WO2024053012A1 - Communication system and control method - Google Patents

Communication system and control method Download PDF

Info

Publication number
WO2024053012A1
WO2024053012A1 PCT/JP2022/033554 JP2022033554W WO2024053012A1 WO 2024053012 A1 WO2024053012 A1 WO 2024053012A1 JP 2022033554 W JP2022033554 W JP 2022033554W WO 2024053012 A1 WO2024053012 A1 WO 2024053012A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
signal
input
combiner
brancher
Prior art date
Application number
PCT/JP2022/033554
Other languages
French (fr)
Japanese (ja)
Inventor
學 吉野
慎 金子
一貴 原
淳一 可児
直剛 柴田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/033554 priority Critical patent/WO2024053012A1/en
Publication of WO2024053012A1 publication Critical patent/WO2024053012A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form

Definitions

  • the present invention relates to a communication system and a control method technology.
  • IOWN Innovative Optical and Wireless Network
  • APN All-Photonics Network
  • Ph-GW Photonic Gateway
  • the exchange of wavelength and route information is performed using, for example, a control signal channel called AMCC (auxiliary management and control channel) when the user equipment starts communication.
  • AMCC auxiliary management and control channel
  • the user device and the control function unit located in the Ph-GW communicate with each other, and are connected to an arbitrary communication destination.
  • Ph-GW has five functions. The first is a wavelength control/monitoring function that specifies and controls which wavelength the user equipment uses and monitors the wavelength of the signal. The second is a pass/stop function that allows signals to pass when a path opens and stops unnecessary signals. The third function is to condense the optical signals of the wavelength set in each user equipment and transfer them to the relay network as necessary, and to distribute the optical signals transferred from the relay network to each wavelength as necessary and send them to the user equipment. This is a line concentration/distribution function that transfers lines to The fourth is a loopback function that enables loopback at the Ph-GW to which the optical signal is input without transferring it to a relay network. The fifth is an extraction/insertion function for performing playback, relay, and electrical processing.
  • the Ph-GW has the function of controlling a remotely located TPND (Transponder) and is a ROADM (Reconfigurable optical add-drop multiplexer) that does not have a TPND, or has the function of controlling a remote TPND and itself It can be regarded as a TPA (TPND Aggregator, transponder aggregation switch) that constitutes a ROADM without a TPND.
  • TPA TPND Aggregator, transponder aggregation switch
  • FIG. 20 is a diagram showing a first configuration example of the ROADM or a part thereof.
  • Configuration example 1 includes an M ⁇ 1 WSS 9012 with an M ⁇ 1 configuration, a 1 ⁇ N combiner/brancher 9021 with a 1 ⁇ N configuration, an N ⁇ 1 WSS 9010 with an N ⁇ 1 configuration, and a 1 ⁇ M WSS 9011 with a 1 ⁇ M configuration.
  • WSS is Wavelength Selective Switch.
  • the M ⁇ 1 WSS 9012 receives an M route signal from the user network interface (hereinafter referred to as “UNI”) side.
  • the M ⁇ 1 WSS 9012 multiplexes signals input from the UNI side according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the 1 ⁇ N combiner/brancher 9021.
  • the combiner/brancher 9021 branches the signal input from the M ⁇ 1 WSS 9012 into N paths, and outputs the signal to N paths on the network interface (hereinafter referred to as "NNI”) side.
  • the N ⁇ 1 WSS 9010 receives N-way signals from the NNI side.
  • the N ⁇ 1 WSS 9010 multiplexes signals input from the NNI side according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the 1 ⁇ M WSS 9011.
  • the 1 ⁇ M WSS 9011 outputs the signal from the N ⁇ 1 WSS 9010 to the M path on the UNI side according to the wavelength.
  • This configuration example 1 has a Colorless function and a Directionless function, but does not have a Contentionless function.
  • the Directionless function is a function that freely sets the direction of the transponder input/output route using a transponder aggregation switch configuration in which two WSSs are connected facing each other.
  • Contentionless function avoids collisions within the transponder aggregation switch of the same wavelength signals connected to different routes by using a WSS with an N ⁇ M configuration that has multiple ports for each input and output and sets arbitrary paths between them. This is a function to
  • FIG. 21 is a diagram showing configuration example 2.
  • Configuration 2 is a configuration using two upper and lower MCSs (Multicast Switches).
  • the first MCS of configuration example 2 includes M 1 ⁇ N optical switches 9113 and N M ⁇ 1 combiners/branchers 9111, and the other MCS includes N 1 ⁇ M combiners/branchers 9112. , and M N ⁇ 1 optical switches 9114.
  • each of the 1 ⁇ N optical switches 9113 receives one route of signals from the UNI side.
  • the 1 ⁇ N optical switch 9113 outputs the signal input from the UNI side to either the M ⁇ 1 combiner/brancher 9111.
  • the M ⁇ 1 combiner/brancher 9111 multiplexes the signals input from the 1 ⁇ N optical switch 9113 and outputs the multiplexed signals to each one route on the NNI side.
  • each of the 1 ⁇ M combiner/branchers 9112 receives one route of signals from the NNI side.
  • the 1 ⁇ M combiner/brancher 9112 branches the signal input from the NNI side and outputs it to the N ⁇ 1 optical switch 9114.
  • the N ⁇ 1 optical switch 9114 selects the signal from the 1 ⁇ M combiner/brancher 9112 according to the input port, and outputs it to each one route on the UNI side.
  • This configuration example 2 has a Colorless function, a Directionless function, and a Contentionless function. Note that in configuration example 2, an amplifier is usually required to compensate for MCS loss due to branching.
  • FIG. 22 is a diagram showing configuration example 3.
  • Configuration example 3 includes an M ⁇ N WSS 9201 and an N ⁇ M WSS 9202.
  • the M ⁇ N WSS 9201 receives an M route signal from the UNI side.
  • the M ⁇ N WSS9201 outputs a signal input from the UNI side to one of N routes on the NNI side depending on the combination of input port and wavelength.
  • the N ⁇ M WSS 9202 receives N-way signals from the NNI side.
  • the N ⁇ M WSS 9202 outputs the signal input from the NNI side to one of the M routes on the UNI side depending on the combination of input port and wavelength.
  • Configuration example 3 has a Colorless function, a Directionless function, and a Contentionless function.
  • FIG. 23 is a diagram showing configuration example 4.
  • Configuration example 4 includes an M ⁇ N optical switch 9302, an AWG (Arrayed-Waveguide Grating) 9303, an AWG 9313, and an N ⁇ M optical switch 9312.
  • the M ⁇ N optical switch 9302 receives M-way signals from the UNI side.
  • the M ⁇ N optical switch 9302 outputs a signal input from the UNI side to any port of any AWG 9303 depending on the input port.
  • the AWG 9303 multiplexes the signals input from the M ⁇ N optical switch 9302 according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the NNI side.
  • the AWG 9313 outputs each signal input from the NNI side to one of the N ports of the N ⁇ M optical switch 9312 depending on the combination of input port and wavelength.
  • the N ⁇ M optical switch 9312 outputs the signal input from the AWG 9313 to the M path on the UNI side according to the input port.
  • a Ph-GW can be configured using each of the configuration examples 1 to 4 described above or a part thereof. Further, the Ph-GW can be configured using components without wavelength selectivity such as MCS.
  • the present invention aims to provide a technique for blocking signals of inappropriate wavelengths.
  • One aspect of the present invention includes: an acquisition unit that acquires a wavelength set in a user terminal; an optical distribution unit that outputs an optical signal to at least one of a plurality of output destinations; an observation section that observes the wavelength of a signal input to the section or the wavelength of a signal output from the optical distribution section to the user terminal; and the wavelength observed by the observation section is the wavelength acquired by the acquisition section. and a cutoff unit that cuts off input from the user terminal or output to the user terminal or cuts off a wavelength component different from the acquired wavelength when the wavelength is different from the obtained wavelength.
  • One aspect of the present invention is a control method for a communication system including an optical distribution unit that outputs an optical signal to at least one of a plurality of output destinations, the acquisition method acquiring a wavelength set in a user terminal.
  • an observation step of observing the wavelength of a signal input from the user terminal to the optical distribution unit or the wavelength of a signal output from the optical distribution unit to the user terminal; and a wavelength observed by the observation step. is different from the wavelength obtained in the obtaining step, a blocking step of blocking input from the user terminal or output to the user terminal, or blocking a wavelength component different from the obtained wavelength.
  • This is a control method.
  • FIG. 1 is a configuration diagram showing a communication system according to the present embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a Ph-GW according to the first embodiment. It is a figure which shows the alternative structure of SA.
  • FIG. 7 is a diagram illustrating a configuration example of a Ph-GW according to a second embodiment.
  • FIG. 7 is a diagram showing a configuration example of a Ph-GW according to a third embodiment.
  • FIG. 7 is a diagram showing a configuration example of a Ph-GW according to a fourth embodiment. It is a diagram showing an example of the configuration of Ph-GW according to the fifth embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of a Ph-GW according to a sixth embodiment.
  • FIG. 1 is a configuration diagram showing a communication system according to the present embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a Ph-GW according to the first embodiment. It is a figure which shows the alternative structure of SA.
  • FIG. 12 is a diagram showing a configuration example of a Ph-GW according to a seventh embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of a Ph-GW according to an eighth embodiment.
  • 3 is a flowchart showing the flow of processing common to each embodiment.
  • FIG. 2 is a diagram showing an example of a configuration in which a separation section 21 is configured using FBG (Fiber Bragg Grating).
  • FBG Field Bragg Grating
  • 2 is a diagram illustrating a configuration example in which a separation unit 21 is configured using a TFF (Thin Film Filter).
  • FIG. 2 is a diagram illustrating a configuration example in which a separation unit 21 is configured using an AWG (Arrayed-Waveguide Grating).
  • FIG. 7 is a diagram illustrating a configuration example of a separation unit 21 configured using a modified example of an AWG.
  • FIG. FIG. 3 is a diagram showing a specific example of a separation section 21 configured using a reflection type diffraction grating. 3 is a diagram illustrating an example of a configuration in which a separation section 21 is configured using a waveguide ring resonator.
  • FIG. 3 is a diagram illustrating a configuration example in which a separation section 21 is configured using a lattice type optical filter.
  • FIG. FIG. 2 is a diagram illustrating user equipment in an APN.
  • FIG. 2 is a diagram showing a first configuration example of a ROADM. It is a figure which shows the example 2 of a structure of ROADM. It is a figure which shows the example 3 of a structure of ROADM. It is a figure which shows the example 4 of a structure of ROADM.
  • FIG. 1 is a configuration diagram showing a communication system 1 according to the present embodiment.
  • the communication system 1 includes an APN (All-Photonics Network) controller (also referred to as "APNC") 10, control function units 20-1, 20-2, Ph-GWs 30-1, 30-2, and a user device 100. Ru.
  • the control function units 20-1 and 20-2 are expressed as a control function unit 20 unless they are specifically distinguished from each other.
  • the control function unit 20 controls the Ph-GW autonomously or according to instructions from the APNC 10, and sets a path for the Ph-GW.
  • the Ph-GW controls the user equipment according to instructions from the autonomous or control function unit 20 or the APNC 10. For example, the wavelengths for transmission and reception are controlled.
  • the control function unit 20 or the APNC 10 may directly control the user device 100.
  • control function unit 20 or the APNC 10 may include an AMCC transceiver in order to transmit and receive control signals to and from the user device 100, for example, when AMCC is used as the control signal.
  • Ph-GW30-1 and 30-2 are expressed as Ph-GW30 unless they are particularly distinguished.
  • the user device 100 connects to the Ph-GW 30.
  • the user device 100 exchanges information with the Ph-GW 30 via the control function unit 20, for example.
  • the control function section may be part of the Ph-GW 30.
  • the Ph-GW 30 is connected to the control function section 20. Note that if the control function unit 20 is a part of the Ph-GW 30, the user device 100 may also be able to communicate with the control function unit 20 by connecting to the Ph-GW 30.
  • the user device 100 uses a control signal, for example, a control signal on AMCC, to exchange a control signal for managing and controlling communication with the Ph-GW when starting communication. , the wavelength used for communication, etc. are set.
  • the Ph-GW 30 sets a path through which the control function unit 20 and the user device 100 can communicate.
  • the Ph-GW 30 sets a path through which the user device 100 can communicate with the opposing communication device, for example, another user device.
  • the Ph-GW30 mainly has five functions.
  • the first is a wavelength control/monitoring function that specifies and controls which wavelength the user equipment 100 uses and monitors the wavelength of the signal.
  • the second is a pass/stop function that allows signals to pass when a path opens and stops unnecessary signals.
  • the third function is to condense optical signals of wavelengths set in each user equipment and transfer them to the relay network, and to distribute optical signals transferred from the relay network for each wavelength.
  • the fourth is a loopback function that enables loopback at the Ph-GW 30 to which the optical signal is input.
  • the fifth is an extraction/insertion function for performing regenerative relay and electrical processing.
  • the Ph-GW 30 can be configured using various parts. Hereinafter, each configuration example will be explained, and an embodiment will be described in which communication is blocked or an observed wavelength component is blocked in the configuration example.
  • FIG. 2 is a diagram showing a configuration example of the Ph-GW 30-1 according to the first embodiment.
  • the Ph-GW 30-1 includes, for example, two MCSs 200 and 300 in the upstream and downstream directions, a cutoff control unit 400, an observation optical switch 500, M combiners/branches 230, and M combiners/branches 330.
  • the combiner/brancher is a power splitter or optical coupler without wavelength dependence. An optical switch may be used instead of the combiner/brancher.
  • the signal from the UNI side is input to the combiner/brancher 230.
  • the combiner/brancher 230 outputs the signal input from the UNI side to the MCS 200 and the observation optical switch 500.
  • the signal from the MCS 300 is input to the combiner/brancher 330 .
  • the combiner/brancher 330 outputs the signal input from the MCS 300 to the user equipment 100 connected to the UNI side and the observation optical switch 500.
  • signals are input to the observation optical switch 500 from the combiner/brancher 230 and the combiner/brancher 330 in a time-division manner.
  • the observation optical switch 500 outputs the signals input from the combiner/brancher 230 and the combiner/brancher 330 to the cutoff controller 400 .
  • the cutoff control unit 400 determines from which combiner/brancher 230 or 330 the signal was input, depending on the time at which the signal was input. can be determined.
  • the cutoff control unit 400 acquires the wavelength set in the user terminal 100 from the Ph-GW 30.
  • the cutoff control unit 400 includes an SA (spectrum analyzer) 410.
  • SA spectrum analyzer
  • the cutoff control unit 400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 410 is different from the wavelength acquired from the APN controller 10.
  • the cutoff control unit 400 causes the 1 ⁇ N optical switch 220 or the N ⁇ 1 optical switch 320 to block the signals determined to have different wavelengths.
  • the disconnection is performed on the path from the user device to the 1 ⁇ N optical switch 220 or the path from the N ⁇ 1 optical switch 320 to the user device. It is equipped with a separate functional unit for 1 ⁇ N optical switch 220 or N ⁇ 1 optical switch 320 to receive a disconnection instruction from 400, and to disconnect instead of 1 ⁇ N optical switch 220 or N ⁇ 1 optical switch 320. You may. This also applies to subsequent embodiments.
  • the MCS 200 includes M 1 ⁇ N optical switches 220 and N M ⁇ 1 combiners/branchers 210.
  • Each of the 1 ⁇ N optical switches 220 receives one route of signals from the UNI side input from the combiner/brancher 230 .
  • the 1 ⁇ N optical switch 220 outputs a signal input from the UNI side to one of the M ⁇ 1 combiner/branchers 210, or blocks a signal instructed by the cutoff control unit 400.
  • the M ⁇ 1 combiner/brancher 210 multiplexes the signals input from the 1 ⁇ N optical switch 220 and outputs the multiplexed signals to each one route on the NNI side.
  • the MCS 300 includes N 1 ⁇ M multiplexers 310 and M N ⁇ 1 optical switches 320.
  • the 1 ⁇ M combiner/brancher 310 receives one route of signals from the NNI side.
  • the 1 ⁇ M combiner/brancher 310 branches the signal input from the NNI side and outputs it to the N ⁇ 1 optical switch 220.
  • the N ⁇ 1 optical switch 320 selects the signal from the 1 ⁇ M combiner/brancher 310 according to the input port, and outputs each signal to one combiner/brancher 330, or cuts off the signal instructed by the cutoff control unit 400. do.
  • the wavelength of the signal input from the user terminal 100 or the wavelength of the signal output to the user terminal 100 it is possible to block signals with inappropriate wavelengths.
  • one SA is provided for one combiner/brancher 230, and one SA is provided for one combiner/brancher 330, so that each SA is input from the corresponding combiner/brancher 230 or 330.
  • the wavelength of the signal may also be observed.
  • the observation optical switch 500 and the SA 410 in the cutoff control section 400 become unnecessary.
  • the cutoff control unit 400 also determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and sends a signal to the 1 ⁇ N optical switch 220 or the N ⁇ 1 optical switch 320 according to the determination result. Instruct to shut off.
  • the combiner/brancher 230 and the combiner/brancher 330 may be an optical switch that switches the output between the cutoff control unit 400 and the 1 ⁇ N optical switch 220, or an optical switch that switches the output between the observation optical switch 500 and the UNI side.
  • the combiner/brancher 230 and the observation optical switch 500 may be optical switches that switch outputs to the 1 ⁇ N optical switch 220 and the cutoff control unit 400.
  • the combiner/brancher 330 and the observation optical switch 500 may be optical switches that switch the output to the UNI side and the cutoff control unit 400. This also applies to subsequent embodiments.
  • the MCSs 200 and 300 are examples of light distribution units.
  • the 1 ⁇ N optical switch 220 and the N ⁇ 1 optical switch 320 are examples of the cutoff section.
  • the combiner/brancher 230 and the combiner/brancher 330 are examples of branching parts.
  • the cutoff control unit 400 is an example of an observation unit.
  • the observation optical switch 500 is an example of another light distribution section.
  • FIG. 3 is a diagram showing an alternative configuration of SA 410.
  • FIG. 3 shows the observation optical switch 500 and the alternative SA 411 described above.
  • the alternative SA 411 includes a function of demultiplexing for each wavelength to be discriminated, for example, an AWG 413, and a plurality of detection units 412 that detect the intensity of each wavelength demultiplexed by the demultiplexing function.
  • the AWG 413 is an example of a demultiplexer, and may be any device that demultiplexes input signals according to their wavelengths. In the case of AWG413, signals are output from different ports for each wavelength.
  • a detection unit 412 is provided and connected to each port.
  • the detection unit 412 By checking whether the detection unit 412 outputs a signal input from the observation optical switch 500 at a port corresponding to a wavelength other than that set in the user terminal 100, it can be determined whether an incompatible wavelength is being output, for example. , can be observed using time division multiplexing.
  • a demultiplexer with large crosstalk between adjacent channels that is, between adjacent ports may be used. In that case, calibrate crosstalk between adjacent ports.
  • the measurement processing time required for measurement can be shortened. This shortening is particularly suitable when multiple UNIs or NNIs share the SA in a time-sharing manner.
  • FIG. 4 is a diagram showing a configuration example of the Ph-GW 30-2 according to the second embodiment.
  • the Ph-GW30-2 includes an M ⁇ 1 WSS600 with an M ⁇ 1 configuration, a 1 ⁇ N combiner/brancher 610 with a 1 ⁇ N configuration, an N ⁇ 1 WSS710 with an N ⁇ 1 configuration, a 1 ⁇ M WSS720 with a 1 ⁇ M configuration, It includes a cutoff control unit 1400, an observation optical switch 1500, M combiners/branchers 1230, and M combiners/branches 1330.
  • the signal from the UNI side is input to the combiner/brancher 1230.
  • the combiner/brancher 1230 outputs the signal input from the UNI side to the M ⁇ 1 WSS 600 and the observation optical switch 1500.
  • the signal from the 1 ⁇ M WSS 720 is input to the combiner/brancher 1330.
  • the combiner/brancher 1330 outputs the signal input from the 1 ⁇ M WSS 720 to the user equipment 100 connected to the UNI side and the observation optical switch 1500.
  • Signals are input to the observation optical switch 1500 from the combiner/brancher 1230 and the combiner/brancher 1330 in a time-division manner, for example.
  • the observation optical switch 1500 outputs the signals input from the combiner/brancher 1230 and the combiner/brancher 1330 to the cutoff control section 1400.
  • the cutoff control unit 1400 determines from which combiner/brancher 1230 or combiner/brancher 1330 the signal was input, depending on the time at which the signal was input. can be determined.
  • the cutoff control unit 1400 acquires the wavelength assigned to the user terminal 100 from the APN controller 10.
  • the cutoff control unit 1400 includes an SA 1410.
  • the cutoff control unit 1400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 1410 is different from the wavelength acquired from the APN controller 10.
  • the blocking control unit 1400 blocks the signals determined to have different wavelengths by using the M ⁇ 1 WSS 600, the N ⁇ 1 WSS 710, or the 1 ⁇ M WSS 720.
  • the cutoff can be performed by using the route from the user device to M ⁇ 1 WSS600 or the route from the NNI side to N ⁇ 1 WSS710 and 1 ⁇
  • a separate function unit for blocking is provided on either of the routes from the M WSS720 to the user device, and the function unit receives a blocking instruction from the 1400 in place of either the M ⁇ 1 WSS600 or the N ⁇ 1 WSS710 and 1 ⁇ M WSS720.
  • M ⁇ 1 WSS 600 or N ⁇ 1 WSS 710 and 1 ⁇ M WSS 720 may be blocked. This also applies to subsequent embodiments.
  • the M ⁇ 1 WSS 600 receives the M route signal from the UNI side input from the combiner/brancher 1230.
  • the M ⁇ 1 WSS 600 multiplexes signals input from the UNI side according to the combination of input ports and wavelengths, and outputs them to the 1 ⁇ N combiner/brancher 610 or outputs the signals input from the UNI side according to the combination of input ports and wavelengths specified by the cutoff control unit 1400. Block the combined signal.
  • the 1 ⁇ N combiner/brancher 610 branches the signal input from the M ⁇ 1 WSS 600 into N paths, and outputs the signals to the N paths on the NNI side.
  • the N ⁇ 1 WSS 710 receives N-way signals from the NNI side.
  • the N ⁇ 1 WSS710 multiplexes the signals input from the NNI side according to the combination of input ports and wavelengths, and outputs the signals to the 1 ⁇ M WSS720, or the signal of the input port and wavelength combination instructed by the cutoff control unit 1400. cut off.
  • the 1 ⁇ M WSS 720 outputs the signal from the N ⁇ 1 WSS 710 to M multiplexers/branchers 1330 according to the wavelength, or blocks the signal of the output port and wavelength combination instructed by the blocking control unit 1400.
  • the cutoff control unit 1400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and selects M ⁇ 1 WSS600, N ⁇ 1 WSS710, or 1 ⁇ M WSS720 according to the determination result. Instructs to cut off the signal.
  • the combination of M ⁇ 1 WSS 600 and 1 ⁇ N combiner/brancher 1230 and the combination of N ⁇ 1 WSS 710 and 1 ⁇ M WSS 720 are examples of the optical distribution section.
  • the M ⁇ 1 WSS600, the N ⁇ 1 WSS710, and the 1 ⁇ M WSS720 are examples of the cutoff unit.
  • the combiner/brancher 1330 is an example of a branch section.
  • the cutoff control unit 1400 is an example of an observation unit.
  • the observation optical switch 1500 is an example of another light distribution section.
  • FIG. 5 is a diagram showing a configuration example of the Ph-GW 30-3 according to the third embodiment.
  • the Ph-GW 30-3 includes an M ⁇ N WSS 1600, an N ⁇ M WSS 1720, a cutoff control section 2400, an observation optical switch 2500, M combiners/branches 2230, and M combiners/branches 2330.
  • the signal from the UNI side is input to the combiner/brancher 2230.
  • the combiner/brancher 2230 outputs the signal input from the UNI side to the M ⁇ N WSS 1600 and the observation optical switch 2500.
  • the signal from the N ⁇ M WSS 1720 is input to the combiner/brancher 2330.
  • the combiner/brancher 2330 outputs the signal input from the N ⁇ M WSS 1720 to the user equipment 100 connected to the UNI side and the observation optical switch 2500.
  • Signals are input to the observation optical switch 2500 from the combiner/brancher 2230 and the combiner/brancher 2330 in a time-division manner, for example.
  • the observation optical switch 2500 outputs the signals input from the combiner/brancher 2230 and the combiner/brancher 2330 to the cutoff control section 2400.
  • the cutoff control unit 2400 determines from which combiner/brancher 2230 or 2330 the signal was input, depending on the time at which the signal was input. can be determined.
  • the cutoff control unit 2400 acquires the wavelength assigned to the user terminal 100 from the APN controller 10.
  • Shutdown control section 2400 includes SA1410.
  • the cutoff control unit 2400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 1410 is different from the wavelength acquired from the APN controller 10.
  • the blocking control unit 2400 causes the M ⁇ N WSS 1600 or the N ⁇ M WSS 1720 to block signals determined to have different wavelengths. Note that the blocking is performed by installing a blocking functional unit in either the path from the user device to the M ⁇ N WSS1600 or the path from the N ⁇ M WSS1720 to the user device, instead of the M ⁇ N WSS1600 or the N ⁇ M WSS1720. It may be provided separately and receive a shutoff instruction from 2400 instead of M ⁇ N WSS1600 or N ⁇ M WSS1720 to shut off instead of M ⁇ N WSS1600 or N ⁇ M WSS1720. This also applies to subsequent embodiments.
  • the M ⁇ NWSS 1600 receives the M route signal from the UNI side input from the combiner/brancher 2230.
  • the M ⁇ NWSS 1600 outputs the signal input from the UNI side to any of the N routes on the NNI side depending on the combination of port and wavelength, or outputs the signal of the input port and wavelength combination instructed by the cutoff control unit 2400. cut off.
  • the N ⁇ M WSS 1720 receives N-way signals from the NNI side.
  • the N ⁇ M WSS 1720 outputs the signal input from the NNI side to M combiners/branchers 2330 according to the input port and wavelength combination, or outputs the signal of the port and wavelength combination instructed by the cutoff control unit 2400. Cut off.
  • the cutoff control unit 2400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and instructs the M ⁇ N WSS 1600 or N ⁇ M WSS 1720 to block the signal depending on the determination result. do.
  • the M ⁇ N WSS 1600 and the N ⁇ M WSS 1720 are examples of a light distribution unit.
  • M ⁇ N WSS 1600 and N ⁇ M WSS 1720 are examples of the cutoff unit.
  • the combiner/brancher 2230 and the combiner/brancher 2330 are examples of branching parts.
  • the cutoff control unit 2400 is an example of an observation unit.
  • the observation optical switch 2500 is an example of another light distribution section.
  • FIG. 6 is a diagram showing a configuration example of the Ph-GW 30-4 according to the fourth embodiment.
  • the Ph-GW30-4 includes an M ⁇ N optical switch 800, an AWG810, an AWG910, an N ⁇ M optical switch 900, a cutoff control section 3400, an observation optical switch 3500, M combiners/branches 3230, and M combiners/branches. container 3330.
  • the signal from the UNI side is input to the combiner/brancher 3230.
  • the combiner/brancher 3230 outputs the signal input from the UNI side to the M ⁇ N optical switch 800 and the observation optical switch 3500.
  • the signal from the N ⁇ M optical switch 900 is input to the combiner/brancher 3330 .
  • the combiner/brancher 3330 outputs the signal input from the N ⁇ M optical switch 900 to the user device 100 connected to the UNI side and the observation optical switch 3500.
  • Signals are input to the observation optical switch 3500 from the combiner/brancher 3230 and the combiner/brancher 3330 in a time-division manner, for example.
  • the observation optical switch 3500 outputs the signals input from the combiner/brancher 3230 and the combiner/brancher 3330 to the cutoff control section 3400.
  • the cutoff control unit 3400 determines which combiner/brancher 3230 or combiner/brancher 3330 the signal was input from, depending on the time when the signal was input. can be determined.
  • the cutoff control unit 3400 acquires the wavelength assigned to the user terminal 100 from the APN controller 10.
  • the cutoff control unit 3400 includes an SA 3410.
  • the cutoff control unit 3400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 3410 is different from the wavelength acquired from the APN controller 10.
  • the cutoff control unit 3400 causes the M ⁇ N optical switch 800 or the N ⁇ M optical switch 900 to cut off signals determined to have different wavelengths. Note that, instead of the M ⁇ N optical switch 800 or the N ⁇ M optical switch 900, the disconnection can be performed by separately providing a function unit for disconnection on the path from the user device to the NNI side or from the NNI side to the user device.
  • a cutoff instruction may be received from the switch 3400, and the cutoff may be performed in place of either the M ⁇ N optical switch 800 or the N ⁇ M optical switch 900. This also applies to subsequent embodiments.
  • the M ⁇ N optical switch 800 receives the M route signal from the UNI side input from the combiner/brancher 3230.
  • the M ⁇ N optical switch 800 outputs a signal input from the UNI side to any port of any AWG 810 depending on the input port, or shuts off the signal of the port instructed by the cutoff control unit 3400.
  • the AWG 810 multiplexes the signals input from the M ⁇ N optical switch 800 according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the NNI side.
  • the AWG 910 outputs each signal input from the NNI side to one of the N ports of the N ⁇ M optical switch 900 depending on the combination of input port and wavelength.
  • the N ⁇ M optical switch 900 outputs the signal input from the AWG 910 to one of the M combiners/branchers 3330 depending on the input port, or cuts off the signal of the port instructed by the cutoff control unit 3400.
  • the cutoff control unit 3400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and sends a signal to the M ⁇ N optical switch 800 or the N ⁇ M optical switch 900 according to the determination result. Instruct to shut off.
  • the AWG 810 and AWG 910 may be other than AWG as long as they can separate wavelengths or multiplex multiple wavelengths.
  • the M ⁇ N optical switch 800 and the N ⁇ M optical switch 900 are examples of a light distribution unit.
  • the M ⁇ N optical switch 800 and the N ⁇ M optical switch 900 are examples of the cutoff section.
  • the combiner/brancher 3230 and the combiner/brancher 3330 are examples of branching parts.
  • the cutoff control unit 3400 is an example of an observation unit.
  • the observation optical switch 3500 is an example of another light distribution section.
  • FIG. 7 is a diagram showing a configuration example of the Ph-GW 30-5 according to the fifth embodiment.
  • the fifth embodiment is a modification of the first embodiment, and the main change is that a wavelength filter is provided.
  • the Ph-GW 30-5 includes two MCSs 1200 and 1300, a cutoff control unit 4400, an observation optical switch 4500, M combiners/branchers 4230, M combiners/branches 4330, filter optical switches 960, 970, 990, and wavelength filters 950 and 980.
  • one wavelength filter is illustrated in each of the upstream and downstream directions, but there may be a plurality of wavelength filters.
  • the number of ports added to the WSS, combiner/brancher, and optical switch is increased according to the number.
  • the signal from the UNI side is input to the combiner/brancher 4230.
  • the combiner/brancher 4230 outputs the signal input from the UNI side to the MCS 1200 and the observation optical switch 4500.
  • the signal from the MCS 1300 is input to the combiner/brancher 4330.
  • the combiner/brancher 4330 outputs the signal input from the MCS 1300 to the user equipment 100 connected to the UNI side and the observation optical switch 4500.
  • Signals are input to the observation optical switch 4500 from the combiner/brancher 4230 and the combiner/brancher 4330 in a time-division manner, for example.
  • the observation optical switch 4500 outputs the signals input from the combiner/brancher 4230 and the combiner/brancher 4330 to the cutoff control section 4400.
  • the cutoff control unit 4400 determines which combiner/brancher 4230 or combiner/brancher 4330 the signal was input from, depending on the time when the signal was input. can be determined.
  • the cutoff control unit 4400 obtains the wavelength assigned to the user terminal 100 from the APN controller 10.
  • the cutoff control unit 4400 includes an SA4410. If the wavelength observed by the SA 4410 is different from the wavelength acquired from the APN controller 10, the cutoff control unit 4400 transmits the signals determined to have different wavelengths to the wavelength filter 950 and the wavelength filter 980. input.
  • the wavelength filter 950 and the wavelength filter 980 are variable wavelength filters, and the wavelengths are set so that only the set wavelengths are transmitted.
  • the signals that have passed through the wavelength filter 950 are outputted to the filter optical switch 960 after filtering the signals that are considered to have different wavelengths into the signals that are not considered to have different wavelengths.
  • the signal that has passed through the wavelength filter 980 is output to the filter optical switch 970.
  • the output of the filter optical switch 960 from the UNI side to the NNI side is output to the (M+1) ⁇ 1 combiner/brancher 1210, and the output of the filter optical switch 970 from the NNI side to the UNI side is not output. It is input to the power(N+1) ⁇ 1 optical switch 1320.
  • the input is input to the (N+1) ⁇ 1 optical switch 1320, but instead of inputting to the (N+1) ⁇ 1 optical switch 1320, the multiplexer/brancher 4330 that each of the N ⁇ 1 optical switches 1320 outputs is input to the (N+1) ⁇ 1 optical switch 1320.
  • the MCS 1200 includes M (N+1) ⁇ 1 optical switches 1220 and N (M+1) ⁇ 1 combiners/branchers 1210.
  • Each of the 1 ⁇ (N+1) optical switches 1220 receives one route of signals from the UNI side input from the combiner/brancher 4230.
  • the 1 ⁇ (N+1) optical switch 1220 outputs the signal input from the UNI side to either the (M+1) ⁇ 1 combiner/brancher 1210 and the wavelength filter 950.
  • the wavelength filter 950 blocks the wavelength instructed by the blocking control section 4400.
  • the signal that has passed through the wavelength filter 950 is output to a filter optical switch 960.
  • the filter optical switch 960 outputs the signal output from the wavelength filter 950 to the (M+1) ⁇ 1 combiner/brancher 1210.
  • the (M+1) ⁇ 1 combiner/brancher 1210 multiplexes the signal input from the 1 ⁇ N optical switch 1220 and the signal input from the filter optical switch 960, and outputs the multiplexed signal to one path on the NNI side
  • the MCS 1300 includes N 1 ⁇ (M+1) combiners/branchers 1310 and M (N+1) ⁇ 1 optical switches 1320.
  • Each of the 1 ⁇ (M+1) combiner/branchers 1310 receives one route of signals from the NNI side.
  • the 1 ⁇ (M+1) combiner/brancher 1310 branches the signal input from the NNI side and outputs it to the (N+1) ⁇ 1 optical switch 1320 and the filter optical switch 990.
  • the filter optical switch 990 outputs the signal input from the NNI side to the wavelength filter 980.
  • the wavelength filter 980 blocks the wavelength instructed by the blocking control unit 4400.
  • the signal that has passed through the wavelength filter 980 is output to the filter optical switch 970.
  • (N+1) ⁇ 1 optical switch 1320 outputs the signal from 1 ⁇ (M+1) combiner/brancher 1310 to combiner/brancher 4330.
  • the cutoff control unit 4400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and instructs the wavelength filter 950 or the wavelength filter 980 to cut off the signal depending on the determination result.
  • an optical switch that selects the signal output from the 1 ⁇ (N+1) optical switch 1220 may be provided before the wavelength filter 950.
  • the MCSs 1200 and 1300 are examples of light distribution units.
  • the (N+1) ⁇ 1 optical switch 1220 and the 1 ⁇ (M+1) combiner/brancher 1310 are examples of cutoff units.
  • Combiner/brancher 4230 and combiner/brancher 4330 are examples of branching parts.
  • the cutoff control unit 4400 is an example of an observation unit.
  • the observation optical switch 4500 is an example of another light distribution section.
  • FIG. 8 is a diagram showing a configuration example of the Ph-GW 30-6 according to the sixth embodiment.
  • the sixth embodiment is a modification of the second embodiment, and the main change is that a wavelength filter is provided.
  • Ph-GW30-6 includes M ⁇ 2 WSS2600, 2 ⁇ N combiner/brancher 1610, N ⁇ 2 WSS1710, 2 ⁇ M WSS2720, cutoff control unit 5400, observation optical switch 4500, M combiner/branchers 5230, M multiplexer/brancher 5330 and wavelength filters 1950 and 1980.
  • the signal from the UNI side is input to the combiner/brancher 5230.
  • the combiner/brancher 5230 outputs the signal input from the UNI side to the M ⁇ 2 WSS 2600 and the observation optical switch 4500.
  • the signal from the 2 ⁇ M WSS 2720 is input to the combiner/brancher 5330.
  • the combiner/brancher 5330 outputs the signal input from the 2 ⁇ M WSS 2720 to the user equipment 100 connected to the UNI side and the observation optical switch 4500.
  • Signals are input to the observation optical switch 4500 from the combiner/brancher 5230 and the combiner/brancher 5330 in a time-division manner, for example.
  • the observation optical switch 4500 outputs the signals input from the combiner/brancher 5230 and the combiner/brancher 5330 to the cutoff control section 5400.
  • the cutoff control unit 5400 determines from which combiner/brancher 5230 or combiner/brancher 5330 the signal was input, depending on the time at which the signal was input. can be determined.
  • the cutoff control unit 5400 acquires the wavelength set in the user terminal 100 from the Ph-GW 30.
  • the cutoff control unit 5400 includes an SA5410.
  • the cutoff control unit 5400 causes the wavelength filter 1950 or the wavelength filter 1980 to block the wavelength component determined to have a different wavelength.
  • the M ⁇ 2 WSS 2600 receives the M route signal from the UNI side input from the combiner/brancher 5230.
  • the M ⁇ 2 WSS 2600 multiplexes signals input from the UNI side according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the 2 ⁇ N combiner/brancher 1610 and wavelength filter 1950.
  • the wavelength filter 1950 blocks the wavelength instructed by the blocking control section 5400.
  • Wavelength filter 1950 outputs a signal to 2 ⁇ N combiner/brancher 1610.
  • the 2 ⁇ N combiner/brancher 1610 branches the signal input from the M ⁇ 2 WSS 2600 and the signal input from the wavelength filter 1950 into N paths, and outputs them to the N paths on the NNI side.
  • the N ⁇ 2 WSS 1710 receives N-way signals from the NNI side.
  • the N ⁇ 2 WSS 1710 multiplexes the signals input from the NNI side and outputs the multiplexed signals to the 2 ⁇ M WSS 2720 and the wavelength filter 1980.
  • the wavelength filter 1980 outputs only signals whose combinations of input ports and wavelengths are incompatible.
  • the wavelength filter 1980 blocks the wavelength instructed by the blocking control unit 5400.
  • the wavelength filter 1980 outputs a signal to the 2 ⁇ M WSS 2720.
  • the 2 ⁇ M WSS 2720 outputs the signal from the N ⁇ 2 WSS 1710 and the signal from the wavelength filter 1980 to M multiplexers/branchers 5330 according to wavelengths.
  • the cutoff control unit 5400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and depending on the determination result, the wavelength component of the inappropriate wavelength is applied to the wavelength filter 1950 or the wavelength filter 1980. Instruct to shut off.
  • the combination of M ⁇ 2 WSS2600 and 2 ⁇ N combiner/brancher and the combination of N ⁇ 2 WSS1710 and 2 ⁇ M WSS2720 are examples of the optical distribution section.
  • the wavelength filter 1950 and the wavelength filter 1980 are examples of a blocking section.
  • the combiner/brancher 5330 is an example of a branch section.
  • the cutoff control unit 5400 is an example of an observation unit.
  • the observation optical switch 4500 is an example of another light distribution section.
  • FIG. 9 is a diagram showing a configuration example of the Ph-GW 30-7 according to the seventh embodiment.
  • the seventh embodiment is a modification of the third embodiment, and the main change is that a wavelength filter is provided.
  • Ph-GW30-7 includes (M+1) ⁇ (N+1)WSS3600, (N+1) ⁇ (M+1)WSS3720, cutoff control unit 6400, observation optical switch 5500, M combiners/branches 6230, M combiners/branches 6330 and wavelength filters 2950 and 2980.
  • the signal from the UNI side is input to the combiner/brancher 6230.
  • the combiner/brancher 6230 outputs the signal input from the UNI side to the (M+1) ⁇ (N+1) WSS 3600 and the observation optical switch 5500.
  • the signal from the (N+1) ⁇ (M+1) WSS 3720 is input to the combiner/brancher 6330.
  • the combiner/brancher 6330 outputs the signal input from the (N+1) ⁇ (M+1) WSS 3720 to the user equipment 100 connected to the UNI side and the observation optical switch 5500.
  • Signals are input to the observation optical switch 5500 from the combiner/brancher 6230 and the combiner/brancher 6330 in a time-division manner, for example.
  • the observation optical switch 5500 outputs the signals input from the combiner/brancher 6230 and the combiner/brancher 6330 to the cutoff control section 6400.
  • the cutoff control unit 6400 determines from which combiner/brancher 6230 or combiner/brancher 6330 the signal was input, depending on the time when the signal was input. can be determined.
  • the cutoff control unit 6400 acquires the wavelength assigned to the user terminal 100 from the APN controller 10.
  • the cutoff control section 6400 includes an SA6410.
  • the cutoff control unit 6400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 6410 is different from the wavelength acquired from the APN controller 10.
  • the cutoff control unit 6400 causes the wavelength filter 2950 or the wavelength filter 2980 to block wavelength components of wavelengths determined to be different wavelengths.
  • the (M+1) ⁇ (N+1) WSS 3600 receives the M route signal from the UNI side input from the combiner/brancher 6230 and the signal output from the wavelength filter 2950.
  • the (M+1) ⁇ (N+1) WSS 3600 outputs the signal input from the UNI side to either the N direction on the NNI side or the wavelength filter 2950 depending on the combination of input port and wavelength.
  • the wavelength filter 2950 blocks the wavelength instructed by the blocking control unit 6400.
  • the (N+1) ⁇ (M+1) WSS 3720 receives the N-way signal and the wavelength filter 2980 signal from the NNI side.
  • (N+1) ⁇ (M+1) WSS3720 outputs the signal input from the NNI side and the signal input from wavelength filter 2980 to M combiners/branchers 6330 and wavelength filters 2980 according to the combination of input ports and wavelengths.
  • the wavelength filter 2980 blocks the wavelength instructed by the blocking control section 6400.
  • the cutoff control unit 6400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and instructs the wavelength filter 2950 or the wavelength filter 2980 to cut off the wavelength component according to the determination result. .
  • (M+1) ⁇ (N+1)WSS 3600 and (N+1) ⁇ (M+1)WSS 3720 are examples of the light distribution unit.
  • the wavelength filter 2950 and the wavelength filter 2980 are examples of a blocking section.
  • the combiner/brancher 6230 and the combiner/brancher 6330 are examples of branching parts.
  • the cutoff control unit 6400 is an example of an observation unit.
  • the observation optical switch 5500 is an example of another light distribution section.
  • FIG. 10 is a diagram showing a configuration example of the Ph-GW 30-8 according to the eighth embodiment.
  • the eighth embodiment is a modification of the fourth embodiment, and the main change is that a wavelength filter is provided.
  • Ph-GW30-8 includes (M+1) ⁇ (N+1) optical switch 1800, AWG1810, AWG1910, (N+1) ⁇ (M+1) optical switch 1900, cutoff control unit 7400, observation optical switch 6500, and M number of combiners/branchers. 7230, M multiplexers/branchers 7330, and wavelength filters 3950, 3980.
  • the signal from the UNI side is input to the combiner/brancher 7230.
  • the combiner/brancher 7230 outputs the signal input from the UNI side to the (M+1) ⁇ (N+1) optical switch 1800 and the observation optical switch 6500.
  • the signal from the (N+1) ⁇ (M+1) optical switch 1900 is input to the combiner/brancher 7330.
  • the combiner/brancher 7330 outputs the signal input from the (N+1) ⁇ (M+1) optical switch 1900 to the user equipment 100 connected to the UNI side and the observation optical switch 6500.
  • Signals are input to the observation optical switch 6500 from the combiner/brancher 7230 and the combiner/brancher 7330 in a time-division manner, for example.
  • the observation optical switch 6500 outputs the signals input from the combiner/brancher 7230 and the combiner/brancher 7330 to the cutoff control section 7400.
  • the cutoff control unit 7400 determines from which combiner/brancher 7230 or combiner/brancher 7330 the signal was input, depending on the time when the signal was input. can be determined.
  • the cutoff control unit 7400 acquires the wavelength set in the user terminal 100 from the Ph-GW 30.
  • the cutoff control section 7400 includes an SA7410.
  • the blocking control unit 7400 causes the wavelength filter 3950 or the wavelength filter 3980 to block the wavelength component determined to have a different wavelength.
  • the M ⁇ N optical switch 1800 receives the M-way signal from the UNI side input from the combiner/brancher 7230 and the signal output from the wavelength filter 3950.
  • (M+1) ⁇ (N+1) optical switch 1800 outputs a signal input from the UNI side to any port of any AWG 1810 and wavelength filter 3950 depending on the input port.
  • the AWG 1810 multiplexes signals input from the (M+1) ⁇ (N+1) optical switch 1800 according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the NNI side.
  • the wavelength filter 3950 blocks the wavelength instructed by the blocking control section 7400.
  • the AWG 1910 outputs each signal input from the NNI side to one of the N ports of the (N+1) ⁇ (M+1) optical switch 1900 depending on the combination of input port and wavelength.
  • the (N+1) ⁇ (M+1) optical switch 1900 outputs the signal input from the AWG 1910 to one of M combiners/branchers 7330 and wavelength filters 3980 depending on the input port.
  • the wavelength filter 3980 blocks the wavelength instructed by the blocking control section 7400.
  • Wavelength filter 3980 outputs a signal to (N+1) ⁇ (M+1) optical switch 1900.
  • one SA is provided for one combiner/brancher 7230, and one SA is provided for one combiner/brancher 7330, so that each SA is input from the corresponding combiner/brancher 7230 or combiner/brancher 7330.
  • the wavelength of the signal may also be observed. In this case, the observation optical switch 6500 and the SA 410 in the cutoff control section 7400 become unnecessary.
  • the cutoff control unit 7400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and depending on the determination result, the (M+1) ⁇ (N+1) optical switch 1800 or (N+1) ⁇ (M+1) Instructs the optical switch 1900 to block the wavelength component determined to be an inappropriate wavelength.
  • the (M+1) ⁇ (N+1) optical switch 1800 and the (N+1) ⁇ (M+1) optical switch 1900 are examples of the optical distribution unit.
  • the wavelength filters 3950 and 3980 are examples of blocking sections.
  • the combiner/brancher 7230 and the combiner/brancher 7330 are examples of branch parts.
  • the cutoff control unit 7400 is an example of an observation unit.
  • the observation optical switch 6500 is an example of another light distribution section.
  • FIG. 11 is a flowchart showing the flow of processing common to each of the embodiments described above.
  • the cutoff control unit acquires the wavelength assigned to the user terminal (step S101).
  • the SA observes the wavelength of the signal output from the user terminal to the optical switch or the wavelength of the signal output from the optical switch to the user terminal (step S102).
  • the wavelength control unit determines whether the observed wavelength is different from the acquired wavelength (step S103). If the observed wavelength is different from the acquired wavelength (step S103: YES), the blocking control unit blocks communication with the user terminal or blocks the wavelength component of the observed wavelength (step S104). . If the observed wavelength is not different from the acquired wavelength (step S103: NO), the cutoff control unit ends the process.
  • the configuration for detecting the intensity of the wavelength component has been described using FIG. 3, but another example of the configuration for detecting the light intensity will be described using the drawings.
  • the separation unit performs separation processing for wavelength-separating the input optical signal, the desired signal, and the residual signal.
  • the desired separation signal and the residual separation signal are separated in wavelength.
  • the desired separation signal is a signal with a predetermined wavelength component
  • the residual separation signal is a signal with a wavelength component other than the predetermined wavelength component that should be detected and blocked by the detection unit, and the signal light is input from the second side.
  • the desired separation signal is output, and the remaining separation signal is terminated at the detection section.
  • the detection unit detects the optical intensity of the separated residual separation signal.
  • the detection unit detects the residual separation signal at a predetermined optical intensity or higher, it outputs a control signal for blocking or filtering the input optical signal.
  • the detection unit may record information (log) indicating that the residual separation signal was detected at a predetermined light intensity or higher.
  • the detection unit may be configured to be non-reflective. That is, the detection section may be configured not to reflect the input from the separation section. Such a log may be recorded along with the detection time of the residual separation signal. By recording a log in this manner, for example, when an inquiry occurs, it becomes possible to appropriately respond to the inquiry. Further, such a log may be recorded together with the detected intensity, or may be recorded together with the detected time and intensity.
  • FIG. 12 is a diagram showing a configuration example in which the separation section 21 is configured using FBG (Fiber Bragg Grating).
  • FBGs are constructed by carving a diffraction grating into an optical fiber. When light enters the FBG, only light with a specific wavelength component depending on the spacing between the diffraction gratings is reflected, and light with other wavelength components passes through. By utilizing such characteristics, it is possible to configure the separation section 21 using FBG.
  • FBG Fiber Bragg Grating
  • the separation unit 21 includes a circulator 211 and an FBG 212.
  • the circulator 211 inputs the optical signal input from the second side to the FBG 212 .
  • the circulator 211 outputs the optical signal input from the FBG 212 to the first side.
  • the circulator 211 may be configured using a combiner/brancher, for example. When the circulator 211 is configured using a 2 ⁇ 2 combiner/brancher, two ports on one side function as an input port and an output port, one of the two ports on the opposite side is connected to the FBG 212, and the other port functions as an input port and an output port.
  • the port is configured with reflection-free termination.
  • the circulator 211 may be constructed using a 2 ⁇ 1 combiner and splitter so that there are no open ends. In this case, two ports on one side function as an input port and an output port, and one port on the opposite side is connected to the FBG 212.
  • the FBG 212 reflects the desired separation signal and transmits the remaining separation signal.
  • the FBG 212 corresponds to the duplexer.
  • the wavelength to be detected is adjusted by the tension and temperature applied to this FBG filter 212.
  • FIG. 13 is a diagram showing a configuration example in which the separation section 21 is configured using TFF.
  • the separation unit 21 includes a circulator 211 and a TFF 214.
  • the circulator 211 inputs the optical signal input from the second side to the TFF 214 .
  • the circulator 211 inputs the optical signal input from the TFF 214 to the detection unit 22 .
  • the direction in which light travels through the circulator 211 differs depending on whether the elements in the separation section 21 are configured to reflect the desired separation signal, such as the FBG 212, or are configured to transmit the desired separation signal, such as the TFF 214. rotates in the opposite direction.
  • the TFF 214 transmits the desired separation signal and reflects the remaining separation signal optical signal.
  • the residual separation signal reflected by the TFF 214 is input to the detection unit 22 via the circulator 211.
  • the TFF 214 corresponds to a duplexer.
  • the wavelength to be detected is adjusted by changing the incident angle from the circulator 211 to the TFF 214 or the film thickness of the TFF 214.
  • FIG. 14 is a diagram showing a configuration example in which the separation section 21 is configured using an AWG.
  • the separation section 21 includes an AWG 215.
  • the AWG 215 outputs the optical signal input from the second side from a port according to the wavelength.
  • the output port to which the desired separation signal is output is connected to the first side. It is desirable that all remaining output ports be connected to the detection section 22. This is to prevent failure to detect the residual separation signal.
  • the input to the detection unit 22 may be multiplexed using a multiplexer/demultiplexer such as an AWG.
  • An isolator may be provided between the separation section 21 and the detection section 22.
  • the isolator may be provided, for example, between the AWG 215 and the multiplexer/demultiplexer. In this case, the cost increases because the number of isolators increases, but a higher effect can be obtained.
  • a single-input AWG is used, but a multiple-input AWG may be used. In that case, to reduce the effects of reflection, unused ports should be terminated without reflection or connected with an isolator.
  • the AWG 215 corresponds to the duplexer.
  • the desired separation signal is output to the first side, and the residual separation signal is output to the detection unit 22, whereby the residual separation signal is detected.
  • the detection wavelength is adjusted by changing the detection port.
  • the configuration shown in FIG. 15 is substantially the same as the configuration in which the number of output ports to the detection unit 22 of the AWG 215 is two in the separation unit 21 described in FIG. 14.
  • the configuration of FIG. 14 assumes an AWG that separates and outputs different wavelengths at FSR intervals. Although five waves are illustrated in FIG. 14, ports are provided as many as the number of wavelengths to be detected as a residual separation signal in addition to the desired separation signal. If there are 32 wavelength bands to be detected, one port is required for the desired separation signal and 31 ports are required for the residual separation signal. Therefore, there is a problem that the number of connection lines to the detection unit 22 is large.
  • a configuration may be considered in which ports for the residual separation signal are multiplexed in a multiplexer and then passed to the detector 22.
  • the multiplexing unit a multiplexing unit 216 whose characteristics generally match those of the AWG 215 is used.
  • the ports that output the residual separation signals on the long wavelength side and the short wavelength side of the wavelength of the desired separation signal output the wavelengths for a plurality of FSRs at once.
  • the AWG 215 in FIG. 14 at least either the upper two ports or the lower two ports of the AWG 215 are combined into one port. Either the upper side or the lower side has a longer wavelength than the wavelength of the desired separation signal, and the opposite side has a shorter wavelength.
  • the AWG 215 corresponds to a duplexer.
  • FIG. 15 has a configuration in which the ports in FIG. 14 from which the residual separation signal is output are summarized.
  • the desired separated signal is transmitted through the diffraction grating and output from the right end of the figure to the first side. Further, the residual separation signal passes through the diffraction grating and is input to the detection unit 22 from the right end of the figure.
  • a diffraction grating may be applied in place of the AWG 215 shown in FIG. 14, for example.
  • the desired separated signal is reflected by the reflection section 217 arranged at the right end of the diffraction grating shown in the figure, and is directed from the left end of the diffraction grating to the first side via the circulator 211. Output.
  • the residual separation signal passes through the diffraction grating and is input to the detection unit 22 from the right end of the figure.
  • a plurality of outputs may be bundled and aggregated by wavelength.
  • the wavelength range to be aggregated is equal to or larger than the wavelength range in which non-conforming light must be detected.
  • FIG. 14 a single-input multiple-output configuration is illustrated, but a multiple-input multiple-output configuration can be applied in the same manner as the configuration using the multiple-input multiple-output AWG 215.
  • the diffraction grating shown in FIG. 16 corresponds to a demultiplexer, and the diffraction grating outputs each wavelength at a different angle.
  • the output port of the AWG 215 in FIG. 14 corresponds to the output angle. Adjust the emission angle according to the wavelength to be detected.
  • the separation unit 21 may be configured using a waveguide ring resonator.
  • a micro ring resonator MRR
  • FSR free spectral range
  • the shape of the ring resonator section is not a perfect circle, but a racetrack shape in which the coupling section is a parallel straight waveguide may be used. With this configuration, the coupling coefficient at the coupling portion can be easily designed.
  • Series coupling may be applied to the waveguide ring resonator.
  • multiple rings are provided.
  • a waveguide type ring resonator in which one ring is used in the specific example of FIG. 17 will be described.
  • a plurality of rings may be used in the example shown in FIG. 17.
  • the coupling coefficient between the bus line waveguide and the microring and the coupling coefficient between one microring and another microring satisfy a certain condition called the Butterworth condition.
  • a double ring is a specific example of series coupling that increases the Q value, which is the degree of resonance, while widening the passband (the width of the selected wavelength).
  • FIG. 17 is a diagram showing a configuration example in which the separation section 21 is configured using a waveguide type ring resonator.
  • the separation section 21 includes a waveguide type ring resonator 218.
  • the waveguide ring resonator 218 inputs the optical signal received from the second side from the upper left port, and outputs the desired separation signal and the residual separation signal from different ports.
  • the separation section 21 may be configured using a lattice type optical filter.
  • the lattice optical filter is composed of, for example, a delay line, a symmetrical Mach-Zehnder interferometer type variable coupling ratio coupler, and a phase adjustment section. By changing the phase shift value of the optical filter, arbitrary filter characteristics can be obtained whose upper limit is the performance determined by the asymmetric Mach-Zehnder interference coefficient. The property that characteristics appear periodically for each FSR (Free Spectral Range) determined by ⁇ L is utilized.
  • the lattice type the path length difference between the asymmetric MZIs forming the lattice is ⁇ L.
  • the length of the delay applying section between each branch is ⁇ L.
  • the difference in length between one waveguide and an adjacent waveguide constituting an arrayed waveguide is ⁇ L.
  • the period may be realized by combining multiple filters, similar to the periodic AWG.
  • a reflective configuration may be realized by installing a circulator and a Faraday rotary mirror with a rotation angle of 90 degrees at the input and output ends, respectively.
  • the combination of the ring waveguide and two straight waveguides of the waveguide ring resonator 218 corresponds to a duplexer.
  • the wavelength to be detected is adjusted by changing the ring diameter R and the coupling between the ring waveguide and the straight waveguide.
  • FIG. 18 is a diagram showing a configuration example in which the separation section 21 is configured using a lattice type optical filter.
  • the separation section 21 includes a lattice type optical filter 219.
  • the lattice optical filter 219 inputs the optical signal received from the second side, and outputs the desired separation signal and the residual separation signal from different ports. Specifically, the lattice optical filter 219 outputs the desired separation signal from the first port to the first side, and outputs the residual separation signal from the second port to the detection unit 22.
  • the delay ⁇ L of the delay arm of the lattice filter, the coupling ratio of the variable coupling ratio coupler, and the phase ⁇ of the phase shifter are set so that the first port outputs the compatible wavelength component and the second port outputs the non-compatible wavelength component. be adjusted. Further, in the case of a lattice, the delay ⁇ L of the delay applying section, the coupling ratio of the tap (variable coupling ratio coupler), and the phase of the phase shifter may be adjusted.
  • a lattice optical filter 219 in which Maha-Zenda interferometers are connected in cascade corresponds to a demultiplexer. The wavelength to be detected is changed by adjusting the coupling ratio of the phase shifter and coupler.
  • the present invention is applicable to a communication system that performs communication through an optical fiber transmission line.

Abstract

One aspect of the present invention comprises: an acquisition unit that acquires a wavelength set in a user terminal; an optical sorting unit that outputs an optical signal to at least one output designation among a plurality of output destinations; an observation unit that observes the wavelength of a signal outputted from the user terminal to the optical sorting unit or the wavelength of a signal outputted from the optical sorting unit to the user terminal; and a cutoff unit that, if the wavelength observed by the observation unit is different from the wavelength acquired by the acquisition unit, cuts off communication with the user terminal or cuts off a frequency component having the observed wavelength.

Description

通信システム、および制御方法Communication system and control method
 本発明は、通信システム、および制御方法の技術に関する。 The present invention relates to a communication system and a control method technology.
 光電変換や電気のルーティング処理を極力排するIOWN(Innovative Optical and Wireless Network)がある。図19に示されるIOWNのAPN(All-Photonics Network)におけるユーザ装置は、Ph-GW(Photonic Gateway)に設定された波長、経路を用いて通信する。Ph-GWが設定する波長、経路は、例えば、APNコントローラが指定してもよい。 There is IOWN (Innovative Optical and Wireless Network), which eliminates photoelectric conversion and electrical routing processing as much as possible. User devices in the APN (All-Photonics Network) of IOWN shown in FIG. 19 communicate using wavelengths and routes set in the Ph-GW (Photonic Gateway). The wavelength and route set by the Ph-GW may be specified by the APN controller, for example.
 波長や経路情報のやり取りは、ユーザ装置の通信開始時に、例えば、AMCC(auxiliary management and control channel)と呼ばれる制御信号チャネルを利用して行われる。通信開始時に、ユーザ装置とPh-GWに配置された制御機能部が通信を行い、任意の通信先と接続される。 The exchange of wavelength and route information is performed using, for example, a control signal channel called AMCC (auxiliary management and control channel) when the user equipment starts communication. At the start of communication, the user device and the control function unit located in the Ph-GW communicate with each other, and are connected to an arbitrary communication destination.
 Ph-GWには、5つの機能を有する。1つめは、ユーザ装置がどの波長を使うかを指定、制御し、その信号の波長を監視する波長制御・監視機能である。2つめは、パスの開通に合わせて信号を通過させ、不要な信号は停止させる通過・停止機能である。3つめは、各ユーザ装置に設定された波長の光信号を必要に応じ集線し中継ネットワークに転送する機能と、中継ネットワークから転送された光信号を必要に応じそれぞれの波長ごとに分配しユーザ装置に転送する集線・分配機能である。4つめは、中継ネットワークに転送せずに、光信号が入力されたPh-GWで折り返しを可能とする折り返し機能である。5つめは、再生、中継および電気的処理を行うための取り出し・挿入機能である。 Ph-GW has five functions. The first is a wavelength control/monitoring function that specifies and controls which wavelength the user equipment uses and monitors the wavelength of the signal. The second is a pass/stop function that allows signals to pass when a path opens and stops unnecessary signals. The third function is to condense the optical signals of the wavelength set in each user equipment and transfer them to the relay network as necessary, and to distribute the optical signals transferred from the relay network to each wavelength as necessary and send them to the user equipment. This is a line concentration/distribution function that transfers lines to The fourth is a loopback function that enables loopback at the Ph-GW to which the optical signal is input without transferring it to a relay network. The fifth is an extraction/insertion function for performing playback, relay, and electrical processing.
 Ph-GWは、遠隔にあるTPND(Transponder)を制御する機能を備え、それ自体にTPNDを備えないROADM(Reconfigurable optical add-drop multiplexer)、又は遠隔にあるTPNDを制御する機能を備え、それ自体にTPNDを備えないROADMを構成するTPA(TPND Aggregator、トランスポンダ集約スイッチ)と見做せる。ROADMの4種類の構造例について説明する。 The Ph-GW has the function of controlling a remotely located TPND (Transponder) and is a ROADM (Reconfigurable optical add-drop multiplexer) that does not have a TPND, or has the function of controlling a remote TPND and itself It can be regarded as a TPA (TPND Aggregator, transponder aggregation switch) that constitutes a ROADM without a TPND. Four types of structural examples of ROADM will be explained.
 図20は、ROADM又はその一部の構成例1を示す図である。構成例1は、M×1構成のM×1 WSS9012、1×N構成の1×N合分岐器9021、N×1構成のN×1 WSS9010、1×M構成の1×M WSS9011を含む。なお、WSSはWavelength Selective Switchである。 FIG. 20 is a diagram showing a first configuration example of the ROADM or a part thereof. Configuration example 1 includes an M×1 WSS 9012 with an M×1 configuration, a 1×N combiner/brancher 9021 with a 1×N configuration, an N×1 WSS 9010 with an N×1 configuration, and a 1×M WSS 9011 with a 1×M configuration. Note that WSS is Wavelength Selective Switch.
 M×1 WSS9012は、ユーザネットワークインターフェイス(以下、「UNI」という)側からM方路の信号が入力される。M×1 WSS9012は、UNI側から入力された信号を入力ポートと波長の組合せに応じて多重し、1×N合分岐器9021に出力する。合分岐器9021は、M×1 WSS9012から入力された信号をN方路に分岐し、ネットワークネットワークインターフェイス(以下、「NNI」という)側のN方路に出力する。 The M×1 WSS 9012 receives an M route signal from the user network interface (hereinafter referred to as “UNI”) side. The M×1 WSS 9012 multiplexes signals input from the UNI side according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the 1×N combiner/brancher 9021. The combiner/brancher 9021 branches the signal input from the M×1 WSS 9012 into N paths, and outputs the signal to N paths on the network interface (hereinafter referred to as "NNI") side.
 N×1 WSS9010は、NNI側からN方路の信号が入力される。N×1 WSS9010は、NNI側から入力された信号を入力ポートと波長の組合せに応じて多重し、1×M WSS9011に出力する。1×M WSS9011は、N×1 WSS9010からの信号を波長に応じてUNI側のM方路に出力する。 The N×1 WSS 9010 receives N-way signals from the NNI side. The N×1 WSS 9010 multiplexes signals input from the NNI side according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the 1×M WSS 9011. The 1×M WSS 9011 outputs the signal from the N×1 WSS 9010 to the M path on the UNI side according to the wavelength.
 この構成例1では、Colorless機能とDirectionless機能を有するが、Contentionless機能を有さない。Colorless機能とは、合分波のフィルタに波長可変機能をもたせること等により、ノード内部の信号経路が信号の波長(=Color、色)による制約を受けないよう波長とポートの組合せを変更する機能である。Directionless機能とは、2つのWSSを対向させて接続したトランスポンダ集約スイッチ構成等により、トランスポンダの入出力方路の方向を自由に設定する機能である。Contentionless機能とは、入出力それぞれに複数のポートを備え、その間で任意のパス設定するN×M構成のWSS等により、異なる方路に接続された同一波長信号のトランスポンダ集約スイッチ内部における衝突を回避する機能である。 This configuration example 1 has a Colorless function and a Directionless function, but does not have a Contentionless function. Colorless function is a function that changes the combination of wavelength and port so that the signal path inside the node is not restricted by the signal wavelength (= color) by adding a variable wavelength function to the multiplexing/demultiplexing filter. It is. The Directionless function is a function that freely sets the direction of the transponder input/output route using a transponder aggregation switch configuration in which two WSSs are connected facing each other. Contentionless function avoids collisions within the transponder aggregation switch of the same wavelength signals connected to different routes by using a WSS with an N×M configuration that has multiple ports for each input and output and sets arbitrary paths between them. This is a function to
 図21は、構成例2を示す図である。構成2は、上下二つのMCS(Multicast Switch)を用いた構成である。構成例2の一つ目のMCSは、M個の1×N光スイッチ9113、N個のM×1合分岐器9111を備え、もう一つのMCSは、N個の1×M合分岐器9112、およびM個のN×1光スイッチ9114を備える。一つ目のMCSでは、1×N光スイッチ9113は、UNI側からそれぞれ1方路の信号が入力される。1×N光スイッチ9113は、UNI側から入力された信号をM×1合分岐器9111いずれかに出力する。M×1合分岐器9111は、1×N光スイッチ9113から入力された信号を多重し、NNI側のそれぞれ1方路に出力する。 FIG. 21 is a diagram showing configuration example 2. Configuration 2 is a configuration using two upper and lower MCSs (Multicast Switches). The first MCS of configuration example 2 includes M 1×N optical switches 9113 and N M×1 combiners/branchers 9111, and the other MCS includes N 1×M combiners/branchers 9112. , and M N×1 optical switches 9114. In the first MCS, each of the 1×N optical switches 9113 receives one route of signals from the UNI side. The 1×N optical switch 9113 outputs the signal input from the UNI side to either the M×1 combiner/brancher 9111. The M×1 combiner/brancher 9111 multiplexes the signals input from the 1×N optical switch 9113 and outputs the multiplexed signals to each one route on the NNI side.
 もう一つのMCSでは、1×M合分岐器9112は、NNI側からそれぞれ1方路の信号が入力される。1×M合分岐器9112は、NNI側から入力された信号を分岐し、N×1光スイッチ9114に出力する。N×1光スイッチ9114は、1×M合分岐器9112からの信号を入力ポートに応じて選択し、UNI側のそれぞれ1方路に出力する。この構成例2では、Colorless機能とDirectionless機能とContentionless機能とを有する。なお、構成例2では、分岐によるMCSの損失を補填するための増幅器が通常必要である。 In another MCS, each of the 1×M combiner/branchers 9112 receives one route of signals from the NNI side. The 1×M combiner/brancher 9112 branches the signal input from the NNI side and outputs it to the N×1 optical switch 9114. The N×1 optical switch 9114 selects the signal from the 1×M combiner/brancher 9112 according to the input port, and outputs it to each one route on the UNI side. This configuration example 2 has a Colorless function, a Directionless function, and a Contentionless function. Note that in configuration example 2, an amplifier is usually required to compensate for MCS loss due to branching.
 図22は、構成例3を示す図である。構成例3は、M×N WSS9201、およびN×M WSS9202を含む。M×N WSS9201は、UNI側からM方路の信号が入力される。M×N WSS9201は、UNI側から入力された信号を入力ポートと波長の組合せに応じてNNI側のN方路のいずれかに出力する。N×M WSS9202は、NNI側からN方路の信号が入力される。N×M WSS9202は、NNI側から入力された信号を入力ポートと波長の組合せに応じてUNI側のM方路のいずれかに出力する。構成例3は、Colorless機能とDirectionless機能とContentionless機能とを有する。 FIG. 22 is a diagram showing configuration example 3. Configuration example 3 includes an M×N WSS 9201 and an N×M WSS 9202. The M×N WSS 9201 receives an M route signal from the UNI side. The M×N WSS9201 outputs a signal input from the UNI side to one of N routes on the NNI side depending on the combination of input port and wavelength. The N×M WSS 9202 receives N-way signals from the NNI side. The N×M WSS 9202 outputs the signal input from the NNI side to one of the M routes on the UNI side depending on the combination of input port and wavelength. Configuration example 3 has a Colorless function, a Directionless function, and a Contentionless function.
 図23は、構成例4を示す図である。構成例4は、M×N光スイッチ9302、AWG(Arrayed-Waveguide Grating)9303、AWG9313、N×M光スイッチ9312を含む。M×N光スイッチ9302は、UNI側からM方路の信号が入力される。M×N光スイッチ9302は、UNI側から入力された信号を入力ポートに応じていずれかのAWG9303のいずれかのポートに出力する。AWG9303は、M×N光スイッチ9302から入力された信号を入力ポートと波長の組合せに応じて多重し、NNI側にそれぞれ出力する。AWG9313は、NNI側からそれぞれ入力された信号を入力ポートと波長の組合せに応じてN×M光スイッチ9312のNポートのいずれかに出力する。N×M光スイッチ9312は、AWG9313から入力された信号を入力ポートに応じてUNI側のM方路に出力する。 FIG. 23 is a diagram showing configuration example 4. Configuration example 4 includes an M×N optical switch 9302, an AWG (Arrayed-Waveguide Grating) 9303, an AWG 9313, and an N×M optical switch 9312. The M×N optical switch 9302 receives M-way signals from the UNI side. The M×N optical switch 9302 outputs a signal input from the UNI side to any port of any AWG 9303 depending on the input port. The AWG 9303 multiplexes the signals input from the M×N optical switch 9302 according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the NNI side. The AWG 9313 outputs each signal input from the NNI side to one of the N ports of the N×M optical switch 9312 depending on the combination of input port and wavelength. The N×M optical switch 9312 outputs the signal input from the AWG 9313 to the M path on the UNI side according to the input port.
 上述した各構成例1~4又はその一部を用いてPh-GWを構成することができる。またMCSなどの波長選択性のない部品を用いた構成でPh-GWを構成できる。 A Ph-GW can be configured using each of the configuration examples 1 to 4 described above or a part thereof. Further, the Ph-GW can be configured using components without wavelength selectivity such as MCS.
 Ph-GWにおいて、ユーザ端末がAPNコントローラによって設定された波長のみ使用した場合は透過し、設定されていない不適切な波長が使用された場合は遮断する必要がある。しかしながら、上記構成例の一部、構成例4以外の構成では、不適切な波長の信号を遮断できないという課題があった。 In the Ph-GW, if the user terminal uses only the wavelength set by the APN controller, it must be transmitted, and if an inappropriate wavelength that has not been set is used, it must be blocked. However, some of the above configuration examples and configurations other than Configuration Example 4 have a problem in that signals of inappropriate wavelengths cannot be blocked.
 上記事情に鑑み、本発明は、不適切な波長の信号を遮断する技術の提供を目的としている。 In view of the above circumstances, the present invention aims to provide a technique for blocking signals of inappropriate wavelengths.
 本発明の一態様は、ユーザ端末に設定された波長を取得する取得部と、光信号を複数の出力先の少なくとも1つの出力先に出力する光振分部と、ユーザ端末から前記光振分部に入力される信号の波長、または前記光振分部からユーザ端末に出力される信号の波長を観測する観測部と、前記観測部によって観測された波長が、前記取得部によって取得された波長と異なる場合に、前記ユーザ端末からの入力またはユーザ端末への出力を遮断するか、取得された波長と異なる波長成分を遮断する遮断部と、を備えた通信システムである。 One aspect of the present invention includes: an acquisition unit that acquires a wavelength set in a user terminal; an optical distribution unit that outputs an optical signal to at least one of a plurality of output destinations; an observation section that observes the wavelength of a signal input to the section or the wavelength of a signal output from the optical distribution section to the user terminal; and the wavelength observed by the observation section is the wavelength acquired by the acquisition section. and a cutoff unit that cuts off input from the user terminal or output to the user terminal or cuts off a wavelength component different from the acquired wavelength when the wavelength is different from the obtained wavelength.
 本発明の一態様は、光信号を複数の出力先の少なくとも1つの出力先に出力する光振分部を備えた通信システムの制御方法であって、ユーザ端末に設定された波長を取得する取得ステップと、ユーザ端末から前記光振分部に入力される信号の波長、または前記光振分部からユーザ端末に出力される信号の波長を観測する観測ステップと、前記観測ステップによって観測された波長が、前記取得ステップによって取得された波長と異なる場合に、前記ユーザ端末からの入力またはユーザ端末への出力を遮断するか、取得された波長と異なる波長成分を遮断する遮断ステップと、を備えた制御方法である。 One aspect of the present invention is a control method for a communication system including an optical distribution unit that outputs an optical signal to at least one of a plurality of output destinations, the acquisition method acquiring a wavelength set in a user terminal. an observation step of observing the wavelength of a signal input from the user terminal to the optical distribution unit or the wavelength of a signal output from the optical distribution unit to the user terminal; and a wavelength observed by the observation step. is different from the wavelength obtained in the obtaining step, a blocking step of blocking input from the user terminal or output to the user terminal, or blocking a wavelength component different from the obtained wavelength. This is a control method.
 本発明により、不適切な波長の信号の導通を抑止する技術を提供することが可能となる。 According to the present invention, it is possible to provide a technique for suppressing conduction of signals of inappropriate wavelengths.
本実施形態に係る通信システムを示す構成図である。FIG. 1 is a configuration diagram showing a communication system according to the present embodiment. 第1実施形態に係るPh-GWの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a Ph-GW according to the first embodiment. SAの代替構成を示す図である。It is a figure which shows the alternative structure of SA. 第2実施形態に係るPh-GWの構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a Ph-GW according to a second embodiment. 第3実施形態に係るPh-GWの構成例を示す図である。FIG. 7 is a diagram showing a configuration example of a Ph-GW according to a third embodiment. 第4実施形態に係るPh-GWの構成例を示す図である。FIG. 7 is a diagram showing a configuration example of a Ph-GW according to a fourth embodiment. 第5実施形態に係るPh-GWの構成例を示す図であるIt is a diagram showing an example of the configuration of Ph-GW according to the fifth embodiment. 第6実施形態に係るPh-GWの構成例を示す図である。FIG. 7 is a diagram showing an example of the configuration of a Ph-GW according to a sixth embodiment. 第7実施形態に係るPh-GWの構成例を示す図である。FIG. 12 is a diagram showing a configuration example of a Ph-GW according to a seventh embodiment. 第8実施形態に係るPh-GWの構成例を示す図である。FIG. 7 is a diagram showing an example of the configuration of a Ph-GW according to an eighth embodiment. 各実施形態において共通する処理の流れを示すフローチャートである。3 is a flowchart showing the flow of processing common to each embodiment. FBG(Fiber Bragg Grating)を用いて分離部21を構成した構成例を示す図である。FIG. 2 is a diagram showing an example of a configuration in which a separation section 21 is configured using FBG (Fiber Bragg Grating). TFF(Thin Film Filter)を用いて分離部21を構成した構成例を示す図である。2 is a diagram illustrating a configuration example in which a separation unit 21 is configured using a TFF (Thin Film Filter). FIG. AWG(Arrayed-Waveguide Grating)を用いて分離部21を構成した構成例を示す図である。2 is a diagram illustrating a configuration example in which a separation unit 21 is configured using an AWG (Arrayed-Waveguide Grating). FIG. AWGの変形例を用いて構成された分離部21の構成例を示す図である。7 is a diagram illustrating a configuration example of a separation unit 21 configured using a modified example of an AWG. FIG. 反射型の回折格子を用いて構成された分離部21の具体例を示す図である。FIG. 3 is a diagram showing a specific example of a separation section 21 configured using a reflection type diffraction grating. 導波路型リング共振器を用いて分離部21を構成した構成例を示す図である。3 is a diagram illustrating an example of a configuration in which a separation section 21 is configured using a waveguide ring resonator. FIG. ラティス型光フィルタを用いて分離部21を構成した構成例を示す図である。3 is a diagram illustrating a configuration example in which a separation section 21 is configured using a lattice type optical filter. FIG. APNにおけるユーザ装置を示す図である。FIG. 2 is a diagram illustrating user equipment in an APN. ROADMの構成例1を示す図である。FIG. 2 is a diagram showing a first configuration example of a ROADM. ROADMの構成例2を示す図である。It is a figure which shows the example 2 of a structure of ROADM. ROADMの構成例3を示す図である。It is a figure which shows the example 3 of a structure of ROADM. ROADMの構成例4を示す図である。It is a figure which shows the example 4 of a structure of ROADM.
 図1は、本実施形態に係る通信システム1を示す構成図である。通信システム1は、APN(All-Photonics Network)コントローラ(「APNC」とも記す)10、制御機能部20-1、20-2、Ph-GW30-1、30-2、およびユーザ装置100で構成される。制御機能部20-1、20-2のそれぞれを特に区別しない場合には、制御機能部20と表現する。制御機能部20は、自律又はAPNC10からの指示等に従って、Ph-GWを制御し、Ph-GWの経路を設定する。Ph-GWは、ユーザ装置を、自律又は制御機能部20又はAPNC10からの指示等に従って、制御する。例えば、その送受信する波長を制御する。制御機能部20又はAPNC10が直接ユーザ装置100を制御してもよい。その場合、制御機能部20又はAPNC10は、ユーザ装置100と制御信号を送受信するため、例えば制御信号としてAMCCを用いる場合、AMCC送受信器を備えてもよい。Ph-GW30-1、30-2のそれぞれを特に区別しない場合には、Ph-GW30と表現する。 FIG. 1 is a configuration diagram showing a communication system 1 according to the present embodiment. The communication system 1 includes an APN (All-Photonics Network) controller (also referred to as "APNC") 10, control function units 20-1, 20-2, Ph-GWs 30-1, 30-2, and a user device 100. Ru. The control function units 20-1 and 20-2 are expressed as a control function unit 20 unless they are specifically distinguished from each other. The control function unit 20 controls the Ph-GW autonomously or according to instructions from the APNC 10, and sets a path for the Ph-GW. The Ph-GW controls the user equipment according to instructions from the autonomous or control function unit 20 or the APNC 10. For example, the wavelengths for transmission and reception are controlled. The control function unit 20 or the APNC 10 may directly control the user device 100. In that case, the control function unit 20 or the APNC 10 may include an AMCC transceiver in order to transmit and receive control signals to and from the user device 100, for example, when AMCC is used as the control signal. Ph-GW30-1 and 30-2 are expressed as Ph-GW30 unless they are particularly distinguished.
 ユーザ装置100は、Ph-GW30と接続する。ユーザ装置100は、Ph-GW30と例えば、制御機能部20を介して、情報をやり取りする。このとき制御機能部はPh-GW30の一部であってもよい。 The user device 100 connects to the Ph-GW 30. The user device 100 exchanges information with the Ph-GW 30 via the control function unit 20, for example. At this time, the control function section may be part of the Ph-GW 30.
 Ph-GW30は、制御機能部20と接続する。なお、制御機能部20がPh-GW30の一部である場合には、ユーザ装置100はPh-GW30と接続することで制御機能部20とも通信可能となってもよい。図1に示される構成において、ユーザ装置100は、通信開始時に、制御信号、例えば、AMCC上の制御信号を用いて、通信の管理制御を行うための制御信号をPh-GWとやり取りすることで、通信で用いる波長などが設定される。設定の際に、Ph-GW30は制御機能部20とユーザ装置100とが通信可能な経路を設定する。設定完了後、Ph-GW30は、ユーザ装置100が対向する通信装置、例えば他のユーザ装置との間で通信可能な経路を設定する。 The Ph-GW 30 is connected to the control function section 20. Note that if the control function unit 20 is a part of the Ph-GW 30, the user device 100 may also be able to communicate with the control function unit 20 by connecting to the Ph-GW 30. In the configuration shown in FIG. 1, the user device 100 uses a control signal, for example, a control signal on AMCC, to exchange a control signal for managing and controlling communication with the Ph-GW when starting communication. , the wavelength used for communication, etc. are set. At the time of setting, the Ph-GW 30 sets a path through which the control function unit 20 and the user device 100 can communicate. After the setting is completed, the Ph-GW 30 sets a path through which the user device 100 can communicate with the opposing communication device, for example, another user device.
 Ph-GW30は、主として5つの機能を有する。1つめは、ユーザ装置100がどの波長を使うかを指定、制御し、その信号の波長を監視する波長制御・監視機能である。2つめは、パスの開通に合わせて信号を通過させ、不要な信号は停止させる通過・停止機能である。3つめは、各ユーザ装置に設定された波長の光信号を集線し中継ネットワークに転送する機能と、中継ネットワークから転送された光信号をそれぞれの波長ごとに分配する集線・分配機能である。4つめは、光信号が入力されたPh-GW30で折り返しを可能とする折り返し機能である。5つめは、再生中継および電気的処理を行うための取り出し・挿入機能である。 The Ph-GW30 mainly has five functions. The first is a wavelength control/monitoring function that specifies and controls which wavelength the user equipment 100 uses and monitors the wavelength of the signal. The second is a pass/stop function that allows signals to pass when a path opens and stops unnecessary signals. The third function is to condense optical signals of wavelengths set in each user equipment and transfer them to the relay network, and to distribute optical signals transferred from the relay network for each wavelength. The fourth is a loopback function that enables loopback at the Ph-GW 30 to which the optical signal is input. The fifth is an extraction/insertion function for performing regenerative relay and electrical processing.
 Ph-GW30は、種々の部品を用いて構成することが可能である。以下、各構成例の説明とともに、その構成例において、通信を遮断するか、観測された波長成分を遮断する実施形態について説明する。 The Ph-GW 30 can be configured using various parts. Hereinafter, each configuration example will be explained, and an embodiment will be described in which communication is blocked or an observed wavelength component is blocked in the configuration example.
 (第1実施形態)
 図2は、第1実施形態に係るPh-GW30-1の構成例を示す図である。第1実施形態では、従来技術で説明した構成例2が適用されたPh-GWについて説明する。Ph-GW30-1は、例えば、上り方向と下り方向の2つのMCS200、300、遮断制御部400、観測用光スイッチ500、M個の合分岐器230、およびM個の合分岐器330を含む。合分岐器は、波長依存性のないパワスプリッタや光カプラである。合分岐器に代えて光スイッチを用いてもよい。
(First embodiment)
FIG. 2 is a diagram showing a configuration example of the Ph-GW 30-1 according to the first embodiment. In the first embodiment, a Ph-GW to which the configuration example 2 described in the prior art is applied will be described. The Ph-GW 30-1 includes, for example, two MCSs 200 and 300 in the upstream and downstream directions, a cutoff control unit 400, an observation optical switch 500, M combiners/branches 230, and M combiners/branches 330. . The combiner/brancher is a power splitter or optical coupler without wavelength dependence. An optical switch may be used instead of the combiner/brancher.
 合分岐器230は、UNI側からの信号が入力される。合分岐器230は、UNI側から入力された信号をMCS200および観測用光スイッチ500に出力する。合分岐器330は、MCS300からの信号が入力される。合分岐器330は、MCS300から入力された信号をUNI側に接続されたユーザ装置100、および観測用光スイッチ500に出力する。 The signal from the UNI side is input to the combiner/brancher 230. The combiner/brancher 230 outputs the signal input from the UNI side to the MCS 200 and the observation optical switch 500. The signal from the MCS 300 is input to the combiner/brancher 330 . The combiner/brancher 330 outputs the signal input from the MCS 300 to the user equipment 100 connected to the UNI side and the observation optical switch 500.
 観測用光スイッチ500には、例えば、時分割で合分岐器230、合分岐器330から信号が入力される。観測用光スイッチ500は、遮断制御部400に、合分岐器230、合分岐器330から入力された信号を出力する。上述したように時分割で信号が入力される場合には、遮断制御部400は、信号が入力された時間によって、その信号がいずれの合分岐器230、合分岐器330から入力された信号かを判定可能である。 For example, signals are input to the observation optical switch 500 from the combiner/brancher 230 and the combiner/brancher 330 in a time-division manner. The observation optical switch 500 outputs the signals input from the combiner/brancher 230 and the combiner/brancher 330 to the cutoff controller 400 . When a signal is input in a time-sharing manner as described above, the cutoff control unit 400 determines from which combiner/ brancher 230 or 330 the signal was input, depending on the time at which the signal was input. can be determined.
 遮断制御部400は、Ph-GW30から、ユーザ端末100に設定された波長を取得する。遮断制御部400は、SA(スペクトルアナライザ:Spectrum Analyzer)410を備える。遮断制御部400は、SA410によって観測された波長が、APNコントローラ10から取得された波長と異なる場合に、ユーザ端末100との通信を遮断する。遮断制御部400は、波長が異なると判断された信号を1×N光スイッチ220またはN×1光スイッチ320によって遮断させる。 The cutoff control unit 400 acquires the wavelength set in the user terminal 100 from the Ph-GW 30. The cutoff control unit 400 includes an SA (spectrum analyzer) 410. The cutoff control unit 400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 410 is different from the wavelength acquired from the APN controller 10. The cutoff control unit 400 causes the 1×N optical switch 220 or the N×1 optical switch 320 to block the signals determined to have different wavelengths.
 なお、遮断は、1×N光スイッチ220またはN×1光スイッチ320の代わりに、ユーザ装置から1×N光スイッチ220までの経路又はN×1光スイッチ320からユーザ装置までの経路に、遮断用の機能部を別途備え、1×N光スイッチ220又はN×1光スイッチ320の代わりに400からの遮断指示を受けて、1×N光スイッチ220又はN×1光スイッチ320の代わりに遮断してもよい。これは以降の実施形態でも同様である。 Note that, instead of the 1×N optical switch 220 or the N×1 optical switch 320, the disconnection is performed on the path from the user device to the 1×N optical switch 220 or the path from the N×1 optical switch 320 to the user device. It is equipped with a separate functional unit for 1×N optical switch 220 or N×1 optical switch 320 to receive a disconnection instruction from 400, and to disconnect instead of 1×N optical switch 220 or N×1 optical switch 320. You may. This also applies to subsequent embodiments.
 MCS200は、M個の1×N光スイッチ220、N個のM×1合分岐器210を備える。1×N光スイッチ220は、合分岐器230から入力されたUNI側からそれぞれ1方路の信号が入力される。1×N光スイッチ220は、UNI側から入力された信号をM×1合分岐器210のいずれかに出力、又は遮断制御部400から指示された信号を遮断する。M×1合分岐器210は、1×N光スイッチ220から入力された信号を多重し、NNI側のそれぞれ1方路に出力する。 The MCS 200 includes M 1×N optical switches 220 and N M×1 combiners/branchers 210. Each of the 1×N optical switches 220 receives one route of signals from the UNI side input from the combiner/brancher 230 . The 1×N optical switch 220 outputs a signal input from the UNI side to one of the M×1 combiner/branchers 210, or blocks a signal instructed by the cutoff control unit 400. The M×1 combiner/brancher 210 multiplexes the signals input from the 1×N optical switch 220 and outputs the multiplexed signals to each one route on the NNI side.
 MCS300は、N個の1×M合分岐器310、およびM個のN×1光スイッチ320を備える。1×M合分岐器310は、NNI側からそれぞれ1方路の信号が入力される。1×M合分岐器310は、NNI側から入力された信号を分岐し、N×1光スイッチ220に出力する。N×1光スイッチ320は、1×M合分岐器310からの信号を入力ポートに応じて選択し、それぞれ1個の合分岐器330に出力、又は遮断制御部400から指示された信号を遮断する。 The MCS 300 includes NM multiplexers 310 and M N×1 optical switches 320. The 1×M combiner/brancher 310 receives one route of signals from the NNI side. The 1×M combiner/brancher 310 branches the signal input from the NNI side and outputs it to the N×1 optical switch 220. The N×1 optical switch 320 selects the signal from the 1×M combiner/brancher 310 according to the input port, and outputs each signal to one combiner/brancher 330, or cuts off the signal instructed by the cutoff control unit 400. do.
 このように、ユーザ端末100から入力された信号の波長、またはユーザ端末100に出力される信号の波長を観測することで、不適切な波長の信号を遮断することができる。なお、1つの合分岐器230対して1つのSAを設け、また1つの合分岐器330に1つのSAを設けて、各々のSAが対応する合分岐器230または合分岐器330から入力された信号の波長を観測してもよい。この場合、観測用光スイッチ500と、遮断制御部400内のSA410は不要となる。また、遮断制御部400は、各SAで観測された波長にもとづいて不適切な波長か否かを判定し、判定結果に応じて1×N光スイッチ220、またはN×1光スイッチ320に信号の遮断を指示する。 In this way, by observing the wavelength of the signal input from the user terminal 100 or the wavelength of the signal output to the user terminal 100, it is possible to block signals with inappropriate wavelengths. Note that one SA is provided for one combiner/brancher 230, and one SA is provided for one combiner/brancher 330, so that each SA is input from the corresponding combiner/ brancher 230 or 330. The wavelength of the signal may also be observed. In this case, the observation optical switch 500 and the SA 410 in the cutoff control section 400 become unnecessary. The cutoff control unit 400 also determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and sends a signal to the 1×N optical switch 220 or the N×1 optical switch 320 according to the determination result. Instruct to shut off.
 合分岐器230や合分岐器330は、遮断制御部400と1×N光スイッチ220に出力を切り替える光スイッチや、観測用光スイッチ500とUNI側に出力を切り替える光スイッチであってもよい。合分岐器230と観測用光スイッチ500は、1×N光スイッチ220と遮断制御部400への出力を切替する光スイッチであってもよい。合分岐器330と観測用光スイッチ500は、UNI側と遮断制御部400への出力を切替する光スイッチであってもよい。これは、以降の実施例であっても同様である。 The combiner/brancher 230 and the combiner/brancher 330 may be an optical switch that switches the output between the cutoff control unit 400 and the 1×N optical switch 220, or an optical switch that switches the output between the observation optical switch 500 and the UNI side. The combiner/brancher 230 and the observation optical switch 500 may be optical switches that switch outputs to the 1×N optical switch 220 and the cutoff control unit 400. The combiner/brancher 330 and the observation optical switch 500 may be optical switches that switch the output to the UNI side and the cutoff control unit 400. This also applies to subsequent embodiments.
 第1実施形態において、MCS200、300は光振分部の一例である。1×N光スイッチ220およびN×1光スイッチ320は、遮断部の一例である。合分岐器230および合分岐器330は、分岐部の一例である。遮断制御部400は、観測部の一例である。観測用光スイッチ500は、他の光振分部の一例である。 In the first embodiment, the MCSs 200 and 300 are examples of light distribution units. The 1×N optical switch 220 and the N×1 optical switch 320 are examples of the cutoff section. The combiner/brancher 230 and the combiner/brancher 330 are examples of branching parts. The cutoff control unit 400 is an example of an observation unit. The observation optical switch 500 is an example of another light distribution section.
 図3は、SA410の代替構成を示す図である。図3には、上述した観測用光スイッチ500および代替SA411が示されている。代替SA411は、弁別対象となる波長毎に分波する機能、例えば、AWG413および、分波する機能が分波したそれぞれの波長の強度を検出する複数の検出部412で構成される。AWG413は、分波器の一例であり、入力される信号を波長に応じて、それぞれ分波するものであればよい。AWG413の場合には、波長毎に異なるポートから信号が出力される。検出部412は、このポートごとに設けられ、接続される。 FIG. 3 is a diagram showing an alternative configuration of SA 410. FIG. 3 shows the observation optical switch 500 and the alternative SA 411 described above. The alternative SA 411 includes a function of demultiplexing for each wavelength to be discriminated, for example, an AWG 413, and a plurality of detection units 412 that detect the intensity of each wavelength demultiplexed by the demultiplexing function. The AWG 413 is an example of a demultiplexer, and may be any device that demultiplexes input signals according to their wavelengths. In the case of AWG413, signals are output from different ports for each wavelength. A detection unit 412 is provided and connected to each port.
 検出部412によって、観測用光スイッチ500により入力された信号のユーザ端末100に設定された波長以外に対応するポートの出力の有無を確認することで、不適合な波長が出力しているかを、例えば、時分割多重で観測することができる。 By checking whether the detection unit 412 outputs a signal input from the observation optical switch 500 at a port corresponding to a wavelength other than that set in the user terminal 100, it can be determined whether an incompatible wavelength is being output, for example. , can be observed using time division multiplexing.
 なお、分波器は、波長成分が合分波器で遮断されて検出されないことを防ぐため、隣接チャネル間、即ち隣接ポート間のクロストークの大きいものを用いてもよい。その場合、隣接ポート間でクロストークを校正する。 Note that in order to prevent wavelength components from being blocked by the multiplexer/demultiplexer and not detected, a demultiplexer with large crosstalk between adjacent channels, that is, between adjacent ports may be used. In that case, calibrate crosstalk between adjacent ports.
 図3に示されるように構成することで、スペクトルアナライザのように波長掃引する時間を要さないため、波長掃引する場合に比べて、測定に要する計測処理時間を短縮することができる。特にこの短縮は、複数UNIやNNIでSAを時分割で共用した場合に好適である。 By configuring as shown in FIG. 3, unlike a spectrum analyzer, it does not require time to sweep the wavelength, so compared to the case where the wavelength is swept, the measurement processing time required for measurement can be shortened. This shortening is particularly suitable when multiple UNIs or NNIs share the SA in a time-sharing manner.
 (第2実施形態)
 図4は、第2実施形態に係るPh-GW30-2の構成例を示す図である。第2実施形態では、従来技術で説明した構成例1が適用されたPh-GWについて説明する。Ph-GW30-2は、M×1構成のM×1 WSS600、1×N構成の1×N合分岐器610、N×1構成のN×1 WSS710、1×M構成の1×M WSS720、遮断制御部1400、観測用光スイッチ1500、M個の合分岐器1230、およびM個の合分岐器1330を含む。
(Second embodiment)
FIG. 4 is a diagram showing a configuration example of the Ph-GW 30-2 according to the second embodiment. In the second embodiment, a Ph-GW to which the configuration example 1 described in the prior art is applied will be described. The Ph-GW30-2 includes an M×1 WSS600 with an M×1 configuration, a 1×N combiner/brancher 610 with a 1×N configuration, an N×1 WSS710 with an N×1 configuration, a 1×M WSS720 with a 1×M configuration, It includes a cutoff control unit 1400, an observation optical switch 1500, M combiners/branchers 1230, and M combiners/branches 1330.
 合分岐器1230は、UNI側からの信号が入力される。合分岐器1230は、UNI側から入力された信号をM×1 WSS600および観測用光スイッチ1500に出力する。合分岐器1330は、1×M WSS720からの信号が入力される。合分岐器1330は、1×M WSS720から入力された信号をUNI側に接続されたユーザ装置100、および観測用光スイッチ1500に出力する。 The signal from the UNI side is input to the combiner/brancher 1230. The combiner/brancher 1230 outputs the signal input from the UNI side to the M×1 WSS 600 and the observation optical switch 1500. The signal from the 1×M WSS 720 is input to the combiner/brancher 1330. The combiner/brancher 1330 outputs the signal input from the 1×M WSS 720 to the user equipment 100 connected to the UNI side and the observation optical switch 1500.
 観測用光スイッチ1500には例えば時分割で合分岐器1230、合分岐器1330から信号が入力される。観測用光スイッチ1500は、遮断制御部1400に、合分岐器1230、合分岐器1330から入力された信号を出力する。上述したように時分割で信号が入力される場合には、遮断制御部1400は、信号が入力された時間によって、その信号がいずれの合分岐器1230、合分岐器1330から入力された信号かを判定可能である。 Signals are input to the observation optical switch 1500 from the combiner/brancher 1230 and the combiner/brancher 1330 in a time-division manner, for example. The observation optical switch 1500 outputs the signals input from the combiner/brancher 1230 and the combiner/brancher 1330 to the cutoff control section 1400. When a signal is input in a time-sharing manner as described above, the cutoff control unit 1400 determines from which combiner/brancher 1230 or combiner/brancher 1330 the signal was input, depending on the time at which the signal was input. can be determined.
 遮断制御部1400は、APNコントローラ10から、ユーザ端末100に割り当てられた波長を取得する。遮断制御部1400は、SA1410を備える。遮断制御部1400は、SA1410によって観測された波長が、APNコントローラ10から取得された波長と異なる場合に、ユーザ端末100との通信を遮断する。遮断制御部1400は、波長が異なると判断された信号をM×1 WSS600、N×1 WSS710、または1×M WSS720によって遮断させる。 The cutoff control unit 1400 acquires the wavelength assigned to the user terminal 100 from the APN controller 10. The cutoff control unit 1400 includes an SA 1410. The cutoff control unit 1400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 1410 is different from the wavelength acquired from the APN controller 10. The blocking control unit 1400 blocks the signals determined to have different wavelengths by using the M×1 WSS 600, the N×1 WSS 710, or the 1×M WSS 720.
 なお、遮断は、M×1 WSS600またはN×1 WSS710と1×M WSS720のいずれかの代わりに、ユーザ装置からM×1 WSS600までの経路又はNNI側からN×1 WSS710までの経路と1×M WSS720からユーザ装置までの経路のいずれかに、遮断用の機能部を別途備え、M×1 WSS600またはN×1 WSS710と1×M WSS720のいずれかの代わりに1400からの遮断指示を受けて、M×1 WSS600またはN×1 WSS710と1×M WSS720のいずれかの代わりに遮断してもよい。これは以降の実施形態でも同様である。 In addition, instead of either M×1 WSS600 or N×1 WSS710 and 1×M WSS720, the cutoff can be performed by using the route from the user device to M×1 WSS600 or the route from the NNI side to N×1 WSS710 and 1× A separate function unit for blocking is provided on either of the routes from the M WSS720 to the user device, and the function unit receives a blocking instruction from the 1400 in place of either the M×1 WSS600 or the N×1 WSS710 and 1×M WSS720. , M×1 WSS 600 or N×1 WSS 710 and 1×M WSS 720 may be blocked. This also applies to subsequent embodiments.
 M×1 WSS600は、合分岐器1230から入力されたUNI側からM方路の信号が入力される。M×1 WSS600は、UNI側から入力された信号を入力ポートと波長の組合せに応じて多重し、1×N合分岐器610に出力、又は遮断制御部1400から指示された入力ポートと波長の組合せの信号を遮断する。1×N合分岐器610は、M×1 WSS600から入力された信号をN方路に分岐し、NNI側のN方路に出力する。 The M×1 WSS 600 receives the M route signal from the UNI side input from the combiner/brancher 1230. The M×1 WSS 600 multiplexes signals input from the UNI side according to the combination of input ports and wavelengths, and outputs them to the 1×N combiner/brancher 610 or outputs the signals input from the UNI side according to the combination of input ports and wavelengths specified by the cutoff control unit 1400. Block the combined signal. The 1×N combiner/brancher 610 branches the signal input from the M×1 WSS 600 into N paths, and outputs the signals to the N paths on the NNI side.
 N×1 WSS710は、NNI側からN方路の信号が入力される。N×1 WSS710は、NNI側から入力された信号を入力ポートと波長の組合せに応じて多重し、1×M WSS720に出力、又は遮断制御部1400から指示された入力ポートと波長の組合せの信号を遮断する。1×M WSS720は、N×1 WSS710からの信号を波長に応じてM個の合分岐器1330に出力、又は遮断制御部1400から指示された出力ポートと波長の組合せの信号を遮断する。 The N×1 WSS 710 receives N-way signals from the NNI side. The N×1 WSS710 multiplexes the signals input from the NNI side according to the combination of input ports and wavelengths, and outputs the signals to the 1×M WSS720, or the signal of the input port and wavelength combination instructed by the cutoff control unit 1400. cut off. The 1×M WSS 720 outputs the signal from the N×1 WSS 710 to M multiplexers/branchers 1330 according to the wavelength, or blocks the signal of the output port and wavelength combination instructed by the blocking control unit 1400.
 このように、ユーザ端末100から入力された信号の波長、またはユーザ端末100に出力される信号の波長を観測することで、不適切な波長の信号を遮断することができる。なお、1つの合分岐器1230に対して1つのSAを設け、また1つの合分岐器1330に1つのSAを設けて、各々のSAが対応する合分岐器1230または合分岐器1330から入力された信号の波長を観測してもよい。この場合、観測用光スイッチ1500と、遮断制御部1400内のSA410は不要となる。また、遮断制御部1400は、各SAで観測された波長にもとづいて不適切な波長か否かを判定し、判定結果に応じてM×1 WSS600、N×1 WSS710、または1×M WSS720に信号の遮断を指示する。 In this way, by observing the wavelength of the signal input from the user terminal 100 or the wavelength of the signal output to the user terminal 100, it is possible to block signals with inappropriate wavelengths. Note that one SA is provided for one combiner/brancher 1230, and one SA is provided for one combiner/brancher 1330, so that each SA is input from the corresponding combiner/brancher 1230 or combiner/brancher 1330. The wavelength of the signal may also be observed. In this case, the observation optical switch 1500 and the SA 410 in the cutoff control section 1400 become unnecessary. In addition, the cutoff control unit 1400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and selects M×1 WSS600, N×1 WSS710, or 1×M WSS720 according to the determination result. Instructs to cut off the signal.
 第2実施形態において、M×1 WSS600と1×N合分岐器1230との組合せ、N×1 WSS710と1×M WSS720の組合せは光振分部の一例である。M×1 WSS600、N×1 WSS710、1×M WSS720は、遮断部の一例である。合分岐器1330は、分岐部の一例である。遮断制御部1400は、観測部の一例である。観測用光スイッチ1500は、他の光振分部の一例である。 In the second embodiment, the combination of M×1 WSS 600 and 1×N combiner/brancher 1230 and the combination of N×1 WSS 710 and 1×M WSS 720 are examples of the optical distribution section. The M×1 WSS600, the N×1 WSS710, and the 1×M WSS720 are examples of the cutoff unit. The combiner/brancher 1330 is an example of a branch section. The cutoff control unit 1400 is an example of an observation unit. The observation optical switch 1500 is an example of another light distribution section.
 (第3実施形態)
 図5は、第3実施形態に係るPh-GW30-3の構成例を示す図である。第3実施形態では、従来技術で説明した構成例3が適用されたPh-GWについて説明する。Ph-GW30-3は、M×N WSS1600、N×M WSS1720、遮断制御部2400、観測用光スイッチ2500、M個の合分岐器2230、およびM個の合分岐器2330を含む。
(Third embodiment)
FIG. 5 is a diagram showing a configuration example of the Ph-GW 30-3 according to the third embodiment. In the third embodiment, a Ph-GW to which the configuration example 3 described in the prior art is applied will be described. The Ph-GW 30-3 includes an M×N WSS 1600, an N×M WSS 1720, a cutoff control section 2400, an observation optical switch 2500, M combiners/branches 2230, and M combiners/branches 2330.
 合分岐器2230は、UNI側からの信号が入力される。合分岐器2230は、UNI側から入力された信号をM×N WSS1600および観測用光スイッチ2500に出力する。合分岐器2330は、N×M WSS1720からの信号が入力される。合分岐器2330は、N×M WSS1720から入力された信号をUNI側に接続されたユーザ装置100、および観測用光スイッチ2500に出力する。 The signal from the UNI side is input to the combiner/brancher 2230. The combiner/brancher 2230 outputs the signal input from the UNI side to the M×N WSS 1600 and the observation optical switch 2500. The signal from the N×M WSS 1720 is input to the combiner/brancher 2330. The combiner/brancher 2330 outputs the signal input from the N×M WSS 1720 to the user equipment 100 connected to the UNI side and the observation optical switch 2500.
 観測用光スイッチ2500には例えば時分割で合分岐器2230、合分岐器2330から信号が入力される。観測用光スイッチ2500は、遮断制御部2400に、合分岐器2230、合分岐器2330から入力された信号を出力する。上述したように時分割で信号が入力される場合には、遮断制御部2400は、信号が入力された時間によって、その信号がいずれの合分岐器2230、合分岐器2330から入力された信号かを判定可能である。 Signals are input to the observation optical switch 2500 from the combiner/brancher 2230 and the combiner/brancher 2330 in a time-division manner, for example. The observation optical switch 2500 outputs the signals input from the combiner/brancher 2230 and the combiner/brancher 2330 to the cutoff control section 2400. When a signal is input in a time-sharing manner as described above, the cutoff control unit 2400 determines from which combiner/ brancher 2230 or 2330 the signal was input, depending on the time at which the signal was input. can be determined.
 遮断制御部2400は、APNコントローラ10から、ユーザ端末100に割り当てられた波長を取得する。遮断制御部2400は、SA1410を備える。遮断制御部2400は、SA1410によって観測された波長が、APNコントローラ10から取得された波長と異なる場合に、ユーザ端末100との通信を遮断する。遮断制御部2400は、波長が異なると判断された信号をM×N WSS1600またはN×M WSS1720によって遮断させる。
なお、遮断は、M×N WSS1600またはN×M WSS1720の代わりに、ユーザ装置からM×N WSS1600までの経路またはN×M WSS1720からユーザ装置までの経路のいずれかに、遮断用の機能部を別途備え、M×N WSS1600またはN×M WSS1720の代わりに2400からの遮断指示を受けて、M×N WSS1600またはN×M WSS1720の代わりに遮断してもよい。これは以降の実施形態でも同様である。
The cutoff control unit 2400 acquires the wavelength assigned to the user terminal 100 from the APN controller 10. Shutdown control section 2400 includes SA1410. The cutoff control unit 2400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 1410 is different from the wavelength acquired from the APN controller 10. The blocking control unit 2400 causes the M×N WSS 1600 or the N×M WSS 1720 to block signals determined to have different wavelengths.
Note that the blocking is performed by installing a blocking functional unit in either the path from the user device to the M×N WSS1600 or the path from the N×M WSS1720 to the user device, instead of the M×N WSS1600 or the N×M WSS1720. It may be provided separately and receive a shutoff instruction from 2400 instead of M×N WSS1600 or N×M WSS1720 to shut off instead of M×N WSS1600 or N×M WSS1720. This also applies to subsequent embodiments.
 M×NWSS1600は、合分岐器2230から入力されたUNI側からM方路の信号が入力される。M×NWSS1600は、UNI側から入力された信号をポートと波長の組合せに応じてNNI側のN方路のいずれかに出力、又は遮断制御部2400から指示された入力ポートと波長の組合せの信号を遮断する。 The M×NWSS 1600 receives the M route signal from the UNI side input from the combiner/brancher 2230. The M×NWSS 1600 outputs the signal input from the UNI side to any of the N routes on the NNI side depending on the combination of port and wavelength, or outputs the signal of the input port and wavelength combination instructed by the cutoff control unit 2400. cut off.
 N×M WSS1720は、NNI側からN方路の信号が入力される。N×M WSS1720は、NNI側から入力された信号を入力ポートと波長の組合せに応じてM個の合分岐器2330に出力、又は遮断制御部2400から指示されたポートと波長の組合せの信号を遮断する。 The N×M WSS 1720 receives N-way signals from the NNI side. The N×M WSS 1720 outputs the signal input from the NNI side to M combiners/branchers 2330 according to the input port and wavelength combination, or outputs the signal of the port and wavelength combination instructed by the cutoff control unit 2400. Cut off.
 このように、ユーザ端末100から入力された信号の波長、またはユーザ端末100に出力される信号の波長を観測することで、不適切な波長の信号を遮断することができる。なお、1つの合分岐器2230に対して1つのSAを設け、また1つの合分岐器2330に1つのSAを設けて、各々のSAが対応する合分岐器2230または合分岐器2330から入力された信号の波長を観測してもよい。この場合、観測用光スイッチ2500と、遮断制御部2400内のSA410は不要となる。また、遮断制御部2400は、各SAで観測された波長にもとづいて不適切な波長か否かを判定し、判定結果に応じてM×N WSS1600、またはN×M WSS1720に信号の遮断を指示する。 In this way, by observing the wavelength of the signal input from the user terminal 100 or the wavelength of the signal output to the user terminal 100, it is possible to block signals with inappropriate wavelengths. Note that one SA is provided for one combiner/brancher 2230, and one SA is provided for one combiner/brancher 2330, so that each SA is input from the corresponding combiner/ brancher 2230 or 2330. The wavelength of the signal may also be observed. In this case, the observation optical switch 2500 and the SA 410 in the cutoff control section 2400 are unnecessary. In addition, the cutoff control unit 2400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and instructs the M×N WSS 1600 or N×M WSS 1720 to block the signal depending on the determination result. do.
 第3実施形態において、M×N WSS1600およびN×M WSS1720は光振分部の一例である。M×N WSS1600、N×M WSS1720は、遮断部の一例である。合分岐器2230および合分岐器2330は、分岐部の一例である。遮断制御部2400は、観測部の一例である。観測用光スイッチ2500は、他の光振分部の一例である。 In the third embodiment, the M×N WSS 1600 and the N×M WSS 1720 are examples of a light distribution unit. M×N WSS 1600 and N×M WSS 1720 are examples of the cutoff unit. The combiner/brancher 2230 and the combiner/brancher 2330 are examples of branching parts. The cutoff control unit 2400 is an example of an observation unit. The observation optical switch 2500 is an example of another light distribution section.
 (第4実施形態)
 図6は、第4実施形態に係るPh-GW30-4の構成例を示す図である。第4実施形態では、従来技術で説明した構成例4が適用されたPh-GWについて説明する。Ph-GW30-4は、M×N光スイッチ800、AWG810、AWG910、N×M光スイッチ900、遮断制御部3400、観測用光スイッチ3500、M個の合分岐器3230、およびM個の合分岐器3330を含む。
(Fourth embodiment)
FIG. 6 is a diagram showing a configuration example of the Ph-GW 30-4 according to the fourth embodiment. In the fourth embodiment, a Ph-GW to which the fourth configuration example described in the prior art is applied will be described. The Ph-GW30-4 includes an M×N optical switch 800, an AWG810, an AWG910, an N×M optical switch 900, a cutoff control section 3400, an observation optical switch 3500, M combiners/branches 3230, and M combiners/branches. container 3330.
 合分岐器3230は、UNI側からの信号が入力される。合分岐器3230は、UNI側から入力された信号をM×N光スイッチ800および観測用光スイッチ3500に出力する。合分岐器3330は、N×M光スイッチ900からの信号が入力される。合分岐器3330は、N×M光スイッチ900から入力された信号をUNI側に接続されたユーザ装置100、および観測用光スイッチ3500に出力する。 The signal from the UNI side is input to the combiner/brancher 3230. The combiner/brancher 3230 outputs the signal input from the UNI side to the M×N optical switch 800 and the observation optical switch 3500. The signal from the N×M optical switch 900 is input to the combiner/brancher 3330 . The combiner/brancher 3330 outputs the signal input from the N×M optical switch 900 to the user device 100 connected to the UNI side and the observation optical switch 3500.
 観測用光スイッチ3500には例えば時分割で合分岐器3230、合分岐器3330から信号が入力される。観測用光スイッチ3500は、遮断制御部3400に、合分岐器3230、合分岐器3330から入力された信号を出力する。上述したように時分割で信号が入力される場合には、遮断制御部3400は、信号が入力された時間によって、その信号がいずれの合分岐器3230、合分岐器3330から入力された信号かを判定可能である。 Signals are input to the observation optical switch 3500 from the combiner/brancher 3230 and the combiner/brancher 3330 in a time-division manner, for example. The observation optical switch 3500 outputs the signals input from the combiner/brancher 3230 and the combiner/brancher 3330 to the cutoff control section 3400. When a signal is input in a time-division manner as described above, the cutoff control unit 3400 determines which combiner/brancher 3230 or combiner/brancher 3330 the signal was input from, depending on the time when the signal was input. can be determined.
 遮断制御部3400は、APNコントローラ10から、ユーザ端末100に割り当てられた波長を取得する。遮断制御部3400は、SA3410を備える。遮断制御部3400は、SA3410によって観測された波長が、APNコントローラ10から取得された波長と異なる場合に、ユーザ端末100との通信を遮断する。遮断制御部3400は、波長が異なると判断された信号をM×N光スイッチ800またはN×M光スイッチ900によって遮断させる。
なお、遮断は、M×N光スイッチ800またはN×M光スイッチ900の代わりに、ユーザ装置からNNI側までの経路又はNNI側からユーザ装置までの経路に、遮断用の機能部を別途備え、M×N光スイッチ800またはN×M光スイッチ900の代わりに3400からの遮断指示を受けて、M×N光スイッチ800またはN×M光スイッチ900のいずれかの代わりに遮断してもよい。これは以降の実施形態でも同様である。
The cutoff control unit 3400 acquires the wavelength assigned to the user terminal 100 from the APN controller 10. The cutoff control unit 3400 includes an SA 3410. The cutoff control unit 3400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 3410 is different from the wavelength acquired from the APN controller 10. The cutoff control unit 3400 causes the M×N optical switch 800 or the N×M optical switch 900 to cut off signals determined to have different wavelengths.
Note that, instead of the M×N optical switch 800 or the N×M optical switch 900, the disconnection can be performed by separately providing a function unit for disconnection on the path from the user device to the NNI side or from the NNI side to the user device. In place of the M×N optical switch 800 or the N×M optical switch 900, a cutoff instruction may be received from the switch 3400, and the cutoff may be performed in place of either the M×N optical switch 800 or the N×M optical switch 900. This also applies to subsequent embodiments.
 M×N光スイッチ800は、合分岐器3230から入力されたUNI側からM方路の信号が入力される。M×N光スイッチ800は、UNI側から入力された信号を入力ポートに応じていずれかのAWG810のいずれかのポートに出力する、又は遮断制御部3400から指示されたポートの信号を遮断する。AWG810は、M×N光スイッチ800から入力された信号を入力ポートと波長の組合せに応じて多重し、NNI側にそれぞれ出力する。 The M×N optical switch 800 receives the M route signal from the UNI side input from the combiner/brancher 3230. The M×N optical switch 800 outputs a signal input from the UNI side to any port of any AWG 810 depending on the input port, or shuts off the signal of the port instructed by the cutoff control unit 3400. The AWG 810 multiplexes the signals input from the M×N optical switch 800 according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the NNI side.
 AWG910は、NNI側からそれぞれ入力された信号を入力ポートと波長の組合せに応じてN×M光スイッチ900のNポートのいずれかに出力する。N×M光スイッチ900は、AWG910から入力された信号を入力ポートに応じてM個の合分岐器3330のいずれかに出力、又は遮断制御部3400から指示されたポートの信号を遮断する。 The AWG 910 outputs each signal input from the NNI side to one of the N ports of the N×M optical switch 900 depending on the combination of input port and wavelength. The N×M optical switch 900 outputs the signal input from the AWG 910 to one of the M combiners/branchers 3330 depending on the input port, or cuts off the signal of the port instructed by the cutoff control unit 3400.
 このように、ユーザ端末100から入力された信号の波長、またはユーザ端末100に出力される信号の波長を観測することで、不適切な波長の信号を遮断することができる。なお、1つの合分岐器3230対して1つのSAを設け、また1つの合分岐器3330に1つのSAを設けて、各々のSAが対応する合分岐器3230または合分岐器3330から入力された信号の波長を観測してもよい。この場合、観測用光スイッチ3500と、遮断制御部3400内のSA410は不要となる。また、遮断制御部3400は、各SAで観測された波長にもとづいて不適切な波長か否かを判定し、判定結果に応じてM×N光スイッチ800、またはN×M光スイッチ900に信号の遮断を指示する。なお、AWG810、AWG910は、波長毎に分波、または複数波長を多重できるものであれば、AWG以外であってもよい。 In this way, by observing the wavelength of the signal input from the user terminal 100 or the wavelength of the signal output to the user terminal 100, it is possible to block signals with inappropriate wavelengths. Note that one SA is provided for one combiner/brancher 3230, and one SA is provided for one combiner/brancher 3330, so that each SA is input from the corresponding combiner/ brancher 3230 or 3330. The wavelength of the signal may also be observed. In this case, the observation optical switch 3500 and the SA 410 in the cutoff control section 3400 become unnecessary. In addition, the cutoff control unit 3400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and sends a signal to the M×N optical switch 800 or the N×M optical switch 900 according to the determination result. Instruct to shut off. Note that the AWG 810 and AWG 910 may be other than AWG as long as they can separate wavelengths or multiplex multiple wavelengths.
 第4実施形態において、M×N光スイッチ800およびN×M光スイッチ900は光振分部の一例である。M×N光スイッチ800、N×M光スイッチ900は、遮断部の一例である。合分岐器3230および合分岐器3330は、分岐部の一例である。遮断制御部3400は、観測部の一例である。観測用光スイッチ3500は、他の光振分部の一例である。 In the fourth embodiment, the M×N optical switch 800 and the N×M optical switch 900 are examples of a light distribution unit. The M×N optical switch 800 and the N×M optical switch 900 are examples of the cutoff section. The combiner/brancher 3230 and the combiner/brancher 3330 are examples of branching parts. The cutoff control unit 3400 is an example of an observation unit. The observation optical switch 3500 is an example of another light distribution section.
 (第5実施形態)
 図7は、第5実施形態に係るPh-GW30-5の構成例を示す図である。第5実施形態は、第1実施形態の変形例であり、波長フィルタを設けた点が主な変更点である。Ph-GW30-5は、2つのMCS1200、1300、遮断制御部4400、観測用光スイッチ4500、M個の合分岐器4230、M個の合分岐器4330、フィルタ用光スイッチ960、970、990、および波長フィルタ950、980を含む。
(Fifth embodiment)
FIG. 7 is a diagram showing a configuration example of the Ph-GW 30-5 according to the fifth embodiment. The fifth embodiment is a modification of the first embodiment, and the main change is that a wavelength filter is provided. The Ph-GW 30-5 includes two MCSs 1200 and 1300, a cutoff control unit 4400, an observation optical switch 4500, M combiners/branchers 4230, M combiners/branches 4330, filter optical switches 960, 970, 990, and wavelength filters 950 and 980.
 以降の実施形態では、波長フィルタは、上り方向、下り方向にそれぞれ1つずつで例示するが、複数であってもよい。複数の場合、WSS、合分岐器、光スイッチに追加するポート数は、その数に応じて、大きくする。 In the following embodiments, one wavelength filter is illustrated in each of the upstream and downstream directions, but there may be a plurality of wavelength filters. In the case of multiple ports, the number of ports added to the WSS, combiner/brancher, and optical switch is increased according to the number.
 合分岐器4230は、UNI側からの信号が入力される。合分岐器4230は、UNI側から入力された信号をMCS1200および観測用光スイッチ4500に出力する。合分岐器4330は、MCS1300からの信号が入力される。合分岐器4330は、MCS1300から入力された信号をUNI側に接続されたユーザ装置100、および観測用光スイッチ4500に出力する。 The signal from the UNI side is input to the combiner/brancher 4230. The combiner/brancher 4230 outputs the signal input from the UNI side to the MCS 1200 and the observation optical switch 4500. The signal from the MCS 1300 is input to the combiner/brancher 4330. The combiner/brancher 4330 outputs the signal input from the MCS 1300 to the user equipment 100 connected to the UNI side and the observation optical switch 4500.
 観測用光スイッチ4500には例えば時分割で合分岐器4230、合分岐器4330から信号が入力される。観測用光スイッチ4500は、遮断制御部4400に、合分岐器4230、合分岐器4330から入力された信号を出力する。上述したように時分割で信号が入力される場合には、遮断制御部4400は、信号が入力された時間によって、その信号がいずれの合分岐器4230、合分岐器4330から入力された信号かを判定可能である。 Signals are input to the observation optical switch 4500 from the combiner/brancher 4230 and the combiner/brancher 4330 in a time-division manner, for example. The observation optical switch 4500 outputs the signals input from the combiner/brancher 4230 and the combiner/brancher 4330 to the cutoff control section 4400. When a signal is input in a time-division manner as described above, the cutoff control unit 4400 determines which combiner/brancher 4230 or combiner/brancher 4330 the signal was input from, depending on the time when the signal was input. can be determined.
 遮断制御部4400は、APNコントローラ10から、ユーザ端末100に割り当てられた波長を取得する。遮断制御部4400は、SA4410を備える。遮断制御部4400は、SA4410によって観測された波長が、APNコントローラ10から取得された波長と異なる場合に、遮断制御部4400は、波長が異なると判断された信号を波長フィルタ950、波長フィルタ980に入力する。波長フィルタ950、波長フィルタ980は、波長可変フィルタであり、設定した波長のみ透過するように波長が設定される。波長フィルタ950を通過した信号は、波長が異なるとされた信号を波長が異ならないとされた信号に濾過された後、フィルタ用光スイッチ960に出力される。波長フィルタ980を通過した信号は、フィルタ用光スイッチ970に出力される。UNI側からNNI側へのフィルタ用光スイッチ960の出力は、出力されるべき(M+1)×1合分岐器1210に出力され、NNI側からUNI側へのフィルタ用光スイッチ970の出力は出力されるべき(N+1)×1光スイッチ1320に入力される。なお、図では(N+1)×1光スイッチ1320に入力しているが、(N+1)×1光スイッチ1320に入力する代わりにN×1光スイッチ1320がそれぞれ出力する合分岐器4330を1×2合分岐器から2×2合分岐器に変更し、入力してもよい。この場合、1320のスイッチ規模が(N+1)×1からN×1に小さくなる。これは以降の実施例であっても同様である。 The cutoff control unit 4400 obtains the wavelength assigned to the user terminal 100 from the APN controller 10. The cutoff control unit 4400 includes an SA4410. If the wavelength observed by the SA 4410 is different from the wavelength acquired from the APN controller 10, the cutoff control unit 4400 transmits the signals determined to have different wavelengths to the wavelength filter 950 and the wavelength filter 980. input. The wavelength filter 950 and the wavelength filter 980 are variable wavelength filters, and the wavelengths are set so that only the set wavelengths are transmitted. The signals that have passed through the wavelength filter 950 are outputted to the filter optical switch 960 after filtering the signals that are considered to have different wavelengths into the signals that are not considered to have different wavelengths. The signal that has passed through the wavelength filter 980 is output to the filter optical switch 970. The output of the filter optical switch 960 from the UNI side to the NNI side is output to the (M+1)×1 combiner/brancher 1210, and the output of the filter optical switch 970 from the NNI side to the UNI side is not output. It is input to the power(N+1)×1 optical switch 1320. In the figure, the input is input to the (N+1)×1 optical switch 1320, but instead of inputting to the (N+1)×1 optical switch 1320, the multiplexer/brancher 4330 that each of the N×1 optical switches 1320 outputs is input to the (N+1)×1 optical switch 1320. You may change the combiner/brancher to a 2×2 combiner/brancher and input it. In this case, the scale of the 1320 switches is reduced from (N+1)×1 to N×1. This also applies to subsequent embodiments.
 MCS1200は、M個の(N+1)×1光スイッチ1220、N個の(M+1)×1合分岐器1210、を備える。1×(N+1)光スイッチ1220は、合分岐器4230から入力されたUNI側からそれぞれ1方路の信号が入力される。1×(N+1)光スイッチ1220は、UNI側から入力された信号を(M+1)×1合分岐器1210のいずれかに、また波長フィルタ950に信号を出力する。波長フィルタ950は、遮断制御部4400から指示された波長を遮断する。波長フィルタ950を通過した信号は、フィルタ用光スイッチ960に出力される。フィルタ用光スイッチ960は、波長フィルタ950から出力された信号を(M+1)×1合分岐器1210に出力する。(M+1)×1合分岐器1210は、1×N光スイッチ1220から入力された信号とフィルタ用光スイッチ960から入力された信号を多重し、NNI側のそれぞれ1方路に出力する。 The MCS 1200 includes M (N+1)×1 optical switches 1220 and N (M+1)×1 combiners/branchers 1210. Each of the 1×(N+1) optical switches 1220 receives one route of signals from the UNI side input from the combiner/brancher 4230. The 1×(N+1) optical switch 1220 outputs the signal input from the UNI side to either the (M+1)×1 combiner/brancher 1210 and the wavelength filter 950. The wavelength filter 950 blocks the wavelength instructed by the blocking control section 4400. The signal that has passed through the wavelength filter 950 is output to a filter optical switch 960. The filter optical switch 960 outputs the signal output from the wavelength filter 950 to the (M+1)×1 combiner/brancher 1210. The (M+1)×1 combiner/brancher 1210 multiplexes the signal input from the 1×N optical switch 1220 and the signal input from the filter optical switch 960, and outputs the multiplexed signal to one path on the NNI side.
 MCS1300は、N個の1×(M+1)合分岐器1310、およびM個の(N+1)×1光スイッチ1320を備える。1×(M+1)合分岐器1310は、NNI側からそれぞれ1方路の信号が入力される。1×(M+1)合分岐器1310は、NNI側から入力された信号を分岐し、(N+1)×1光スイッチ1320とフィルタ用光スイッチ990に出力する。フィルタ用光スイッチ990は、NNI側から入力された信号を、波長フィルタ980に出力する。波長フィルタ980は、遮断制御部4400から指示された波長を遮断する。波長フィルタ980を通過した信号は、フィルタ用光スイッチ970に出力される。(N+1)×1光スイッチ1320は、1×(M+1)合分岐器1310からの信号を合分岐器4330に出力する。 The MCS 1300 includes N 1×(M+1) combiners/branchers 1310 and M (N+1)×1 optical switches 1320. Each of the 1×(M+1) combiner/branchers 1310 receives one route of signals from the NNI side. The 1×(M+1) combiner/brancher 1310 branches the signal input from the NNI side and outputs it to the (N+1)×1 optical switch 1320 and the filter optical switch 990. The filter optical switch 990 outputs the signal input from the NNI side to the wavelength filter 980. The wavelength filter 980 blocks the wavelength instructed by the blocking control unit 4400. The signal that has passed through the wavelength filter 980 is output to the filter optical switch 970. (N+1)×1 optical switch 1320 outputs the signal from 1×(M+1) combiner/brancher 1310 to combiner/brancher 4330.
 このように、ユーザ端末100から入力された信号の波長、またはユーザ端末100に出力される信号の波長を観測することで、不適切な波長の信号を遮断することができる。なお、1つの合分岐器4230対して1つのSAを設け、また1つの合分岐器4330に1つのSAを設けて、各々のSAが対応する合分岐器4230または合分岐器4330から入力された信号の波長を観測してもよい。この場合、観測用光スイッチ4500と、遮断制御部4400内のSA4410は不要となる。また、遮断制御部4400は、各SAで観測された波長にもとづいて不適切な波長か否かを判定し、判定結果に応じて波長フィルタ950、または波長フィルタ980に信号の遮断を指示する。なお、波長フィルタ950の前段に、1×(N+1)光スイッチ1220から出力された信号を選択する光スイッチを、設けてもよい。 In this way, by observing the wavelength of the signal input from the user terminal 100 or the wavelength of the signal output to the user terminal 100, it is possible to block signals with inappropriate wavelengths. Note that one SA is provided for one combiner/brancher 4230, and one SA is provided for one combiner/brancher 4330, so that each SA is input from the corresponding combiner/ brancher 4230 or 4330. The wavelength of the signal may also be observed. In this case, the observation optical switch 4500 and the SA 4410 in the cutoff control section 4400 are unnecessary. Further, the cutoff control unit 4400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and instructs the wavelength filter 950 or the wavelength filter 980 to cut off the signal depending on the determination result. Note that an optical switch that selects the signal output from the 1×(N+1) optical switch 1220 may be provided before the wavelength filter 950.
 第5実施形態において、MCS1200、1300は光振分部の一例である。(N+1)×1光スイッチ1220および1×(M+1)合分岐器1310は、遮断部の一例である。合分岐器4230および合分岐器4330は、分岐部の一例である。遮断制御部4400は、観測部の一例である。観測用光スイッチ4500は、他の光振分部の一例である。
 (第6実施形態)
 図8は、第6実施形態に係るPh-GW30-6の構成例を示す図である。第6実施形態は、第2実施形態の変形例であり、波長フィルタを設けた点が主な変更点である。Ph-GW30-6は、M×2 WSS2600、2×N合分岐器1610、N×2 WSS1710、2×M WSS2720、遮断制御部5400、観測用光スイッチ4500、M個の合分岐器5230、M個の合分岐器5330、および波長フィルタ1950、1980を含む。
In the fifth embodiment, the MCSs 1200 and 1300 are examples of light distribution units. The (N+1)×1 optical switch 1220 and the 1×(M+1) combiner/brancher 1310 are examples of cutoff units. Combiner/brancher 4230 and combiner/brancher 4330 are examples of branching parts. The cutoff control unit 4400 is an example of an observation unit. The observation optical switch 4500 is an example of another light distribution section.
(Sixth embodiment)
FIG. 8 is a diagram showing a configuration example of the Ph-GW 30-6 according to the sixth embodiment. The sixth embodiment is a modification of the second embodiment, and the main change is that a wavelength filter is provided. Ph-GW30-6 includes M×2 WSS2600, 2×N combiner/brancher 1610, N×2 WSS1710, 2×M WSS2720, cutoff control unit 5400, observation optical switch 4500, M combiner/branchers 5230, M multiplexer/brancher 5330 and wavelength filters 1950 and 1980.
 合分岐器5230は、UNI側からの信号が入力される。合分岐器5230は、UNI側から入力された信号をM×2 WSS2600および観測用光スイッチ4500に出力する。合分岐器5330は、2×M WSS2720からの信号が入力される。合分岐器5330は、2×M WSS2720から入力された信号をUNI側に接続されたユーザ装置100、および観測用光スイッチ4500に出力する。 The signal from the UNI side is input to the combiner/brancher 5230. The combiner/brancher 5230 outputs the signal input from the UNI side to the M×2 WSS 2600 and the observation optical switch 4500. The signal from the 2×M WSS 2720 is input to the combiner/brancher 5330. The combiner/brancher 5330 outputs the signal input from the 2×M WSS 2720 to the user equipment 100 connected to the UNI side and the observation optical switch 4500.
 観測用光スイッチ4500には例えば時分割で合分岐器5230、合分岐器5330から信号が入力される。観測用光スイッチ4500は、遮断制御部5400に、合分岐器5230、合分岐器5330から入力された信号を出力する。上述したように時分割で信号が入力される場合には、遮断制御部5400は、信号が入力された時間によって、その信号がいずれの合分岐器5230、合分岐器5330から入力された信号かを判定可能である。 Signals are input to the observation optical switch 4500 from the combiner/brancher 5230 and the combiner/brancher 5330 in a time-division manner, for example. The observation optical switch 4500 outputs the signals input from the combiner/brancher 5230 and the combiner/brancher 5330 to the cutoff control section 5400. When a signal is input in a time-sharing manner as described above, the cutoff control unit 5400 determines from which combiner/brancher 5230 or combiner/brancher 5330 the signal was input, depending on the time at which the signal was input. can be determined.
 遮断制御部5400は、Ph-GW30からユーザ端末100に設定された波長を取得する。遮断制御部5400は、SA5410を備える。遮断制御部5400は、SA5410によって観測された波長が、設定された波長と異なる場合に、波長が異なると判断された波長成分を波長フィルタ1950、または波長フィルタ1980によって遮断させる。 The cutoff control unit 5400 acquires the wavelength set in the user terminal 100 from the Ph-GW 30. The cutoff control unit 5400 includes an SA5410. When the wavelength observed by the SA 5410 is different from the set wavelength, the cutoff control unit 5400 causes the wavelength filter 1950 or the wavelength filter 1980 to block the wavelength component determined to have a different wavelength.
 M×2 WSS2600は、合分岐器5230から入力されたUNI側からM方路の信号が入力される。M×2 WSS2600は、UNI側から入力された信号を入力ポートと波長の組合せに応じて多重し、2×N合分岐器1610と波長フィルタ1950に出力する。波長フィルタ1950は、遮断制御部5400から指示された波長を遮断する。波長フィルタ1950は2×N合分岐器1610に信号を出力する。2×N合分岐器1610は、M×2 WSS2600から入力された信号と波長フィルタ1950から入力された信号をN方路に分岐し、NNI側のN方路に出力する。 The M×2 WSS 2600 receives the M route signal from the UNI side input from the combiner/brancher 5230. The M×2 WSS 2600 multiplexes signals input from the UNI side according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the 2×N combiner/brancher 1610 and wavelength filter 1950. The wavelength filter 1950 blocks the wavelength instructed by the blocking control section 5400. Wavelength filter 1950 outputs a signal to 2×N combiner/brancher 1610. The 2×N combiner/brancher 1610 branches the signal input from the M×2 WSS 2600 and the signal input from the wavelength filter 1950 into N paths, and outputs them to the N paths on the NNI side.
 N×2 WSS1710は、NNI側からN方路の信号が入力される。N×2 WSS1710は、NNI側から入力された信号を多重して2×M WSS2720と波長フィルタ1980に出力する。波長フィルタ1980には、入力ポートと波長の組合せが不適合な信号のみを出力する。波長フィルタ1980は、遮断制御部5400から指示された波長を遮断する。波長フィルタ1980は2×M WSS2720に信号を出力する。2×M WSS2720は、N×2 WSS1710からの信号と波長フィルタ1980からの信号を波長に応じてM個の合分岐器5330に出力する。 The N×2 WSS 1710 receives N-way signals from the NNI side. The N×2 WSS 1710 multiplexes the signals input from the NNI side and outputs the multiplexed signals to the 2×M WSS 2720 and the wavelength filter 1980. The wavelength filter 1980 outputs only signals whose combinations of input ports and wavelengths are incompatible. The wavelength filter 1980 blocks the wavelength instructed by the blocking control unit 5400. The wavelength filter 1980 outputs a signal to the 2×M WSS 2720. The 2×M WSS 2720 outputs the signal from the N×2 WSS 1710 and the signal from the wavelength filter 1980 to M multiplexers/branchers 5330 according to wavelengths.
 このように、ユーザ端末100から入力された信号の波長、またはユーザ端末100に出力される信号の波長を観測することで、不適切な波長の信号を遮断することができる。なお、1つの合分岐器5230に対して1つのSAを設け、また1つの合分岐器5330に1つのSAを設けて、各々のSAが対応する合分岐器5230または合分岐器5330から入力された信号の波長を観測してもよい。この場合、観測用光スイッチ4500と、遮断制御部5400内のSA410は不要となる。また、遮断制御部5400は、各SAで観測された波長にもとづいて不適切な波長か否かを判定し、判定結果に応じて波長フィルタ1950、または波長フィルタ1980に不適切な波長の波長成分の遮断を指示する。 In this way, by observing the wavelength of the signal input from the user terminal 100 or the wavelength of the signal output to the user terminal 100, it is possible to block signals with inappropriate wavelengths. Note that one SA is provided for one combiner/brancher 5230, and one SA is provided for one combiner/brancher 5330, so that each SA is input from the corresponding combiner/ brancher 5230 or 5330. The wavelength of the signal may also be observed. In this case, the observation optical switch 4500 and the SA 410 in the cutoff control unit 5400 are not required. In addition, the cutoff control unit 5400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and depending on the determination result, the wavelength component of the inappropriate wavelength is applied to the wavelength filter 1950 or the wavelength filter 1980. Instruct to shut off.
 第6実施形態において、M×2 WSS2600と2×N合分岐器の組合せ、N×2 WSS1710と2×M WSS2720の組合せは光振分部の一例である。波長フィルタ1950、波長フィルタ1980は、遮断部の一例である。合分岐器5330は、分岐部の一例である。遮断制御部5400は、観測部の一例である。観測用光スイッチ4500は、他の光振分部の一例である。 In the sixth embodiment, the combination of M×2 WSS2600 and 2×N combiner/brancher and the combination of N×2 WSS1710 and 2×M WSS2720 are examples of the optical distribution section. The wavelength filter 1950 and the wavelength filter 1980 are examples of a blocking section. The combiner/brancher 5330 is an example of a branch section. The cutoff control unit 5400 is an example of an observation unit. The observation optical switch 4500 is an example of another light distribution section.
 (第7実施形態)
 図9は、第7実施形態に係るPh-GW30-7の構成例を示す図である。第7実施形態は、第3実施形態の変形例であり、波長フィルタを設けた点が主な変更点である。Ph-GW30-7は、(M+1)×(N+1)WSS3600、(N+1)×(M+1)WSS3720、遮断制御部6400、観測用光スイッチ5500、M個の合分岐器6230、M個の合分岐器6330、および波長フィルタ2950、2980を含む。
(Seventh embodiment)
FIG. 9 is a diagram showing a configuration example of the Ph-GW 30-7 according to the seventh embodiment. The seventh embodiment is a modification of the third embodiment, and the main change is that a wavelength filter is provided. Ph-GW30-7 includes (M+1)×(N+1)WSS3600, (N+1)×(M+1)WSS3720, cutoff control unit 6400, observation optical switch 5500, M combiners/branches 6230, M combiners/branches 6330 and wavelength filters 2950 and 2980.
 合分岐器6230は、UNI側からの信号が入力される。合分岐器6230は、UNI側から入力された信号を(M+1)×(N+1)WSS3600および観測用光スイッチ5500に出力する。合分岐器6330は、(N+1)×(M+1)WSS3720からの信号が入力される。合分岐器6330は、(N+1)×(M+1)WSS3720から入力された信号をUNI側に接続されたユーザ装置100、および観測用光スイッチ5500に出力する。 The signal from the UNI side is input to the combiner/brancher 6230. The combiner/brancher 6230 outputs the signal input from the UNI side to the (M+1)×(N+1) WSS 3600 and the observation optical switch 5500. The signal from the (N+1)×(M+1) WSS 3720 is input to the combiner/brancher 6330. The combiner/brancher 6330 outputs the signal input from the (N+1)×(M+1) WSS 3720 to the user equipment 100 connected to the UNI side and the observation optical switch 5500.
 観測用光スイッチ5500に例えば時分割で合分岐器6230、合分岐器6330から信号が入力される。観測用光スイッチ5500は、遮断制御部6400に、合分岐器6230、合分岐器6330から入力された信号を出力する。上述したように時分割で信号が入力される場合には、遮断制御部6400は、信号が入力された時間によって、その信号がいずれの合分岐器6230、合分岐器6330から入力された信号かを判定可能である。 Signals are input to the observation optical switch 5500 from the combiner/brancher 6230 and the combiner/brancher 6330 in a time-division manner, for example. The observation optical switch 5500 outputs the signals input from the combiner/brancher 6230 and the combiner/brancher 6330 to the cutoff control section 6400. When a signal is input in a time-sharing manner as described above, the cutoff control unit 6400 determines from which combiner/brancher 6230 or combiner/brancher 6330 the signal was input, depending on the time when the signal was input. can be determined.
 遮断制御部6400は、APNコントローラ10から、ユーザ端末100に割り当てられた波長を取得する。遮断制御部6400は、SA6410を備える。遮断制御部6400は、SA6410によって観測された波長が、APNコントローラ10から取得された波長と異なる場合に、ユーザ端末100との通信を遮断する。遮断制御部6400は、波長が異なると判断された波長の波長成分を波長フィルタ2950、または波長フィルタ2980によって遮断させる。 The cutoff control unit 6400 acquires the wavelength assigned to the user terminal 100 from the APN controller 10. The cutoff control section 6400 includes an SA6410. The cutoff control unit 6400 cuts off communication with the user terminal 100 when the wavelength observed by the SA 6410 is different from the wavelength acquired from the APN controller 10. The cutoff control unit 6400 causes the wavelength filter 2950 or the wavelength filter 2980 to block wavelength components of wavelengths determined to be different wavelengths.
 (M+1)×(N+1)WSS3600は、合分岐器6230から入力されたUNI側からM方路の信号と波長フィルタ2950から出力された信号が入力される。(M+1)×(N+1)WSS3600は、UNI側から入力された信号を入力ポートと波長の組合せに応じてNNI側のN方路と波長フィルタ2950のいずれかに出力する。波長フィルタ2950は、遮断制御部6400から指示された波長を遮断する。 The (M+1)×(N+1) WSS 3600 receives the M route signal from the UNI side input from the combiner/brancher 6230 and the signal output from the wavelength filter 2950. The (M+1)×(N+1) WSS 3600 outputs the signal input from the UNI side to either the N direction on the NNI side or the wavelength filter 2950 depending on the combination of input port and wavelength. The wavelength filter 2950 blocks the wavelength instructed by the blocking control unit 6400.
 (N+1)×(M+1)WSS3720は、NNI側からN方路の信号と波長フィルタ2980の信号が入力される。(N+1)×(M+1)WSS3720は、NNI側から入力された信号と波長フィルタ2980から入力された信号を入力ポートと波長の組合せに応じてM個の合分岐器6330と波長フィルタ2980に出力する。波長フィルタ2980は、遮断制御部6400から指示された波長を遮断する。 The (N+1)×(M+1) WSS 3720 receives the N-way signal and the wavelength filter 2980 signal from the NNI side. (N+1)×(M+1) WSS3720 outputs the signal input from the NNI side and the signal input from wavelength filter 2980 to M combiners/branchers 6330 and wavelength filters 2980 according to the combination of input ports and wavelengths. . The wavelength filter 2980 blocks the wavelength instructed by the blocking control section 6400.
 このように、ユーザ端末100から入力された信号の波長、またはユーザ端末100に出力される信号の波長を観測することで、不適切な波長の信号を遮断することができる。なお、1つの合分岐器6230対して1つのSAを設け、また1つの合分岐器6330に1つのSAを設けて、各々のSAが対応する合分岐器6230または合分岐器6330から入力された信号の波長を観測してもよい。この場合、観測用光スイッチ5500と、遮断制御部6400内のSA6410は不要となる。また、遮断制御部6400は、各SAで観測された波長にもとづいて不適切な波長か否かを判定し、判定結果に応じて波長フィルタ2950、または波長フィルタ2980に波長成分の遮断を指示する。 In this way, by observing the wavelength of the signal input from the user terminal 100 or the wavelength of the signal output to the user terminal 100, it is possible to block signals with inappropriate wavelengths. Note that one SA is provided for one combiner/brancher 6230, and one SA is provided for one combiner/brancher 6330, so that each SA is input from the corresponding combiner/ brancher 6230 or 6330. The wavelength of the signal may also be observed. In this case, the observation optical switch 5500 and the SA 6410 in the cutoff control section 6400 become unnecessary. Furthermore, the cutoff control unit 6400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and instructs the wavelength filter 2950 or the wavelength filter 2980 to cut off the wavelength component according to the determination result. .
 第7実施形態において、(M+1)×(N+1)WSS3600および(N+1)×(M+1)WSS3720は光振分部の一例である。波長フィルタ2950、波長フィルタ2980は、遮断部の一例である。合分岐器6230および合分岐器6330は、分岐部の一例である。遮断制御部6400は、観測部の一例である。観測用光スイッチ5500は、他の光振分部の一例である。 In the seventh embodiment, (M+1)×(N+1)WSS 3600 and (N+1)×(M+1)WSS 3720 are examples of the light distribution unit. The wavelength filter 2950 and the wavelength filter 2980 are examples of a blocking section. The combiner/brancher 6230 and the combiner/brancher 6330 are examples of branching parts. The cutoff control unit 6400 is an example of an observation unit. The observation optical switch 5500 is an example of another light distribution section.
 (第8実施形態)
 図10は、第8実施形態に係るPh-GW30-8の構成例を示す図である。第8実施形態は、第4実施形態の変形例であり、波長フィルタを設けた点が主な変更点である。Ph-GW30-8は、(M+1)×(N+1)光スイッチ1800、AWG1810、AWG1910、(N+1)×(M+1)光スイッチ1900、遮断制御部7400、観測用光スイッチ6500、M個の合分岐器7230、M個の合分岐器7330、および波長フィルタ3950、3980を含む。
(Eighth embodiment)
FIG. 10 is a diagram showing a configuration example of the Ph-GW 30-8 according to the eighth embodiment. The eighth embodiment is a modification of the fourth embodiment, and the main change is that a wavelength filter is provided. Ph-GW30-8 includes (M+1)×(N+1) optical switch 1800, AWG1810, AWG1910, (N+1)×(M+1) optical switch 1900, cutoff control unit 7400, observation optical switch 6500, and M number of combiners/branchers. 7230, M multiplexers/branchers 7330, and wavelength filters 3950, 3980.
 合分岐器7230は、UNI側からの信号が入力される。合分岐器7230は、UNI側から入力された信号を(M+1)×(N+1)光スイッチ1800および観測用光スイッチ6500に出力する。合分岐器7330は、(N+1)×(M+1)光スイッチ1900からの信号が入力される。合分岐器7330は、(N+1)×(M+1)光スイッチ1900から入力された信号をUNI側に接続されたユーザ装置100、および観測用光スイッチ6500に出力する。 The signal from the UNI side is input to the combiner/brancher 7230. The combiner/brancher 7230 outputs the signal input from the UNI side to the (M+1)×(N+1) optical switch 1800 and the observation optical switch 6500. The signal from the (N+1)×(M+1) optical switch 1900 is input to the combiner/brancher 7330. The combiner/brancher 7330 outputs the signal input from the (N+1)×(M+1) optical switch 1900 to the user equipment 100 connected to the UNI side and the observation optical switch 6500.
 観測用光スイッチ6500には例えば時分割で合分岐器7230、合分岐器7330から信号が入力される。観測用光スイッチ6500は、遮断制御部7400に、合分岐器7230、合分岐器7330から入力された信号を出力する。上述したように時分割で信号が入力される場合には、遮断制御部7400は、信号が入力された時間によって、その信号がいずれの合分岐器7230、合分岐器7330から入力された信号かを判定可能である。 Signals are input to the observation optical switch 6500 from the combiner/brancher 7230 and the combiner/brancher 7330 in a time-division manner, for example. The observation optical switch 6500 outputs the signals input from the combiner/brancher 7230 and the combiner/brancher 7330 to the cutoff control section 7400. When a signal is input in a time-sharing manner as described above, the cutoff control unit 7400 determines from which combiner/brancher 7230 or combiner/brancher 7330 the signal was input, depending on the time when the signal was input. can be determined.
 遮断制御部7400は、Ph-GW30からユーザ端末100に設定された波長を取得する。遮断制御部7400は、SA7410を備える。遮断制御部7400は、SA7410によって観測された波長が、APNコントローラ10から取得された波長と異なる場合に、波長が異なると判断された波長成分を波長フィルタ3950、または波長フィルタ3980によって遮断させる。 The cutoff control unit 7400 acquires the wavelength set in the user terminal 100 from the Ph-GW 30. The cutoff control section 7400 includes an SA7410. When the wavelength observed by the SA 7410 is different from the wavelength acquired from the APN controller 10, the blocking control unit 7400 causes the wavelength filter 3950 or the wavelength filter 3980 to block the wavelength component determined to have a different wavelength.
 M×N光スイッチ1800は、合分岐器7230から入力されたUNI側からM方路の信号と波長フィルタ3950から出力された信号が入力される。(M+1)×(N+1)光スイッチ1800は、UNI側から入力された信号を入力ポートに応じていずれかのAWG1810のいずれかのポートと波長フィルタ3950に出力する。AWG1810は、(M+1)×(N+1)光スイッチ1800から入力された信号を入力ポートと波長の組合せに応じて多重し、NNI側にそれぞれ出力する。波長フィルタ3950は、遮断制御部7400から指示された波長を遮断する。 The M×N optical switch 1800 receives the M-way signal from the UNI side input from the combiner/brancher 7230 and the signal output from the wavelength filter 3950. (M+1)×(N+1) optical switch 1800 outputs a signal input from the UNI side to any port of any AWG 1810 and wavelength filter 3950 depending on the input port. The AWG 1810 multiplexes signals input from the (M+1)×(N+1) optical switch 1800 according to the combination of input ports and wavelengths, and outputs the multiplexed signals to the NNI side. The wavelength filter 3950 blocks the wavelength instructed by the blocking control section 7400.
 AWG1910は、NNI側からそれぞれ入力された信号を入力ポートと波長の組合せに応じて(N+1)×(M+1)光スイッチ1900のNポートのいずれかに出力する。(N+1)×(M+1)光スイッチ1900は、AWG1910から入力された信号を入力ポートに応じてM個の合分岐器7330と波長フィルタ3980のいずれかに出力する。波長フィルタ3980は、遮断制御部7400から指示された波長を遮断する。波長フィルタ3980は、(N+1)×(M+1)光スイッチ1900に信号を出力する。 The AWG 1910 outputs each signal input from the NNI side to one of the N ports of the (N+1)×(M+1) optical switch 1900 depending on the combination of input port and wavelength. The (N+1)×(M+1) optical switch 1900 outputs the signal input from the AWG 1910 to one of M combiners/branchers 7330 and wavelength filters 3980 depending on the input port. The wavelength filter 3980 blocks the wavelength instructed by the blocking control section 7400. Wavelength filter 3980 outputs a signal to (N+1)×(M+1) optical switch 1900.
 このように、ユーザ端末100から入力された信号の波長、またはユーザ端末100に出力される信号の波長を観測することで、不適切な波長の信号を遮断することができる。なお、1つの合分岐器7230対して1つのSAを設け、また1つの合分岐器7330に1つのSAを設けて、各々のSAが対応する合分岐器7230または合分岐器7330から入力された信号の波長を観測してもよい。この場合、観測用光スイッチ6500と、遮断制御部7400内のSA410は不要となる。また、遮断制御部7400は、各SAで観測された波長にもとづいて不適切な波長か否かを判定し、判定結果に応じて(M+1)×(N+1)光スイッチ1800、または(N+1)×(M+1)光スイッチ1900に不適切な波長と判断された波長成分の遮断を指示する。 In this way, by observing the wavelength of the signal input from the user terminal 100 or the wavelength of the signal output to the user terminal 100, it is possible to block signals with inappropriate wavelengths. Note that one SA is provided for one combiner/brancher 7230, and one SA is provided for one combiner/brancher 7330, so that each SA is input from the corresponding combiner/brancher 7230 or combiner/brancher 7330. The wavelength of the signal may also be observed. In this case, the observation optical switch 6500 and the SA 410 in the cutoff control section 7400 become unnecessary. In addition, the cutoff control unit 7400 determines whether the wavelength is inappropriate based on the wavelength observed in each SA, and depending on the determination result, the (M+1)×(N+1) optical switch 1800 or (N+1)× (M+1) Instructs the optical switch 1900 to block the wavelength component determined to be an inappropriate wavelength.
 第8実施形態において、(M+1)×(N+1)光スイッチ1800および(N+1)×(M+1)光スイッチ1900は光振分部の一例である。波長フィルタ3950、3980は、遮断部の一例である。合分岐器7230および合分岐器7330は、分岐部の一例である。遮断制御部7400は、観測部の一例である。観測用光スイッチ6500は、他の光振分部の一例である。 In the eighth embodiment, the (M+1)×(N+1) optical switch 1800 and the (N+1)×(M+1) optical switch 1900 are examples of the optical distribution unit. The wavelength filters 3950 and 3980 are examples of blocking sections. The combiner/brancher 7230 and the combiner/brancher 7330 are examples of branch parts. The cutoff control unit 7400 is an example of an observation unit. The observation optical switch 6500 is an example of another light distribution section.
 図11は、上述した各実施形態において共通する処理の流れを示すフローチャートである。図11において、遮断制御部は、ユーザ端末に割り当てられた波長を取得する(ステップS101)。次いでSAは、ユーザ端末から光スイッチに出力される信号の波長、または光スイッチからユーザ端末に出力される信号の波長を観測する(ステップS102)。波長制御部は、観測された波長が、取得された波長と異なるか否かを判定する(ステップS103)。観測された波長が、取得された波長と異なる場合に(ステップS103:YES)、遮断制御部は、ユーザ端末との通信を遮断するか、観測された波長の波長成分を遮断する(ステップS104)。観測された波長が、取得された波長と異ならない場合に(ステップS103:NO)、遮断制御部は、そのまま処理を終了する。 FIG. 11 is a flowchart showing the flow of processing common to each of the embodiments described above. In FIG. 11, the cutoff control unit acquires the wavelength assigned to the user terminal (step S101). Next, the SA observes the wavelength of the signal output from the user terminal to the optical switch or the wavelength of the signal output from the optical switch to the user terminal (step S102). The wavelength control unit determines whether the observed wavelength is different from the acquired wavelength (step S103). If the observed wavelength is different from the acquired wavelength (step S103: YES), the blocking control unit blocks communication with the user terminal or blocks the wavelength component of the observed wavelength (step S104). . If the observed wavelength is not different from the acquired wavelength (step S103: NO), the cutoff control unit ends the process.
 上述した実施形態において、波長成分の強度(光強度)を検出する構成について、図3を用いて説明したが、光強度を検出する他の構成例について図面を用いて説明する。以下に説明する構成では、分離部と検出部とを含む構成、または分離部と検出部とに関する構成が示される。分離部は、分離部は、入力された光信号、所望信号と残余信号とを波長分離するための分離処理を実行する。分離処理の実行により、所望分離信号と残余分離信号とが波長分離される。
 ここで、所望分離信号は所定の波長成分の信号であり、残余分離信号は、検出部で検出して遮断されるべき、所定以外の波長成分の信号であり、第二側から信号光が入力し、第一側は所望分離信号が出力され、検出部で残余分離信号が終端されるとした。
In the embodiment described above, the configuration for detecting the intensity of the wavelength component (light intensity) has been described using FIG. 3, but another example of the configuration for detecting the light intensity will be described using the drawings. In the configuration described below, a configuration including a separation section and a detection section, or a configuration related to a separation section and a detection section is shown. The separation unit performs separation processing for wavelength-separating the input optical signal, the desired signal, and the residual signal. By executing the separation process, the desired separation signal and the residual separation signal are separated in wavelength.
Here, the desired separation signal is a signal with a predetermined wavelength component, and the residual separation signal is a signal with a wavelength component other than the predetermined wavelength component that should be detected and blocked by the detection unit, and the signal light is input from the second side. However, on the first side, the desired separation signal is output, and the remaining separation signal is terminated at the detection section.
 検出部は、分離された残余分離信号の光強度を検出する。検出部は、残余分離信号を所定の光強度以上で検出すると、入力された光信号を遮断又はフィルタする制御信号を出力する。この場合、検出部は、残余分離信号を所定の光強度以上で検出したことを示す情報(ログ)を記録してもよい。検出部は、無反射となるように構成されてもよい。すなわち、検出部は、分離部からの入力を反射しないように構成されてもよい。このようなログは、残余分離信号の検出時間と共に記録されてもよい。このようにログが記録されることによって、例えば問合せが生じた際に、その問い合わせへの対応を適切に行うことが可能となる。また、このようなログは、検出された強度と共に記録されてもよいし、検出された時間及び強度と共に記録されてもよい。 The detection unit detects the optical intensity of the separated residual separation signal. When the detection unit detects the residual separation signal at a predetermined optical intensity or higher, it outputs a control signal for blocking or filtering the input optical signal. In this case, the detection unit may record information (log) indicating that the residual separation signal was detected at a predetermined light intensity or higher. The detection unit may be configured to be non-reflective. That is, the detection section may be configured not to reflect the input from the separation section. Such a log may be recorded along with the detection time of the residual separation signal. By recording a log in this manner, for example, when an inquiry occurs, it becomes possible to appropriately respond to the inquiry. Further, such a log may be recorded together with the detected intensity, or may be recorded together with the detected time and intensity.
 図12は、FBG(Fiber Bragg Grating)を用いて分離部21を構成した構成例を示す図である。FBGは、光ファイバに回折格子を刻むことで構成される。FBGに光が入射すると、回折格子の間隔に応じた特定の波長成分の光のみが反射し、他の波長成分の光は通過する。このような特性を利用することで、FBGを用いた分離部21を構成することができる。 FIG. 12 is a diagram showing a configuration example in which the separation section 21 is configured using FBG (Fiber Bragg Grating). FBGs are constructed by carving a diffraction grating into an optical fiber. When light enters the FBG, only light with a specific wavelength component depending on the spacing between the diffraction gratings is reflected, and light with other wavelength components passes through. By utilizing such characteristics, it is possible to configure the separation section 21 using FBG.
 分離部21は、サーキュレータ211及びFBG212を備える。サーキュレータ211は、第二側から入力される光信号をFBG212に入力する。サーキュレータ211は、FBG212から入力される光信号を第一側に出力する。サーキュレータ211は、例えば合分岐器を用いて構成されてもよい。サーキュレータ211が2×2合分岐器を用いて構成された場合、片側の二つのポートが入力ポートと出力ポートとして機能し、反対側の二つのポートのうち一つがFBG212に接続され、もう一つのポートが無反射終端で構成される。サーキュレータ211は、開放端がないように2×1合分岐器を用いて構成されてもよい。この場合、片側の二つのポートが入力ポートと出力ポートとして機能し、反対側の一つのポートがFBG212に接続される。FBG212は、所望分離信号を反射し、残余分離信号を透過する。 The separation unit 21 includes a circulator 211 and an FBG 212. The circulator 211 inputs the optical signal input from the second side to the FBG 212 . The circulator 211 outputs the optical signal input from the FBG 212 to the first side. The circulator 211 may be configured using a combiner/brancher, for example. When the circulator 211 is configured using a 2×2 combiner/brancher, two ports on one side function as an input port and an output port, one of the two ports on the opposite side is connected to the FBG 212, and the other port functions as an input port and an output port. The port is configured with reflection-free termination. The circulator 211 may be constructed using a 2×1 combiner and splitter so that there are no open ends. In this case, two ports on one side function as an input port and an output port, and one port on the opposite side is connected to the FBG 212. The FBG 212 reflects the desired separation signal and transmits the remaining separation signal.
 図12において、FBG212が分波器に対応する。このFBGフィルタ212に印加する張力や温度によって、検出する波長が調整される。 In FIG. 12, the FBG 212 corresponds to the duplexer. The wavelength to be detected is adjusted by the tension and temperature applied to this FBG filter 212.
 図13は、TFFを用いて分離部21を構成した構成例を示す図である。分離部21は、サーキュレータ211及びTFF214を備える。サーキュレータ211は、第二側から入力される光信号をTFF214に入力する。サーキュレータ211は、TFF214から入力される光信号を検出部22に入力する。 FIG. 13 is a diagram showing a configuration example in which the separation section 21 is configured using TFF. The separation unit 21 includes a circulator 211 and a TFF 214. The circulator 211 inputs the optical signal input from the second side to the TFF 214 . The circulator 211 inputs the optical signal input from the TFF 214 to the detection unit 22 .
 分離部21内の素子が、例えばFBG212のように所望分離信号を反射する構成である場合と、例えばTFF214のように所望分離信号を透過する構成である場合とで、サーキュレータ211の光の進行方向が逆回転となる。 The direction in which light travels through the circulator 211 differs depending on whether the elements in the separation section 21 are configured to reflect the desired separation signal, such as the FBG 212, or are configured to transmit the desired separation signal, such as the TFF 214. rotates in the opposite direction.
 TFF214は、所望分離信号を透過し、残余分離信号の光信号を反射する。TFF214によって反射された残余分離信号は、サーキュレータ211を経由して検出部22に入力される。 The TFF 214 transmits the desired separation signal and reflects the remaining separation signal optical signal. The residual separation signal reflected by the TFF 214 is input to the detection unit 22 via the circulator 211.
 TFF214が分波器に対応する。サーキュレータ211からTFF214への入射角か、TFF214の膜厚を変えることで、検出する波長が調整される。 The TFF 214 corresponds to a duplexer. The wavelength to be detected is adjusted by changing the incident angle from the circulator 211 to the TFF 214 or the film thickness of the TFF 214.
 図14は、AWGを用いて分離部21を構成した構成例を示す図である。分離部21は、AWG215を備える。AWG215は、第二側から入力される光信号を波長に応じたポートから出力する。AWG215の複数の出力ポートのうち、所望分離信号が出力される出力ポートは、第一側に接続される。残りの全ての出力ポートは検出部22に接続されることが望ましい。残余分離信号の検出漏れが生じてしまうことを防ぐためである。検出部22への入力はAWG等の合分波器で多重してから入力してもよい。分離部21と検出部22との間には、アイソレータが設けられてもよい。アイソレータは、例えばAWG215と合分波器との間に設けられてもよい。この場合、アイソレータの数が増えるためコストは高くなるが、より高い効果が得られる。 FIG. 14 is a diagram showing a configuration example in which the separation section 21 is configured using an AWG. The separation section 21 includes an AWG 215. The AWG 215 outputs the optical signal input from the second side from a port according to the wavelength. Among the plurality of output ports of the AWG 215, the output port to which the desired separation signal is output is connected to the first side. It is desirable that all remaining output ports be connected to the detection section 22. This is to prevent failure to detect the residual separation signal. The input to the detection unit 22 may be multiplexed using a multiplexer/demultiplexer such as an AWG. An isolator may be provided between the separation section 21 and the detection section 22. The isolator may be provided, for example, between the AWG 215 and the multiplexer/demultiplexer. In this case, the cost increases because the number of isolators increases, but a higher effect can be obtained.
 図14では、単入力のAWGを用いているが、複入力のAWGを用いてもよい。その場合、反射の影響を軽減するために、使用しないポートは無反射終端をするか、アイソレータを接続する。 In FIG. 14, a single-input AWG is used, but a multiple-input AWG may be used. In that case, to reduce the effects of reflection, unused ports should be terminated without reflection or connected with an isolator.
 図14においてAWG215が分波器に対応する。第二側から入力した光のうち、所望分離信号が第一側に出力され、残余分離信号が検出部22に出力されることで、残余分離信号が検出される。本構成の場合は、検出するポートの変更で検出波長を調整する。または、ポートを変える代わりに、温度や電圧により屈折率を変えて調整することも可能である。 In FIG. 14, the AWG 215 corresponds to the duplexer. Of the light input from the second side, the desired separation signal is output to the first side, and the residual separation signal is output to the detection unit 22, whereby the residual separation signal is detected. In this configuration, the detection wavelength is adjusted by changing the detection port. Alternatively, instead of changing the port, it is also possible to adjust the refractive index by changing the temperature or voltage.
 図15に示される構成は、図14として説明した分離部21において、AWG215の検出部22への出力ポート数を二つにした構成と実質的に同様である。図14の構成では、FSR間隔で、異なる波長を分波して出力するAWGを想定している。図14では5波で例示しているが、所望分離信号に加え、残余分離信号として検出する波長の数だけポートが設けられる。検出すべき波長帯が32波だとすると、所望分離信号が1ポートで、残余分離信号が31ポート必要となる。このため、検出部22との接続線の数が多数となる課題がある。この課題を解決するために、例えば、残余分離信号分のポートを合波部で多重してから検出部22に渡す構成も考えられる。このような構成では、合波部における損失のため、検出部22における検出感度が劣化してしまう場合がある。例えば、ポート数が2^N(2のN乗)とすると、3N dBだけ分岐損が発生する。上述したように32ポートとするとN=5となるため、損失は15dB(≒1/32)となる。合波部は、概ねAWG215と特性が合致する合波部216が用いられる。 The configuration shown in FIG. 15 is substantially the same as the configuration in which the number of output ports to the detection unit 22 of the AWG 215 is two in the separation unit 21 described in FIG. 14. The configuration of FIG. 14 assumes an AWG that separates and outputs different wavelengths at FSR intervals. Although five waves are illustrated in FIG. 14, ports are provided as many as the number of wavelengths to be detected as a residual separation signal in addition to the desired separation signal. If there are 32 wavelength bands to be detected, one port is required for the desired separation signal and 31 ports are required for the residual separation signal. Therefore, there is a problem that the number of connection lines to the detection unit 22 is large. In order to solve this problem, for example, a configuration may be considered in which ports for the residual separation signal are multiplexed in a multiplexer and then passed to the detector 22. In such a configuration, the detection sensitivity of the detection section 22 may deteriorate due to loss in the multiplexing section. For example, if the number of ports is 2^N (2 to the N power), a branch loss of 3N dB will occur. As described above, if there are 32 ports, N=5, so the loss is 15 dB (≈1/32). As the multiplexing unit, a multiplexing unit 216 whose characteristics generally match those of the AWG 215 is used.
 そこで、図15に示されるAWGの変形例では、所望分離信号の波長の長波長側と短波長側の残余分離信号を出力するポートは波長を複数FSR分まとめて出力する。図14のAWG215であれば、AWG215の上側の2ポート又は下側2ポートの少なくともいずれかが1ポートにまとめられる。上側と下側とのいずれかが所望分離信号の波長より長波長で、その反対側が短波長となる。図15において、AWG215が分波器に対応する。また、図15は、図14で残余分離信号が出力されるポートをまとめた構成となっている。 Therefore, in the modified example of the AWG shown in FIG. 15, the ports that output the residual separation signals on the long wavelength side and the short wavelength side of the wavelength of the desired separation signal output the wavelengths for a plurality of FSRs at once. In the case of the AWG 215 in FIG. 14, at least either the upper two ports or the lower two ports of the AWG 215 are combined into one port. Either the upper side or the lower side has a longer wavelength than the wavelength of the desired separation signal, and the opposite side has a shorter wavelength. In FIG. 15, the AWG 215 corresponds to a duplexer. Further, FIG. 15 has a configuration in which the ports in FIG. 14 from which the residual separation signal is output are summarized.
 図16に示される回折格子の具体例では、所望分離信号は回折格子を透過して図の右端から第一側へ出力される。また、残余分離信号は回折格子を透過して図の右端から検出部22へ入力される。このような回折格子は、例えば、図14に示されるAWG215に置き換えて適用されてもよい。図15に示される回折格子の具体例では、所望分離信号は図に示される回折格子の右端に配置された反射部217によって反射され、回折格子の左端からサーキュレータ211を経由して第一側へ出力される。また、残余分離信号は回折格子を透過して図の右端から検出部22へ入力される。なお、これらの構成において、波長別に複数の出力が束ねられて集約されてもよい。このとき、集約される波長の範囲は、不適合な光を検出しなければいけない波長範囲以上となる。図14では、単入力多出力で例示したが、多入力多出力とすれば、多入力多出力のAWG215を用いる構成と同様に適用可能である。 In the specific example of the diffraction grating shown in FIG. 16, the desired separated signal is transmitted through the diffraction grating and output from the right end of the figure to the first side. Further, the residual separation signal passes through the diffraction grating and is input to the detection unit 22 from the right end of the figure. Such a diffraction grating may be applied in place of the AWG 215 shown in FIG. 14, for example. In the specific example of the diffraction grating shown in FIG. 15, the desired separated signal is reflected by the reflection section 217 arranged at the right end of the diffraction grating shown in the figure, and is directed from the left end of the diffraction grating to the first side via the circulator 211. Output. Further, the residual separation signal passes through the diffraction grating and is input to the detection unit 22 from the right end of the figure. Note that in these configurations, a plurality of outputs may be bundled and aggregated by wavelength. At this time, the wavelength range to be aggregated is equal to or larger than the wavelength range in which non-conforming light must be detected. In FIG. 14, a single-input multiple-output configuration is illustrated, but a multiple-input multiple-output configuration can be applied in the same manner as the configuration using the multiple-input multiple-output AWG 215.
 図16に示される回折格子が分波器に対応し、回折格子により波長毎に異なる角度に出力される。図14のAWG215の出力ポートが、出射角度に対応する。検出する波長に応、出射角度を調整する。 The diffraction grating shown in FIG. 16 corresponds to a demultiplexer, and the diffraction grating outputs each wavelength at a different angle. The output port of the AWG 215 in FIG. 14 corresponds to the output angle. Adjust the emission angle according to the wavelength to be detected.
 分離部21は、導波路型リング共振器を用いて構成されてもよい。例えば、共振器長を数10マイクロメートルにし、共振波長間隔(Free Spectral Range:FSR)を数10nmとしたマイクロリング共振器(Micro Ring Resonator:MRR)が用いられてもよい。リング共振器部の形状には、完全な円形ではなく、結合部を平行直線導波路にしたレーストラック形が用いられてもよい。このように構成されることによって、結合部での結合係数が設計しやすくなる。 The separation unit 21 may be configured using a waveguide ring resonator. For example, a micro ring resonator (MRR) with a resonator length of several tens of micrometers and a free spectral range (FSR) of several tens of nanometers may be used. The shape of the ring resonator section is not a perfect circle, but a racetrack shape in which the coupling section is a parallel straight waveguide may be used. With this configuration, the coupling coefficient at the coupling portion can be easily designed.
 導波路型リング共振器には、直列結合が適用されてもよい。直列結合では、複数のリングが設けられる。以下の説明において、図17の具体例では一つのリングが用いられた導波路型リング共振器の例を説明する。なお、図17に示される例で複数のリングが用いられてもよい。このように構成されることによって、透過帯域が平坦であり、透過帯から阻止帯への遷移(Roll-Off)が急峻であり、且つ、十分な阻止量を持つスペクトル特性とすることが可能となる。ただし、バスライン導波路とマイクロリングとの間の結合係数や、一のマイクロリングと他のマイクロリングとの間の結合係数は、バターワース条件と呼ばれる一定の条件を満たす。通過帯域(選択する波長の幅)を広げながら、共振の度合いであるQ値を上げる直列結合の具体例として、例えばダブルリングがある。 Series coupling may be applied to the waveguide ring resonator. In a series connection, multiple rings are provided. In the following description, an example of a waveguide type ring resonator in which one ring is used in the specific example of FIG. 17 will be described. Note that a plurality of rings may be used in the example shown in FIG. 17. With this configuration, it is possible to obtain spectral characteristics in which the transmission band is flat, the transition from the transmission band to the stop band (Roll-Off) is steep, and the amount of rejection is sufficient. Become. However, the coupling coefficient between the bus line waveguide and the microring and the coupling coefficient between one microring and another microring satisfy a certain condition called the Butterworth condition. A double ring is a specific example of series coupling that increases the Q value, which is the degree of resonance, while widening the passband (the width of the selected wavelength).
 図17は、導波路型リング共振器を用いて分離部21を構成した構成例を示す図である。分離部21は、導波路型リング共振器218を備える。導波路型リング共振器218は、第二側から受ける光信号を左上のポートから入力し、所望分離信号と残余分離信号とをそれぞれ異なるポートから出力する。 FIG. 17 is a diagram showing a configuration example in which the separation section 21 is configured using a waveguide type ring resonator. The separation section 21 includes a waveguide type ring resonator 218. The waveguide ring resonator 218 inputs the optical signal received from the second side from the upper left port, and outputs the desired separation signal and the residual separation signal from different ports.
 分離部21は、ラティス型光フィルタを用いて構成されてもよい。ラティス型光フィルタは、例えば遅延線と、対称マッハツェンダ干渉計型結合率可変カプラと、位相調整部と、から構成される。光フィルタの位相シフト値を変化させることによって、非対称マッハツェンダ干渉計数によって決まる性能を上限とする任意のフィルタ特性が得られる。ΔLで決まるFSR(Free Spectral Range)ごとに、特性が周期的に現れるという性質が利用される。ラティス型では、ラティスを構成する各非対称MZIの行路長差がΔLである。トランスバーサル型では、各ブランチ間の遅延付与部の長さがΔLである。AWGでは、アレイ導波路を構成する一つの導波路と隣接する導波路との長さの差がΔLである。 The separation section 21 may be configured using a lattice type optical filter. The lattice optical filter is composed of, for example, a delay line, a symmetrical Mach-Zehnder interferometer type variable coupling ratio coupler, and a phase adjustment section. By changing the phase shift value of the optical filter, arbitrary filter characteristics can be obtained whose upper limit is the performance determined by the asymmetric Mach-Zehnder interference coefficient. The property that characteristics appear periodically for each FSR (Free Spectral Range) determined by ΔL is utilized. In the lattice type, the path length difference between the asymmetric MZIs forming the lattice is ΔL. In the transversal type, the length of the delay applying section between each branch is ΔL. In an AWG, the difference in length between one waveguide and an adjacent waveguide constituting an arrayed waveguide is ΔL.
 周期が短い場合は、周期性AWGと同様に、複数フィルタを組み合わせることで実現されてもよい。偏波依存性解消のために、入出力端にそれぞれサーキュレータ、回転角90度のファラデー回転ミラーを設置することで、反射型構成として実現されてもよい。図17において、導波路型リング共振器218のリング導波路と2本の直線導波路の組合せが分波器に対応する。検出する波長は、リング径Rとリング導波路と直線導波路との結合を変えることで調整される。 If the period is short, it may be realized by combining multiple filters, similar to the periodic AWG. In order to eliminate polarization dependence, a reflective configuration may be realized by installing a circulator and a Faraday rotary mirror with a rotation angle of 90 degrees at the input and output ends, respectively. In FIG. 17, the combination of the ring waveguide and two straight waveguides of the waveguide ring resonator 218 corresponds to a duplexer. The wavelength to be detected is adjusted by changing the ring diameter R and the coupling between the ring waveguide and the straight waveguide.
 図18は、ラティス型光フィルタを用いて分離部21を構成した構成例を示す図である。分離部21は、ラティス型光フィルタ219を備える。ラティス型光フィルタ219は、第二側から受ける光信号を入力し、所望分離信号と残余分離信号とをそれぞれ異なるポートから出力する。具体的には、ラティス型光フィルタ219は、第1ポートから第一側へ所望分離信号を出力し、第2ポートから残余分離信号を検出部22へ出力する。第1ポートは適合な波長成分を出力し、第2ポートは不適合な波長成分を出力するように、ラティスフィルタの遅延アームの遅延ΔLと結合率可変カプラの結合率と位相シフタの位相θとが調整される。また、ラティスなら遅延付与部の遅延ΔLとタップ(結合率可変カプラ)の結合率と位相シフタの位相とが調整されてもよい。図18において、マハゼンダ干渉計をカスケード接続したラティス型光フィルタ219が分波器に対応する。検出する波長は、位相シフタとカプラの結合率との調整により変更される。 FIG. 18 is a diagram showing a configuration example in which the separation section 21 is configured using a lattice type optical filter. The separation section 21 includes a lattice type optical filter 219. The lattice optical filter 219 inputs the optical signal received from the second side, and outputs the desired separation signal and the residual separation signal from different ports. Specifically, the lattice optical filter 219 outputs the desired separation signal from the first port to the first side, and outputs the residual separation signal from the second port to the detection unit 22. The delay ΔL of the delay arm of the lattice filter, the coupling ratio of the variable coupling ratio coupler, and the phase θ of the phase shifter are set so that the first port outputs the compatible wavelength component and the second port outputs the non-compatible wavelength component. be adjusted. Further, in the case of a lattice, the delay ΔL of the delay applying section, the coupling ratio of the tap (variable coupling ratio coupler), and the phase of the phase shifter may be adjusted. In FIG. 18, a lattice optical filter 219 in which Maha-Zenda interferometers are connected in cascade corresponds to a demultiplexer. The wavelength to be detected is changed by adjusting the coupling ratio of the phase shifter and coupler.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and includes designs within the scope of the gist of the present invention.
 本発明は、光ファイバ伝送路で通信を行う通信システムに適用可能である。 The present invention is applicable to a communication system that performs communication through an optical fiber transmission line.
30-1、30-2、30-2、30-4、30-5、30-6、30-7、30-8…Ph-GW、400、1400、2400、3400、5400、6400、7400…遮断制御部、410、1410、2410、3410、5410、6410、7410…SA 30-1, 30-2, 30-2, 30-4, 30-5, 30-6, 30-7, 30-8...Ph-GW, 400, 1400, 2400, 3400, 5400, 6400, 7400... Shutdown control unit, 410, 1410, 2410, 3410, 5410, 6410, 7410...SA

Claims (7)

  1.  ユーザ端末に設定された波長を取得する取得部と、
     光信号を複数の出力先の少なくとも1つの出力先に出力する光振分部と、
     ユーザ端末から前記光振分部に入力される信号の波長、または前記光振分部からユーザ端末に出力される信号の波長を観測する観測部と、
     前記観測部によって観測された波長が、前記取得部によって取得された波長と異なる場合に、前記ユーザ端末からの入力またはユーザ端末への出力を遮断するか、取得された波長と異なる波長成分を遮断する遮断部と、
     を備えた通信システム。
    an acquisition unit that acquires the wavelength set in the user terminal;
    an optical distribution unit that outputs the optical signal to at least one of the plurality of output destinations;
    an observation unit that observes the wavelength of a signal input from a user terminal to the optical distribution unit or the wavelength of a signal output from the optical distribution unit to the user terminal;
    If the wavelength observed by the observation unit is different from the wavelength acquired by the acquisition unit, input from the user terminal or output to the user terminal is blocked, or a wavelength component different from the acquired wavelength is blocked. A cutoff section that
    communication system with.
  2.  ユーザ端末から前記光振分部に入力される信号、または前記光振分部からユーザ端末に出力される信号を観測部に分岐する分岐器を備え、
     前記観測部には、前記分岐器から分岐された信号が、ユーザ端末ごとに時分割で入力される請求項1に記載の通信システム。
    comprising a splitter that branches a signal input from a user terminal to the optical distribution unit or a signal output from the optical distribution unit to the user terminal to an observation unit,
    The communication system according to claim 1, wherein the signal branched from the branching device is input to the observation unit in a time-division manner for each user terminal.
  3.  ユーザ端末から前記光振分部に入力される信号、または前記光振分部からユーザ端末に出力される信号を観測部に出力する他の光振分部を備え、
     前記観測部には、前記他の光振分部から出力された信号が、ユーザ端末ごとに時分割で入力される請求項1に記載の通信システム。
    comprising another light distribution unit that outputs a signal input from the user terminal to the light distribution unit or a signal output from the light distribution unit to the user terminal to the observation unit,
    The communication system according to claim 1, wherein the signal output from the other optical distribution section is input to the observation section in a time-division manner for each user terminal.
  4.  前記観測部は、入力された信号を分波する分波器と、分波器により出力された信号を検出する検出部とを備えた請求項1に記載の通信システム。 The communication system according to claim 1, wherein the observation unit includes a duplexer that demultiplexes the input signal, and a detection unit that detects the signal output by the duplexer.
  5.  前記遮断部は、前記観測部によって観測された波長が、前記取得部によって取得された波長と異なる場合には、波長が異なると判断された信号を前記光振分部によって遮断させる請求項1から請求項3のいずれか1項に記載の通信システム。 From claim 1, wherein the blocking unit causes the light distribution unit to block a signal determined to have a different wavelength when the wavelength observed by the observation unit is different from the wavelength acquired by the acquisition unit. The communication system according to claim 3.
  6.  前記遮断部は、前記観測部によって観測された波長が、前記取得部によって取得された波長と異なる場合には、波長が異なると判断された波長の波長成分を波長フィルタによって遮断させる請求項1から請求項3のいずれか1項に記載の通信システム。 From claim 1, wherein when the wavelength observed by the observation unit is different from the wavelength acquired by the acquisition unit, the blocking unit causes a wavelength filter to block the wavelength component of the wavelength determined to be different. The communication system according to claim 3.
  7.  光信号を複数の出力先の少なくとも1つの出力先に出力する光振分部を備えた通信システムの制御方法であって、
     ユーザ端末に設定された波長を取得する取得ステップと、
     ユーザ端末から前記光振分部に出力される信号の波長、または前記光振分部からユーザ端末に出力される信号の波長を観測する観測ステップと、
     前記観測ステップによって観測された波長が、前記取得ステップによって取得された波長と異なる場合に、前記ユーザ端末からの入力またはユーザ端末への出力を遮断するか、取得された波長と異なる波長成分を遮断する遮断ステップと、
     を備えた制御方法。
    A method for controlling a communication system including an optical distribution unit that outputs an optical signal to at least one of a plurality of output destinations, the method comprising:
    an acquisition step of acquiring a wavelength set in the user terminal;
    an observation step of observing the wavelength of a signal output from the user terminal to the optical distribution section or the wavelength of the signal output from the optical distribution section to the user terminal;
    If the wavelength observed in the observation step is different from the wavelength acquired in the acquisition step, input from the user terminal or output to the user terminal is blocked, or a wavelength component different from the acquired wavelength is blocked. a blocking step to
    A control method with
PCT/JP2022/033554 2022-09-07 2022-09-07 Communication system and control method WO2024053012A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033554 WO2024053012A1 (en) 2022-09-07 2022-09-07 Communication system and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033554 WO2024053012A1 (en) 2022-09-07 2022-09-07 Communication system and control method

Publications (1)

Publication Number Publication Date
WO2024053012A1 true WO2024053012A1 (en) 2024-03-14

Family

ID=90192418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033554 WO2024053012A1 (en) 2022-09-07 2022-09-07 Communication system and control method

Country Status (1)

Country Link
WO (1) WO2024053012A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072802A (en) * 2003-08-21 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> Wavelength-routing apparatus
WO2021001871A1 (en) * 2019-07-01 2021-01-07 日本電信電話株式会社 Optical reception device, optical transmission system, optical transmission method, and computer program
WO2021001868A1 (en) * 2019-07-01 2021-01-07 日本電信電話株式会社 Optical receiver, optical transmission system, optical transmission method, and computer program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072802A (en) * 2003-08-21 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> Wavelength-routing apparatus
WO2021001871A1 (en) * 2019-07-01 2021-01-07 日本電信電話株式会社 Optical reception device, optical transmission system, optical transmission method, and computer program
WO2021001868A1 (en) * 2019-07-01 2021-01-07 日本電信電話株式会社 Optical receiver, optical transmission system, optical transmission method, and computer program

Similar Documents

Publication Publication Date Title
US6185023B1 (en) Optical add-drop multiplexers compatible with very dense WDM optical communication systems
JP4031853B2 (en) Optical transmission equipment for bidirectional optical communication
EP1043859B1 (en) Optical add/drop multiplexer node device
JP4739928B2 (en) Wavelength selective optical switch and wavelength selective optical switch module
Giles et al. The wavelength add/drop multiplexer for lightwave communication networks
EP1622297B1 (en) Optical add/drop multiplexer
US20050175278A1 (en) Hitless errorless trimmable dynamic optical add/drop multiplexer devices
JP3448182B2 (en) All-optical fiber optical router
US7623789B2 (en) Low loss WDM add drop node
US6348984B1 (en) Optical add/drop multiplexer
US6959153B2 (en) Dynamically reconfigurable add/drop multiplexer with low coherent cross-talk for optical communication networks
EP3499282B1 (en) Polarization independent optical device
US6304351B1 (en) Universal branching unit
WO2024053012A1 (en) Communication system and control method
US20040067011A1 (en) Optical cross-connect system
US7113662B2 (en) Optical filtering by using an add-drop node
EP1009120A2 (en) Multichannel optical ADD/DROP, multiplexor/demultiplexor
KR100709880B1 (en) A tuneable optical filter
US20040165891A1 (en) Low-loss, efficient hub ring networks and methods for their use
JPH09153861A (en) Optical submarine cable branching device for wavelength multiplex communication system, and waveform multiplex optical submarine cable network using the same
Madsen et al. Hitless reconfigurable add/drop multiplexers using Bragg gratings in planar waveguides
WO2023166566A1 (en) Separation system
JP2007155777A (en) Monitoring circuit
Madsen et al. A multi-port add/drop router using UV-induced gratings in planar waveguides
US20130114957A1 (en) Dual path wavelength selective switch