provided.
実施例1で作製した複合粒子のSEM画像である。1 is a SEM image of composite particles produced in Example 1. 実施例1で作製した複合粒子の断面SEM画像である。1 is a cross-sectional SEM image of composite particles produced in Example 1. 実施例2で作製した複合粒子のSEM画像である。3 is a SEM image of composite particles produced in Example 2.
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, modes for carrying out the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including elemental steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and they do not limit the present disclosure.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
In this disclosure, the term "step" includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved. .
In the present disclosure, numerical ranges indicated using "~" include the numerical values written before and after "~" as minimum and maximum values, respectively.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. . Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In the present disclosure, each component may contain multiple types of corresponding substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
In the present disclosure, each component may include a plurality of types of particles. When a plurality of types of particles corresponding to each component are present in the composition, the particle diameter of each component means a value for a mixture of the plurality of types of particles present in the composition, unless otherwise specified.
In this disclosure, the term "layer" includes not only the case where the layer is formed in the entire area when observing the area where the layer exists, but also the case where the layer is formed only in a part of the area. included.
<電極材料>
 本開示の電極材料は、アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子(以下、活物質粒子ともいう)と、前記粒子の表面の少なくとも一部を被覆する高分子材料及び導電助剤を含む被覆部と、を含む複合粒子を含む、電極材料である。
<Electrode material>
The electrode material of the present disclosure includes particles containing a substance capable of occluding and releasing alkali metal ions (hereinafter also referred to as active material particles), a polymer material and a conductive additive that coat at least a portion of the surface of the particles. An electrode material comprising: a coating portion comprising a composite particle comprising a coating portion comprising a coating portion comprising a composite particle comprising a coating portion comprising a coating portion comprising a composite particle comprising a coating portion comprising a coating portion comprising a coating portion comprising a coating portion comprising a composite particle comprising a coating portion comprising a coating portion;
 本発明者らの検討の結果、活物質粒子の表面の少なくとも一部が高分子材料及び導電助剤を含む被覆部で被覆された状態の複合粒子を電極材料として用いて作製したエネルギー貯蔵デバイスは、優れたサイクル特性を示すことがわかった。その理由は、例えば、以下のように考えられる。 As a result of studies conducted by the present inventors, an energy storage device fabricated using composite particles, in which at least a portion of the surface of active material particles is coated with a coating portion containing a polymeric material and a conductive agent, as an electrode material. , it was found that it exhibited excellent cycle characteristics. The reason for this is thought to be, for example, as follows.
 複合粒子に含まれる活物質粒子は通常、アルカリ金属イオンの吸蔵及び放出に伴う膨張収縮を繰り返すことによって劣化が進行する。
 活物質粒子の表面の少なくとも一部を高分子材料を含む材料で被覆すると、活物質粒子の耐電解液性と力学的強度が向上して活物質粒子の膨張収縮に伴う劣化が抑制される。その反面で、活物質粒子間のアルカリ金属イオン及び電子の伝導パスが被覆によって遮断され、サイクル特性の低下の原因となる。被覆が高分子材料に加えて導電助剤を含むことで、活物質粒子間のアルカリ金属イオン及び電子の伝導パスが充分に確保されて、良好なサイクル特性が得られると考えられる。
 さらに、高分子材料及び導電助剤を含む被覆で被覆された活物質粒子を用いて形成される電極は、活物質粒子の表面付近とそれ以外の部分とを比べたときに、活物質粒子の表面付近により多くの導電助剤が存在する。このため、活物質粒子と導電助剤とを結着材中に分散させて作製される従来の電極に比べて活物質粒子間のアルカリ金属イオン及び電子の伝導パスが充分に確保されて、良好なサイクル特性が得られると考えられる。
The active material particles contained in the composite particles usually undergo deterioration due to repeated expansion and contraction due to occlusion and release of alkali metal ions.
When at least a portion of the surface of the active material particles is coated with a material containing a polymeric material, the electrolytic solution resistance and mechanical strength of the active material particles are improved, and deterioration due to expansion and contraction of the active material particles is suppressed. On the other hand, the conduction paths of alkali metal ions and electrons between the active material particles are blocked by the coating, causing deterioration in cycle characteristics. It is thought that by including the conductive additive in addition to the polymeric material in the coating, a sufficient conduction path for alkali metal ions and electrons between the active material particles is ensured, resulting in good cycle characteristics.
Furthermore, in an electrode formed using active material particles coated with a coating containing a polymer material and a conductive additive, when comparing the vicinity of the surface of the active material particle with the other part, There is more conductive aid near the surface. For this reason, compared to conventional electrodes made by dispersing active material particles and conductive aids in a binder, a sufficient conduction path for alkali metal ions and electrons between active material particles is ensured, resulting in better performance. It is thought that excellent cycle characteristics can be obtained.
 活物質粒子は、表面の全体が被覆部で被覆された状態であっても、表面の一部が被覆部で被覆された状態であってもよい。
 サイクル特性向上の観点からは、被覆部による活物質粒子の表面の被覆率(以下、複合粒子の被覆率ともいう)は50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。複合粒子の被覆率は100%以下、90%以下、又は80%以下であってもよい。
The entire surface of the active material particles may be covered with the coating portion, or a portion of the surface may be covered with the coating portion.
From the viewpoint of improving cycle characteristics, the coverage of the surface of the active material particles by the coating portion (hereinafter also referred to as coverage of composite particles) is preferably 50% or more, more preferably 60% or more, More preferably, it is 70% or more. The coverage of the composite particles may be 100% or less, 90% or less, or 80% or less.
 本開示において複合粒子の被覆率は、画像解析法により測定される値である。具体的には、複合粒子の画像を取得し、下記式により被覆率を算出する。
 被覆率(%)=(被覆部が存在する領域の総面積/複合粒子全体の面積)×100
 個々の複合粒子について算出される被覆率の値が異なる場合は、100個の粒子について算出した値の平均値を複合粒子の表面の被覆率とする。
 被覆率の算出は、ImageJなどの公知の画像処理ソフトを用いて行ってもよい。
In the present disclosure, the coverage of composite particles is a value measured by an image analysis method. Specifically, an image of the composite particles is acquired, and the coverage is calculated using the following formula.
Coverage rate (%) = (total area of region where coating portion exists/area of entire composite particle) x 100
If the values of coverage calculated for individual composite particles are different, the average value of the values calculated for 100 particles is taken as the coverage of the surface of the composite particle.
The coverage may be calculated using known image processing software such as ImageJ.
 被覆部に含まれる導電助剤の含有率は、特に制限されない。
 活物質粒子間のアルカリ金属イオン及び電子の伝導パスを充分に確保する観点からは、導電助剤の含有率は被覆部全体の30質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることがさらに好ましい。
 活物質粒子の膨張収縮に伴う劣化を抑制する観点からは、導電助剤の含有率は被覆部全体の80質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%以下であることがさらに好ましい。
The content of the conductive aid contained in the coating is not particularly limited.
From the perspective of ensuring sufficient conduction paths for alkali metal ions and electrons between active material particles, the content of the conductive aid is preferably 30% by mass or more of the entire coating, and should be 40% by mass or more. is more preferable, and even more preferably 45% by mass or more.
From the viewpoint of suppressing deterioration due to expansion and contraction of active material particles, the content of the conductive additive is preferably 80% by mass or less of the entire coating, more preferably 70% by mass or less, and 65% by mass or less. % or less is more preferable.
 被覆部に含まれる高分子材料の含有率は、特に制限されない。
 活物質粒子の膨張収縮に伴う劣化を抑制する観点からは、高分子材料の含有率は被覆部全体の20質量%以上であることが好ましく、30質量%以上であることがより好ましく、35質量%以上であることがさらに好ましい。
 活物質粒子の表面におけるアルカリ金属イオン及び電子の伝導パスを充分に確保する観点からは、高分子材料の含有率は被覆部全体の70質量%以下であることが好ましく、60質量%以下であることがより好ましく、55質量%以下であることがさらに好ましい。
The content of the polymer material contained in the covering portion is not particularly limited.
From the viewpoint of suppressing deterioration due to expansion and contraction of active material particles, the content of the polymer material is preferably 20% by mass or more of the entire coating, more preferably 30% by mass or more, and 35% by mass or more. % or more is more preferable.
From the viewpoint of ensuring sufficient conduction paths for alkali metal ions and electrons on the surface of the active material particles, the content of the polymer material is preferably 70% by mass or less of the entire coating, and is 60% by mass or less. It is more preferably 55% by mass or less.
 被覆部は高分子材料及び導電助剤のみを含んでいても、高分子材料及び導電助剤以外の成分を含んでいてもよい。
 高分子材料及び導電助剤以外の成分としては、シランカップリング剤などが挙げられる。シランカップリング剤を含むことで、例えば、活物質粒子に対する被覆部の結着力を増強させることができる。
 被覆部が高分子材料及び導電助剤以外の成分を含む場合、被覆部全体に占める高分子材料及び導電助剤の合計割合は80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
The covering portion may contain only the polymeric material and the conductive aid, or may contain components other than the polymeric material and the conductive aid.
Components other than the polymer material and the conductive aid include a silane coupling agent and the like. By including the silane coupling agent, for example, the binding force of the coating portion to the active material particles can be increased.
When the covering part contains components other than the polymeric material and the conductive aid, the total proportion of the polymeric material and the conductive aid to the entire covering part is preferably 80% by mass or more, and should be 85% by mass or more. is more preferable, and even more preferably 90% by mass or more.
 複合粒子全体に占める被覆部の割合は、0.1質量%~50質量%であることが好ましく、1質量%~20質量%であることがより好ましく、5質量%~10質量%であることがさらに好ましい。
 被覆部の割合が複合粒子全体の0.1質量%以上であると、充分なサイクル特性の向上効果が得られる。被覆部の割合が複合粒子全体の50質量%以上であると、エネルギー貯蔵デバイスの容量が充分に確保される。
 複合粒子全体に占める被覆部の割合は、例えば、複合粒子を被覆部が熱分解する温度で熱処理したときの処理前後の質量変化、又は、被覆部を溶剤で溶解処理したときの処理前後の質量変化から算出できる。
The proportion of the coating portion in the entire composite particle is preferably 0.1% by mass to 50% by mass, more preferably 1% by mass to 20% by mass, and 5% by mass to 10% by mass. is even more preferable.
When the proportion of the coated portion is 0.1% by mass or more of the entire composite particle, a sufficient effect of improving cycle characteristics can be obtained. When the ratio of the coating portion is 50% by mass or more of the entire composite particle, a sufficient capacity of the energy storage device is ensured.
The ratio of the coated part to the whole composite particle is determined by, for example, the change in mass before and after the treatment when the composite particle is heat-treated at a temperature at which the coated part thermally decomposes, or the mass before and after the treatment when the coated part is dissolved in a solvent. It can be calculated from the change.
 複合粒子に含まれる活物質粒子は、1種のみでも2種以上であってもよい。
 複合粒子の被覆部に含まれる高分子材料及び導電助剤は、それぞれ1種のみでも2種以上であってもよい。
The composite particles may contain only one type of active material particles or two or more types of active material particles.
The coating portion of the composite particle may contain only one kind of polymer material and conductive aid, or two or more kinds thereof.
 複合粒子のレーザー散乱回折法によって測定される体積平均粒子径(D50)は1μm~50μmであることが好ましく、3μm~30μmであることがより好ましい。
 複合粒子の体積平均粒子径が1μm以上であると、電極を形成するためのスラリーの調製が容易になる。複合粒子の体積平均粒子径が50μm以下であると、電極の薄膜化がしやすく、エネルギー貯蔵デバイスの入出力特性を向上させやすい。
The volume average particle diameter (D50) of the composite particles measured by a laser scattering diffraction method is preferably 1 μm to 50 μm, more preferably 3 μm to 30 μm.
When the volume average particle diameter of the composite particles is 1 μm or more, it becomes easy to prepare a slurry for forming an electrode. When the volume average particle diameter of the composite particles is 50 μm or less, the electrode can be easily formed into a thin film, and the input/output characteristics of the energy storage device can be easily improved.
 複合粒子の体積平均粒子径は、レーザー散乱回折法によって測定される。具体的には、レーザー散乱回折法によって得られる体積基準の粒子径分布において小径側からの累積が50%となるときの粒子径を体積平均粒子径とする。 The volume average particle diameter of the composite particles is measured by laser scattering diffraction method. Specifically, in the volume-based particle size distribution obtained by the laser scattering diffraction method, the particle size when the accumulation from the small diameter side is 50% is defined as the volume average particle size.
(複合粒子の作製方法)
 複合粒子を作製する方法は、特に制限されない。例えば、所定量の活物質粒子、高分子材料及び導電助剤を溶剤とともに混合し、得られた混合物を乾燥し、必要に応じて熱処理を行い、解砕することで、活物質粒子の表面の少なくとも一部が高分子材料及び導電助剤を含む被覆部で被覆された状態の複合粒子を得ることができる。
 複合粒子は、個々の活物質粒子がそれぞれ被覆部で被覆された状態であってもよく、複数の活物質粒子の集合体が被覆部で被覆された状態であってもよい。
(Method for producing composite particles)
The method for producing composite particles is not particularly limited. For example, by mixing a predetermined amount of active material particles, a polymer material, and a conductive additive with a solvent, drying the resulting mixture, subjecting it to heat treatment as necessary, and crushing it, the surface of the active material particles can be improved. Composite particles can be obtained that are at least partially coated with a coating containing a polymeric material and a conductive additive.
The composite particles may be in a state in which individual active material particles are each covered with a coating portion, or may be in a state in which an aggregate of a plurality of active material particles is covered with a coating portion.
(活物質粒子)
 複合粒子に含まれる活物質粒子は、アルカリ金属イオンを吸蔵及び放出可能な物質(活物質)を含む粒子であれば特に制限されない。
 アルカリ金属イオンとしては、リチウムイオン、カリウムイオン、ナトリウムイオン等が挙げられる。これらの中でもリチウムイオンが好ましい。
 活物質粒子に含まれる活物質は、1種のみでも2種以上の組み合わせであってもよい。
(active material particles)
The active material particles included in the composite particles are not particularly limited as long as they contain a substance (active material) that can occlude and release alkali metal ions.
Examples of alkali metal ions include lithium ions, potassium ions, sodium ions, and the like. Among these, lithium ions are preferred.
The active materials contained in the active material particles may be one type or a combination of two or more types.
 正極の活物質としては、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物が挙げられる。
 リチウム遷移金属酸化物としては、Mn、Ni、Co等の遷移金属の1種又は2種以上を含む化合物、及びこれらの化合物に含まれる遷移金属の一部を、1種若しくは2種以上の他の遷移金属又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物が挙げられる。
 負極の活物質としては、炭素材料、ケイ素原子を含む活物質等が挙げられる。
 炭素材料としては、黒鉛、ハードカーボン、ソフトカーボン等が挙げられる。
 ケイ素原子を含む活物質としては、Si(金属シリコン)、SiOx(0.8≦x≦1.5)で表されるケイ素酸化物等が挙げられる。
 ケイ素酸化物は、不均化反応によりナノシリコンが酸化ケイ素マトリックスに分散された構造であってもよい。
 ケイ素原子を含む活物質は、ホウ素、リン等がドープされて半導体化されていてもよい。
Examples of the active material of the positive electrode include lithium transition metal compounds such as lithium transition metal oxides and lithium transition metal phosphates.
Examples of lithium transition metal oxides include compounds containing one or more transition metals such as Mn, Ni, and Co, and a portion of the transition metals contained in these compounds in combination with one or more other transition metals. Examples include lithium transition metal oxides substituted with transition metals or metal elements (typical elements) such as Mg and Al.
Examples of the active material of the negative electrode include carbon materials, active materials containing silicon atoms, and the like.
Examples of carbon materials include graphite, hard carbon, and soft carbon.
Examples of active materials containing silicon atoms include Si (metallic silicon), silicon oxide represented by SiOx (0.8≦x≦1.5), and the like.
The silicon oxide may have a structure in which nanosilicon is dispersed in a silicon oxide matrix by a disproportionation reaction.
The active material containing silicon atoms may be doped with boron, phosphorus, or the like to become a semiconductor.
 活物質粒子は、炭素材料からなる活物質粒子の表面にケイ素が存在する状態であってもよい。
 炭素材料からなる活物質粒子の表面にケイ素を存在させる方法としては、蒸着法、プラズマCVD(Chemical Vapor Deposition)法等が挙げられる。プラズマCVD法はシラン、クロロシラン等の原料を分解して行ってもよい。
The active material particles may be made of a carbon material and silicon may be present on the surface of the active material particles.
Examples of methods for causing silicon to be present on the surface of active material particles made of a carbon material include vapor deposition, plasma CVD (Chemical Vapor Deposition), and the like. The plasma CVD method may be performed by decomposing raw materials such as silane and chlorosilane.
 ケイ素原子を含む活物質は理論容量が大きく、エネルギー貯蔵デバイスの高容量化への寄与が期待される一方で、充放電の際の体積変化が大きく、劣化しやすい。さらに、ケイ素原子を含む活物質はそれ自体に電子伝導性がない。
 本開示では、活物質粒子の表面を導電助剤を含む被覆部で被覆することで、活物質粒子に電子伝導性を付与することができる。
 このため、活物質粒子がケイ素原子を含む場合に特に好適である。
Although active materials containing silicon atoms have a large theoretical capacity and are expected to contribute to increasing the capacity of energy storage devices, they undergo large volume changes during charging and discharging and are susceptible to deterioration. Furthermore, active materials containing silicon atoms do not themselves have electronic conductivity.
In the present disclosure, electron conductivity can be imparted to the active material particles by coating the surfaces of the active material particles with a coating portion containing a conductive additive.
Therefore, it is particularly suitable when the active material particles contain silicon atoms.
 活物質粒子の形状は、特に制限されない。例えば、球状粒子、鱗片状粒子、塊状粒子、複数の一次粒子からなる二次粒子等であってよい。 The shape of the active material particles is not particularly limited. For example, they may be spherical particles, scaly particles, lumpy particles, secondary particles composed of a plurality of primary particles, or the like.
 活物質粒子の粒子径は特に制限されない。
 例えば、活物質粒子の体積平均粒子径(D50)は1μm~50μmであることが好ましく、3μm~30μmであることがより好ましい。活物質粒子の体積平均粒子径が1μm以上であると、電極を形成するためのスラリーの調製が容易になる。活物質粒子の体積平均粒子径が50μm以下であると、電極の薄膜化がしやすく、エネルギー貯蔵デバイスの入出力特性を向上させやすい。
The particle size of the active material particles is not particularly limited.
For example, the volume average particle diameter (D50) of the active material particles is preferably 1 μm to 50 μm, more preferably 3 μm to 30 μm. When the volume average particle diameter of the active material particles is 1 μm or more, it becomes easy to prepare a slurry for forming an electrode. When the volume average particle diameter of the active material particles is 50 μm or less, the electrode can be easily formed into a thin film, and the input/output characteristics of the energy storage device can be easily improved.
 活物質粒子の体積平均粒子径は、レーザー散乱回折法によって測定される。具体的には、レーザー散乱回折法によって得られる体積基準の粒子径分布において小径側からの累積が50%となるときの粒子径を体積平均粒子径とする。 The volume average particle diameter of the active material particles is measured by laser scattering diffraction method. Specifically, in the volume-based particle size distribution obtained by the laser scattering diffraction method, the particle size when the accumulation from the small diameter side is 50% is defined as the volume average particle size.
 活物質粒子が二次粒子である場合、上記体積平均粒子径は二次粒子の体積平均粒子径である。
 本開示において「二次粒子」とは、複数個の一次粒子が凝集して形成された通常挙動する上での最小単位の粒子を意味し、「一次粒子」とは、単独で存在することができる最小単位の粒子を意味する。
When the active material particles are secondary particles, the volume average particle diameter is the volume average particle diameter of the secondary particles.
In the present disclosure, a "secondary particle" refers to a particle that is formed by agglomeration of a plurality of primary particles and is the smallest unit in normal behavior, and a "primary particle" refers to a particle that cannot exist alone. It means the smallest possible particle.
 活物質粒子が二次粒子である場合、二次粒子を構成する一次粒子の粒子径は、特に制限されない。例えば、平均一次粒子径は10nm~50μmであることが好ましく。30nm~10μmであることがより好ましい。活物質粒子の平均一次粒子径が10nm以上であると、表面に形成される自然酸化膜の影響を抑えることができる。活物質粒子の平均一次粒子径が50μm以下であると、充放電に伴う劣化が抑制される。 When the active material particles are secondary particles, the particle diameter of the primary particles constituting the secondary particles is not particularly limited. For example, the average primary particle diameter is preferably 10 nm to 50 μm. More preferably, the thickness is 30 nm to 10 μm. When the average primary particle diameter of the active material particles is 10 nm or more, the influence of a natural oxide film formed on the surface can be suppressed. When the average primary particle diameter of the active material particles is 50 μm or less, deterioration due to charging and discharging is suppressed.
 本開示において活物質粒子の一次粒子径は、走査型電子顕微鏡で観察される一次粒子の長径を意味する。具体的には、一次粒子が球状である場合はその最大直径を意味し、一次粒子が板状である場合はその厚み方向から観察した粒子の投影像における最大直径または最大対角線長を意味する。「平均一次粒子径」は、走査型電子顕微鏡で観察される300個以上の一次粒子の長径の測定値の算術平均値である。 In the present disclosure, the primary particle diameter of active material particles means the major diameter of the primary particles observed with a scanning electron microscope. Specifically, when the primary particle is spherical, it means its maximum diameter, and when the primary particle is plate-like, it means the maximum diameter or maximum diagonal length in a projected image of the particle observed from the thickness direction. The "average primary particle diameter" is the arithmetic mean value of the measured values of the major diameters of 300 or more primary particles observed with a scanning electron microscope.
 活物質粒子の粒子径を調節する方法は、特に制限されない。例えば、原料を選択する方法、粉砕条件を調節する方法、蒸着、プラズマ法、シラン等の表面処理を行う方法などが挙げられる。 The method for adjusting the particle size of the active material particles is not particularly limited. Examples include a method of selecting raw materials, a method of adjusting grinding conditions, a method of vapor deposition, a plasma method, a method of surface treatment with silane, etc.
 活物質粒子のBET比表面積は、0.5m/g~100m/gであることが好ましく、1m/g~30m/gであることがより好ましい。活物質粒子のBET比表面積が0.5m/g以上であると、十分な放電容量が得られやすくなる。活物質粒子のBET比表面積が100m/g以下であると、電極作製の際のハンドリング性に優れる。
 活物質粒子のBET比表面積は、-196℃における窒素の吸着等温線から算出できる。
The BET specific surface area of the active material particles is preferably 0.5 m 2 /g to 100 m 2 /g, more preferably 1 m 2 /g to 30 m 2 /g. When the BET specific surface area of the active material particles is 0.5 m 2 /g or more, sufficient discharge capacity can be easily obtained. When the BET specific surface area of the active material particles is 100 m 2 /g or less, handling properties during electrode production are excellent.
The BET specific surface area of the active material particles can be calculated from the nitrogen adsorption isotherm at -196°C.
 本開示の電極材料は、複合粒子の状態である活物質粒子と、複合粒子の状態でない活物質粒子とを含んでもよい。
 例えば、電極材料はケイ素原子を含み、高分子材料及び導電助剤を含む被覆部で被覆された活物質粒子と、炭素材料からなり、高分子材料及び導電助剤を含む被覆で被覆されていない活物質粒子と、を含んでもよい。
The electrode material of the present disclosure may include active material particles that are in the state of composite particles and active material particles that are not in the state of composite particles.
For example, the electrode material consists of active material particles that contain silicon atoms and are covered with a coating that includes a polymeric material and a conductive agent, and a carbon material that is not covered with a coating that includes a polymeric material and a conductive agent. The active material particles may also be included.
(高分子材料)
 被覆部に含まれる高分子材料は、特に制限されない。
 高分子材料として具体的には、ポリアミドイミド(PAI)、ポリアクリロニトリル、環化ポリアクリロニトリル、ポリアミド、ポリイミド、ポリアクリル酸、ポリメタクリル酸、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリレート、ポリメタクリレート、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)等のゴム状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン等のフッ素系高分子;イオン伝導性を有する高分子などが挙げられる。
(polymer material)
The polymer material contained in the covering portion is not particularly limited.
Specific examples of polymeric materials include polyamideimide (PAI), polyacrylonitrile, cyclized polyacrylonitrile, polyamide, polyimide, polyacrylic acid, polymethacrylic acid, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyacrylate, and polymethacrylate. , polyethylene, polypropylene, polyethylene terephthalate, cellulose, nitrocellulose, etc.; rubbery polymers such as SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber); polyvinylidene fluoride (PVdF), polytetra Examples include fluorine-based polymers such as fluoroethylene and fluorinated polyvinylidene fluoride; polymers having ion conductivity;
 耐電解液性及び力学的強度の観点からは、高分子材料としてはポリアミドイミド、ポリアクリロニトリル及び環化ポリアクリロニトリルが好ましい。 From the viewpoint of electrolyte resistance and mechanical strength, polyamideimide, polyacrylonitrile, and cyclized polyacrylonitrile are preferable as the polymer material.
 環化ポリアクリロニトリルは、原料となるポリアクリロニトリルを環化処理して得られる。具体的には、環化ポリアクリロニトリルは少なくとも一部のニトリル基(-C≡N)が閉環して-C=N-基になった構造を有する。原料となるポリアクリロニトリルを環化処理することで、ポリアクリロニトリルに電子伝導性を付与することができる。
 環化ポリアクリロニトリルは、炭素とポリマーの中間の性質を有するということができ、ニトリル基の閉環の度合いが大きいほど、その環化ポリアクリロニトリルは炭素に近い性質を有するということができる。
Cyclized polyacrylonitrile is obtained by cyclizing polyacrylonitrile as a raw material. Specifically, cyclized polyacrylonitrile has a structure in which at least some of the nitrile groups (-C≡N) are ring-closed to become -C=N- groups. By cyclizing polyacrylonitrile as a raw material, it is possible to impart electronic conductivity to polyacrylonitrile.
Cyclized polyacrylonitrile can be said to have properties intermediate between those of carbon and polymers, and the greater the degree of ring closure of the nitrile group, the closer the cyclized polyacrylonitrile can be said to have properties to those of carbon.
 環化ポリアクリロニトリルは、原料となるポリアクリロニトリルの環化処理工程において、-C≡N(ニトリル)基が閉環して-C=N-基になるだけでなく、脱水素化反応により、たとえば主鎖を構成する-CH-CH-基が-CH=C-基等に変化して二重結合を形成することが好ましい。環化反応と脱水素化反応の双方が生じることで、共役系の二重結合が形成され、電子伝導性が向上する傾向にある。 Cyclized polyacrylonitrile is produced by not only ring-closing the -C≡N (nitrile) group to become a -C=N- group in the cyclization process of raw material polyacrylonitrile, but also by a dehydrogenation reaction, for example, the main It is preferable that the -CH 2 -CH- group constituting the chain is changed to a -CH═C- group or the like to form a double bond. When both the cyclization reaction and the dehydrogenation reaction occur, a conjugated double bond is formed, which tends to improve electronic conductivity.
 環化ポリアクリロニトリルにおけるニトリル基が閉環して形成される-C=N-基などの存在は、例えば、赤外分光法で確認することができる。赤外分光法は透過法であっても反射法であってもよい。
 赤外分光法において、-C≡N(ニトリル)基は2240cm-1~2243cm-1におけるピークとして、閉環した-C=N-基は1577cm-1~1604cm-1におけるピークとして、脱水素化により二重結合になる前の-CH-は2939cm-1におけるピークとして、脱水素化により二重結合になった後の-CH=C-基は806cm-1におけるピークとして、それぞれ確認できる。
 閉環した-C=N-基は、1577cm-1~1604cm-1の範囲で、形成される六員環の構造によってシフトする。具体的には、六員環構造に含まれる二重結合の数が多いほど、-C=N-の結合距離が短くなり、低波数側にシフトする傾向にある。
The presence of a -C=N- group formed by ring closure of a nitrile group in the cyclized polyacrylonitrile can be confirmed by, for example, infrared spectroscopy. Infrared spectroscopy may be a transmission method or a reflection method.
In infrared spectroscopy, the -C≡N (nitrile) group shows a peak at 2240 cm -1 to 2243 cm -1 , and the ring-closed -C=N- group shows a peak at 1577 cm -1 to 1604 cm -1 . -CH 2 - before becoming a double bond can be confirmed as a peak at 2939 cm -1 , and -CH=C- group after becoming a double bond by dehydrogenation can be confirmed as a peak at 806 cm -1 .
The closed -C=N- group shifts in the range of 1577 cm -1 to 1604 cm -1 depending on the structure of the six-membered ring formed. Specifically, as the number of double bonds included in the six-membered ring structure increases, the bond distance of -C=N- becomes shorter and tends to shift to the lower wave number side.
 上記ピークの帰属は、The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage(Fibers and Polymers 2012, Vol.13, No.3, 295-302)、Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization(Polymer Degradation and Stability,Volume 128, June 2016, 39-45)等を参考にできる。 The attribution of the above peak is The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage (Fibers and Polymers 2012, Vol.13, No.3, 295-302), Structural transformation of polyacrylonitrile fibers during st abilization and low temperature carbonization (Polymer Degradation and Stability, Volume 128, June 2016, 39-45).
 ポリアクリロニトリルはアクリロニトリルの単独重合体であっても、アクリロニトリルとアクリロニトリル以外の重合成分との共重合体であってもよい。アクリロニトリル以外の重合成分としては、アクリル酸、酢酸ビニル、スチレン、塩化ビニリデン、塩化ビニル、メタクリル酸等が挙げられる。 Polyacrylonitrile may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and a polymerization component other than acrylonitrile. Polymerization components other than acrylonitrile include acrylic acid, vinyl acetate, styrene, vinylidene chloride, vinyl chloride, methacrylic acid, and the like.
 ポリアクリロニトリルがアクリロニトリルとアクリロニトリル以外の重合成分との共重合体である場合、重合成分全体に占めるアクリロニトリルの割合は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 When polyacrylonitrile is a copolymer of acrylonitrile and a polymerization component other than acrylonitrile, the proportion of acrylonitrile in the total polymerization component is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. More preferably, it is at least % by mass.
(導電助剤)
 被覆部に含まれる導電助剤は、特に制限されない。
 導電助剤として具体的には、カーボンブラック、カーボンファイバー、カーボンナノチューブ、フラーレン、カーボンナノホーン等の炭素材料、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。
(Conductivity aid)
The conductive aid contained in the covering portion is not particularly limited.
Specific examples of the conductive aid include carbon materials such as carbon black, carbon fiber, carbon nanotubes, fullerenes, and carbon nanohorns, oxides exhibiting conductivity, and nitrides exhibiting conductivity.
 サイクル特性向上の観点からは、被覆部は導電助剤としてアスペクト比が10以上の粒子を含むことが好ましく、アスペクト比が20以上の粒子を含むことがより好ましく、アスペクト比が30以上の粒子を含むことがさらに好ましい。
 被覆部が導電助剤としてアスペクト比が10以上の粒子を含んでいると、活物質粒子が膨張収縮を繰り返しても導電助剤により形成される活物質粒子間のアルカリ金属イオン及び電子の伝導パスが失われにくく、良好なサイクル特性が得られる。
 上記粒子のアスペクト比は、500以下、250以下、又は100以下であってもよい。
From the viewpoint of improving cycle characteristics, the coating part preferably contains particles with an aspect ratio of 10 or more as a conductive agent, more preferably contains particles with an aspect ratio of 20 or more, and preferably contains particles with an aspect ratio of 30 or more. It is even more preferable to include.
If the covering part contains particles with an aspect ratio of 10 or more as a conductive agent, even if the active material particles repeatedly expand and contract, the conduction path of alkali metal ions and electrons between the active material particles formed by the conductive agent will be maintained. is less likely to be lost, and good cycle characteristics can be obtained.
The aspect ratio of the particles may be 500 or less, 250 or less, or 100 or less.
 アスペクト比が10以上の粒子の形状は特に制限されず、繊維状、チューブ状、棒状、柱状などであってよい。
 サイクル特性向上の観点からは、アスペクト比が10以上の粒子の長軸の長さは3μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることがさらに好ましい。
The shape of particles having an aspect ratio of 10 or more is not particularly limited, and may be fibrous, tubular, rod-like, columnar, or the like.
From the viewpoint of improving cycle characteristics, the length of the long axis of particles having an aspect ratio of 10 or more is preferably 3 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more.
 被覆部が導電助剤としてアスペクト比が10以上の粒子を含む場合、導電助剤全体に占めるアスペクト比が10以上の粒子の割合は特に制限されない。例えば、1質量%~50質量%の範囲内であってもよい。 When the coating portion contains particles with an aspect ratio of 10 or more as a conductive aid, the proportion of the particles with an aspect ratio of 10 or more in the entire conductive aid is not particularly limited. For example, it may be within the range of 1% by mass to 50% by mass.
 サイクル特性向上の観点からは、被覆部は導電助剤としてアスペクト比が10以上の粒子と、アスペクト比が10未満の粒子とを含むことが好ましい。
 被覆部がアスペクト比が10未満の粒子を含むことで、活物質粒子の表面への導電助剤の付着性が向上する。
 アスペクト比が10未満の粒子としては、カーボンブラックが挙げられる。
From the viewpoint of improving cycle characteristics, it is preferable that the coating portion contains particles having an aspect ratio of 10 or more and particles having an aspect ratio of less than 10 as a conductive aid.
When the coating portion includes particles having an aspect ratio of less than 10, the adhesion of the conductive additive to the surface of the active material particles is improved.
Examples of particles having an aspect ratio of less than 10 include carbon black.
<エネルギー貯蔵デバイス用電極>
 本開示のエネルギー貯蔵デバイス用電極(以下、電極とも称する)は、上述した本開示の電極材料を含む。
 必要に応じ、電極は結着材、導電助剤等をさらに含んでもよい。
<Electrodes for energy storage devices>
The electrode for an energy storage device (hereinafter also referred to as electrode) of the present disclosure includes the electrode material of the present disclosure described above.
If necessary, the electrode may further contain a binder, a conductive aid, and the like.
 電極が結着材を含む場合、結着材の種類は特に制限されず、上述した本開示の電極材料に使用する高分子材料から選択してもよい。
 電極が導電助剤を含む場合、導電助剤の種類は特に制限されず、上述した本開示の電極材料に使用する導電助剤から選択してもよい。
When the electrode contains a binder, the type of binder is not particularly limited, and may be selected from the polymer materials used in the electrode material of the present disclosure described above.
When the electrode contains a conductive aid, the type of the conductive aid is not particularly limited, and may be selected from the conductive aids used in the electrode material of the present disclosure described above.
 電極が結着材と導電助剤(複合粒子の被覆部に含まれる導電助剤を除く)とを含む場合、結着材と導電助剤の合計に占める導電助剤の割合は特に制限されず、例えば、1質量%~20質量%の範囲から選択してもよい。
 導電助剤の上記割合は、複合粒子の被覆中の導電助剤の割合より小さくてもよい。すなわち、本開示の電極は、活物質粒子の表面付近とそれ以外の部分とを比べたときに、活物質粒子の表面付近により多くの導電助剤が存在する状態であってもよい。
 本開示の電極材料は導電助剤で被覆された活物質粒子を含むため、電極はさらに導電助剤を含まなくてもよい。
When the electrode includes a binder and a conductive aid (excluding the conductive aid contained in the coating portion of the composite particle), the proportion of the conductive aid in the total of the binder and the conductive aid is not particularly limited. , for example, from the range of 1% by mass to 20% by mass.
The above proportion of the conductive aid may be smaller than the proportion of the conductive aid in the coating of the composite particles. That is, the electrode of the present disclosure may be in a state where more conductive aid exists near the surface of the active material particles when comparing the surface vicinity of the active material particles with the other portions.
Since the electrode material of the present disclosure includes active material particles coated with a conductive aid, the electrode may not further include a conductive aid.
 エネルギー貯蔵デバイスの高容量化の観点からは、電極に含まれる活物質の含有率は、電極全体(集電体を除く)の50質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。 From the perspective of increasing the capacity of the energy storage device, the content of the active material contained in the electrode is preferably 50% by mass or more of the entire electrode (excluding the current collector), and preferably 55% by mass or more. is more preferable, and even more preferably 60% by mass or more.
 電極の強度維持効果の観点からは、電極に含まれる活物質の含有率は、電極全体(集電体を除く)の95質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。 From the viewpoint of maintaining the strength of the electrode, the content of the active material contained in the electrode is preferably 95% by mass or less of the entire electrode (excluding the current collector), and more preferably 90% by mass or less. The content is preferably 80% by mass or less, and more preferably 80% by mass or less.
 電極は、集電体の上に電極材料を含む層が形成された状態であってもよい。
 集電体の種類は特に制限されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金が挙げられる。集電体はカーボンコート、表面粗化等が施された状態であってもよい。
The electrode may be in a state in which a layer containing an electrode material is formed on the current collector.
The type of current collector is not particularly limited, and examples include metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel. The current collector may be carbon coated, surface roughened, or the like.
<エネルギー貯蔵デバイス>
 本開示のエネルギー貯蔵デバイスは、上述した本開示の電極を備える。
 エネルギー貯蔵デバイスの種類は特に制限されない。例えば、リチウムイオン電池、ナトリウムイオン電池、カリウムイオン電池等の、アルカリ金属イオンの電極間の移動を充放電に利用するデバイスが挙げられる。
<Energy storage device>
The energy storage device of the present disclosure comprises the electrode of the present disclosure described above.
The type of energy storage device is not particularly limited. Examples include devices that utilize movement of alkali metal ions between electrodes for charging and discharging, such as lithium ion batteries, sodium ion batteries, and potassium ion batteries.
 本開示のエネルギー貯蔵デバイスは、正極、負極、電解液等から構成される。上述したエネルギー貯蔵デバイス用電極は正極であっても負極であってもよいが、負極であることが好ましい。 The energy storage device of the present disclosure is comprised of a positive electrode, a negative electrode, an electrolyte, and the like. The above-mentioned electrode for an energy storage device may be a positive electrode or a negative electrode, but is preferably a negative electrode.
 エネルギー貯蔵デバイスに使用される電解液としては、電解質を溶解させた有機溶媒、イオン液体等を使用できる。イオン液体としては、170℃未満の温度で液状のイオン液体、溶媒和イオン液体等が挙げられる。 As the electrolytic solution used in the energy storage device, an organic solvent in which an electrolyte is dissolved, an ionic liquid, etc. can be used. Examples of the ionic liquid include ionic liquids that are liquid at a temperature of less than 170°C, solvated ionic liquids, and the like.
 電解質塩として具体的には、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiN(FSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiI等の溶媒和しにくいアニオンを生成するリチウム塩が挙げられる。
 電解質塩は、1種のみを用いても2種以上を用いてもよい。
Specifically, the electrolyte salts include LiPF 6 , LiClO 4 , LiBF 4 , LiClF 4 , LiAsF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN(FSO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN( Examples include lithium salts that generate anions that are difficult to solvate, such as C 2 F 5 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiCl, and LiI.
The electrolyte salt may be used alone or in combination of two or more.
 電解液中の電解質塩濃度は、例えば、電解液1Lあたり好ましくは0.3モル以上、より好ましくは0.5モル以上、さらに好ましくは0.8モル以上である。
 電解液中の電解質塩濃度は、例えば、電解液1Lあたり好ましくは5モル以下、より好ましくは3モル以下、さらに好ましくは1.5モル以下である。
The electrolyte salt concentration in the electrolytic solution is, for example, preferably 0.3 mol or more, more preferably 0.5 mol or more, and still more preferably 0.8 mol or more per liter of electrolytic solution.
The electrolyte salt concentration in the electrolytic solution is, for example, preferably 5 mol or less, more preferably 3 mol or less, and still more preferably 1.5 mol or less per liter of electrolytic solution.
 有機溶媒として具体的には、カーボネート類(プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等)、ラクトン類(γ-ブチロラクトン等)、鎖状エーテル類(1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテル等)、環状エーテル類(テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキソラン、4-メチルジオキソラン、ジグライム、トリグライム、テトラグライム等)、スルホラン類(スルホラン等)、スルホキシド類(ジメチルスルホキシド等)、ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリル等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ポリオキシアルキレングリコール類(ジエチレングリコール等)などの非プロトン性溶媒が挙げられる。
 有機溶媒は、1種のみを用いても2種以上を用いてもよい。
Specifically, the organic solvents include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones (γ-butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), Cyclic ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, diglyme, triglyme, tetraglyme, etc.), sulfolanes (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, etc.) , benzonitrile, etc.), amides (N,N-dimethylformamide, N,N-dimethylacetamide, etc.), and polyoxyalkylene glycols (diethylene glycol, etc.).
The organic solvent may be used alone or in combination of two or more.
 電解液は、添加剤を含んでもよい。添加剤として具体的には、フルオロエチレンカーボネート、プロパンスルトン、ビニレンカーボネート、メタンスルホン酸、シクロヘキシルベンゼン、tert-アミルベンゼン、アジポニトリル、スクシノニトリル等が挙げられる。
 電解液中の添加剤の量は、例えば、電解液全体の0.1質量%~30質量%であることが好ましく、0.5質量%~10質量%であることが好ましい。
The electrolyte may contain additives. Specific examples of the additive include fluoroethylene carbonate, propane sultone, vinylene carbonate, methanesulfonic acid, cyclohexylbenzene, tert-amylbenzene, adiponitrile, and succinonitrile.
The amount of the additive in the electrolytic solution is, for example, preferably 0.1% by mass to 30% by mass, and preferably 0.5% by mass to 10% by mass, based on the total electrolytic solution.
 エネルギー貯蔵デバイスは、電極及び電解液に加え、通常使用されるセパレータ、ガスケット、封口板、ケース等の部材をさらに備えていてもよい。 In addition to the electrodes and electrolyte, the energy storage device may further include commonly used members such as a separator, gasket, sealing plate, and case.
 エネルギー貯蔵デバイスに使用されるセパレータは特に制限されず、多孔質ポリプロピレン製不織布、多孔質ポリエチレン製不織布等のポリオレフィン系の多孔質膜などが挙げられる。 The separator used in the energy storage device is not particularly limited, and includes polyolefin-based porous membranes such as porous polypropylene nonwoven fabric and porous polyethylene nonwoven fabric.
 エネルギー貯蔵デバイスの形状は、円筒型、角型、ボタン型等の任意の形状とすることができる。 The shape of the energy storage device can be any shape such as a cylindrical shape, a square shape, a button shape, etc.
 エネルギー貯蔵デバイスの用途は特に制限されない。例えば、電子機器、電気機器、自動車、電力貯蔵装置等の電源又は補助電源として利用できる。 The use of the energy storage device is not particularly limited. For example, it can be used as a power source or auxiliary power source for electronic devices, electric devices, automobiles, power storage devices, etc.
 以下、実施例に基づいて本開示をより具体的に説明するが、本開示は下記の実施例に制限されるものではない。 Hereinafter, the present disclosure will be described in more detail based on Examples, but the present disclosure is not limited to the Examples below.
<実施例1>
 カーボンブラック(CB)をNMPに分散させた分散液と、VGCFをNMPに分散させた分散液とを混錬して、導電助剤スラリを得た。SiO粒子と、ポリアミドイミド(PAI)のNMP溶液とを混練して得たSiOスラリに導電助剤スラリを添加し、混錬して混合物を得た。得られた混合物をアルミナ製の容器に注入し、120℃、空気下にて乾燥することで溶媒を除去した。その後350℃、5時間の熱処理を窒素雰囲気下で行った。得られた熱処理物を粉砕し、篩にかけることで目的の複合粒子を得た。複合粒子に含まれる各成分の質量比を下記式に示す。
 SiO:PAI:CB:VGCF=90:5:4:1
<Example 1>
A dispersion liquid in which carbon black (CB) was dispersed in NMP and a dispersion liquid in which VGCF was dispersed in NMP were kneaded to obtain a conductive additive slurry. A conductive additive slurry was added to an SiO slurry obtained by kneading SiO particles and an NMP solution of polyamideimide (PAI), and the mixture was kneaded. The resulting mixture was poured into an alumina container and dried at 120°C under air to remove the solvent. Thereafter, heat treatment was performed at 350° C. for 5 hours in a nitrogen atmosphere. The obtained heat-treated product was crushed and passed through a sieve to obtain the desired composite particles. The mass ratio of each component contained in the composite particles is shown in the following formula.
SiO:PAI:CB:VGCF=90:5:4:1
 作製した複合粒子のSEM画像を図1に示す。図1に示すように、SiO粒子の表面にカーボンブラックと繊維状のVGCFが付着している様子が観察された。画像解析法により算出した複合粒子の被覆率は、50%以上であった。
 作製した複合粒子の断面SEM画像を図2に示す。図2に矢印で示すように、SiO粒子の間を繊維状のVGCFが橋渡ししている様子が観察された。
A SEM image of the produced composite particles is shown in FIG. As shown in FIG. 1, it was observed that carbon black and fibrous VGCF were attached to the surface of the SiO particles. The coverage of the composite particles calculated by image analysis was 50% or more.
FIG. 2 shows a cross-sectional SEM image of the composite particles produced. As shown by the arrow in FIG. 2, it was observed that fibrous VGCF bridged between the SiO particles.
(評価用電池の作製)
 得られた複合粒子と、黒鉛粒子と、1%カルボキシメチルセルロース(CMC)の水溶液とを均一に混合し、スチレンブタジエンゴム(SBR)の水分散液を滴下して、負極用のスラリを得た。スラリに含まれる複合粒子と黒鉛粒子の質量比(SiO:黒鉛)は12:88とした。得られたスラリを集電体の表面にコーターを用いて塗工し、乾燥することで目的の塗工量(80g/m)の負極を得た。プレス機にて密度を1.6g/cmに設定した。負極に含まれる活物質(複合粒子及び黒鉛粒子)、SBR及びCMCの質量比を下記式に示す。
 活物質:SBR:CMC=97:1.5:1.5
(Preparation of evaluation battery)
The obtained composite particles, graphite particles, and a 1% aqueous solution of carboxymethylcellulose (CMC) were uniformly mixed, and an aqueous dispersion of styrene butadiene rubber (SBR) was added dropwise to obtain a slurry for a negative electrode. The mass ratio (SiO:graphite) of composite particles and graphite particles contained in the slurry was 12:88. The obtained slurry was applied to the surface of the current collector using a coater and dried to obtain a negative electrode with the desired coating amount (80 g/m 2 ). The density was set at 1.6 g/cm 3 using a press. The mass ratio of the active materials (composite particles and graphite particles), SBR, and CMC contained in the negative electrode is shown in the following formula.
Active material: SBR:CMC=97:1.5:1.5
 正極活物質(NMC811)、カーボンブラック(CB)及びポリフッ化ビニリデン(PVDF)を含む正極用のスラリをNMPを用いて得た。得られたスラリを集電体の表面にコーターを用いて塗工し、乾燥することで目的の塗工量(195g/m)の正極を得た。プレス機にて密度を2.3g/cmに設定した。正極に含まれる各成分の質量比を下記式に示す。
 NMC811:CB:PVDF=94:3:3
A slurry for a positive electrode containing a positive electrode active material (NMC811), carbon black (CB), and polyvinylidene fluoride (PVDF) was obtained using NMP. The obtained slurry was coated on the surface of the current collector using a coater and dried to obtain a positive electrode with the desired coating weight (195 g/m 2 ). The density was set at 2.3 g/cm 3 using a press. The mass ratio of each component contained in the positive electrode is shown in the following formula.
NMC811:CB:PVDF=94:3:3
 作製した負極及び正極と、セパレータ(ポリプロピレン多孔質膜)とを用いてラミネート型の電池を得た。
 負極(N)および正極(P)の容量比(N/P)は1.05となるように設計した。
 電解液としては、1MのLiPFをEC、EMC及びDECを1:1:1(体積比)の割合で含み、VC(1質量%)及びFEC(2質量%)をさらに含む混合溶媒に溶解したものを用いた。
A laminate type battery was obtained using the produced negative and positive electrodes and a separator (polypropylene porous membrane).
The capacity ratio (N/P) between the negative electrode (N) and the positive electrode (P) was designed to be 1.05.
As the electrolyte, 1M LiPF 6 was dissolved in a mixed solvent containing EC, EMC, and DEC in a ratio of 1:1:1 (volume ratio), and further containing VC (1% by mass) and FEC (2% by mass). I used the one I made.
 複合粒子及び電池の作製に使用した材料の詳細は、下記の通りである。
 カーボンブラック…平均一次粒子径が48nmのアセチレンブラック(デンカ株式会社、DENKA BLACK Li-400)
 VGCF…平均繊維径が150nm、平均繊維長が15.0μm、炭素含有率が99.99質量%のカーボンファイバー(昭和電工株式会社、VGCF-H)
 SiO粒子…体積平均粒子径が8.0μmのSiO粒子
 黒鉛粒子…体積平均粒子径が10.0μmの黒鉛粒子
Details of the materials used to make the composite particles and battery are as follows.
Carbon black...Acetylene black with an average primary particle size of 48 nm (DENKA BLACK Li-400, manufactured by DENKA CORPORATION)
VGCF...Carbon fiber with an average fiber diameter of 150 nm, an average fiber length of 15.0 μm, and a carbon content of 99.99% by mass (Showa Denko K.K., VGCF-H)
SiO particles...SiO particles with a volume average particle diameter of 8.0 μm Graphite particles...Graphite particles with a volume average particle diameter of 10.0 μm
<実施例2>
 カーボンブラック(CB)をNMPに分散させた分散液を混錬して、導電助剤スラリを得た。
 SiO粒子と、ポリアミドイミド(PAI)のNMP溶液とを混練して得たSiOスラリに導電助剤スラリを添加し、混錬して混合物を得た。得られた混合物をアルミナ製の容器に注入し、120℃、空気下にて乾燥することで溶媒を除去した。その後350℃、5時間の熱処理を窒素雰囲気下で行った。得られた熱処理物を粉砕し、篩にかけることで目的の複合粒子を得た。複合粒子に含まれる各成分の質量比を下記式に示す。
 SiO:PAI:CB=90:5:5
<Example 2>
A dispersion liquid in which carbon black (CB) was dispersed in NMP was kneaded to obtain a conductive additive slurry.
A conductive additive slurry was added to an SiO slurry obtained by kneading SiO particles and an NMP solution of polyamideimide (PAI), and the mixture was kneaded. The resulting mixture was poured into an alumina container and dried at 120°C under air to remove the solvent. Thereafter, heat treatment was performed at 350° C. for 5 hours in a nitrogen atmosphere. The obtained heat-treated product was crushed and passed through a sieve to obtain the desired composite particles. The mass ratio of each component contained in the composite particles is shown in the following formula.
SiO:PAI:CB=90:5:5
 作製した複合粒子のSEM画像を図3に示す。図3に示すように、SiO粒子の表面にカーボンブラックが付着している様子が観察された。画像解析法により算出した複合粒子の被覆率は、50%以上であった。 A SEM image of the prepared composite particles is shown in Figure 3. As shown in FIG. 3, carbon black was observed to be attached to the surface of the SiO particles. The coverage of the composite particles calculated by image analysis was 50% or more.
 得られた複合粒子を用いて、実施例1と同様にして評価用の電池を作製した。 A battery for evaluation was produced in the same manner as in Example 1 using the obtained composite particles.
<比較例1>
 実施例1の複合粒子の原料として使用したSiO粒子を複合粒子の代わりに用いて、実施例1と同様にして評価用の電池を作製した。
<Comparative example 1>
A battery for evaluation was produced in the same manner as in Example 1, except that the SiO particles used as the raw material for the composite particles in Example 1 were used instead of the composite particles.
<比較例2>
 SiO粒子と、ポリアミドイミド(PAI)のNMP溶液とを混練して得たSiOスラリをアルミナ製の容器に注入し、120℃、空気下にて乾燥することで溶媒を除去した。その後350℃、5時間の熱処理を窒素雰囲気下で行った。得られた熱処理物を粉砕し、篩にかけることで目的の複合粒子を得た。複合粒子に含まれる各成分の質量比を下記式に示す。
 SiO:PAI=95:5(質量比)
<Comparative example 2>
An SiO slurry obtained by kneading SiO particles and an NMP solution of polyamideimide (PAI) was poured into an alumina container, and the solvent was removed by drying at 120° C. under air. Thereafter, heat treatment was performed at 350° C. for 5 hours in a nitrogen atmosphere. The obtained heat-treated product was crushed and passed through a sieve to obtain the desired composite particles. The mass ratio of each component contained in the composite particles is shown in the following formula.
SiO:PAI=95:5 (mass ratio)
 得られた複合粒子を用いて、実施例1と同様にして評価用の電池を作製した。 A battery for evaluation was produced in the same manner as in Example 1 using the obtained composite particles.
<比較例3>
 SiO粒子と、ポリアミドイミド(PAI)のNMP溶液とを混練して得たSiOスラリをアルミナ製の容器に注入し、120℃、空気下にて乾燥することで溶媒を除去した。その後350℃、5時間の熱処理を窒素雰囲気下で行った。得られた熱処理物を粉砕し、篩にかけることで目的の複合粒子を得た。複合粒子に含まれる各成分の質量比を下記式に示す。
 SiO:PAI=90:10(質量比)
<Comparative example 3>
An SiO slurry obtained by kneading SiO particles and an NMP solution of polyamideimide (PAI) was poured into an alumina container, and the solvent was removed by drying at 120° C. under air. Thereafter, heat treatment was performed at 350° C. for 5 hours in a nitrogen atmosphere. The obtained heat-treated product was crushed and passed through a sieve to obtain the desired composite particles. The mass ratio of each component contained in the composite particles is shown in the following formula.
SiO:PAI=90:10 (mass ratio)
 得られた複合粒子を用いて、実施例1と同様にして評価用の電池を作製した。 A battery for evaluation was produced in the same manner as in Example 1 using the obtained composite particles.
<サイクル特性の評価>
 作製した評価用の電池を用いて、サイクル特性の評価試験を25℃の条件下で行った。
 最初に、上限電圧:4.2V、電流:1/10C-CC(Constant Current)の条件で電池の充電を行った。その後、下限電圧:2.7V、電流:1/10C-CCCV、カットオフ電流:1/100Cの条件で電池の放電を行った。この工程を3サイクル繰り返した後に電池の放電容量(3サイクル後)を測定した。
 次いで、上限電圧:4.2V、電流:1C-CCの条件で電池の充電を行った。その後、下限電圧:2.75V、電流:1C-CCCV、カットオフ電流:1/50Cの条件で電池の放電を行った。この工程を300サイクル繰り返した後に電池の放電容量(300サイクル後)を測定した。
 下記式により、セルの放電容量維持率(%)を算出した。結果を表1に示す。
 放電容量維持率(%)=放電容量(300サイクル後)/放電容量(3サイクル後)×100
<Evaluation of cycle characteristics>
Using the produced evaluation battery, a cycle characteristic evaluation test was conducted at 25°C.
First, the battery was charged under the conditions of upper limit voltage: 4.2V and current: 1/10C-CC (Constant Current). Thereafter, the battery was discharged under the conditions of lower limit voltage: 2.7V, current: 1/10C-CCCV, and cutoff current: 1/100C. After repeating this process for 3 cycles, the discharge capacity of the battery (after 3 cycles) was measured.
Next, the battery was charged under the conditions of upper limit voltage: 4.2V and current: 1C-CC. Thereafter, the battery was discharged under the conditions of lower limit voltage: 2.75V, current: 1C-CCCV, and cutoff current: 1/50C. After repeating this process for 300 cycles, the discharge capacity of the battery (after 300 cycles) was measured.
The discharge capacity retention rate (%) of the cell was calculated using the following formula. The results are shown in Table 1.
Discharge capacity maintenance rate (%) = Discharge capacity (after 300 cycles) / Discharge capacity (after 3 cycles) x 100
 表1に示すように、活物質粒子の被覆が高分子材料及び導電助剤を含む実施例1及び実施例2の電池は、活物質が被覆されていない比較例1の電池、活物質粒子の被覆が高分子材料のみを含む比較例2、3の電池に比べて300サイクル後の放電容量維持率が大きく、サイクル特性に優れていた。 As shown in Table 1, the batteries of Examples 1 and 2 in which the active material particles are coated with a polymeric material and a conductive additive, the batteries of Comparative Example 1 in which the active material particles are not coated, Compared to the batteries of Comparative Examples 2 and 3 in which the coating only contained a polymeric material, the discharge capacity retention rate after 300 cycles was large and the cycle characteristics were excellent.

Claims (8)

  1.  アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子と、前記粒子の表面の少なくとも一部を被覆する高分子材料及び導電助剤を含む被覆部と、を含む複合粒子を含む、電極材料。 An electrode material comprising composite particles including particles containing a substance capable of occluding and releasing alkali metal ions, and a coating portion containing a polymeric material and a conductive agent that coats at least a portion of the surface of the particles.
  2.  前記被覆部による前記粒子の表面の被覆率は50%以上である、請求項1に記載の電極材料。 The electrode material according to claim 1, wherein the coverage of the surface of the particle by the coating portion is 50% or more.
  3.  前記被覆部中の前記導電助剤の含有率は30質量%以上である、請求項1に記載の電極材料。 The electrode material according to claim 1, wherein the content of the conductive additive in the coating portion is 30% by mass or more.
  4.  前記高分子材料はポリアミドイミド及びポリアクリロニトリルから選択される少なくとも1種を含む、請求項1に記載の電極材料。 The electrode material according to claim 1, wherein the polymer material includes at least one selected from polyamideimide and polyacrylonitrile.
  5.  前記粒子はケイ素を含む、請求項1に記載の電極材料。 The electrode material according to claim 1, wherein the particles contain silicon.
  6.  前記導電助剤はアスペクト比が10以上の粒子を含む、請求項1に記載の電極材料。 The electrode material according to claim 1, wherein the conductive additive contains particles with an aspect ratio of 10 or more.
  7.  請求項1~請求項6のいずれか1項に記載の電極材料を含む、エネルギー貯蔵デバイス用電極。 An electrode for an energy storage device, comprising the electrode material according to any one of claims 1 to 6.
  8.  請求項7に記載のエネルギー貯蔵デバイス用電極を含む、エネルギー貯蔵デバイス。
     
     
     
    An energy storage device comprising the electrode for an energy storage device according to claim 7.


PCT/JP2022/033953 2022-09-09 2022-09-09 Electrode material, electrode for energy storage devices, and energy storage device WO2024053110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033953 WO2024053110A1 (en) 2022-09-09 2022-09-09 Electrode material, electrode for energy storage devices, and energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033953 WO2024053110A1 (en) 2022-09-09 2022-09-09 Electrode material, electrode for energy storage devices, and energy storage device

Publications (1)

Publication Number Publication Date
WO2024053110A1 true WO2024053110A1 (en) 2024-03-14

Family

ID=90192233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033953 WO2024053110A1 (en) 2022-09-09 2022-09-09 Electrode material, electrode for energy storage devices, and energy storage device

Country Status (1)

Country Link
WO (1) WO2024053110A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
JP2014139920A (en) * 2012-12-18 2014-07-31 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and lithium ion secondary battery
JP2022032567A (en) * 2020-08-12 2022-02-25 凸版印刷株式会社 Negative electrode for non-aqueous lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
JP2014139920A (en) * 2012-12-18 2014-07-31 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and lithium ion secondary battery
JP2022032567A (en) * 2020-08-12 2022-02-25 凸版印刷株式会社 Negative electrode for non-aqueous lithium ion secondary battery

Similar Documents

Publication Publication Date Title
CN111213262A (en) Negative electrode and secondary battery comprising same
KR20150067049A (en) Conductive composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
US11631857B2 (en) Secondary battery
US20220384790A1 (en) Negative Electrode and Secondary Battery Including the Same
WO2017159267A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
KR20190095835A (en) Positive electrode, and secondary battery comprising the positive electrode
US20200373559A1 (en) Positive Electrode and Secondary Battery Including the Positive Electrode
JP7466982B2 (en) Anode and secondary battery including said anode
KR20230010172A (en) Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
CN116670850A (en) Negative electrode and secondary battery including the same
KR20200047286A (en) Anode Comprising Graphite and Silicon-based material having the Different Diameter and Lithium Secondary Battery Comprising the Same
CN115336040A (en) Negative electrode and secondary battery comprising same
US20220216461A1 (en) Negative electrode and secondary battery including the negative electrode
US20230104135A1 (en) Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
JP7224787B2 (en) Non-aqueous electrolyte for secondary battery containing specific additive and secondary battery using the same
WO2024053110A1 (en) Electrode material, electrode for energy storage devices, and energy storage device
KR20210012801A (en) Composite active material for negative electrode, method for manufacturing the same, negative electrode and secondary battery comprising the same
WO2024053111A1 (en) Electrode material, electrode for energy storage devices, and energy storage device
WO2021172105A1 (en) Composite particle for electrochemical element, production method therefor, electrode for electrochemical element, and electrochemical element
WO2021153398A1 (en) Nonaqueous-electrolyte secondary battery negative electrode and nonaqueous-electrolyte secondary battery
CN111448689B (en) Positive electrode and secondary battery including the same
KR20220048852A (en) Negative electrode, method for preparing the negative electrode, and secondary battery comprising the negative electrode
EP4379847A1 (en) Negative electrode and secondary battery comprising same
US20230063421A1 (en) Anode for secondary battery and secondary battery including the same
US20230125989A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising negative electrode, and method for preparing negative electrode for lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958188

Country of ref document: EP

Kind code of ref document: A1