WO2024053074A1 - Ion milling device and method for processing specimen - Google Patents

Ion milling device and method for processing specimen Download PDF

Info

Publication number
WO2024053074A1
WO2024053074A1 PCT/JP2022/033810 JP2022033810W WO2024053074A1 WO 2024053074 A1 WO2024053074 A1 WO 2024053074A1 JP 2022033810 W JP2022033810 W JP 2022033810W WO 2024053074 A1 WO2024053074 A1 WO 2024053074A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sample
shielding plate
fixing part
plate fixing
Prior art date
Application number
PCT/JP2022/033810
Other languages
French (fr)
Japanese (ja)
Inventor
健人 堀之内
翔太 会田
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2022/033810 priority Critical patent/WO2024053074A1/en
Publication of WO2024053074A1 publication Critical patent/WO2024053074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching

Definitions

  • the present invention relates to an ion milling device and a sample processing method.
  • Ion milling equipment irradiates a sample to be observed with an electron microscope (e.g., metal, semiconductor, glass, ceramic, etc.) with an unfocused ion beam, and uses a sputtering phenomenon to knock off atoms on the sample surface, creating a stress-free and stress-free milling system.
  • an electron microscope e.g., metal, semiconductor, glass, ceramic, etc.
  • This is a device that can polish the surface of a sample and expose the internal structure of the sample.
  • the sample surface and internal structure of the sample polished by ion beam irradiation serve as observation surfaces for scanning electron microscopes and transmission electron microscopes.
  • Patent Document 1 relates to a processing device that uses an ion beam to cut a portion protruding from a mask, and uses a sample that has a low melting point, such as a polymer material, and is susceptible to damage to the sample structure such as deformation or shrinkage due to heat generated by the energy of the ion beam.
  • processing apparatuses have been disclosed in which a cooling mechanism is connected to a mask brought into contact with a sample, or a cooling mechanism is provided on a sample stage.
  • samples processed by the ion milling device there are samples such as paper and polymer materials that are affected by thermal damage due to temperature rise due to ion beam irradiation.
  • thermal damage is melting or deformation of a sample due to ion beam irradiation.
  • One way to suppress thermal damage to the sample is to reduce the amount of protrusion of the sample irradiated with the ion beam from the mask (shielding plate).
  • an ion source irradiates the sample with an unfocused ion beam.
  • the shielding plate By reducing the amount of protrusion from the shielding plate, it is possible to suppress irradiation of the sample with a low energy density ion beam that makes little contribution to sample processing, and to suppress heating of the sample.
  • this method if the observation surface is located deep within the sample, it is necessary to repeatedly adjust the boundary position between the sample and the shielding plate and process the sample.
  • Patent Document 1 discloses cooling the mask and sample stage, but the purpose is to cool the sample, and does not disclose or suggest adjusting the boundary position between the sample and the shielding plate using heat. .
  • An ion milling apparatus that is an embodiment of the present invention includes a sample stage on which a sample is placed, a sample stage and a shielding plate fixing part supported by the sample stage, and a shielding plate fixed to the shielding plate fixing part. , an ion source that irradiates an unfocused ion beam toward the sample, and a temperature adjustment unit that is connected to the shield plate fixing part by a heat transfer cable and adjusts the temperature of the shield plate fixing part, and the sample is The sample is held between a shielding plate and a sample stage, and the amount of protrusion of the sample from the shielding plate is adjusted by the set temperature of the shielding plate fixing part set in the temperature adjustment unit.
  • FIG. 2 is a schematic diagram showing an ion source and a power supply circuit that applies a control voltage to the ion source.
  • FIG. 7 is a schematic diagram showing the amount of protrusion of the sample relative to the shielding plate for each temperature of the shielding plate fixing part.
  • 3 is a flowchart showing sample processing operations in Example 1.
  • FIG. 3 is a flowchart showing sample processing operations in Example 2. It is another example of a structure (schematic diagram) of an ion milling apparatus.
  • FIG. 1 is a schematic diagram showing the main parts of the ion milling device 100 from the side.
  • the ion milling apparatus 100 includes an ion source 101, a sample stage 102, a sample stage 103, a sample 104, a shielding plate 105, a shielding plate fixing part 106, a heat transfer cable 107, a temperature adjustment unit 108, and a first It has a thermocouple 109, a control section 110, a high voltage power supply 111, a supply gas control section 112, an exhaust mechanism 113, and a sample chamber 114.
  • the ion milling device 100 is used as a preprocessing device for observing the surface or cross section of a sample using a scanning electron microscope or a transmission electron microscope. In many cases, an effective penning method is used to do this.
  • the Penning method is adopted for the ion source 101, and an unfocused ion beam is irradiated from the ion source 101 toward the sample 104.
  • the control unit 110 controls the output of the ion beam by adjusting the voltage applied to the electrodes inside the ion source 101 from the high-voltage power supply 111 and the flow rate of argon gas supplied from the supply gas control unit 112.
  • the sample 104 is placed on the sample stage 103.
  • the shielding plate 105 is fixed to the shielding plate fixing part 106 by a shielding plate fixing screw 117, and the shielding plate fixing part 106 is supported by the sample stage 103.
  • the sample 104 is sandwiched between the sample stage 102 supported by the sample stage 103 and the shielding plate 105, and is made to protrude from the shielding plate 105 by a predetermined protrusion amount.
  • the sample 104 can be freely placed on the sample stage 103 in five directions (X-axis direction, Y-axis direction, Z-axis direction, rotation direction around the Y-axis, rotation direction around the X-axis) or a part thereof.
  • a driving mechanism may be provided.
  • the shielding plate fixing part 106 in order to adjust the amount of protrusion of the sample 104 from the shield plate 105, thermal contraction of the shield plate fixing part 106 is used. For this reason, it is desirable that the shielding plate fixing part 106 be made of a material with as large a coefficient of linear expansion as possible. For example, it is made of phosphor bronze, brass, etc.
  • the shielding plate fixing part 106 is connected to a temperature adjustment unit 108 via a heat transfer cable 107, and the temperature adjusting unit 108 adjusts the temperature of the shielding plate fixing part 106 to the temperature set by the control part 110.
  • the temperature adjustment method of the temperature adjustment unit 108 is various, and is not limited to a specific temperature adjustment method.
  • the temperature adjustment unit has at least a cooling function.
  • the shield plate fixing part 106 can be cooled using liquid nitrogen or dry ice.
  • the temperature adjustment unit 108 may have both a cooling function and a heating function. For example, cooling as described above and heating by a heater may be combined, or a Peltier element may be used.
  • the heat transfer cable 107 is made of a material with high heat transfer properties such as copper. Since the sample chamber 114 is maintained at a high vacuum ( ⁇ 1.0 ⁇ 10 ⁇ 3 Pa) during the milling process by the exhaust mechanism 113, there is no need to consider heat radiation from the heat transfer cable 107. The same applies to the shielding plate fixing portion 106 in this respect. Temperature control of the shield plate fixing part 106 is performed by a first thermocouple 109. When the temperature measured by the first thermocouple 109 shows a large deviation from the set temperature, the temperature control unit 108 adjusts the temperature. be adjusted. Note that the thermocouple is an example of a thermometer, and does not need to be a thermocouple as long as it can measure the temperature of the shield plate fixing part 106.
  • FIG. 2 is a schematic diagram showing an ion source 101 employing the Penning method and a power supply circuit that applies a control voltage to electrode parts of the ion source 101.
  • the power supply circuit is part of the high voltage power supply 111.
  • the ion source 101 has a first cathode 201, a second cathode 202, an anode 203, a permanent magnet 204, an accelerating electrode 205, and a gas pipe 206.
  • Argon gas is injected into the ion source 101 through the gas pipe 206 to generate an ion beam.
  • a first cathode 201 and a second cathode 202 having the same potential are arranged facing each other, and an anode 203 is arranged between the first cathode 201 and the second cathode 202. There is.
  • Electrons are generated by applying a discharge voltage Vd from the high voltage power supply 111 between the cathodes 201, 202 and the anode 203.
  • the electrons are retained by a permanent magnet 204 disposed within the ion source 101 and collide with argon gas injected from a gas pipe 206 to generate argon ions.
  • An accelerating voltage Va is applied between the anode 203 and the accelerating electrode 205 from the high voltage power supply 111, and the generated argon ions are attracted to the accelerating electrode 205 and emitted as an ion beam.
  • FIG. 3 is a schematic diagram showing the protrusion amount ⁇ H of the sample 104 with respect to the shielding plate 105 for each temperature of the shielding plate fixing part 106 as states 301 to 303.
  • the temperatures of the shield plate fixing portion 106 in states 301 to 303 are 25° C., 0° C., and ⁇ 25° C., respectively. Since the shielding plate 105 and the sample 104 are only in close contact with each other, cooling or heating the shielding plate fixing part 106 causes the shielding plate fixing part 106 and the shielding plate 105 to expand and contract, thereby causing the shielding plate 105 and the sample 104 to The boundary (edge) of moves. As a result, the distance (protrusion amount) ⁇ H from the edge to the end face of the sample 104 changes.
  • the protrusion amount ⁇ H of the sample 104 with respect to the shielding plate 105 is ⁇ h
  • the total length of the shielding plate fixing part 106 is L1
  • the shielding from the bottom of the shielding plate fixing part 106 is set.
  • the distance to the plate fixing screw 117 is L3
  • the linear expansion coefficient of the shielding plate fixing portion 106 is ⁇ 1.
  • the total length of the shielding plate 105 is L2
  • the distance from the shielding plate fixing screw 117 to the end face of the shielding plate 105 is L4
  • the linear expansion coefficient of the shielding plate 105 is ⁇ 2.
  • the temperature difference from the state 301 is 25°C. It contracts by ⁇ 2 ⁇ L2.
  • the position of the shielding plate 105 is lowered due to the thermal contraction of the shielding plate fixing portion 106, and the shielding plate 105 itself also contracts due to the thermal contraction, so that the protrusion amount ⁇ H in the state 302 is expressed as (Formula 1).
  • the first term is the amount of protrusion in state 301
  • the second term is the amount of change in the position of the shield plate fixing screw 117 due to thermal contraction of the shield plate fixing part 106
  • the third term is the amount of change in the position of the shield plate fixing screw 117 due to thermal contraction of the shield plate fixing part 106. It represents the amount of shrinkage of the shielding plate 105 with the shielding plate fixing screw 117 as a fulcrum due to thermal contraction.
  • the protrusion amount ⁇ H also depends on the support structure of the shielding plate fixing portion 106 and the shielding plate 105.
  • the support structure for the shielding plate fixing part 106 and the shielding plate 105 shown in the schematic diagram of FIG. 3 is an example, and the present embodiment is not limited to a specific support structure.
  • the flowchart shown in FIG. 4 shows a series of operations from the start to the end of sample processing in the ion milling apparatus of Example 1. A series of operations in this flowchart are executed by the control unit 110. Details of each operation are described below.
  • the sample processing conditions include the sample protrusion amount ⁇ h of the sample 104 with respect to the shielding plate 105 at the start of the milling process, and it is desirable that the sample protrusion amount ⁇ h to be set is set to a value as small as possible.
  • the control unit 110 sets the temperature (referred to as set temperature) that corresponds to the sample protrusion amount ⁇ h set in step S01, and uses the temperature adjustment unit 108 to adjust the temperature of the shielding plate fixing unit 106 to the set temperature.
  • set temperature the temperature that corresponds to the sample protrusion amount ⁇ h set in step S01
  • uses the temperature adjustment unit 108 to adjust the temperature of the shielding plate fixing unit 106 to the set temperature.
  • the sample 104 is sandwiched between the shielding plate 105 and the sample stage 102 so that the amount of protrusion from the shielding plate becomes ⁇ h at room temperature. This makes it unnecessary to adjust the temperature of the shielding plate fixing section 106 at the start of milling.
  • the sample 104 is processed (milling process) by irradiating the sample 104 with an ion beam from the ion source 101.
  • S04 During the milling process, the temperature of the shield plate fixing part 106 is monitored with the first thermocouple 109. If the temperature of the shielding plate fixing part 106 is out of the allowable range of the set temperature due to heating caused by long-time milling processing, processing is temporarily stopped and the process returns to S02 to cool the shielding plate fixing part 106. conduct. As soon as the temperature of the shield plate fixing part 106 returns to the set temperature set in step S02, processing is restarted (S03).
  • S05 Check whether all parts of the sample 104 protruding from the shielding plate 105 have been shaved off. If it is not shaved, processing continues (S03).
  • the confirmation method is not limited. As the simplest method, it may be determined that the protruding portion has been removed when a predetermined machining time has elapsed. A transparent window may be provided in the sample chamber, and direct confirmation may be made through the window using a monitoring means such as an optical microscope or an electron microscope. Alternatively, the processing amount may be estimated from the amount of sputtered particles generated during sample processing.
  • Example 1 by adjusting the temperature of the shielding plate fixing part 106, the minute amount of protrusion of the sample from the shielding plate can be adjusted using a simple mechanism. Thereby, by performing the cross-section milling process with the amount of protrusion as small as possible, it is possible to minimize the heat load on the sample 104 accompanying the cross-section milling process. Thereby, thermal damage caused by ion beam irradiation to the sample 104 can be suppressed.
  • the temperature of the shielding plate fixing part 106 at a time when the ion beam is not irradiated before the start of processing is stored as the reference temperature. If the temperature of the shield plate fixing part 106 deviates from the reference temperature due to ion beam irradiation after the start of processing, the temperature adjustment unit 108 adjusts the temperature of the shield plate fixing part 106 to the reference temperature.
  • the flowchart shown in FIG. 5 shows a series of operations from the start to the end of sample processing in the ion milling apparatus of Example 2. A series of operations in this flowchart are executed by the control unit 110. Details of each operation are described below.
  • S11 Set sample processing conditions of the ion milling apparatus 100 (acceleration voltage of the ion source 101, discharge voltage, supply amount of argon gas, etc.). If this processing is a pretreatment for observing the cross section of the sample 104 using a scanning electron microscope or a transmission electron microscope, the cross section that will be the observation surface should be located at the boundary (edge) between the shielding plate 105 and the sample 104. Next, the sample 104 is sandwiched between the shielding plate 105 and the sample stage 102. As the sample processing conditions, the sample processing time required for milling the area of the sample 104 set up in this manner that protrudes from the shielding plate 105 is set.
  • the sample 104 is processed (milling process) by irradiating the sample 104 with an ion beam from the ion source 101.
  • the temperature adjustment unit 108 adjusts the temperature so that the shield plate fixing part 106 reaches the reference temperature, and continues processing.
  • the ion milling apparatus 100 includes the thermocouple 109, which is a first thermometer that measures the temperature of the shielding plate fixing part 106, and the control part 110, in which the sample processing time is set.
  • 110 stores the temperature of the shielding plate fixing part 106 measured by the thermocouple 109 as a first thermometer before irradiation with the ion beam from the ion source 101 as a reference temperature, and stores the temperature during the ion beam irradiation from the ion source 101.
  • the temperature adjustment unit 108 maintains the temperature of the shield plate fixing portion 106 measured by the thermocouple 109, which is the first thermometer, at the reference temperature. This makes it possible to provide an ion milling device that can control the minute amount of protrusion of the sample relative to the shielding plate with a simple mechanism.
  • FIG. 6 shows a modification of the ion milling device. Components common to those of the ion milling apparatus shown in FIG. 1 are indicated using the same reference numerals, and redundant explanation will be omitted.
  • a second thermocouple 116 for checking the temperature of the sample 104 is added to the ion milling apparatus 200.
  • a thermometer other than a thermocouple may also be used for the second thermocouple 116.
  • the present invention made by the present inventor has been specifically explained based on the embodiments, but the present invention is not limited to the described embodiments, and various changes can be made without departing from the gist thereof. .
  • the temperature of the shielding plate 105 may be adjusted directly.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to make the present invention easier to understand, and the present invention is not necessarily limited to having all the configurations described.
  • thermocouple 110: control unit, 111: high voltage power supply, 112: supply gas control unit, 113: exhaust mechanism, 114: sample chamber, 116: second thermocouple, 117: shield plate fixing screw , 201: first cathode, 202: second cathode, 203: anode, 204: permanent magnet, 205: accelerating electrode, 206: gas piping.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

This ion milling device comprises: a specimen stage (103) on which a specimen is to be placed; a specimen table (102) and a shielding-plate-fixing part (106) which are supported by the specimen stage; a shielding plate (105) fixed to the shielding-plate-fixing part; an ion source (101) which emits an unfocused ion beam toward the specimen; and a temperature regulation unit (108) which is connected to the shielding-plate-fixing part by a heat transfer cable (107) and which regulates the temperature of the shielding-plate-fixing part. The specimen is sandwiched between the shielding plate and the specimen table and held thereby, and the amount in which the specimen protrudes from the shielding plate is regulated in accordance with temperatures of the shielding-plate-fixing part which are set by the temperature regulation unit.

Description

イオンミリング装置及び試料加工方法Ion milling device and sample processing method
 本発明は、イオンミリング装置及び試料加工方法に関する。 The present invention relates to an ion milling device and a sample processing method.
 イオンミリング装置は、電子顕微鏡観察対象である試料(例えば、金属、半導体、ガラス、セラミックなど)に対して非集束のイオンビームを照射し、スパッタリング現象によって試料表面の原子を弾き飛ばし、無応力で試料表面の研磨や試料の内部構造を露出できる装置である。イオンビーム照射によって研磨した試料表面や試料の内部構造は、走査電子顕微鏡や透過電子顕微鏡の観察面となる。 Ion milling equipment irradiates a sample to be observed with an electron microscope (e.g., metal, semiconductor, glass, ceramic, etc.) with an unfocused ion beam, and uses a sputtering phenomenon to knock off atoms on the sample surface, creating a stress-free and stress-free milling system. This is a device that can polish the surface of a sample and expose the internal structure of the sample. The sample surface and internal structure of the sample polished by ion beam irradiation serve as observation surfaces for scanning electron microscopes and transmission electron microscopes.
 特許文献1は、イオンビームによりマスクから突出した部分を削る加工装置に関し、高分子材料のように融点が低く、イオンビームのエネルギーによる熱により変形や収縮といった試料構造の損傷を生じやすい試料である場合に、熱ダメージの発生を防止するため、試料に接触させるマスクに冷却機構を接続させる、または試料台に冷却機構を備える加工装置が開示されている。 Patent Document 1 relates to a processing device that uses an ion beam to cut a portion protruding from a mask, and uses a sample that has a low melting point, such as a polymer material, and is susceptible to damage to the sample structure such as deformation or shrinkage due to heat generated by the energy of the ion beam. In order to prevent thermal damage from occurring in such cases, processing apparatuses have been disclosed in which a cooling mechanism is connected to a mask brought into contact with a sample, or a cooling mechanism is provided on a sample stage.
特開2010-257856号公報Japanese Patent Application Publication No. 2010-257856
 イオンミリング装置の加工対象とする試料の中には、紙や高分子材料等のようにイオンビーム照射による温度上昇による熱ダメージの影響を受ける試料がある。熱ダメージの一例として、イオンビーム照射による試料の溶融や変形などがある。 Among the samples processed by the ion milling device, there are samples such as paper and polymer materials that are affected by thermal damage due to temperature rise due to ion beam irradiation. An example of thermal damage is melting or deformation of a sample due to ion beam irradiation.
 試料への熱ダメージを抑制する方法として、イオンビームが照射される試料のマスク(遮蔽板)からの突出量を小さくすることが挙げられる。試料加工時には、イオン源から非集束のイオンビームが試料に向けて照射される。遮蔽板からの突出量を小さくすることで、試料加工への寄与の少ないエネルギー密度の低いイオンビームが試料に照射されるのを抑制し、試料の加熱を抑えることができる。しかしながら、この手法では、観察面が試料の深いところに存在する場合には、試料と遮蔽板の境界位置の調整及び試料の加工を繰り返し行う必要がある。 One way to suppress thermal damage to the sample is to reduce the amount of protrusion of the sample irradiated with the ion beam from the mask (shielding plate). When processing a sample, an ion source irradiates the sample with an unfocused ion beam. By reducing the amount of protrusion from the shielding plate, it is possible to suppress irradiation of the sample with a low energy density ion beam that makes little contribution to sample processing, and to suppress heating of the sample. However, in this method, if the observation surface is located deep within the sample, it is necessary to repeatedly adjust the boundary position between the sample and the shielding plate and process the sample.
 発明者らは、イオンミリング装置における試料と遮蔽板の境界位置の調整を簡易な機構で実現する検討を進め、本発明に至った。特許文献1は、マスクや試料台を冷却することを開示するが、試料の冷却を目的とするものであり、熱を用いた試料と遮蔽板の境界位置の調整を開示、示唆するものではない。 The inventors have conducted studies to realize the adjustment of the boundary position between the sample and the shielding plate in an ion milling device using a simple mechanism, and have arrived at the present invention. Patent Document 1 discloses cooling the mask and sample stage, but the purpose is to cool the sample, and does not disclose or suggest adjusting the boundary position between the sample and the shielding plate using heat. .
 本発明の一実施の形態であるイオンミリング装置は、試料が載置される試料ステージと、試料ステージによって支持される試料台及び遮蔽板固定部と、遮蔽板固定部に固定される遮蔽板と、試料に向けて非集束のイオンビームを照射するイオン源と、遮蔽板固定部と伝熱ケーブルによって接続され、遮蔽板固定部の温度を調整する温度調整ユニットと、を有し、試料は、遮蔽板と試料台との間に挟み込まれて保持され、試料の遮蔽板からの突出量は、温度調整ユニットに設定される遮蔽板固定部の設定温度によって調整される。 An ion milling apparatus that is an embodiment of the present invention includes a sample stage on which a sample is placed, a sample stage and a shielding plate fixing part supported by the sample stage, and a shielding plate fixed to the shielding plate fixing part. , an ion source that irradiates an unfocused ion beam toward the sample, and a temperature adjustment unit that is connected to the shield plate fixing part by a heat transfer cable and adjusts the temperature of the shield plate fixing part, and the sample is The sample is held between a shielding plate and a sample stage, and the amount of protrusion of the sample from the shielding plate is adjusted by the set temperature of the shielding plate fixing part set in the temperature adjustment unit.
 簡素な機構で、遮蔽板に対する試料の微小な突出量を制御可能なイオンミリング装置を提供する。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 To provide an ion milling device that can control the minute amount of protrusion of a sample relative to a shielding plate with a simple mechanism. Other objects and novel features will become apparent from the description of this specification and the accompanying drawings.
イオンミリング装置の構成例(模式図)である。It is a configuration example (schematic diagram) of an ion milling device. イオン源とイオン源に制御電圧を印加する電源回路とを示す模式図である。FIG. 2 is a schematic diagram showing an ion source and a power supply circuit that applies a control voltage to the ion source. 遮蔽板固定部の温度ごとに遮蔽板に対する試料の突出量を示す模式図である。FIG. 7 is a schematic diagram showing the amount of protrusion of the sample relative to the shielding plate for each temperature of the shielding plate fixing part. 実施例1の試料加工の操作を示すフローチャートである。3 is a flowchart showing sample processing operations in Example 1. FIG. 実施例2の試料加工の操作を示すフローチャートである。3 is a flowchart showing sample processing operations in Example 2. イオンミリング装置の別の構成例(模式図)である。It is another example of a structure (schematic diagram) of an ion milling apparatus.
 以下、本発明の実施例を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
 図1は、イオンミリング装置100の主要部を側面から示した模式図である。図1では、鉛直方向をY方向として表示している。イオンミリング装置100は、その主要な構成として、イオン源101、試料台102、試料ステージ103、試料104、遮蔽板105、遮蔽板固定部106、伝熱ケーブル107、温度調整ユニット108、第1の熱電対109、制御部110、高圧電源111、供給ガス制御部112、排気機構113、試料室114を有する。 FIG. 1 is a schematic diagram showing the main parts of the ion milling device 100 from the side. In FIG. 1, the vertical direction is shown as the Y direction. The ion milling apparatus 100 includes an ion source 101, a sample stage 102, a sample stage 103, a sample 104, a shielding plate 105, a shielding plate fixing part 106, a heat transfer cable 107, a temperature adjustment unit 108, and a first It has a thermocouple 109, a control section 110, a high voltage power supply 111, a supply gas control section 112, an exhaust mechanism 113, and a sample chamber 114.
 イオンミリング装置100は、走査電子顕微鏡や透過電子顕微鏡による試料の表面あるいは断面を観察するための前処理装置として用いられており、このような前処理装置向けのイオン源には、構造を小型化するために有効なペニング方式を採用する場合が多い。本実施例でもイオン源101にはペニング方式が採用されており、イオン源101から試料104に向けて非集束のイオンビームが照射される。制御部110は、高圧電源111からイオン源101内部の電極に印加する電圧、供給ガス制御部112から供給されるアルゴンガス流量を調整して、イオンビームの出力を制御する。 The ion milling device 100 is used as a preprocessing device for observing the surface or cross section of a sample using a scanning electron microscope or a transmission electron microscope. In many cases, an effective penning method is used to do this. In this embodiment as well, the Penning method is adopted for the ion source 101, and an unfocused ion beam is irradiated from the ion source 101 toward the sample 104. The control unit 110 controls the output of the ion beam by adjusting the voltage applied to the electrodes inside the ion source 101 from the high-voltage power supply 111 and the flow rate of argon gas supplied from the supply gas control unit 112.
 試料104は試料ステージ103上に載置される。遮蔽板105は遮蔽板固定ねじ117によって遮蔽板固定部106に固定され、遮蔽板固定部106は試料ステージ103によって支持されている。試料104は、試料ステージ103によって支持される試料台102と遮蔽板105との間に挟み込まれ、遮蔽板105から所定の突出量だけ突出させられる。なお、試料ステージ103に試料104を5方向(X軸方向、Y軸方向、Z軸方向、Y軸を中心とする回転方向、X軸を中心とする回転方向)あるいはその一部に、自由に駆動する駆動機構を設けてもよい。 The sample 104 is placed on the sample stage 103. The shielding plate 105 is fixed to the shielding plate fixing part 106 by a shielding plate fixing screw 117, and the shielding plate fixing part 106 is supported by the sample stage 103. The sample 104 is sandwiched between the sample stage 102 supported by the sample stage 103 and the shielding plate 105, and is made to protrude from the shielding plate 105 by a predetermined protrusion amount. Note that the sample 104 can be freely placed on the sample stage 103 in five directions (X-axis direction, Y-axis direction, Z-axis direction, rotation direction around the Y-axis, rotation direction around the X-axis) or a part thereof. A driving mechanism may be provided.
 本実施例では、遮蔽板105からの試料104の突出量を調整するために、遮蔽板固定部106の熱収縮を利用する。このため、遮蔽板固定部106はできるだけ線膨張係数が大きい材料で作成することが望ましい。例えば、リン青銅、黄銅などで作製する。遮蔽板固定部106は伝熱ケーブル107を介して温度調整ユニット108と接続されており、温度調整ユニット108は、遮蔽板固定部106を制御部110によって設定された温度に調整する。温度調整ユニット108の温度調整方式は様々であり、特定の温度調整方式に限定されない。イオンビームが照射されることにより、試料104と遮蔽板105は加熱され、伝熱により遮蔽板固定部106の温度は上昇する。このため、温度調整ユニットは、少なくとも冷却機能を備える。例えば、液体窒素やドライアイスを用いて遮蔽板固定部106を冷却することができる。一方、制御できる温度は広範囲であるほど制御の自由度が増すため、温度調整ユニット108は冷却機能と加温機能の双方を備えていてもよい。例えば、上述のような冷却とヒータによる加熱とを組み合わせてもよく、ペルチェ素子を用いてもよい。 In this embodiment, in order to adjust the amount of protrusion of the sample 104 from the shield plate 105, thermal contraction of the shield plate fixing part 106 is used. For this reason, it is desirable that the shielding plate fixing part 106 be made of a material with as large a coefficient of linear expansion as possible. For example, it is made of phosphor bronze, brass, etc. The shielding plate fixing part 106 is connected to a temperature adjustment unit 108 via a heat transfer cable 107, and the temperature adjusting unit 108 adjusts the temperature of the shielding plate fixing part 106 to the temperature set by the control part 110. The temperature adjustment method of the temperature adjustment unit 108 is various, and is not limited to a specific temperature adjustment method. By being irradiated with the ion beam, the sample 104 and the shielding plate 105 are heated, and the temperature of the shielding plate fixing part 106 increases due to heat transfer. Therefore, the temperature adjustment unit has at least a cooling function. For example, the shield plate fixing part 106 can be cooled using liquid nitrogen or dry ice. On the other hand, the wider the temperature range that can be controlled, the greater the degree of freedom in control, so the temperature adjustment unit 108 may have both a cooling function and a heating function. For example, cooling as described above and heating by a heater may be combined, or a Peltier element may be used.
 伝熱ケーブル107は、銅などの伝熱性が大きい材料で作製する。試料室114は排気機構113によってミリング処理時には高真空(<1.0×10-3Pa)に保たれているため、伝熱ケーブル107からの放熱は考慮する必要はない。この点は遮蔽板固定部106も同様である。遮蔽板固定部106の温度管理は、第1の熱電対109で行われ、第1の熱電対109で測定された温度が設定温度と大きな乖離が見られたときは、温度調整ユニット108によって温度調整される。なお、熱電対は温度計の一例であり、遮蔽板固定部106の温度を測定できれば熱電対でなくてもよい。 The heat transfer cable 107 is made of a material with high heat transfer properties such as copper. Since the sample chamber 114 is maintained at a high vacuum (<1.0×10 −3 Pa) during the milling process by the exhaust mechanism 113, there is no need to consider heat radiation from the heat transfer cable 107. The same applies to the shielding plate fixing portion 106 in this respect. Temperature control of the shield plate fixing part 106 is performed by a first thermocouple 109. When the temperature measured by the first thermocouple 109 shows a large deviation from the set temperature, the temperature control unit 108 adjusts the temperature. be adjusted. Note that the thermocouple is an example of a thermometer, and does not need to be a thermocouple as long as it can measure the temperature of the shield plate fixing part 106.
 図2は、ペニング方式を採用したイオン源101と、イオン源101の電極部品に制御電圧を印加する電源回路とを示す模式図である。電源回路は高圧電源111の一部である。 FIG. 2 is a schematic diagram showing an ion source 101 employing the Penning method and a power supply circuit that applies a control voltage to electrode parts of the ion source 101. The power supply circuit is part of the high voltage power supply 111.
 イオン源101は、第1カソード201、第2カソード202、アノード203、永久磁石204、加速電極205、ガス配管206を有する。イオンビームを発生させるため、ガス配管206を通してイオン源101内部にアルゴンガスが注入される。イオン源101内部には、同電位とされる第1カソード201及び第2カソード202が対向して配置されており、第1カソード201と第2カソード202との間にはアノード203が配置されている。カソード201,202とアノード203との間に高圧電源111から放電電圧Vdが印加されることにより電子が発生する。電子はイオン源101内に配置された永久磁石204によって滞留し、ガス配管206から注入されたアルゴンガスと衝突してアルゴンイオンを生成する。アノード203と加速電極205との間には高圧電源111から加速電圧Vaが印加されており、生成されたアルゴンイオンは加速電極205に誘引され、イオンビームとして放出される。 The ion source 101 has a first cathode 201, a second cathode 202, an anode 203, a permanent magnet 204, an accelerating electrode 205, and a gas pipe 206. Argon gas is injected into the ion source 101 through the gas pipe 206 to generate an ion beam. Inside the ion source 101, a first cathode 201 and a second cathode 202 having the same potential are arranged facing each other, and an anode 203 is arranged between the first cathode 201 and the second cathode 202. There is. Electrons are generated by applying a discharge voltage Vd from the high voltage power supply 111 between the cathodes 201, 202 and the anode 203. The electrons are retained by a permanent magnet 204 disposed within the ion source 101 and collide with argon gas injected from a gas pipe 206 to generate argon ions. An accelerating voltage Va is applied between the anode 203 and the accelerating electrode 205 from the high voltage power supply 111, and the generated argon ions are attracted to the accelerating electrode 205 and emitted as an ion beam.
 図3に、遮蔽板固定部106の温度ごとに、遮蔽板105に対する試料104の突出量ΔHを示す模式図を状態301~303として示す。状態301~303における遮蔽板固定部106の温度は、それぞれ25℃、0℃、-25℃である。遮蔽板105と試料104とは密着させているだけであるので、遮蔽板固定部106を冷却または加熱することにより遮蔽板固定部106及び遮蔽板105が伸縮することにより遮蔽板105と試料104との境界(エッジ)が移動する。これにより、エッジから試料104の端面までの距離(突出量)ΔHが変化する。 FIG. 3 is a schematic diagram showing the protrusion amount ΔH of the sample 104 with respect to the shielding plate 105 for each temperature of the shielding plate fixing part 106 as states 301 to 303. The temperatures of the shield plate fixing portion 106 in states 301 to 303 are 25° C., 0° C., and −25° C., respectively. Since the shielding plate 105 and the sample 104 are only in close contact with each other, cooling or heating the shielding plate fixing part 106 causes the shielding plate fixing part 106 and the shielding plate 105 to expand and contract, thereby causing the shielding plate 105 and the sample 104 to The boundary (edge) of moves. As a result, the distance (protrusion amount) ΔH from the edge to the end face of the sample 104 changes.
 遮蔽板固定部106の温度が25℃であるとき(状態301)、遮蔽板105に対する試料104の突出量ΔHをΔh、遮蔽板固定部106の全長をL1、遮蔽板固定部106の底面から遮蔽板固定ねじ117までの距離をL3、遮蔽板固定部106の線膨張係数をα1とする。また、遮蔽板105の全長をL2、遮蔽板固定ねじ117から遮蔽板105の端面までの距離をL4、遮蔽板105の線膨張係数をα2とする。 When the temperature of the shielding plate fixing part 106 is 25° C. (state 301), the protrusion amount ΔH of the sample 104 with respect to the shielding plate 105 is Δh, the total length of the shielding plate fixing part 106 is L1, and the shielding from the bottom of the shielding plate fixing part 106 is set. The distance to the plate fixing screw 117 is L3, and the linear expansion coefficient of the shielding plate fixing portion 106 is α1. Further, the total length of the shielding plate 105 is L2, the distance from the shielding plate fixing screw 117 to the end face of the shielding plate 105 is L4, and the linear expansion coefficient of the shielding plate 105 is α2.
 遮蔽板固定部106の温度が0℃となるとき(状態302)、状態301からの温度差は25℃となるため、遮蔽板固定部106及び遮蔽板105は、それぞれ25×α1×L1、25×α2×L2だけ収縮する。遮蔽板固定部106の熱収縮によって遮蔽板105の位置が引き下げられるとともに、遮蔽板105そのものも熱収縮により収縮する結果、状態302における突出量ΔHは、(式1)となる。 When the temperature of the shielding plate fixing part 106 is 0°C (state 302), the temperature difference from the state 301 is 25°C. It contracts by ×α2×L2. The position of the shielding plate 105 is lowered due to the thermal contraction of the shielding plate fixing portion 106, and the shielding plate 105 itself also contracts due to the thermal contraction, so that the protrusion amount ΔH in the state 302 is expressed as (Formula 1).
 ΔH=Δh+25×α1×L3+25×α2×L4 ・・・(式1)
 (式1)の右辺において、第1項は状態301における突出量、第2項は遮蔽板固定部106の熱収縮による遮蔽板固定ねじ117の位置の変化量、第3項は遮蔽板105の熱収縮による、遮蔽板固定ねじ117を支点とした遮蔽板105の収縮量を表している。このように、突出量ΔHは、遮蔽板固定部106及び遮蔽板105の支持構造にも依存する。図3の模式図に示す遮蔽板固定部106や遮蔽板105の支持構造は一例であり、本実施例は、特定の支持構造に限定するものではない。
ΔH=Δh+25×α1×L3+25×α2×L4 (Formula 1)
On the right side of (Equation 1), the first term is the amount of protrusion in state 301, the second term is the amount of change in the position of the shield plate fixing screw 117 due to thermal contraction of the shield plate fixing part 106, and the third term is the amount of change in the position of the shield plate fixing screw 117 due to thermal contraction of the shield plate fixing part 106. It represents the amount of shrinkage of the shielding plate 105 with the shielding plate fixing screw 117 as a fulcrum due to thermal contraction. In this way, the protrusion amount ΔH also depends on the support structure of the shielding plate fixing portion 106 and the shielding plate 105. The support structure for the shielding plate fixing part 106 and the shielding plate 105 shown in the schematic diagram of FIG. 3 is an example, and the present embodiment is not limited to a specific support structure.
 同様に、遮蔽板固定部106の温度が-25℃となるとき(状態303)、状態301からの温度差は50℃となるため、遮蔽板固定部106及び遮蔽板105は、それぞれ50×α1×L1、50×α2×L2だけ収縮する。状態303における突出量ΔHは、(式2)で表せる。 Similarly, when the temperature of the shielding plate fixing part 106 becomes -25°C (state 303), the temperature difference from the state 301 is 50°C, so the temperature of the shielding plate fixing part 106 and the shielding plate 105 is 50×α1, respectively. xL1, contracted by 50 x α2 x L2. The protrusion amount ΔH in state 303 can be expressed by (Formula 2).
 ΔH=Δh+50×α1×L3+50×α2×L4 ・・・(式2)
 このように、試料104の遮蔽板105からの突出量ΔHは温度差を変数とする一次関数にしたがって変化することになる。
ΔH=Δh+50×α1×L3+50×α2×L4...(Formula 2)
In this way, the amount of protrusion ΔH of the sample 104 from the shielding plate 105 changes according to a linear function with the temperature difference as a variable.
 図4に示すフローチャートは、実施例1のイオンミリング装置における試料加工開始から終了までの一連の操作を示す。本フローチャートの一連の操作は制御部110によって実行される。以下に、それぞれの操作の詳細について記す。 The flowchart shown in FIG. 4 shows a series of operations from the start to the end of sample processing in the ion milling apparatus of Example 1. A series of operations in this flowchart are executed by the control unit 110. Details of each operation are described below.
 S01:イオンミリング装置100の試料加工条件(イオン源101の加速電圧、放電電圧、アルゴンガスの供給量など)を設定する。試料加工条件には、ミリング処理開始時における遮蔽板105に対する試料104の試料突出量Δhを含み、設定する試料突出量Δhはできるだけ小さい値に設定することが望ましい。 S01: Set sample processing conditions of the ion milling apparatus 100 (acceleration voltage of the ion source 101, discharge voltage, supply amount of argon gas, etc.). The sample processing conditions include the sample protrusion amount Δh of the sample 104 with respect to the shielding plate 105 at the start of the milling process, and it is desirable that the sample protrusion amount Δh to be set is set to a value as small as possible.
 S02:制御部110は、ステップS01において設定した試料突出量Δhとなる温度(設定温度という)を設定し、温度調整ユニット108により遮蔽板固定部106の温度を設定温度に調整する。なお、ステップS01から続けて実施する場合は、室温において遮蔽板からの突出量がΔhとなるように試料104を遮蔽板105と試料台102との間に挟み込んでおく。これにより、ミリング加工開始時には、遮蔽板固定部106の温度調整を不要にできる。 S02: The control unit 110 sets the temperature (referred to as set temperature) that corresponds to the sample protrusion amount Δh set in step S01, and uses the temperature adjustment unit 108 to adjust the temperature of the shielding plate fixing unit 106 to the set temperature. In addition, when performing continuously from step S01, the sample 104 is sandwiched between the shielding plate 105 and the sample stage 102 so that the amount of protrusion from the shielding plate becomes Δh at room temperature. This makes it unnecessary to adjust the temperature of the shielding plate fixing section 106 at the start of milling.
 S03:イオン源101からイオンビームを試料104に照射することにより、試料104の加工(ミリング処理)を実施する。 S03: The sample 104 is processed (milling process) by irradiating the sample 104 with an ion beam from the ion source 101.
 S04:ミリング処理中は第1の熱電対109で遮蔽板固定部106の温度をモニタリングする。長時間のミリング処理に伴う加熱のため、遮蔽板固定部106の温度が設定温度の許容範囲を外れている場合、一時的に加工を停止してS02に戻り、遮蔽板固定部106の冷却を行う。遮蔽板固定部106の温度がステップS02で設定した設定温度に戻り次第、加工を再開する(S03)。 S04: During the milling process, the temperature of the shield plate fixing part 106 is monitored with the first thermocouple 109. If the temperature of the shielding plate fixing part 106 is out of the allowable range of the set temperature due to heating caused by long-time milling processing, processing is temporarily stopped and the process returns to S02 to cool the shielding plate fixing part 106. conduct. As soon as the temperature of the shield plate fixing part 106 returns to the set temperature set in step S02, processing is restarted (S03).
 S05:遮蔽板105から突出した試料104の部分が全て削れているか確認する。削れていない場合は引き続き加工を実施する(S03)。なお、確認方法については限定されない。もっとも単純な方法としてはあらかじめ定めた加工時間が経過した場合に突出部分が削れたと判断してもよい。試料室に透明な窓を設け、窓を介して光学顕微鏡あるいは電子顕微鏡等のモニタ手段により直接的に確認してもよい。あるいは試料加工に伴って生じるスパッタ粒子の量から加工量を推定してもよい。 S05: Check whether all parts of the sample 104 protruding from the shielding plate 105 have been shaved off. If it is not shaved, processing continues (S03). Note that the confirmation method is not limited. As the simplest method, it may be determined that the protruding portion has been removed when a predetermined machining time has elapsed. A transparent window may be provided in the sample chamber, and direct confirmation may be made through the window using a monitoring means such as an optical microscope or an electron microscope. Alternatively, the processing amount may be estimated from the amount of sputtered particles generated during sample processing.
 S06:試料104が目的となる部分まで削れたか確認する。目的となる部分とは、例えば、本加工が走査電子顕微鏡や透過電子顕微鏡によって試料104の断面を観察するための前処理である場合には、観察面となる断面である。削れていない場合はステップS02に戻って、試料の遮蔽板からの突出量がΔhとなるように、遮蔽板固定部106の温度制御を実施する。具体的には、前回温度制御時の設定温度からΔTだけ低い設定温度を再設定し、温度調整ユニット108により再設定した設定温度まで遮蔽板固定部106を冷却する。例えば、図3の例であれば、ΔT=Δh/(α1L3+α2L4)である。 S06: Check whether the sample 104 has been shaved to the target part. The target portion is, for example, a cross section that will be the observation surface when the main processing is pretreatment for observing the cross section of the sample 104 using a scanning electron microscope or a transmission electron microscope. If it is not scraped, the process returns to step S02, and the temperature of the shielding plate fixing part 106 is controlled so that the amount of protrusion of the sample from the shielding plate becomes Δh. Specifically, the set temperature is reset to be lower by ΔT than the set temperature during the previous temperature control, and the temperature adjustment unit 108 cools the shielding plate fixing portion 106 to the reset set temperature. For example, in the example of FIG. 3, ΔT=Δh/(α1L3+α2L4).
 S07:目的となる部分まで削れていれば、加工を終了する。 S07: If the target part has been cut, the machining ends.
 以上のように、実施例1では遮蔽板固定部106の温度を調整することで、単純な機構により、試料の遮蔽板からの微小な突出量を調整可能とする。これにより、断面ミリング処理中は、突出量を可能な限り小さくした状態で行うことにより、断面ミリング処理に伴う試料104への熱負荷を最低限にすることが可能になる。これにより、試料104へのイオンビーム照射に伴う熱ダメージを抑えることができる。 As described above, in Example 1, by adjusting the temperature of the shielding plate fixing part 106, the minute amount of protrusion of the sample from the shielding plate can be adjusted using a simple mechanism. Thereby, by performing the cross-section milling process with the amount of protrusion as small as possible, it is possible to minimize the heat load on the sample 104 accompanying the cross-section milling process. Thereby, thermal damage caused by ion beam irradiation to the sample 104 can be suppressed.
 実施例2として、遮蔽板105へのイオンビーム照射による温度ドリフトの影響を低減可能なイオンミリング装置について説明する。実施例2のイオンミリング装置のハードウェア構成は、図1に示したイオンミリング装置100と同一であるので、重複する説明は省略する。実施例2においては、加工開始前のイオンビーム非照射時の遮蔽板固定部106の温度を基準温度として記憶する。加工開始後のイオンビーム照射により遮蔽板固定部106の温度が基準温度から外れた場合、温度調整ユニット108は遮蔽板固定部106の温度が基準温度になるよう調整する。これにより、断面ミリング処理中における遮蔽板105の温度ドリフトによる影響を低減することができ、遮蔽板105と試料104との境界(エッジ)の位置を加工開始時の位置に保った状態で加工を実施できる。 As a second embodiment, an ion milling apparatus that can reduce the influence of temperature drift due to ion beam irradiation on the shielding plate 105 will be described. The hardware configuration of the ion milling apparatus of Example 2 is the same as that of the ion milling apparatus 100 shown in FIG. 1, so a duplicate explanation will be omitted. In the second embodiment, the temperature of the shielding plate fixing part 106 at a time when the ion beam is not irradiated before the start of processing is stored as the reference temperature. If the temperature of the shield plate fixing part 106 deviates from the reference temperature due to ion beam irradiation after the start of processing, the temperature adjustment unit 108 adjusts the temperature of the shield plate fixing part 106 to the reference temperature. This makes it possible to reduce the influence of temperature drift of the shielding plate 105 during the cross-sectional milling process, and the machining can be performed while maintaining the position of the boundary (edge) between the shielding plate 105 and the sample 104 at the position at the start of machining. Can be implemented.
 図5に示すフローチャートは、実施例2のイオンミリング装置における試料加工開始から終了までの一連の操作を示す。本フローチャートの一連の操作は制御部110によって実行される。以下に、それぞれの操作の詳細について記す。 The flowchart shown in FIG. 5 shows a series of operations from the start to the end of sample processing in the ion milling apparatus of Example 2. A series of operations in this flowchart are executed by the control unit 110. Details of each operation are described below.
 S11:イオンミリング装置100の試料加工条件(イオン源101の加速電圧、放電電圧、アルゴンガスの供給量など)を設定する。本加工が走査電子顕微鏡や透過電子顕微鏡によって試料104の断面を観察するための前処理である場合には、観察面となる断面が遮蔽板105と試料104との境界(エッジ)に位置するように、試料104を遮蔽板105と試料台102との間に挟み込む。試料加工条件には、このように設置した試料104の遮蔽板105から突出した領域がミリング加工されるのに要する試料加工時間を設定する。 S11: Set sample processing conditions of the ion milling apparatus 100 (acceleration voltage of the ion source 101, discharge voltage, supply amount of argon gas, etc.). If this processing is a pretreatment for observing the cross section of the sample 104 using a scanning electron microscope or a transmission electron microscope, the cross section that will be the observation surface should be located at the boundary (edge) between the shielding plate 105 and the sample 104. Next, the sample 104 is sandwiched between the shielding plate 105 and the sample stage 102. As the sample processing conditions, the sample processing time required for milling the area of the sample 104 set up in this manner that protrudes from the shielding plate 105 is set.
 S12:第1の熱電対109が測定した遮蔽板固定部106の温度を基準温度として記憶する。 S12: The temperature of the shield plate fixing portion 106 measured by the first thermocouple 109 is stored as a reference temperature.
 S13:イオン源101からイオンビームを試料104に照射することにより、試料104の加工(ミリング処理)を実施する。 S13: The sample 104 is processed (milling process) by irradiating the sample 104 with an ion beam from the ion source 101.
 S14:ミリング処理中は加工時間を監視する。 S14: Monitor the machining time during the milling process.
 S15:ミリング処理中は第1の熱電対109で遮蔽板固定部106の温度をモニタリングする。 S15: During the milling process, the temperature of the shield plate fixing part 106 is monitored with the first thermocouple 109.
 S16:遮蔽板固定部106の温度と基準温度とに差がある場合には、温度調整ユニット108は遮蔽板固定部106が基準温度になるよう温度調節を行い、加工を継続する。 S16: If there is a difference between the temperature of the shield plate fixing part 106 and the reference temperature, the temperature adjustment unit 108 adjusts the temperature so that the shield plate fixing part 106 reaches the reference temperature, and continues processing.
 S17:設定した試料加工時間に到達したら加工を終了する。 S17: When the set sample processing time is reached, the processing ends.
 このように、イオンミリング装置100は、遮蔽板固定部106の温度を測定する第1の温度計である熱電対109と、試料加工時間が設定される制御部110と、を有し、制御部110は、イオン源101からのイオンビーム照射前において、第1の温度計である熱電対109が測定した遮蔽板固定部106の温度を基準温度として記憶し、イオン源101からのイオンビーム照射中において、温度調整ユニット108により第1の温度計である熱電対109が測定する遮蔽板固定部106の温度を前記基準温度に維持する。これにより簡素な機構で、遮蔽板に対する試料の微小な突出量を制御可能なイオンミリング装置を提供することができる。 As described above, the ion milling apparatus 100 includes the thermocouple 109, which is a first thermometer that measures the temperature of the shielding plate fixing part 106, and the control part 110, in which the sample processing time is set. 110 stores the temperature of the shielding plate fixing part 106 measured by the thermocouple 109 as a first thermometer before irradiation with the ion beam from the ion source 101 as a reference temperature, and stores the temperature during the ion beam irradiation from the ion source 101. In this step, the temperature adjustment unit 108 maintains the temperature of the shield plate fixing portion 106 measured by the thermocouple 109, which is the first thermometer, at the reference temperature. This makes it possible to provide an ion milling device that can control the minute amount of protrusion of the sample relative to the shielding plate with a simple mechanism.
 図6に、イオンミリング装置の変形例を示す。図1に示したイオンミリング装置と共通する構成については、同じ符号を用いて示し、重複する説明は省略する。イオンミリング装置200には、試料104の温度を確認するための第2の熱電対116が追加されている。第2の熱電対116についても熱電対以外の温度計を用いてもよい。この構成であれば、突出量の調整を遮蔽板固定部106及び遮蔽板105の熱収縮量の他、試料104の熱収縮量または熱膨張量も含めて計算できるため、試料の遮蔽板からの突出量をより精密に調整することが可能になる。試料104の材料が比較的大きな線膨張係数を有する材料である場合には有効な構成である。 FIG. 6 shows a modification of the ion milling device. Components common to those of the ion milling apparatus shown in FIG. 1 are indicated using the same reference numerals, and redundant explanation will be omitted. A second thermocouple 116 for checking the temperature of the sample 104 is added to the ion milling apparatus 200. A thermometer other than a thermocouple may also be used for the second thermocouple 116. With this configuration, the adjustment of the protrusion amount can be calculated not only by the amount of thermal contraction of the shielding plate fixing part 106 and the shielding plate 105 but also by the amount of thermal contraction or thermal expansion of the sample 104. It becomes possible to adjust the amount of protrusion more precisely. This is an effective configuration when the material of the sample 104 has a relatively large coefficient of linear expansion.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は記述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、遮蔽板固定部106の温度調整によって試料突出量を調整する実施例について説明したが、直接遮蔽板105の温度を調整するようにしてもよい。 Above, the invention made by the present inventor has been specifically explained based on the embodiments, but the present invention is not limited to the described embodiments, and various changes can be made without departing from the gist thereof. . For example, although an embodiment has been described in which the amount of sample protrusion is adjusted by adjusting the temperature of the shielding plate fixing part 106, the temperature of the shielding plate 105 may be adjusted directly.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすくするために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to make the present invention easier to understand, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
100、200:イオンミリング装置、101:イオン源、102:試料台、103:試料ステージ、104:試料、105:遮蔽板、106:遮蔽板固定部、107:伝熱ケーブル、108:温度調整ユニット、109:第1の熱電対、110:制御部、111:高圧電源、112:供給ガス制御部、113:排気機構、114:試料室、116:第2の熱電対、117:遮蔽板固定ねじ、201:第1カソード、202:第2カソード、203:アノード、204:永久磁石、205:加速電極、206:ガス配管。 100, 200: ion milling device, 101: ion source, 102: sample stage, 103: sample stage, 104: sample, 105: shielding plate, 106: shielding plate fixing part, 107: heat transfer cable, 108: temperature adjustment unit , 109: first thermocouple, 110: control unit, 111: high voltage power supply, 112: supply gas control unit, 113: exhaust mechanism, 114: sample chamber, 116: second thermocouple, 117: shield plate fixing screw , 201: first cathode, 202: second cathode, 203: anode, 204: permanent magnet, 205: accelerating electrode, 206: gas piping.

Claims (12)

  1.  試料が載置される試料ステージと、
     前記試料ステージによって支持される試料台及び遮蔽板固定部と、
     前記遮蔽板固定部に固定される遮蔽板と、
     前記試料に向けて非集束のイオンビームを照射するイオン源と、
     前記遮蔽板固定部と伝熱ケーブルによって接続され、前記遮蔽板固定部の温度を調整する温度調整ユニットと、を有し、
     前記試料は、前記遮蔽板と前記試料台との間に挟み込まれて保持され、
     前記試料の前記遮蔽板からの突出量は、前記温度調整ユニットに設定される前記遮蔽板固定部の設定温度によって調整されるイオンミリング装置。
    a sample stage on which the sample is placed;
    a sample stage and a shielding plate fixing part supported by the sample stage;
    a shielding plate fixed to the shielding plate fixing part;
    an ion source that irradiates an unfocused ion beam toward the sample;
    a temperature adjustment unit connected to the shielding plate fixing part by a heat transfer cable and adjusting the temperature of the shielding plate fixing part,
    The sample is held between the shielding plate and the sample stage,
    An ion milling apparatus in which the amount of protrusion of the sample from the shielding plate is adjusted by a set temperature of the shielding plate fixing part set in the temperature adjustment unit.
  2.  請求項1において、
     前記温度調整ユニットは、前記遮蔽板固定部を冷却するイオンミリング装置。
    In claim 1,
    The temperature adjustment unit is an ion milling device that cools the shield plate fixing part.
  3.  請求項1において、
     前記温度調整ユニットは、前記遮蔽板固定部を冷却または加温するイオンミリング装置。
    In claim 1,
    The temperature adjustment unit is an ion milling device that cools or heats the shield plate fixing part.
  4.  請求項1において、
     試料突出量が設定される制御部を有し、
     前記制御部は、前記温度調整ユニットが前記遮蔽板固定部の温度を前記設定温度に調整した後に、前記イオン源から前記試料に向けてイオンビームを照射し、
     前記設定温度は、前記試料の前記遮蔽板からの突出量が前記試料突出量となる温度として設定されるイオンミリング装置。
    In claim 1,
    It has a control section in which the amount of sample protrusion is set,
    The control unit irradiates the sample with an ion beam from the ion source after the temperature adjustment unit adjusts the temperature of the shield plate fixing unit to the set temperature,
    The set temperature is an ion milling device in which the set temperature is set as a temperature at which the amount of protrusion of the sample from the shielding plate becomes the amount of sample protrusion.
  5.  請求項4において、
     前記制御部は、前記遮蔽板から突出した前記試料の部分が削られた後に前記イオン源からのイオンビームの照射を停止し、前記試料の前記遮蔽板からの突出量が再度、前記試料突出量となる設定温度を再設定し、前記温度調整ユニットが前記遮蔽板固定部の温度を前記再設定された設定温度に調整した後に、前記イオン源からのイオンビームの照射を再開するイオンミリング装置。
    In claim 4,
    The control unit stops irradiation of the ion beam from the ion source after the portion of the sample protruding from the shielding plate is scraped, and the control unit causes the amount of protrusion of the sample from the shielding plate to become the amount of protrusion of the sample again. An ion milling apparatus that resets a set temperature, and restarts irradiation with an ion beam from the ion source after the temperature adjustment unit adjusts the temperature of the shielding plate fixing part to the reset set temperature.
  6.  請求項4において、
     前記遮蔽板固定部の温度を測定する第1の温度計を有し、
     前記制御部は、前記第1の温度計により測定された前記遮蔽板固定部の温度が前記設定温度の許容範囲を外れている場合には、前記イオン源からのイオンビームの照射を停止して、前記温度調整ユニットにより前記遮蔽板固定部の温度を前記設定温度に調整するイオンミリング装置。
    In claim 4,
    a first thermometer that measures the temperature of the shielding plate fixing part;
    The control unit is configured to stop irradiation of the ion beam from the ion source when the temperature of the shielding plate fixing unit measured by the first thermometer is outside an allowable range of the set temperature. , an ion milling apparatus in which the temperature of the shield plate fixing part is adjusted to the set temperature by the temperature adjustment unit.
  7.  請求項1において、
     前記遮蔽板固定部の温度を測定する第1の温度計と、
     試料加工時間が設定される制御部と、を有し、
     前記制御部は、前記イオン源からのイオンビーム照射前において、前記第1の温度計が測定した前記遮蔽板固定部の温度を基準温度として記憶し、前記イオン源からのイオンビーム照射中において、前記温度調整ユニットにより前記第1の温度計が測定する前記遮蔽板固定部の温度を前記基準温度に維持するイオンミリング装置。
    In claim 1,
    a first thermometer that measures the temperature of the shield plate fixing part;
    a control unit in which sample processing time is set;
    The control unit stores the temperature of the shield plate fixing part measured by the first thermometer as a reference temperature before irradiation with the ion beam from the ion source, and during the ion beam irradiation from the ion source, An ion milling apparatus in which the temperature of the shielding plate fixing part, which is measured by the first thermometer, is maintained at the reference temperature by the temperature adjustment unit.
  8.  請求項1において、
     前記試料の温度を測定する第2の温度計を有するイオンミリング装置。
    In claim 1,
    An ion milling device including a second thermometer that measures the temperature of the sample.
  9.  イオンミリング装置を用いた試料加工方法であって、
     前記イオンミリング装置は、試料が載置される試料ステージと、前記試料ステージによって支持される試料台及び遮蔽板固定部と、前記遮蔽板固定部に固定される遮蔽板と、前記試料に向けて非集束のイオンビームを照射するイオン源と、前記遮蔽板固定部と伝熱ケーブルによって接続され、前記遮蔽板固定部の温度を調整する温度調整ユニットと、試料突出量が設定される制御部とを備え、
     前記温度調整ユニットは、前記遮蔽板固定部の温度を設定温度に調整し、
     前記イオン源は、前記遮蔽板と前記試料台との間に挟み込まれて保持された前記試料に向けてイオンビームを照射し、
     前記設定温度は、前記試料の前記遮蔽板からの突出量が前記試料突出量となる温度として設定される試料加工方法。
    A sample processing method using an ion milling device, the method comprising:
    The ion milling apparatus includes a sample stage on which a sample is placed, a sample stage and a shielding plate fixing part supported by the sample stage, a shielding plate fixed to the shielding plate fixing part, and a shielding plate fixed to the shielding plate fixing part. an ion source that irradiates an unfocused ion beam; a temperature adjustment unit that is connected to the shielding plate fixing part by a heat transfer cable and adjusting the temperature of the shielding plate fixing part; and a control part that sets a sample protrusion amount. Equipped with
    The temperature adjustment unit adjusts the temperature of the shield plate fixing part to a set temperature,
    The ion source irradiates an ion beam toward the sample held between the shielding plate and the sample stage,
    The sample processing method wherein the set temperature is set as a temperature at which the amount of protrusion of the sample from the shielding plate becomes the amount of protrusion of the sample.
  10.  請求項9において、
     前記イオン源は、前記遮蔽板からの突出した前記試料の部分が削られた後にイオンビームの照射を停止し、
     前記制御部は、前記試料の前記遮蔽板からの突出量が再度、前記試料突出量となる設定温度を再設定し、
     前記温度調整ユニットは、前記遮蔽板固定部の温度を前記再設定された設定温度に調整し、
     前記イオン源は、イオンビームの照射を再開する試料加工方法。
    In claim 9,
    The ion source stops irradiation with the ion beam after the portion of the sample protruding from the shielding plate is scraped;
    The control unit resets a set temperature at which the amount of protrusion of the sample from the shielding plate becomes the amount of protrusion of the sample again,
    The temperature adjustment unit adjusts the temperature of the shielding plate fixing part to the reset temperature,
    In the sample processing method, the ion source restarts ion beam irradiation.
  11.  請求項9において、
     前記イオンミリング装置は、前記遮蔽板固定部の温度を測定する温度計を備え、
     前記イオン源は、前記温度計により測定された前記遮蔽板固定部の温度が前記設定温度の許容範囲を外れている場合にはイオンビームの照射を停止し、
     前記温度調整ユニットは、前記遮蔽板固定部の温度を前記設定温度に調整する試料加工方法。
    In claim 9,
    The ion milling device includes a thermometer that measures the temperature of the shield plate fixing part,
    The ion source stops irradiation of the ion beam when the temperature of the shield plate fixing part measured by the thermometer is outside the allowable range of the set temperature,
    In the sample processing method, the temperature adjustment unit adjusts the temperature of the shielding plate fixing part to the set temperature.
  12.  イオンミリング装置を用いた試料加工方法であって、
     前記イオンミリング装置は、試料が載置される試料ステージと、前記試料ステージによって支持される試料台及び遮蔽板固定部と、前記遮蔽板固定部に固定される遮蔽板と、前記試料に向けて非集束のイオンビームを照射するイオン源と、前記遮蔽板固定部と伝熱ケーブルによって接続され、前記遮蔽板固定部の温度を調整する温度調整ユニットと、前記遮蔽板固定部の温度を測定する温度計と、試料加工時間が設定される制御部とを備え、
     前記制御部は、前記イオン源からのイオンビーム照射前において、前記温度計が測定した前記遮蔽板固定部の温度を基準温度として記憶し、
     前記イオン源は、前記遮蔽板と前記試料台との間に挟み込まれて保持された前記試料に向けてイオンビームを照射し、
     前記温度調整ユニットは、前記イオン源からのイオンビーム照射中において、前記温度計が測定する前記遮蔽板固定部の温度を前記基準温度に維持する試料加工方法。
    A sample processing method using an ion milling device, the method comprising:
    The ion milling apparatus includes a sample stage on which a sample is placed, a sample stage and a shielding plate fixing part supported by the sample stage, a shielding plate fixed to the shielding plate fixing part, and a shielding plate fixed to the shielding plate fixing part. an ion source that irradiates an unfocused ion beam, a temperature adjustment unit that is connected to the shielding plate fixing part by a heat transfer cable and adjusting the temperature of the shielding plate fixing part, and measuring the temperature of the shielding plate fixing part. Equipped with a thermometer and a control unit where sample processing time is set,
    The control unit stores the temperature of the shield plate fixing part measured by the thermometer as a reference temperature before irradiation with the ion beam from the ion source,
    The ion source irradiates an ion beam toward the sample held between the shielding plate and the sample stage,
    In the sample processing method, the temperature adjustment unit maintains the temperature of the shield plate fixing part measured by the thermometer at the reference temperature during ion beam irradiation from the ion source.
PCT/JP2022/033810 2022-09-08 2022-09-08 Ion milling device and method for processing specimen WO2024053074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033810 WO2024053074A1 (en) 2022-09-08 2022-09-08 Ion milling device and method for processing specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033810 WO2024053074A1 (en) 2022-09-08 2022-09-08 Ion milling device and method for processing specimen

Publications (1)

Publication Number Publication Date
WO2024053074A1 true WO2024053074A1 (en) 2024-03-14

Family

ID=90192472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033810 WO2024053074A1 (en) 2022-09-08 2022-09-08 Ion milling device and method for processing specimen

Country Status (1)

Country Link
WO (1) WO2024053074A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169459A (en) * 2009-01-21 2010-08-05 Jeol Ltd Sample processing device
JP2010257856A (en) * 2009-04-28 2010-11-11 Hitachi High-Technologies Corp Processing device and sample processing method
JP2012154846A (en) * 2011-01-27 2012-08-16 Jeol Ltd Sample preparation apparatus
WO2014199737A1 (en) * 2013-06-10 2014-12-18 株式会社 日立ハイテクノロジーズ Ion milling device
JP2016095895A (en) * 2013-01-30 2016-05-26 株式会社日立ハイテクノロジーズ Sample processing method using ion milling apparatus and ion milling apparatus
JP2016173874A (en) * 2013-06-24 2016-09-29 株式会社日立ハイテクノロジーズ Ion milling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169459A (en) * 2009-01-21 2010-08-05 Jeol Ltd Sample processing device
JP2010257856A (en) * 2009-04-28 2010-11-11 Hitachi High-Technologies Corp Processing device and sample processing method
JP2012154846A (en) * 2011-01-27 2012-08-16 Jeol Ltd Sample preparation apparatus
JP2016095895A (en) * 2013-01-30 2016-05-26 株式会社日立ハイテクノロジーズ Sample processing method using ion milling apparatus and ion milling apparatus
WO2014199737A1 (en) * 2013-06-10 2014-12-18 株式会社 日立ハイテクノロジーズ Ion milling device
JP2016173874A (en) * 2013-06-24 2016-09-29 株式会社日立ハイテクノロジーズ Ion milling device

Similar Documents

Publication Publication Date Title
EP2757570B1 (en) Method of manufacturing transmission-type x-ray target
US9558912B2 (en) Ion milling device
US20140008352A1 (en) Heat treatment apparatus
US10515777B2 (en) Ion milling device and processing method using the ion milling device
WO2011001797A1 (en) Gas field ionization ion source device and scanning charged particle microscope equipped with same
US9761412B2 (en) Ion milling apparatus and sample processing method
WO2024053074A1 (en) Ion milling device and method for processing specimen
JP6646150B2 (en) Ion milling equipment
JP2020534643A (en) Wafer temperature control with control over beam power input
US8618478B2 (en) Drift control in a charged particle beam system
US20220319802A1 (en) Sample Holder, Method for Using Sample Holder, Projection Amount Adjustment Jig, Projection Amount Adjustment Method and Charged Particle Beam Device
Gay et al. An X-Ray Micro-Beam Technique: II-A High Intensity X-Ray Generator
US7750314B2 (en) Elevated temperature RF ion source
WO2014119351A1 (en) Ion milling device, and ion milling working method
US11721514B2 (en) X-ray tube anode
Mikhaylenko et al. Miniature ion source KLAN-10M with a plasma neutralizer
WO2023112131A1 (en) Ion milling device
JP6629442B2 (en) Sample processing method for charged particle beam equipment
JP2007019279A (en) Electron beam lithography system
JP2017016810A (en) Charged particle beam device and temperature control method of sample holder
TWI769728B (en) Charged Particle Gun and Charged Particle Beam System
JP2015111544A (en) Plasma processing apparatus and method, and method of manufacturing electronic device
JP5935270B2 (en) Sample heating holder for microscope or analyzer using electron beam, and sample heating method using the same
US20140305915A1 (en) Heat treatment apparatus
JP2015106595A (en) Heat treatment equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958152

Country of ref document: EP

Kind code of ref document: A1