WO2024053013A1 - Noise removal circuit and sensor - Google Patents

Noise removal circuit and sensor Download PDF

Info

Publication number
WO2024053013A1
WO2024053013A1 PCT/JP2022/033559 JP2022033559W WO2024053013A1 WO 2024053013 A1 WO2024053013 A1 WO 2024053013A1 JP 2022033559 W JP2022033559 W JP 2022033559W WO 2024053013 A1 WO2024053013 A1 WO 2024053013A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
circuit
sensor
period
data output
Prior art date
Application number
PCT/JP2022/033559
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 立岡
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/033559 priority Critical patent/WO2024053013A1/en
Publication of WO2024053013A1 publication Critical patent/WO2024053013A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present invention relates to a noise removal circuit and a sensor.
  • the motor used to drive the arm of the robot is supplied with driving power by an inverter.
  • the inverter is controlled based on a PWM (Pulse Width Modulation) signal. Wiring that supplies PWM-controlled motor drive power becomes a source of noise.
  • PWM Pulse Width Modulation
  • an AE measurement device that measures AE generated from an object to be measured includes a measurement AE sensor that detects an AE signal generated from the object to be measured, and an external AE signal generated outside the object to be measured.
  • an AE sensor for external noise to detect includes a determination unit that determines whether or not there is external noise based on an external AE signal detected by the AE sensor for external noise; and an AE signal detected by the AE sensor for measurement.
  • an AE measurement device is known that includes a measurement processing section that validates the AE signal when the determination section determines that there is no external noise (for example, see Patent Document 1).
  • a plurality of coils are connected continuously along one closed line, and a connection is made parallel to the closed line from the end of the last coil of the plurality of coils to the start of winding of the first coil.
  • a Rogoski that has a line and detects the voltage induced between the winding start side terminal of the first coil and the terminal of the return line as a function of the current of the circuit under test inserted inside the closed line.
  • each coil constituting the plurality of coils is formed on a plane perpendicular to the closed line, and the distance between the end of one coil and the start of the next coil among the adjacent coils is
  • a Rogowski type current sensor is known, which is connected by an outgoing line parallel to the closed line, and characterized in that the entire outgoing line and the incoming line are disposed close to each other (for example, Patent Document (See 2).
  • Noise caused by motor drive power has a negative effect on the accuracy of various sensors and the control of various devices. Therefore, it is extremely important to detect noise and remove its effects.
  • a robot arm is provided with a torque sensor for detecting torque, and noise caused by motor drive power adversely affects the accuracy of the torque sensor.
  • An object of the present disclosure is to realize a noise removal circuit that removes the influence of noise from data output from a sensor circuit, and a sensor equipped with the noise removal circuit.
  • a noise removal circuit that removes the influence of noise from data output from a sensor circuit uses a conductor wire that surrounds an electric cable and an electric signal generated in the conductor wire.
  • a noise detection circuit that generates a noise detection signal indicating the presence or absence of noise generation in the cable and a sensor circuit
  • data during an invalidation period that includes at least a period in which the noise detection signal indicates the presence of noise generation is invalidated. and a data processing circuit.
  • the senor includes a sensor circuit that outputs data that is a sensor detection result about a target object, and the noise removal circuit that removes the influence of noise from the data output from the sensor circuit.
  • a substrate having an opening through which an electric cable passes, and a conductor wire is routed so as to surround the opening.
  • a noise removal circuit that removes the influence of noise from data output from a sensor circuit, and a sensor equipped with the same.
  • FIG. 1 is a diagram showing a noise removal circuit and a torque sensor including the same according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a robot with a torque sensor according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating noise generated due to motor drive power flowing through an electric cable.
  • FIG. 2 is a perspective view showing a substrate according to a first form of a torque sensor according to an embodiment of the present disclosure.
  • FIG. 3 is a perspective view showing a substrate according to a second form of a torque sensor according to an embodiment of the present disclosure.
  • FIG. 7 is a perspective view showing a substrate according to a third form of a torque sensor according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a robot with a torque sensor according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating noise generated due to motor drive power flowing through an electric cable.
  • FIG. 2 is a perspective view showing a substrate according to a
  • FIG. 2 is a circuit diagram showing a configuration of a noise detection circuit in a noise removal circuit according to an embodiment of the present disclosure.
  • FIG. 3 is a waveform diagram illustrating a function of a noise detection circuit in a noise removal circuit according to an embodiment of the present disclosure.
  • FIG. 2 is a waveform diagram illustrating a noise detection signal generated by a noise detection circuit in a noise removal circuit according to an embodiment of the present disclosure.
  • FIG. 2 is a waveform diagram (part 1) illustrating filter settings by the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure.
  • FIG. 7 is a waveform diagram (part 2) illustrating filter settings by the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure.
  • FIG. 3 is a waveform diagram illustrating the relationship between noise and invalidation period data in the embodiment of the present disclosure.
  • FIG. 3 is a waveform diagram showing data invalidation processing by the first form of the data processing circuit in the noise removal circuit according to the embodiment of the present disclosure.
  • FIG. 7 is a waveform diagram showing data invalidation processing by a second form of the data processing circuit in the noise removal circuit according to the embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a noise removal circuit and a torque sensor including the same according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a robot equipped with a torque sensor according to an embodiment of the present disclosure.
  • the torque sensor 100 includes a noise removal circuit 1, a sensor circuit 2, and a substrate 3 (not shown in FIG. 1).
  • the sensor circuit 2 is provided in a torque sensor 100 that detects the torque of a target object 300.
  • the sensor circuit 2 may be provided in a sensor other than the torque sensor.
  • the sensor circuit 2 may be a current sensor, voltage sensor, magnetic sensor, speed sensor, temperature sensor, or the like, which outputs electrical sensor data.
  • the torque sensor 100 is provided within the arm of the robot 1000, for example.
  • the substrate 3 of the torque sensor 100 is provided with a noise removal circuit 1, a sensor circuit 2, and the like.
  • the sensor circuit 2 outputs data (hereinafter referred to as "sensor data") that is the sensor detection result for the object 300.
  • sensor data data regarding the torque detected on the object 300.
  • the object 300 that is the target of torque detection is a motor that drives an arm of a robot.
  • the sensor data output by the sensor circuit 2 may be analog data (analog signal) or digital data (digital signal).
  • the noise removal circuit 1 removes the influence of noise from the sensor data output from the sensor circuit 2.
  • the noise removal circuit 1 includes a conductive wire 11, a noise detection circuit 12, and a data processing circuit 13.
  • the substrate 3 of the torque sensor 100 is provided with an opening.
  • An electric cable 200 through which PWM-controlled motor drive power flows is arranged so as to pass through the opening.
  • the conductive wire 11 is wired so as to surround the opening on the substrate. Therefore, the conducting wire 11 is wired so as to surround the electric cable 200, which is a source of noise caused by motor drive power.
  • the noise detection circuit 12 generates a noise detection signal indicating the presence or absence of noise in the electric cable 200 based on the electric signal generated in the conductive wire 11. Details of the noise detection process by the noise detection circuit 12 will be described later.
  • the data processing circuit 13 invalidates sensor data during an invalidation period that includes at least a period in which the noise detection signal indicates that noise has occurred. Details of the data invalidation process by the data processing circuit 13 will be described later.
  • a processing unit is provided within the torque sensor 100.
  • arithmetic processing devices include ICs, LSIs, CPUs, MPUs, and DSPs.
  • the data processing circuit 13 may be composed of only an arithmetic processing device, or may be composed of a combination of an analog circuit and an arithmetic processing device, or may be composed only of an analog circuit.
  • the data processing circuit 13 may be implemented as a semiconductor integrated circuit written with a software program that implements the functions of the data processing circuit 13.
  • the data processing circuit 13 may be implemented as a recording medium on which a software program for realizing the functions is written.
  • the conducting wire 11 and the noise detection circuit 12 may be replaced with a Rogowski coil type current detection circuit.
  • the data processing circuit 13 is connected to the Rogowski coil type current detection circuit, and the electric cable 200 is arranged so as to penetrate through the opening of the substrate where the Rogowski coil is provided.
  • FIG. 3 is a diagram illustrating noise generated due to motor drive power flowing through an electric cable.
  • Wiring that supplies PWM-controlled motor drive power becomes a source of noise.
  • the motor drive power flowing through the electric cable 200 is a rectangular wave voltage, and according to the change of the rectangular wave voltage between High and Low, a minute change in the magnetic field occurs around the electric cable 200, and the magnetic field near the electric cable 200 is generated.
  • Noise occurs in the sensor data output from the sensor circuit 2. For example, as shown in FIG. 3, at time t 2 when the motor drive power switches from Low to High and time t 4 when the motor drive power switches from High to Low, a magnetic field exists around the electric cable 200 through which the motor drive power flows. Minute changes occur. As a result, noise occurs in the sensor data output from the sensor circuit 2 near the electric cable 200 at times t 2 and t 4 .
  • the conducting wire 11 is wired to surround the electric cable 200 in order to detect changes in the magnetic field around the electric cable 200 through which motor drive power flows. Noise is generated in the conducting wire 11 in response to changes in the motor drive power flowing through the electric cable 200.
  • the noise detection circuit 12 generates a noise detection signal indicating the presence or absence of noise generation in the electric cable 200 based on the electric signal related to the noise generated in the conductive wire 11.
  • the substrate of the torque sensor 100 provided on the arm of the robot 1000 may be provided with openings for passing various cables.
  • An electrical cable 200 through which motor drive power flows is also placed through the opening in the board. Therefore, in the embodiment of the present disclosure, the conducting wire 11 is wired so as to surround the opening of the substrate 3 of the torque sensor 100, so that the conducting wire 11 surrounds the electric cable 200.
  • an opening is provided in the housing of the torque sensor 100, the conducting wire 11 is wired so as to surround the opening in the housing of the torque sensor 100, and the electric cable 200 is placed through the opening. In this way, the conductive wire 11 may surround the electric cable 200.
  • FIG. 4 is a perspective view showing a substrate according to a first form of a torque sensor according to an embodiment of the present disclosure.
  • the substrate 3 according to the first embodiment has an annular shape with an opening 31 provided near the center of the disk-shaped substrate.
  • An electrical cable 200 passes through the opening 31.
  • a conductive wire 11 wired to surround the opening 31, a noise detection circuit 12, and a data processing circuit 13 are provided.
  • FIG. 5 is a perspective view showing a substrate according to a second form of a torque sensor according to an embodiment of the present disclosure.
  • the substrate 3 according to the second embodiment has a shape in which an opening 31 is provided near the center of a C-shaped substrate having a notch in a part in the circumferential direction.
  • An electrical cable 200 passes through the opening 31.
  • a conductive wire 11 wired in a C shape so as to surround a part of the opening 31, a noise detection circuit 12, and a data processing circuit 13 are provided.
  • FIG. 6 is a perspective view showing a substrate according to a third form of a torque sensor according to an embodiment of the present disclosure.
  • the substrate 3 according to the third embodiment has a shape in which an opening 31 is provided near the center of a substantially rectangular substrate.
  • An electrical cable 200 passes through the opening 31.
  • a conductive wire 11 wired in a substantially rectangular shape so as to surround the opening 31, a noise detection circuit 12, and a data processing circuit 13 are provided.
  • the first to third embodiments described above are just examples, and as long as the board is wired so that the conductive wire 11 surrounds the opening 31 through which the electric cable 200 passes, the board shape and wiring shape other than those shown in the drawings may be used. You may do so.
  • FIG. 7 is a circuit diagram showing a configuration of a noise detection circuit in a noise removal circuit according to an embodiment of the present disclosure.
  • the noise detection circuit 12 is connected to the conducting wire 11 and the data processing circuit 13.
  • a strain gauge whose resistance value changes depending on the torque applied to the motor is connected to terminals P1 and P2 of the sensor circuit 2.
  • the noise detection circuit 12 includes a DC component adjustment section 21, a threshold value setting section 22, a comparison section 23, a wired OR connection section 24, a filter 25, and a buffer 26.
  • the DC component adjustment section 21 includes a capacitor 21-1 that removes a DC component from the electrical signal generated in the conductor 11, and resistors 21-2 and 21-3 that apply a specified DC component.
  • the DC component is removed from the electrical signal generated in the conductor 11 by the capacitor 21-1, and a predetermined DC component is applied again using the resistors 21-2 and 21-3.
  • the resistors 21-2 and 21-3 set the reference voltage when there is no noise between the upper and lower thresholds set by the threshold setting unit 22 (hereinafter sometimes referred to as "threshold range"). ).
  • the threshold setting section 22, the comparison section 23, the wired OR connection section 24, the filter 25, and the buffer 26 constitute a noise detection signal generation section.
  • the threshold value setting unit 22 is provided to set a threshold value for detecting noise from the electrical signal generated in the conductive wire 11.
  • the noise contained in the electrical signal generated in the conductive wire 11 is an oscillatory signal having a positive amplitude and a negative amplitude.
  • an upper threshold value used for comparison with the positive amplitude of the electrical signal and a lower threshold value used for comparison with the negative amplitude of the electrical signal are set by the threshold setting unit 22. .
  • the upper threshold value is input to the inverting input (-) of the first comparator 23-1 that constitutes the comparison section 23.
  • the lower threshold value is input to the non-inverting input (+) of the second comparator 23-2 forming the comparing section 23.
  • the comparison unit 23 compares a threshold consisting of an upper threshold and a lower threshold with the electrical signal whose DC component has been adjusted by the DC component adjustment unit 21. For this reason, the comparison section 23 includes a first comparator 23-1 and a second comparator 23-2.
  • the non-inverting input (+) of the first comparator 23-1 receives an electrical signal whose DC component has been adjusted by the DC component adjustment unit 21, and the inverting input (-) receives the upper threshold value.
  • the first comparator 23-1 can detect whether the positive amplitude of the electrical signal whose DC component has been adjusted by the DC component adjustment section 21 exceeds the upper threshold value.
  • the inverting input (-) of the second comparator 23-2 receives an electrical signal whose DC component has been adjusted by the DC component adjusting section 21, and the non-inverting input (+) receives the lower threshold value. be done.
  • the second comparator 23-2 can detect whether the negative amplitude of the electrical signal whose DC component has been adjusted by the DC component adjustment section 21 has fallen below the lower threshold.
  • the signal output from the comparison section 23 (first comparator 23-1 and second comparator 22-2) is input to the wired OR connection section 24.
  • the wired OR connection unit 24 connects a signal that is output when the first comparator 23-1 determines that the positive amplitude of the electrical signal exceeds the upper threshold, and a signal that is output when the positive amplitude of the electrical signal is determined to be above the upper threshold by the second comparator 23-2. It is provided to perform a logical sum (OR) with a signal that is output when it is determined that the amplitude of is below the lower threshold value.
  • the second comparator 23-2 determines that the negative amplitude of the electrical signal exceeds the upper threshold. Noise generation can be detected regardless of which one of the cases where it is determined that the noise level has fallen below the lower threshold value occurs first.
  • the comparison section 23 and the wired OR connection section 24 are configured by, for example, a reset IC.
  • the filter 25 and the buffer 26 have the function of suppressing fluctuations in the presence or absence of noise that may occur as a result of generating a noise detection signal based on comparison with a threshold value, and increasing noise detection accuracy.
  • the noise detection circuit 12 detects the electrical signal generated in the conducting wire 11 when it is determined that the electrical signal generated in the conducting wire 11 is larger than the upper threshold value or smaller than the lower threshold value. is outside a threshold range between the upper and lower thresholds, a noise detection signal indicating the presence of noise is generated and output. Further, the noise detection circuit 12 detects that when it is determined that the electrical signal generated in the conducting wire 11 is smaller than the upper threshold value and larger than the lower threshold value, that is, the electrical signal generated in the conducting wire 11 is determined to be equal to the upper threshold value and the lower threshold value. If the value falls within a certain threshold range, a noise detection signal indicating that no noise is generated is generated and output. For example, the noise detection signal indicates Low when indicating that noise has occurred, and indicates High when indicating that no noise has occurred.
  • the noise detection signal generated by the noise detection circuit 12 as described above is input to the data processing circuit 13.
  • FIG. 8 is a waveform diagram illustrating the function of the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure.
  • sampling points by the data processing circuit 13 for sensor data output from the sensor circuit 2 of the torque sensor 100 are indicated by black circles. That is, the data processing circuit 13 samples the sensor data output from the sensor circuit 2 at time t5 , time t6 , time t7 , time t8 , time t9 , time t10 , and time t11 . .
  • noise will occur in the sensor data output from the sensor circuit 2 of the torque sensor 100.
  • noise occurs at time t7 and time t9 .
  • the magnitude of the sensor data containing noise at times t7 and t9 will be the same as the magnitude of the sensor data containing no noise at time t. 6 (maximum value) and the sensor data at time t10 (minimum value) that does not include noise. For this reason, there is a possibility that sensor data containing noise cannot be accurately distinguished from normal sensor data containing no noise.
  • noise detection circuit 12 only noise is detected by the noise detection circuit 12 based on the electrical signal generated in the conductive wire 11 wired so as to surround the electrical cable 200 (see the waveform diagram at the bottom of FIG. 8). ), noise can be detected accurately.
  • FIG. 9 is a waveform diagram illustrating a noise detection signal generated by the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure.
  • the noise detection circuit 12 When the electrical signal generated in the conducting wire 11 (in FIG. 7, the electrical signal whose DC component has been adjusted by the DC component adjustment section 21) is out of the threshold range, the noise detection circuit 12 generates a noise detection signal indicating that noise has occurred. .
  • the electrical signal input to the noise detection circuit 12 that is, the electrical signal generated in the conducting wire 11
  • the noise detection circuit 12 outputs a noise detection signal (Low) indicating that noise has occurred between time t12 and time t13 when a predetermined period has elapsed, and during the rest of the time, no noise is generated.
  • a noise detection signal (High) indicating this is output.
  • the noise contained in the electric signal generated in the conductor 11 is reproducible. Therefore, the time required for the noise to subside after it occurs is also approximately constant. Therefore, in the embodiment of the present disclosure, during the development of the robot 1000, etc., the time required for the noise to subside after the noise occurs is measured in advance, and based on the measured time, the noise is determined to be generated. Set the time required for the noise to subside. The constant of the filter 25 is determined based on this set time.
  • FIGS. 10 and 11 are waveform diagrams illustrating filter settings by the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure.
  • the electrical signal input to the noise detection circuit 12 (that is, the electrical signal generated in the conductive wire 11) reaches the upper threshold and the lower threshold in a short period of time.
  • the magnitude relationship with the threshold value is reversed. Therefore, "flapping of the noise detection signal” occurs in which the noise detection signal (Low) indicating the presence of noise generation and the noise detection signal (High) indicating the absence of noise generation are switched in a short period of time.
  • the constant of the filter 25 when the constant of the filter 25 is set to be strong, the occurrence of noise is detected when the electrical signal input to the noise detection circuit 12 (that is, the electrical signal generated in the conductive wire 11) exceeds the upper threshold.
  • the time from time t 12 at which the noise detection signal (Low) indicating the occurrence of noise is output to time t 15 at which the noise detection signal (High) indicating no noise is output becomes longer. As a result, even data in areas where there is no noise is unnecessarily invalidated.
  • the time required for the noise to subside after the noise occurs is measured in advance, and based on the measured time, the noise is determined to be generated.
  • the time required for the noise to subside is set, and an appropriate constant of the filter 25 is determined based on this set time.
  • FIG. 12 is a waveform diagram illustrating the relationship between noise and invalidation period data in the embodiment of the present disclosure.
  • time t12 which is the point in time when the electrical signal generated in the conducting wire 11 deviates from the threshold range, is the starting point of the noise detection signal (Low) indicating the presence of noise.
  • time t12 which is the starting point of the noise detection signal.
  • the noise contained in the electrical signal generated in the conductive wire 11 has reproducibility. Therefore, in the embodiment of the present disclosure, during the development of the robot 1000, etc., the electrical signal is set to the threshold value after the noise is generated.
  • the time required for exceeding the threshold is measured in advance, and based on the measured time, a point in time that is a predetermined time before the start point of the noise detection signal (Low) indicating the presence of noise is detected in the sensor data.
  • a point in time that is a predetermined time before the start point of the noise detection signal (Low) indicating the presence of noise is detected in the sensor data.
  • time 14 which is before time t12 , which is the start point of the noise detection signal (Low) indicating the presence of noise, is set as the start point of the sensor data invalidation period.
  • time t 14 which is before time t 12 , which is the starting point of the noise detection signal (Low) indicating the presence of noise. Therefore, the sensor data output from the sensor circuit 2 is temporarily held in a storage section (not shown) in the noise removal circuit 1, and the data processing circuit 13 is Then, a process is executed to invalidate the sensor data during the invalidation period.
  • time t12 which is the starting point of the noise detection signal (Low) indicating the presence of noise, is the starting point of the sensor data invalidation period. It may be set to In this case, the storage unit can be omitted since there is no need to temporarily hold sensor data.
  • the data processing circuit 13 invalidates sensor data during an invalidation period that includes at least a period in which the noise detection signal indicates that noise has occurred. Below, some data invalidation processing by the data processing circuit will be listed.
  • FIG. 13 is a waveform diagram showing data invalidation processing by the first form of the data processing circuit in the noise removal circuit according to the embodiment of the present disclosure.
  • the starting point of the noise detection signal (Low) indicating the presence of noise is set to the starting point of the sensor data invalidation period.
  • the data processing circuit 13 may set the start point of the sensor data invalidation period to a point that is a predetermined time earlier than the start point of the noise detection signal (Low) indicating the presence of noise.
  • the data processing circuit 13 outputs the data output from the sensor circuit 2 as is during a period other than the invalidation period, and the data output from the sensor circuit 2 during the invalidation period. Stop outputting data.
  • the noise detection signal (Low) indicating that noise has occurred is output from the noise detection circuit 12 between time t 17 and time t 18 .
  • the output of the data output from the sensor circuit 2 is stopped, and during periods other than the invalidation period, the data output from the sensor circuit 2 is output as is.
  • the influence of noise can be removed from sensor data.
  • FIG. 14 is a waveform diagram showing data invalidation processing by the second form of the data processing circuit in the noise removal circuit according to the embodiment of the present disclosure.
  • sampling points by the data processing circuit 13 for sensor data output from the sensor circuit 2 are represented by S 1 to S 12 .
  • the starting point of the noise detection signal (Low) indicating the presence of noise is set to the starting point of the sensor data invalidation period.
  • the data processing circuit 13 may set the start point of the sensor data invalidation period to a point that is a predetermined time earlier than the start point of the noise detection signal (Low) indicating the presence of noise.
  • the data processing circuit 13 invalidates the sensor data during the invalidation period among the sensor data output from the sensor circuit 2, and then disables the sensor data during a predetermined period including the invalidation period.
  • the values indicated by the sensor data output from the sensor circuit 2 are averaged and output.
  • sampling points S 3 , S 7 , S Disable sensor data in 11 are averaged and output.
  • the time period for averaging can be set arbitrarily.
  • the sensor data output from the sensor circuit 2 is an analog signal
  • variations may occur in the values indicated by the sensor data due to thermal noise, etc.
  • the sensor It is possible to more reliably remove the influence of noise from data and generate highly accurate sensor data regarding torque.
  • the conductor 11 is wired around the electric cable 200 that is a noise generation source, noise is detected based on the electric signal generated in the conductor 11, and the noise is detected from the sensor circuit 2.
  • the data portion affected by noise among the output sensor data is invalidated.
  • PWM-controlled motor drive power is switched between High and Low at high speed, so sensor data from torque sensors around the electric cable through which the motor drive power flows is easily affected by noise.
  • measures have been taken in the past to reduce the effects of noise by taking a time average of sensor data, but this poses a problem in that the high speed of sensor processing is lost.
  • the data portion affected by noise among the sensor data output from the sensor circuit 2 is invalidated, so that high-speed sensor processing can be ensured.
  • the size of the sensor data that includes noise will be the maximum value of the sensor data that does not include noise, and the size of the sensor data that includes noise. It falls between the minimum value of the sensor data and the minimum value of the sensor data. For this reason, there is a possibility that it may not be possible to accurately distinguish between sensor data containing noise and normal sensor data containing no noise.
  • only noise is detected by the noise detection circuit 12 based on the electric signal generated in the conductor 11 wired so as to surround the electric cable 200, so that it is difficult to accurately detect noise. Can be done.
  • the substrate of the torque sensor 100 provided on the arm of the robot may be provided with an opening for passing various cables through.
  • the embodiment of the present disclosure has a structure in which the conductive wire 11 is wired so as to surround the opening of the substrate 3 of the torque sensor 100, so that a noise removal circuit can be easily implemented even in a conventional torque sensor.
  • the noise detection signal indicates Low when indicating the presence of noise generation, and indicates High when indicating the absence of noise generation.
  • the noise detection signal may be High when indicating that noise has occurred, and Low when indicating that no noise has occurred.
  • the electric cable 200 is a power cable through which motor drive power flows.
  • the electric cable 200 may be a cable other than a power cable through which motor drive power flows.
  • the electric cable 200 may be a signal cable through which a PWM signal used to control an inverter flows, or a power cable through which power supply power flows.
  • the sensor circuit 2 is provided in the torque sensor 100 that detects the torque of the target object 300.
  • the sensor circuit 2 may be provided in a sensor other than the torque sensor.
  • the sensor circuit 2 may be a current sensor, voltage sensor, magnetic sensor, speed sensor, temperature sensor, or the like, which outputs electrical sensor data.
  • Noise removal circuit 2 Sensor circuit 3 Board 11 Conductive wire 12
  • Noise detection circuit 13 Data processing circuit 21
  • DC component adjustment section 21-1 Capacitor 21-2, 21-3 Resistor 22
  • Threshold value setting section 23 Comparison section 23-1 First comparator 23-2 Second comparator 24
  • Filter 26 Opening 100 Torque sensor 200 Electric cable 300 Object 1000 Robot

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

This noise removal circuit that removes the effect of noise from the data output from a sensor circuit comprises: a conductor wire that surrounds an electric cable; a noise detection circuit for generating a noise detection signal indicating the presence or absence of noise in the electric cable on the basis of the electric signal generated in the conductor wire; and a data processing circuit that invalidates data output from the sensor circuit during an invalidation period that includes at least a period in which the noise detection signal indicates that noise has occurred.

Description

ノイズ除去回路及びセンサNoise removal circuit and sensor
 本発明は、ノイズ除去回路及びセンサに関する。 The present invention relates to a noise removal circuit and a sensor.
 ロボットのアームの駆動に用いられるモータは、インバータによって駆動電力が供給される。インバータは、PWM(Pulse Width Modulation)信号に基づき制御される。PWM制御されたモータ駆動電力を供給する配線は、ノイズの発生源となる。 The motor used to drive the arm of the robot is supplied with driving power by an inverter. The inverter is controlled based on a PWM (Pulse Width Modulation) signal. Wiring that supplies PWM-controlled motor drive power becomes a source of noise.
 例えば、被測定物から発生したAEを測定するAE測定装置であって、前記被測定物から発生したAE信号を検出する測定用AEセンサと、前記被測定物の外部で発生した外部AE信号を検出する外部ノイズ用AEセンサと、前記外部ノイズ用AEセンサが検出した外部AE信号に基づいて外部ノイズがあるか否かを判定する判定部と、前記測定用AEセンサにおいてAE信号が検出されたときに、前記判定部において外部ノイズがないとされた場合に当該AE信号を有効とする測定処理部とを備えた、AE測定装置が知られている(例えば、特許文献1参照。)。 For example, an AE measurement device that measures AE generated from an object to be measured includes a measurement AE sensor that detects an AE signal generated from the object to be measured, and an external AE signal generated outside the object to be measured. an AE sensor for external noise to detect; a determination unit that determines whether or not there is external noise based on an external AE signal detected by the AE sensor for external noise; and an AE signal detected by the AE sensor for measurement. Sometimes, an AE measurement device is known that includes a measurement processing section that validates the AE signal when the determination section determines that there is no external noise (for example, see Patent Document 1).
 例えば、複数のコイルを、1つの閉じた線に沿って連続的に接続するとともに前記複数のコイルの最後のコイルの巻き終わりから最初のコイルの巻き始め側までの前記閉じた線に並行した復線路を有し、前記最初のコイルの巻き始め側端子と前記復線路の端子との間に誘起される電圧を前記閉じた線の内部に挿通される被測定回路の電流の関数として検出するロゴスキ型電流センサにおいて、前記複数のコイルを構成する各コイルが、前記閉じた線に直交する平面上に形成され、隣り合うコイルのうち、あるコイルの巻き終わりと次のコイルの巻き始め間が、前記閉じた線に並行する往線路により接続され、前記往線路全体と前記復線路とが、近接して配置されていることを特徴とするロゴスキ型電流センサが知られている(例えば、特許文献2参照。)。 For example, a plurality of coils are connected continuously along one closed line, and a connection is made parallel to the closed line from the end of the last coil of the plurality of coils to the start of winding of the first coil. A Rogoski that has a line and detects the voltage induced between the winding start side terminal of the first coil and the terminal of the return line as a function of the current of the circuit under test inserted inside the closed line. In the type current sensor, each coil constituting the plurality of coils is formed on a plane perpendicular to the closed line, and the distance between the end of one coil and the start of the next coil among the adjacent coils is A Rogowski type current sensor is known, which is connected by an outgoing line parallel to the closed line, and characterized in that the entire outgoing line and the incoming line are disposed close to each other (for example, Patent Document (See 2).
特開2010-71945号公報Japanese Patent Application Publication No. 2010-71945 国際公開第2017/014297号International Publication No. 2017/014297
 モータ駆動電力に起因するノイズは各種センサの精度及び各種機器の制御などに悪影響を及ぼす。したがって、ノイズを検出してその影響を除去することが極めて重要である。例えば、ロボットのアームにはトルクを検知するためのトルクセンサが設けられており、モータ駆動電力に起因するノイズはトルクセンサの精度に悪影響を及ぼす。本開示が解決しようとする課題は、センサ回路から出力されたデータからノイズの影響を除去するノイズ除去回路及びこれを備えるセンサを実現することにある。 Noise caused by motor drive power has a negative effect on the accuracy of various sensors and the control of various devices. Therefore, it is extremely important to detect noise and remove its effects. For example, a robot arm is provided with a torque sensor for detecting torque, and noise caused by motor drive power adversely affects the accuracy of the torque sensor. An object of the present disclosure is to realize a noise removal circuit that removes the influence of noise from data output from a sensor circuit, and a sensor equipped with the noise removal circuit.
 本開示の一態様によれば、センサ回路から出力されたデータからノイズの影響を除去するノイズ除去回路は、電気ケーブルを取り囲むように配線された導線と、導線に発生する電気信号に基づき、電気ケーブルにおけるノイズ発生の有無を示すノイズ検出信号を生成するノイズ検出回路と、センサ回路から出力されたデータのうち、ノイズ検出信号がノイズ発生有りを示す期間を少なくとも含む無効化期間中のデータを無効にするデータ処理回路と、を備える。 According to one aspect of the present disclosure, a noise removal circuit that removes the influence of noise from data output from a sensor circuit uses a conductor wire that surrounds an electric cable and an electric signal generated in the conductor wire. Among data output from a noise detection circuit that generates a noise detection signal indicating the presence or absence of noise generation in the cable and a sensor circuit, data during an invalidation period that includes at least a period in which the noise detection signal indicates the presence of noise generation is invalidated. and a data processing circuit.
 また、本開示の一態様によれば、センサは、対象物についてのセンサ検知結果であるデータを出力するセンサ回路と、センサ回路から出力されたデータからノイズの影響を除去する上記ノイズ除去回路と、電気ケーブルが貫く開口部を有し開口部を取り囲むように導線が配線される基板と、を備える。 Further, according to one aspect of the present disclosure, the sensor includes a sensor circuit that outputs data that is a sensor detection result about a target object, and the noise removal circuit that removes the influence of noise from the data output from the sensor circuit. , a substrate having an opening through which an electric cable passes, and a conductor wire is routed so as to surround the opening.
 本開示の一態様によれば、センサ回路から出力されたデータからノイズの影響を除去するノイズ除去回路及びこれを備えるセンサを実現することができる。 According to one aspect of the present disclosure, it is possible to realize a noise removal circuit that removes the influence of noise from data output from a sensor circuit, and a sensor equipped with the same.
本開示の実施形態によるノイズ除去回路及びこれを備えるトルクセンサを示す図である。1 is a diagram showing a noise removal circuit and a torque sensor including the same according to an embodiment of the present disclosure. FIG. 本開示の実施形態によるトルクセンサを備えるロボットを示す図である。1 is a diagram illustrating a robot with a torque sensor according to an embodiment of the present disclosure. FIG. 電気ケーブルに流れるモータ駆動電力に起因して発生するノイズを例示する図である。FIG. 3 is a diagram illustrating noise generated due to motor drive power flowing through an electric cable. 本開示の実施形態によるトルクセンサの第1の形態による基板を示す斜視図である。FIG. 2 is a perspective view showing a substrate according to a first form of a torque sensor according to an embodiment of the present disclosure. 本開示の実施形態によるトルクセンサの第2の形態による基板を示す斜視図である。FIG. 3 is a perspective view showing a substrate according to a second form of a torque sensor according to an embodiment of the present disclosure. 本開示の実施形態によるトルクセンサの第3の形態による基板を示す斜視図である。FIG. 7 is a perspective view showing a substrate according to a third form of a torque sensor according to an embodiment of the present disclosure. 本開示の実施形態によるノイズ除去回路内のノイズ検出回路の構成を示す回路図である。FIG. 2 is a circuit diagram showing a configuration of a noise detection circuit in a noise removal circuit according to an embodiment of the present disclosure. 本開示の実施形態によるノイズ除去回路内のノイズ検出回路の機能を説明する波形図である。FIG. 3 is a waveform diagram illustrating a function of a noise detection circuit in a noise removal circuit according to an embodiment of the present disclosure. 本開示の実施形態によるノイズ除去回路内のノイズ検出回路により生成されるノイズ検出信号を例示する波形図である。FIG. 2 is a waveform diagram illustrating a noise detection signal generated by a noise detection circuit in a noise removal circuit according to an embodiment of the present disclosure. 本開示の実施形態によるノイズ除去回路内のノイズ検出回路によるフィルタの設定を説明する波形図(その1)である。FIG. 2 is a waveform diagram (part 1) illustrating filter settings by the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure. 本開示の実施形態によるノイズ除去回路内のノイズ検出回路によるフィルタの設定を説明する波形図(その2)である。FIG. 7 is a waveform diagram (part 2) illustrating filter settings by the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure. 本開示の実施形態におけるノイズと無効化期間のデータとの関係を説明する波形図である。FIG. 3 is a waveform diagram illustrating the relationship between noise and invalidation period data in the embodiment of the present disclosure. 本開示の実施形態によるノイズ除去回路内のデータ処理回路の第1の形態によるデータ無効化処理を示す波形図である。FIG. 3 is a waveform diagram showing data invalidation processing by the first form of the data processing circuit in the noise removal circuit according to the embodiment of the present disclosure. 本開示の実施形態によるノイズ除去回路内のデータ処理回路の第2の形態によるデータ無効化処理を示す波形図である。FIG. 7 is a waveform diagram showing data invalidation processing by a second form of the data processing circuit in the noise removal circuit according to the embodiment of the present disclosure.
 以下、実施形態のノイズ除去回路及びトルクセンサを、図面を参照して説明する。なお、以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は、省略する場合がある。また、以下の説明において「接続される」は「電気的に接続される」を意味する。 Hereinafter, a noise removal circuit and a torque sensor according to an embodiment will be described with reference to the drawings. In addition, in the following description, the same code|symbol is attached to the structure which has the same or similar function. Redundant explanations of these configurations may be omitted. Furthermore, in the following description, "connected" means "electrically connected".
<ノイズ除去回路及びトルクセンサの全体構成>
 図1は、本開示の実施形態によるノイズ除去回路及びこれを備えるトルクセンサを示す図である。また、図2は、本開示の実施形態によるトルクセンサを備えるロボットを示す図である。
<Overall configuration of noise removal circuit and torque sensor>
FIG. 1 is a diagram showing a noise removal circuit and a torque sensor including the same according to an embodiment of the present disclosure. Further, FIG. 2 is a diagram illustrating a robot equipped with a torque sensor according to an embodiment of the present disclosure.
 本開示の実施形態によれば、トルクセンサ100は、ノイズ除去回路1と、センサ回路2と、基板3(図1では図示せず)とを備える。本実施形態では、一例として、センサ回路2を、対象物300のトルクを検出するトルクセンサ100に設けられるものとしている。この変形例として、センサ回路2は、トルクセンサ以外のセンサに設けられるものであってもよい。例えば、センサ回路2は、電流センサ、電圧センサ、磁気センサ、速度センサ、あるいは温度センサなどのうち電気的なセンサデータが出力されるセンサ回路であってもよい。 According to the embodiment of the present disclosure, the torque sensor 100 includes a noise removal circuit 1, a sensor circuit 2, and a substrate 3 (not shown in FIG. 1). In this embodiment, as an example, the sensor circuit 2 is provided in a torque sensor 100 that detects the torque of a target object 300. As a modification of this example, the sensor circuit 2 may be provided in a sensor other than the torque sensor. For example, the sensor circuit 2 may be a current sensor, voltage sensor, magnetic sensor, speed sensor, temperature sensor, or the like, which outputs electrical sensor data.
 トルクセンサ100は例えばロボット1000のアーム内に設けられる。トルクセンサ100の基板3には、ノイズ除去回路1及びセンサ回路2などが設けられる。 The torque sensor 100 is provided within the arm of the robot 1000, for example. The substrate 3 of the torque sensor 100 is provided with a noise removal circuit 1, a sensor circuit 2, and the like.
 センサ回路2は、対象物300についてのセンサ検知結果であるデータ(以下、「センサデータ」と称する。)を出力する。ここでは、一例としてトルクセンサとしたので、センサ回路2は、対象物300について検知したトルクに関するセンサデータを出力する。トルク検知の対象である対象物300は、ロボットのアームを駆動するモータである。センサ回路2が出力するセンサデータは、アナログデータ(アナログ信号)であってもよく、ディジタルデータ(ディジタル信号)であってもよい。 The sensor circuit 2 outputs data (hereinafter referred to as "sensor data") that is the sensor detection result for the object 300. Here, since a torque sensor is used as an example, the sensor circuit 2 outputs sensor data regarding the torque detected on the object 300. The object 300 that is the target of torque detection is a motor that drives an arm of a robot. The sensor data output by the sensor circuit 2 may be analog data (analog signal) or digital data (digital signal).
 ノイズ除去回路1は、センサ回路2から出力されたセンサデータからノイズの影響を除去する。ノイズ除去回路1は、導線11と、ノイズ検出回路12と、データ処理回路13とを備える。 The noise removal circuit 1 removes the influence of noise from the sensor data output from the sensor circuit 2. The noise removal circuit 1 includes a conductive wire 11, a noise detection circuit 12, and a data processing circuit 13.
 トルクセンサ100の基板3には、開口部が設けられている。開口部には、PWM制御されたモータ駆動電力が流れる電気ケーブル200が貫くように配置される。導線11は、基板上の開口部を取り囲むように配線される。よって、導線11は、モータ駆動電力に起因するノイズ発生源である電気ケーブル200を取り囲むように配線される。 The substrate 3 of the torque sensor 100 is provided with an opening. An electric cable 200 through which PWM-controlled motor drive power flows is arranged so as to pass through the opening. The conductive wire 11 is wired so as to surround the opening on the substrate. Therefore, the conducting wire 11 is wired so as to surround the electric cable 200, which is a source of noise caused by motor drive power.
 ノイズ検出回路12は、導線11に発生する電気信号に基づき、電気ケーブル200におけるノイズ発生の有無を示すノイズ検出信号を生成する。ノイズ検出回路12によるノイズ検出処理の詳細については後述する。 The noise detection circuit 12 generates a noise detection signal indicating the presence or absence of noise in the electric cable 200 based on the electric signal generated in the conductive wire 11. Details of the noise detection process by the noise detection circuit 12 will be described later.
 データ処理回路13は、センサ回路2から出力されたセンサデータのうち、ノイズ検出信号がノイズ発生有りを示す期間を少なくとも含む無効化期間中のセンサデータを無効にする。データ処理回路13によるデータ無効化処理の詳細については後述する。 Of the sensor data output from the sensor circuit 2, the data processing circuit 13 invalidates sensor data during an invalidation period that includes at least a period in which the noise detection signal indicates that noise has occurred. Details of the data invalidation process by the data processing circuit 13 will be described later.
 トルクセンサ100内には演算処理装置(プロセッサ)が設けられる。演算処理装置には、例えばIC、LSI、CPU、MPU、DSPなどがある。データ処理回路13は、演算処理装置のみで構成されてもよく、あるいはアナログ回路と演算処理装置との組み合わせで構成されてもよく、あるいはアナログ回路のみで構成されてもよい。例えば、データ処理回路13をソフトウェアプログラム形式で構築する場合は、演算処理装置をこのソフトウェアプログラムに従って動作させることで、データ処理回路13の機能を実現することができる。またあるいは、データ処理回路13の機能を実現するソフトウェアプログラムを書き込んだ半導体集積回路として実現してもよい。またあるいは、データ処理回路13の機能を実現するソフトウェアプログラムを書き込んだ記録媒体として実現してもよい。 A processing unit (processor) is provided within the torque sensor 100. Examples of arithmetic processing devices include ICs, LSIs, CPUs, MPUs, and DSPs. The data processing circuit 13 may be composed of only an arithmetic processing device, or may be composed of a combination of an analog circuit and an arithmetic processing device, or may be composed only of an analog circuit. For example, when the data processing circuit 13 is constructed in the form of a software program, the functions of the data processing circuit 13 can be realized by operating the arithmetic processing device according to this software program. Alternatively, the data processing circuit 13 may be implemented as a semiconductor integrated circuit written with a software program that implements the functions of the data processing circuit 13. Alternatively, the data processing circuit 13 may be implemented as a recording medium on which a software program for realizing the functions is written.
 なお、導線11及びノイズ検出回路12については、ロゴスキーコイル方式の電流検出回路に置き換えてもよい。この場合、ロゴスキーコイル方式の電流検出回路にはデータ処理回路13が接続されるとともに、ロゴスキーコイルが設けられた基板の開口部に電気ケーブル200が貫くように配置される。 Note that the conducting wire 11 and the noise detection circuit 12 may be replaced with a Rogowski coil type current detection circuit. In this case, the data processing circuit 13 is connected to the Rogowski coil type current detection circuit, and the electric cable 200 is arranged so as to penetrate through the opening of the substrate where the Rogowski coil is provided.
<モータ駆動電力によるノイズの発生原理>
 図3は、電気ケーブルに流れるモータ駆動電力に起因して発生するノイズを例示する図である。
<Principle of noise generation due to motor drive power>
FIG. 3 is a diagram illustrating noise generated due to motor drive power flowing through an electric cable.
 PWM制御されたモータ駆動電力を供給する配線は、ノイズの発生源となる。電気ケーブル200に流れるモータ駆動電力は矩形波電圧であり、矩形波電圧のHigh及びLowの変化に応じて、電気ケーブル200の周囲には磁界の微小な変化が生じ、電気ケーブル200の近傍にあるセンサ回路2から出力されるセンサデータにノイズが発生する。例えば図3に示すように、モータ駆動電力がLowからHighに切り替わる時刻t2及びモータ駆動電力がHighからLowに切り替わる時刻t4において、当該モータ駆動電力が流れる電気ケーブル200の周囲には磁界の微小な変化が生じる。この結果、電気ケーブル200の近傍にあるセンサ回路2から出力されるセンサデータには、時刻t2及び時刻t4でノイズが発生する。 Wiring that supplies PWM-controlled motor drive power becomes a source of noise. The motor drive power flowing through the electric cable 200 is a rectangular wave voltage, and according to the change of the rectangular wave voltage between High and Low, a minute change in the magnetic field occurs around the electric cable 200, and the magnetic field near the electric cable 200 is generated. Noise occurs in the sensor data output from the sensor circuit 2. For example, as shown in FIG. 3, at time t 2 when the motor drive power switches from Low to High and time t 4 when the motor drive power switches from High to Low, a magnetic field exists around the electric cable 200 through which the motor drive power flows. Minute changes occur. As a result, noise occurs in the sensor data output from the sensor circuit 2 near the electric cable 200 at times t 2 and t 4 .
 そこで、本開示の実施形態では、モータ駆動電力が流れる電気ケーブル200の周囲の磁界の変化を検知するために、電気ケーブル200を取り囲むように導線11を配線する。導線11には、電気ケーブル200に流れるモータ駆動電力の変化に応じたノイズが発生する。ノイズ検出回路12は、導線11に発生したノイズに係る電気信号に基づき、電気ケーブル200におけるノイズ発生の有無を示すノイズ検出信号を生成する。 Therefore, in the embodiment of the present disclosure, the conducting wire 11 is wired to surround the electric cable 200 in order to detect changes in the magnetic field around the electric cable 200 through which motor drive power flows. Noise is generated in the conducting wire 11 in response to changes in the motor drive power flowing through the electric cable 200. The noise detection circuit 12 generates a noise detection signal indicating the presence or absence of noise generation in the electric cable 200 based on the electric signal related to the noise generated in the conductive wire 11.
<ノイズ除去回路の基板の構造>
 ロボット1000のアームに設けられるトルクセンサ100の基板には、各種ケーブルを通すための開口部が設けられている場合がある。モータ駆動電力が流れる電気ケーブル200も、基板の開口部を貫いて配置されている。そこで、本開示の実施形態では、トルクセンサ100の基板3の開口部を取り囲むように導線11を配線することで、導線11が電気ケーブル200を取り囲むようにする。なお、この変形例として、トルクセンサ100の筐体に開口部を設け、トルクセンサ100の筐体の開口部を取り囲むように導線11を配線し、この開口部に電気ケーブル200を貫いて配置することで、導線11が電気ケーブル200を取り囲むようにしてもよい。
<Structure of the noise removal circuit board>
The substrate of the torque sensor 100 provided on the arm of the robot 1000 may be provided with openings for passing various cables. An electrical cable 200 through which motor drive power flows is also placed through the opening in the board. Therefore, in the embodiment of the present disclosure, the conducting wire 11 is wired so as to surround the opening of the substrate 3 of the torque sensor 100, so that the conducting wire 11 surrounds the electric cable 200. In addition, as a modification of this example, an opening is provided in the housing of the torque sensor 100, the conducting wire 11 is wired so as to surround the opening in the housing of the torque sensor 100, and the electric cable 200 is placed through the opening. In this way, the conductive wire 11 may surround the electric cable 200.
 以下、基板の形態例について、いくつか列記する。 Hereinafter, some examples of the form of the substrate will be listed.
 図4は、本開示の実施形態によるトルクセンサの第1の形態による基板を示す斜視図である。 FIG. 4 is a perspective view showing a substrate according to a first form of a torque sensor according to an embodiment of the present disclosure.
 第1の形態による基板3は、円盤型の基板の中央付近に開口部31が設けられた円環形状を有する。開口部31に電気ケーブル200が貫いている。基板3上には、開口部31を取り囲むように配線された導線11と、ノイズ検出回路12と、データ処理回路13とが設けられる。 The substrate 3 according to the first embodiment has an annular shape with an opening 31 provided near the center of the disk-shaped substrate. An electrical cable 200 passes through the opening 31. On the substrate 3, a conductive wire 11 wired to surround the opening 31, a noise detection circuit 12, and a data processing circuit 13 are provided.
 図5は、本開示の実施形態によるトルクセンサの第2の形態による基板を示す斜視図である。 FIG. 5 is a perspective view showing a substrate according to a second form of a torque sensor according to an embodiment of the present disclosure.
 第2の形態による基板3は、円周方向の一部に切り欠きがあるC文字状の基板の中央付近に開口部31が設けられた形状を有する。開口部31に電気ケーブル200が貫いている。基板3上には、開口部31の一部を取り囲むようC文字状に配線された導線11と、ノイズ検出回路12と、データ処理回路13とが設けられる。 The substrate 3 according to the second embodiment has a shape in which an opening 31 is provided near the center of a C-shaped substrate having a notch in a part in the circumferential direction. An electrical cable 200 passes through the opening 31. On the substrate 3, a conductive wire 11 wired in a C shape so as to surround a part of the opening 31, a noise detection circuit 12, and a data processing circuit 13 are provided.
 図6は、本開示の実施形態によるトルクセンサの第3の形態による基板を示す斜視図である。 FIG. 6 is a perspective view showing a substrate according to a third form of a torque sensor according to an embodiment of the present disclosure.
 第3の形態による基板3は、略四角形の基板の中央付近に開口部31が設けられた形状を有する。開口部31に電気ケーブル200が貫いている。基板3上には、開口部31を取り囲むよう略四角形状に配線された導線11と、ノイズ検出回路12と、データ処理回路13とが設けられる。 The substrate 3 according to the third embodiment has a shape in which an opening 31 is provided near the center of a substantially rectangular substrate. An electrical cable 200 passes through the opening 31. On the substrate 3, a conductive wire 11 wired in a substantially rectangular shape so as to surround the opening 31, a noise detection circuit 12, and a data processing circuit 13 are provided.
 上述の第1~第3の形態は一例であって、電気ケーブル200が貫く開口部31を導線11が取り囲むように配線されている基板であれば、図示した以外の基板形状及び配線形状を有していてもよい。 The first to third embodiments described above are just examples, and as long as the board is wired so that the conductive wire 11 surrounds the opening 31 through which the electric cable 200 passes, the board shape and wiring shape other than those shown in the drawings may be used. You may do so.
<ノイズ検出回路の構成の一例>
 図7は、本開示の実施形態によるノイズ除去回路内のノイズ検出回路の構成を示す回路図である。
<Example of configuration of noise detection circuit>
FIG. 7 is a circuit diagram showing a configuration of a noise detection circuit in a noise removal circuit according to an embodiment of the present disclosure.
 上述のように、ノイズ検出回路12には、導線11及びデータ処理回路13が接続される。センサ回路2の端子P1及びP2には、モータにかかるトルクにより抵抗値が変化する歪ゲージが接続される。 As described above, the noise detection circuit 12 is connected to the conducting wire 11 and the data processing circuit 13. A strain gauge whose resistance value changes depending on the torque applied to the motor is connected to terminals P1 and P2 of the sensor circuit 2.
 ノイズ検出回路12は、直流成分調節部21と、閾値設定部22と、比較部23と、ワイヤードOR接続部24と、フィルタ25と、バッファ26とを有する。 The noise detection circuit 12 includes a DC component adjustment section 21, a threshold value setting section 22, a comparison section 23, a wired OR connection section 24, a filter 25, and a buffer 26.
 直流成分調節部21は、導線11に発生する電気信号から直流成分を除去するコンデンサ21-1と、規定の直流成分を印加する抵抗21-2及び21-3とを有する。直流成分調節部21において、コンデンサ21-1により導線11に発生する電気信号から直流成分を除去し、抵抗21-2及び21-3を用いて所定の直流成分を改めて印加する。抵抗21-2及び21-3により、ノイズ無し時の基準となる電圧を、閾値設定部22で設定される上側閾値と下側閾値との間(以下、「閾値範囲」と称することがある。)に収めるよう調節する。 The DC component adjustment section 21 includes a capacitor 21-1 that removes a DC component from the electrical signal generated in the conductor 11, and resistors 21-2 and 21-3 that apply a specified DC component. In the DC component adjustment section 21, the DC component is removed from the electrical signal generated in the conductor 11 by the capacitor 21-1, and a predetermined DC component is applied again using the resistors 21-2 and 21-3. The resistors 21-2 and 21-3 set the reference voltage when there is no noise between the upper and lower thresholds set by the threshold setting unit 22 (hereinafter sometimes referred to as "threshold range"). ).
 閾値設定部22と比較部23とワイヤードOR接続部24とフィルタ25とバッファ26とで、ノイズ検出信号生成部が構成される。 The threshold setting section 22, the comparison section 23, the wired OR connection section 24, the filter 25, and the buffer 26 constitute a noise detection signal generation section.
 閾値設定部22は、導線11に発生する電気信号からノイズを検出するための閾値を設定するために設けられる。導線11に発生する電気信号に含まれるノイズは、プラスの振幅とマイナスの振幅とを有する振動的な信号である。このノイズを検出するために、電気信号のプラスの振幅との比較に用いられる上側閾値と、電気信号のマイナスの振幅との比較に用いられる下側閾値と、が閾値設定部22によって設定される。上側閾値は、比較部23を構成する第1のコンパレータ23-1の反転入力(-)に入力される。下側閾値は、比較部23を構成する第2のコンパレータ23-2の非反転入力(+)に入力される。 The threshold value setting unit 22 is provided to set a threshold value for detecting noise from the electrical signal generated in the conductive wire 11. The noise contained in the electrical signal generated in the conductive wire 11 is an oscillatory signal having a positive amplitude and a negative amplitude. In order to detect this noise, an upper threshold value used for comparison with the positive amplitude of the electrical signal and a lower threshold value used for comparison with the negative amplitude of the electrical signal are set by the threshold setting unit 22. . The upper threshold value is input to the inverting input (-) of the first comparator 23-1 that constitutes the comparison section 23. The lower threshold value is input to the non-inverting input (+) of the second comparator 23-2 forming the comparing section 23.
 比較部23は、上側閾値と下側閾値とからなる閾値と、直流成分調節部21により直流成分が調節された電気信号と、を比較する。このため、比較部23は、第1のコンパレータ23-1と第2のコンパレータ23-2とを有する。 The comparison unit 23 compares a threshold consisting of an upper threshold and a lower threshold with the electrical signal whose DC component has been adjusted by the DC component adjustment unit 21. For this reason, the comparison section 23 includes a first comparator 23-1 and a second comparator 23-2.
 第1のコンパレータ23-1の非反転入力(+)には、直流成分調節部21により直流成分が調節された電気信号が入力され、反転入力(-)には、上側閾値が入力される。第1のコンパレータ23-1により、直流成分調節部21により直流成分が調節された電気信号のプラスの振幅が上側閾値を上回ったか否かを検出することができる。また、第2のコンパレータ23-2の反転入力(-)には、直流成分調節部21により直流成分が調節された電気信号が入力され、非反転入力(+)には、下側閾値が入力される。第2のコンパレータ23-2により、直流成分調節部21により直流成分が調節された電気信号のマイナスの振幅が下側閾値を下回ったか否かを検出することができる。 The non-inverting input (+) of the first comparator 23-1 receives an electrical signal whose DC component has been adjusted by the DC component adjustment unit 21, and the inverting input (-) receives the upper threshold value. The first comparator 23-1 can detect whether the positive amplitude of the electrical signal whose DC component has been adjusted by the DC component adjustment section 21 exceeds the upper threshold value. Further, the inverting input (-) of the second comparator 23-2 receives an electrical signal whose DC component has been adjusted by the DC component adjusting section 21, and the non-inverting input (+) receives the lower threshold value. be done. The second comparator 23-2 can detect whether the negative amplitude of the electrical signal whose DC component has been adjusted by the DC component adjustment section 21 has fallen below the lower threshold.
 比較部23(第1のコンパレータ23-1及び第2の22-2)から出力された信号は、ワイヤードOR接続部24に入力される。ワイヤードOR接続部24は、第1のコンパレータ23-1により電気信号のプラスの振幅が上側閾値を上回ったと判定された場合に出力される信号と、第2のコンパレータ23-2により電気信号のマイナスの振幅が下側閾値を下回ったと判定された場合に出力される信号と、の論理和(OR)をとるために設けられる。ワイヤードOR接続部24があることにより、第1のコンパレータ23-1により電気信号のプラスの振幅が上側閾値を上回ったと判定される場合と第2のコンパレータ23-2により電気信号のマイナスの振幅が下側閾値を下回ったと判定される場合とのどちらが先に発生しても、ノイズ発生を検知することができる。 The signal output from the comparison section 23 (first comparator 23-1 and second comparator 22-2) is input to the wired OR connection section 24. The wired OR connection unit 24 connects a signal that is output when the first comparator 23-1 determines that the positive amplitude of the electrical signal exceeds the upper threshold, and a signal that is output when the positive amplitude of the electrical signal is determined to be above the upper threshold by the second comparator 23-2. It is provided to perform a logical sum (OR) with a signal that is output when it is determined that the amplitude of is below the lower threshold value. Due to the presence of the wired OR connection section 24, when the first comparator 23-1 determines that the positive amplitude of the electrical signal exceeds the upper threshold, the second comparator 23-2 determines that the negative amplitude of the electrical signal exceeds the upper threshold. Noise generation can be detected regardless of which one of the cases where it is determined that the noise level has fallen below the lower threshold value occurs first.
 比較部23及びワイヤードOR接続部24は、例えばリセットICによって構成される。 The comparison section 23 and the wired OR connection section 24 are configured by, for example, a reset IC.
 フィルタ25及びバッファ26は、閾値との比較に基づくノイズ検出信号の生成の結果生じ得るノイズ発生有り無しのバタつきを抑制し、ノイズ検出精度を上げる機能を有する。 The filter 25 and the buffer 26 have the function of suppressing fluctuations in the presence or absence of noise that may occur as a result of generating a noise detection signal based on comparison with a threshold value, and increasing noise detection accuracy.
 ノイズ検出回路12は、例えば上述の構成を有することによって、導線11で発生する電気信号が上側閾値よりも大きいかあるいは下側閾値よりも小さいと判定された場合、すなわち導線11で発生する電気信号が上側閾値と下側閾値との間である閾値範囲から外れる場合、ノイズ発生有りを示すノイズ検出信号を生成して出力する。また、ノイズ検出回路12は、導線11で発生する電気信号が上側閾値よりも小さくかつ下側閾値よりも大きいと判定された場合、すなわち導線11で発生する電気信号が上側閾値と下側閾値との間である閾値範囲に収まる場合、ノイズ発生無しを示すノイズ検出信号を生成して出力する。ノイズ検出信号は、例えば、ノイズ発生有りを示す場合はLowを示し、ノイズ発生無しを示す場合はHighを示す。上述のようにしてノイズ検出回路12にて生成されたノイズ検出信号は、データ処理回路13に入力される。 For example, by having the above-described configuration, the noise detection circuit 12 detects the electrical signal generated in the conducting wire 11 when it is determined that the electrical signal generated in the conducting wire 11 is larger than the upper threshold value or smaller than the lower threshold value. is outside a threshold range between the upper and lower thresholds, a noise detection signal indicating the presence of noise is generated and output. Further, the noise detection circuit 12 detects that when it is determined that the electrical signal generated in the conducting wire 11 is smaller than the upper threshold value and larger than the lower threshold value, that is, the electrical signal generated in the conducting wire 11 is determined to be equal to the upper threshold value and the lower threshold value. If the value falls within a certain threshold range, a noise detection signal indicating that no noise is generated is generated and output. For example, the noise detection signal indicates Low when indicating that noise has occurred, and indicates High when indicating that no noise has occurred. The noise detection signal generated by the noise detection circuit 12 as described above is input to the data processing circuit 13.
<ノイズ検出回路の機能>
 図8は、本開示の実施形態によるノイズ除去回路内のノイズ検出回路の機能を説明する波形図である。図8では、トルクセンサ100のセンサ回路2から出力されるセンサデータに対するデータ処理回路13によるサンプリングポイントを黒丸で示している。すなわち、データ処理回路13は、時刻t5、時刻t6、時刻t7、時刻t8、時刻t9、時刻t10、及び時刻t11で、センサ回路2から出力されるセンサデータをサンプリングする。
<Functions of noise detection circuit>
FIG. 8 is a waveform diagram illustrating the function of the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure. In FIG. 8, sampling points by the data processing circuit 13 for sensor data output from the sensor circuit 2 of the torque sensor 100 are indicated by black circles. That is, the data processing circuit 13 samples the sensor data output from the sensor circuit 2 at time t5 , time t6 , time t7 , time t8 , time t9 , time t10 , and time t11 . .
 モータ駆動電力が流れる電気ケーブル200の近傍にトルクセンサ100が存在すると、トルクセンサ100のセンサ回路2から出力されるセンサデータにノイズが発生する。図8に示す例では、一例として、時刻t7及び時刻t9で、ノイズが発生している。仮にセンサ回路2から出力されるセンサデータをそのまま監視して直接的にノイズを検出しようとすると、時刻t7及び時刻t9におけるノイズを含んだセンサデータの大きさは、ノイズを含まない時刻t6のセンサデータ(最大値)とノイズを含まない時刻t10のセンサデータ(最小値)との間に収まってしまう。このため、ノイズを含んだセンサデータと、ノイズを含まない正常なセンサデータとが正確に判別できない可能性がある。これに対し、本開示の実施形態では、電気ケーブル200を取り囲むように配線された導線11に発生する電気信号に基づいてノイズ検出回路12によりノイズのみを検出するので(図8の下方の波形図)、正確にノイズを検出することができる。 If the torque sensor 100 is located near the electric cable 200 through which motor drive power flows, noise will occur in the sensor data output from the sensor circuit 2 of the torque sensor 100. In the example shown in FIG. 8, as an example, noise occurs at time t7 and time t9 . If we try to directly detect noise by directly monitoring the sensor data output from the sensor circuit 2, the magnitude of the sensor data containing noise at times t7 and t9 will be the same as the magnitude of the sensor data containing no noise at time t. 6 (maximum value) and the sensor data at time t10 (minimum value) that does not include noise. For this reason, there is a possibility that sensor data containing noise cannot be accurately distinguished from normal sensor data containing no noise. In contrast, in the embodiment of the present disclosure, only noise is detected by the noise detection circuit 12 based on the electrical signal generated in the conductive wire 11 wired so as to surround the electrical cable 200 (see the waveform diagram at the bottom of FIG. 8). ), noise can be detected accurately.
<ノイズ検出信号と無効化処理期間との関係> <Relationship between noise detection signal and invalidation processing period>
 図9は、本開示の実施形態によるノイズ除去回路内のノイズ検出回路により生成されるノイズ検出信号を例示する波形図である。 FIG. 9 is a waveform diagram illustrating a noise detection signal generated by the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure.
 導線11に発生する電気信号(図7では直流成分調節部21により直流成分が調節された電気信号)が閾値範囲から外れる場合、ノイズ検出回路12は、ノイズ発生有りを示すノイズ検出信号を生成する。図9に示す例では、時刻t12でノイズ検出回路12に入力される電気信号(すなわち導線11に発生する電気信号)が上側閾値を上回る。よって、ノイズ検出回路12は、時刻t12から所定の期間が経過した時刻t13までの間は、ノイズ発生有りを示すノイズ検出信号(Low)を出力し、それ以外の間は、ノイズ発生無しを示すノイズ検出信号(High)を出力する。ロボット1000に設けられるトルクセンサ100に電気的影響を与えるインバータ回路や電気ケーブル200の配置はロボット製造時から大きく変わらないので、導線11に発生する電気信号に含まれるノイズには再現性がある。よって、ノイズが発生してから当該ノイズが収まるのに要する時間もほぼ一定である。そこで、本開示の実施形態では、ロボット1000の開発時などにおいて、ノイズが発生してから当該ノイズが収まるのに要する時間を予め計測しておき、その計測した時間に基づいて、ノイズが発生してから当該ノイズが収まるまでに要する時間を設定する。この設定時間をもとにフィルタ25の定数を決定する。 When the electrical signal generated in the conducting wire 11 (in FIG. 7, the electrical signal whose DC component has been adjusted by the DC component adjustment section 21) is out of the threshold range, the noise detection circuit 12 generates a noise detection signal indicating that noise has occurred. . In the example shown in FIG. 9, the electrical signal input to the noise detection circuit 12 (that is, the electrical signal generated in the conducting wire 11) at time t12 exceeds the upper threshold. Therefore, the noise detection circuit 12 outputs a noise detection signal (Low) indicating that noise has occurred between time t12 and time t13 when a predetermined period has elapsed, and during the rest of the time, no noise is generated. A noise detection signal (High) indicating this is output. Since the arrangement of the inverter circuit and electric cable 200 that electrically affect the torque sensor 100 provided in the robot 1000 has not changed much since the robot was manufactured, the noise contained in the electric signal generated in the conductor 11 is reproducible. Therefore, the time required for the noise to subside after it occurs is also approximately constant. Therefore, in the embodiment of the present disclosure, during the development of the robot 1000, etc., the time required for the noise to subside after the noise occurs is measured in advance, and based on the measured time, the noise is determined to be generated. Set the time required for the noise to subside. The constant of the filter 25 is determined based on this set time.
 図10及び図11は、本開示の実施形態によるノイズ除去回路内のノイズ検出回路によるフィルタの設定を説明する波形図である。 FIGS. 10 and 11 are waveform diagrams illustrating filter settings by the noise detection circuit in the noise removal circuit according to the embodiment of the present disclosure.
 図10に示すように、フィルタ25の定数が弱めの設定である場合、ノイズ検出回路12に入力される電気信号(すなわち導線11に発生する電気信号)は短時間の間に上側閾値及び下側閾値との大小関係が逆転する。よって、ノイズ発生有りを示すノイズ検出信号(Low)とノイズ発生無しを示すノイズ検出信号(High)との切り替わりが短時間の間に起こる「ノイズ検出信号のバタつき」が発生してしまう。 As shown in FIG. 10, when the constant of the filter 25 is set to a weak value, the electrical signal input to the noise detection circuit 12 (that is, the electrical signal generated in the conductive wire 11) reaches the upper threshold and the lower threshold in a short period of time. The magnitude relationship with the threshold value is reversed. Therefore, "flapping of the noise detection signal" occurs in which the noise detection signal (Low) indicating the presence of noise generation and the noise detection signal (High) indicating the absence of noise generation are switched in a short period of time.
 図11に示すように、フィルタ25の定数が強めの設定である場合、ノイズ検出回路12に入力される電気信号(すなわち導線11に発生する電気信号)が上側閾値を上回ることでノイズ発生有りを示すノイズ検出信号(Low)が出力される時刻t12から、ノイズ発生無しを示すノイズ検出信号(High)が出力される時刻t15までの時間が長くなる。この結果、ノイズがない部分のデータまでも必要以上に無効にしてしまう。 As shown in FIG. 11, when the constant of the filter 25 is set to be strong, the occurrence of noise is detected when the electrical signal input to the noise detection circuit 12 (that is, the electrical signal generated in the conductive wire 11) exceeds the upper threshold. The time from time t 12 at which the noise detection signal (Low) indicating the occurrence of noise is output to time t 15 at which the noise detection signal (High) indicating no noise is output becomes longer. As a result, even data in areas where there is no noise is unnecessarily invalidated.
 そこで、本開示の実施形態では、ロボット1000の開発時などにおいて、ノイズが発生してから当該ノイズが収まるのに要する時間を予め計測しておき、その計測した時間に基づいて、ノイズが発生してから当該ノイズが収まるまでに要する時間を設定し、この設定時間をもとに適切なフィルタ25の定数を決定する。 Therefore, in the embodiment of the present disclosure, during the development of the robot 1000, etc., the time required for the noise to subside after the noise occurs is measured in advance, and based on the measured time, the noise is determined to be generated. The time required for the noise to subside is set, and an appropriate constant of the filter 25 is determined based on this set time.
 図12は、本開示の実施形態におけるノイズと無効化期間のデータとの関係を説明する波形図である。 FIG. 12 is a waveform diagram illustrating the relationship between noise and invalidation period data in the embodiment of the present disclosure.
 図9を参照して説明したように、導線11に発生する電気信号が閾値範囲から外れる時点である時刻t12が、ノイズ発生有りを示すノイズ検出信号(Low)の開始点である。しかしながら、実際はノイズ検出信号の開始点である時刻t12よりも前の時点から、閾値を超えない程度のノイズが発生している。上述したように、導線11に発生する電気信号に含まれるノイズには再現性がある、そこで、本開示の実施形態では、ロボット1000の開発時などにおいて、ノイズが発生してから電気信号が閾値を超えるのに要する時間を予め計測しておき、その計測した時間に基づいて、ノイズ発生有りを示すノイズ検出信号(Low)の開始点よりも、所定の時間だけ前の時点を、センサデータの無効化期間の開始点に設定する。図12に示す例では、ノイズ発生有りを示すノイズ検出信号(Low)の開始点である時刻t12より前の時刻14を、センサデータの無効化期間の開始点に設定する。なお、ノイズ発生有りを示すノイズ検出信号(Low)の開始点である時刻t12よりも前の時刻t14に遡ってセンサデータの無効化処理を行う必要がある。このため、センサ回路2から出力されるセンサデータについてはノイズ除去回路1内の記憶部(図示せず)に一時的に保持し、データ処理回路13は、記憶部に保持されたセンサデータに対して、無効化期間中のセンサデータを無効にする処理を実行する。 As described with reference to FIG. 9, time t12 , which is the point in time when the electrical signal generated in the conducting wire 11 deviates from the threshold range, is the starting point of the noise detection signal (Low) indicating the presence of noise. However, in reality, noise that does not exceed the threshold has been generated before time t12 , which is the starting point of the noise detection signal. As described above, the noise contained in the electrical signal generated in the conductive wire 11 has reproducibility. Therefore, in the embodiment of the present disclosure, during the development of the robot 1000, etc., the electrical signal is set to the threshold value after the noise is generated. The time required for exceeding the threshold is measured in advance, and based on the measured time, a point in time that is a predetermined time before the start point of the noise detection signal (Low) indicating the presence of noise is detected in the sensor data. Set to the starting point of the invalidation period. In the example shown in FIG. 12, time 14 , which is before time t12 , which is the start point of the noise detection signal (Low) indicating the presence of noise, is set as the start point of the sensor data invalidation period. Note that it is necessary to invalidate the sensor data going back to time t 14 , which is before time t 12 , which is the starting point of the noise detection signal (Low) indicating the presence of noise. Therefore, the sensor data output from the sensor circuit 2 is temporarily held in a storage section (not shown) in the noise removal circuit 1, and the data processing circuit 13 is Then, a process is executed to invalidate the sensor data during the invalidation period.
 なお、ノイズ除去回路1内の構成及び処理をより簡便なものにするため、ノイズ発生有りを示すノイズ検出信号(Low)の開始点である時刻t12を、センサデータの無効化期間の開始点に設定してもよい。この場合、センサデータを一時的に保持する必要がないための記憶部を省略することができる。 Note that in order to simplify the configuration and processing within the noise removal circuit 1, time t12 , which is the starting point of the noise detection signal (Low) indicating the presence of noise, is the starting point of the sensor data invalidation period. It may be set to In this case, the storage unit can be omitted since there is no need to temporarily hold sensor data.
<データ処理回路によるデータ無効化処理>
 データ処理回路13は、センサ回路2から出力されたセンサデータのうち、ノイズ検出信号がノイズ発生有りを示す期間を少なくとも含む無効化期間中のセンサデータを無効にする。以下、データ処理回路によるデータ無効化処理について、いくつか列記する。
<Data invalidation processing by data processing circuit>
Of the sensor data output from the sensor circuit 2, the data processing circuit 13 invalidates sensor data during an invalidation period that includes at least a period in which the noise detection signal indicates that noise has occurred. Below, some data invalidation processing by the data processing circuit will be listed.
 図13は、本開示の実施形態によるノイズ除去回路内のデータ処理回路の第1の形態によるデータ無効化処理を示す波形図である。図13に示す例では、一例として、ノイズ発生有りを示すノイズ検出信号(Low)の開始点を、センサデータの無効化期間の開始点に設定している。なお、ノイズ発生有りを示すノイズ検出信号(Low)の開始点よりも所定の時間だけ前の時点をデータ処理回路13においてセンサデータの無効化期間の開始点に設定してもよい。 FIG. 13 is a waveform diagram showing data invalidation processing by the first form of the data processing circuit in the noise removal circuit according to the embodiment of the present disclosure. In the example shown in FIG. 13, as an example, the starting point of the noise detection signal (Low) indicating the presence of noise is set to the starting point of the sensor data invalidation period. Note that the data processing circuit 13 may set the start point of the sensor data invalidation period to a point that is a predetermined time earlier than the start point of the noise detection signal (Low) indicating the presence of noise.
 第1の形態によるデータ無効化処理では、データ処理回路13は、無効化期間以外の期間中はセンサ回路2から出力されたデータをそのまま出力し、無効化期間中はセンサ回路2から出力されたデータの出力を停止する。図13に示す例では、時刻t17から時刻t18までの間でノイズ発生有りを示すノイズ検出信号(Low)がノイズ検出回路12から出力されているので、時刻t17から時刻t18までの無効化期間中はセンサ回路2から出力されたデータの出力を停止し、無効化期間以外の期間中はセンサ回路2から出力されたデータをそのまま出力する。第1の形態によるデータ無効化処理によれば、センサデータからノイズの影響を除去することができる。 In the data invalidation process according to the first form, the data processing circuit 13 outputs the data output from the sensor circuit 2 as is during a period other than the invalidation period, and the data output from the sensor circuit 2 during the invalidation period. Stop outputting data. In the example shown in FIG. 13, the noise detection signal (Low) indicating that noise has occurred is output from the noise detection circuit 12 between time t 17 and time t 18 . During the invalidation period, the output of the data output from the sensor circuit 2 is stopped, and during periods other than the invalidation period, the data output from the sensor circuit 2 is output as is. According to the data invalidation process according to the first embodiment, the influence of noise can be removed from sensor data.
 図14は、本開示の実施形態によるノイズ除去回路内のデータ処理回路の第2の形態によるデータ無効化処理を示す波形図である。図14において、センサ回路2から出力されるセンサデータに対するデータ処理回路13によるサンプリングポイントをS1~S12で表している。図14に示す例では、一例として、ノイズ発生有りを示すノイズ検出信号(Low)の開始点を、センサデータの無効化期間の開始点に設定している。なお、ノイズ発生有りを示すノイズ検出信号(Low)の開始点よりも所定の時間だけ前の時点をデータ処理回路13においてセンサデータの無効化期間の開始点に設定してもよい。 FIG. 14 is a waveform diagram showing data invalidation processing by the second form of the data processing circuit in the noise removal circuit according to the embodiment of the present disclosure. In FIG. 14, sampling points by the data processing circuit 13 for sensor data output from the sensor circuit 2 are represented by S 1 to S 12 . In the example shown in FIG. 14, as an example, the starting point of the noise detection signal (Low) indicating the presence of noise is set to the starting point of the sensor data invalidation period. Note that the data processing circuit 13 may set the start point of the sensor data invalidation period to a point that is a predetermined time earlier than the start point of the noise detection signal (Low) indicating the presence of noise.
 第2の形態によるデータ無効化処理では、データ処理回路13は、センサ回路2から出力されたセンサデータのうち無効化期間中のセンサデータを無効にしたうえで無効化期間を含む所定期間中にセンサ回路2から出力されたセンサデータが示す値を平均化して出力する。図14に示す例では、時刻t19から時刻t20までの間、時刻t21から時刻t22までの間、及び時刻t23から時刻t23までの間のサンプリングポイントS3、S7、S11におけるセンサデータを無効化する。そして、無効化期間以外の期間中におけるサンプリングポイントS1、S2、S4、S5、S6、S8、S9、S10及びS12におけるセンサデータが示す値を平均化して出力する。平均化する時間期間については任意に設定可能である。例えばセンサ回路2から出力されるセンサデータがアナログ信号である場合は熱的ノイズなどでセンサデータが示す値にバラツキが生じることがあるが、第2の形態によるデータ無効化処理によれば、センサデータからノイズの影響をより確実に除去し、トルクに関する高精度のセンサデータを生成することができる。 In the data invalidation process according to the second form, the data processing circuit 13 invalidates the sensor data during the invalidation period among the sensor data output from the sensor circuit 2, and then disables the sensor data during a predetermined period including the invalidation period. The values indicated by the sensor data output from the sensor circuit 2 are averaged and output. In the example shown in FIG . 14 , sampling points S 3 , S 7 , S Disable sensor data in 11 . Then, the values indicated by the sensor data at the sampling points S 1 , S 2 , S 4 , S 5 , S 6 , S 8 , S 9 , S 10 and S 12 during the period other than the invalidation period are averaged and output. . The time period for averaging can be set arbitrarily. For example, when the sensor data output from the sensor circuit 2 is an analog signal, variations may occur in the values indicated by the sensor data due to thermal noise, etc. However, according to the data invalidation process according to the second form, the sensor It is possible to more reliably remove the influence of noise from data and generate highly accurate sensor data regarding torque.
 以上説明したように、本開示の実施形態によれば、ノイズ発生源である電気ケーブル200の周囲に導線11を配線し、導線11に発生する電気信号に基づきノイズを検出し、センサ回路2から出力されたセンサデータのうちノイズの影響を受けたデータ部分を無効にする。このような構成を有することにより、トルクセンサ100(のセンサ回路2)から出力されるセンサデータからノイズの影響を受けた異常値を的確に取り除くことができるので、トルクに関する高精度のセンサデータを生成することができる。 As described above, according to the embodiment of the present disclosure, the conductor 11 is wired around the electric cable 200 that is a noise generation source, noise is detected based on the electric signal generated in the conductor 11, and the noise is detected from the sensor circuit 2. The data portion affected by noise among the output sensor data is invalidated. With such a configuration, abnormal values affected by noise can be accurately removed from the sensor data output from the torque sensor 100 (sensor circuit 2 thereof), so highly accurate sensor data regarding torque can be extracted. can be generated.
 一般にPWM制御されたモータ駆動電力はHighとLowの切替えが高速に行われることから、モータ駆動電力が流れる電気ケーブルの周囲にあるトルクセンサのセンサデータは、ノイズの影響を受けやすい。例えばセンサデータの時間平均をとることでノイズの影響を低減するといった対応が従来とられていたが、センサ処理の高速性が失われる問題があった。これに対し、本開示の実施形態によれば、センサ回路2から出力されたセンサデータのうちノイズの影響を受けたデータ部分を無効にするので、センサ処理の高速性を確保することができる。 Generally, PWM-controlled motor drive power is switched between High and Low at high speed, so sensor data from torque sensors around the electric cable through which the motor drive power flows is easily affected by noise. For example, measures have been taken in the past to reduce the effects of noise by taking a time average of sensor data, but this poses a problem in that the high speed of sensor processing is lost. In contrast, according to the embodiment of the present disclosure, the data portion affected by noise among the sensor data output from the sensor circuit 2 is invalidated, so that high-speed sensor processing can be ensured.
 また、仮にセンサ回路から出力されるセンサデータをそのまま監視して直接的にノイズを検出しようとすると、ノイズを含んだセンサデータの大きさは、ノイズを含まないセンサデータの最大値とノイズを含まないセンサデータの最小値との間に収まってしまう。このため、ノイズを含んだセンサデータと、ノイズを含まない正常なセンサデータとが正確に判別できない可能性があった。これに対し、本開示の実施形態では、電気ケーブル200を取り囲むように配線された導線11に発生する電気信号に基づいてノイズ検出回路12によりノイズのみを検出するので、正確にノイズを検出することができる。 In addition, if you try to directly detect noise by monitoring the sensor data output from the sensor circuit, the size of the sensor data that includes noise will be the maximum value of the sensor data that does not include noise, and the size of the sensor data that includes noise. It falls between the minimum value of the sensor data and the minimum value of the sensor data. For this reason, there is a possibility that it may not be possible to accurately distinguish between sensor data containing noise and normal sensor data containing no noise. In contrast, in the embodiment of the present disclosure, only noise is detected by the noise detection circuit 12 based on the electric signal generated in the conductor 11 wired so as to surround the electric cable 200, so that it is difficult to accurately detect noise. Can be done.
 また、ロボットのアームに設けられるトルクセンサ100の基板には、各種ケーブルを通すための開口部が設けられている場合がある。本開示の実施形態では、トルクセンサ100の基板3の開口部を取り囲むように導線11を配線するといった構造を有するので、従前のトルクセンサにもノイズ除去回路を容易に実装することができる。 Furthermore, the substrate of the torque sensor 100 provided on the arm of the robot may be provided with an opening for passing various cables through. The embodiment of the present disclosure has a structure in which the conductive wire 11 is wired so as to surround the opening of the substrate 3 of the torque sensor 100, so that a noise removal circuit can be easily implemented even in a conventional torque sensor.
<実施形態の変形例及び代替例> <Modifications and alternative examples of embodiments>
 以上説明した実施形態では、ノイズ検出信号は、ノイズ発生有りを示す場合はLowを示し、ノイズ発生無しを示す場合はHighを示すとした。この代替例として、ノイズ検出信号については、ノイズ発生有りを示す場合はHighを示し、ノイズ発生無しを示す場合はLowを示すようにしてもよい。 In the embodiment described above, the noise detection signal indicates Low when indicating the presence of noise generation, and indicates High when indicating the absence of noise generation. As an alternative example, the noise detection signal may be High when indicating that noise has occurred, and Low when indicating that no noise has occurred.
 また、以上説明した実施形態では、電気ケーブル200を、モータ駆動電力が流れる電力ケーブルとした。この変形例として、電気ケーブル200は、モータ駆動電力が流れる電力ケーブル以外のケーブルであってもよい。例えば、電気ケーブル200は、インバータを制御するために用いられるPWM信号が流れる信号ケーブルや電源電力が流れる電力ケーブルであってもよい。 Furthermore, in the embodiment described above, the electric cable 200 is a power cable through which motor drive power flows. As a modification of this example, the electric cable 200 may be a cable other than a power cable through which motor drive power flows. For example, the electric cable 200 may be a signal cable through which a PWM signal used to control an inverter flows, or a power cable through which power supply power flows.
 また、以上説明した実施形態では、センサ回路2を、対象物300のトルクを検出するトルクセンサ100に設けられるものとした。この変形例として、センサ回路2は、トルクセンサ以外のセンサに設けられるものであってもよい。例えば、センサ回路2は、電流センサ、電圧センサ、磁気センサ、速度センサ、あるいは温度センサなどのうち電気的なセンサデータが出力されるセンサ回路であってもよい。 Furthermore, in the embodiment described above, the sensor circuit 2 is provided in the torque sensor 100 that detects the torque of the target object 300. As a modification of this example, the sensor circuit 2 may be provided in a sensor other than the torque sensor. For example, the sensor circuit 2 may be a current sensor, voltage sensor, magnetic sensor, speed sensor, temperature sensor, or the like, which outputs electrical sensor data.
 本開示の実施形態について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、発明の要旨を逸脱しない範囲で、または、特許請求の範囲に記載された内容とその均等物から導き出される本発明の趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値又は数式が用いられている場合も同様である。 Although the embodiments of the present disclosure have been described in detail, the present disclosure is not limited to the individual embodiments described above. These embodiments are subject to various additions, substitutions, and changes without departing from the gist of the invention or without departing from the gist of the present invention derived from the content described in the claims and equivalents thereof. , partial deletion, etc. are possible. For example, in the embodiments described above, the order of each operation and the order of each process are shown as examples, and are not limited to these. Further, the same applies when numerical values or formulas are used in the description of the embodiments described above.
 1  ノイズ除去回路
 2  センサ回路
 3  基板
 11  導線
 12  ノイズ検出回路
 13  データ処理回路
 21  直流成分調節部
 21-1  コンデンサ
 21-2、21-3  抵抗
 22  閾値設定部
 23  比較部
 23-1  第1のコンパレータ
 23-2  第2のコンパレータ
 24  ワイヤードOR接続部
 25  フィルタ
 26  バッファ
 31  開口部
 100  トルクセンサ
 200  電気ケーブル
 300  対象物
 1000  ロボット
1 Noise removal circuit 2 Sensor circuit 3 Board 11 Conductive wire 12 Noise detection circuit 13 Data processing circuit 21 DC component adjustment section 21-1 Capacitor 21-2, 21-3 Resistor 22 Threshold value setting section 23 Comparison section 23-1 First comparator 23-2 Second comparator 24 Wired OR connection 25 Filter 26 Buffer 31 Opening 100 Torque sensor 200 Electric cable 300 Object 1000 Robot

Claims (7)

  1.  センサ回路から出力されたデータからノイズの影響を除去するノイズ除去回路であって、
     電気ケーブルを取り囲むように配線された導線と、
     前記導線に発生する電気信号に基づき、前記電気ケーブルにおけるノイズ発生の有無を示すノイズ検出信号を生成するノイズ検出回路と、
     前記センサ回路から出力されたデータのうち、前記ノイズ検出信号がノイズ発生有りを示す期間を少なくとも含む無効化期間中のデータを無効にするデータ処理回路と、
    を備える、ノイズ除去回路。
    A noise removal circuit that removes the influence of noise from data output from a sensor circuit,
    A conductor wire that surrounds an electric cable,
    a noise detection circuit that generates a noise detection signal indicating the presence or absence of noise in the electric cable based on the electric signal generated in the conductor;
    a data processing circuit that invalidates data output from the sensor circuit during an invalidation period that includes at least a period in which the noise detection signal indicates that noise has occurred;
    A noise removal circuit.
  2.  前記データ処理回路は、前記無効化期間以外の期間中は前記センサ回路から出力されたデータをそのまま出力し、前記無効化期間中は前記センサ回路から出力されたデータの出力を停止する、請求項1に記載のノイズ除去回路。 The data processing circuit outputs the data output from the sensor circuit as is during a period other than the invalidation period, and stops outputting the data output from the sensor circuit during the invalidation period. 1. The noise removal circuit according to 1.
  3.  前記データ処理回路は、前記センサ回路から出力されたデータのうち前記無効化期間中のデータを無効にしたうえで前記無効化期間を含む所定期間中に前記センサ回路から出力されたデータが示す値を平均化して出力する請求項1に記載のノイズ除去回路。 The data processing circuit invalidates the data output from the sensor circuit during the invalidation period, and then calculates a value indicated by the data output from the sensor circuit during a predetermined period including the invalidation period. 2. The noise removal circuit according to claim 1, wherein the noise removal circuit averages and outputs the averaged value.
  4.  前記ノイズ検出信号がノイズ発生有りを示す期間より予め規定された時間だけ前の時点が、前記無効化期間の開始点として設定される、請求項1~3のいずれか一項に記載のノイズ除去回路。 The noise removal according to any one of claims 1 to 3, wherein a point in time that is a predetermined time before a period in which the noise detection signal indicates that noise has occurred is set as a starting point of the invalidation period. circuit.
  5.  前記ノイズ検出回路は、
     前記導線に発生する電気信号から直流成分を調節する直流成分調節部と、
     前記直流成分調節部により前記直流成分が調節された前記電気信号の振幅が予め規定された閾値範囲から外れたと判定された場合、ノイズ発生有りを示す前記ノイズ検出信号を生成して出力するノイズ検出信号生成部と、
    を有する、請求項1~4のいずれか一項に記載のノイズ除去回路。
    The noise detection circuit includes:
    a DC component adjustment unit that adjusts a DC component from the electrical signal generated in the conductor;
    Noise detection that generates and outputs the noise detection signal indicating the presence of noise when it is determined that the amplitude of the electrical signal whose DC component has been adjusted by the DC component adjustment section is out of a predefined threshold range. a signal generation section;
    The noise removal circuit according to any one of claims 1 to 4, comprising:
  6.  対象物についてのセンサ検知結果であるデータを出力するセンサ回路と、
     前記センサ回路から出力されたデータからノイズの影響を除去する、請求項1~5のいずれか一項に記載のノイズ除去回路と、
     前記電気ケーブルが貫く開口部を有し、前記開口部を取り囲むように前記導線が配線される基板と、
    を備える、センサ。
    a sensor circuit that outputs data that is a sensor detection result about a target object;
    The noise removal circuit according to any one of claims 1 to 5, which removes the influence of noise from the data output from the sensor circuit;
    a substrate having an opening through which the electric cable passes, and on which the conductive wire is routed so as to surround the opening;
    A sensor.
  7.  前記センサ回路及び前記ノイズ除去回路は、前記基板に設けられる、請求項6に記載のセンサ。 The sensor according to claim 6, wherein the sensor circuit and the noise removal circuit are provided on the substrate.
PCT/JP2022/033559 2022-09-07 2022-09-07 Noise removal circuit and sensor WO2024053013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033559 WO2024053013A1 (en) 2022-09-07 2022-09-07 Noise removal circuit and sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033559 WO2024053013A1 (en) 2022-09-07 2022-09-07 Noise removal circuit and sensor

Publications (1)

Publication Number Publication Date
WO2024053013A1 true WO2024053013A1 (en) 2024-03-14

Family

ID=90192421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033559 WO2024053013A1 (en) 2022-09-07 2022-09-07 Noise removal circuit and sensor

Country Status (1)

Country Link
WO (1) WO2024053013A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218937A (en) * 1984-03-09 1985-11-01 フランス国 Noise analyzer of digital signal channel
JPH0691036A (en) * 1991-01-11 1994-04-05 Ace Denken:Kk Ct sensor
JPH06176947A (en) * 1992-06-05 1994-06-24 Gec Alsthom T & D Sa Rogowski coil
JP2005322933A (en) * 2004-05-10 2005-11-17 Areva T & D Sa Current transformer comprising combination of partial circuits that form complete circuit and that are equipped with rogowski type winding
JP2019095276A (en) * 2017-11-22 2019-06-20 ファナック株式会社 Device for detecting abnormality of electronic apparatus
JP2020024177A (en) * 2018-08-08 2020-02-13 キヤノン株式会社 Zero-cross discrimination device, control device and image formation device
JP2022008629A (en) * 2017-07-31 2022-01-13 ローム株式会社 Zero-cross detection circuit
WO2022162924A1 (en) * 2021-02-01 2022-08-04 三菱電機株式会社 Sensor circuit and electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218937A (en) * 1984-03-09 1985-11-01 フランス国 Noise analyzer of digital signal channel
JPH0691036A (en) * 1991-01-11 1994-04-05 Ace Denken:Kk Ct sensor
JPH06176947A (en) * 1992-06-05 1994-06-24 Gec Alsthom T & D Sa Rogowski coil
JP2005322933A (en) * 2004-05-10 2005-11-17 Areva T & D Sa Current transformer comprising combination of partial circuits that form complete circuit and that are equipped with rogowski type winding
JP2022008629A (en) * 2017-07-31 2022-01-13 ローム株式会社 Zero-cross detection circuit
JP2019095276A (en) * 2017-11-22 2019-06-20 ファナック株式会社 Device for detecting abnormality of electronic apparatus
JP2020024177A (en) * 2018-08-08 2020-02-13 キヤノン株式会社 Zero-cross discrimination device, control device and image formation device
WO2022162924A1 (en) * 2021-02-01 2022-08-04 三菱電機株式会社 Sensor circuit and electronic device

Similar Documents

Publication Publication Date Title
US8878529B2 (en) Sensor module and method for monitoring the function thereof
EP2383581A1 (en) Apparatus for monitoring fault current in power system
US10761106B2 (en) Rotary speed sensors
JP5832751B2 (en) Electronic circuit and magnetic field detection device capable of self-diagnosis
WO2024053013A1 (en) Noise removal circuit and sensor
CN110914643B (en) Control device with a circuit for short-circuit protection of a ground line and a sensor, and method for short-circuit protection of a ground line and a sensor
KR101766981B1 (en) Intergrated sensor for detecting rotating object
JP2002262579A (en) Power converter
US8508895B2 (en) Short circuit protection for sensor
JP2004516792A (en) Fan protection
JP2008157652A (en) Power supply
JP6608234B2 (en) Contact determination device and measurement device
US20240219435A1 (en) Source measure device
US11041931B2 (en) Voltage measurement device with self-diagnosis function, and self-diagnosis method of voltage measurement device
JP2001349923A (en) Tester and testing device for judging uniformity of insulation film
JP2002181670A (en) Facility diagnosing device
JP2002091789A (en) Noise detecting circuit
US20240125824A1 (en) Method to detect signal corruption from conductive dust in a circuit breaker
JP2011112549A (en) Device and method for detecting abnormality of electric wiring
JP2023148451A (en) protection device
JP3518104B2 (en) High-performance liquid chromatograph detector
WO2021024432A1 (en) Imbalance failure detection circuit
JP3019783B2 (en) Printed circuit board temperature detector
JPH08122417A (en) Noise detector
RU2307367C1 (en) Auxiliary block for indicating contact of measuring device with the object being checked

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958092

Country of ref document: EP

Kind code of ref document: A1