WO2024053026A1 - Plant model generation device and computer-readable recording medium - Google Patents

Plant model generation device and computer-readable recording medium Download PDF

Info

Publication number
WO2024053026A1
WO2024053026A1 PCT/JP2022/033597 JP2022033597W WO2024053026A1 WO 2024053026 A1 WO2024053026 A1 WO 2024053026A1 JP 2022033597 W JP2022033597 W JP 2022033597W WO 2024053026 A1 WO2024053026 A1 WO 2024053026A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant model
plant
predetermined
stabilization
characteristic parameter
Prior art date
Application number
PCT/JP2022/033597
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 小木曽
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/033597 priority Critical patent/WO2024053026A1/en
Priority to JP2023515248A priority patent/JP7343731B1/en
Publication of WO2024053026A1 publication Critical patent/WO2024053026A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a plant model generation device and a computer-readable recording medium.
  • a simulator is used to simulate the operation of a machine to be controlled (for example, Patent Document 1). Simulations are sometimes performed using data collected when the machine is actually operated. The knowledge obtained through simulation is used in the analysis and design of real-world controlled objects.
  • the simulation is performed by modeling a servo system that follows the rotational speed of the main shaft, the position of the feed axis, etc. to desired values, for example.
  • the main shaft and feed shaft to be controlled in a servo system will be referred to as a plant
  • a model that simulates a plant will be referred to as a plant model.
  • the behavior of industrial machinery can be modeled using ordinary differential equations, for example. Then, the behavior of the industrial machine can be simulated by updating the state quantity through numerical calculation at every predetermined sample time ⁇ t.
  • a simulation in which the behavior of industrial machinery is modeled using ordinary differential equations and the state quantities of a plant are updated through numerical calculations at every predetermined sample time ⁇ t composes ordinary differential equations, even though the operation of the actual machine is stable.
  • the state quantity may become unstable (divergence/oscillation).
  • the sampling time ⁇ t be about 0.5 to 2 times the servo control period.
  • instability can be avoided by reducing the sampling time ⁇ t, but there is a problem in that the amount of calculation increases. Therefore, there is a desire in the field to ensure the stability of simulations while avoiding an increase in the amount of calculations.
  • the plant model generation device solves the above problems by ensuring the stability of a resonant system plant model by changing specific mechanical characteristic parameters for a simulator that simulates plant behavior using ordinary differential equations. do. If stabilization cannot be achieved by adjusting parameters, make the resonant plant model a rigid body.
  • One aspect of the present disclosure is a plant model generation device that generates a plant model that simulates the behavior of a plant to be controlled by numerical calculation of a predetermined formula by calculating coefficients of the numerical calculation, a simulation condition acquisition unit that acquires simulation conditions including at least a sample time; a characteristic parameter acquisition unit that acquires characteristic parameters indicating characteristics of the plant; a stabilization processing unit that adjusts predetermined characteristic parameters so that numerical calculations satisfy stabilization conditions that cause damped vibration; and a plant model based on the characteristic parameters of the predetermined plant model adjusted by the stabilization processing unit.
  • This is a plant model generation device comprising: a coefficient calculating unit that calculates coefficients of the present invention.
  • a computer-readable recording medium recording a program, comprising: a simulation condition acquisition unit that acquires simulation conditions including at least a sample time; a characteristic parameter acquisition unit that acquires characteristic parameters indicating characteristics of the plant; and the simulation conditions; a stabilization processing section that adjusts a predetermined characteristic parameter based on the characteristic parameter so that numerical calculations in a predetermined plant model satisfy stabilization conditions that cause damped vibration;
  • This is a computer-readable recording medium that records a program that causes a computer to operate as a coefficient calculation unit that calculates coefficients of a plant model based on characteristic parameters of the plant model.
  • FIG. 1 is a schematic hardware configuration diagram of a diagnostic device according to an embodiment of the present invention.
  • FIG. 1 is a block diagram schematically showing the functions of a diagnostic device according to a first embodiment of the present invention. It is a figure which illustrates the structure of the feed axis
  • FIG. 2 is a diagram showing an example of a plant model of a two-inertial resonance system.
  • FIG. 2 is a diagram showing an example of a block diagram of a two-inertia resonance system.
  • FIG. 3 is a diagram showing an example of a rigid body model. 3 is a flowchart illustrating the flow of processing executed by a stabilization processing unit.
  • FIG. 1 is a schematic hardware configuration diagram showing the main parts of a plant model generation device according to an embodiment of the present invention.
  • the plant model generation device 1 of the present invention can be implemented, for example, as a control device that controls the industrial machine 4 based on a control program. Further, the plant model generation device 1 of the present invention can be used in a personal computer attached to a control device that controls the industrial machine 4 based on a control program, a personal computer connected to the control device via a wired/wireless network, or a cell. It can be implemented on a computer, fog computer 6, cloud server 7. In this embodiment, an example is shown in which the plant model generation device 1 is installed on a personal computer connected to a control device of an industrial machine 4 via a network.
  • the CPU 11 included in the plant model generation device 1 of the present invention is a processor that controls the plant model generation device 1 as a whole.
  • the CPU 11 reads a system program stored in the ROM 12 via the bus 22, and controls the entire plant model generation device 1 according to the system program.
  • the RAM 13 temporarily stores temporary calculation data, display data, various data input from the outside, and the like.
  • the non-volatile memory 14 is composed of, for example, a memory backed up by a battery (not shown), a SSD (Solid State Drive), etc., and the stored state is maintained even when the power of the plant model generation device 1 is turned off.
  • the nonvolatile memory 14 stores data and programs read from the external device 72 via the interface 15, data and programs input via the input device 71, data acquired from the industrial machine 4, and the like.
  • the data and programs stored in the nonvolatile memory 14 may be expanded to the RAM 13 when executed/used. Further, various system programs such as a known analysis program are written in the ROM 12 in advance.
  • the interface 15 is an interface for connecting the CPU 11 of the plant model generation device 1 to an external device 72 such as a USB device. From the external device 72 side, for example, programs related to the functions of the plant model generation device 1, various data related to service provision, etc. can be read. Furthermore, programs and various data edited within the plant model generation device 1 can be stored in external storage means via the external device 72.
  • the display device 70 outputs and displays each data read into the memory, data obtained as a result of executing programs, system programs, etc. via the interface 18. Further, an input device 71 composed of a keyboard, a pointing device, etc. passes commands, data, etc. based on operations by a worker to the CPU 11 via the interface 19.
  • the interface 20 is an interface for connecting the CPU 11 of the plant model generation device 1 and the network 5.
  • the network 5 may be a WAN (Wide Area Network) composed of a leased line or the like, or may be a wide area network such as the Internet.
  • industrial machines 4 such as machine tools and robots installed in factories, fog computers 6, cloud servers 7, and the like. Each of these devices exchanges data with the plant model generation device 1 via the network 5.
  • FIG. 2 is a schematic block diagram showing the functions included in the plant model generation device 1 according to the first embodiment of the present invention.
  • Each function provided in the plant model generation device 1 according to the present embodiment is achieved by the CPU 11 included in the plant model generation device 1 shown in FIG. 1 executing a system program and controlling the operation of each part of the plant model generation device 1. Realized.
  • the plant model generation device 1 of this embodiment includes a simulation condition acquisition section 110, a characteristic parameter acquisition section 120, a stabilization processing section 130, a coefficient calculation section 140, and an output section 150.
  • the RAM 13 to nonvolatile memory 14 of the plant model generation device 1 include a plant model storage section 200, which is an area where a template of a plant model is stored in advance, and a simulation condition acquired by the simulation condition acquisition section 110.
  • a simulation condition storage section 210, which is an area, and a characteristic parameter storage section 220, which is an area for storing characteristic parameters acquired by the characteristic parameter acquisition section 120, are prepared in advance.
  • the simulation condition acquisition unit 110 Based on the plant model template stored in the plant model storage unit 200, the simulation condition acquisition unit 110 identifies conditions required when performing a simulation using the plant model. Then, the specified simulation conditions are acquired and stored in the simulation condition storage section 210.
  • the simulation conditions include at least a sample time ⁇ t in the simulation.
  • the simulation condition acquisition unit 110 may display, for example, on the display device 70 a screen that prompts input of simulation conditions, and acquire the simulation conditions by inputting from the input device 71. Alternatively, the simulation conditions may be read and acquired from the external device 72. Furthermore, the simulation conditions may be acquired from a computer such as the fog computer 6 or the cloud server 7 via the network 5.
  • the characteristic parameter acquisition unit 120 Based on the plant model template stored in the plant model storage unit 200, the characteristic parameter acquisition unit 120 identifies characteristic parameters required when performing simulation using the plant model. Then, the characteristic parameters of the identified plant model are acquired and stored in the characteristic parameter storage section 220.
  • the characteristic parameters of the plant model differ depending on the plant model. For example, consider the configuration of a feed shaft provided in a plant treated as a control target, as illustrated in FIG. In the example shown in FIG. 3, the feed shaft drives the table (work stand) by decelerating the rotation of the motor with a belt pulley and converting it into linear motion with a ball screw.
  • Such a controlled object can be modeled as a two-inertia resonant system in which the rotor inertia of the motor and the inertia of a rigid body called a table are coupled by a single spring element, as illustrated in FIG.
  • a single spring element refers to everything from the belt pulley to the ball screw as one spring element.
  • FIG. 5 is a block diagram illustrating a model of a two-inertia resonance system.
  • u is the torque input to the motor as the manipulated variable of the servo system
  • v M is the speed of the motor
  • v L is the speed of the table
  • J M is the rotor inertia moment
  • J L is the table inertia moment
  • C M is the The viscous friction (damping property) of the motor
  • C T is the damping property when torque is transmitted between the motor and the table
  • K T is the spring constant of a single spring element
  • R is the table inertia moment J L and the rotor inertia moment J This is the inertia ratio with M.
  • 1/(Z-1) represents an integral element.
  • the block diagram illustrated in FIG. 5 assumes that viscous friction proportional to inertia acts on the motor and table.
  • Equation 1 A is a system matrix
  • B is an input matrix
  • 1/(Z-1) is an integral element.
  • Examples of other plant models include, for example, a rigid model.
  • the controlled object is modeled as a rigid system in which the rotor inertia of the motor and the table inertia are integrated.
  • the plant model storage unit 200 stores in advance an equation representing the characteristics of such a controlled object as a plant model.
  • the plant model storage unit 200 may store characteristic parameters that are not included in the expression representing the plant model, or may store relational expressions indicating the relationships between the respective characteristic parameters.
  • the characteristic parameters of a two-inertia resonance system model include the natural frequency f a of the spring-table when the motor shaft is fixed, the reduction ratio r B of the belt pulley, and the ball Examples include the thread pitch l S and the table mass M L .
  • Such characteristic parameters can be used to calculate other characteristic parameters.
  • the table moment of inertia J L can be calculated using the following equation 3 using the belt pulley reduction ratio r B , the ball screw pitch I S , and the table mass M L.
  • the spring constant K T of a single spring element can be calculated using the following equation 4 using the natural frequency fa of the spring-table when the motor shaft is fixed, and the moment of inertia J L of the table.
  • the characteristic parameter acquisition unit 120 specifies necessary characteristic parameters based on the characteristic parameters included in the expression expressing the characteristics of the controlled object and the relational expression of each characteristic parameter. For example, things that can be calculated from other characteristic parameters, such as the table moment of inertia J L or the spring constant K T of a single spring element, may be obtained directly or from the values of other characteristic parameters. It may be calculated indirectly.
  • the characteristic parameter acquisition unit 120 may acquire the characteristic parameters of such a plant model by displaying, for example, a screen on the display device 70 that prompts input of the characteristic parameters, and inputting the characteristic parameters from the input device 71.
  • the characteristic parameters of the plant model may be read and acquired from the external device 72.
  • the characteristic parameters of the plant model may be acquired from a computer such as the fog computer 6 or the cloud server 7 via the network 5.
  • the stabilization processing unit 130 derives stabilization conditions under which damped vibration occurs in the plant model, based on the simulation conditions stored in the simulation condition storage unit 210 and the characteristic parameters stored in the characteristic parameter acquisition unit 120. Then, if a stabilization condition that causes damped oscillation exists, a plant model is generated in which predetermined characteristic parameters are set in a range where damped oscillation occurs. On the other hand, if there are no stabilizing conditions that cause damped vibration, a plant model is generated with characteristic parameters adjusted to become a rigid body model.
  • the plant model generated by the stabilization processing unit 130 uses a plant model that expresses the operation of the controlled object using a predetermined formula. For example, consider a plant model of a two-inertial resonant system as exemplified by Equation 1. In such a case, when the plant model is numerically calculated, the stabilization conditions can be set as conditions that do not cause divergence or oscillation. In the case of the plant model illustrated in Equation 1, the stabilization conditions can be determined using the eigenvalue ⁇ of the system matrix A.
  • Equation 1 the eigenvalue ⁇ of the system matrix A is expressed as Equation 5 below.
  • J A is the composite value of the moments of inertia of the two-inertial resonant system
  • C A is the composite value of the damping properties of the two-inertial resonant system.
  • the stabilization processing unit 130 determines a stabilization condition in which the eigenvalue ⁇ does not exceed 1 based on the given simulation conditions and characteristic parameters. Then, in order to stabilize the numerical calculation of the plant model, simulation conditions or characteristic parameters are adjusted. At this time, characteristic parameters such as the rotor inertia moment J M , the table inertia moment J L , and the spring constant K T of the single spring element represent characteristics that strongly control the behavior of the industrial machine 4 to be controlled. , if these are adjusted, the purpose of the simulation may not be achieved. Furthermore, when the value of the sampling time ⁇ t is decreased, the amount of calculation increases.
  • the stabilization processing unit 130 adjusts at least one of the damping property composite value C A , the viscous friction C M of the motor, and the damping property CT when torque is transmitted between the motor and the table. By doing so, adjustment is made so that the eigenvalue ⁇ does not exceed 1.
  • Equation 5 (1) The eigenvalue of Equation 5 (1) is determined only by the viscous friction C M of the motor, regardless of the damping property C T when torque is transmitted between the motor and the table.
  • the stabilization condition regarding Equation 5 (1) can be expressed by Equation 6 below. Since the viscous friction C M of the motor does not usually fail to satisfy the condition for stabilizing the eigenvalue of Equation 5 (1), there is no need to determine the condition for stabilizing the eigenvalue.
  • the upper limit of the damped oscillation C A can be expressed by the following equation 9.
  • C A exceeds the upper limit expressed by Equation 9
  • the plant becomes overdamped. Even with overdamping, the plant is still stable. Since vibration due to resonance does not occur with overdamping, if a two-inertial resonant system is used as a plant model, it is desirable that C A satisfy Equation 9.
  • the stabilization processing unit 130 first derives stabilization conditions for numerical calculation of the plant model based on the simulation conditions and the characteristic parameters of the plant model (step SA01). Then, it is determined whether there is a composite value C A of damping properties that satisfies the conditions for producing damped oscillations, that is, whether the condition of Equation 7, which is the condition for producing damped oscillations, is satisfied (step SA02). If there is a damping composite value C A that satisfies the conditions for generating damped vibration (Yes in step SA02), then it is determined whether the damping composite value CA satisfies Equation 8 ( Step SA03).
  • Equation 8 is not satisfied (No in step SA03), that is, if C A is less than the lower limit value + tolerance value ⁇ , the attenuation is combined so that the combined value C A of the attenuation becomes K T ⁇ t + ⁇ .
  • the characteristic parameters of at least one of the value C A , the viscous friction C M of the motor, and the damping property C T when torque is transmitted between the motor and the table are adjusted (step SA04).
  • the stabilization processing unit 130 satisfies Equation 9, which indicates the upper limit value of the composite value C A of damping properties that causes damped vibration. It is determined whether or not to do so (step SA05). If Equation 9 is not satisfied (No in step SA05), the composite value C A of the damping property is adjusted so that the composite value C A of the damping property becomes the upper limit value 2 ⁇ (J A K T ). The characteristic parameters of at least one of the viscous friction C M and the damping property C T when torque is transmitted between the motor and the table are adjusted (step SA06).
  • step SA07 the stabilization processing unit 130 changes the plant model to a rigid body model.
  • the conditions for stabilizing the rigid body model are similar to those expressed in Equation 6. Therefore, this stabilization condition is usually satisfied.
  • the coefficient calculation unit 140 calculates each coefficient of the formula representing the plant model based on the plant model determined by the stabilization processing unit 130, the characteristic parameters of the plant model that satisfy the stabilization conditions, and the simulation conditions.
  • the coefficient calculation unit 140 calculates each coefficient in the difference equation illustrated in Equation 1 and Equation 2 based on the characteristic parameters of the plant model determined by the stabilization processing unit 130 and the simulation conditions. Generate the model.
  • the output unit 150 outputs the plant model generated by the coefficient calculation unit 140 calculating the coefficients.
  • the output unit 150 may display and output an expression representing the generated plant model to the display device 70.
  • the data may be stored and output to an external memory device via the external device 72.
  • the output may be transmitted to the industrial machine 4 or to a computer such as the fog computer 6 or the cloud server 7 via the network 5.
  • the output plant model is used to perform simulations with a simulation device, digital twin system, etc.
  • the plant model generation device 1 can be expected to ensure stability of numerical calculations while avoiding an increase in the amount of calculations when constructing a servo system simulator.
  • the characteristic parameters are adjusted in advance by the stabilization processing unit 130 when calculating the coefficients of the plant model, the numerical calculation of the plant model is stabilized, which contributes to improving the reliability of the product.
  • the plant model generation device 1 according to this embodiment differs from the plant model generation device 1 according to the first embodiment in the stabilization processing by the stabilization processing unit 130.
  • the stabilization processing unit 130 determines whether the composite value C A of attenuation characteristics satisfies Equation 8. If Equation 8 is not satisfied, that is, if C A is less than the lower limit value + tolerance, the characteristic parameters are temporarily adjusted so that the composite value C A of the attenuation property becomes K T ⁇ t+ ⁇ .
  • the stabilization processing unit 130 determines whether or not the provisionally adjusted characteristic parameter satisfies the overdamping stabilization condition expressed by Equation 10 below. If the conditions are satisfied, the temporarily adjusted characteristic parameters are output as adjusted characteristic parameters.
  • the plant model is changed to a rigid body model.
  • the method of changing to a rigid body model is the same as that according to the first embodiment.
  • the present invention is not limited to the above-described embodiments, and can be implemented in various forms by making appropriate changes.
  • the present invention can also be applied to other plant models modeled in the form of general ordinary differential equations. techniques are applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A plant model generation device according to the present disclosure is provided with: a simulation condition acquisition unit that acquires a simulation condition including at least a sample time; a characteristic parameter acquisition unit that acquires characteristic parameters indicating characteristics of a plant; a stabilization processing unit that adjusts, on the basis of the simulation condition and the characteristic parameters, a prescribed characteristic parameter such that a numerical calculation in a prescribed plant model satisfies a condition for stabilization that results in damped oscillation; and a coefficient calculation unit that calculates a coefficient of the plant model on the basis of the adjusted characteristic parameter of the prescribed plant model.

Description

プラントモデル生成装置及びコンピュータ読み取り可能な記録媒体Plant model generation device and computer readable recording medium
 本発明は、プラントモデル生成装置及びコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to a plant model generation device and a computer-readable recording medium.
 制御対象となる機械について、シミュレータを用いて動作のシミュレーションを行うことが行われている(例えば、特許文献1など)。シミュレーションは、実際に機械を動作させた際に収集したデータを用いて行うこともある。シミュレーションを行うことで得られた知見は、現実の制御対象の解析や設計などに用いられる。 A simulator is used to simulate the operation of a machine to be controlled (for example, Patent Document 1). Simulations are sometimes performed using data collected when the machine is actually operated. The knowledge obtained through simulation is used in the analysis and design of real-world controlled objects.
 産業機械の挙動を模擬するシミュレーションをする場合、例えば主軸の回転数や送り軸の位置などを所望の値に追従させるサーボシステムをモデル化してシミュレーションを行う。以下では、サーボシステムにおいて制御対象となる主軸や送り軸をプラントと呼び、プラントを模擬したモデルのことをプラントモデルと呼ぶ。産業機械の挙動は、例えば常微分方程式でモデル化することができる。そして、予め定めた所定のサンプル時間Δtごとの数値計算で状態量を更新することで、産業機械の挙動をシミュレーションできる。 When performing a simulation that simulates the behavior of an industrial machine, the simulation is performed by modeling a servo system that follows the rotational speed of the main shaft, the position of the feed axis, etc. to desired values, for example. Hereinafter, the main shaft and feed shaft to be controlled in a servo system will be referred to as a plant, and a model that simulates a plant will be referred to as a plant model. The behavior of industrial machinery can be modeled using ordinary differential equations, for example. Then, the behavior of the industrial machine can be simulated by updating the state quantity through numerical calculation at every predetermined sample time Δt.
特開2004-188541号公報Japanese Patent Application Publication No. 2004-188541
 産業機械の挙動を常微分方程式でモデル化したプラントの状態量を所定のサンプル時間Δtごとの数値計算で更新するシミュレーションは、実機の動作が安定であるにも関わらず、常微分方程式を構成するシステム行列A次第で状態量が不安定化(発散・発振)することがある。 A simulation in which the behavior of industrial machinery is modeled using ordinary differential equations and the state quantities of a plant are updated through numerical calculations at every predetermined sample time Δt composes ordinary differential equations, even though the operation of the actual machine is stable. Depending on the system matrix A, the state quantity may become unstable (divergence/oscillation).
 サーボシステムのシミュレータであれば、サンプル時間Δtはサーボ制御周期の0.5~2倍程度が妥当である。実機の動作が安定であるにも関わらず不安定化したシミュレータにおいては、サンプル時間Δtを小さくすれば、不安定化を回避できるが、計算量が増大するという課題がある。
 そのため現場では、計算量の増大を避けつつ、シミュレーションの安定性を担保したいという要望がある。
In the case of a servo system simulator, it is appropriate that the sampling time Δt be about 0.5 to 2 times the servo control period. In a simulator that has become unstable even though the operation of the actual machine is stable, instability can be avoided by reducing the sampling time Δt, but there is a problem in that the amount of calculation increases.
Therefore, there is a desire in the field to ensure the stability of simulations while avoiding an increase in the amount of calculations.
 本発明によるプラントモデル生成装置は、プラントの挙動を常微分方程式で模擬するシミュレータについて、特定の機械特性パラメータを変更することで共振系のプラントモデルの安定性を担保することで、上記課題を解決する。パラメータの調整で安定化できない場合は、共振系のプラントモデルを剛体とする。 The plant model generation device according to the present invention solves the above problems by ensuring the stability of a resonant system plant model by changing specific mechanical characteristic parameters for a simulator that simulates plant behavior using ordinary differential equations. do. If stabilization cannot be achieved by adjusting parameters, make the resonant plant model a rigid body.
 そして、本開示の一態様は、制御対象となるプラントの挙動を所定の式の数値計算で模擬するプラントモデルを、前記数値計算の係数を算出することで生成するプラントモデル生成装置であって、少なくともサンプル時間を含むシミュレーション条件を取得するシミュレーション条件取得部と、前記プラントの特性を示す特性パラメータを取得する特性パラメータ取得部と、前記シミュレーション条件と、前記特性パラメータに基づいて、所定のプラントモデルにおける数値計算が減衰振動を生じる安定化の条件を満足するように所定の特性パラメータを調整する安定化処理部と、前記安定化処理部が調整した所定のプラントモデルの特性パラメータに基づいて、プラントモデルの係数を算出する係数算出部と、を備えたプラントモデル生成装置である。 One aspect of the present disclosure is a plant model generation device that generates a plant model that simulates the behavior of a plant to be controlled by numerical calculation of a predetermined formula by calculating coefficients of the numerical calculation, a simulation condition acquisition unit that acquires simulation conditions including at least a sample time; a characteristic parameter acquisition unit that acquires characteristic parameters indicating characteristics of the plant; a stabilization processing unit that adjusts predetermined characteristic parameters so that numerical calculations satisfy stabilization conditions that cause damped vibration; and a plant model based on the characteristic parameters of the predetermined plant model adjusted by the stabilization processing unit. This is a plant model generation device comprising: a coefficient calculating unit that calculates coefficients of the present invention.
 本開示の他の態様は、制御対象となるプラントの挙動を所定の式の数値計算で模擬するプラントモデルを、前記数値計算の係数を算出することで生成するプラントモデル生成装置としてコンピュータを動作させるプログラムを記録したコンピュータ読み取り可能な記録媒体であって、少なくともサンプル時間を含むシミュレーション条件を取得するシミュレーション条件取得部、前記プラントの特性を示す特性パラメータを取得する特性パラメータ取得部、前記シミュレーション条件と、前記特性パラメータに基づいて、所定のプラントモデルにおける数値計算が減衰振動を生じる安定化の条件を満足するように所定の特性パラメータを調整する安定化処理部、前記安定化処理部が調整した所定のプラントモデルの特性パラメータに基づいて、プラントモデルの係数を算出する係数算出部、としてコンピュータを動作させるプログラムを記録したコンピュータ読み取り可能な記録媒体である。 Another aspect of the present disclosure operates a computer as a plant model generation device that generates a plant model that simulates the behavior of a plant to be controlled by numerical calculation of a predetermined formula by calculating coefficients of the numerical calculation. A computer-readable recording medium recording a program, comprising: a simulation condition acquisition unit that acquires simulation conditions including at least a sample time; a characteristic parameter acquisition unit that acquires characteristic parameters indicating characteristics of the plant; and the simulation conditions; a stabilization processing section that adjusts a predetermined characteristic parameter based on the characteristic parameter so that numerical calculations in a predetermined plant model satisfy stabilization conditions that cause damped vibration; This is a computer-readable recording medium that records a program that causes a computer to operate as a coefficient calculation unit that calculates coefficients of a plant model based on characteristic parameters of the plant model.
 本開示の一態様により、サーボシステムのシミュレータを構築するにあたり、計算量の増大を避けつつ、数値計算の安定性を担保されることが期待できる。 According to one aspect of the present disclosure, when building a servo system simulator, it is expected that stability of numerical calculations can be ensured while avoiding an increase in the amount of calculations.
本発明の一実施形態による診断装置の概略的なハードウェア構成図である。FIG. 1 is a schematic hardware configuration diagram of a diagnostic device according to an embodiment of the present invention. 本発明の第1実施形態による診断装置の概略的な機能を示すブロック図である。FIG. 1 is a block diagram schematically showing the functions of a diagnostic device according to a first embodiment of the present invention. 制御対象として扱うプラントが備える送り軸の構成を例示する図である。It is a figure which illustrates the structure of the feed axis|shaft with which the plant handled as a control object is equipped. 2慣性共振系のプラントモデルの例を示す図である。FIG. 2 is a diagram showing an example of a plant model of a two-inertial resonance system. 2慣性共振系のブロック線図の例を示す図である。FIG. 2 is a diagram showing an example of a block diagram of a two-inertia resonance system. 剛体モデルの例を示す図である。FIG. 3 is a diagram showing an example of a rigid body model. 安定化処理部が実行する処理の流れを例示するフローチャートである。3 is a flowchart illustrating the flow of processing executed by a stabilization processing unit.
 以下、本発明の実施形態を図面と共に説明する。
 図1は本発明の一実施形態によるプラントモデル生成装置の要部を示す概略的なハードウェア構成図である。本発明のプラントモデル生成装置1は、例えば制御用プログラムに基づいて産業機械4を制御する制御装置として実装することができる。また、本発明のプラントモデル生成装置1は、制御用プログラムに基づいて産業機械4を制御する制御装置に併設されたパソコンや、有線/無線のネットワークを介して制御装置と接続されたパソコン、セルコンピュータ、フォグコンピュータ6、クラウドサーバ7の上に実装することができる。本実施形態では、プラントモデル生成装置1を、ネットワーク介して産業機械4の制御装置と接続されたパソコンの上に実装した例を示す。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic hardware configuration diagram showing the main parts of a plant model generation device according to an embodiment of the present invention. The plant model generation device 1 of the present invention can be implemented, for example, as a control device that controls the industrial machine 4 based on a control program. Further, the plant model generation device 1 of the present invention can be used in a personal computer attached to a control device that controls the industrial machine 4 based on a control program, a personal computer connected to the control device via a wired/wireless network, or a cell. It can be implemented on a computer, fog computer 6, cloud server 7. In this embodiment, an example is shown in which the plant model generation device 1 is installed on a personal computer connected to a control device of an industrial machine 4 via a network.
 本発明のプラントモデル生成装置1が備えるCPU11は、プラントモデル生成装置1を全体的に制御するプロセッサである。CPU11は、バス22を介してROM12に格納されたシステム・プログラムを読み出し、該システム・プログラムに従ってプラントモデル生成装置1全体を制御する。RAM13には一時的な計算データや表示データ、及び外部から入力された各種データ等が一時的に格納される。 The CPU 11 included in the plant model generation device 1 of the present invention is a processor that controls the plant model generation device 1 as a whole. The CPU 11 reads a system program stored in the ROM 12 via the bus 22, and controls the entire plant model generation device 1 according to the system program. The RAM 13 temporarily stores temporary calculation data, display data, various data input from the outside, and the like.
 不揮発性メモリ14は、例えば図示しないバッテリでバックアップされたメモリやSSD(Solid State Drive)等で構成され、プラントモデル生成装置1の電源がオフされても記憶状態が保持される。不揮発性メモリ14には、インタフェース15を介して外部機器72から読み込まれたデータやプログラム、入力装置71を介して入力されたデータやプログラム、産業機械4から取得したデータ等が記憶される。不揮発性メモリ14に記憶されたデータやプログラムは、実行時/利用時にはRAM13に展開されても良い。また、ROM12には、公知の解析プログラムなどの各種システム・プログラムが予め書き込まれている。 The non-volatile memory 14 is composed of, for example, a memory backed up by a battery (not shown), a SSD (Solid State Drive), etc., and the stored state is maintained even when the power of the plant model generation device 1 is turned off. The nonvolatile memory 14 stores data and programs read from the external device 72 via the interface 15, data and programs input via the input device 71, data acquired from the industrial machine 4, and the like. The data and programs stored in the nonvolatile memory 14 may be expanded to the RAM 13 when executed/used. Further, various system programs such as a known analysis program are written in the ROM 12 in advance.
 インタフェース15は、プラントモデル生成装置1のCPU11とUSB装置等の外部機器72と接続するためのインタフェースである。外部機器72側からは、例えばプラントモデル生成装置1の機能に係るプログラムや、サービス提供に係る各種データ等を読み込むことができる。また、プラントモデル生成装置1内で編集したプログラムや各種データ等は、外部機器72を介して外部記憶手段に記憶させることができる。 The interface 15 is an interface for connecting the CPU 11 of the plant model generation device 1 to an external device 72 such as a USB device. From the external device 72 side, for example, programs related to the functions of the plant model generation device 1, various data related to service provision, etc. can be read. Furthermore, programs and various data edited within the plant model generation device 1 can be stored in external storage means via the external device 72.
 表示装置70には、メモリ上に読み込まれた各データ、プログラムやシステム・プログラム等が実行された結果として得られたデータ等が、インタフェース18を介して出力されて表示される。また、キーボードやポインティングデバイス等から構成される入力装置71は、インタフェース19を介して作業者による操作に基づく指令,データ等をCPU11に渡す。 The display device 70 outputs and displays each data read into the memory, data obtained as a result of executing programs, system programs, etc. via the interface 18. Further, an input device 71 composed of a keyboard, a pointing device, etc. passes commands, data, etc. based on operations by a worker to the CPU 11 via the interface 19.
 インタフェース20は、プラントモデル生成装置1のCPU11とネットワーク5とを接続するためのインタフェースである。ネットワーク5は、専用線などで構成されるWAN(Wide Area Network)であってもよいし、インターネットなどの広域ネットワークであってもよい。ネットワーク5には、工場などに設置された工作機械やロボットなどの産業機械4や、フォグコンピュータ6、クラウドサーバ7等が接続されている。これらの各装置は、ネットワーク5を介してプラントモデル生成装置1との間で相互にデータのやり取りを行っている。 The interface 20 is an interface for connecting the CPU 11 of the plant model generation device 1 and the network 5. The network 5 may be a WAN (Wide Area Network) composed of a leased line or the like, or may be a wide area network such as the Internet. Connected to the network 5 are industrial machines 4 such as machine tools and robots installed in factories, fog computers 6, cloud servers 7, and the like. Each of these devices exchanges data with the plant model generation device 1 via the network 5.
 図2は、本発明の第1実施形態によるプラントモデル生成装置1が備える機能を概略的なブロック図として示したものである。本実施形態によるプラントモデル生成装置1が備える各機能は、図1に示したプラントモデル生成装置1が備えるCPU11がシステム・プログラムを実行し、プラントモデル生成装置1の各部の動作を制御することにより実現される。 FIG. 2 is a schematic block diagram showing the functions included in the plant model generation device 1 according to the first embodiment of the present invention. Each function provided in the plant model generation device 1 according to the present embodiment is achieved by the CPU 11 included in the plant model generation device 1 shown in FIG. 1 executing a system program and controlling the operation of each part of the plant model generation device 1. Realized.
 本実施形態のプラントモデル生成装置1は、シミュレーション条件取得部110、特性パラメータ取得部120、安定化処理部130、係数算出部140、出力部150を備える。また、プラントモデル生成装置1のRAM13乃至不揮発性メモリ14には、予めプラントモデルのひな型が記憶されている領域であるプラントモデル記憶部200、シミュレーション条件取得部110が取得したシミュレーション条件を記憶するための領域であるシミュレーション条件記憶部210、及び特性パラメータ取得部120が取得した特性パラメータを記憶するための領域である特性パラメータ記憶部220が予め用意されている。 The plant model generation device 1 of this embodiment includes a simulation condition acquisition section 110, a characteristic parameter acquisition section 120, a stabilization processing section 130, a coefficient calculation section 140, and an output section 150. In addition, the RAM 13 to nonvolatile memory 14 of the plant model generation device 1 include a plant model storage section 200, which is an area where a template of a plant model is stored in advance, and a simulation condition acquired by the simulation condition acquisition section 110. A simulation condition storage section 210, which is an area, and a characteristic parameter storage section 220, which is an area for storing characteristic parameters acquired by the characteristic parameter acquisition section 120, are prepared in advance.
 シミュレーション条件取得部110は、プラントモデル記憶部200に記憶されているプラントモデルのひな型に基づいて、プラントモデルによるシミュレーションを実行する際に必要となる条件を特定する。そして、特定したシミュレーション条件を取得し、シミュレーション条件記憶部210に記憶する。シミュレーション条件は、少なくともシミュレーションにおけるサンプル時間Δtを含む。シミュレーション条件取得部110は、例えばシミュレーション条件の入力を促す画面を表示装置70へと表示し、入力装置71からの入力によりシミュレーション条件を取得してもよい。また、外部機器72からシミュレーション条件を読み出して取得してもよい。更に、フォグコンピュータ6やクラウドサーバ7などのコンピュータからネットワーク5を介してシミュレーション条件を取得するようにしてもよい。 Based on the plant model template stored in the plant model storage unit 200, the simulation condition acquisition unit 110 identifies conditions required when performing a simulation using the plant model. Then, the specified simulation conditions are acquired and stored in the simulation condition storage section 210. The simulation conditions include at least a sample time Δt in the simulation. The simulation condition acquisition unit 110 may display, for example, on the display device 70 a screen that prompts input of simulation conditions, and acquire the simulation conditions by inputting from the input device 71. Alternatively, the simulation conditions may be read and acquired from the external device 72. Furthermore, the simulation conditions may be acquired from a computer such as the fog computer 6 or the cloud server 7 via the network 5.
 特性パラメータ取得部120は、プラントモデル記憶部200に記憶されているプラントモデルのひな型に基づいて、プラントモデルによるシミュレーションを実行する際に必要となる特性パラメータを特定する。そして、特定したプラントモデルの特性パラメータを取得し、特性パラメータ記憶部220に記憶する。プラントモデルの特性パラメータは、プラントモデルによって異なる。例えば、図3に例示するような、制御対象として扱うプラントが備える送り軸の構成を考える。図3の例では、送り軸はモータの回転をベルトプーリで減速し、ボールねじで直動運動に変換してテーブル(ワーク台)を駆動している。このような制御対象は、図4に例示するように、モータのロータ慣性とテーブルという剛体の慣性とが単一のばね要素で結合された2慣性共振系としてモデル化することができる。単一のばね要素とは、ベルトプーリからボールねじまでをひとつのばね要素として見立てたものである。 Based on the plant model template stored in the plant model storage unit 200, the characteristic parameter acquisition unit 120 identifies characteristic parameters required when performing simulation using the plant model. Then, the characteristic parameters of the identified plant model are acquired and stored in the characteristic parameter storage section 220. The characteristic parameters of the plant model differ depending on the plant model. For example, consider the configuration of a feed shaft provided in a plant treated as a control target, as illustrated in FIG. In the example shown in FIG. 3, the feed shaft drives the table (work stand) by decelerating the rotation of the motor with a belt pulley and converting it into linear motion with a ball screw. Such a controlled object can be modeled as a two-inertia resonant system in which the rotor inertia of the motor and the inertia of a rigid body called a table are coupled by a single spring element, as illustrated in FIG. A single spring element refers to everything from the belt pulley to the ball screw as one spring element.
 図5は、2慣性共振系のモデルをブロック線図で例示したものである。図5において、uはサーボシステムの操作量としてモータに入力されるトルク、vMはモータの速度、vLはテーブルの速度、JMはロータ慣性モーメント、JLはテーブル慣性モーメント、CMはモータの粘性摩擦(減衰性)、CTはモータ-テーブル間でトルクが伝達される時の減衰性、KTは単一ばね要素のばね定数、Rはテーブル慣性モーメントJLとロータ慣性モーメントJMとのイナーシャ比である。また、1/(Z-1)は、積分要素を表している。図5に例示するブロック線図は、モータ、テーブルには慣性に比例した粘性摩擦が働くものと仮定したものである。 FIG. 5 is a block diagram illustrating a model of a two-inertia resonance system. In Fig. 5, u is the torque input to the motor as the manipulated variable of the servo system, v M is the speed of the motor, v L is the speed of the table, J M is the rotor inertia moment, J L is the table inertia moment, and C M is the The viscous friction (damping property) of the motor, C T is the damping property when torque is transmitted between the motor and the table, K T is the spring constant of a single spring element, and R is the table inertia moment J L and the rotor inertia moment J This is the inertia ratio with M. Further, 1/(Z-1) represents an integral element. The block diagram illustrated in FIG. 5 assumes that viscous friction proportional to inertia acts on the motor and table.
 図5のブロック線図で示したモデルについて、時刻t=kΔtの状態で、時刻(t+Δt)=(k+1)Δtの時点におけるモータ速度vM、テーブルの速度vL、ばね要素の伸びxTを計算するための差分方程式は数1式のように示すことができる。なお、数1式において、Aはシステム行列、Bは入力行列、1/(Z-1)は積分要素である。 Regarding the model shown in the block diagram of FIG. 5, in the state of time t=kΔt, the motor speed v M , table speed v L , and spring element extension x T at time (t+Δt)=(k+1)Δt are The difference equation for calculation can be expressed as shown in Equation 1. Note that in Equation 1, A is a system matrix, B is an input matrix, and 1/(Z-1) is an integral element.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 他のプラントモデルの例として、例えば剛性モデルがある。図6は、制御対象をモータのロータ慣性とテーブル慣性とが一体化した剛体系としてモデル化したものである。このように構成した場合、時刻t=kΔtの状態で、時刻(t+Δt)=(k+1)Δtの時点におけるモータ及びテーブルの速度v(=vM=vL)を計算するための差分方程式は数2式のように示すことができる。 Examples of other plant models include, for example, a rigid model. In FIG. 6, the controlled object is modeled as a rigid system in which the rotor inertia of the motor and the table inertia are integrated. In this case, the difference equation for calculating the speed v (=v M =v L ) of the motor and table at time (t+Δt)=(k+1)Δt in the state of time t=kΔt is as follows. It can be shown as equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 プラントモデル記憶部200には、このような制御対象の特性を表す式がプラントモデルとして予め記憶されている。プラントモデル記憶部200には、プラントモデルを表す式に含まれない特性パラメータが記憶されていてもよく、また、それぞれの特性パラメータの関係を示す関係式が記憶されていてもよい。例えば、2慣性共振系のモデルの特性パラメータは、数1式に含まれるもの以外にも、モータ軸を固定した時のばね-テーブルの固有振動数fa、ベルトプーリの減速比rB、ボールねじのピッチlS、テーブル質量MLなどが例示される。このような特性パラメータは、他の特性パラメータを算出するために用いることができる。例えば、テーブル慣性モーメントJLは、ベルトプーリの減速比rB、ボールねじのピッチlS、テーブル質量MLを用いた以下の数3式で算出することができる。また、単一ばね要素のばね定数KTは、モータ軸を固定した時のばね-テーブルの固有振動数fa、テーブル慣性モーメントJLを用いた以下の数4式で算出することができる。 The plant model storage unit 200 stores in advance an equation representing the characteristics of such a controlled object as a plant model. The plant model storage unit 200 may store characteristic parameters that are not included in the expression representing the plant model, or may store relational expressions indicating the relationships between the respective characteristic parameters. For example, in addition to those included in Equation 1, the characteristic parameters of a two-inertia resonance system model include the natural frequency f a of the spring-table when the motor shaft is fixed, the reduction ratio r B of the belt pulley, and the ball Examples include the thread pitch l S and the table mass M L . Such characteristic parameters can be used to calculate other characteristic parameters. For example, the table moment of inertia J L can be calculated using the following equation 3 using the belt pulley reduction ratio r B , the ball screw pitch I S , and the table mass M L. Further, the spring constant K T of a single spring element can be calculated using the following equation 4 using the natural frequency fa of the spring-table when the motor shaft is fixed, and the moment of inertia J L of the table.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 特性パラメータ取得部120は、このような制御対象の特性を表す式に含まれる特性パラメータや、それぞれの特性パラメータの関係式に基づいて、必要な特性パラメータを特定している。例えば、テーブル慣性モーメントJLや単一ばね要素のばね定数KTなどのような他の特性パラメータから算出可能なものについては、直接取得するようにしてもよいし、他の特性パラメータの値から間接的に算出するようにしてもよい。特性パラメータ取得部120は、このようなプラントモデルの特性パラメータを、例えば特性パラメータの入力を促す画面を表示装置70へと表示し、入力装置71からの入力により特性パラメータを取得してもよい。また、外部機器72からプラントモデルの特性パラメータを読み出して取得してもよい。更に、フォグコンピュータ6やクラウドサーバ7などのコンピュータからネットワーク5を介してプラントモデルの特性パラメータを取得するようにしてもよい。 The characteristic parameter acquisition unit 120 specifies necessary characteristic parameters based on the characteristic parameters included in the expression expressing the characteristics of the controlled object and the relational expression of each characteristic parameter. For example, things that can be calculated from other characteristic parameters, such as the table moment of inertia J L or the spring constant K T of a single spring element, may be obtained directly or from the values of other characteristic parameters. It may be calculated indirectly. The characteristic parameter acquisition unit 120 may acquire the characteristic parameters of such a plant model by displaying, for example, a screen on the display device 70 that prompts input of the characteristic parameters, and inputting the characteristic parameters from the input device 71. Alternatively, the characteristic parameters of the plant model may be read and acquired from the external device 72. Furthermore, the characteristic parameters of the plant model may be acquired from a computer such as the fog computer 6 or the cloud server 7 via the network 5.
 安定化処理部130は、シミュレーション条件記憶部210に記憶されたシミュレーション条件、及び特性パラメータ取得部120に記憶された特性パラメータに基づいて、プラントモデルに減衰振動が生じる安定化の条件を導出する。そして、減衰振動が生じる安定化の条件が存在する場合、所定の特性パラメータを減衰振動が生じる範囲に設定したプラントモデルを生成する。一方で、減衰振動が生じる安定化の条件が存在しない場合、剛体モデルとなるように特性パラメータを調整したプラントモデルを生成する。 The stabilization processing unit 130 derives stabilization conditions under which damped vibration occurs in the plant model, based on the simulation conditions stored in the simulation condition storage unit 210 and the characteristic parameters stored in the characteristic parameter acquisition unit 120. Then, if a stabilization condition that causes damped oscillation exists, a plant model is generated in which predetermined characteristic parameters are set in a range where damped oscillation occurs. On the other hand, if there are no stabilizing conditions that cause damped vibration, a plant model is generated with characteristic parameters adjusted to become a rigid body model.
 安定化処理部130が生成するプラントモデルは、制御対象の動作を所定の式で示したものを用いる。例えば数1式に例示した、2慣性共振系のプラントモデルを考える。このような場合、当該プラントモデルを数値計算した場合に、発散や発振をすることがない条件を安定化の条件とすることができる。数1式に例示したプラントモデルの場合、システム行列Aの固有値λを用いて安定化の条件を求めることができる。 The plant model generated by the stabilization processing unit 130 uses a plant model that expresses the operation of the controlled object using a predetermined formula. For example, consider a plant model of a two-inertial resonant system as exemplified by Equation 1. In such a case, when the plant model is numerically calculated, the stabilization conditions can be set as conditions that do not cause divergence or oscillation. In the case of the plant model illustrated in Equation 1, the stabilization conditions can be determined using the eigenvalue λ of the system matrix A.
 数1式において、システム行列Aの固有値λは以下に示す数5式となる。なお、数5式において、JAは2慣性共振系の慣性モーメントの合成値、CAは2慣性共振系の減衰性の合成値である。全ての固有値λの値が1を超えない場合、プラントモデルにおける数値計算は、状態量が発散や発振をすることなく安定する。 In Equation 1, the eigenvalue λ of the system matrix A is expressed as Equation 5 below. In Equation 5, J A is the composite value of the moments of inertia of the two-inertial resonant system, and C A is the composite value of the damping properties of the two-inertial resonant system. When the values of all the eigenvalues λ do not exceed 1, numerical calculations in the plant model are stable without divergence or oscillation of state quantities.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 安定化処理部130は、与えられたシミュレーション条件及び特性パラメータに基づいて、固有値λが1を超えない安定化の条件について判定する。そして、プラントモデルの数値計算を安定化させるために、シミュレーション条件又は特性パラメータを調整する。この時、ロータ慣性モーメントJM、テーブル慣性モーメントJL、単一ばね要素のばね定数KTなどの特性パラメータは、制御対象となる産業機械4の挙動を強く支配する特性を表すものであるから、これらを調整するとシミュレーションの目的が達成されなくなる恐れがある。また、サンプル時間Δtの値を小さくすると、計算量が増大する。そこで、安定化処理部130は、減衰性の合成値CA、モータの粘性摩擦CM、及びモータ-テーブル間でトルクが伝達される時の減衰性CTの少なくともいずれかの値を調整することで、固有値λが1を超えなくなるように調整をする。 The stabilization processing unit 130 determines a stabilization condition in which the eigenvalue λ does not exceed 1 based on the given simulation conditions and characteristic parameters. Then, in order to stabilize the numerical calculation of the plant model, simulation conditions or characteristic parameters are adjusted. At this time, characteristic parameters such as the rotor inertia moment J M , the table inertia moment J L , and the spring constant K T of the single spring element represent characteristics that strongly control the behavior of the industrial machine 4 to be controlled. , if these are adjusted, the purpose of the simulation may not be achieved. Furthermore, when the value of the sampling time Δt is decreased, the amount of calculation increases. Therefore, the stabilization processing unit 130 adjusts at least one of the damping property composite value C A , the viscous friction C M of the motor, and the damping property CT when torque is transmitted between the motor and the table. By doing so, adjustment is made so that the eigenvalue λ does not exceed 1.
 数5式(1)の固有値については、モータ-テーブル間でトルクが伝達される時の減衰性CTとは無関係にモータの粘性摩擦CMのみで決まる。数5式(1)に関する安定化の条件は、以下の数6式で表すことができる。モータの粘性摩擦CMが、数5式(1)の固有値の安定化の条件を満たさないことは通常は無いので、当該固有値における安定化の条件に付いて判定する必要は無い。 The eigenvalue of Equation 5 (1) is determined only by the viscous friction C M of the motor, regardless of the damping property C T when torque is transmitted between the motor and the table. The stabilization condition regarding Equation 5 (1) can be expressed by Equation 6 below. Since the viscous friction C M of the motor does not usually fail to satisfy the condition for stabilizing the eigenvalue of Equation 5 (1), there is no need to determine the condition for stabilizing the eigenvalue.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 数5式(2),数5式(3)の固有値については、減衰性の合成値CAによって、プラントに減衰振動が生じる場合と、過減衰になる場合とがある。減衰振動するCAが存在するための条件は、以下の数7式で表すことができる。 Regarding the eigenvalues of Equation 5 (2) and Equation 5 (3), there are cases where damped vibration occurs in the plant and cases where overdamping occurs depending on the composite value C A of damping properties. The conditions for the existence of damped oscillating C A can be expressed by the following equation 7.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、数7式を満たす場合において安定化の条件を満たすCAの下限値は、以下の数8式で表すことができる。なお、数8式において、δは予め定めた所定のトレランス値である。 Further, when formula 7 is satisfied, the lower limit value of C A that satisfies the stabilization condition can be expressed by formula 8 below. Note that in Equation 8, δ is a predetermined tolerance value.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 減衰振動するCAの上限値は、以下の数9式で表すことができる。CAが数9式で表す上限値を超えるとプラントは過減衰になる。過減衰であってもプラントはなお安定である。過減衰では共振による振動は生じないため、プラントモデルとして2慣性共振系を用いるのであればCAは数9式を満たすことが望ましい。 The upper limit of the damped oscillation C A can be expressed by the following equation 9. When C A exceeds the upper limit expressed by Equation 9, the plant becomes overdamped. Even with overdamping, the plant is still stable. Since vibration due to resonance does not occur with overdamping, if a two-inertial resonant system is used as a plant model, it is desirable that C A satisfy Equation 9.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 安定化処理部130が実行する安定化処理の流れを図7のフローチャートを用いて説明する。安定化処理部130は、初めにシミュレーション条件及びプラントモデルの特性パラメータに基づいて、プラントモデルの数値計算の安定化条件を導出する(ステップSA01)。そして、減衰振動が生じる条件を満たす減衰性の合成値CAが存在するか否か、すなわち減衰振動が生じる条件である数7式の条件を満足するか否かを判定する(ステップSA02)。そして、減衰振動が生じる条件を満たす減衰性の合成値CAが存在する場合(ステップSA02でYes)、次に減衰性の合成値CAが数8式を満足するか否かを判定する(ステップSA03)。そして、数8式を満足しない場合(ステップSA03でNo)、即ちCAが下限値+トレランス値δ未満である場合、減衰性の合成値CAがKTΔt+δになるように減衰性の合成値CA、モータの粘性摩擦CM、及びモータ-テーブル間でトルクが伝達される時の減衰性CTの少なくともいずれかの特性パラメータを調整する(ステップSA04)。 The flow of the stabilization process executed by the stabilization processing unit 130 will be explained using the flowchart of FIG. 7. The stabilization processing unit 130 first derives stabilization conditions for numerical calculation of the plant model based on the simulation conditions and the characteristic parameters of the plant model (step SA01). Then, it is determined whether there is a composite value C A of damping properties that satisfies the conditions for producing damped oscillations, that is, whether the condition of Equation 7, which is the condition for producing damped oscillations, is satisfied (step SA02). If there is a damping composite value C A that satisfies the conditions for generating damped vibration (Yes in step SA02), then it is determined whether the damping composite value CA satisfies Equation 8 ( Step SA03). If Equation 8 is not satisfied (No in step SA03), that is, if C A is less than the lower limit value + tolerance value δ, the attenuation is combined so that the combined value C A of the attenuation becomes K T Δt + δ. The characteristic parameters of at least one of the value C A , the viscous friction C M of the motor, and the damping property C T when torque is transmitted between the motor and the table are adjusted (step SA04).
 また、安定化処理部130は、CAが下限値+トレランス値δ以上である場合(ステップSA03でYes)、減衰振動を生じる減衰性の合成値CAの上限値を示す数9式を満足するか否かを判定する(ステップSA05)。そして、数9式を満足しない場合(ステップSA05でNo)、減衰性の合成値CAが上限値である2√(JAT)になるように減衰性の合成値CA、モータの粘性摩擦CM、及びモータ-テーブル間でトルクが伝達される時の減衰性CTの少なくともいずれかの特性パラメータを調整する(ステップSA06)。 In addition, when C A is greater than or equal to the lower limit value + tolerance value δ (Yes in step SA03), the stabilization processing unit 130 satisfies Equation 9, which indicates the upper limit value of the composite value C A of damping properties that causes damped vibration. It is determined whether or not to do so (step SA05). If Equation 9 is not satisfied (No in step SA05), the composite value C A of the damping property is adjusted so that the composite value C A of the damping property becomes the upper limit value 2√(J A K T ). The characteristic parameters of at least one of the viscous friction C M and the damping property C T when torque is transmitted between the motor and the table are adjusted (step SA06).
 そして、安定化処理部130は、減衰振動を生じる減衰性の合成値CAが存在しない場合(ステップSA02でNo)、プラントモデルを剛体モデルへと変更する(ステップSA07)。剛体モデルの安定化の条件は、数6式で表されたものと同様である。そのため、通常はこの安定化の条件は満たされる。 Then, if the composite value C A of damping properties that causes damped vibration does not exist (No in step SA02), the stabilization processing unit 130 changes the plant model to a rigid body model (step SA07). The conditions for stabilizing the rigid body model are similar to those expressed in Equation 6. Therefore, this stabilization condition is usually satisfied.
 なお、過減衰であるならば、プラントモデルを剛体モデルとしても産業機械4の挙動を十分に模擬できるため、安定化処理部130はステップSA05でNoの場合に、プラントモデルを剛体モデル(ステップSA07)としてもよい。 Note that if the plant model is overdamped, the behavior of the industrial machine 4 can be sufficiently simulated even if the plant model is a rigid model. ).
 係数算出部140は、安定化処理部130が決定したプラントモデルと、安定化の条件を満たすプラントモデルの特性パラメータ、及びシミュレーション条件に基づいて、プラントモデルを表す式の各係数を算出する。係数算出部140は、例えば数1式、数2式に例示した差分方程式における各係数を、安定化処理部130が決定したプラントモデルの特性パラメータ、及びシミュレーション条件に基づいて計算することで、プラントモデルを生成する。 The coefficient calculation unit 140 calculates each coefficient of the formula representing the plant model based on the plant model determined by the stabilization processing unit 130, the characteristic parameters of the plant model that satisfy the stabilization conditions, and the simulation conditions. The coefficient calculation unit 140 calculates each coefficient in the difference equation illustrated in Equation 1 and Equation 2 based on the characteristic parameters of the plant model determined by the stabilization processing unit 130 and the simulation conditions. Generate the model.
 出力部150は、係数算出部140が係数を算出することで生成したプラントモデルを出力する。出力部150は、例えば生成したプラントモデルを表す式を、表示装置70に対して表示出力するようにしてもよい。また、外部機器72を介して外部のメモリ機器に記憶出力するようにしてもよい。更に、ネットワーク5を介して、産業機械4に対して送信出力したり、フォグコンピュータ6、クラウドサーバ7などのコンピュータに対して送信出力したりしてもよい。出力されたプラントモデルは、シミュレーション装置やデジタルツインシステムなどでシミュレーションを行うために用いられる。 The output unit 150 outputs the plant model generated by the coefficient calculation unit 140 calculating the coefficients. For example, the output unit 150 may display and output an expression representing the generated plant model to the display device 70. Further, the data may be stored and output to an external memory device via the external device 72. Furthermore, the output may be transmitted to the industrial machine 4 or to a computer such as the fog computer 6 or the cloud server 7 via the network 5. The output plant model is used to perform simulations with a simulation device, digital twin system, etc.
 上記構成を備えた本実施形態によるプラントモデル生成装置1は、サーボシステムのシミュレータを構築するにあたり、計算量の増大を避けつつ、数値計算の安定性を担保されることが期待できる。シミュレータを外販する場合などに、プラントモデルが不安定で発散・発振すると「シミュレータの欠陥=ソフトのバグ」と捉えられる恐れがある。しかしながら、プラントモデルの係数を算出するにあたって、安定化処理部130により事前に特性パラメータを調整しているため、プラントモデルの数値計算が安定し、商品の信頼性向上に寄与する。 The plant model generation device 1 according to this embodiment with the above configuration can be expected to ensure stability of numerical calculations while avoiding an increase in the amount of calculations when constructing a servo system simulator. When selling a simulator externally, if the plant model is unstable and diverges or oscillates, there is a risk that it will be interpreted as a ``simulator defect = software bug.'' However, since the characteristic parameters are adjusted in advance by the stabilization processing unit 130 when calculating the coefficients of the plant model, the numerical calculation of the plant model is stabilized, which contributes to improving the reliability of the product.
 以下では、本発明の第2実施形態によるプラントモデル生成装置1について説明する。本実施形態によるプラントモデル生成装置1は、安定化処理部130による安定化処理が第1実施形態によるプラントモデル生成装置1と異なる。 Hereinafter, a plant model generation device 1 according to a second embodiment of the present invention will be described. The plant model generation device 1 according to this embodiment differs from the plant model generation device 1 according to the first embodiment in the stabilization processing by the stabilization processing unit 130.
 本実施形態による安定化処理部130は、減衰性の合成値CAが数8式を満足するか否かを判定する。そして、数8式を満足しない場合、即ちCAが下限値+トレランス以下である場合、減衰性の合成値CAがKTΔt+δになるような特性パラメータへと仮調整する。 The stabilization processing unit 130 according to the present embodiment determines whether the composite value C A of attenuation characteristics satisfies Equation 8. If Equation 8 is not satisfied, that is, if C A is less than the lower limit value + tolerance, the characteristic parameters are temporarily adjusted so that the composite value C A of the attenuation property becomes K T Δt+δ.
 そして、安定化処理部130は、仮調整した特性パラメータについて、以下に示す数10式の過減衰の安定化の条件を満足するか否かを判定する。そして、条件を満足する場合、仮調整した特性パラメータを調整後の特性パラメータとして出力する。 Then, the stabilization processing unit 130 determines whether or not the provisionally adjusted characteristic parameter satisfies the overdamping stabilization condition expressed by Equation 10 below. If the conditions are satisfied, the temporarily adjusted characteristic parameters are output as adjusted characteristic parameters.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 一方、数10式の安定化の条件を満足しない場合は、プラントモデルを剛体モデルへと変更する。剛体モデルへの変更方法は、第1実施形態によるものと同様である。 On the other hand, if the stabilization condition of Equation 10 is not satisfied, the plant model is changed to a rigid body model. The method of changing to a rigid body model is the same as that according to the first embodiment.
 以上、本発明の実施形態について説明したが、本発明は上述した実施の形態の例のみに限定されることなく、適宜の変更を加えることにより様々な態様で実施することができる。
 例えば、上記した実施形態では、2慣性共振系のプラントモデル及び剛体モデルについてのみ説明しているが、一般的な常微分方程式の形でモデル化された他のプラントモデルに対しても、本発明の技術は適用可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented in various forms by making appropriate changes.
For example, in the above embodiment, only a two-inertia resonant system plant model and a rigid body model are described, but the present invention can also be applied to other plant models modeled in the form of general ordinary differential equations. techniques are applicable.
   1 プラントモデル生成装置
   4 産業機械
   5 ネットワーク
   6 フォグコンピュータ
   7 クラウドサーバ
  11 CPU
  12 ROM
  13 RAM
  14 不揮発性メモリ
  15,18,19,20 インタフェース
  22 バス
  70 表示装置
  71 入力装置
  72 外部機器
 110 シミュレーション条件取得部
 120 特性パラメータ取得部
 130 安定化処理部
 140 係数算出部
 150 出力部
 200 プラントモデル記憶部
 210 シミュレーション条件記憶部
 220 特性パラメータ記憶部
1 Plant model generation device 4 Industrial machinery 5 Network 6 Fog computer 7 Cloud server 11 CPU
12 ROM
13 RAM
14 Nonvolatile memory 15, 18, 19, 20 Interface 22 Bus 70 Display device 71 Input device 72 External device 110 Simulation condition acquisition section 120 Characteristic parameter acquisition section 130 Stabilization processing section 140 Coefficient calculation section 150 Output section 200 Plant model storage section 210 Simulation condition storage unit 220 Characteristic parameter storage unit

Claims (4)

  1.  制御対象となるプラントの挙動を所定の式の数値計算で模擬するプラントモデルを、前記数値計算の係数を算出することで生成するプラントモデル生成装置であって、
     少なくともサンプル時間を含むシミュレーション条件を取得するシミュレーション条件取得部と、
     前記プラントの特性を示す特性パラメータを取得する特性パラメータ取得部と、
     前記シミュレーション条件と、前記特性パラメータに基づいて、所定のプラントモデルにおける数値計算が減衰振動を生じる安定化の条件を満足するように所定の特性パラメータを調整する安定化処理部と、
     前記安定化処理部が調整した所定のプラントモデルの特性パラメータに基づいて、該プラントモデルの係数を算出する係数算出部と、
    を備えたプラントモデル生成装置。
    A plant model generation device that generates a plant model that simulates the behavior of a plant to be controlled by numerical calculation of a predetermined formula by calculating coefficients of the numerical calculation,
    a simulation condition acquisition unit that acquires simulation conditions including at least a sample time;
    a characteristic parameter acquisition unit that acquires characteristic parameters indicating characteristics of the plant;
    a stabilization processing unit that adjusts a predetermined characteristic parameter based on the simulation condition and the characteristic parameter so that numerical calculation in a predetermined plant model satisfies a stabilization condition that causes damped vibration;
    a coefficient calculation unit that calculates coefficients of a predetermined plant model based on characteristic parameters of the predetermined plant model adjusted by the stabilization processing unit;
    A plant model generation device equipped with
  2.  前記安定化処理部は、
     前記プラントモデルにおける数値計算が減衰振動を生じる安定化の条件を満足する所定の特性パラメータの値が存在する場合、該特性パラメータの値を安定化条件の下限値に予め定めた所定のトレランスを加えた値から、上限値の範囲内に調整し、
     減衰振動を生じる安定化の条件を満足する所定の特性パラメータの値が存在しない場合には、前記プラントモデルを剛体モデルへと変更する、
    請求項1に記載のプラントモデル生成装置。
    The stabilization processing section includes:
    If there is a value of a predetermined characteristic parameter that satisfies the stabilization condition in which the numerical calculation in the plant model causes damped vibration, the value of the characteristic parameter is added to the lower limit of the stabilization condition by a predetermined tolerance. Adjust the value to within the upper limit value,
    If there is no value of a predetermined characteristic parameter that satisfies a stabilization condition that causes damped vibration, changing the plant model to a rigid body model;
    The plant model generation device according to claim 1.
  3.  前記安定化処理部は、
     所定の特性パラメータの値を前記プラントモデルにおける数値計算が減衰振動を生じる安定化の条件の下限値にトレランスを加えた値以上に仮調整し、
     仮調整した場合に、過減衰の安定化の条件を満足する場合、仮調整した特性パラメータの値を調整後の特性パラメータとして扱い、
     過減衰の安定化の条件を満足しない場合、前記プラントモデルを剛体モデルへと変更する、
    請求項1に記載のプラントモデル生成装置。
    The stabilization processing section includes:
    Temporarily adjusting the value of the predetermined characteristic parameter to a value equal to or higher than the lower limit value of the stabilization condition that causes damped vibration by numerical calculation in the plant model plus a tolerance,
    If the condition for stabilizing overdamping is satisfied when the temporary adjustment is made, the value of the temporarily adjusted characteristic parameter is treated as the adjusted characteristic parameter,
    If the overdamped stabilization condition is not satisfied, changing the plant model to a rigid body model;
    The plant model generation device according to claim 1.
  4.  制御対象となるプラントの挙動を所定の式の数値計算で模擬するプラントモデルを、前記数値計算の係数を算出することで生成するプラントモデル生成装置としてコンピュータを動作させるプログラムを記録したコンピュータ読み取り可能な記録媒体で会って、
     少なくともサンプル時間を含むシミュレーション条件を取得するシミュレーション条件取得部、
     前記プラントの特性を示す特性パラメータを取得する特性パラメータ取得部、
     前記シミュレーション条件と、前記特性パラメータに基づいて、所定のプラントモデルにおける数値計算が減衰振動を生じる安定化の条件を満足するように所定の特性パラメータを調整する安定化処理部、
     前記安定化処理部が調整した所定のプラントモデルの特性パラメータに基づいて、該プラントモデルの係数を算出する係数算出部、
    としてコンピュータを動作させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A computer readable computer recording program that operates a computer as a plant model generation device that generates a plant model that simulates the behavior of a plant to be controlled by numerical calculation using a predetermined formula by calculating the coefficients of the numerical calculation. We met on recording media,
    a simulation condition acquisition unit that acquires simulation conditions including at least a sample time;
    a characteristic parameter acquisition unit that acquires characteristic parameters indicating characteristics of the plant;
    a stabilization processing unit that adjusts predetermined characteristic parameters based on the simulation conditions and the characteristic parameters so that numerical calculations in a predetermined plant model satisfy stabilization conditions that cause damped vibration;
    a coefficient calculation unit that calculates coefficients of a predetermined plant model based on characteristic parameters of the predetermined plant model adjusted by the stabilization processing unit;
    A computer-readable recording medium that records a program that operates a computer.
PCT/JP2022/033597 2022-09-07 2022-09-07 Plant model generation device and computer-readable recording medium WO2024053026A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/033597 WO2024053026A1 (en) 2022-09-07 2022-09-07 Plant model generation device and computer-readable recording medium
JP2023515248A JP7343731B1 (en) 2022-09-07 2022-09-07 Plant model generation device and computer readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033597 WO2024053026A1 (en) 2022-09-07 2022-09-07 Plant model generation device and computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2024053026A1 true WO2024053026A1 (en) 2024-03-14

Family

ID=87934820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033597 WO2024053026A1 (en) 2022-09-07 2022-09-07 Plant model generation device and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP7343731B1 (en)
WO (1) WO2024053026A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190317516A1 (en) * 2016-11-10 2019-10-17 Ohio University Autonomous automobile guidance and trajectory-tracking
JP2021036372A (en) * 2019-08-30 2021-03-04 株式会社ジェイテクト Creation assistance device for analytic model for machine tool
WO2022181688A1 (en) * 2021-02-26 2022-09-01 ファナック株式会社 Robot installation position measurement device, installation position measurement method, robot control device, teaching system, and simulation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242714B2 (en) 1992-10-26 2001-12-25 株式会社デュプロ Paper folding machine
JP6905296B1 (en) 2021-03-01 2021-07-21 WhiteRook合同会社 Arithmetic logic unit that simulates the operation of the controlled object, execution method of calculation that solves the equation of state in the arithmetic unit, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190317516A1 (en) * 2016-11-10 2019-10-17 Ohio University Autonomous automobile guidance and trajectory-tracking
JP2021036372A (en) * 2019-08-30 2021-03-04 株式会社ジェイテクト Creation assistance device for analytic model for machine tool
WO2022181688A1 (en) * 2021-02-26 2022-09-01 ファナック株式会社 Robot installation position measurement device, installation position measurement method, robot control device, teaching system, and simulation device

Also Published As

Publication number Publication date
JP7343731B1 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
Gu et al. Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model
CN102354104B (en) Controllers, observers, and applications thereof
US8571691B2 (en) Scaling and parameterizing a controller
Wilde et al. Aerodynamic control of bridge deck flutter by active surfaces
JP2009104659A (en) Method of ascertaining control parameters for control system
Andreaus et al. Optimal-tuning PID control of adaptive materials for structural efficiency
CN107657125A (en) Control System Design and pid parameter setting method and system based on associative simulation
Tseng et al. Digital shadow identification from feed drive structures for virtual process planning
JP2007188164A (en) Acoustic structure compound optimal design analysis method and its optimal design system and its analysis program and recording medium with its analysis program recorded
Rahmatalla et al. Form finding of sparse structures with continuum topology optimization
WO2024053026A1 (en) Plant model generation device and computer-readable recording medium
Spillman Robust longitudinal flight control design using linear parameter-varying feedback
US20230088537A1 (en) Generative design shape optimization based on a target part reliability for computer aided design and manufacturing
Macmillen et al. Bifurcation analysis in the flight dynamics design process? A view from the aircraft industry
Solcia et al. Efficient multirate simulation of complex multibody systems based on free software
US11409249B1 (en) Simulating transverse motion response of a flexible rotor based on a parameter dependent eigenmodes
Barber et al. Adaptive control of a DC motor for educational practices
Albers et al. Integrated structural and controller optimization for lightweight robot design
JP7421014B1 (en) Processing simulation device and processing simulation method
Kohlwey et al. Half-Explicit Exponential Runge–Kutta Methods for Index-1 DAEs in Helicopter Simulation
Tyutikov et al. Robot manipulator control system with dynamic moment compensation
Huynh et al. Parametric optimization of digitally controlled nonlinear reactor dynamics using Zubov-like functional equations
JP7067181B2 (en) Plant control regulator
JP7313585B1 (en) Drive condition determination device and drive condition determination method
RU2761780C1 (en) Method for adaptive control of an electromechanical system with a harmonic load moment in a wide range of speeds and apparatus for implementation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958105

Country of ref document: EP

Kind code of ref document: A1