WO2024053053A1 - Optical transmission device, optical transmission method, and optical communication system - Google Patents

Optical transmission device, optical transmission method, and optical communication system Download PDF

Info

Publication number
WO2024053053A1
WO2024053053A1 PCT/JP2022/033739 JP2022033739W WO2024053053A1 WO 2024053053 A1 WO2024053053 A1 WO 2024053053A1 JP 2022033739 W JP2022033739 W JP 2022033739W WO 2024053053 A1 WO2024053053 A1 WO 2024053053A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
optical
narrowband
generates
Prior art date
Application number
PCT/JP2022/033739
Other languages
French (fr)
Japanese (ja)
Inventor
遼 宮武
利明 下羽
暁弘 田邉
陽一 深田
真良 関口
智暁 吉田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/033739 priority Critical patent/WO2024053053A1/en
Priority to PCT/JP2023/005987 priority patent/WO2024053131A1/en
Publication of WO2024053053A1 publication Critical patent/WO2024053053A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • the present invention relates to an optical transmission device, an optical transmission method, and an optical communication system.
  • Non-Patent Document 1 An optical communication system that collectively converts frequency division multiplexing (FDM) signals into frequency modulation (FM) signals has been introduced into video signal distribution systems (see Non-Patent Document 1).
  • the video signal in Non-Patent Document 1 includes a cable television signal (bandwidth: 90 to 770MHz) and a right-handed circularly polarized intermediate frequency signal (BS/CS right-handed IF signal) of a broadcasting satellite and a communication satellite (bandwidth: 1.
  • This is a multi-channel video signal that includes a left-handed circularly polarized intermediate frequency signal (BS/CS left-handed IF signal) (2.2 to 3.2 GHz) of a broadcasting satellite and a communication satellite.
  • An optical transmitter of an optical communication system transmits a wavelength multiplexed signal of a frequency modulated signal (FM signal) to an optical receiver for each signal system with a bandwidth of "W".
  • FM signal frequency modulated signal
  • the number of oscillators laser diodes
  • the number of optical intensity modulators each double in the optical transmission device of the optical communication system.
  • the number of photodetectors photodiodes
  • an object of the present invention is to provide an optical transmission device, an optical transmission method, and an optical communication system that are capable of transmitting and receiving broadband signals subjected to FM batch conversion at low cost.
  • One aspect of the present invention includes: a first oscillator that generates a first laser beam with a first oscillation frequency; a second oscillator that generates a second laser beam with a second oscillation frequency; a first batch conversion unit that generates a first frequency modulation signal by performing frequency modulation batch conversion on a first narrowband signal having a predetermined narrow bandwidth and a first center frequency using a laser beam; , a first frequency converter that converts the second narrowband signal having the predetermined narrow bandwidth and the second center frequency into a third narrowband signal having the predetermined narrow bandwidth and the first center frequency; a second batch conversion unit that generates a second frequency modulation signal by performing frequency modulation batch conversion on the third narrowband signal using the first laser beam and the second laser beam; a second frequency converter that changes the frequency of the second frequency modulation signal so that the overlap between the first frequency modulation signal and the second frequency modulation signal on the frequency axis is reduced; and the second frequency modulation signal whose frequency has been changed.
  • the present invention is an optical transmission device including an optical intensity modulator that generates an optical signal whose intensity is modulated by performing modulation.
  • One aspect of the present invention is an optical transmission method performed by an optical transmission device, which includes: generating a first laser beam at a first oscillation frequency; generating a second laser beam at a second oscillation frequency; A first frequency modulated signal is obtained by performing frequency modulation batch conversion on a first narrow band signal having a predetermined narrow bandwidth and a first center frequency using the first laser beam and the second laser beam.
  • An optical transmission method includes the step of generating an intensity-modulated optical signal.
  • One aspect of the present invention is an optical communication system including an optical transmitter and an optical receiver, wherein the optical transmitter includes a first oscillator that generates a first laser beam of a first oscillation frequency, and a second oscillator that generates a first laser beam of a first oscillation frequency. a second oscillator that generates a second laser beam with a certain frequency; and a first narrowband signal with a predetermined narrow bandwidth and a first center frequency, using the first laser beam and the second laser beam.
  • a first batch conversion section that generates a first frequency modulation signal by performing modulation batch conversion, and a second narrowband signal having the predetermined narrow bandwidth and the second center frequency, Frequency modulation batch conversion of the third narrowband signal using a first frequency converter that converts the third narrowband signal having the first center frequency, and the first laser beam and the second laser beam.
  • a second frequency converter that changes the frequency of the two-frequency modulation signal
  • an adder that adds the second frequency modulation signal whose frequency has been changed and the first frequency modulation signal on a frequency axis
  • a light intensity modulator that generates a light intensity modulated optical signal by performing light intensity modulation on the addition result of the second frequency modulated signal and the first frequency modulated signal
  • the optical receiver includes a photodetector that converts the light intensity modulated optical signal into the second frequency modulated signal and the first frequency modulated signal whose frequency has been changed, and the second frequency modulated signal whose frequency has been changed.
  • a first bandpass filter that extracts the first frequency modulated signal from the frequency modulated signal and the first frequency modulated signal, and by performing delay detection processing on the extracted first frequency modulated signal, a first delay detector that generates the first narrowband signal; a first low-pass filter that removes high frequency components of the first narrowband signal; a second frequency modulated signal whose frequency has been changed; a second bandpass filter that extracts the second frequency modulated signal whose frequency has been changed from the first frequency modulated signal; a first frequency inverse converter that generates the second frequency modulated signal by making the frequency the same as the frequency, and a first frequency inverse converter that generates the second frequency modulated signal, and a third narrowband signal that a second delay detector that generates the second narrowband signal; a second low-pass filter that removes the high frequency component of the third narrowband signal; and a second low pass filter that removes the high frequency component of the third narrowband signal; and a second frequency inverter that generates a signal.
  • FIG. 1 is a diagram showing a configuration example of an optical communication system in a first embodiment
  • FIG. 3 is a flowchart illustrating an example of the operation of the optical transmitter in the first embodiment
  • 7 is a flowchart illustrating an example of the operation of the optical receiver in the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of an optical communication system in a comparative example with the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of an optical communication system in a second embodiment.
  • 7 is a flowchart illustrating an example of the operation of the optical transmitter in the second embodiment.
  • 7 is a flowchart illustrating an example of the operation of the optical receiver in the second embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of an optical communication system in a comparative example with a second embodiment.
  • FIG. 2 is a diagram showing an example of the hardware configuration of an optical communication device in each embodiment.
  • FIG. 1 is a diagram showing a configuration example of an optical communication system 1a in the first embodiment.
  • the optical communication system 1a is a system that communicates using optical signals.
  • the optical communication system 1a includes an optical transmitter 2a, a transmission line 3, and an optical receiver 4a.
  • the optical transmission device 2a (optical subscriber line terminal device) is, for example, a V-OLT (Video Optical Line Terminal).
  • the optical transmitter 2a includes a band splitter 20, a first oscillator 21, a second oscillator 22, a batch converter 23, a frequency converter 24, a batch converter 25, a frequency converter 26, and an adder. 27 and a light intensity modulator 28.
  • the batch conversion unit 23 includes a phase modulator 231 and a photodetector 232.
  • the batch conversion unit 25 includes a phase modulator 251 and a photodetector 252.
  • the first signal system batch converter 23 shares the first oscillator 21 and the second oscillator 22 with the second signal system batch converter 25.
  • the transmission line 3 is an optical transmission line, and includes, for example, an optical fiber.
  • the optical receiving device 4a (optical line terminating device) is, for example, a V-ONU (Video Optical Network Unit).
  • the optical receiver 4a includes a photodetector 40, a bandpass filter 41, a delay detector 42, a low-pass filter 43, a multiplexer 44, a bandpass filter 45, and a frequency inverse converter 46. , a delay detector 47, a low-pass filter 48, and a frequency inverse converter 49.
  • a signal with a bandwidth of "2W” (a wideband frequency division multiplexed signal) is input to the band divider 20 from, for example, a head-end device (not shown).
  • the band divider 20 divides a signal with a bandwidth of "2W” into signals (each narrowband signal) with a proportionally divided bandwidth on the frequency axis.
  • the band divider 20 may equally divide a signal with a bandwidth of "2W” on the frequency axis, or may divide a signal with a bandwidth of "2W” unequally at any proportion.
  • the band divider 20 equally divides a signal with a bandwidth of "2W” into each signal with a bandwidth of "W” on the frequency axis, as an example.
  • the band divider 20 outputs a narrowband signal (narrowband frequency division multiplexed signal) with a bandwidth “W” and a center frequency “A” (first center frequency) to the phase modulator 231.
  • the band divider 20 outputs a narrowband signal (narrowband frequency division multiplexed signal) having a bandwidth “W” and a center frequency “B” (second center frequency) to the frequency converter 24 .
  • the first oscillator 21 is a laser oscillator with a first oscillation frequency, and is, for example, a narrow linewidth laser diode.
  • the first oscillator 21 outputs laser light at a first oscillation frequency (first laser light) to the phase modulator 231 and the phase modulator 251.
  • the second oscillator 22 is a laser oscillator with a second oscillation frequency, and is, for example, a narrow linewidth laser diode.
  • the second oscillator 22 outputs a laser beam with a second oscillation frequency (second laser beam) to the photodetector 232 and the photodetector 252.
  • the batch conversion unit 23 is a functional unit that executes FM batch conversion (frequency modulation batch conversion).
  • the batch conversion unit 23 generates the first FM signal “S FM1 (t)” by performing batch FM conversion on the narrowband signal input from the band divider 20.
  • the phase modulator 231 generates a phase-modulated optical signal using a narrowband signal (first narrowband signal) with a bandwidth "W” and a center frequency "A” and a laser beam with a first oscillation frequency. do.
  • the photodetector 232 (photodiode) converts the phase-modulated optical signal into a first FM signal "S FM1 (t)" (electrical signal) using a laser beam of the second oscillation frequency.
  • Photodetector 232 outputs the first FM signal to adder 27 .
  • the frequency converter 24 converts a narrowband signal (second narrowband signal) with a bandwidth "W” and a center frequency “B” into a narrowband signal (second narrowband signal) with a bandwidth "W” and a center frequency “A”. signal (third narrowband signal).
  • the frequency converter 24 converts the frequency so that the amount of light leakage is below a threshold value or the signal-to-interference signal ratio of the optical signal is below a certain level.
  • the frequency converter 24 outputs a narrowband signal having a bandwidth “W” and a center frequency “A” to the phase modulator 251.
  • the batch conversion unit 25 is a functional unit that executes frequency modulation batch conversion (FM batch conversion).
  • the batch conversion unit 25 performs batch FM conversion on the narrowband signal input from the frequency converter 24 to generate a second FM signal “S FM2 (t)”.
  • the phase modulator 251 generates a phase-modulated optical signal using a narrowband signal having a bandwidth "W” and a center frequency "B” and a laser beam having a second oscillation frequency.
  • the photodetector 252 (photodiode) converts the phase-modulated optical signal into a second FM signal "S FM2 (t)" (electrical signal) using a laser beam of the second oscillation frequency.
  • Photodetector 252 outputs the second FM signal to frequency converter 26 .
  • the center frequency of the first FM signal after FM batch conversion in the first embodiment is the difference (absolute value) between the first oscillation frequency and the second oscillation frequency.
  • the center frequency of the second FM signal after FM batch conversion in the first embodiment is the difference (absolute value) between the first oscillation frequency and the second oscillation frequency. Therefore, the center frequency of the first FM signal after FM batch conversion in the first embodiment is equal to the center frequency of the second FM signal after FM batch conversion in the first embodiment.
  • the frequency converter 26 converts the frequency converter ( FM The frequency of the second FM signal is changed so that deterioration in communication quality due to interference between signals is sufficiently reduced.
  • the frequency converter 26 changes the center frequency of the second FM signal according to the determined frequency conversion amount.
  • the frequency converter 26 generates the second FM signal "S FM2 '(t)" (electrical signal) as the second FM signal whose frequency has been changed.
  • the method for determining the amount of frequency conversion of the second FM signal is not limited to a specific method. For example, it is considered that the amount of interference decreases as the first FM signal "S FM1 (t)" and the second FM signal "S FM2 '(t)" become farther apart on the frequency axis. Therefore, the frequency converter 26 converts the amount of frequency conversion (first frequency conversion A frequency conversion amount (second frequency conversion amount) that is larger than the frequency conversion amount) may be determined as the frequency conversion amount of the second FM signal.
  • the predetermined amount " ⁇ " is determined in advance based on, for example, communication quality specifications. Thereby, the amount of interference can be reliably suppressed according to the amount of frequency conversion optimized based on the communication quality specifications. For example, the frequency converter 26 may uniformly determine a frequency conversion amount predetermined based on communication quality specifications, etc., as the frequency conversion amount of the second FM signal.
  • the adder 27 adds the first FM signal "S FM1 (t)" and the second FM signal “S FM2 '(t)” on the frequency axis.
  • the optical intensity modulator 28 performs optical intensity modulation on the added FM signal (addition result). Thereby, the light intensity modulator 28 generates a light intensity modulated optical signal.
  • the light intensity modulator 28 outputs the light intensity modulated optical signal to the transmission line 3.
  • the transmission line 3 transmits a light intensity modulated optical signal (a broadband signal) to an optical receiver 4a.
  • a light intensity modulated optical signal (broadband signal) is input to the photodetector 40 from the transmission line 3 . That is, an optical signal (wavelength multiplexed signal) including the first FM signal and the second FM signal is input to the photodetector 40 from the transmission line 3 .
  • the photodetector 40 converts the light intensity modulated optical signal into an electrical signal including a first FM signal "S FM1 (t)" and a second FM signal "S FM2 '(t)".
  • Photodetector 40 outputs the converted electrical signal to bandpass filter 41 and bandpass filter 45.
  • the bandpass filter 41 extracts the first FM signal from the electric signal including the first FM signal and the second FM signal.
  • the delay detector 42 performs delay detection processing (demodulation processing) on the extracted first FM signal. Thereby, the delay detector 42 generates a narrowband signal (first narrowband signal) having a bandwidth "W” and a center frequency "A".
  • the low-pass filter 43 removes high frequency components of the narrowband signal having a bandwidth "W” and a center frequency "A".
  • the multiplexer 44 multiplexes (adds) a narrowband signal with a bandwidth "W” and a center frequency "A” and a narrowband signal with a bandwidth "W” and a center frequency “B”.
  • the multiplexer 44 outputs a frequency division multiplexed signal with a bandwidth of "2W" to a predetermined device (not shown).
  • the predetermined device is, for example, a display device.
  • the bandpass filter 45 extracts the second FM signal "S FM2' (t)" from the electric signal including the first FM signal “S FM1 (t)” and the second FM signal “S FM2 '(t)”. ” (second narrowband signal).
  • the frequency inverse converter 46 makes the frequency of the second FM signal “S FM2 '(t)” whose frequency has been changed by the frequency converter 26 the same as the frequency of the first FM signal, thereby converting the second FM signal "S FM2 (t)” into the second FM signal "S FM2 (t)”. t).
  • the delay detector 47 performs delay detection processing (demodulation processing) on the second FM signal "S FM2 (t)". As a result, the delay detector 47 generates a narrowband signal (third narrowband signal) having a bandwidth of "W” and a center frequency of "A".
  • the low pass filter 48 removes high frequency components of the narrowband signal with a bandwidth "W” and a center frequency "A”.
  • the frequency inverse converter 49 generates a narrowband signal (second narrowband signal) having a bandwidth "W” and a center frequency "B” based on the narrowband signal having a bandwidth "W” and a center frequency "A". do.
  • the frequency inverse converter 49 converts a narrowband signal with a bandwidth “W” and a center frequency “A” into a narrowband signal with a bandwidth "W” and a center frequency “B”.
  • the frequency inverse converter 49 outputs a narrowband signal having a bandwidth “W” and a center frequency “B” to the multiplexer 44 .
  • each of the frequency converter 24, the frequency converter 26, the frequency inverse converter 46, and the frequency inverse converter 49 may be provided in the first signal system instead of being provided in the second signal system.
  • FIG. 2 is a flowchart showing an example of the operation of the optical transmitter 2a in the first embodiment.
  • the band divider 20 divides a signal with a bandwidth of "2W" into each signal with a bandwidth of "W" on the frequency axis (step S101: band division processing).
  • the phase modulator 231 In the first signal system, the phase modulator 231 generates a phase-modulated optical signal using a narrowband signal with a bandwidth "W" and a center frequency "A" and a laser beam with a first oscillation frequency.
  • Step S102 first phase modulation process
  • the photodetector 232 converts the phase-modulated optical signal into a first FM signal using a laser beam of the second oscillation frequency
  • step S103 first photodetection process.
  • Each functional unit of the first signal system advances the process to step S108.
  • the frequency converter 24 converts a narrowband signal with a bandwidth "W” and a center frequency "B” into a narrowband signal with a bandwidth "W” and a center frequency "A” (step S104 : first frequency conversion process).
  • the phase modulator 251 generates a phase-modulated optical signal using a narrowband signal with a bandwidth "W” and a center frequency "B” and a laser beam with a second oscillation frequency (step S105: the first phase modulation processing).
  • the photodetector 252 converts the phase modulated optical signal into a second FM signal using a laser beam of the second oscillation frequency (step S106: second photodetection process).
  • the frequency converter 26 changes the frequency of the second FM signal so that the overlap between the first FM signal and the second FM signal on the frequency axis becomes smaller (step S107: second frequency conversion process).
  • the adder 27 adds the first FM signal and the second FM signal whose frequency has been changed (step S108: addition process).
  • the light intensity modulator 28 performs light intensity modulation on the added FM signal (step S109: light intensity modulation process).
  • FIG. 3 is a flowchart showing an example of the operation of the optical receiver 4a in the first embodiment.
  • the photodetector 40 converts the light intensity modulated optical signal into an electrical signal including the first FM signal and the second FM signal whose frequency has been changed (step S201: third photodetection process).
  • the bandpass filter 41 extracts the first FM signal from the electric signal included in the first FM signal and the second FM signal whose frequency has been changed (step S202: first bandpass filter processing).
  • the delay detector 42 performs delay detection processing on the extracted first FM signal (step S203: first delay detection processing).
  • the low-pass filter 43 removes high-frequency components of the narrowband signal having a bandwidth "W" and a center frequency "A" (step S204: first low-pass processing).
  • the bandpass filter 45 extracts the second FM signal whose frequency has been changed from the electrical signal that includes the first FM signal and the second FM signal whose frequency has been changed (step S205: the second bandpass filter process).
  • the frequency inverse transformer 46 makes the center frequency of the second FM signal whose frequency has been changed the same as the center frequency of the first FM signal (step S206: first inverse transform process).
  • the delay detector 47 performs delay detection processing on the second FM signal (step S207: second delay detection processing).
  • the low-pass filter 48 removes high-frequency components of the narrowband signal having a bandwidth "W” and a center frequency "A” (step S208: second low-pass processing).
  • the frequency inverse converter 49 generates a narrowband signal having a bandwidth "W” and a center frequency "B” based on the narrowband signal having a bandwidth "W” and a center frequency "A” (step S209: the second (inverse conversion process).
  • the multiplexer 44 separates a narrowband signal (narrowband frequency division multiplexed signal) with a bandwidth "W” and a center frequency "A", and a narrowband signal (narrowband frequency division multiplexed signal) with a bandwidth "W” and a center frequency "B”. frequency division multiplexed signal) (step S210: multiplexing process).
  • the band splitter 20 separates a first narrowband signal having a predetermined narrowband width "W” and a first center frequency "A", and a predetermined narrowband signal having a predetermined narrowband width "W” and a first center frequency "A".
  • a predetermined wideband signal is divided on the frequency axis into a second narrowband signal having a width "W” and a first center frequency "B”.
  • the first oscillator 21 generates a first laser beam having a first oscillation frequency.
  • the second oscillator 22 generates a second laser beam having a second oscillation frequency.
  • the batch conversion unit 23 (first batch conversion unit) converts the first laser beam and the second laser beam into a first narrowband signal having a predetermined narrowband width “W” and a first center frequency “A”.
  • the first FM signal "S FM1 (t)" is generated by performing FM batch conversion on the signals.
  • the frequency converter 24 (first frequency converter) converts a second narrow band signal having a predetermined narrow bandwidth "W” and a second center frequency "B” into a second narrow band signal having a predetermined narrow bandwidth "W” and a first center frequency. It is converted into a third narrowband signal of "A”.
  • the batch conversion unit 25 (second batch conversion unit) converts the second FM signal “S FM2” by performing FM batch conversion on the third narrowband signal using the first laser beam and the second laser beam.
  • the frequency converter 26 (second frequency converter) changes the frequency of the second FM signal so that the overlap between the first FM signal and the second FM signal on the frequency axis becomes smaller.
  • the adder 27 adds the second FM signal "S FM2 '(t)” whose frequency has been changed and the first FM signal "S FM1 (t)” on the frequency axis.
  • the light intensity modulator 28 generates a light intensity modulated optical signal by performing light intensity modulation on the addition result of the second FM signal whose frequency has been changed and the first FM signal.
  • the photodetector 40 converts the light intensity modulated optical signal into a second FM signal whose frequency has been changed and a first FM signal.
  • the bandpass filter 41 (first bandpass filter) extracts the first FM signal from the second FM signal whose frequency has been changed and the first FM signal.
  • the delay detector 42 (first delay detector) generates a first narrowband signal by performing delay detection processing on the extracted first FM signal.
  • the low-pass filter 43 (first low-pass filter) removes high frequency components of the first narrowband signal.
  • the bandpass filter 45 (second bandpass filter) extracts a second FM signal whose frequency has been changed from the second FM signal whose frequency has been changed and the first FM signal.
  • the frequency inverse converter 46 (first frequency inverse converter) generates a second FM signal by making the frequency of the second FM signal whose frequency has been changed the same as the frequency of the first FM signal.
  • the delay detector 47 (second delay detector) generates a third narrowband signal by performing delay detection processing on the second FM signal.
  • the low-pass filter 48 (second low-pass filter) removes high frequency components of the third narrowband signal.
  • the frequency inverse converter 49 (second frequency inverse converter) generates a second narrowband signal based on the third narrowband signal from which high frequency components have been removed.
  • the multiplexer 44 multiplexes the first narrowband signal from which high frequency components have been removed and the second narrowband signal.
  • the optical transmitter 2a divides the broadband signal to be transmitted into each narrowband signal.
  • the optical transmitter 2a performs FM batch conversion on each narrowband signal.
  • the optical transmitter 2a multiplexes each narrowband FM signal on the frequency axis.
  • the optical transmitter 2a performs optical intensity modulation on the multiplexed FM signal.
  • the optical transmitter 2a transmits the optical intensity modulated FM signal to the optical receiver 4a using the transmission path 3.
  • the optical receiver 4a separates the multiplexed FM signal into each narrowband FM signal.
  • the optical receiver 4a performs predetermined demodulation processing on each narrowband FM signal.
  • each oscillator (narrow linewidth laser diode) and optical intensity modulator 28 are shared by two signal systems.
  • a simple processing unit for example, an optical demultiplexer, a wavelength division multiplex filter, a multiplexer, etc.
  • the broadband signal multiplexed FM signals
  • FIG. 4 is a diagram illustrating a configuration example of an optical communication system 100a in a comparative example with the first embodiment.
  • the optical communication system 100a is a comparative example with the optical communication system 1a.
  • the optical communication system 100a includes an optical transmitter 200a, a transmission path 3, and an optical receiver 400a.
  • the optical transmitter 200a is a comparative example with the optical transmitter 2a.
  • the optical receiving device 400a is a comparative example with the optical receiving device 4a.
  • the optical transmitter 200a includes a band splitter 20, a batch converter 230, a frequency converter 24, a batch converter 250, an optical intensity modulator 28-1, an optical intensity modulator 28-2, and a multiplexer.
  • a container 29 is provided.
  • the batch conversion section 230 includes a phase modulator 231, a photodetector 232, a first oscillator 21-1, and a second oscillator 22.
  • the batch conversion unit 250 includes a phase modulator 251, a photodetector 252, a first oscillator 21-2, and a third oscillator 30.
  • the first signal system batch conversion unit 230 and the second signal system batch conversion unit 250 share the first oscillator 21-1, the first oscillator 21-2, the second oscillator 22, and the third oscillator 30. do not.
  • the optical receiver 400a includes an optical demultiplexer 50, a wavelength division multiplex filter 51, a wavelength division multiplex filter 52, a photodetector 40-1, a photodetector 40-2, and a delay detector 42. , a low-pass filter 43, a multiplexer 44, a delayed detector 47, a low-pass filter 48, and a frequency inverse converter 49.
  • the batch conversion unit 230 is a functional unit that executes FM batch conversion (frequency modulation batch conversion).
  • the batch conversion unit 230 generates the first FM signal “S FM1 (t)” by performing batch FM conversion on the narrowband signal input from the band splitter 20.
  • the first oscillator 21-1 outputs laser light at a first oscillation frequency to the phase modulator 231.
  • the phase modulator 231 generates a phase-modulated optical signal using a narrowband signal (first narrowband signal) with a bandwidth "W” and a center frequency "A” and a laser beam with a first oscillation frequency. do.
  • the second oscillator 22 outputs laser light at a second oscillation frequency to the photodetector 232.
  • the photodetector 232 converts the phase-modulated optical signal into a first FM signal "S FM1 (t)" (electrical signal) using a laser beam of the second oscillation frequency.
  • the optical intensity modulator 28-1 performs optical intensity modulation on the first FM signal.
  • the optical intensity modulator 28-1 outputs the optical intensity modulated first FM signal to the multiplexer 29.
  • the frequency converter 24 converts a narrowband signal (second narrowband signal) with a bandwidth "W” and a center frequency “B” into a narrowband signal (second narrowband signal) with a bandwidth "W” and a center frequency “A”. signal (third narrowband signal).
  • the frequency converter 24 outputs a narrowband signal having a bandwidth “W” and a center frequency “A” to the phase modulator 251.
  • the batch conversion unit 250 is a functional unit that executes FM batch conversion (frequency modulation batch conversion).
  • the batch conversion unit 250 generates the second FM signal “S FM2 (t)” by performing batch FM conversion on the narrowband signal input from the frequency converter 24 .
  • the first oscillator 21-2 outputs laser light at the first oscillation frequency to the phase modulator 251.
  • the phase modulator 251 generates a phase-modulated optical signal using a narrowband signal having a bandwidth "W" and a center frequency "B" and a laser beam having a second oscillation frequency.
  • the third oscillator 30 is a laser oscillator with a third oscillation frequency, and is, for example, a narrow linewidth laser diode.
  • the third oscillator 30 outputs laser light at a third oscillation frequency to the photodetector 252.
  • the photodetector 252 converts the phase-modulated optical signal into a second FM signal "S FM2 (t)" (electrical signal) using a laser beam of the third oscillation frequency. Photodetector 252 outputs the second FM signal to optical intensity modulator 28-2. The optical intensity modulator 28-2 outputs the optical intensity modulated second FM signal to the multiplexer 29.
  • center frequency of the first FM signal after FM batch conversion in the comparative example with the first embodiment is the difference between the first oscillation frequency and the second oscillation frequency.
  • center frequency of the second FM signal after FM batch conversion in the comparative example with the first embodiment is the difference between the first oscillation frequency and the third oscillation frequency.
  • the multiplexer 29 generates a wavelength multiplexed signal by multiplexing the optical intensity modulated first FM signal and the optical intensity modulated second FM signal.
  • the multiplexer 29 uses an optical signal to transmit a wavelength multiplexed signal to the optical receiver 400a.
  • An optical signal (wavelength multiplexed signal) including the first FM signal and the second FM signal is input from the transmission line 3 to the optical demultiplexer 50 (optical splitter).
  • the optical demultiplexer 50 outputs an optical signal including the first FM signal and the second FM signal to the wavelength division multiplex filter 51 and the wavelength division multiplex filter 52.
  • the wavelength division multiplex filter 51 (wavelength division multiplex filter) outputs a light intensity modulated optical signal (first FM signal) to the photodetector 40-1.
  • a light intensity modulated optical signal (first FM signal) is input from the wavelength division multiplex filter 51 to the photodetector 40-1.
  • the photodetector 40-1 converts the light intensity modulated optical signal into an electrical signal including the first FM signal "S FM1 (t)". Photodetector 40-1 outputs the converted electrical signal to delay detector 42.
  • the delay detector 42 performs delay detection processing (demodulation processing) on the electrical signal including the first FM signal.
  • the low-pass filter 43 removes high frequency components of the narrowband signal having a bandwidth "W” and a center frequency "A”.
  • the multiplexer 44 adds a narrowband signal with a bandwidth "W” and a center frequency "A” and a narrowband signal with a bandwidth "W” and a center frequency "B".
  • the wavelength division multiplex filter 52 (wavelength division multiplex filter) outputs a light intensity modulated optical signal (second FM signal) to the photodetector 40-2.
  • a light intensity modulated optical signal (second FM signal) is input from the wavelength division multiplex filter 52 to the photodetector 40-2.
  • the photodetector 40-2 converts the light intensity modulated optical signal into an electrical signal including the second FM signal "S FM2 (t)". Photodetector 40-2 outputs the converted electrical signal to delay detector 47.
  • the delay detector 47 performs delay detection processing (demodulation processing) on the electrical signal including the second FM signal.
  • the low pass filter 48 removes high frequency components of the narrowband signal with a bandwidth "W” and a center frequency "A”.
  • the frequency inverse converter 49 returns the center frequency of the second FM signal from which the high frequency component has been removed to "B".
  • the frequency inverse converter 49 outputs a narrowband signal having a bandwidth “W” and a center frequency “B” to the multiplexer 44 .
  • the optical communication system 100a of the comparative example with the first embodiment two signal systems are simply provided in parallel. Therefore, the optical communication system 100a cannot transmit and receive signals at low cost.
  • FIG. 5 is a diagram showing a configuration example of the optical communication system 1b in the second embodiment.
  • the optical communication system 1b is a system that communicates using optical signals.
  • the optical communication system 1b includes an optical transmitter 2b, a transmission line 3, and an optical receiver 4b.
  • the optical transmitter 2b includes a first oscillator 21, a second oscillator 22, a batch converter 23, a frequency converter 24, a batch converter 25, a frequency converter 26, an adder 27, and a light intensity modulator.
  • a container 28 is provided.
  • the batch conversion unit 23 includes a phase modulator 231 and a photodetector 232.
  • the batch conversion unit 25 includes a phase modulator 251 and a photodetector 252.
  • the first signal system batch converter 23 shares the first oscillator 21 and the second oscillator 22 with the second signal system batch converter 25.
  • the optical receiver 4b includes a photodetector 40, a bandpass filter 41, a delay detector 42, a low-pass filter 43, a bandpass filter 45, a frequency inverse converter 46, and a delay detector 47. , a low-pass filter 48 and a frequency inverse converter 49.
  • a narrowband signal (first narrowband signal) having a bandwidth of "W” is inputted to the phase modulator 231 from, for example, a headend device (not shown).
  • the center frequency of this narrowband signal is, for example, "A”.
  • the phase modulator 231 generates a phase-modulated optical signal using a narrowband signal with a bandwidth of "W” and a laser beam with a first oscillation frequency.
  • a narrowband signal (second narrowband signal) with a bandwidth "W” is inputted to the frequency converter 24 from, for example, a headend device (not shown).
  • the center frequency of this narrowband signal is, for example, a predetermined center frequency different from "A" (eg, frequency "B”).
  • the frequency converter 24 converts a narrowband signal having a bandwidth "W” and a predetermined center frequency into a narrowband signal having a bandwidth "W” and a center frequency "A”.
  • the frequency converter 24 outputs a narrowband signal (third narrowband signal) having a bandwidth “W” and a center frequency “A” to the phase modulator 251.
  • the low-pass filter 43 removes high frequency components of the narrowband signal having a bandwidth "W” and a center frequency "A".
  • the low-pass filter 43 outputs a narrowband signal with a bandwidth "W” and a center frequency "A" to a predetermined device (not shown).
  • the predetermined device is, for example, a display device.
  • the frequency inverse converter 49 removes high frequency components of the narrowband signal having a bandwidth "W” and a predetermined center frequency.
  • the low-pass filter 43 outputs a narrowband signal having a bandwidth "W” and a predetermined center frequency (for example, a frequency "B") to a predetermined device (not shown).
  • FIG. 6 is a flowchart showing an example of the operation of the optical transmitter 2b in the second embodiment.
  • Each process from step S301 to step S308 is similar to each process from step S102 to step S109 illustrated in FIG.
  • FIG. 7 is a flowchart showing an example of the operation of the optical receiving device 4b in the second embodiment.
  • Each process from step S401 to step S309 is similar to each process from step S201 to step S209 illustrated in FIG.
  • the optical transmitter 2b of the optical communication system 1b has two frequency division multiplexed signals with a bandwidth of "W". If the signals are input to the optical transmitter 2b in parallel in a system, the band divider 20 is not necessary. Further, compared to the optical receiving device 4a of the optical communication system 1a of the first embodiment, the optical multiplexer 44 is not necessary in the optical receiving device 4b of the optical communication system 1b.
  • FIG. 8 is a diagram showing a configuration example of an optical communication system 100b in a comparative example with the second embodiment.
  • Optical communication system 100b is a comparative example with optical communication system 1b.
  • the optical communication system 100b includes an optical transmitter 200b, a transmission line 3, and an optical receiver 400b.
  • the optical transmitter 200b is a comparative example with the optical transmitter 2b.
  • Optical receiving device 400b is a comparative example with optical receiving device 4b.
  • the optical transmitter 200b includes a batch conversion section 230, a frequency converter 24, a batch conversion section 250, a light intensity modulator 28-1, a light intensity modulator 28-2, and a multiplexer 29.
  • the batch conversion unit 230 includes a phase modulator 231, a photodetector 232, a first oscillator 21-1, and a second oscillator 22.
  • the batch conversion unit 250 includes a phase modulator 251, a photodetector 252, a first oscillator 21-2, and a third oscillator 30.
  • the first signal system batch conversion section 230 and the second signal system batch conversion section 250 share the first oscillator 21-1, the first oscillator 21-2, the second oscillator 22, and the third oscillator 30. do not.
  • the optical receiver 400b includes an optical demultiplexer 50, a wavelength division multiplex filter 51, a wavelength division multiplex filter 52, a photodetector 40-1, a photodetector 40-2, and a delay detector 42. , a low-pass filter 43, a multiplexer 44, a delayed detector 47, a low-pass filter 48, and a frequency inverse converter 49.
  • the first oscillator 21-2 outputs laser light at the first oscillation frequency to the phase modulator 251.
  • the phase modulator 251 generates a phase-modulated optical signal using a narrowband signal having a bandwidth "W" and a center frequency "B" and a laser beam having a second oscillation frequency.
  • the third oscillator 30 is a laser oscillator with a third oscillation frequency, and is, for example, a narrow linewidth laser diode.
  • the third oscillator 30 outputs laser light at a third oscillation frequency to the photodetector 252.
  • the photodetector 252 converts the phase-modulated optical signal into a second FM signal "S FM2 (t)" (electrical signal) using a laser beam of the third oscillation frequency. Photodetector 252 outputs the second FM signal to optical intensity modulator 28-2. The optical intensity modulator 28-2 outputs the optical intensity modulated second FM signal to the multiplexer 29.
  • center frequency of the first FM signal after FM batch conversion in the comparative example with the second embodiment is the difference (absolute value) between the first oscillation frequency and the second oscillation frequency.
  • center frequency of the second FM signal after FM batch conversion in the comparative example with the second embodiment is the difference (absolute value) between the first oscillation frequency and the third oscillation frequency.
  • the multiplexer 29 generates a wavelength multiplexed signal by multiplexing the optical intensity modulated first FM signal and the optical intensity modulated second FM signal.
  • the multiplexer 29 uses an optical signal to transmit a wavelength multiplexed signal to the optical receiver 400b.
  • An optical signal (wavelength multiplexed signal) including the first FM signal and the second FM signal is input from the transmission line 3 to the optical demultiplexer 50 (optical splitter).
  • the optical demultiplexer 50 outputs an optical signal including the first FM signal and the second FM signal to the wavelength division multiplex filter 51 and the wavelength division multiplex filter 52.
  • the wavelength division multiplex filter 51 (wavelength division multiplex filter) outputs a light intensity modulated optical signal (first FM signal) to the photodetector 40-1.
  • a light intensity modulated optical signal (first FM signal) is input from the wavelength division multiplex filter 51 to the photodetector 40-1.
  • the photodetector 40-1 converts the light intensity modulated optical signal into an electrical signal including the first FM signal "S FM1 (t)". Photodetector 40-1 outputs the converted electrical signal to delay detector 42.
  • the wavelength division multiplex filter 52 (wavelength division multiplex filter) outputs a light intensity modulated optical signal (second FM signal) to the photodetector 40-2.
  • a light intensity modulated optical signal (second FM signal) is input from the wavelength division multiplex filter 52 to the photodetector 40-2.
  • the photodetector 40-2 converts the light intensity modulated optical signal into an electrical signal including the second FM signal "S FM2 (t)". Photodetector 40-2 outputs the converted electrical signal to delay detector 47.
  • the optical communication system 100b of the comparative example with the second embodiment cannot transmit and receive signals at low cost.
  • FIG. 9 is a diagram showing an example of the hardware configuration of an optical communication device in each embodiment.
  • the hardware configuration example of the optical communication device 101 illustrated in FIG. This corresponds to an example of the hardware configuration of the optical transmitter 2b of the second embodiment and an example of the hardware configuration of the optical receiver 4b of the second embodiment.
  • a processor 102 such as a CPU (Central Processing Unit), a storage device 104 having a non-volatile recording medium (non-temporary recording medium), and a memory 103. It is realized as software by executing a program stored in .
  • the program may be recorded on a computer-readable recording medium.
  • a computer-readable recording medium is a storage medium such as a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a CD-ROM (Compact Disc Read Only Memory), or a hard disk built into a computer system. It is a non-temporary recording medium such as a device.
  • the communication unit 105 executes optical communication processing using predetermined optical equipment.
  • Some or all of the functional units of the optical communication device 101 may be implemented using, for example, an LSI (Large Scale Integrated Circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). It may be realized using hardware including an electronic circuit or circuitry.
  • LSI Large Scale Integrated Circuit
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the present invention is applicable to systems that communicate using optical signals.
  • Optical demultiplexer 51... Wavelength division multiplex filter, 52... Wavelength division multiplex filter, 100a, 100b... Optical communication system, 101... Optical communication device, 102... Processor, 103...Memory, 104...Storage device, 105...Communication unit, 200a, 200b...Optical transmitter, 230...Batch conversion unit, 231...Phase modulator, 232...Photodetector, 250...Batch conversion unit, 251... Phase modulator, 252...photodetector, 400a, 400b...optical receiving device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Provided is an optical transmission device comprising: a plurality of oscillators that generate a plurality of laser beams; a first batch conversion unit that generates a first frequency modulation signal by performing frequency modulation batch conversion on a first narrowband signal by using the plurality of laser beams; a first frequency converter that converts a second narrowband signal into a third narrowband signal; a second batch conversion unit that generates a second frequency modulation signal by performing frequency modulation batch conversion on the third narrowband signal by using the plurality of laser beams; a second frequency converter that changes the frequency of the second frequency modulation signal; an adder that adds the second frequency modulation signal, the frequency of which has been changed, and the first frequency modulation signal, on the frequency axis; and an optical intensity modulator that generates an optical intensity-modulated optical signal by performing optical intensity modulation on the addition result.

Description

光送信装置、光送信方法及び光通信システムOptical transmitting device, optical transmitting method, and optical communication system
 本発明は、光送信装置、光送信方法及び光通信システムに関する。 The present invention relates to an optical transmission device, an optical transmission method, and an optical communication system.
 周波数分割多重(FDM : Frequency Division Multiplexing)信号を周波数変調(FM : Frequency Modulation)信号に一括変換する方式の光通信システムが、映像信号の配信システムに導入されている(非特許文献1参照)。以下、周波数変調信号への一括変換を「FM一括変換」という。非特許文献1における映像信号は、ケーブルテレビ信号(帯域:90~770MHz)と、放送衛星及び通信衛星の右旋円偏波の中間周波数信号(BS/CS右旋IF信号)(帯域:1.0~2.1GHz)と、放送衛星及び通信衛星の左旋円偏波の中間周波数信号(BS/CS左旋IF信号)(2.2~3.2GHz)とを含む多チャンネル映像信号である。 An optical communication system that collectively converts frequency division multiplexing (FDM) signals into frequency modulation (FM) signals has been introduced into video signal distribution systems (see Non-Patent Document 1). Hereinafter, the batch conversion to a frequency modulated signal will be referred to as "FM batch conversion." The video signal in Non-Patent Document 1 includes a cable television signal (bandwidth: 90 to 770MHz) and a right-handed circularly polarized intermediate frequency signal (BS/CS right-handed IF signal) of a broadcasting satellite and a communication satellite (bandwidth: 1. This is a multi-channel video signal that includes a left-handed circularly polarized intermediate frequency signal (BS/CS left-handed IF signal) (2.2 to 3.2 GHz) of a broadcasting satellite and a communication satellite.
 FM一括変換を実行する光通信システムの光受信装置では、周波数分割多重信号の復調方式として遅延検波方式が採用されているので、光信号の帯域幅を現状の帯域幅(W=3.2GHz)以上に拡大することは困難である。このため、例えば、帯域幅「W」と比較して2倍の帯域幅「2W」の光信号(広帯域信号)が送信される場合には、光通信システムは2本の信号系統を単純に並列に備えることになる。光通信システムの光送信装置は、周波数変調信号(FM信号)の波長多重信号を、帯域幅「W」の信号系統ごとに、光受信装置に送信する。 In the optical receiving device of the optical communication system that performs FM batch conversion, the delay detection method is adopted as the demodulation method of the frequency division multiplexed signal, so the bandwidth of the optical signal is set to the current bandwidth (W = 3.2 GHz). It is difficult to expand beyond this. Therefore, for example, when an optical signal (wideband signal) with a bandwidth of 2W, which is twice the bandwidth of 2W, is transmitted, the optical communication system simply connects the two signal systems in parallel. will be prepared for. An optical transmitter of an optical communication system transmits a wavelength multiplexed signal of a frequency modulated signal (FM signal) to an optical receiver for each signal system with a bandwidth of "W".
 しかしながら、信号系統の並列化によって、光通信システムの光送信装置では、発振器(レーザーダイオード)の個数と光強度変調器の個数とが、それぞれ2倍になる。また、光通信システムの光受信装置では、光検出器(フォトダイオード)の個数が2倍になる。このように、FM一括変換された広帯域信号を低コストで送信及び受信することができないという問題がある。 However, by parallelizing the signal system, the number of oscillators (laser diodes) and the number of optical intensity modulators each double in the optical transmission device of the optical communication system. Furthermore, in the optical receiver of the optical communication system, the number of photodetectors (photodiodes) is doubled. As described above, there is a problem in that it is not possible to transmit and receive broadband signals subjected to FM batch conversion at low cost.
 上記事情に鑑み、本発明は、FM一括変換された広帯域信号を低コストで送信及び受信することが可能である光送信装置、光送信方法及び光通信システムを提供することを目的としている。 In view of the above circumstances, an object of the present invention is to provide an optical transmission device, an optical transmission method, and an optical communication system that are capable of transmitting and receiving broadband signals subjected to FM batch conversion at low cost.
 本発明の一態様は、第1発振周波数の第1レーザー光を生成する第1発振器と、第2発振周波数の第2レーザー光を生成する第2発振器と、前記第1レーザー光と前記第2レーザー光とを用いて、所定の狭帯域幅かつ第1中心周波数の第1狭帯域信号に対して周波数変調一括変換を実行することによって、第1周波数変調信号を生成する第1一括変換部と、前記所定の狭帯域幅かつ第2中心周波数の第2狭帯域信号を、前記所定の狭帯域幅かつ前記第1中心周波数の第3狭帯域信号に変換する第1周波数変換器と、前記第1レーザー光と前記第2レーザー光とを用いて、前記第3狭帯域信号に対して周波数変調一括変換を実行することによって、第2周波数変調信号を生成する第2一括変換部と、前記第1周波数変調信号と前記第2周波数変調信号との周波数軸上での重なりが小さくなるように、前記第2周波数変調信号の周波数を変更する第2周波数変換器と、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とを周波数軸上で加算する加算器と、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号との加算結果に対して光強度変調を実行することによって、光強度変調された光信号を生成する光強度変調器とを備える光送信装置である。 One aspect of the present invention includes: a first oscillator that generates a first laser beam with a first oscillation frequency; a second oscillator that generates a second laser beam with a second oscillation frequency; a first batch conversion unit that generates a first frequency modulation signal by performing frequency modulation batch conversion on a first narrowband signal having a predetermined narrow bandwidth and a first center frequency using a laser beam; , a first frequency converter that converts the second narrowband signal having the predetermined narrow bandwidth and the second center frequency into a third narrowband signal having the predetermined narrow bandwidth and the first center frequency; a second batch conversion unit that generates a second frequency modulation signal by performing frequency modulation batch conversion on the third narrowband signal using the first laser beam and the second laser beam; a second frequency converter that changes the frequency of the second frequency modulation signal so that the overlap between the first frequency modulation signal and the second frequency modulation signal on the frequency axis is reduced; and the second frequency modulation signal whose frequency has been changed. an adder that adds the two-frequency modulation signal and the first frequency modulation signal on the frequency axis; and an adder that adds the two-frequency modulation signal and the first frequency modulation signal; The present invention is an optical transmission device including an optical intensity modulator that generates an optical signal whose intensity is modulated by performing modulation.
 本発明の一態様は、光送信装置が実行する光送信方法であって、第1発振周波数の第1レーザー光を生成するステップと、第2発振周波数の第2レーザー光を生成するステップと、前記第1レーザー光と前記第2レーザー光とを用いて、所定の狭帯域幅かつ第1中心周波数の第1狭帯域信号に対して周波数変調一括変換を実行することによって、第1周波数変調信号を生成するステップと、前記所定の狭帯域幅かつ第2中心周波数の第2狭帯域信号を、前記所定の狭帯域幅かつ前記第1中心周波数の第3狭帯域信号に変換するステップと、前記第1レーザー光と前記第2レーザー光とを用いて、前記第3狭帯域信号に対して周波数変調一括変換を実行することによって、第2周波数変調信号を生成するステップと、前記第1周波数変調信号と前記第2周波数変調信号との周波数軸上での重なりが小さくなるように、前記第2周波数変調信号の周波数を変更するステップと、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とを周波数軸上で加算するステップと、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号との加算結果に対して光強度変調を実行することによって、光強度変調された光信号を生成するステップとを含む光送信方法である。 One aspect of the present invention is an optical transmission method performed by an optical transmission device, which includes: generating a first laser beam at a first oscillation frequency; generating a second laser beam at a second oscillation frequency; A first frequency modulated signal is obtained by performing frequency modulation batch conversion on a first narrow band signal having a predetermined narrow bandwidth and a first center frequency using the first laser beam and the second laser beam. converting the second narrowband signal having the predetermined narrow bandwidth and the second center frequency into a third narrowband signal having the predetermined narrow bandwidth and the first center frequency; generating a second frequency modulated signal by performing frequency modulation batch conversion on the third narrowband signal using the first laser beam and the second laser beam; changing the frequency of the second frequency modulation signal so that the overlap between the signal and the second frequency modulation signal on the frequency axis becomes small; 1 frequency modulation signal on the frequency axis, and performing optical intensity modulation on the addition result of the frequency-changed second frequency modulation signal and the first frequency modulation signal. An optical transmission method includes the step of generating an intensity-modulated optical signal.
 本発明の一態様は、光送信装置と光受信装置とを備える光通信システムであって、前記光送信装置は、第1発振周波数の第1レーザー光を生成する第1発振器と、第2発振周波数の第2レーザー光を生成する第2発振器と、前記第1レーザー光と前記第2レーザー光とを用いて、所定の狭帯域幅かつ第1中心周波数の第1狭帯域信号に対して周波数変調一括変換を実行することによって、第1周波数変調信号を生成する第1一括変換部と、前記所定の狭帯域幅かつ第2中心周波数の第2狭帯域信号を、前記所定の狭帯域幅かつ前記第1中心周波数の第3狭帯域信号に変換する第1周波数変換器と、前記第1レーザー光と前記第2レーザー光とを用いて、前記第3狭帯域信号に対して周波数変調一括変換を実行することによって、第2周波数変調信号を生成する第2一括変換部と、前記第1周波数変調信号と前記第2周波数変調信号との周波数軸上での重なりが小さくなるように、前記第2周波数変調信号の周波数を変更する第2周波数変換器と、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とを周波数軸上で加算する加算器と、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号との加算結果に対して光強度変調を実行することによって、光強度変調された光信号を生成する光強度変調器とを有し、前記光受信装置は、前記光強度変調された光信号を、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とに変換する光検出器と、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とから、前記第1周波数変調信号を抽出する第1帯域濾波器と、抽出された前記第1周波数変調信号に対して遅延検波処理を実行することによって、前記第1狭帯域信号を生成する第1遅延検波器と、前記第1狭帯域信号の高周波成分を除去する第1低域通過濾波器と、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とから、周波数が変更された前記第2周波数変調信号を抽出する第2帯域濾波器と、周波数が変更された前記第2周波数変調信号の周波数を前記第1周波数変調信号の周波数と同じにすることによって、前記第2周波数変調信号を生成する第1周波数逆変換器と、前記第2周波数変調信号に対して遅延検波処理を実行することによって、前記第3狭帯域信号を生成する第2遅延検波器と、前記第3狭帯域信号の高周波成分を除去する第2低域通過濾波器と、高周波成分が除去された前記第3狭帯域信号に基づいて前記第2狭帯域信号を生成する第2周波数逆変換器とを有する、光通信システムである。 One aspect of the present invention is an optical communication system including an optical transmitter and an optical receiver, wherein the optical transmitter includes a first oscillator that generates a first laser beam of a first oscillation frequency, and a second oscillator that generates a first laser beam of a first oscillation frequency. a second oscillator that generates a second laser beam with a certain frequency; and a first narrowband signal with a predetermined narrow bandwidth and a first center frequency, using the first laser beam and the second laser beam. A first batch conversion section that generates a first frequency modulation signal by performing modulation batch conversion, and a second narrowband signal having the predetermined narrow bandwidth and the second center frequency, Frequency modulation batch conversion of the third narrowband signal using a first frequency converter that converts the third narrowband signal having the first center frequency, and the first laser beam and the second laser beam. By performing this, the second batch conversion section that generates the second frequency modulation signal, and the second batch conversion section that generates the second frequency modulation signal, reduce the overlap between the first frequency modulation signal and the second frequency modulation signal on the frequency axis. a second frequency converter that changes the frequency of the two-frequency modulation signal; an adder that adds the second frequency modulation signal whose frequency has been changed and the first frequency modulation signal on a frequency axis; a light intensity modulator that generates a light intensity modulated optical signal by performing light intensity modulation on the addition result of the second frequency modulated signal and the first frequency modulated signal; The optical receiver includes a photodetector that converts the light intensity modulated optical signal into the second frequency modulated signal and the first frequency modulated signal whose frequency has been changed, and the second frequency modulated signal whose frequency has been changed. a first bandpass filter that extracts the first frequency modulated signal from the frequency modulated signal and the first frequency modulated signal, and by performing delay detection processing on the extracted first frequency modulated signal, a first delay detector that generates the first narrowband signal; a first low-pass filter that removes high frequency components of the first narrowband signal; a second frequency modulated signal whose frequency has been changed; a second bandpass filter that extracts the second frequency modulated signal whose frequency has been changed from the first frequency modulated signal; a first frequency inverse converter that generates the second frequency modulated signal by making the frequency the same as the frequency, and a first frequency inverse converter that generates the second frequency modulated signal, and a third narrowband signal that a second delay detector that generates the second narrowband signal; a second low-pass filter that removes the high frequency component of the third narrowband signal; and a second low pass filter that removes the high frequency component of the third narrowband signal; and a second frequency inverter that generates a signal.
 本発明により、FM一括変換された広帯域信号を低コストで送信及び受信することが可能である。 According to the present invention, it is possible to transmit and receive broadband signals subjected to FM batch conversion at low cost.
第1実施形態における、光通信システムの構成例を示す図である。1 is a diagram showing a configuration example of an optical communication system in a first embodiment; FIG. 第1実施形態における、光送信装置の動作例を示すフローチャートである。3 is a flowchart illustrating an example of the operation of the optical transmitter in the first embodiment. 第1実施形態における、光受信装置の動作例を示すフローチャートである。7 is a flowchart illustrating an example of the operation of the optical receiver in the first embodiment. 第1実施形態との比較例における、光通信システムの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of an optical communication system in a comparative example with the first embodiment. 第2実施形態における、光通信システムの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of an optical communication system in a second embodiment. 第2実施形態における、光送信装置の動作例を示すフローチャートである。7 is a flowchart illustrating an example of the operation of the optical transmitter in the second embodiment. 第2実施形態における、光受信装置の動作例を示すフローチャートである。7 is a flowchart illustrating an example of the operation of the optical receiver in the second embodiment. 第2実施形態との比較例における、光通信システムの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of an optical communication system in a comparative example with a second embodiment. 各実施形態における、光通信装置のハードウェア構成例を示す図である。FIG. 2 is a diagram showing an example of the hardware configuration of an optical communication device in each embodiment.
 本発明の実施形態について、図面を参照して詳細に説明する。
 (第1実施形態)
 図1は、第1実施形態における、光通信システム1aの構成例を示す図である。光通信システム1aは、光信号を用いて通信するシステムである。光通信システム1aは、光送信装置2aと、伝送路3と、光受信装置4aとを備える。
Embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram showing a configuration example of an optical communication system 1a in the first embodiment. The optical communication system 1a is a system that communicates using optical signals. The optical communication system 1a includes an optical transmitter 2a, a transmission line 3, and an optical receiver 4a.
 光送信装置2a(光加入者線端局装置)は、例えば、V-OLT(Video - Optical Line Terminal)である。光送信装置2aは、帯域分割器20と、第1発振器21と、第2発振器22と、一括変換部23と、周波数変換器24と、一括変換部25と、周波数変換器26と、加算器27と、光強度変調器28とを備える。一括変換部23は、位相変調器231と、光検出器232とを備える。一括変換部25は、位相変調器251と、光検出器252とを備える。ここで、第1信号系統の一括変換部23は、第1発振器21及び第2発振器22を、第2信号系統の一括変換部25と共用する。伝送路3は、光伝送路であり、例えば光ファイバを有する。 The optical transmission device 2a (optical subscriber line terminal device) is, for example, a V-OLT (Video Optical Line Terminal). The optical transmitter 2a includes a band splitter 20, a first oscillator 21, a second oscillator 22, a batch converter 23, a frequency converter 24, a batch converter 25, a frequency converter 26, and an adder. 27 and a light intensity modulator 28. The batch conversion unit 23 includes a phase modulator 231 and a photodetector 232. The batch conversion unit 25 includes a phase modulator 251 and a photodetector 252. Here, the first signal system batch converter 23 shares the first oscillator 21 and the second oscillator 22 with the second signal system batch converter 25. The transmission line 3 is an optical transmission line, and includes, for example, an optical fiber.
 光受信装置4a(光回線終端装置)は、例えば、V-ONU(Video - Optical Network Unit)である。光受信装置4aは、光検出器40と、帯域濾波器41と、遅延検波器42と、低域通過濾波器43と、合波器44と、帯域濾波器45と、周波数逆変換器46と、遅延検波器47と、低域通過濾波器48と、周波数逆変換器49とを備える。 The optical receiving device 4a (optical line terminating device) is, for example, a V-ONU (Video Optical Network Unit). The optical receiver 4a includes a photodetector 40, a bandpass filter 41, a delay detector 42, a low-pass filter 43, a multiplexer 44, a bandpass filter 45, and a frequency inverse converter 46. , a delay detector 47, a low-pass filter 48, and a frequency inverse converter 49.
 まず、光送信装置2aの詳細について説明する。
 帯域分割器20には、帯域幅「2W」の信号(広帯域の周波数分割多重信号)が、例えばヘッドエンド装置(不図示)から入力される。帯域分割器20は、帯域幅「2W」の信号を、任意の案分割合で案分された帯域幅の各信号(各狭帯域信号)に、周波数軸上で分割する。例えば、帯域分割器20は、帯域幅「2W」の信号を周波数軸上で等分割してもよいし、帯域幅「2W」の信号を任意の案分割合で不等分割してもよい。以下では、帯域分割器20は、帯域幅「2W」の信号を、一例として帯域幅「W」の各信号に、周波数軸上で等分割する。
First, details of the optical transmitter 2a will be explained.
A signal with a bandwidth of "2W" (a wideband frequency division multiplexed signal) is input to the band divider 20 from, for example, a head-end device (not shown). The band divider 20 divides a signal with a bandwidth of "2W" into signals (each narrowband signal) with a proportionally divided bandwidth on the frequency axis. For example, the band divider 20 may equally divide a signal with a bandwidth of "2W" on the frequency axis, or may divide a signal with a bandwidth of "2W" unequally at any proportion. In the following, the band divider 20 equally divides a signal with a bandwidth of "2W" into each signal with a bandwidth of "W" on the frequency axis, as an example.
 帯域分割器20は、帯域幅「W」かつ中心周波数「A」(第1中心周波数)の狭帯域信号(狭帯域の周波数分割多重信号)を、位相変調器231に出力する。帯域分割器20は、帯域幅「W」かつ中心周波数「B」(第2中心周波数)の狭帯域信号(狭帯域の周波数分割多重信号)を、周波数変換器24に出力する。 The band divider 20 outputs a narrowband signal (narrowband frequency division multiplexed signal) with a bandwidth “W” and a center frequency “A” (first center frequency) to the phase modulator 231. The band divider 20 outputs a narrowband signal (narrowband frequency division multiplexed signal) having a bandwidth “W” and a center frequency “B” (second center frequency) to the frequency converter 24 .
 第1発振器21は、第1発振周波数のレーザー発振器であり、例えば、狭線幅レーザーダイオードである。第1発振器21は、第1発振周波数のレーザー光(第1レーザー光)を、位相変調器231及び位相変調器251に出力する。 The first oscillator 21 is a laser oscillator with a first oscillation frequency, and is, for example, a narrow linewidth laser diode. The first oscillator 21 outputs laser light at a first oscillation frequency (first laser light) to the phase modulator 231 and the phase modulator 251.
 第2発振器22は、第2発振周波数のレーザー発振器であり、例えば、狭線幅レーザーダイオードである。第2発振器22は、第2発振周波数のレーザー光(第2レーザー光)を、光検出器232及び光検出器252に出力する。 The second oscillator 22 is a laser oscillator with a second oscillation frequency, and is, for example, a narrow linewidth laser diode. The second oscillator 22 outputs a laser beam with a second oscillation frequency (second laser beam) to the photodetector 232 and the photodetector 252.
 第1信号系統において、一括変換部23は、FM一括変換(周波数変調一括変換)を実行する機能部である。一括変換部23は、帯域分割器20から入力された狭帯域信号に対してFM一括変換を実行することによって、第1FM信号「SFM1(t)」を生成する。 In the first signal system, the batch conversion unit 23 is a functional unit that executes FM batch conversion (frequency modulation batch conversion). The batch conversion unit 23 generates the first FM signal “S FM1 (t)” by performing batch FM conversion on the narrowband signal input from the band divider 20.
 位相変調器231は、帯域幅「W」かつ中心周波数「A」の狭帯域信号(第1狭帯域信号)と、第1発振周波数のレーザー光とを用いて、位相変調された光信号を生成する。光検出器232(フォトダイオード)は、第2発振周波数のレーザー光を用いて、位相変調された光信号を、第1FM信号「SFM1(t)」(電気信号)に変換する。光検出器232は、第1FM信号を加算器27に出力する。 The phase modulator 231 generates a phase-modulated optical signal using a narrowband signal (first narrowband signal) with a bandwidth "W" and a center frequency "A" and a laser beam with a first oscillation frequency. do. The photodetector 232 (photodiode) converts the phase-modulated optical signal into a first FM signal "S FM1 (t)" (electrical signal) using a laser beam of the second oscillation frequency. Photodetector 232 outputs the first FM signal to adder 27 .
 第2信号系統において、周波数変換器24は、帯域幅「W」かつ中心周波数「B」の狭帯域信号(第2狭帯域信号)を、帯域幅「W」かつ中心周波数「A」の狭帯域信号(第3狭帯域信号)に変換する。ここで、周波数変換器24は、光の漏れ込み量が閾値以下となるように、又は、光信号の信号対干渉信号比が一定以下となるように、周波数を変換をする。周波数変換器24は、帯域幅「W」かつ中心周波数「A」の狭帯域信号を、位相変調器251に出力する。 In the second signal system, the frequency converter 24 converts a narrowband signal (second narrowband signal) with a bandwidth "W" and a center frequency "B" into a narrowband signal (second narrowband signal) with a bandwidth "W" and a center frequency "A". signal (third narrowband signal). Here, the frequency converter 24 converts the frequency so that the amount of light leakage is below a threshold value or the signal-to-interference signal ratio of the optical signal is below a certain level. The frequency converter 24 outputs a narrowband signal having a bandwidth “W” and a center frequency “A” to the phase modulator 251.
 第2信号系統において、一括変換部25は、周波数変調一括変換(FM一括変換)を実行する機能部である。一括変換部25は、周波数変換器24から入力された狭帯域信号に対してFM一括変換を実行することによって、第2FM信号「SFM2(t)」を生成する。 In the second signal system, the batch conversion unit 25 is a functional unit that executes frequency modulation batch conversion (FM batch conversion). The batch conversion unit 25 performs batch FM conversion on the narrowband signal input from the frequency converter 24 to generate a second FM signal “S FM2 (t)”.
 位相変調器251は、帯域幅「W」かつ中心周波数「B」の狭帯域信号と、第2発振周波数のレーザー光とを用いて、位相変調された光信号を生成する。光検出器252(フォトダイオード)は、第2発振周波数のレーザー光を用いて、位相変調された光信号を、第2FM信号「SFM2(t)」(電気信号)に変換する。光検出器252は、第2FM信号を周波数変換器26に出力する。 The phase modulator 251 generates a phase-modulated optical signal using a narrowband signal having a bandwidth "W" and a center frequency "B" and a laser beam having a second oscillation frequency. The photodetector 252 (photodiode) converts the phase-modulated optical signal into a second FM signal "S FM2 (t)" (electrical signal) using a laser beam of the second oscillation frequency. Photodetector 252 outputs the second FM signal to frequency converter 26 .
 なお、第1実施形態におけるFM一括変換後の第1FM信号の中心周波数は、第1発振周波数と第2発振周波数との差(絶対値)である。同様に、第1実施形態におけるFM一括変換後の第2FM信号の中心周波数は、第1発振周波数と第2発振周波数との差(絶対値)である。したがって、第1実施形態におけるFM一括変換後の第1FM信号の中心周波数と、第1実施形態におけるFM一括変換後の第2FM信号の中心周波数とは等しい。 Note that the center frequency of the first FM signal after FM batch conversion in the first embodiment is the difference (absolute value) between the first oscillation frequency and the second oscillation frequency. Similarly, the center frequency of the second FM signal after FM batch conversion in the first embodiment is the difference (absolute value) between the first oscillation frequency and the second oscillation frequency. Therefore, the center frequency of the first FM signal after FM batch conversion in the first embodiment is equal to the center frequency of the second FM signal after FM batch conversion in the first embodiment.
 第2信号系統において、周波数変換器26は、第1FM信号「SFM1(t)」と第2FM信号「SFM2’(t)」との周波数軸上での重なりが十分小さくなるように(FM信号同士の干渉による通信品質の劣化が十分小さくなるように)、第2FM信号の周波数を変更する。例えば、周波数変換器26は、決定された周波数変換量に応じて、第2FM信号の中心周波数を変更する。これによって、周波数変換器26は、周波数が変更された第2FM信号として、第2FM信号「SFM2’(t)」(電気信号)を生成する。 In the second signal system, the frequency converter 26 converts the frequency converter ( FM The frequency of the second FM signal is changed so that deterioration in communication quality due to interference between signals is sufficiently reduced. For example, the frequency converter 26 changes the center frequency of the second FM signal according to the determined frequency conversion amount. As a result, the frequency converter 26 generates the second FM signal "S FM2 '(t)" (electrical signal) as the second FM signal whose frequency has been changed.
 第2FM信号の周波数変換量の決定方法は、特定の決定方法に限定されない。例えば、第1FM信号「SFM1(t)」と第2FM信号「SFM2’(t)」とが周波数軸上で離れるほど干渉量が少なくなると考えられる。そこで、周波数変換器26は、第1FM信号「SFM1(t)」と第2FM信号「SFM2’(t)」との干渉量が所定量「α」となる周波数変換量(第1周波数変換量)よりも多い周波数変換量(第2周波数変換量)を、第2FM信号の周波数変換量と決定してもよい。所定量「α」は、例えば、通信品質の仕様に基づいて予め定められる。これによって、通信品質の仕様に基づいて最適化された周波数変換量に応じて、干渉量を確実に抑制することができる。また例えば、周波数変換器26は、通信品質の仕様等に基づいて予め定められた周波数変換量を、一律に、第2FM信号の周波数変換量と決定してもよい。 The method for determining the amount of frequency conversion of the second FM signal is not limited to a specific method. For example, it is considered that the amount of interference decreases as the first FM signal "S FM1 (t)" and the second FM signal "S FM2 '(t)" become farther apart on the frequency axis. Therefore, the frequency converter 26 converts the amount of frequency conversion (first frequency conversion A frequency conversion amount (second frequency conversion amount) that is larger than the frequency conversion amount) may be determined as the frequency conversion amount of the second FM signal. The predetermined amount "α" is determined in advance based on, for example, communication quality specifications. Thereby, the amount of interference can be reliably suppressed according to the amount of frequency conversion optimized based on the communication quality specifications. For example, the frequency converter 26 may uniformly determine a frequency conversion amount predetermined based on communication quality specifications, etc., as the frequency conversion amount of the second FM signal.
 加算器27は、第1FM信号「SFM1(t)」と第2FM信号「SFM2’(t)」とを、周波数軸上で加算する。光強度変調器28は、加算されたFM信号(加算結果)に対して、光強度変調を実行する。これによって、光強度変調器28は、光強度変調された光信号を生成する。光強度変調器28は、光強度変調された光信号を、伝送路3に出力する。伝送路3は、光強度変調された光信号(広帯域信号)を、光受信装置4aに伝送する。 The adder 27 adds the first FM signal "S FM1 (t)" and the second FM signal "S FM2 '(t)" on the frequency axis. The optical intensity modulator 28 performs optical intensity modulation on the added FM signal (addition result). Thereby, the light intensity modulator 28 generates a light intensity modulated optical signal. The light intensity modulator 28 outputs the light intensity modulated optical signal to the transmission line 3. The transmission line 3 transmits a light intensity modulated optical signal (a broadband signal) to an optical receiver 4a.
 次に、光受信装置4aの詳細について説明する。
 光検出器40には、光強度変調された光信号(広帯域信号)が、伝送路3から入力される。すなわち、光検出器40には、第1FM信号及び第2FM信号を含む光信号(波長多重信号)が、伝送路3から入力される。光検出器40は、光強度変調された光信号を、第1FM信号「SFM1(t)」と第2FM信号「SFM2’(t)」とを含む電気信号に変換する。光検出器40は、変換された電気信号を、帯域濾波器41及び帯域濾波器45に出力する。
Next, details of the optical receiver 4a will be explained.
A light intensity modulated optical signal (broadband signal) is input to the photodetector 40 from the transmission line 3 . That is, an optical signal (wavelength multiplexed signal) including the first FM signal and the second FM signal is input to the photodetector 40 from the transmission line 3 . The photodetector 40 converts the light intensity modulated optical signal into an electrical signal including a first FM signal "S FM1 (t)" and a second FM signal "S FM2 '(t)". Photodetector 40 outputs the converted electrical signal to bandpass filter 41 and bandpass filter 45.
 第1信号系統において、帯域濾波器41は、第1FM信号と第2FM信号と含む電気信号から、第1FM信号を抽出する。遅延検波器42は、抽出された第1FM信号に対して、遅延検波処理(復調処理)を実行する。これによって、遅延検波器42は、帯域幅「W」かつ中心周波数「A」の狭帯域信号(第1狭帯域信号)を生成する。低域通過濾波器43は、帯域幅「W」かつ中心周波数「A」の狭帯域信号の高周波成分を除去する。 In the first signal system, the bandpass filter 41 extracts the first FM signal from the electric signal including the first FM signal and the second FM signal. The delay detector 42 performs delay detection processing (demodulation processing) on the extracted first FM signal. Thereby, the delay detector 42 generates a narrowband signal (first narrowband signal) having a bandwidth "W" and a center frequency "A". The low-pass filter 43 removes high frequency components of the narrowband signal having a bandwidth "W" and a center frequency "A".
 合波器44は、帯域幅「W」かつ中心周波数「A」の狭帯域信号と、帯域幅「W」かつ中心周波数「B」の狭帯域信号とを合波(加算)する。合波器44は、帯域幅「2W」の周波数分割多重信号を、所定の装置(不図示)に出力する。所定の装置は、例えば、表示装置である。 The multiplexer 44 multiplexes (adds) a narrowband signal with a bandwidth "W" and a center frequency "A" and a narrowband signal with a bandwidth "W" and a center frequency "B". The multiplexer 44 outputs a frequency division multiplexed signal with a bandwidth of "2W" to a predetermined device (not shown). The predetermined device is, for example, a display device.
 第2信号系統において、帯域濾波器45は、第1FM信号「SFM1(t)」と第2FM信号「SFM2’(t)」と含む電気信号から、第2FM信号「SFM2’(t)」(第2狭帯域信号)を抽出する。周波数逆変換器46は、周波数変換器26によって周波数が変更された第2FM信号「SFM2’(t)」の周波数を第1FM信号の周波数と同じにすることによって、第2FM信号「SFM2(t)」を生成する。 In the second signal system, the bandpass filter 45 extracts the second FM signal "S FM2' (t)" from the electric signal including the first FM signal "S FM1 (t)" and the second FM signal "S FM2 '(t)". ” (second narrowband signal). The frequency inverse converter 46 makes the frequency of the second FM signal "S FM2 '(t)" whose frequency has been changed by the frequency converter 26 the same as the frequency of the first FM signal, thereby converting the second FM signal "S FM2 (t)" into the second FM signal "S FM2 (t)". t).
 第2信号系統において、遅延検波器47は、第2FM信号「SFM2(t)」に対して、遅延検波処理(復調処理)を実行する。これによって、遅延検波器47は、帯域幅「W」かつ中心周波数「A」の狭帯域信号(第3狭帯域信号)を生成する。低域通過濾波器48は、帯域幅「W」かつ中心周波数「A」の狭帯域信号の高周波成分を除去する。周波数逆変換器49は、帯域幅「W」かつ中心周波数「A」の狭帯域信号に基づいて、帯域幅「W」かつ中心周波数「B」の狭帯域信号(第2狭帯域信号)を生成する。すなわち、周波数逆変換器49は、帯域幅「W」かつ中心周波数「A」の狭帯域信号を、帯域幅「W」かつ中心周波数「B」の狭帯域信号に変換する。周波数逆変換器49は、帯域幅「W」かつ中心周波数「B」の狭帯域信号を、合波器44に出力する。 In the second signal system, the delay detector 47 performs delay detection processing (demodulation processing) on the second FM signal "S FM2 (t)". As a result, the delay detector 47 generates a narrowband signal (third narrowband signal) having a bandwidth of "W" and a center frequency of "A". The low pass filter 48 removes high frequency components of the narrowband signal with a bandwidth "W" and a center frequency "A". The frequency inverse converter 49 generates a narrowband signal (second narrowband signal) having a bandwidth "W" and a center frequency "B" based on the narrowband signal having a bandwidth "W" and a center frequency "A". do. That is, the frequency inverse converter 49 converts a narrowband signal with a bandwidth "W" and a center frequency "A" into a narrowband signal with a bandwidth "W" and a center frequency "B". The frequency inverse converter 49 outputs a narrowband signal having a bandwidth “W” and a center frequency “B” to the multiplexer 44 .
 なお、周波数変換器24と周波数変換器26と周波数逆変換器46と周波数逆変換器49とのそれぞれは、第2信号系統に備えられる代わりに、第1信号系統に備えられてもよい。 Note that each of the frequency converter 24, the frequency converter 26, the frequency inverse converter 46, and the frequency inverse converter 49 may be provided in the first signal system instead of being provided in the second signal system.
 次に、光通信システム1aの動作例を説明する。
 図2は、第1実施形態における、光送信装置2aの動作例を示すフローチャートである。共通信号系統において、帯域分割器20は、帯域幅「2W」の信号を、帯域幅「W」の各信号に、周波数軸上で分割する(ステップS101:帯域分割処理)。
Next, an example of the operation of the optical communication system 1a will be explained.
FIG. 2 is a flowchart showing an example of the operation of the optical transmitter 2a in the first embodiment. In the common signal system, the band divider 20 divides a signal with a bandwidth of "2W" into each signal with a bandwidth of "W" on the frequency axis (step S101: band division processing).
 第1信号系統において、位相変調器231は、帯域幅「W」かつ中心周波数「A」の狭帯域信号と、第1発振周波数のレーザー光とを用いて、位相変調された光信号を生成する(ステップS102:第1位相変調処理)。光検出器232は、第2発振周波数のレーザー光を用いて、位相変調された光信号を、第1FM信号に変換する(ステップS103:第1光検出処理)。第1信号系統の各機能部は、ステップS108に処理を進める。 In the first signal system, the phase modulator 231 generates a phase-modulated optical signal using a narrowband signal with a bandwidth "W" and a center frequency "A" and a laser beam with a first oscillation frequency. (Step S102: first phase modulation process). The photodetector 232 converts the phase-modulated optical signal into a first FM signal using a laser beam of the second oscillation frequency (step S103: first photodetection process). Each functional unit of the first signal system advances the process to step S108.
 第2信号系統において、周波数変換器24は、帯域幅「W」かつ中心周波数「B」の狭帯域信号を、帯域幅「W」かつ中心周波数「A」の狭帯域信号に変換する(ステップS104:第1周波数変換処理)。位相変調器251は、帯域幅「W」かつ中心周波数「B」の狭帯域信号と、第2発振周波数のレーザー光とを用いて、位相変調された光信号を生成する(ステップS105:第1位相変調処理)。光検出器252は、第2発振周波数のレーザー光を用いて、位相変調された光信号を、第2FM信号に変換する(ステップS106:第2光検出処理)。周波数変換器26は、第1FM信号と第2FM信号との周波数軸上での重なりが小さくなるように、第2FM信号の周波数を変更する(ステップS107:第2周波数変換処理)。 In the second signal system, the frequency converter 24 converts a narrowband signal with a bandwidth "W" and a center frequency "B" into a narrowband signal with a bandwidth "W" and a center frequency "A" (step S104 : first frequency conversion process). The phase modulator 251 generates a phase-modulated optical signal using a narrowband signal with a bandwidth "W" and a center frequency "B" and a laser beam with a second oscillation frequency (step S105: the first phase modulation processing). The photodetector 252 converts the phase modulated optical signal into a second FM signal using a laser beam of the second oscillation frequency (step S106: second photodetection process). The frequency converter 26 changes the frequency of the second FM signal so that the overlap between the first FM signal and the second FM signal on the frequency axis becomes smaller (step S107: second frequency conversion process).
 共通信号系統において、加算器27は、第1FM信号と、周波数が変更された第2FM信号とを加算する(ステップS108:加算処理)。光強度変調器28は、加算されたFM信号に対して、光強度変調を実行する(ステップS109:光強度変調処理)。 In the common signal system, the adder 27 adds the first FM signal and the second FM signal whose frequency has been changed (step S108: addition process). The light intensity modulator 28 performs light intensity modulation on the added FM signal (step S109: light intensity modulation process).
 図3は、第1実施形態における、光受信装置4aの動作例を示すフローチャートである。光検出器40は、光強度変調された光信号を、第1FM信号と、周波数が変更された第2FM信号とを含む電気信号に変換する(ステップS201:第3光検出処理)。 FIG. 3 is a flowchart showing an example of the operation of the optical receiver 4a in the first embodiment. The photodetector 40 converts the light intensity modulated optical signal into an electrical signal including the first FM signal and the second FM signal whose frequency has been changed (step S201: third photodetection process).
 第1信号系統において、帯域濾波器41は、第1FM信号と、周波数が変更された第2FM信号と含む電気信号から、第1FM信号を抽出する(ステップS202:第1帯域フィルタ処理)。遅延検波器42は、抽出された第1FM信号に対して、遅延検波処理を実行する(ステップS203:第1遅延検波処理)。低域通過濾波器43は、帯域幅「W」かつ中心周波数「A」の狭帯域信号の高周波成分を除去する(ステップS204:第1低域通過処理)。 In the first signal system, the bandpass filter 41 extracts the first FM signal from the electric signal included in the first FM signal and the second FM signal whose frequency has been changed (step S202: first bandpass filter processing). The delay detector 42 performs delay detection processing on the extracted first FM signal (step S203: first delay detection processing). The low-pass filter 43 removes high-frequency components of the narrowband signal having a bandwidth "W" and a center frequency "A" (step S204: first low-pass processing).
 第2信号系統において、帯域濾波器45は、第1FM信号と、周波数が変更された第2FM信号と含む電気信号から、周波数が変更された第2FM信号を抽出する(ステップS205:第2帯域フィルタ処理)。周波数逆変換器46は、周波数が変更された第2FM信号の中心周波数を、第1FM信号の中心周波数と同じにする(ステップS206:第1逆変換処理)。遅延検波器47は、第2FM信号に対して、遅延検波処理を実行する(ステップS207:第2遅延検波処理)。低域通過濾波器48は、帯域幅「W」かつ中心周波数「A」の狭帯域信号の高周波成分を除去する(ステップS208:第2低域通過処理)。周波数逆変換器49は、帯域幅「W」かつ中心周波数「A」の狭帯域信号に基づいて、帯域幅「W」かつ中心周波数「B」の狭帯域信号を生成する(ステップS209:第2逆変換処理)。 In the second signal system, the bandpass filter 45 extracts the second FM signal whose frequency has been changed from the electrical signal that includes the first FM signal and the second FM signal whose frequency has been changed (step S205: the second bandpass filter process). The frequency inverse transformer 46 makes the center frequency of the second FM signal whose frequency has been changed the same as the center frequency of the first FM signal (step S206: first inverse transform process). The delay detector 47 performs delay detection processing on the second FM signal (step S207: second delay detection processing). The low-pass filter 48 removes high-frequency components of the narrowband signal having a bandwidth "W" and a center frequency "A" (step S208: second low-pass processing). The frequency inverse converter 49 generates a narrowband signal having a bandwidth "W" and a center frequency "B" based on the narrowband signal having a bandwidth "W" and a center frequency "A" (step S209: the second (inverse conversion process).
 合波器44は、帯域幅「W」かつ中心周波数「A」の狭帯域信号(狭帯域の周波数分割多重信号)と、帯域幅「W」かつ中心周波数「B」の狭帯域信号(狭帯域の周波数分割多重信号)とを合波(加算)する(ステップS210:合波処理)。 The multiplexer 44 separates a narrowband signal (narrowband frequency division multiplexed signal) with a bandwidth "W" and a center frequency "A", and a narrowband signal (narrowband frequency division multiplexed signal) with a bandwidth "W" and a center frequency "B". frequency division multiplexed signal) (step S210: multiplexing process).
 以上のように、光通信システム1aの光送信装置2aでは、帯域分割器20は、所定の狭帯域幅「W」かつ第1中心周波数「A」の第1狭帯域信号と、所定の狭帯域幅「W」かつ第1中心周波数「B」の第2狭帯域信号とに、所定の広帯域信号を周波数軸上で分割する。第1発振器21は、第1発振周波数の第1レーザー光を生成する。第2発振器22は、第2発振周波数の第2レーザー光を生成する。一括変換部23(第1一括変換部)は、第1レーザー光と第2レーザー光とを用いて、所定の狭帯域幅「W」かつ第1中心周波数「A」の第1狭帯域信号に対してFM一括変換を実行することによって、第1FM信号「SFM1(t)」を生成する。周波数変換器24(第1周波数変換器)は、所定の狭帯域幅「W」かつ第2中心周波数「B」の第2狭帯域信号を、所定の狭帯域幅「W」かつ第1中心周波数「A」の第3狭帯域信号に変換する。一括変換部25(第2一括変換部)は、第1レーザー光と第2レーザー光とを用いて、第3狭帯域信号に対してFM一括変換を実行することによって、第2FM信号「SFM2(t)」を生成する。周波数変換器26(第2周波数変換器)は、第1FM信号と第2FM信号との周波数軸上での重なりが小さくなるように、第2FM信号の周波数を変更する。加算器27は、周波数が変更された第2FM信号「SFM2’(t)」と第1FM信号「SFM1(t)」とを、周波数軸上で加算する。光強度変調器28は、周波数が変更された第2FM信号と第1FM信号との加算結果に対して光強度変調を実行することによって、光強度変調された光信号を生成する。 As described above, in the optical transmission device 2a of the optical communication system 1a, the band splitter 20 separates a first narrowband signal having a predetermined narrowband width "W" and a first center frequency "A", and a predetermined narrowband signal having a predetermined narrowband width "W" and a first center frequency "A". A predetermined wideband signal is divided on the frequency axis into a second narrowband signal having a width "W" and a first center frequency "B". The first oscillator 21 generates a first laser beam having a first oscillation frequency. The second oscillator 22 generates a second laser beam having a second oscillation frequency. The batch conversion unit 23 (first batch conversion unit) converts the first laser beam and the second laser beam into a first narrowband signal having a predetermined narrowband width “W” and a first center frequency “A”. The first FM signal "S FM1 (t)" is generated by performing FM batch conversion on the signals. The frequency converter 24 (first frequency converter) converts a second narrow band signal having a predetermined narrow bandwidth "W" and a second center frequency "B" into a second narrow band signal having a predetermined narrow bandwidth "W" and a first center frequency. It is converted into a third narrowband signal of "A". The batch conversion unit 25 (second batch conversion unit) converts the second FM signal “S FM2” by performing FM batch conversion on the third narrowband signal using the first laser beam and the second laser beam. (t)" is generated. The frequency converter 26 (second frequency converter) changes the frequency of the second FM signal so that the overlap between the first FM signal and the second FM signal on the frequency axis becomes smaller. The adder 27 adds the second FM signal "S FM2 '(t)" whose frequency has been changed and the first FM signal "S FM1 (t)" on the frequency axis. The light intensity modulator 28 generates a light intensity modulated optical signal by performing light intensity modulation on the addition result of the second FM signal whose frequency has been changed and the first FM signal.
 また、光通信システム1aの光受信装置4aでは、光検出器40は、光強度変調された光信号を、周波数が変更された第2FM信号と、第1FM信号とに変換する。帯域濾波器41(第1帯域濾波器)は、周波数が変更された第2FM信号と、第1FM信号とから、第1FM信号を抽出する。遅延検波器42(第1遅延検波器)は、抽出された第1FM信号に対して遅延検波処理を実行することによって、第1狭帯域信号を生成する。低域通過濾波器43(第1低域通過濾波器)は、第1狭帯域信号の高周波成分を除去する。帯域濾波器45(第2帯域濾波器)は、周波数が変更された第2FM信号と第1FM信号とから、周波数が変更された第2FM信号を抽出する。周波数逆変換器46(第1周波数逆変換器)は、周波数が変更された第2FM信号の周波数を第1FM信号の周波数と同じにすることによって、第2FM信号を生成する。遅延検波器47(第2遅延検波器)は、第2FM信号に対して遅延検波処理を実行することによって、第3狭帯域信号を生成する。低域通過濾波器48(第2低域通過濾波器)は、第3狭帯域信号の高周波成分を除去する。周波数逆変換器49(第2周波数逆変換器)は、高周波成分が除去された第3狭帯域信号に基づいて、第2狭帯域信号を生成する。合波器44は、高周波成分が除去された第1狭帯域信号と第2狭帯域信号とを合波する。 Furthermore, in the optical receiving device 4a of the optical communication system 1a, the photodetector 40 converts the light intensity modulated optical signal into a second FM signal whose frequency has been changed and a first FM signal. The bandpass filter 41 (first bandpass filter) extracts the first FM signal from the second FM signal whose frequency has been changed and the first FM signal. The delay detector 42 (first delay detector) generates a first narrowband signal by performing delay detection processing on the extracted first FM signal. The low-pass filter 43 (first low-pass filter) removes high frequency components of the first narrowband signal. The bandpass filter 45 (second bandpass filter) extracts a second FM signal whose frequency has been changed from the second FM signal whose frequency has been changed and the first FM signal. The frequency inverse converter 46 (first frequency inverse converter) generates a second FM signal by making the frequency of the second FM signal whose frequency has been changed the same as the frequency of the first FM signal. The delay detector 47 (second delay detector) generates a third narrowband signal by performing delay detection processing on the second FM signal. The low-pass filter 48 (second low-pass filter) removes high frequency components of the third narrowband signal. The frequency inverse converter 49 (second frequency inverse converter) generates a second narrowband signal based on the third narrowband signal from which high frequency components have been removed. The multiplexer 44 multiplexes the first narrowband signal from which high frequency components have been removed and the second narrowband signal.
 このように、光送信装置2aは、送信対象の広帯域信号を、狭帯域の各信号に分割する。光送信装置2aは、狭帯域の各信号に対して、FM一括変換を実行する。光送信装置2aは、狭帯域の各FM信号を、周波数軸上で合波する。光送信装置2aは、合波されたFM信号に対して、光強度変調を実行する。光送信装置2aは、光強度変調されたFM信号を、伝送路3を用いて、光受信装置4aに伝送する。光受信装置4aは、合波されたFM信号を、狭帯域の各FM信号に分離する。光受信装置4aは、狭帯域の各FM信号に対して、所定の復調処理を実行する。 In this way, the optical transmitter 2a divides the broadband signal to be transmitted into each narrowband signal. The optical transmitter 2a performs FM batch conversion on each narrowband signal. The optical transmitter 2a multiplexes each narrowband FM signal on the frequency axis. The optical transmitter 2a performs optical intensity modulation on the multiplexed FM signal. The optical transmitter 2a transmits the optical intensity modulated FM signal to the optical receiver 4a using the transmission path 3. The optical receiver 4a separates the multiplexed FM signal into each narrowband FM signal. The optical receiver 4a performs predetermined demodulation processing on each narrowband FM signal.
 ここで、共用可能な機能部が共用化される。例えば光送信装置2aでは、各発振器(狭線幅レーザーダイオード)と光強度変調器28とが、2本の信号系統によって共用される。また、光受信装置4aでは、簡易な処理部(例えば、光分波器、波長分割多重濾波器、及び合波器等)が追加されるだけで、FM一括変換された広帯域信号(合波されたFM信号)が受信可能となる。 Here, the functional units that can be shared are shared. For example, in the optical transmitter 2a, each oscillator (narrow linewidth laser diode) and optical intensity modulator 28 are shared by two signal systems. Furthermore, in the optical receiving device 4a, by simply adding a simple processing unit (for example, an optical demultiplexer, a wavelength division multiplex filter, a multiplexer, etc.), the broadband signal (multiplexed FM signals) can now be received.
 これによって、FM一括変換された広帯域信号を低コストで送信及び受信することが可能である。また、光送信装置2aのサイズと光受信装置4aのサイズとをそれぞれ小さくすることが可能である。 As a result, it is possible to transmit and receive broadband signals subjected to FM batch conversion at low cost. Furthermore, it is possible to reduce the size of the optical transmitter 2a and the size of the optical receiver 4a, respectively.
 <第1実施形態との比較例>
 図4は、第1実施形態との比較例における、光通信システム100aの構成例を示す図である。光通信システム100aは、光通信システム1aとの比較例である。光通信システム100aは、光送信装置200aと、伝送路3と、光受信装置400aとを備える。光送信装置200aは、光送信装置2aとの比較例である。光受信装置400aは、光受信装置4aとの比較例である。
<Comparative example with the first embodiment>
FIG. 4 is a diagram illustrating a configuration example of an optical communication system 100a in a comparative example with the first embodiment. The optical communication system 100a is a comparative example with the optical communication system 1a. The optical communication system 100a includes an optical transmitter 200a, a transmission path 3, and an optical receiver 400a. The optical transmitter 200a is a comparative example with the optical transmitter 2a. The optical receiving device 400a is a comparative example with the optical receiving device 4a.
 光送信装置200aは、帯域分割器20と、一括変換部230と、周波数変換器24と、一括変換部250と、光強度変調器28-1と、光強度変調器28-2と、合波器29とを備える。一括変換部230は、位相変調器231と、光検出器232と、第1発振器21-1と、第2発振器22とを備える。一括変換部250は、位相変調器251と、光検出器252と、第1発振器21-2と、第3発振器30とを備える。ここで、第1信号系統の一括変換部230と第2信号系統の一括変換部250とは、第1発振器21-1、第1発振器21-2、第2発振器22及び第3発振器30を共用しない。 The optical transmitter 200a includes a band splitter 20, a batch converter 230, a frequency converter 24, a batch converter 250, an optical intensity modulator 28-1, an optical intensity modulator 28-2, and a multiplexer. A container 29 is provided. The batch conversion section 230 includes a phase modulator 231, a photodetector 232, a first oscillator 21-1, and a second oscillator 22. The batch conversion unit 250 includes a phase modulator 251, a photodetector 252, a first oscillator 21-2, and a third oscillator 30. Here, the first signal system batch conversion unit 230 and the second signal system batch conversion unit 250 share the first oscillator 21-1, the first oscillator 21-2, the second oscillator 22, and the third oscillator 30. do not.
 光受信装置400aは、光分波器50と、波長分割多重濾波器51と、波長分割多重濾波器52と、光検出器40-1と、光検出器40-2と、遅延検波器42と、低域通過濾波器43と、合波器44と、遅延検波器47と、低域通過濾波器48と、周波数逆変換器49とを備える。 The optical receiver 400a includes an optical demultiplexer 50, a wavelength division multiplex filter 51, a wavelength division multiplex filter 52, a photodetector 40-1, a photodetector 40-2, and a delay detector 42. , a low-pass filter 43, a multiplexer 44, a delayed detector 47, a low-pass filter 48, and a frequency inverse converter 49.
 次に、光送信装置200aの詳細について、光送信装置2aとの差分を中心に説明する。
 第1信号系統において、一括変換部230は、FM一括変換(周波数変調一括変換)を実行する機能部である。一括変換部230は、帯域分割器20から入力された狭帯域信号に対してFM一括変換を実行することによって、第1FM信号「SFM1(t)」を生成する。
Next, details of the optical transmitter 200a will be explained, focusing on the differences from the optical transmitter 2a.
In the first signal system, the batch conversion unit 230 is a functional unit that executes FM batch conversion (frequency modulation batch conversion). The batch conversion unit 230 generates the first FM signal “S FM1 (t)” by performing batch FM conversion on the narrowband signal input from the band splitter 20.
 第1信号系統において、第1発振器21-1は、第1発振周波数のレーザー光を、位相変調器231に出力する。位相変調器231は、帯域幅「W」かつ中心周波数「A」の狭帯域信号(第1狭帯域信号)と、第1発振周波数のレーザー光とを用いて、位相変調された光信号を生成する。第2発振器22は、第2発振周波数のレーザー光を、光検出器232に出力する。光検出器232は、第2発振周波数のレーザー光を用いて、位相変調された光信号を、第1FM信号「SFM1(t)」(電気信号)に変換する。光強度変調器28-1は、第1FM信号に対して、光強度変調を実行する。光強度変調器28-1は、光強度変調された第1FM信号を、合波器29に出力する。 In the first signal system, the first oscillator 21-1 outputs laser light at a first oscillation frequency to the phase modulator 231. The phase modulator 231 generates a phase-modulated optical signal using a narrowband signal (first narrowband signal) with a bandwidth "W" and a center frequency "A" and a laser beam with a first oscillation frequency. do. The second oscillator 22 outputs laser light at a second oscillation frequency to the photodetector 232. The photodetector 232 converts the phase-modulated optical signal into a first FM signal "S FM1 (t)" (electrical signal) using a laser beam of the second oscillation frequency. The optical intensity modulator 28-1 performs optical intensity modulation on the first FM signal. The optical intensity modulator 28-1 outputs the optical intensity modulated first FM signal to the multiplexer 29.
 第2信号系統において、周波数変換器24は、帯域幅「W」かつ中心周波数「B」の狭帯域信号(第2狭帯域信号)を、帯域幅「W」かつ中心周波数「A」の狭帯域信号(第3狭帯域信号)に変換する。周波数変換器24は、帯域幅「W」かつ中心周波数「A」の狭帯域信号を、位相変調器251に出力する。 In the second signal system, the frequency converter 24 converts a narrowband signal (second narrowband signal) with a bandwidth "W" and a center frequency "B" into a narrowband signal (second narrowband signal) with a bandwidth "W" and a center frequency "A". signal (third narrowband signal). The frequency converter 24 outputs a narrowband signal having a bandwidth “W” and a center frequency “A” to the phase modulator 251.
 第2信号系統において、一括変換部250は、FM一括変換(周波数変調一括変換)を実行する機能部である。一括変換部250は、周波数変換器24から入力された狭帯域信号に対してFM一括変換を実行することによって、第2FM信号「SFM2(t)」を生成する。 In the second signal system, the batch conversion unit 250 is a functional unit that executes FM batch conversion (frequency modulation batch conversion). The batch conversion unit 250 generates the second FM signal “S FM2 (t)” by performing batch FM conversion on the narrowband signal input from the frequency converter 24 .
 第2信号系統において、第1発振器21-2は、第1発振周波数のレーザー光を、位相変調器251に出力する。位相変調器251は、帯域幅「W」かつ中心周波数「B」の狭帯域信号と、第2発振周波数のレーザー光とを用いて、位相変調された光信号を生成する。第3発振器30は、第3発振周波数のレーザー発振器であり、例えば、狭線幅レーザーダイオードである。第3発振器30は、第3発振周波数のレーザー光を、光検出器252に出力する。光検出器252(フォトダイオード)は、第3発振周波数のレーザー光を用いて、位相変調された光信号を、第2FM信号「SFM2(t)」(電気信号)に変換する。光検出器252は、第2FM信号を光強度変調器28-2に出力する。光強度変調器28-2は、光強度変調された第2FM信号を、合波器29に出力する。 In the second signal system, the first oscillator 21-2 outputs laser light at the first oscillation frequency to the phase modulator 251. The phase modulator 251 generates a phase-modulated optical signal using a narrowband signal having a bandwidth "W" and a center frequency "B" and a laser beam having a second oscillation frequency. The third oscillator 30 is a laser oscillator with a third oscillation frequency, and is, for example, a narrow linewidth laser diode. The third oscillator 30 outputs laser light at a third oscillation frequency to the photodetector 252. The photodetector 252 (photodiode) converts the phase-modulated optical signal into a second FM signal "S FM2 (t)" (electrical signal) using a laser beam of the third oscillation frequency. Photodetector 252 outputs the second FM signal to optical intensity modulator 28-2. The optical intensity modulator 28-2 outputs the optical intensity modulated second FM signal to the multiplexer 29.
 なお、第1実施形態との比較例におけるFM一括変換後の第1FM信号の中心周波数は、第1発振周波数と第2発振周波数との差である。同様に、第1実施形態との比較例におけるFM一括変換後の第2FM信号の中心周波数は、第1発振周波数と第3発振周波数との差である。 Note that the center frequency of the first FM signal after FM batch conversion in the comparative example with the first embodiment is the difference between the first oscillation frequency and the second oscillation frequency. Similarly, the center frequency of the second FM signal after FM batch conversion in the comparative example with the first embodiment is the difference between the first oscillation frequency and the third oscillation frequency.
 合波器29は、光強度変調された第1FM信号と光強度変調された第2FM信号とを合波することによって、波長多重信号を生成する。合波器29は、光信号を用いて、波長多重信号を光受信装置400aに送信する。 The multiplexer 29 generates a wavelength multiplexed signal by multiplexing the optical intensity modulated first FM signal and the optical intensity modulated second FM signal. The multiplexer 29 uses an optical signal to transmit a wavelength multiplexed signal to the optical receiver 400a.
 次に、光受信装置400aの詳細について、光受信装置4aとの差分を中心に説明する。
 光分波器50(光スプリッタ)には、第1FM信号及び第2FM信号を含む光信号(波長多重信号)が、伝送路3から入力される。光分波器50は、第1FM信号及び第2FM信号を含む光信号を、波長分割多重濾波器51及び波長分割多重濾波器52に出力する。
Next, details of the optical receiving device 400a will be explained, focusing on the differences from the optical receiving device 4a.
An optical signal (wavelength multiplexed signal) including the first FM signal and the second FM signal is input from the transmission line 3 to the optical demultiplexer 50 (optical splitter). The optical demultiplexer 50 outputs an optical signal including the first FM signal and the second FM signal to the wavelength division multiplex filter 51 and the wavelength division multiplex filter 52.
 第1信号系統において、波長分割多重濾波器51(波長分割多重フィルタ)は、光強度変調された光信号(第1FM信号)を、光検出器40-1に出力する。光検出器40-1には、光強度変調された光信号(第1FM信号)が、波長分割多重濾波器51から入力される。光検出器40-1は、光強度変調された光信号を、第1FM信号「SFM1(t)」を含む電気信号に変換する。光検出器40-1は、変換された電気信号を、遅延検波器42に出力する。 In the first signal system, the wavelength division multiplex filter 51 (wavelength division multiplex filter) outputs a light intensity modulated optical signal (first FM signal) to the photodetector 40-1. A light intensity modulated optical signal (first FM signal) is input from the wavelength division multiplex filter 51 to the photodetector 40-1. The photodetector 40-1 converts the light intensity modulated optical signal into an electrical signal including the first FM signal "S FM1 (t)". Photodetector 40-1 outputs the converted electrical signal to delay detector 42.
 遅延検波器42は、第1FM信号を含む電気信号に対して、遅延検波処理(復調処理)を実行する。低域通過濾波器43は、帯域幅「W」かつ中心周波数「A」の狭帯域信号の高周波成分を除去する。合波器44は、帯域幅「W」かつ中心周波数「A」の狭帯域信号と、帯域幅「W」かつ中心周波数「B」の狭帯域信号とを加算する。 The delay detector 42 performs delay detection processing (demodulation processing) on the electrical signal including the first FM signal. The low-pass filter 43 removes high frequency components of the narrowband signal having a bandwidth "W" and a center frequency "A". The multiplexer 44 adds a narrowband signal with a bandwidth "W" and a center frequency "A" and a narrowband signal with a bandwidth "W" and a center frequency "B".
 第2信号系統において、波長分割多重濾波器52(波長分割多重フィルタ)は、光強度変調された光信号(第2FM信号)を、光検出器40-2に出力する。光検出器40-2には、光強度変調された光信号(第2FM信号)が、波長分割多重濾波器52から入力される。光検出器40-2は、光強度変調された光信号を、第2FM信号「SFM2(t)」を含む電気信号に変換する。光検出器40-2は、変換された電気信号を、遅延検波器47に出力する。 In the second signal system, the wavelength division multiplex filter 52 (wavelength division multiplex filter) outputs a light intensity modulated optical signal (second FM signal) to the photodetector 40-2. A light intensity modulated optical signal (second FM signal) is input from the wavelength division multiplex filter 52 to the photodetector 40-2. The photodetector 40-2 converts the light intensity modulated optical signal into an electrical signal including the second FM signal "S FM2 (t)". Photodetector 40-2 outputs the converted electrical signal to delay detector 47.
 遅延検波器47は、第2FM信号を含む電気信号に対して、遅延検波処理(復調処理)を実行する。低域通過濾波器48は、帯域幅「W」かつ中心周波数「A」の狭帯域信号の高周波成分を除去する。周波数逆変換器49は、高周波成分が除去された第2FM信号の中心周波数を「B」に戻す。周波数逆変換器49は、帯域幅「W」かつ中心周波数「B」の狭帯域信号を、合波器44に出力する。 The delay detector 47 performs delay detection processing (demodulation processing) on the electrical signal including the second FM signal. The low pass filter 48 removes high frequency components of the narrowband signal with a bandwidth "W" and a center frequency "A". The frequency inverse converter 49 returns the center frequency of the second FM signal from which the high frequency component has been removed to "B". The frequency inverse converter 49 outputs a narrowband signal having a bandwidth “W” and a center frequency “B” to the multiplexer 44 .
 このように、第1実施形態との比較例の光通信システム100aでは、2本の信号系統が単純に並列に備えられる。このため、光通信システム100aは、信号を低コストで送信及び受信することができない。 In this way, in the optical communication system 100a of the comparative example with the first embodiment, two signal systems are simply provided in parallel. Therefore, the optical communication system 100a cannot transmit and receive signals at low cost.
 (第2実施形態)
 第2実施形態では、帯域幅「W」の各信号(各狭帯域信号)が光送信装置に入力される点が、第1実施形態との主な差分である。第2実施形態では第1実施形態との差分を中心に説明する。
(Second embodiment)
The main difference between the second embodiment and the first embodiment is that each signal (each narrowband signal) with a bandwidth "W" is input to the optical transmitter. In the second embodiment, differences from the first embodiment will be mainly explained.
 図5は、第2実施形態における、光通信システム1bの構成例を示す図である。光通信システム1bは、光信号を用いて通信するシステムである。光通信システム1bは、光送信装置2bと、伝送路3と、光受信装置4bとを備える。 FIG. 5 is a diagram showing a configuration example of the optical communication system 1b in the second embodiment. The optical communication system 1b is a system that communicates using optical signals. The optical communication system 1b includes an optical transmitter 2b, a transmission line 3, and an optical receiver 4b.
 光送信装置2bは、第1発振器21と、第2発振器22と、一括変換部23と、周波数変換器24と、一括変換部25と、周波数変換器26と、加算器27と、光強度変調器28とを備える。一括変換部23は、位相変調器231と、光検出器232とを備える。一括変換部25は、位相変調器251と、光検出器252とを備える。ここで、第1信号系統の一括変換部23は、第1発振器21及び第2発振器22を、第2信号系統の一括変換部25と共用する。 The optical transmitter 2b includes a first oscillator 21, a second oscillator 22, a batch converter 23, a frequency converter 24, a batch converter 25, a frequency converter 26, an adder 27, and a light intensity modulator. A container 28 is provided. The batch conversion unit 23 includes a phase modulator 231 and a photodetector 232. The batch conversion unit 25 includes a phase modulator 251 and a photodetector 252. Here, the first signal system batch converter 23 shares the first oscillator 21 and the second oscillator 22 with the second signal system batch converter 25.
 光受信装置4bは、光検出器40と、帯域濾波器41と、遅延検波器42と、低域通過濾波器43と、帯域濾波器45と、周波数逆変換器46と、遅延検波器47と、低域通過濾波器48と、周波数逆変換器49とを備える。 The optical receiver 4b includes a photodetector 40, a bandpass filter 41, a delay detector 42, a low-pass filter 43, a bandpass filter 45, a frequency inverse converter 46, and a delay detector 47. , a low-pass filter 48 and a frequency inverse converter 49.
 次に、光送信装置2bの詳細について、第1実施形態における光送信装置2aとの差分を中心に説明する。
 第1信号系統において、位相変調器231には、一例として帯域幅「W」の狭帯域信号(第1狭帯域信号)が、例えばヘッドエンド装置(不図示)から入力される。この狭帯域信号の中心周波数は、例えば「A」である。位相変調器231は、帯域幅「W」の狭帯域信号と、第1発振周波数のレーザー光とを用いて、位相変調された光信号を生成する。
Next, details of the optical transmitter 2b will be explained, focusing on the differences from the optical transmitter 2a in the first embodiment.
In the first signal system, a narrowband signal (first narrowband signal) having a bandwidth of "W" is inputted to the phase modulator 231 from, for example, a headend device (not shown). The center frequency of this narrowband signal is, for example, "A". The phase modulator 231 generates a phase-modulated optical signal using a narrowband signal with a bandwidth of "W" and a laser beam with a first oscillation frequency.
 第2信号系統において、周波数変換器24には、一例として帯域幅「W」の狭帯域信号(第2狭帯域信号)が、例えばヘッドエンド装置(不図示)から入力される。この狭帯域信号の中心周波数は、例えば「A」とは異なる所定の中心周波数(例えば、周波数「B」)である。周波数変換器24は、帯域幅「W」かつ所定の中心周波数の狭帯域信号を、帯域幅「W」かつ中心周波数「A」の狭帯域信号に変換する。周波数変換器24は、帯域幅「W」かつ中心周波数「A」の狭帯域信号(第3狭帯域信号)を、位相変調器251に出力する。 In the second signal system, a narrowband signal (second narrowband signal) with a bandwidth "W" is inputted to the frequency converter 24 from, for example, a headend device (not shown). The center frequency of this narrowband signal is, for example, a predetermined center frequency different from "A" (eg, frequency "B"). The frequency converter 24 converts a narrowband signal having a bandwidth "W" and a predetermined center frequency into a narrowband signal having a bandwidth "W" and a center frequency "A". The frequency converter 24 outputs a narrowband signal (third narrowband signal) having a bandwidth “W” and a center frequency “A” to the phase modulator 251.
 次に、光受信装置4bの詳細について、第1実施形態における光受信装置4aとの差分を中心に説明する。
 低域通過濾波器43は、帯域幅「W」かつ中心周波数「A」の狭帯域信号の高周波成分を除去する。低域通過濾波器43は、帯域幅「W」かつ中心周波数「A」の狭帯域信号を、所定の装置(不図示)に出力する。所定の装置は、例えば、表示装置である。周波数逆変換器49は、帯域幅「W」かつ所定の中心周波数の狭帯域信号の高周波成分を除去する。低域通過濾波器43は、帯域幅「W」かつ所定の中心周波数(例えば、周波数「B」)の狭帯域信号を、所定の装置(不図示)に出力する。
Next, details of the optical receiving device 4b will be explained, focusing on the differences from the optical receiving device 4a in the first embodiment.
The low-pass filter 43 removes high frequency components of the narrowband signal having a bandwidth "W" and a center frequency "A". The low-pass filter 43 outputs a narrowband signal with a bandwidth "W" and a center frequency "A" to a predetermined device (not shown). The predetermined device is, for example, a display device. The frequency inverse converter 49 removes high frequency components of the narrowband signal having a bandwidth "W" and a predetermined center frequency. The low-pass filter 43 outputs a narrowband signal having a bandwidth "W" and a predetermined center frequency (for example, a frequency "B") to a predetermined device (not shown).
 次に、光通信システム1bの動作例を説明する。
 図6は、第2実施形態における、光送信装置2bの動作例を示すフローチャートである。ステップS301からステップS308までの各処理は、図2に例示されたステップS102からステップS109までの各処理と同様である。
Next, an example of the operation of the optical communication system 1b will be explained.
FIG. 6 is a flowchart showing an example of the operation of the optical transmitter 2b in the second embodiment. Each process from step S301 to step S308 is similar to each process from step S102 to step S109 illustrated in FIG.
 図7は、第2実施形態における、光受信装置4bの動作例を示すフローチャートである。ステップS401からステップS309までの各処理は、図3に例示されたステップS201からステップS209までの各処理と同様である。 FIG. 7 is a flowchart showing an example of the operation of the optical receiving device 4b in the second embodiment. Each process from step S401 to step S309 is similar to each process from step S201 to step S209 illustrated in FIG.
 以上のように、第1実施形態の光通信システム1aの光送信装置2aと比較して、光通信システム1bの光送信装置2bでは、帯域幅「W」の周波数分割多重信号が2本の信号系統で並列に光送信装置2bに入力される場合には、帯域分割器20は不要である。また、第1実施形態の光通信システム1aの光受信装置4aと比較して、光通信システム1bの光受信装置4bでは、合波器44は不要である。 As described above, compared to the optical transmitter 2a of the optical communication system 1a of the first embodiment, the optical transmitter 2b of the optical communication system 1b has two frequency division multiplexed signals with a bandwidth of "W". If the signals are input to the optical transmitter 2b in parallel in a system, the band divider 20 is not necessary. Further, compared to the optical receiving device 4a of the optical communication system 1a of the first embodiment, the optical multiplexer 44 is not necessary in the optical receiving device 4b of the optical communication system 1b.
 これによって、各信号系統で伝送される帯域幅「W」の周波数分割多重信号(広帯域信号に相当する複数の狭帯域信号)を低コストで送信及び受信することが可能である。 As a result, it is possible to transmit and receive frequency division multiplexed signals (a plurality of narrowband signals corresponding to a wideband signal) with a bandwidth of "W" transmitted in each signal system at low cost.
 <第2実施形態との比較例>
 図8は、第2実施形態との比較例における、光通信システム100bの構成例を示す図である。光通信システム100bは、光通信システム1bとの比較例である。光通信システム100bは、光送信装置200bと、伝送路3と、光受信装置400bとを備える。光送信装置200bは、光送信装置2bとの比較例である。光受信装置400bは、光受信装置4bとの比較例である。
<Comparative example with the second embodiment>
FIG. 8 is a diagram showing a configuration example of an optical communication system 100b in a comparative example with the second embodiment. Optical communication system 100b is a comparative example with optical communication system 1b. The optical communication system 100b includes an optical transmitter 200b, a transmission line 3, and an optical receiver 400b. The optical transmitter 200b is a comparative example with the optical transmitter 2b. Optical receiving device 400b is a comparative example with optical receiving device 4b.
 光送信装置200bは、一括変換部230と、周波数変換器24と、一括変換部250と、光強度変調器28-1と、光強度変調器28-2と、合波器29とを備える。一括変換部230は、位相変調器231と、光検出器232と、第1発振器21-1と、第2発振器22とを備える。一括変換部250は、位相変調器251と、光検出器252と、第1発振器21-2と、第3発振器30とを備える。ここで、第1信号系統の一括変換部230と第2信号系統の一括変換部250とは、第1発振器21-1、第1発振器21-2、第2発振器22及び第3発振器30を共用しない。 The optical transmitter 200b includes a batch conversion section 230, a frequency converter 24, a batch conversion section 250, a light intensity modulator 28-1, a light intensity modulator 28-2, and a multiplexer 29. The batch conversion unit 230 includes a phase modulator 231, a photodetector 232, a first oscillator 21-1, and a second oscillator 22. The batch conversion unit 250 includes a phase modulator 251, a photodetector 252, a first oscillator 21-2, and a third oscillator 30. Here, the first signal system batch conversion section 230 and the second signal system batch conversion section 250 share the first oscillator 21-1, the first oscillator 21-2, the second oscillator 22, and the third oscillator 30. do not.
 光受信装置400bは、光分波器50と、波長分割多重濾波器51と、波長分割多重濾波器52と、光検出器40-1と、光検出器40-2と、遅延検波器42と、低域通過濾波器43と、合波器44と、遅延検波器47と、低域通過濾波器48と、周波数逆変換器49とを備える。 The optical receiver 400b includes an optical demultiplexer 50, a wavelength division multiplex filter 51, a wavelength division multiplex filter 52, a photodetector 40-1, a photodetector 40-2, and a delay detector 42. , a low-pass filter 43, a multiplexer 44, a delayed detector 47, a low-pass filter 48, and a frequency inverse converter 49.
 次に、光送信装置200bの詳細について、第2実施形態における光送信装置2bとの差分を中心に説明する。
 第2信号系統において、第1発振器21-2は、第1発振周波数のレーザー光を、位相変調器251に出力する。位相変調器251は、帯域幅「W」かつ中心周波数「B」の狭帯域信号と、第2発振周波数のレーザー光とを用いて、位相変調された光信号を生成する。第3発振器30は、第3発振周波数のレーザー発振器であり、例えば、狭線幅レーザーダイオードである。第3発振器30は、第3発振周波数のレーザー光を、光検出器252に出力する。光検出器252(フォトダイオード)は、第3発振周波数のレーザー光を用いて、位相変調された光信号を、第2FM信号「SFM2(t)」(電気信号)に変換する。光検出器252は、第2FM信号を光強度変調器28-2に出力する。光強度変調器28-2は、光強度変調された第2FM信号を、合波器29に出力する。
Next, details of the optical transmitter 200b will be explained, focusing on the differences from the optical transmitter 2b in the second embodiment.
In the second signal system, the first oscillator 21-2 outputs laser light at the first oscillation frequency to the phase modulator 251. The phase modulator 251 generates a phase-modulated optical signal using a narrowband signal having a bandwidth "W" and a center frequency "B" and a laser beam having a second oscillation frequency. The third oscillator 30 is a laser oscillator with a third oscillation frequency, and is, for example, a narrow linewidth laser diode. The third oscillator 30 outputs laser light at a third oscillation frequency to the photodetector 252. The photodetector 252 (photodiode) converts the phase-modulated optical signal into a second FM signal "S FM2 (t)" (electrical signal) using a laser beam of the third oscillation frequency. Photodetector 252 outputs the second FM signal to optical intensity modulator 28-2. The optical intensity modulator 28-2 outputs the optical intensity modulated second FM signal to the multiplexer 29.
 なお、第2実施形態との比較例におけるFM一括変換後の第1FM信号の中心周波数は、第1発振周波数と第2発振周波数との差(絶対値)である。同様に、第2実施形態との比較例におけるFM一括変換後の第2FM信号の中心周波数は、第1発振周波数と第3発振周波数との差(絶対値)である。 Note that the center frequency of the first FM signal after FM batch conversion in the comparative example with the second embodiment is the difference (absolute value) between the first oscillation frequency and the second oscillation frequency. Similarly, the center frequency of the second FM signal after FM batch conversion in the comparative example with the second embodiment is the difference (absolute value) between the first oscillation frequency and the third oscillation frequency.
 合波器29は、光強度変調された第1FM信号と光強度変調された第2FM信号とを合波することによって、波長多重信号を生成する。合波器29は、光信号を用いて、波長多重信号を光受信装置400bに送信する。 The multiplexer 29 generates a wavelength multiplexed signal by multiplexing the optical intensity modulated first FM signal and the optical intensity modulated second FM signal. The multiplexer 29 uses an optical signal to transmit a wavelength multiplexed signal to the optical receiver 400b.
 次に、光受信装置400bの詳細について、第2実施形態における光受信装置4bとの差分を中心に説明する。
 光分波器50(光スプリッタ)には、第1FM信号及び第2FM信号を含む光信号(波長多重信号)が、伝送路3から入力される。光分波器50は、第1FM信号及び第2FM信号を含む光信号を、波長分割多重濾波器51及び波長分割多重濾波器52に出力する。
Next, details of the optical receiving device 400b will be explained, focusing on the differences from the optical receiving device 4b in the second embodiment.
An optical signal (wavelength multiplexed signal) including the first FM signal and the second FM signal is input from the transmission line 3 to the optical demultiplexer 50 (optical splitter). The optical demultiplexer 50 outputs an optical signal including the first FM signal and the second FM signal to the wavelength division multiplex filter 51 and the wavelength division multiplex filter 52.
 第1信号系統において、波長分割多重濾波器51(波長分割多重フィルタ)は、光強度変調された光信号(第1FM信号)を、光検出器40-1に出力する。光検出器40-1には、光強度変調された光信号(第1FM信号)が、波長分割多重濾波器51から入力される。光検出器40-1は、光強度変調された光信号を、第1FM信号「SFM1(t)」を含む電気信号に変換する。光検出器40-1は、変換された電気信号を、遅延検波器42に出力する。 In the first signal system, the wavelength division multiplex filter 51 (wavelength division multiplex filter) outputs a light intensity modulated optical signal (first FM signal) to the photodetector 40-1. A light intensity modulated optical signal (first FM signal) is input from the wavelength division multiplex filter 51 to the photodetector 40-1. The photodetector 40-1 converts the light intensity modulated optical signal into an electrical signal including the first FM signal "S FM1 (t)". Photodetector 40-1 outputs the converted electrical signal to delay detector 42.
 第2信号系統において、波長分割多重濾波器52(波長分割多重フィルタ)は、光強度変調された光信号(第2FM信号)を、光検出器40-2に出力する。光検出器40-2には、光強度変調された光信号(第2FM信号)が、波長分割多重濾波器52から入力される。光検出器40-2は、光強度変調された光信号を、第2FM信号「SFM2(t)」を含む電気信号に変換する。光検出器40-2は、変換された電気信号を、遅延検波器47に出力する。 In the second signal system, the wavelength division multiplex filter 52 (wavelength division multiplex filter) outputs a light intensity modulated optical signal (second FM signal) to the photodetector 40-2. A light intensity modulated optical signal (second FM signal) is input from the wavelength division multiplex filter 52 to the photodetector 40-2. The photodetector 40-2 converts the light intensity modulated optical signal into an electrical signal including the second FM signal "S FM2 (t)". Photodetector 40-2 outputs the converted electrical signal to delay detector 47.
 このように、第2実施形態との比較例の光通信システム100bは、信号を低コストで送信及び受信することができない。 As described above, the optical communication system 100b of the comparative example with the second embodiment cannot transmit and receive signals at low cost.
 (ハードウェア構成例)
 図9は、各実施形態における、光通信装置のハードウェア構成例を示す図である。図9に例示された光通信装置101のハードウェア構成例は、第1実施形態の光送信装置2aのハードウェア構成例と、第1実施形態の光受信装置4aのハードウェア構成例と、第2実施形態の光送信装置2bのハードウェア構成例と、第2実施形態の光受信装置4bのハードウェア構成例とに対応する。
(Hardware configuration example)
FIG. 9 is a diagram showing an example of the hardware configuration of an optical communication device in each embodiment. The hardware configuration example of the optical communication device 101 illustrated in FIG. This corresponds to an example of the hardware configuration of the optical transmitter 2b of the second embodiment and an example of the hardware configuration of the optical receiver 4b of the second embodiment.
 光通信装置101の各機能部のうちの一部又は全部は、CPU(Central Processing Unit)等のプロセッサ102が、不揮発性の記録媒体(非一時的な記録媒体)を有する記憶装置104とメモリ103とに記憶されたプログラムを実行することにより、ソフトウェアとして実現される。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置などの非一時的な記録媒体である。通信部105は、所定の光学機器を用いて、光通信処理を実行する。 Some or all of the functional units of the optical communication device 101 are implemented by a processor 102 such as a CPU (Central Processing Unit), a storage device 104 having a non-volatile recording medium (non-temporary recording medium), and a memory 103. It is realized as software by executing a program stored in . The program may be recorded on a computer-readable recording medium. A computer-readable recording medium is a storage medium such as a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a CD-ROM (Compact Disc Read Only Memory), or a hard disk built into a computer system. It is a non-temporary recording medium such as a device. The communication unit 105 executes optical communication processing using predetermined optical equipment.
 光通信装置101の各機能部の一部又は全部は、例えば、LSI(Large Scale Integrated circuit)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)又はFPGA(Field Programmable Gate Array)等を用いた電子回路(electronic circuit又はcircuitry)を含むハードウェアを用いて実現されてもよい。 Some or all of the functional units of the optical communication device 101 may be implemented using, for example, an LSI (Large Scale Integrated Circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). It may be realized using hardware including an electronic circuit or circuitry.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and includes designs within the scope of the gist of the present invention.
 本発明は、光信号を用いて通信するシステムに適用可能である。 The present invention is applicable to systems that communicate using optical signals.
1a,1b…光通信システム、2a,2b…光送信装置、3…伝送路、4a,4b…光受信装置、20…帯域分割器、21…第1発振器、22…第2発振器、23…一括変換部、24…周波数変換器、25…一括変換部、26…周波数変換器、27…加算器、28…光強度変調器、29…合波器、30…第3発振器、40…光検出器、41…帯域濾波器、42…遅延検波器、43…低域通過濾波器、44…合波器、45…帯域濾波器、46…周波数逆変換器、47…遅延検波器、48…低域通過濾波器、49…周波数逆変換器、50…光分波器、51…波長分割多重濾波器、52…波長分割多重濾波器、100a,100b…光通信システム、101…光通信装置、102…プロセッサ、103…メモリ、104…記憶装置、105…通信部、200a,200b…光送信装置、230…一括変換部、231…位相変調器、232…光検出器、250…一括変換部、251…位相変調器、252…光検出器、400a,400b…光受信装置 1a, 1b... Optical communication system, 2a, 2b... Optical transmitting device, 3... Transmission line, 4a, 4b... Optical receiving device, 20... Band splitter, 21... First oscillator, 22... Second oscillator, 23... All at once Conversion unit, 24... Frequency converter, 25... Bulk conversion unit, 26... Frequency converter, 27... Adder, 28... Light intensity modulator, 29... Multiplexer, 30... Third oscillator, 40... Photodetector , 41... Bandpass filter, 42... Delayed detector, 43... Low pass filter, 44... Multiplexer, 45... Bandpass filter, 46... Frequency inverse converter, 47... Delayed detector, 48... Low-pass Pass filter, 49... Frequency inverter, 50... Optical demultiplexer, 51... Wavelength division multiplex filter, 52... Wavelength division multiplex filter, 100a, 100b... Optical communication system, 101... Optical communication device, 102... Processor, 103...Memory, 104...Storage device, 105...Communication unit, 200a, 200b...Optical transmitter, 230...Batch conversion unit, 231...Phase modulator, 232...Photodetector, 250...Batch conversion unit, 251... Phase modulator, 252...photodetector, 400a, 400b...optical receiving device

Claims (7)

  1.  第1発振周波数の第1レーザー光を生成する第1発振器と、
     第2発振周波数の第2レーザー光を生成する第2発振器と、
     前記第1レーザー光と前記第2レーザー光とを用いて、所定の狭帯域幅かつ第1中心周波数の第1狭帯域信号に対して周波数変調一括変換を実行することによって、第1周波数変調信号を生成する第1一括変換部と、
     前記所定の狭帯域幅かつ第2中心周波数の第2狭帯域信号を、前記所定の狭帯域幅かつ前記第1中心周波数の第3狭帯域信号に変換する第1周波数変換器と、
     前記第1レーザー光と前記第2レーザー光とを用いて、前記第3狭帯域信号に対して周波数変調一括変換を実行することによって、第2周波数変調信号を生成する第2一括変換部と、
     前記第1周波数変調信号と前記第2周波数変調信号との周波数軸上での重なりが小さくなるように、前記第2周波数変調信号の周波数を変更する第2周波数変換器と、
     周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とを周波数軸上で加算する加算器と、
     周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号との加算結果に対して光強度変調を実行することによって、光強度変調された光信号を生成する光強度変調器と
     を備える光送信装置。
    a first oscillator that generates a first laser beam having a first oscillation frequency;
    a second oscillator that generates a second laser beam with a second oscillation frequency;
    A first frequency modulated signal is obtained by performing frequency modulation batch conversion on a first narrow band signal having a predetermined narrow bandwidth and a first center frequency using the first laser beam and the second laser beam. a first batch conversion unit that generates
    a first frequency converter that converts the second narrowband signal having the predetermined narrow bandwidth and the second center frequency into a third narrowband signal having the predetermined narrow bandwidth and the first center frequency;
    a second batch conversion unit that generates a second frequency modulation signal by performing frequency modulation batch conversion on the third narrowband signal using the first laser light and the second laser light;
    a second frequency converter that changes the frequency of the second frequency modulation signal so that the overlap between the first frequency modulation signal and the second frequency modulation signal on the frequency axis becomes small;
    an adder that adds the second frequency modulated signal whose frequency has been changed and the first frequency modulated signal on a frequency axis;
    an optical intensity modulator that generates an optical intensity modulated optical signal by performing optical intensity modulation on the addition result of the second frequency modulated signal whose frequency has been changed and the first frequency modulated signal; An optical transmitting device equipped with.
  2.  所定の広帯域信号を前記第1狭帯域信号及び前記第2狭帯域信号に周波数軸上で分割する帯域分割器を更に備える、請求項1に記載の光送信装置。 The optical transmitter according to claim 1, further comprising a band divider that divides a predetermined wideband signal into the first narrowband signal and the second narrowband signal on a frequency axis.
  3.  前記第2周波数変換器は、前記第1周波数変調信号と前記第2周波数変調信号との干渉量が所定量となる第1周波数変換量よりも多い第2周波数変換量に応じて、前記第2周波数変調信号の周波数を変更する、請求項1又は請求項2に記載の光送信装置。 The second frequency converter converts the second frequency converter according to a second frequency conversion amount that is larger than the first frequency conversion amount such that an amount of interference between the first frequency modulation signal and the second frequency modulation signal becomes a predetermined amount. The optical transmitter according to claim 1 or 2, wherein the optical transmitter changes the frequency of a frequency modulated signal.
  4.  光送信装置が実行する光送信方法であって、
     第1発振周波数の第1レーザー光を生成するステップと、
     第2発振周波数の第2レーザー光を生成するステップと、
     前記第1レーザー光と前記第2レーザー光とを用いて、所定の狭帯域幅かつ第1中心周波数の第1狭帯域信号に対して周波数変調一括変換を実行することによって、第1周波数変調信号を生成するステップと、
     前記所定の狭帯域幅かつ第2中心周波数の第2狭帯域信号を、前記所定の狭帯域幅かつ前記第1中心周波数の第3狭帯域信号に変換するステップと、
     前記第1レーザー光と前記第2レーザー光とを用いて、前記第3狭帯域信号に対して周波数変調一括変換を実行することによって、第2周波数変調信号を生成するステップと、
     前記第1周波数変調信号と前記第2周波数変調信号との周波数軸上での重なりが小さくなるように、前記第2周波数変調信号の周波数を変更するステップと、
     周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とを周波数軸上で加算するステップと、
     周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号との加算結果に対して光強度変調を実行することによって、光強度変調された光信号を生成するステップと
     を含む光送信方法。
    An optical transmission method performed by an optical transmission device, the method comprising:
    generating a first laser beam having a first oscillation frequency;
    generating a second laser beam having a second oscillation frequency;
    A first frequency modulated signal is obtained by performing frequency modulation batch conversion on a first narrow band signal having a predetermined narrow bandwidth and a first center frequency using the first laser beam and the second laser beam. a step of generating
    converting the second narrowband signal having the predetermined narrow bandwidth and the second center frequency into a third narrowband signal having the predetermined narrow bandwidth and the first center frequency;
    generating a second frequency modulated signal by performing frequency modulation batch conversion on the third narrowband signal using the first laser beam and the second laser beam;
    changing the frequency of the second frequency modulation signal so that the overlap between the first frequency modulation signal and the second frequency modulation signal on the frequency axis becomes small;
    adding the second frequency modulated signal whose frequency has been changed and the first frequency modulated signal on a frequency axis;
    and generating a light intensity modulated optical signal by performing light intensity modulation on the addition result of the second frequency modulated signal and the first frequency modulated signal, the frequency of which has been changed. Method.
  5.  光送信装置と光受信装置とを備える光通信システムであって、
     前記光送信装置は、
     第1発振周波数の第1レーザー光を生成する第1発振器と、
     第2発振周波数の第2レーザー光を生成する第2発振器と、
     前記第1レーザー光と前記第2レーザー光とを用いて、所定の狭帯域幅かつ第1中心周波数の第1狭帯域信号に対して周波数変調一括変換を実行することによって、第1周波数変調信号を生成する第1一括変換部と、
     前記所定の狭帯域幅かつ第2中心周波数の第2狭帯域信号を、前記所定の狭帯域幅かつ前記第1中心周波数の第3狭帯域信号に変換する第1周波数変換器と、
     前記第1レーザー光と前記第2レーザー光とを用いて、前記第3狭帯域信号に対して周波数変調一括変換を実行することによって、第2周波数変調信号を生成する第2一括変換部と、
     前記第1周波数変調信号と前記第2周波数変調信号との周波数軸上での重なりが小さくなるように、前記第2周波数変調信号の周波数を変更する第2周波数変換器と、
     周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とを周波数軸上で加算する加算器と、
     周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号との加算結果に対して光強度変調を実行することによって、光強度変調された光信号を生成する光強度変調器とを有し、
     前記光受信装置は、
     前記光強度変調された光信号を、周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とに変換する光検出器と、
     周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とから、前記第1周波数変調信号を抽出する第1帯域濾波器と、
     抽出された前記第1周波数変調信号に対して遅延検波処理を実行することによって、前記第1狭帯域信号を生成する第1遅延検波器と、
     前記第1狭帯域信号の高周波成分を除去する第1低域通過濾波器と、
     周波数が変更された前記第2周波数変調信号と前記第1周波数変調信号とから、周波数が変更された前記第2周波数変調信号を抽出する第2帯域濾波器と、
     周波数が変更された前記第2周波数変調信号の周波数を前記第1周波数変調信号の周波数と同じにすることによって、前記第2周波数変調信号を生成する第1周波数逆変換器と、
     前記第2周波数変調信号に対して遅延検波処理を実行することによって、前記第3狭帯域信号を生成する第2遅延検波器と、
     前記第3狭帯域信号の高周波成分を除去する第2低域通過濾波器と、
     高周波成分が除去された前記第3狭帯域信号に基づいて前記第2狭帯域信号を生成する第2周波数逆変換器とを有する、
     光通信システム。
    An optical communication system comprising an optical transmitter and an optical receiver,
    The optical transmitter includes:
    a first oscillator that generates a first laser beam having a first oscillation frequency;
    a second oscillator that generates a second laser beam with a second oscillation frequency;
    A first frequency modulated signal is obtained by performing frequency modulation batch conversion on a first narrow band signal having a predetermined narrow bandwidth and a first center frequency using the first laser beam and the second laser beam. a first batch conversion unit that generates
    a first frequency converter that converts the second narrowband signal having the predetermined narrow bandwidth and the second center frequency into a third narrowband signal having the predetermined narrow bandwidth and the first center frequency;
    a second batch conversion unit that generates a second frequency modulation signal by performing frequency modulation batch conversion on the third narrowband signal using the first laser light and the second laser light;
    a second frequency converter that changes the frequency of the second frequency modulation signal so that the overlap between the first frequency modulation signal and the second frequency modulation signal on the frequency axis becomes small;
    an adder that adds the second frequency modulation signal whose frequency has been changed and the first frequency modulation signal on a frequency axis;
    an optical intensity modulator that generates an optical intensity modulated optical signal by performing optical intensity modulation on the addition result of the second frequency modulated signal and the first frequency modulated signal whose frequency has been changed; have,
    The optical receiving device includes:
    a photodetector that converts the light intensity modulated optical signal into the second frequency modulated signal and the first frequency modulated signal whose frequency has been changed;
    a first bandpass filter that extracts the first frequency modulation signal from the second frequency modulation signal whose frequency has been changed and the first frequency modulation signal;
    a first delay detector that generates the first narrowband signal by performing delay detection processing on the extracted first frequency modulation signal;
    a first low-pass filter that removes high frequency components of the first narrowband signal;
    a second bandpass filter that extracts the second frequency modulated signal whose frequency has been changed from the second frequency modulated signal whose frequency has been changed and the first frequency modulated signal;
    a first frequency inverse converter that generates the second frequency modulation signal by making the frequency of the second frequency modulation signal whose frequency has been changed the same as the frequency of the first frequency modulation signal;
    a second delay detector that generates the third narrowband signal by performing delay detection processing on the second frequency modulation signal;
    a second low-pass filter that removes high frequency components of the third narrowband signal;
    a second frequency inverse converter that generates the second narrowband signal based on the third narrowband signal from which high frequency components have been removed;
    Optical communication system.
  6.  前記光送信装置は、所定の広帯域信号を前記第1狭帯域信号及び前記第2狭帯域信号に周波数軸上で分割する帯域分割器を更に備え、
     前記光受信装置は、高周波成分が除去された前記第1狭帯域信号と前記第2狭帯域信号とを合波する合波器を更に備える、請求項5に記載の光通信システム。
    The optical transmitter further includes a band divider that divides the predetermined wideband signal into the first narrowband signal and the second narrowband signal on the frequency axis,
    6. The optical communication system according to claim 5, wherein the optical receiver further includes a multiplexer that multiplexes the first narrowband signal from which high frequency components have been removed and the second narrowband signal.
  7.  前記第2周波数変換器は、前記第1周波数変調信号と前記第2周波数変調信号との干渉量が所定量となる第1周波数変換量よりも多い第2周波数変換量に応じて、前記第2周波数変調信号の周波数を変更する、請求項5又は請求項6に記載の光通信システム。 The second frequency converter converts the second frequency converter according to a second frequency conversion amount that is larger than the first frequency conversion amount such that an amount of interference between the first frequency modulation signal and the second frequency modulation signal becomes a predetermined amount. The optical communication system according to claim 5 or 6, wherein the frequency of the frequency modulated signal is changed.
PCT/JP2022/033739 2022-09-08 2022-09-08 Optical transmission device, optical transmission method, and optical communication system WO2024053053A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/033739 WO2024053053A1 (en) 2022-09-08 2022-09-08 Optical transmission device, optical transmission method, and optical communication system
PCT/JP2023/005987 WO2024053131A1 (en) 2022-09-08 2023-02-20 Optical transmission device, optical transmission method, and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033739 WO2024053053A1 (en) 2022-09-08 2022-09-08 Optical transmission device, optical transmission method, and optical communication system

Publications (1)

Publication Number Publication Date
WO2024053053A1 true WO2024053053A1 (en) 2024-03-14

Family

ID=90192169

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/033739 WO2024053053A1 (en) 2022-09-08 2022-09-08 Optical transmission device, optical transmission method, and optical communication system
PCT/JP2023/005987 WO2024053131A1 (en) 2022-09-08 2023-02-20 Optical transmission device, optical transmission method, and optical communication system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005987 WO2024053131A1 (en) 2022-09-08 2023-02-20 Optical transmission device, optical transmission method, and optical communication system

Country Status (1)

Country Link
WO (2) WO2024053053A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006600A1 (en) * 2003-07-11 2005-01-20 Nippon Telegraph And Telephone Corporation Optical signal transmitter and optical signal transmission system
JP2006287433A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Fm modulation method, fm modulation apparatus, and optical transmission system
WO2022049623A1 (en) * 2020-09-01 2022-03-10 日本電信電話株式会社 Light transmitting device, light transmitting method, and optical transmission system
WO2022172381A1 (en) * 2021-02-10 2022-08-18 日本電信電話株式会社 Optical transmission device, optical transmission method, and optical transmission system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372580B2 (en) * 2020-09-18 2023-11-01 日本電信電話株式会社 Signal conversion device and signal conversion method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006600A1 (en) * 2003-07-11 2005-01-20 Nippon Telegraph And Telephone Corporation Optical signal transmitter and optical signal transmission system
JP2006287433A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Fm modulation method, fm modulation apparatus, and optical transmission system
WO2022049623A1 (en) * 2020-09-01 2022-03-10 日本電信電話株式会社 Light transmitting device, light transmitting method, and optical transmission system
WO2022172381A1 (en) * 2021-02-10 2022-08-18 日本電信電話株式会社 Optical transmission device, optical transmission method, and optical transmission system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHITABA, TOSHIAKI; TOMOAKI, YOSHIDA; JUN, TERADA: "Optical video transmission technique using FM conversion", IEICE TECHNICAL REPORT; IE, IEICE, JP, vol. 119, no. 323 (CS2019-84), 30 November 2019 (2019-11-30), JP , pages 97 - 101, XP009535311 *

Also Published As

Publication number Publication date
WO2024053131A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
EP3602845B1 (en) Optical communication systems, devices, and methods including high performance optical receivers
US6643417B2 (en) All optical image reject down-converter
JP4184474B2 (en) OPTICAL TRANSMISSION SYSTEM AND OPTICAL TRANSMITTING DEVICE AND OPTICAL RECEIVING DEVICE USED FOR THE SAME
US10069568B1 (en) Communications system providing photonic conversion and power detection and related methods
US9680576B1 (en) Photonic frequency converting transceiver and related methods
US6731922B1 (en) Optical image reject down converter
Rohde et al. Digital multi-wavelength generation and real time video transmission in a coherent ultra dense WDM PON
JP5211117B2 (en) Terahertz continuous wave generator and method
FR3070102A1 (en) DEVICE FOR OPTICALLY RECEIVING A SIGNAL FROM A PHASE CONTROL ANTENNA ARRAY AND ASSOCIATED ANTENNA SYSTEM
US9077470B2 (en) Optical transmission system using cross phase modulation
WO2024053053A1 (en) Optical transmission device, optical transmission method, and optical communication system
CN112383363B (en) Large bandwidth phased array receiving device based on frequency mixing technology
WO2022049623A1 (en) Light transmitting device, light transmitting method, and optical transmission system
CN1922805B (en) Optical transporting apparatus, optical transmission system, optical transporting method, and optical transmission method
US5390043A (en) Compressed channel spacing for optical heterodyne communication systems
JP4410760B2 (en) Optical signal receiver, optical signal receiver and optical signal transmission system
US20230275658A1 (en) Optical transmission system and transmission quality monitoring method
US7391978B2 (en) Optical signal transmitter and optical signal transmission system
US20230370167A1 (en) Signal converting apparatus and signal converting method
US10749604B2 (en) Optical phase distortion compensating device and method of compensating optical phase distortion
JP2006287410A (en) Optical transmitter, optical receiver, and optical transmission system
WO2023162213A1 (en) Optical transmitter and transmission method
JP7467599B2 (en) System and method for increasing optical power at RF over fiber links - Patents.com
WO2023032141A1 (en) Optical reception device, optical transmission device, optical transmission system, feedback method, and adjustment method
WO2022145047A1 (en) Light transmitting device, light transmitting method, and optical transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958132

Country of ref document: EP

Kind code of ref document: A1