WO2024053081A1 - Scanning distance measuring device - Google Patents

Scanning distance measuring device Download PDF

Info

Publication number
WO2024053081A1
WO2024053081A1 PCT/JP2022/033841 JP2022033841W WO2024053081A1 WO 2024053081 A1 WO2024053081 A1 WO 2024053081A1 JP 2022033841 W JP2022033841 W JP 2022033841W WO 2024053081 A1 WO2024053081 A1 WO 2024053081A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving element
light receiving
distance measuring
measuring device
Prior art date
Application number
PCT/JP2022/033841
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 大牧
菜月 高川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/033841 priority Critical patent/WO2024053081A1/en
Publication of WO2024053081A1 publication Critical patent/WO2024053081A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication

Definitions

  • the present disclosure relates to a scanning distance measuring device.
  • An object of the present disclosure is to provide a scanning distance measuring device that has a simple configuration, is capable of detecting an object to be measured, and is capable of interlocking even if the object is several meters away from the object.
  • the purpose is to provide.
  • a scanning distance measuring device includes: a laser light source that emits laser light; A condensing lens that condenses the laser beam reflected by the object to be measured; a first light receiving element that is arranged at a position intersecting the optical axis of the condenser lens and detects the laser beam focused by the condenser lens; a second light receiving element disposed at a predetermined distance from the optical axis; and a processing circuit that determines whether the object to be measured exists within the distance measurement area based on the laser beam detected by the second light receiving element.
  • a scanning distance measuring device that can detect an object to be measured and can perform interlock even if the object is several meters or more away from the object.
  • FIG. 1 is a diagram schematically showing the configuration of a scanning distance measuring device according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view schematically showing an optical path of a laser beam in a scanning distance measuring device.
  • FIG. 2 is a top view schematically showing the optical path of a laser beam in the scanning distance measuring device.
  • FIG. 3 is a perspective view showing an example of the position of a first light receiving element and the position of a second light receiving element.
  • FIG. 3 is a side view showing an example of the position of a first light receiving element and the position of a second light receiving element.
  • FIG. 2 is a diagram schematically showing a laser beam reflected by a measurement object located at a longer distance than the example shown in FIG. 1;
  • FIG. 3 is a diagram schematically showing another example of a scanning distance measuring device.
  • FIG. 3 is a diagram schematically showing another example of a scanning distance measuring device.
  • FIG. 3 is a diagram showing a laser beam scanning area, which is an area where laser light is emitted.
  • FIG. 3 is a diagram showing a laser beam scanning area, which is an area where a laser beam is emitted.
  • FIG. 3 is a diagram showing a laser beam scanning area, which is an area where laser light is emitted.
  • FIG. 2 is a diagram schematically showing an optical system in a scanning distance measuring device.
  • FIG. 3 is a perspective view showing an example of the position of a first light receiving element and the position of a second light receiving element.
  • FIG. 3 is a side view showing an example of the position of a first light receiving element and the position of a second light receiving element.
  • FIG. 2 is a diagram schematically showing an example of a processing circuit.
  • the position of the second light-receiving element, the position of the second light-receiving element, and the object to be measured are transferred from the scanning distance measuring device capable of determining whether or not the object to be measured exists. It is a graph showing the relationship with the maximum distance to.
  • the position of the second light-receiving element, the position of the second light-receiving element, and the object to be measured are transferred from the scanning distance measuring device capable of determining whether or not the object to be measured exists. It is a graph showing the relationship with the maximum distance to.
  • FIG. 1 is a diagram schematically showing the configuration of a scanning distance measuring device 1 according to the first embodiment.
  • FIG. 2 is a perspective view schematically showing the optical path of a laser beam in the scanning distance measuring device 1.
  • FIG. 3 is a top view schematically showing the optical path of a laser beam in the scanning distance measuring device 1.
  • FIG. 4 is a perspective view showing an example of the position of the first light receiving element 411 and the position of the second light receiving element 421.
  • FIG. 5 is a side view showing an example of the position of the first light receiving element 411 and the position of the second light receiving element 421.
  • the scanning distance measuring device 1 includes a laser light source 101 that emits a laser beam, a condensing lens 301 that condenses the laser beam reflected by the object to be measured 2, and detects the laser beam condensed by the condensing lens 301. a second light receiving element 421 disposed at a predetermined distance from the optical axis 302 of the condenser lens 301, and a processing circuit 440.
  • laser light means transmitting laser light 510 or receiving laser light 520.
  • the first light receiving circuit 410 has a first light receiving element 411. As shown in FIG. 1, the first light receiving element 411 is arranged on the optical axis 302 of the condenser lens 301. The first light receiving element 411 detects the received laser beam 520 focused by the focusing lens 301. In other words, the first light receiving element 411 is arranged at a position intersecting the optical axis 302 of the condenser lens 301. Thereby, the distance from the condenser lens 301 to the first light receiving element 411 can be increased. A signal corresponding to the laser beam detected by the first light receiving element 411 is sent to the processing circuit 440.
  • the second light receiving circuit 420 has a second light receiving element 421 different from the first light receiving element 411.
  • the second light receiving element 421 is not arranged on the optical axis 302 of the condenser lens 301.
  • the second light receiving element 421 is arranged at a position that does not intersect the optical axis 302 of the condenser lens 301. That is, the second light-receiving element 421 is placed at a position separated from the optical axis 302 by a predetermined distance. In this case, the distance between the optical axis 302 and the second light receiving element 421 is a "predetermined distance".
  • a signal corresponding to the laser beam detected by the second light receiving element 421 is sent to the processing circuit 440.
  • the laser beam i.e., the transmission laser beam 510
  • a part of the laser beam i.e., the reception laser beam 520
  • the received laser beam 520 is focused by the condensing lens 301 and enters the first light receiving element 411 .
  • the first light receiving element 411 detects the received laser beam 520.
  • the received laser light 520 that is scattered by the object to be measured 2 and enters the scanning distance measuring device 1 forms a divergence angle when viewed from the scanning distance measuring device 1.
  • FIG. 6 is a diagram schematically showing the laser beam reflected by the measurement object 2 which is located at a longer distance than the example shown in FIG.
  • the received laser light 520 that is scattered by the measurement object 2 and enters the scanning distance measuring device 1 is parallel when viewed from the scanning distance measuring device 1. This is based on the distance from the scanning distance measuring device 1 to the object to be measured 2, the received laser beam 520, the radius on the object to be measured 2 (in the case of an ellipse, the major axis), and the radius of the light received by the condenser lens 301 ( In the case of an ellipse, the difference from the long axis) is negligible.
  • the scanning distance measuring device 1 Since the amount of light received is inversely proportional to the square of the distance measured, it is desirable to design the scanning distance measuring device 1 so that the farther the distance, the more the light is focused on the first light receiving element 411.
  • ⁇ Processing circuit 440> The received laser beam 520 that has entered the first light receiving element 411 is converted into a current according to the amount of incident light, and further converted into a voltage by a Trans Impedance Amplifier (TIA) of the first light receiving circuit 410. This signal is sent to the processing circuit 440, and distance measurement is performed using a direct time of flight (ToF) method.
  • the direct ToF method is a method that measures the time it takes for the light (pulse modulated light) emitted from the scanning range finder 1 to be reflected by the measurement object 2 and to be received by the scan range finder 1. be.
  • the processing circuit 440 controls the laser light source 101. For example, processing circuit 440 controls the output of laser light source 101, such as radiation density or light intensity.
  • the processing circuit 440 receives a signal corresponding to the laser light detected by the first light receiving element 411. For example, the processing circuit 440 controls the output of the laser light source 101 based on the laser light detected by the first light receiving element 411.
  • the processing circuit 440 receives a signal corresponding to the laser beam detected by the second light receiving element 421. For example, the processing circuit 440 determines whether the measurement target object 2 exists within the distance measurement area 3 based on the laser beam detected by the second light receiving element 421.
  • the processing circuit 440 may be configured with a single central processing unit or may include a plurality of central processing units.
  • the distance measurement area 3 is an area that is set as an area that requires interlock in order to meet safety standards (FIGS. 10 and 11, which will be described later). Interlocking means stopping the transmission of the transmitting laser beam 510 or reducing the output of the transmitting laser beam 510.
  • the distance measurement area 3 is a three-dimensional space in which the transmitted laser beam 510 from the scanning distance measurement device 1 to the measurement object 2 is scanned. For example, the distance measurement area 3 is set as a distance from the scanning distance measurement device 1 that requires interlock in order to meet safety standards.
  • the scanning distance measuring device 1 includes a first cylindrical lens 102, a mirror 103 (for example, a bending mirror), a second cylindrical lens 104, and a separation mirror 201 as a light control element. It may also have.
  • mirror 103 is provided between first cylindrical lens 102 and second cylindrical lens 104.
  • the mirror 103 can convert the optical path of the light from the first cylindrical lens 102. Therefore, when the scanning distance measuring device 1 includes the mirror 103, the overall dimensions of the scanning distance measuring device 1, such as the dimensions of the housing, can be reduced.
  • the transmitted laser light 510 emitted from the laser light source 101 the light emitted in the direction parallel to the fast axis (also referred to as the "fast axis direction” or “fast direction”) is transmitted by the first cylindrical lens 102 . , converted into approximately parallel light.
  • the shape of the first cylindrical lens 102 has a curvature in the fast direction.
  • the transmitted laser light 510 the light emitted in the direction parallel to the slow axis (also referred to as the "slow axis direction” or “slow direction”) is not affected by the curvature of the first cylindrical lens 102.
  • the transmitted laser light 510 emitted from the laser light source 101 the light emitted in the slow direction continues to spread in the slow direction.
  • a toroidal lens or a cross cylindrical lens having curvature also in the slow direction may be used instead of the first cylindrical lens 102.
  • a lens having a negative curvature in the slow direction is used, the spread angle of the transmitted laser beam 510 in the slow direction increases, and the distance between the first cylindrical lens 102 and the second cylindrical lens 104 can be narrowed.
  • the transmitted laser beam 510 passes through the first cylindrical lens 102, the light spreading in the slow direction of the transmitted laser beam 510 is converted into substantially parallel light by the second cylindrical lens 104. As a result, the transmitted laser light 510 that has passed through the second cylindrical lens 104 is irradiated farther without spreading significantly.
  • the first cylindrical lens 102 and the second cylindrical lens 104 are effective when the width of the laser beam in the slow direction is larger than the width in the fast direction.
  • the first cylindrical lens 102 and the second cylindrical lens 104 are effective when using a high-power laser light source. This is because the wider the light source width, the larger the spread angle of the light after passing through the lens that converts it into parallel light.
  • first cylindrical lens 102 and second cylindrical lens 104 may have the same focal length.
  • one collimator lens may be used instead of the first cylindrical lens 102 and the second cylindrical lens 104.
  • the scanning distance measuring device 1 may include a first scanning mirror 202 and a second scanning mirror 203.
  • the transmitted laser beam 510 converted into substantially parallel light is guided by the separation mirror 201 along the same optical path as the received laser beam 520, and is guided toward the first scanning mirror 202. Further, the transmitted laser beam 510 is guided by the first scanning mirror 202 toward the second scanning mirror 203, and is emitted from the scanning distance measuring device 1 to the ranging area 3 by the second scanning mirror 203.
  • the first scanning mirror 202 and the second scanning mirror 203 are arranged on a common optical path of the transmitting laser beam 510 and the receiving laser beam 520.
  • the first scanning mirror 202 and the second scanning mirror 203 have a structure that allows them to rotate around mutually orthogonal axes. Thereby, the radiation angle of the transmitted laser beam 510 from the scanning distance measuring device 1 can be controlled.
  • the shapes and positions of the first scanning mirror 202 and the second scanning mirror 203 are not limited to the example described in this embodiment.
  • the focal length of the first cylindrical lens 102 is significantly different from the focal length of the second cylindrical lens 104.
  • the beam diameter of the transmitted laser beam 510 is different between the fast direction and the slow direction.
  • the beam diameter of the transmission laser beam 510 in the slow direction is three times or more the beam diameter of the transmission laser beam 510 in the fast direction. Therefore, the shape of the separation mirror 201 is, for example, a rectangle that is long in the slow direction.
  • the shape of the separation mirror 201 does not necessarily have to be rectangular. , may be circular or square.
  • the separation mirror 201 guides the laser beam reflected by the measurement object 2 toward the condenser lens 301.
  • the separation mirror 201 is a component for guiding the received laser beam 520 to the same optical path, but the separation mirror 201 does not necessarily have to be a small piece mirror.
  • a component such as a polarizing beam splitter that can switch between reflection and transmission according to orthogonal polarization directions may be used as the light control element. Since the polarization direction of the received laser beam 520 is not determined, even if a polarizing beam splitter is used instead of the separation mirror 201, the total amount of the received laser beam 520 will not be attenuated.
  • FIGS. 7 and 8 are diagrams schematically showing other examples of the scanning distance measuring device 1.
  • the separation mirror 201 does not necessarily need to be placed on the optical axis 302 of the condenser lens 301.
  • the separation mirror 201 is disposed at a position shifted in a direction perpendicular to the optical axis 302 of the condenser lens 301.
  • the output of the laser light source 101 can be increased, and the distance measurement area 3 can be further expanded.
  • the separation mirror 201 may be placed at a position offset from the optical axis 302 of the condenser lens 301 in a direction parallel to the fast axis of the laser light emitted from the laser light source 101.
  • the separation mirror 201 can be downsized and the light receiving efficiency can be increased.
  • the scanning type distance measuring device 1 can be downsized.
  • the second light receiving element 421 and the second light receiving circuit 420 are located apart from the first light receiving circuit 410.
  • the second light receiving circuit 420 (specifically, the second light receiving element 421) collects light with respect to the first light receiving circuit 410 (specifically, the first light receiving element 411), for example. It is sufficient if it is located on the opposite side to the lens 301.
  • the second light receiving element 421 may be located on the opposite side of the separation mirror 201 with respect to the optical axis 302 of the condenser lens 301.
  • FIG. 9 is a diagram showing the laser beam scanning area 5, which is the area where the transmission laser beam 510 is emitted.
  • the laser beam scanning area 5 indicates an angular area surrounded by four solid lines.
  • the scanning distance measuring device 1 can freely scan the inside of the laser beam scanning area 5 with the transmitted laser beam 510 using, for example, the first scanning mirror 202 and the second scanning mirror 203.
  • the scanning distance measuring device 1 may scan the transmitted laser beam 510 by means other than the first scanning mirror 202 and the second scanning mirror 203.
  • the pulse width is several ns, and it is necessary to detect steep rise or fall times, so the light receiving element, light receiving circuit, and processing circuit require a bandwidth on the order of several 100 MHz to several GHz. becomes.
  • FIG. 10 is a diagram showing a laser beam scanning area 5, which is an area from which a transmission laser beam 510 is emitted.
  • FIG. 11 is a diagram showing a laser beam scanning area 5, which is an area where a transmission laser beam 510 is emitted.
  • the object to be measured 2 is located closer to the scanning distance measuring device 1 than in the example shown in FIG.
  • distance measurement area 3 is an area surrounded by a broken line.
  • a state in which the object to be measured 2 is present in the distance measurement area 3 is shown.
  • the measurement object 2 receives the transmitted laser beam 510 at only two points.
  • a state in which the object to be measured 2 is present is shown, and the object to be measured 2 receives the transmitted laser beam 510 at five points.
  • the transmitted laser light 510 is pulse-modulated, for example.
  • the transmitted laser beam 510 is intermittently emitted within the laser beam scanning area 5, and on the surface (approximately spherical surface) at the same distance from the scanning distance measuring device 1, the portion indicated by dots in FIGS. is the part irradiated with the transmission laser beam 510 and is also the measurement point.
  • FIG. 12 is a diagram schematically showing the optical system in the scanning distance measuring device 1. As shown in FIG. When the distance from the scanning distance measuring device 1 to the measurement target 2 is shorter than a specific distance, the received laser beam 520 is not completely focused on the first light receiving element 411 of the first light receiving circuit 410. In the example shown in FIG. 12, the diameter of the received laser beam 520 that enters the first light receiving circuit 410 is indicated by D. In the example shown in FIG. The diameter of the received laser beam 520 that enters the first light receiving circuit 410 is also referred to as a "spot diameter.”
  • the diameter D on the first light receiving circuit 410 is proportional to the focal length f of the condenser lens 301 and inversely proportional to the distance z from the condenser lens 301 to the measurement target 2. Therefore, as the distance z from the condenser lens 301 to the measurement object 2 becomes shorter, the diameter D on the first light receiving circuit 410 becomes larger.
  • FIG. 13 is a perspective view showing an example of the position of the first light receiving element 411 and the position of the second light receiving element 421.
  • FIG. 14 is a side view showing an example of the position of the first light receiving element 411 and the position of the second light receiving element 421.
  • the second light receiving element 421 is not arranged on the optical axis 302 of the condenser lens 301.
  • the second light receiving element 421 is arranged at a position that does not intersect the optical axis 302 of the condenser lens 301.
  • the second light receiving element 421 is placed at a distance of D/2 (that is, half the spot diameter) from the optical axis 302.
  • the received laser light 520 incident on the second light receiving element 421 is converted into a current according to the amount of incident light, and further converted into a voltage by the TIA of the second light receiving circuit 420. Since the second light-receiving element 421 is not intended for distance measurement, it is not necessary to be able to receive light in a pulsed form. The scanning distance measuring device 1 only needs to be able to determine whether or not the received laser beam 520 has entered the second light receiving element 421.
  • FIG. 15 is a diagram schematically showing an example of the processing circuit 440.
  • Processing circuit 440 has a comparator 441.
  • Comparator 441 compares the light reception signal and a threshold voltage.
  • the light reception signal is a signal corresponding to a voltage converted according to the amount of light incident on the second light reception element 421.
  • the comparator 441 outputs a detection signal. For example, if the signal corresponding to the voltage converted according to the amount of light incident on the second light receiving element 421 is equal to or higher than the threshold voltage, the processing circuit 440 determines that the measurement target object 2 exists within the distance measurement area 3. do.
  • the processing circuit 440 can control the laser light source 101 according to the determination result (for example, the detection signal).
  • the light reception signal is, for example, a positive theory signal.
  • the light reception signal is a negative theory signal, it can be processed in the same way as when the light reception signal is a positive theory signal.
  • the light reception signal may be input to an analog-to-digital converter, the light reception signal may be directly processed as a digital signal, and the signal may be compared with a digital threshold.
  • the second light receiving element 421, the second light receiving circuit 420, and the processing circuit 440 may all have a frequency band of several MHz or less, making the scanning distance measuring device 1 inexpensive. Can be configured. Therefore, it is not necessary to use a TIA for the output current of the second light receiving element 421, and it is sufficient to simply connect a resistor in series.
  • the second light receiving circuit 420 and the second light receiving element 421 need to receive reflected light from a short distance, the sensitivity of the second light receiving element 421 and the gain of the second light receiving circuit 420 are different from those of the first light receiving element 420. Each needs to be lower than the light receiving element 411 and the first light receiving circuit 410.
  • an inexpensive photodiode may be used as the second light receiving circuit 420, or the feedback resistance value that determines the gain of the TIA may be reduced.
  • FIG. 16 shows a scanning type that can determine the position of the second light receiving element 421, the position of the second light receiving element 421, and whether or not the measurement target 2 exists in the example shown in FIGS. 4 and 5.
  • 2 is a graph showing the relationship between the distance measuring device 1 and the maximum distance from the measurement target 2.
  • FIG. 16 shows a positional relationship in which the detection value (output voltage) detected by the second light receiving element 421 matches the threshold voltage.
  • the vertical axis in FIG. 16 indicates the distance from the scanning distance measuring device 1 to the measurement target 2
  • the horizontal axis indicates the distance from the optical axis 302 of the condensing lens 301 to the second light receiving element 421. ing.
  • the range of the ranging area 3 can be appropriately controlled. As a result, it becomes possible to determine whether or not the measurement target object 2 exists within the distance measurement area 3.
  • the dynamic range of a light receiving circuit is limited to about 3 to 4 digits, so the distance measurement range is about 30 to 100 times. For example, if it is possible to measure a distance of 300 m or more, it is difficult to measure a distance of 3 m or less. For example, if it is possible to measure a distance of 1000 m or more, it is difficult to measure a distance of 10 m or less.
  • the scanning distance measuring device 1 is configured such that the distance measuring area 3 is several meters or more, for example.
  • the distance measurement area 3 is sensitive to the distance from the optical axis 302 of the condenser lens 301 to the second light receiving element 421, and the range of the distance measurement area 3 is controlled. difficult to do.
  • the external size of the light receiving element is generally around several mm, it is difficult to use other elements in place of the light receiving element.
  • the second light receiving element 421 and the second light receiving circuit 420 are located apart from the first light receiving circuit 410.
  • the second light receiving circuit 420 (specifically, the second light receiving element 421) collects light with respect to the first light receiving circuit 410 (specifically, the first light receiving element 411), for example. It is sufficient if it is located on the opposite side to the lens 301. Thereby, the ranging area 3 can be set with high accuracy.
  • FIG. 17 shows a scanning type that can determine the position of the second light receiving element 421, the position of the second light receiving element 421, and whether or not the measurement target 2 exists in the example shown in FIGS. 13 and 14.
  • 2 is a graph showing the relationship between the distance measuring device 1 and the maximum distance from the measurement target 2.
  • FIG. 17 By setting the position of the second light receiving element 421, it is possible to determine the limit of the distance from the scanning distance measuring device 1 to the measurement object 2, which makes it possible to determine whether or not the measurement object 2 exists. can.
  • the data shown in FIG. 17 has a gentler slope than the data shown in FIG. 16. That is, in the configurations shown in FIGS. 13 and 14, the range of the ranging area 3 can be easily controlled. As a result, the range in which the second light receiving element 421 can be arranged can be expanded.
  • the ranging area 3 can be set freely. Furthermore, by setting the distance measurement area 3 as an area that requires interlock to meet safety standards, it is possible to set the distance measurement area 3 as an area that requires interlocking to meet the safety standards.
  • a locking function can be installed in the scanning distance measuring device 1.
  • the processing circuit 440 controls the laser light source 101 so that the radiation density of the transmitted laser light 510 is reduced. As a result, the radiation density of the transmitted laser beam 510 irradiated onto the measurement object 2 is reduced.
  • the measurement object 2 receives the transmitted laser beam 510 at only two points. Thereby, the cumulative amount of light within a unit time with respect to the measurement target object 2 can be suppressed to less than the safety standard. Therefore, by controlling the radiation density or the amount of light, the interlock can be automatically released when the measurement object 2 no longer exists within the distance measurement area 3.
  • the interlock may be executed by reducing the amount of transmitted laser light 510.
  • the processing circuit 440 controls the laser light source 101 so that the amount of transmitted laser light 510 is reduced. Furthermore, it is desirable to similarly lower the threshold voltage for determining the distance measurement area 3.
  • a scanning ranging device can be provided.
  • Embodiment 2 By setting distance measurement area 3 as an area that requires interlock to meet safety standards, and stopping light emission when measurement target 2 exists within distance measurement area 3, even if interlock is executed, good.
  • the radiation density or light amount of the transmitted laser beam 510 may be set so that the cumulative amount of light per unit time to the measurement object 2 can be suppressed to less than the safety standard. Thereby, even if the measurement target object 2 no longer exists within the distance measurement area 3, detection can be performed, and the interlock can also be automatically released.
  • 1 Scanning distance measuring device 2 Measurement object, 3 Ranging area, 5 Laser beam scanning area, 101 Laser light source, 102 First cylindrical lens, 103 Mirror, 104 Second cylindrical lens, 201 Separation mirror, 202nd 1 scanning mirror, 203 second scanning mirror, 301 condensing lens, 302 optical axis, 410 first light receiving circuit, 411 first light receiving element, 420 second light receiving circuit, 421 second light receiving element, 440 Processing circuit, 510 transmitting laser light (laser light), 520 receiving laser light (laser light).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A scanning distance measuring device (1) comprises: a laser light source (101) that emits laser light; a condensing lens (301) that concentrates laser light which has been reflected by a measurement target object (2); a first light-receiving element (411) that detects the laser light which has been concentrated by the condensing lens (301); a second light-receiving element (421) that is disposed at a position apart from the optical axis (302) by a predetermined distance; and a processing circuit (440) that determines whether or not the measurement target object (2) is present in a distance measuring region (3) on the basis of the laser light which has been detected by the second light-receiving element (421).

Description

走査型測距装置Scanning distance measuring device
 本開示は、走査型測距装置に関する。 The present disclosure relates to a scanning distance measuring device.
 近年、自動車の自動運転における安全確保のため、光ビームなどのレーザ光を用いた測距装置が用いられている(例えば、特許文献1参照)。 In recent years, distance measuring devices that use laser beams such as optical beams have been used to ensure safety during automatic driving of automobiles (see, for example, Patent Document 1).
特開平5-34455号公報Japanese Patent Application Publication No. 5-34455
 従来の技術は、遠距離測距用と近距離測距用とで別々の受光素子及び別々の投光素子を必要とする。そのため、従来の技術では、簡易な構成で、数メートル以上の距離から測定対象物の検出を行うとともにインターロックを実行するためのレーザ光源の制御を行うことが困難であるという課題がある。 Conventional technology requires separate light-receiving elements and separate light-emitting elements for long-range distance measurement and short-range distance measurement. Therefore, in the conventional technology, there is a problem that it is difficult to detect the object to be measured from a distance of several meters or more and to control the laser light source for executing the interlock with a simple configuration.
 本開示の目的は、簡易な構成で、測定対象物から数メートル以上離れた位置であっても、測定対象物を検出可能であり、かつ、インターロックを実行可能である走査型測距装置を提供することを目的とする。 An object of the present disclosure is to provide a scanning distance measuring device that has a simple configuration, is capable of detecting an object to be measured, and is capable of interlocking even if the object is several meters away from the object. The purpose is to provide.
 本開示の一態様に係る走査型測距装置は、
 レーザ光を放射するレーザ光源と、
 測定対象物で反射したレーザ光を集光する集光レンズと、
 前記集光レンズの光軸と交差する位置に配置されており、前記集光レンズによって集光されたレーザ光を検出する第1の受光素子と、
 前記光軸から予め定められた距離だけ離れた位置に配置された第2の受光素子と、
 前記第2の受光素子によって検出されたレーザ光に基づいて、測距領域内に前記測定対象物が存在するかを判定する処理回路と
 を備える。
A scanning distance measuring device according to one aspect of the present disclosure includes:
a laser light source that emits laser light;
A condensing lens that condenses the laser beam reflected by the object to be measured;
a first light receiving element that is arranged at a position intersecting the optical axis of the condenser lens and detects the laser beam focused by the condenser lens;
a second light receiving element disposed at a predetermined distance from the optical axis;
and a processing circuit that determines whether the object to be measured exists within the distance measurement area based on the laser beam detected by the second light receiving element.
 本開示によれば、測定対象物から数メートル以上離れた位置であっても、測定対象物を検出可能であり、かつ、インターロックを実行可能である走査型測距装置を提供することができる。 According to the present disclosure, it is possible to provide a scanning distance measuring device that can detect an object to be measured and can perform interlock even if the object is several meters or more away from the object. .
実施の形態1に係る走査型測距装置の構成を概略的に示す図である。1 is a diagram schematically showing the configuration of a scanning distance measuring device according to Embodiment 1. FIG. 走査型測距装置におけるレーザ光の光路を概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing an optical path of a laser beam in a scanning distance measuring device. 走査型測距装置におけるレーザ光の光路を概略的に示す上面図である。FIG. 2 is a top view schematically showing the optical path of a laser beam in the scanning distance measuring device. 第1の受光素子の位置及び第2の受光素子の位置の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the position of a first light receiving element and the position of a second light receiving element. 第1の受光素子の位置及び第2の受光素子の位置の一例を示す側面図である。FIG. 3 is a side view showing an example of the position of a first light receiving element and the position of a second light receiving element. 図1に示される例に比べて遠距離にある測定対象物で反射したレーザ光を概略的に示す図である。FIG. 2 is a diagram schematically showing a laser beam reflected by a measurement object located at a longer distance than the example shown in FIG. 1; 走査型測距装置の他の例を概略的に示す図である。FIG. 3 is a diagram schematically showing another example of a scanning distance measuring device. 走査型測距装置の他の例を概略的に示す図である。FIG. 3 is a diagram schematically showing another example of a scanning distance measuring device. レーザ光が放射される領域であるレーザ光走査領域を示す図である。FIG. 3 is a diagram showing a laser beam scanning area, which is an area where laser light is emitted. レーザ光が放射される領域であるレーザ光走査領域を示す図である。FIG. 3 is a diagram showing a laser beam scanning area, which is an area where a laser beam is emitted. レーザ光が放射される領域であるレーザ光走査領域を示す図である。FIG. 3 is a diagram showing a laser beam scanning area, which is an area where laser light is emitted. 走査型測距装置における光学系を概略的に示す図である。FIG. 2 is a diagram schematically showing an optical system in a scanning distance measuring device. 第1の受光素子の位置及び第2の受光素子の位置の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the position of a first light receiving element and the position of a second light receiving element. 第1の受光素子の位置及び第2の受光素子の位置の一例を示す側面図である。FIG. 3 is a side view showing an example of the position of a first light receiving element and the position of a second light receiving element. 処理回路の一例を概略的に示す図である。FIG. 2 is a diagram schematically showing an example of a processing circuit. 図4及び図5に示される例における、第2の受光素子の位置と第2の受光素子の位置と測定対象物が存在するか否かの判定が可能な走査型測距装置から測定対象物までの最大の距離との関係を示すグラフである。In the examples shown in FIGS. 4 and 5, the position of the second light-receiving element, the position of the second light-receiving element, and the object to be measured are transferred from the scanning distance measuring device capable of determining whether or not the object to be measured exists. It is a graph showing the relationship with the maximum distance to. 図13及び図14に示される例における、第2の受光素子の位置と第2の受光素子の位置と測定対象物が存在するか否かの判定が可能な走査型測距装置から測定対象物までの最大の距離との関係を示すグラフである。In the examples shown in FIGS. 13 and 14, the position of the second light-receiving element, the position of the second light-receiving element, and the object to be measured are transferred from the scanning distance measuring device capable of determining whether or not the object to be measured exists. It is a graph showing the relationship with the maximum distance to.
 以下、種々の実施の形態について図面を参照しつつ説明する。図面において、同一又は対応する構成要素は、同一の符号によって示される。
実施の形態1.
 図1は、実施の形態1に係る走査型測距装置1の構成を概略的に示す図である。
 図2は、走査型測距装置1におけるレーザ光の光路を概略的に示す斜視図である。
 図3は、走査型測距装置1におけるレーザ光の光路を概略的に示す上面図である。
 図4は、第1の受光素子411の位置及び第2の受光素子421の位置の一例を示す斜視図である。
 図5は、第1の受光素子411の位置及び第2の受光素子421の位置の一例を示す側面図である。
Various embodiments will be described below with reference to the drawings. In the drawings, identical or corresponding components are designated by the same reference numerals.
Embodiment 1.
FIG. 1 is a diagram schematically showing the configuration of a scanning distance measuring device 1 according to the first embodiment.
FIG. 2 is a perspective view schematically showing the optical path of a laser beam in the scanning distance measuring device 1. As shown in FIG.
FIG. 3 is a top view schematically showing the optical path of a laser beam in the scanning distance measuring device 1. As shown in FIG.
FIG. 4 is a perspective view showing an example of the position of the first light receiving element 411 and the position of the second light receiving element 421.
FIG. 5 is a side view showing an example of the position of the first light receiving element 411 and the position of the second light receiving element 421.
〈走査型測距装置1〉
 走査型測距装置1は、レーザ光を放射するレーザ光源101と、測定対象物2で反射したレーザ光を集光する集光レンズ301と、集光レンズ301によって集光されたレーザ光を検出する第1の受光素子411と、集光レンズ301の光軸302から予め定められた距離だけ離れた位置に配置された第2の受光素子421と、処理回路440とを有する。本出願において、「レーザ光」とは、送信レーザ光510又は受信レーザ光520を意味する。
<Scanning distance measuring device 1>
The scanning distance measuring device 1 includes a laser light source 101 that emits a laser beam, a condensing lens 301 that condenses the laser beam reflected by the object to be measured 2, and detects the laser beam condensed by the condensing lens 301. a second light receiving element 421 disposed at a predetermined distance from the optical axis 302 of the condenser lens 301, and a processing circuit 440. In this application, "laser light" means transmitting laser light 510 or receiving laser light 520.
〈第1の受光回路410〉
 第1の受光回路410は、第1の受光素子411を有する。図1に示されるように、第1の受光素子411は、集光レンズ301の光軸302上に配置されている。第1の受光素子411は、集光レンズ301によって集光された受信レーザ光520を検出する。言い換えると、第1の受光素子411は、集光レンズ301の光軸302と交差する位置に配置されている。これにより、集光レンズ301から第1の受光素子411までの距離を長くすることができる。第1の受光素子411によって検出されたレーザ光に対応する信号は、処理回路440に送られる。
<First light receiving circuit 410>
The first light receiving circuit 410 has a first light receiving element 411. As shown in FIG. 1, the first light receiving element 411 is arranged on the optical axis 302 of the condenser lens 301. The first light receiving element 411 detects the received laser beam 520 focused by the focusing lens 301. In other words, the first light receiving element 411 is arranged at a position intersecting the optical axis 302 of the condenser lens 301. Thereby, the distance from the condenser lens 301 to the first light receiving element 411 can be increased. A signal corresponding to the laser beam detected by the first light receiving element 411 is sent to the processing circuit 440.
〈第2の受光回路420〉
 第2の受光回路420は、第1の受光素子411とは異なる第2の受光素子421を有する。第2の受光素子421は、集光レンズ301の光軸302上に配置されていない。言い換えると、第2の受光素子421は、集光レンズ301の光軸302と交差しない位置に配置されている。すなわち、第2の受光素子421は、光軸302から予め定められた距離だけ離れた位置に配置されている。この場合、光軸302と第2の受光素子421との間の距離が「予め定められた距離」である。第2の受光素子421によって検出されたレーザ光に対応する信号は、処理回路440に送られる。
<Second light receiving circuit 420>
The second light receiving circuit 420 has a second light receiving element 421 different from the first light receiving element 411. The second light receiving element 421 is not arranged on the optical axis 302 of the condenser lens 301. In other words, the second light receiving element 421 is arranged at a position that does not intersect the optical axis 302 of the condenser lens 301. That is, the second light-receiving element 421 is placed at a position separated from the optical axis 302 by a predetermined distance. In this case, the distance between the optical axis 302 and the second light receiving element 421 is a "predetermined distance". A signal corresponding to the laser beam detected by the second light receiving element 421 is sent to the processing circuit 440.
〈集光レンズ301〉
 送信レーザ光510が測定対象物2に到達した場合、レーザ光(すなわち、送信レーザ光510)は測定対象物2において散乱又は反射し、レーザ光の一部(すなわち、受信レーザ光520)が走査型測距装置1に入射する。走査型測距装置1において、受信レーザ光520は、集光レンズ301によって集光し、第1の受光素子411に入射する。これにより、第1の受光素子411は、受信レーザ光520を検出する。
<Condensing lens 301>
When the transmitted laser beam 510 reaches the measurement object 2, the laser beam (i.e., the transmission laser beam 510) is scattered or reflected by the measurement object 2, and a part of the laser beam (i.e., the reception laser beam 520) is scanned. incident on the distance measuring device 1. In the scanning distance measuring device 1 , the received laser beam 520 is focused by the condensing lens 301 and enters the first light receiving element 411 . Thereby, the first light receiving element 411 detects the received laser beam 520.
 図1に示される例では、測定対象物2で散乱して走査型測距装置1に入射する受信レーザ光520は、走査型測距装置1から見て発散角を成す。これは、走査型測距装置1から測定対象物2までの距離に対し、受信レーザ光520の、測定対象物2上における半径(楕円の場合、長径)と集光レンズ301で受光される半径(楕円の場合、長径)との差が無視できない大きさである場合を示している。 In the example shown in FIG. 1, the received laser light 520 that is scattered by the object to be measured 2 and enters the scanning distance measuring device 1 forms a divergence angle when viewed from the scanning distance measuring device 1. This is the radius of the received laser beam 520 on the measurement object 2 (in the case of an ellipse, the major axis) and the radius of the received laser beam 520 received by the condenser lens 301, relative to the distance from the scanning distance measuring device 1 to the measurement object 2. (In the case of an ellipse, the major axis) is large enough to not be ignored.
 図6は、図1に示される例に比べて遠距離にある測定対象物2で反射したレーザ光を概略的に示す図である。
 図6に示される例では、測定対象物2で散乱して走査型測距装置1に入射する受信レーザ光520は、走査型測距装置1から見て平行である。これは、走査型測距装置1から測定対象物2までの距離に対し、受信レーザ光520、測定対象物2上における半径(楕円の場合、長径)と集光レンズ301で受光される半径(楕円の場合、長径)との差が無視できる大きさである場合を示している。
FIG. 6 is a diagram schematically showing the laser beam reflected by the measurement object 2 which is located at a longer distance than the example shown in FIG.
In the example shown in FIG. 6, the received laser light 520 that is scattered by the measurement object 2 and enters the scanning distance measuring device 1 is parallel when viewed from the scanning distance measuring device 1. This is based on the distance from the scanning distance measuring device 1 to the object to be measured 2, the received laser beam 520, the radius on the object to be measured 2 (in the case of an ellipse, the major axis), and the radius of the light received by the condenser lens 301 ( In the case of an ellipse, the difference from the long axis) is negligible.
 受光光量は測距距離の自乗に反比例するため、遠距離になるほど第1の受光素子411に集光するように走査型測距装置1を設計することが望ましい。 Since the amount of light received is inversely proportional to the square of the distance measured, it is desirable to design the scanning distance measuring device 1 so that the farther the distance, the more the light is focused on the first light receiving element 411.
〈処理回路440〉
 第1の受光素子411に入射した受信レーザ光520は、入射光量に応じて電流に変換され、更に、第1の受光回路410のTrans Impedance Amplifier(TIA)によって電圧に変換される。この信号が処理回路440に送られ、ダイレクト Time of Flight(ToF)方式により測距が行われる。ダイレクトToF方式は、走査型測距装置1から放射された光(パルス変調された光)が測定対象物2で反射されて走査型測距装置1によって受光されるまでの時間を計測する方式である。
<Processing circuit 440>
The received laser beam 520 that has entered the first light receiving element 411 is converted into a current according to the amount of incident light, and further converted into a voltage by a Trans Impedance Amplifier (TIA) of the first light receiving circuit 410. This signal is sent to the processing circuit 440, and distance measurement is performed using a direct time of flight (ToF) method. The direct ToF method is a method that measures the time it takes for the light (pulse modulated light) emitted from the scanning range finder 1 to be reflected by the measurement object 2 and to be received by the scan range finder 1. be.
 処理回路440は、レーザ光源101を制御する。例えば、処理回路440は、放射密度又は光量などのレーザ光源101の出力を制御する。処理回路440は、第1の受光素子411によって検出されたレーザ光に対応する信号を受信する。例えば、処理回路440は、第1の受光素子411によって検出されたレーザ光に基づいて、レーザ光源101の出力を制御する。 The processing circuit 440 controls the laser light source 101. For example, processing circuit 440 controls the output of laser light source 101, such as radiation density or light intensity. The processing circuit 440 receives a signal corresponding to the laser light detected by the first light receiving element 411. For example, the processing circuit 440 controls the output of the laser light source 101 based on the laser light detected by the first light receiving element 411.
 処理回路440は、第2の受光素子421によって検出されたレーザ光に対応する信号を受信する。例えば、処理回路440は、第2の受光素子421によって検出されたレーザ光に基づいて、測距領域3内に測定対象物2が存在するかを判定する。処理回路440は、単一の中央処理装置で構成されていても良く、複数の中央処理装置を有していても良い。 The processing circuit 440 receives a signal corresponding to the laser beam detected by the second light receiving element 421. For example, the processing circuit 440 determines whether the measurement target object 2 exists within the distance measurement area 3 based on the laser beam detected by the second light receiving element 421. The processing circuit 440 may be configured with a single central processing unit or may include a plurality of central processing units.
 測距領域3は、安全基準を満たすためにインターロックが必要な領域として設定される領域である(後述する図10及び図11)。インターロックとは、送信レーザ光510の送信を停止すること、又は、送信レーザ光510の出力を低下させることである。測距領域3は、走査型測距装置1から測定対象物2までの間の送信レーザ光510が走査される3次元空間である。例えば、測距領域3は、安全基準を満たすためにインターロックが必要となる走査型測距装置1からの距離として設定される。 The distance measurement area 3 is an area that is set as an area that requires interlock in order to meet safety standards (FIGS. 10 and 11, which will be described later). Interlocking means stopping the transmission of the transmitting laser beam 510 or reducing the output of the transmitting laser beam 510. The distance measurement area 3 is a three-dimensional space in which the transmitted laser beam 510 from the scanning distance measurement device 1 to the measurement object 2 is scanned. For example, the distance measurement area 3 is set as a distance from the scanning distance measurement device 1 that requires interlock in order to meet safety standards.
〈その他の構成要素、及び、走査型測距装置1の動作〉
 図2に示されるように、走査型測距装置1は、第1のシリンドリカルレンズ102と、ミラー103(例えば、折り曲げミラー)と、第2のシリンドリカルレンズ104と、光制御素子としての分離ミラー201とを有してもよい。この場合、ミラー103は、第1のシリンドリカルレンズ102と第2のシリンドリカルレンズ104との間に設けられている。ミラー103は、第1のシリンドリカルレンズ102からの光の光路を変換することができる。したがって、走査型測距装置1がミラー103を有する場合、走査型測距装置1の全体の寸法、例えば、筐体の寸法を低減することができる。
<Other components and operation of scanning ranging device 1>
As shown in FIG. 2, the scanning distance measuring device 1 includes a first cylindrical lens 102, a mirror 103 (for example, a bending mirror), a second cylindrical lens 104, and a separation mirror 201 as a light control element. It may also have. In this case, mirror 103 is provided between first cylindrical lens 102 and second cylindrical lens 104. The mirror 103 can convert the optical path of the light from the first cylindrical lens 102. Therefore, when the scanning distance measuring device 1 includes the mirror 103, the overall dimensions of the scanning distance measuring device 1, such as the dimensions of the housing, can be reduced.
 レーザ光源101から放射された送信レーザ光510のうちの、ファスト軸に平行な方向(「ファスト軸方向」又は「ファスト方向」ともいう)に放射されている光は、第1のシリンドリカルレンズ102によって、略平行な光に変換される。第1のシリンドリカルレンズ102の形状は、ファスト方向に曲率を持つ形状である。送信レーザ光510のうちの、スロー軸に平行な方向(「スロー軸方向」又は「スロー方向」ともいう)に放射されている光は、第1のシリンドリカルレンズ102の曲率の影響を受けないので、レーザ光源101から放射された送信レーザ光510のうちの、スロー方向に放射された光は、スロー方向に広がり続ける。 Of the transmitted laser light 510 emitted from the laser light source 101 , the light emitted in the direction parallel to the fast axis (also referred to as the "fast axis direction" or "fast direction") is transmitted by the first cylindrical lens 102 . , converted into approximately parallel light. The shape of the first cylindrical lens 102 has a curvature in the fast direction. Of the transmitted laser light 510, the light emitted in the direction parallel to the slow axis (also referred to as the "slow axis direction" or "slow direction") is not affected by the curvature of the first cylindrical lens 102. Of the transmitted laser light 510 emitted from the laser light source 101, the light emitted in the slow direction continues to spread in the slow direction.
 第1のシリンドリカルレンズ102の代わりに、スロー方向にも曲率を持つトロイダルレンズ又はクロスシリンドリカルレンズを用いても良い。スロー方向に負の曲率を持つレンズを用いた場合、送信レーザ光510のスロー方向の広がり角が大きくなり、第1のシリンドリカルレンズ102と第2のシリンドリカルレンズ104との間隔を狭めることができる。 Instead of the first cylindrical lens 102, a toroidal lens or a cross cylindrical lens having curvature also in the slow direction may be used. When a lens having a negative curvature in the slow direction is used, the spread angle of the transmitted laser beam 510 in the slow direction increases, and the distance between the first cylindrical lens 102 and the second cylindrical lens 104 can be narrowed.
 送信レーザ光510が第1のシリンドリカルレンズ102を透過した後、送信レーザ光510のうちの、スロー方向に広がっている光は、第2のシリンドリカルレンズ104によって、略平行な光に変換される。これにより、第2のシリンドリカルレンズ104を透過した送信レーザ光510は、大きく広がることなく、より遠くに照射される。 After the transmitted laser beam 510 passes through the first cylindrical lens 102, the light spreading in the slow direction of the transmitted laser beam 510 is converted into substantially parallel light by the second cylindrical lens 104. As a result, the transmitted laser light 510 that has passed through the second cylindrical lens 104 is irradiated farther without spreading significantly.
 第1のシリンドリカルレンズ102及び第2のシリンドリカルレンズ104は、レーザ光のスロー方向の幅がファスト方向の幅より大きい場合に有効である。一般的には、第1のシリンドリカルレンズ102及び第2のシリンドリカルレンズ104は、高出力なレーザ光源を用いる場合に有効である。これは、光源幅が大きいほど、平行光に変換するレンズを透過した後の光の拡がり角が大きくなるためである。 The first cylindrical lens 102 and the second cylindrical lens 104 are effective when the width of the laser beam in the slow direction is larger than the width in the fast direction. Generally, the first cylindrical lens 102 and the second cylindrical lens 104 are effective when using a high-power laser light source. This is because the wider the light source width, the larger the spread angle of the light after passing through the lens that converts it into parallel light.
 これに対し、平行光に変換するレンズの焦点距離が長いほど、拡がり角を小さくすることができるので、スロー方向におけるレーザ光については、光源からの距離が遠い第2のシリンドリカルレンズ104によって略平行光に変換することができる。すなわち、スロー方向におけるレーザ光については、焦点距離の長い第2のシリンドリカルレンズ104によって略平行光に変換することができる。 On the other hand, the longer the focal length of the lens that converts the light into parallel light, the smaller the divergence angle can be. Therefore, the laser light in the slow direction is almost parallelized by the second cylindrical lens 104 that is far from the light source. Can be converted into light. That is, laser light in the slow direction can be converted into substantially parallel light by the second cylindrical lens 104 having a long focal length.
 同様の理由で、中出力のレーザ光源で足りる場合又はファイバに結合された光源の場合等、スロー方向とファスト方向とで光源幅の差異が小さい場合は、必ずしもこの形態とする必要はない。例えば、第1のシリンドリカルレンズ102及び第2のシリンドリカルレンズ104は、同じ焦点距離でもよい。例えば、第1のシリンドリカルレンズ102及び第2のシリンドリカルレンズ104の代わりに、1つのコリメータレンズを用いても良い。 For the same reason, this form is not necessarily required when the difference in the light source width between the slow direction and the fast direction is small, such as when a medium-power laser light source is sufficient or when the light source is coupled to a fiber. For example, first cylindrical lens 102 and second cylindrical lens 104 may have the same focal length. For example, one collimator lens may be used instead of the first cylindrical lens 102 and the second cylindrical lens 104.
 走査型測距装置1は、第1の走査ミラー202と、第2の走査ミラー203とを有してもよい。この場合、略平行光に変換された送信レーザ光510は、分離ミラー201によって、受信レーザ光520と同じ光路に案内され、第1の走査ミラー202に向けて案内される。さらに、送信レーザ光510は、第1の走査ミラー202によって第2の走査ミラー203に向けて案内され、第2の走査ミラー203によって走査型測距装置1から測距領域3へ放射される。 The scanning distance measuring device 1 may include a first scanning mirror 202 and a second scanning mirror 203. In this case, the transmitted laser beam 510 converted into substantially parallel light is guided by the separation mirror 201 along the same optical path as the received laser beam 520, and is guided toward the first scanning mirror 202. Further, the transmitted laser beam 510 is guided by the first scanning mirror 202 toward the second scanning mirror 203, and is emitted from the scanning distance measuring device 1 to the ranging area 3 by the second scanning mirror 203.
 図2に示されるように、第1の走査ミラー202及び第2の走査ミラー203は、送信レーザ光510と受信レーザ光520との共通光路に配置されている。第1の走査ミラー202及び第2の走査ミラー203は、互いに直交する軸と中心として回転できる構造を持っている。これにより、走査型測距装置1からの送信レーザ光510の放射角度を制御することができる。 As shown in FIG. 2, the first scanning mirror 202 and the second scanning mirror 203 are arranged on a common optical path of the transmitting laser beam 510 and the receiving laser beam 520. The first scanning mirror 202 and the second scanning mirror 203 have a structure that allows them to rotate around mutually orthogonal axes. Thereby, the radiation angle of the transmitted laser beam 510 from the scanning distance measuring device 1 can be controlled.
 第1の走査ミラー202及び第2の走査ミラー203の形状及び位置は、本実施の形態で説明された例に限定されない。 The shapes and positions of the first scanning mirror 202 and the second scanning mirror 203 are not limited to the example described in this embodiment.
 第1のシリンドリカルレンズ102の焦点距離は第2のシリンドリカルレンズ104の焦点距離と大きく異なっている。これにより、ファスト方向とスロー方向とで送信レーザ光510の光束径が異なっている。図1及び図2に示される例では、スロー方向の送信レーザ光510の光束径は、ファスト方向の送信レーザ光510の光束径の3倍以上である。そのため、分離ミラー201の形状は、例えば、スロー方向に長い長方形である。 The focal length of the first cylindrical lens 102 is significantly different from the focal length of the second cylindrical lens 104. As a result, the beam diameter of the transmitted laser beam 510 is different between the fast direction and the slow direction. In the example shown in FIGS. 1 and 2, the beam diameter of the transmission laser beam 510 in the slow direction is three times or more the beam diameter of the transmission laser beam 510 in the fast direction. Therefore, the shape of the separation mirror 201 is, for example, a rectangle that is long in the slow direction.
 スロー方向とファスト方向とで光源幅の差異が小さくなるにつれて、スロー方向とファスト方向とで送信レーザ光510の光束径の差異が小さくなるため、分離ミラー201の形状は必ずしも長方形である必要はなく、円形でも良く、正方形でも良い。 As the difference in the light source width in the slow direction and the fast direction becomes smaller, the difference in the beam diameter of the transmitted laser beam 510 in the slow direction and the fast direction becomes smaller, so the shape of the separation mirror 201 does not necessarily have to be rectangular. , may be circular or square.
 分離ミラー201は、例えば、測定対象物2で反射したレーザ光を集光レンズ301に向けて案内する。分離ミラー201は受信レーザ光520と同じ光路に導くための部品であるが、分離ミラー201は必ずしも小片ミラーである必要はない。例えば、光制御素子として、分離ミラー201の代わりに、直交する偏光方向に従って反射と透過とを切り替えることができる偏光ビームスプリッタなどの部品を用いても良い。受信レーザ光520の偏光方向は決まっていないため、分離ミラー201の代わりに偏光ビームスプリッタを用いた場合でも、受信レーザ光520の全光量を減衰させることはない。 For example, the separation mirror 201 guides the laser beam reflected by the measurement object 2 toward the condenser lens 301. The separation mirror 201 is a component for guiding the received laser beam 520 to the same optical path, but the separation mirror 201 does not necessarily have to be a small piece mirror. For example, instead of the separating mirror 201, a component such as a polarizing beam splitter that can switch between reflection and transmission according to orthogonal polarization directions may be used as the light control element. Since the polarization direction of the received laser beam 520 is not determined, even if a polarizing beam splitter is used instead of the separation mirror 201, the total amount of the received laser beam 520 will not be attenuated.
 図7及び図8は、走査型測距装置1の他の例を概略的に示す図である。
 図7及び図8に示されるように、分離ミラー201は、集光レンズ301の光軸302上に必ずしも配置されている必要はない。図7に示される例では、分離ミラー201は、集光レンズ301の光軸302と直交する方向にずれた位置に配置されている。これにより、レーザ光源101の出力を上げることができ、測距領域3をより広げることができる。
7 and 8 are diagrams schematically showing other examples of the scanning distance measuring device 1.
As shown in FIGS. 7 and 8, the separation mirror 201 does not necessarily need to be placed on the optical axis 302 of the condenser lens 301. In the example shown in FIG. 7, the separation mirror 201 is disposed at a position shifted in a direction perpendicular to the optical axis 302 of the condenser lens 301. In the example shown in FIG. Thereby, the output of the laser light source 101 can be increased, and the distance measurement area 3 can be further expanded.
 例えば、分離ミラー201は、集光レンズ301の光軸302から、レーザ光源101から放射されたレーザ光のファスト軸に平行な方向にずれた位置に配置されていてもよい。この場合、分離ミラー201を小型化することができ、受光効率を高めることができる。その結果、走査型測距装置1を小型化することができる。 For example, the separation mirror 201 may be placed at a position offset from the optical axis 302 of the condenser lens 301 in a direction parallel to the fast axis of the laser light emitted from the laser light source 101. In this case, the separation mirror 201 can be downsized and the light receiving efficiency can be increased. As a result, the scanning type distance measuring device 1 can be downsized.
 図8に示される例では、第2の受光素子421及び第2の受光回路420は、第1の受光回路410から離れて位置している。この場合、第2の受光回路420(具体的には、第2の受光素子421)は、例えば、第1の受光回路410(具体的には、第1の受光素子411)に対して集光レンズ301とは反対側に位置していればよい。 In the example shown in FIG. 8, the second light receiving element 421 and the second light receiving circuit 420 are located apart from the first light receiving circuit 410. In this case, the second light receiving circuit 420 (specifically, the second light receiving element 421) collects light with respect to the first light receiving circuit 410 (specifically, the first light receiving element 411), for example. It is sufficient if it is located on the opposite side to the lens 301.
 図7及び図8に示されるように、第2の受光素子421は、集光レンズ301の光軸302に対して分離ミラー201とは反対側に位置していてもよい。 As shown in FIGS. 7 and 8, the second light receiving element 421 may be located on the opposite side of the separation mirror 201 with respect to the optical axis 302 of the condenser lens 301.
 図9は、送信レーザ光510が放射される領域であるレーザ光走査領域5を示す図である。
 図9において、レーザ光走査領域5は、4本の実線で囲われた角度領域を示している。走査型測距装置1は、例えば、第1の走査ミラー202及び第2の走査ミラー203にって、送信レーザ光510を、レーザ光走査領域5内を自由に走査できる。走査型測距装置1は、第1の走査ミラー202及び第2の走査ミラー203以外の手段で送信レーザ光510を走査してもよい。
FIG. 9 is a diagram showing the laser beam scanning area 5, which is the area where the transmission laser beam 510 is emitted.
In FIG. 9, the laser beam scanning area 5 indicates an angular area surrounded by four solid lines. The scanning distance measuring device 1 can freely scan the inside of the laser beam scanning area 5 with the transmitted laser beam 510 using, for example, the first scanning mirror 202 and the second scanning mirror 203. The scanning distance measuring device 1 may scan the transmitted laser beam 510 by means other than the first scanning mirror 202 and the second scanning mirror 203.
 一般的に、数nsのパルス幅であり、急峻な立ち上がり、あるいは、立ち下がりの時間を検出する必要があるため、受光素子も受光回路も処理回路も、数100MHzから数GHzオーダの帯域が必要となる。 Generally, the pulse width is several ns, and it is necessary to detect steep rise or fall times, so the light receiving element, light receiving circuit, and processing circuit require a bandwidth on the order of several 100 MHz to several GHz. becomes.
 一般的に、レーザ製品の安全基準はエネルギーで規定されているため、パルス幅を狭くすればするほど同じ光のエネルギー量でもより高い光量に設定することができる。したがって、遠距離の測距方法として、ダイレクトToF方式を用いることが望ましい。ダイレクトToF方式の場合、受光回路で検知限界となるまでパルス幅を狭くすることで、その分光量を上げることが可能となり、より遠くまで測距できる。 In general, safety standards for laser products are specified in terms of energy, so the narrower the pulse width, the higher the amount of light can be set for the same amount of energy. Therefore, it is desirable to use the direct ToF method as a long-distance distance measuring method. In the case of the direct ToF method, by narrowing the pulse width until it reaches the detection limit in the light receiving circuit, it is possible to increase the amount of spectral light, making it possible to measure distances further.
 図10は、送信レーザ光510が放射される領域であるレーザ光走査領域5を示す図である。
 図11は、送信レーザ光510が放射される領域であるレーザ光走査領域5を示す図である。図11では、図10に示される例に比べて、測定対象物2は走査型測距装置1の近くに存在している。
 図10及び図11において、測距領域3は、破線で囲まれた領域である。図10及び11に示される例では、測距領域3に測定対象物2が存在している状態が示されている。図10に示される例では、測定対象物2は送信レーザ光510を2点だけ受光している。図11に示される例では、測定対象物2が存在している状態が示されており、測定対象物2は送信レーザ光510を5点で受光している。
FIG. 10 is a diagram showing a laser beam scanning area 5, which is an area from which a transmission laser beam 510 is emitted.
FIG. 11 is a diagram showing a laser beam scanning area 5, which is an area where a transmission laser beam 510 is emitted. In FIG. 11, the object to be measured 2 is located closer to the scanning distance measuring device 1 than in the example shown in FIG.
In FIGS. 10 and 11, distance measurement area 3 is an area surrounded by a broken line. In the examples shown in FIGS. 10 and 11, a state in which the object to be measured 2 is present in the distance measurement area 3 is shown. In the example shown in FIG. 10, the measurement object 2 receives the transmitted laser beam 510 at only two points. In the example shown in FIG. 11, a state in which the object to be measured 2 is present is shown, and the object to be measured 2 receives the transmitted laser beam 510 at five points.
 走査型測距装置1において、送信レーザ光510は、例えば、パルス変調される。この場合、レーザ光走査領域5内で送信レーザ光510は断続的に放射され、走査型測距装置1から同一距離における面(略球面)では、図10及び図11において点で示された部分が、送信レーザ光510が照射された部分であり、且つ、測定点である。 In the scanning distance measuring device 1, the transmitted laser light 510 is pulse-modulated, for example. In this case, the transmitted laser beam 510 is intermittently emitted within the laser beam scanning area 5, and on the surface (approximately spherical surface) at the same distance from the scanning distance measuring device 1, the portion indicated by dots in FIGS. is the part irradiated with the transmission laser beam 510 and is also the measurement point.
 図10に示されるように、走査型測距装置1から遠いほど測定点間の間隔は広くなる。これに対して、図11に示されるように、走査型測距装置1に近いほど測定点間の間隔は狭くなる。 As shown in FIG. 10, the farther from the scanning distance measuring device 1, the wider the distance between the measurement points. On the other hand, as shown in FIG. 11, the closer the measurement points are to the scanning distance measuring device 1, the narrower the distance between the measurement points.
 図12は、走査型測距装置1における光学系を概略的に示す図である。
 走査型測距装置1から測定対象物2までの距離が特定の距離よりも近い場合、受信レーザ光520は、第1の受光回路410の第1の受光素子411に完全に集光しない。図12に示される例では、第1の受光回路410に入射する受信レーザ光520の直径がDで示されている。第1の受光回路410に入射する受信レーザ光520の直径は、「スポット径」とも称する。
FIG. 12 is a diagram schematically showing the optical system in the scanning distance measuring device 1. As shown in FIG.
When the distance from the scanning distance measuring device 1 to the measurement target 2 is shorter than a specific distance, the received laser beam 520 is not completely focused on the first light receiving element 411 of the first light receiving circuit 410. In the example shown in FIG. 12, the diameter of the received laser beam 520 that enters the first light receiving circuit 410 is indicated by D. In the example shown in FIG. The diameter of the received laser beam 520 that enters the first light receiving circuit 410 is also referred to as a "spot diameter."
 図12に示される例において、集光レンズ301を理想的な単レンズとした場合、第1の受光回路410上の直径D、集光レンズ301の焦点距離f、集光位置のシフト量df、レンズ開口径AP、及び集光レンズ301から測定対象物2までの距離zの関係は、次の式で示される。
 D/AP=df/(df+f)     ・・・(式1)
 1/f=1/(df+f)+1/z   ・・・(式2)
In the example shown in FIG. 12, when the condenser lens 301 is an ideal single lens, the diameter D on the first light receiving circuit 410, the focal length f of the condenser lens 301, the shift amount df of the condensing position, The relationship between the lens aperture diameter AP and the distance z from the condenser lens 301 to the measurement object 2 is expressed by the following equation.
D/AP=df/(df+f)...(Formula 1)
1/f=1/(df+f)+1/z...(Formula 2)
 式1及び式2より、下記のように式3が得られる。
 D=AP×f/z           ・・・(式3)
From Equations 1 and 2, Equation 3 is obtained as shown below.
D=AP×f/z...(Formula 3)
 式3に示されるように、第1の受光回路410上の直径Dは、集光レンズ301の焦点距離fに比例し、集光レンズ301から測定対象物2までの距離zに反比例する。したがって、集光レンズ301から測定対象物2までの距離zが短くなるにつれて第1の受光回路410上の直径Dは大きくなる。 As shown in Equation 3, the diameter D on the first light receiving circuit 410 is proportional to the focal length f of the condenser lens 301 and inversely proportional to the distance z from the condenser lens 301 to the measurement target 2. Therefore, as the distance z from the condenser lens 301 to the measurement object 2 becomes shorter, the diameter D on the first light receiving circuit 410 becomes larger.
 図13は、第1の受光素子411の位置及び第2の受光素子421の位置の一例を示す斜視図である。
 図14は、第1の受光素子411の位置及び第2の受光素子421の位置の一例を示す側面図である。
 図13及び図14に示されるように、第2の受光素子421は、集光レンズ301の光軸302上に配置されていない。言い換えると、第2の受光素子421は、集光レンズ301の光軸302と交差しない位置に配置している。例えば、第2の受光素子421は、光軸302からD/2(すなわち、スポット径の半分)だけ離れた位置に配置されている。これにより、第2の受光素子421における受光量によって、第1の受光回路410に入射した受信レーザ光520の直径がD以上かどうかを判定することができる。その結果、走査型測距装置1から測定対象物2までの距離(例えば、集光レンズ301から測定対象物2までの距離z)が、式3を満たす値かどうかを判定することができる。例えば、走査型測距装置1から測定対象物2までの距離が、z以下であるかどうかを判定することができる。
FIG. 13 is a perspective view showing an example of the position of the first light receiving element 411 and the position of the second light receiving element 421.
FIG. 14 is a side view showing an example of the position of the first light receiving element 411 and the position of the second light receiving element 421.
As shown in FIGS. 13 and 14, the second light receiving element 421 is not arranged on the optical axis 302 of the condenser lens 301. In other words, the second light receiving element 421 is arranged at a position that does not intersect the optical axis 302 of the condenser lens 301. For example, the second light receiving element 421 is placed at a distance of D/2 (that is, half the spot diameter) from the optical axis 302. Thereby, it is possible to determine whether the diameter of the received laser beam 520 that has entered the first light receiving circuit 410 is equal to or larger than D based on the amount of light received by the second light receiving element 421. As a result, it is possible to determine whether the distance from the scanning distance measuring device 1 to the measurement object 2 (for example, the distance z from the condenser lens 301 to the measurement object 2) satisfies Equation 3. For example, it can be determined whether the distance from the scanning distance measuring device 1 to the object to be measured 2 is less than or equal to z.
 第2の受光素子421に入射した受信レーザ光520は、入射光量に応じて電流に変換され、更に、第2の受光回路420のTIAによって電圧に変換される。第2の受光素子421は測距を目的としていないため、パルス形状のまま受光できる必要はない。走査型測距装置1は、第2の受光素子421に受信レーザ光520が入射したか否かを判定できればよい。 The received laser light 520 incident on the second light receiving element 421 is converted into a current according to the amount of incident light, and further converted into a voltage by the TIA of the second light receiving circuit 420. Since the second light-receiving element 421 is not intended for distance measurement, it is not necessary to be able to receive light in a pulsed form. The scanning distance measuring device 1 only needs to be able to determine whether or not the received laser beam 520 has entered the second light receiving element 421.
 図15は、処理回路440の一例を概略的に示す図である。
 処理回路440は、比較器441を有する。比較器441は、受光信号と閾値電圧とを比較する。受光信号は、第2の受光素子421に入射した光量に応じて変換された電圧に対応する信号である。受光信号が閾値電圧以上である場合、比較器441は、検出信号を出力する。例えば、第2の受光素子421に入射した光量に応じて変換された電圧に対応する信号が閾値電圧以上である場合、処理回路440は、測距領域3内に測定対象物2が存在すると判定する。処理回路440は、判定結果(例えば、検出信号)に応じてレーザ光源101を制御することができる。
FIG. 15 is a diagram schematically showing an example of the processing circuit 440.
Processing circuit 440 has a comparator 441. Comparator 441 compares the light reception signal and a threshold voltage. The light reception signal is a signal corresponding to a voltage converted according to the amount of light incident on the second light reception element 421. When the light reception signal is equal to or higher than the threshold voltage, the comparator 441 outputs a detection signal. For example, if the signal corresponding to the voltage converted according to the amount of light incident on the second light receiving element 421 is equal to or higher than the threshold voltage, the processing circuit 440 determines that the measurement target object 2 exists within the distance measurement area 3. do. The processing circuit 440 can control the laser light source 101 according to the determination result (for example, the detection signal).
 図15に示される例では、受光信号は、例えば、正理論の信号である。一方、受光信号が負理論の信号である場合でも、受光信号が正理論の信号である場合と同様に処理可能である。 In the example shown in FIG. 15, the light reception signal is, for example, a positive theory signal. On the other hand, even if the light reception signal is a negative theory signal, it can be processed in the same way as when the light reception signal is a positive theory signal.
 受光信号をアナログデジタルコンバータに入力し、受光信号を直接デジタル信号として処理し、デジタルの閾値と比較しても良い。 The light reception signal may be input to an analog-to-digital converter, the light reception signal may be directly processed as a digital signal, and the signal may be compared with a digital threshold.
 一般的な走査型測距装置では、数nsのパルス幅の信号の急峻な立ち上がりの時間又は立ち下がりの時間を検出する必要があるため、受光素子、受光回路、及び処理回路のいずれも、数100MHzから数GHzオーダの帯域が必要である。 In a general scanning distance measuring device, it is necessary to detect the steep rise time or fall time of a signal with a pulse width of several ns. A band on the order of 100 MHz to several GHz is required.
 これに対して、本実施の形態では、第2の受光素子421、第2の受光回路420、及び処理回路440のいずれも、数MHz以下の帯域で良く、走査型測距装置1を安価に構成することができる。そのため、第2の受光素子421の出力電流にTIAを用いる必要はなく、抵抗を直列に接続するだけでも良い。 On the other hand, in the present embodiment, the second light receiving element 421, the second light receiving circuit 420, and the processing circuit 440 may all have a frequency band of several MHz or less, making the scanning distance measuring device 1 inexpensive. Can be configured. Therefore, it is not necessary to use a TIA for the output current of the second light receiving element 421, and it is sufficient to simply connect a resistor in series.
 第2の受光回路420及び第2の受光素子421は近距離からの反射光を受光する必要があるため、第2の受光素子421の感度及び第2の受光回路420のゲインは、第1の受光素子411及び第1の受光回路410よりもそれぞれ低い必要がある。例えば、第2の受光回路420として安価なフォトダイオードを用いたり、TIAのゲインを決める帰還抵抗値を小さくしたりすれば良い。 Since the second light receiving circuit 420 and the second light receiving element 421 need to receive reflected light from a short distance, the sensitivity of the second light receiving element 421 and the gain of the second light receiving circuit 420 are different from those of the first light receiving element 420. Each needs to be lower than the light receiving element 411 and the first light receiving circuit 410. For example, an inexpensive photodiode may be used as the second light receiving circuit 420, or the feedback resistance value that determines the gain of the TIA may be reduced.
 図16は、図4及び図5に示される例における、第2の受光素子421の位置と第2の受光素子421の位置と測定対象物2が存在するか否かの判定が可能な走査型測距装置1から測定対象物2までの最大の距離との関係を示すグラフである。具体的には、図16は、第2の受光素子421によって検出された検出値(出力電圧)が、閾値電圧と一致する位置関係を示している。図16の縦軸は、走査型測距装置1から測定対象物2までの距離を示しており、横軸は、集光レンズ301の光軸302から第2の受光素子421までの距離を示している。第2の受光素子421の位置を設定することによって、測定対象物2が存在するか否かの判定が可能となる走査型測距装置1から測定対象物2までの距離の限界を決めることができる。 FIG. 16 shows a scanning type that can determine the position of the second light receiving element 421, the position of the second light receiving element 421, and whether or not the measurement target 2 exists in the example shown in FIGS. 4 and 5. 2 is a graph showing the relationship between the distance measuring device 1 and the maximum distance from the measurement target 2. FIG. Specifically, FIG. 16 shows a positional relationship in which the detection value (output voltage) detected by the second light receiving element 421 matches the threshold voltage. The vertical axis in FIG. 16 indicates the distance from the scanning distance measuring device 1 to the measurement target 2, and the horizontal axis indicates the distance from the optical axis 302 of the condensing lens 301 to the second light receiving element 421. ing. By setting the position of the second light receiving element 421, it is possible to determine the limit of the distance from the scanning distance measuring device 1 to the measurement object 2, which makes it possible to determine whether or not the measurement object 2 exists. can.
 図16に示されるように、集光レンズ301の光軸302から第2の受光素子421までの位置を適切に設定することにより、測距領域3の範囲を適切に制御することができる。その結果、測距領域3内に測定対象物2が存在するか否かの判定が可能となる。 As shown in FIG. 16, by appropriately setting the position from the optical axis 302 of the condenser lens 301 to the second light receiving element 421, the range of the ranging area 3 can be appropriately controlled. As a result, it becomes possible to determine whether or not the measurement target object 2 exists within the distance measurement area 3.
 一般的に、受光回路のダイナミックレンジは3桁から4桁程度が限界であるため、測距レンジは30倍から100倍程度である。例えば、300m以上を測距可能とすれば、3m以下は測距困難である。例えば、1000m以上を測距可能とすれば、10m以下は測距困難である。 Generally, the dynamic range of a light receiving circuit is limited to about 3 to 4 digits, so the distance measurement range is about 30 to 100 times. For example, if it is possible to measure a distance of 300 m or more, it is difficult to measure a distance of 3 m or less. For example, if it is possible to measure a distance of 1000 m or more, it is difficult to measure a distance of 10 m or less.
 本実施の形態では、例えば、測距領域3が数m以上となるように走査型測距装置1が構成されている。この場合、図16に示されるように、集光レンズ301の光軸302から第2の受光素子421までの距離に対して、測距領域3が敏感であり、測距領域3の範囲を制御することが難しい。さらに、受光素子の外形サイズは一般的に数mm前後であるため、受光素子の代わりに他の素子を用いることは困難である。 In this embodiment, the scanning distance measuring device 1 is configured such that the distance measuring area 3 is several meters or more, for example. In this case, as shown in FIG. 16, the distance measurement area 3 is sensitive to the distance from the optical axis 302 of the condenser lens 301 to the second light receiving element 421, and the range of the distance measurement area 3 is controlled. difficult to do. Furthermore, since the external size of the light receiving element is generally around several mm, it is difficult to use other elements in place of the light receiving element.
 そこで、図8、図13、及び図14に示される例では、第2の受光素子421及び第2の受光回路420は、第1の受光回路410から離れて位置している。この場合、第2の受光回路420(具体的には、第2の受光素子421)は、例えば、第1の受光回路410(具体的には、第1の受光素子411)に対して集光レンズ301とは反対側に位置していればよい。これにより、測距領域3を精度良く設定することができる。 Therefore, in the examples shown in FIGS. 8, 13, and 14, the second light receiving element 421 and the second light receiving circuit 420 are located apart from the first light receiving circuit 410. In this case, the second light receiving circuit 420 (specifically, the second light receiving element 421) collects light with respect to the first light receiving circuit 410 (specifically, the first light receiving element 411), for example. It is sufficient if it is located on the opposite side to the lens 301. Thereby, the ranging area 3 can be set with high accuracy.
 図17は、図13及び図14に示される例における、第2の受光素子421の位置と第2の受光素子421の位置と測定対象物2が存在するか否かの判定が可能な走査型測距装置1から測定対象物2までの最大の距離との関係を示すグラフである。第2の受光素子421の位置を設定することによって、測定対象物2が存在するか否かの判定が可能となる走査型測距装置1から測定対象物2までの距離の限界を決めることができる。
 図17に示されるデータは、図16に示されるデータに比べて傾きが緩やかである。すなわち、図13及び図14に示される構成では、測距領域3の範囲を容易に制御することができる。その結果、第2の受光素子421の配置可能な範囲を広げることができる。
FIG. 17 shows a scanning type that can determine the position of the second light receiving element 421, the position of the second light receiving element 421, and whether or not the measurement target 2 exists in the example shown in FIGS. 13 and 14. 2 is a graph showing the relationship between the distance measuring device 1 and the maximum distance from the measurement target 2. FIG. By setting the position of the second light receiving element 421, it is possible to determine the limit of the distance from the scanning distance measuring device 1 to the measurement object 2, which makes it possible to determine whether or not the measurement object 2 exists. can.
The data shown in FIG. 17 has a gentler slope than the data shown in FIG. 16. That is, in the configurations shown in FIGS. 13 and 14, the range of the ranging area 3 can be easily controlled. As a result, the range in which the second light receiving element 421 can be arranged can be expanded.
 図13及び図14に示される構成により、測距領域3を自在に設定することできる。さらに、安全基準を満たすためにインターロックが必要な領域として測距領域3を設定することにより、測距領域3内に測定対象物2が存在する場合にレーザ光の放射を停止するなどのインターロックの機能を走査型測距装置1に搭載することができる。 With the configurations shown in FIGS. 13 and 14, the ranging area 3 can be set freely. Furthermore, by setting the distance measurement area 3 as an area that requires interlock to meet safety standards, it is possible to set the distance measurement area 3 as an area that requires interlocking to meet the safety standards. A locking function can be installed in the scanning distance measuring device 1.
 走査型測距装置1の連続運転を行う場合において、測距領域3内に測定対象物2が存在しなくなったとき、インターロックを自動的に解除することが望ましい。そのため、インターロックを自動的に解除する場合、送信レーザ光510の放射密度を低下させる。 In the case of continuous operation of the scanning distance measuring device 1, it is desirable to automatically release the interlock when the object 2 to be measured no longer exists within the distance measuring area 3. Therefore, when automatically releasing the interlock, the radiation density of the transmitted laser beam 510 is reduced.
 測距領域3内に測定対象物2が存在する場合、処理回路440は、送信レーザ光510の放射密度が低下するようにレーザ光源101を制御する。これにより、測定対象物2に照射される送信レーザ光510の放射密度が低下する。この場合、図10に示される例では、測定対象物2は送信レーザ光510を2点だけ受光している。これにより、測定対象物2に対する単位時間内の積算光量を安全基準未満に抑えることができる。したがって、放射密度又は光量を制御することにより、測距領域3内に測定対象物2が存在しなくなった場合、インターロックを自動的に解除することができる。 When the object 2 to be measured exists within the ranging area 3, the processing circuit 440 controls the laser light source 101 so that the radiation density of the transmitted laser light 510 is reduced. As a result, the radiation density of the transmitted laser beam 510 irradiated onto the measurement object 2 is reduced. In this case, in the example shown in FIG. 10, the measurement object 2 receives the transmitted laser beam 510 at only two points. Thereby, the cumulative amount of light within a unit time with respect to the measurement target object 2 can be suppressed to less than the safety standard. Therefore, by controlling the radiation density or the amount of light, the interlock can be automatically released when the measurement object 2 no longer exists within the distance measurement area 3.
 また、送信レーザ光510の光量を低下させることによりインターロックを実行しても良い。この場合、測距領域3内に測定対象物2が存在する場合、処理回路440は、送信レーザ光510の光量が低下するようにレーザ光源101を制御する。さらに、測距領域3を判定する閾値電圧も同様に低下させることが望ましい。 Alternatively, the interlock may be executed by reducing the amount of transmitted laser light 510. In this case, if the object 2 to be measured exists within the distance measurement area 3, the processing circuit 440 controls the laser light source 101 so that the amount of transmitted laser light 510 is reduced. Furthermore, it is desirable to similarly lower the threshold voltage for determining the distance measurement area 3.
 以上に説明したように、本開示によれば、簡易な構成で、測定対象物から数メートル以上離れた位置であっても、測定対象物を検出可能であり、かつ、インターロックを実行可能である走査型測距装置を提供することができる。 As described above, according to the present disclosure, it is possible to detect the object to be measured and perform interlocking even if the object is several meters away from the object with a simple configuration. A scanning ranging device can be provided.
実施の形態2.
 安全基準を満たすためにインターロックが必要な領域として測距領域3を設定し、測距領域3内に測定対象物2が存在する場合に発光を停止することにより、インターロックを実行してもよい。
Embodiment 2.
By setting distance measurement area 3 as an area that requires interlock to meet safety standards, and stopping light emission when measurement target 2 exists within distance measurement area 3, even if interlock is executed, good.
 また、実施の形態1と同様に、測定対象物2に対する単位時間内の積算光量を安全基準未満に抑えられるよう、送信レーザ光510の放射密度又は光量を設定してもよい。これにより、測距領域3内に測定対象物2が存在しなくなった場合でも検出を行うことができ、インターロックの自動解除も可能となる。 Furthermore, similarly to Embodiment 1, the radiation density or light amount of the transmitted laser beam 510 may be set so that the cumulative amount of light per unit time to the measurement object 2 can be suppressed to less than the safety standard. Thereby, even if the measurement target object 2 no longer exists within the distance measurement area 3, detection can be performed, and the interlock can also be automatically released.
 以上に説明した各実施の形態における特徴は、互いに組み合わせることができる。 The features of each embodiment described above can be combined with each other.
 1 走査型測距装置、 2 測定対象物、 3 測距領域、 5 レーザ光走査領域、 101 レーザ光源、 102 第1のシリンドリカルレンズ、 103 ミラー、 104 第2のシリンドリカルレンズ、 201 分離ミラー、 202 第1の走査ミラー、 203 第2の走査ミラー、 301 集光レンズ、 302 光軸、 410 第1の受光回路、 411 第1の受光素子、 420 第2の受光回路、 421 第2の受光素子、 440 処理回路、 510 送信レーザ光(レーザ光)、 520 受信レーザ光(レーザ光)。 1 Scanning distance measuring device, 2 Measurement object, 3 Ranging area, 5 Laser beam scanning area, 101 Laser light source, 102 First cylindrical lens, 103 Mirror, 104 Second cylindrical lens, 201 Separation mirror, 202nd 1 scanning mirror, 203 second scanning mirror, 301 condensing lens, 302 optical axis, 410 first light receiving circuit, 411 first light receiving element, 420 second light receiving circuit, 421 second light receiving element, 440 Processing circuit, 510 transmitting laser light (laser light), 520 receiving laser light (laser light).

Claims (10)

  1.  レーザ光を放射するレーザ光源と、
     測定対象物で反射したレーザ光を集光する集光レンズと、
     前記集光レンズの光軸と交差する位置に配置されており、前記集光レンズによって集光されたレーザ光を検出する第1の受光素子と、
     前記光軸から予め定められた距離だけ離れた位置に配置された第2の受光素子と、
     前記第2の受光素子によって検出されたレーザ光に基づいて、測距領域内に前記測定対象物が存在するかを判定する処理回路と
     を備えた走査型測距装置。
    a laser light source that emits laser light;
    A condensing lens that condenses the laser beam reflected by the object to be measured;
    a first light receiving element that is arranged at a position intersecting the optical axis of the condenser lens and detects the laser beam focused by the condenser lens;
    a second light receiving element disposed at a predetermined distance from the optical axis;
    A scanning distance measuring device comprising: a processing circuit that determines whether the object to be measured exists within the distance measuring area based on the laser beam detected by the second light receiving element.
  2.  前記第1の受光素子を有する第1の受光回路をさらに備え、
     前記第1の受光回路に入射する前記レーザ光の直径をDとしたとき、前記第2の受光素子は、前記光軸からD/2だけ離れた位置に配置されている
     請求項1に記載の走査型測距装置。
    further comprising a first light receiving circuit having the first light receiving element,
    The second light-receiving element is arranged at a distance of D/2 from the optical axis, where D is the diameter of the laser beam that enters the first light-receiving circuit. Scanning distance measuring device.
  3.  前記第2の受光素子に入射した光量に応じて変換された電圧に対応する信号が閾値電圧以上である場合、前記処理回路は、前記測距領域内に前記測定対象物が存在すると判定する請求項1又は2に記載の走査型測距装置。 If the signal corresponding to the voltage converted according to the amount of light incident on the second light receiving element is equal to or higher than a threshold voltage, the processing circuit determines that the object to be measured exists within the distance measurement area. 3. The scanning distance measuring device according to item 1 or 2.
  4.  前記測距領域は、安全基準を満たすインターロックが必要な領域である請求項1から3のいずれか1項に記載の走査型測距装置。 The scanning distance measuring device according to any one of claims 1 to 3, wherein the distance measuring area is an area that requires an interlock that satisfies safety standards.
  5.  前記第2の受光素子は、前記第1の受光素子に対して前記集光レンズとは反対側に位置している請求項1から4のいずれか1項に記載の走査型測距装置。 The scanning distance measuring device according to any one of claims 1 to 4, wherein the second light receiving element is located on the opposite side of the condensing lens with respect to the first light receiving element.
  6.  前記測定対象物で反射した前記レーザ光を前記集光レンズに向けて案内する光制御素子をさらに備え、
     前記光制御素子は、前記集光レンズの前記光軸と直交する方向にずれた位置に配置されている請求項1から5のいずれか1項に記載の走査型測距装置。
    further comprising a light control element that guides the laser beam reflected by the measurement object toward the condensing lens,
    The scanning distance measuring device according to any one of claims 1 to 5, wherein the light control element is disposed at a position shifted in a direction orthogonal to the optical axis of the condenser lens.
  7.  前記第2の受光素子は、前記光軸に対して前記光制御素子とは反対側に位置している請求項6に記載の走査型測距装置。 7. The scanning distance measuring device according to claim 6, wherein the second light receiving element is located on the opposite side of the light control element with respect to the optical axis.
  8.  前記光制御素子は、前記集光レンズの前記光軸から、前記レーザ光源から放射された前記レーザ光のファスト軸に平行な方向にずれた位置に配置されている請求項6又は7に記載の走査型測距装置。 8. The light control element according to claim 6, wherein the light control element is disposed at a position offset from the optical axis of the condenser lens in a direction parallel to a fast axis of the laser light emitted from the laser light source. Scanning distance measuring device.
  9.  前記測距領域内に前記測定対象物が存在する場合、前記処理回路は、レーザ光の光量が低下するように前記レーザ光源を制御する請求項1から8のいずれか1項に記載の走査型測距装置。 The scanning type according to any one of claims 1 to 8, wherein the processing circuit controls the laser light source so that the amount of laser light is reduced when the object to be measured exists within the distance measurement area. Ranging device.
  10.  前記測距領域内に前記測定対象物が存在する場合、前記処理回路は、レーザ光の放射密度が低下するように前記レーザ光源を制御する請求項1から8のいずれか1項に記載の走査型測距装置。 Scanning according to any one of claims 1 to 8, wherein the processing circuit controls the laser light source so that the radiation density of the laser light is reduced when the measurement target exists within the distance measurement area. Type ranging device.
PCT/JP2022/033841 2022-09-09 2022-09-09 Scanning distance measuring device WO2024053081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033841 WO2024053081A1 (en) 2022-09-09 2022-09-09 Scanning distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033841 WO2024053081A1 (en) 2022-09-09 2022-09-09 Scanning distance measuring device

Publications (1)

Publication Number Publication Date
WO2024053081A1 true WO2024053081A1 (en) 2024-03-14

Family

ID=90192528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033841 WO2024053081A1 (en) 2022-09-09 2022-09-09 Scanning distance measuring device

Country Status (1)

Country Link
WO (1) WO2024053081A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167958A (en) * 1993-12-14 1995-07-04 Mitsubishi Electric Corp Obstacle sensing device
JP2007279017A (en) * 2006-03-15 2007-10-25 Omron Corp Radar system
JP2012093256A (en) * 2010-10-27 2012-05-17 Mitsubishi Electric Corp Laser image measurement device
US20170350979A1 (en) * 2016-06-07 2017-12-07 Raytheon Company Optical system for object detection and location

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167958A (en) * 1993-12-14 1995-07-04 Mitsubishi Electric Corp Obstacle sensing device
JP2007279017A (en) * 2006-03-15 2007-10-25 Omron Corp Radar system
JP2012093256A (en) * 2010-10-27 2012-05-17 Mitsubishi Electric Corp Laser image measurement device
US20170350979A1 (en) * 2016-06-07 2017-12-07 Raytheon Company Optical system for object detection and location

Similar Documents

Publication Publication Date Title
US20060186326A1 (en) Wave receiving apparatus and distance measuring apparatus
JP2004521355A (en) Optical distance measuring device
EP3942329B1 (en) Lidar apparatus with an optical amplifier in the return path
US6603534B2 (en) Laser range finder for large ranges of measurement with a special receiver
US11940263B2 (en) Detector for determining a position of at least one object
KR20140079090A (en) Laser emitter module and laser detecting system applied the same
US20190302262A1 (en) Light conveyance in a lidar system with a monocentric lens
US11703571B2 (en) Optical device
US6281968B1 (en) Laser distance-measuring instrument for large measuring ranges
CN111398933A (en) Laser radar detection system and laser radar
KR20120069487A (en) Active optical radar apparatus
US7764358B2 (en) Distance measuring system
WO2024053081A1 (en) Scanning distance measuring device
US20130341486A1 (en) Apparatus for obtaining 3d information using photodetector array
JP2010060298A (en) Lamp tool unit and object detector
KR20190014314A (en) LiDAR sensor module
CN110109081B (en) Transmitting unit and laser radar apparatus for scanning area
JPH11201718A (en) Sensor device and distance measuring equipment
JP2011095103A (en) Distance-measuring apparatus
EP3761055A1 (en) Optical scanner, object detector, and sensing apparatus
JP3341255B2 (en) Light sensor
JP2006053055A (en) Laser measuring apparatus
KR20210072671A (en) Lidar module
EP4020004A2 (en) Object detector, sensing apparatus, and mobile object
CN110596673A (en) Coaxial laser radar system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958159

Country of ref document: EP

Kind code of ref document: A1