WO2024051711A1 - 一种尾砂沉降试验装置及方法 - Google Patents

一种尾砂沉降试验装置及方法 Download PDF

Info

Publication number
WO2024051711A1
WO2024051711A1 PCT/CN2023/117123 CN2023117123W WO2024051711A1 WO 2024051711 A1 WO2024051711 A1 WO 2024051711A1 CN 2023117123 W CN2023117123 W CN 2023117123W WO 2024051711 A1 WO2024051711 A1 WO 2024051711A1
Authority
WO
WIPO (PCT)
Prior art keywords
tailings
test
settlement
rotor
bottle
Prior art date
Application number
PCT/CN2023/117123
Other languages
English (en)
French (fr)
Inventor
郭利杰
黎梦圆
杨小聪
刘光生
许文远
彭啸鹏
Original Assignee
矿冶科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矿冶科技集团有限公司 filed Critical 矿冶科技集团有限公司
Publication of WO2024051711A1 publication Critical patent/WO2024051711A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane

Definitions

  • the invention relates to the technical field of tailings performance evaluation, and in particular to a tailings settlement test device and method.
  • Tailings settlement characteristics are one of the key factors in the selection of mine filling systems.
  • the tailings settlement characteristics are affected by tailings particle size composition, concentration, tailings density and other attributes, which directly affect the tailings filling and thickening efficiency of the mine.
  • Tailings settling characteristics are measured by tailings settling tests.
  • the tailings settlement test can be divided into a static settlement test and a dynamic settlement test.
  • the tailings static settlement test can be divided into a static natural settlement test and a static flocculation settlement test.
  • the settlement effect of the tailings is judged by manually observing and recording the position of the stratified liquid level of the tailings mortar in the measuring cylinder over time: according to the scale value on the measuring cylinder, record the height of the stratified liquid level of the tailings mortar in the measuring cylinder over time.
  • the recorded data of stratified liquid level height and settling time are summarized and processed to analyze the settling effect of tailings.
  • the accuracy of manual data collection is low.
  • the accuracy of manually recorded tailings settlement data is low, which is mainly due to the following four reasons: 1.
  • the stratified liquid level during the static natural settlement of tailings or the static flocculation settlement process is unclear, making it difficult to judge clearly and effectively in a short time. Different testers may have different judgments on the unclear stratified liquid level; 2.
  • the position of the stratified liquid level changes rapidly during the static settling process of tailings, especially in the first few seconds after the settlement test begins. Accurately recording the scale values on the graduated cylinder through manual recording within 2 minutes places high demands on the observation ability, mental reaction speed, and data recording speed of the test personnel, which also results in low accuracy of data recording; 3.
  • the object of the present invention is to provide a tailings sedimentation test device that allows testers to shake the tailings mortar evenly by turning it upside down multiple times, thereby making the tailings mortar more uniform. In addition, it has the ability to collect test data frequently and It has the advantages of high accuracy and good test repeatability. In addition, a tailings settlement test method using the above tailings settlement test device is provided.
  • the present invention provides a tailings sedimentation test device, which includes a rheometer body, a rotor, a test bottle and a sealing cap.
  • the rotor is connected to the rheometer body to be driven by the rheometer body.
  • the test bottle rotates downward, and the test bottle has a first use state and a second use state;
  • the sealing cap is fastened on the test bottle or the test bottle is opened;
  • the bottle mouth of the test bottle is connected to the rheometer body, and the rotor extends into the test bottle and is connected with the test bottle. Coaxially set up to rotate and measure within a test bottle containing tail mortar.
  • the rotor includes a probe located at an end;
  • the distance between the bottom end of the measuring head and the bottom wall of the test bottle is not less than the maximum particle size of the tailings, and is not greater than 5 times the maximum particle size of the tailings;
  • the distance between the side of the measuring head and the side wall of the test bottle shall not be less than the maximum particle size of the tailings, and shall not be greater than 5 times the maximum particle size of the tailings.
  • the probe includes a first rotating shaft and a plurality of blades, and the blades include an outer frame and a solid part;
  • the plurality of outer frames are connected to the first rotating shaft, and the plurality of outer frames are distributed in a scattering shape around the first rotating shaft;
  • the solid part is connected to the outer frame and is located in the space surrounded by the outer frame and the first rotating shaft.
  • a hollow structure is formed between the solid part and the first rotating shaft.
  • the rotor further includes a connecting head and a second rotating shaft. Both ends of the second rotating shaft are connected to the connecting head and the measuring head respectively, and the connecting head is connected to the rheometer body.
  • the ratio of the length to the inner diameter of the test bottle is not less than 5:1.
  • the rotating base is used to carry the test bottle in the first use state.
  • the driving mechanism is connected with the rotating base to drive the rotating base to rotate back and forth.
  • the present invention also provides a tailings settlement test method, which adopts the tailings settlement test device described in the above solution, including:
  • Run the measurement program to start the test install the rotor, start the cataloged measurement program, mix the tail mortar in the test bottle upside down, open the sealing cap, and connect the test bottle with the rheology Instrument body connection;
  • the measurement system includes: when the measurement starts, the rotation speed of the rotor rises from 0 to a constant rotation speed, and when the measurement process ends, the rotation speed of the rotor drops from a constant rotation speed to 0. When the rotor is at a constant rotation speed, it is tailings.
  • the measurement regime also includes setting the frequency of data collection.
  • the valid data includes torque data collected by the rheometer body when the rotor is at a constant rotation speed.
  • the tailings settlement performance fitting function is used to fit the torque and time scatter points, and the numerical values of the parameters in the tailings settlement performance fitting function are solved;
  • the tailings and water can be put into the test bottle to form a tailings mortar, with or without flocculant added as appropriate; then the tailings mortar in the test bottle can be stirred with a stirring rod; and then the sealing cap can be Fasten it on the test bottle and mix it upside down.
  • the test bottle is in the first use state; then open the sealing cap and connect the test bottle to the rheometer body.
  • the rotor and the test bottle are set coaxially.
  • the test bottle is in the second use state. After the rheometer body is started, the rotor rotates to stir the tail mortar in the test bottle to conduct the test.
  • the tailings settlement test device provided by the first aspect of the present invention is equipped with a sealing cover.
  • the tester can also be allowed to Shake the tail mortar evenly by turning it upside down several times to make the tail mortar more uniform.
  • the test process does not require manual judgment of the slurry layered liquid level position and recording data.
  • the test data collected based on the rheometer body has high frequency, high accuracy, and good test repeatability.
  • the tailings settlement test method provided in the second aspect of the present invention has the advantages of being able to quantitatively evaluate the tailings static settlement performance and more comprehensively presenting the tailings static settlement performance characteristics.
  • Figure 1 is a schematic structural diagram of a tailings settlement test device provided by an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of a rotor provided by an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a test bottle provided by an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a sealing cover provided by an embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a driving device provided by an embodiment of the present invention that can be turned upside down multiple times to shake the tail mortar evenly;
  • Figure 6 is a schematic diagram of the measurement system that needs to be programmed into the rheometer in the embodiment of the present invention.
  • Figure 7 is a fitting relationship diagram between torque and time provided by the embodiment of the present invention.
  • Figure 8 is a graph showing the relationship between sedimentation rate and time provided by the embodiment of the present invention.
  • Icon 1-rheometer body; 2-rotor; 21-probe; 211-first rotating shaft; 212-outer frame; 213-solid part; 22-connector; 23-second rotating shaft; 3-test bottle; 4-Sealing cover; 5-Rotating base; 6-Driving mechanism.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the embodiment of the first aspect of the present invention is to provide a tailings sedimentation test device, as shown in Figures 1 to 4, including a rheometer body 1, a rotor 2, a test bottle 3 and a sealing cap 4.
  • the rotor 2 and the rheometer The instrument body 1 is connected to rotate driven by the rheometer body 1, and the test bottle 3 has a first use state and a second use state; when the test bottle 3 is in the first use state, a sealing cap is fastened on the test bottle 3 4 or the test bottle 3 is opened; when the test bottle 3 is in the second use state, the bottle mouth of the test bottle 3 is connected to the rheometer body 1, and the rotor 2 extends into the test bottle 3 and is coaxially arranged with the test bottle 3 to The test bottle 3 containing the tail mortar is rotated and measured.
  • the test bottle 3 Before the test, the test bottle 3 is in the first use state, the test bottle 3 is opened, and the tail mortar in the test bottle 3 is stirred using a stirring rod.
  • the sealing cap 4 can be placed on On the test bottle 3, further mix by turning it upside down; then adjust the test bottle 3 to the second use state, that is, remove the sealing cap 4 on the test bottle 3, and connect the test bottle 3 to the rheometer body 1.
  • the rotor 2 extends into the test bottle 3 and its rotation axis coincides with the axis of the test bottle 3, the tail mortar in the test bottle 3 is rotated and measured to perform the test.
  • the above-mentioned tail mortar settlement test device is developed based on a rheometer and is suitable for measuring tail mortar settlement.
  • the test device for the static settlement performance of sand has better uniformity after mixing of the tail mortar before and after the test, and there is no need to manually judge the slurry layering liquid during the test.
  • Surface position and recorded data, the frequency of collecting test data is high, the accuracy is high, and the test repeatability is good. It is suitable for the static settlement performance test of tailings with or without flocculant.
  • the above-mentioned rheometer body 1 may be a RST-SST rheometer. Of course, other models of rheometers can also be used.
  • the above-mentioned rotor 2 has the following characteristics: the torque value measured under the same fluid and the same rotation speed is higher to reduce the error of the collected data; the effective measurement height of the rotor 2 is small, and the size is basically equal to that of the rotor 2 diameter so that the rotor 2 can rotate and measure at the bottom of the mortar at the end of the test bottle.
  • the rotor 2 includes a probe 21 located at the end; the distance between the bottom end of the probe 21 and the bottom wall of the test bottle 3 is not less than the maximum particle size of the tailings, and is not greater than the maximum particle size of the tailings. 5 times, specifically no more than 1, 2, 3, 4 or 5 times the largest particle size of tailings.
  • the distance between the side of the probe 21 and the side wall of the test bottle 3 is not less than the maximum particle size of the tailings, and is not greater than 5 times the maximum particle size of the tailings. Specifically, it can be no greater than 1 times the maximum particle size of the tailings. , 2, 3, 4 or 5 times.
  • the maximum particle size of tailings is less than 1mm. Therefore, the distance between the bottom end of the probe 21 and the bottom wall of the test bottle 3 and the distance between the side edge of the probe 21 and the side wall of the test bottle 3 are preferably 1-3 mm.
  • the distance between the bottom end of the probe 21 and the side wall of the test bottle 3 is preferably 1-3 mm.
  • the distance between the bottom walls of the test bottle 3 is 1 mm, 2 mm or 3 mm, and the distance between the side of the probe 21 and the side wall of the test bottle 3 is 1 mm, 2 mm or 3 mm.
  • the probe 21 includes a first rotating shaft 211 and a plurality of blades.
  • the blades may be two, three, four, etc., and the blades include an outer frame 212 and a solid part 213; a plurality of blades.
  • the outer frames 212 are all connected to the first rotating shaft 211, and multiple outer frames 212 are distributed in a scattering shape around the first rotating shaft 211; the solid part 213 is connected to the outer frame 212 and is located in the space surrounded by the outer frame 212 and the first rotating shaft 211.
  • a hollow structure is formed between the solid part and the first rotating shaft 211, and the hollow structure can allow the tailings to pass through smoothly.
  • the rheometer body 1 collects The torque data value is larger, reducing the error in collecting test data.
  • the outer frame 212 and the solid portion 213 adopt an integrated structure.
  • the above-mentioned rotor 2 may be based on a 2-, 3- or 4-blade Vane type partially hollowed-out rotor with a solid part 213 added thereto, and the part of each blade close to the rotation axis is hollowed out.
  • the rotor 2 can also be other modified rotors based on the above-mentioned rotor shape. That is, any rotor structure that meets the above-mentioned characteristics of the rotor 2 is within the protection scope of the above-mentioned embodiments.
  • the rotor 2 also includes a connecting head 22 and a second rotating shaft 23.
  • the second rotating shaft 23 is an elongated cylindrical shape, and its two ends are respectively connected to the connecting head 22 and the first rotating shaft 211 in the measuring head 21.
  • the connector 22 is connected to the rheometer body 1 so as to rotate driven by the rheometer body 1 .
  • the material of the above-mentioned rotor 2 is preferably 304 steel, the surface roughness parameter Ra of the rotor 2 is not greater than 3.2 ⁇ m, and the hardness is not less than 18HRC.
  • test bottle 3 The following is a detailed description of test bottle 3:
  • the shape of the test bottle 3 is an elongated hollow cylinder, and the ratio of the length to the inner diameter of the test bottle 3 is not less than 5:1, specifically it can be 5:1, 6:1, 7:1, or 8 ⁇ 1 or 9:1.
  • the height of the test bottle 3 can be 180mm-220mm, specifically 180mm, 190mm, 200mm, 210mm or 220mm.
  • test bottle 3 is made of transparent material, such as plastic, glass, etc.
  • connection between the test bottle 3 and the rheometer body 1 can be a snap connection or a threaded connection, that is, any structure that can realize the connection between the test bottle 3 and the rheometer body 1 can be used, preferably convenient
  • the purpose of the structure of the connection between the two is to make the rotor 2 extend into the test bottle 3 and its rotation axis coincide with the axis of the test bottle 3.
  • connection methods can also be used between the test bottle 3 and the sealing cap 4, such as threaded connection, plug-in connection, etc., that is, any structure that can achieve the sealing function of the two is acceptable, and a connection structure that facilitates the disassembly and assembly of the two is preferred.
  • a scale can be attached to the outer wall of the test bottle 3 to facilitate the tester to observe and manually record the distribution of the tail mortar during the settling process of the test bottle 3.
  • the position of the layer liquid level facilitates comparative study.
  • test bottle 3 containing the tail mortar should be within the protection scope of the above embodiment.
  • the tailings settlement test device also includes a rotating base 5 and a driving mechanism 6.
  • the rotating base 5 is used to carry the test bottle 3 in the first use state.
  • the driving mechanism 6 and the rotating base 5 are connected to drive the rotating base 5 to rotate back and forth.
  • the driving mechanism 6 can be used to drive the rotating base 5 to reciprocate, so that the test bottle 3 on the rotating base 5 can reciprocate synchronously, thereby achieving the purpose of shaking the test bottle 3 , thus making the mortar mix more evenly before and after the test, saving manpower and avoiding wrist fatigue of testers during the shaking process.
  • any structure that can drive the rotating base 5 to rotate back and forth can be the driving mechanism 6 mentioned in the above embodiment.
  • the driving mechanism 6 is a structure that performs rotational motion such as a rotating motor, or the driving mechanism 6 is a hydraulic cylinder. , pneumatic cylinder and other linear motion mechanisms and transmission components.
  • the transmission component can convert the linear motion of the linear motion mechanism into rotational motion.
  • each reciprocating drive mechanism 6 can drive the rotating base 5 to rotate 180° clockwise and then 180° counterclockwise to mix the tail mortar in the test bottle 3 in an upside-down manner.
  • An embodiment of the second aspect of the present invention provides a tailings settlement test method.
  • the tailings settlement test method provided by the embodiment of the second aspect of the present invention adopts the above-mentioned tailings settlement test device and includes:
  • Run the measurement program to start the test install the rotor 2, start the cataloged measurement program, mix the tail mortar in the test bottle 3 upside down, open the sealing cap 4, and connect the test bottle 3 to the rheometer body 1;
  • the above-mentioned tailings settlement test method has the advantages of quantitatively evaluating the static settlement performance of tailings and presenting the static settlement performance characteristics of tailings more comprehensively.
  • tailings are different from cement and other cementitious materials and do not have gelling properties. There is no need to consider the impact of thixotropic properties on the static settlement performance data collected during the test.
  • teaching content of entering the measurement system into the measurement program of the rheometer body 1 can be obtained through the instruction manual of the rheometer body 1 , that is, those skilled in the art can know how to enter the measurement system by reading the instruction manual.
  • the test bottle 3 is used to weigh the tailing sand and water to prepare the tailing mortar, or the test bottle 3 is used to weigh the tailing sand, water and flocculant to prepare the tailing mortar.
  • the criterion for sufficient mixing of the tail mortar is: stir until the color of the tail mortar is uniform.
  • the criterion for judging whether the tailing mortar is mixed evenly by turning it upside down is: there is no tailings settling on the bottom and top of the test bottle 3 when the test bottle 3 is turned upside down.
  • the tailings static settlement test can be carried out automatically, and the rheometer body 1 starts to automatically collect valid test data.
  • the data collection process of the rheometer can be observed through the program interface.
  • the characteristics of the measurement system are: at the beginning of the measurement, the rotation speed of rotor 2 rises from 0 to a constant rotation speed, and at the end of the measurement process, the rotation speed of rotor 2 decreases from a constant rotation speed to 0.
  • Rotor 2 When the speed is at a constant speed, it is the effective data collection area for the static settlement performance test of tailings; the measurement system also includes setting the data collection frequency.
  • the above constant rotation speed can be understood as the rotation speed of the rotor 2 oscillating back and forth within a very small range.
  • the oscillation range can be 0.98-1.02 of the set rotation speed. times.
  • the above data includes torque data of the rotor 2 . Specifically, once the rheological test is started, the rheometer starts collecting torque data. In the later data processing, the complete version of the data collected is manually judged and the torque and time data at constant speed are extracted as valid data for calculation.
  • the tailings settlement test method also includes:
  • the tailings settlement performance fitting function is used to fit the torque and time scatter points, and the values of the parameters in the tailings settlement performance fitting function are solved;
  • the characteristics of the tailings settlement performance fitting function are: the relationship between torque and time described by this function is a monotonic increasing function and there is a horizontal asymptote. As time increases, the torque value gradually approaches the asymptote but cannot cross the asymptote. Wire.
  • this function is the derivative function of the tailings sedimentation performance fitting function.
  • the relationship between the tailings sedimentation rate and time described by this function is a monotonic decreasing function. As time increases, the tailings sedimentation rate gradually increases. Close to zero but not equal to or less than zero.
  • tailings sedimentation performance fitting function and tailings sedimentation rate function may have multiple types.
  • the above-mentioned tailings sedimentation performance fitting function will be specifically described below with two examples:
  • the tailings settlement performance fitting function is:
  • T torque
  • t time
  • a 1 and b 1 are the parameters of the tailings settlement performance fitting function
  • the tailings settling rate function is:
  • v is the tailings settling rate.
  • a linear fitting method can also be used, that is, linear fitting is performed between the torque T and the reciprocal of time 1/t, and then the parameters of the tailings settlement performance fitting function can be solved , what is directly provided in the first embodiment above is the nonlinear fitting of the torque T and the time t. This is just a different fitting method for solving the parameters, and should be within the protection scope of this embodiment.
  • T torque
  • t time
  • a 2 , b 2 , c 2 and k are parameters of the tailings settlement performance fitting function
  • the tailings sedimentation rate function is:
  • v is the tailings settling rate.
  • the raw materials used include tailings and water. No flocculant added.
  • the density of the tailings used is 3.00g/cm 3
  • the bulk density is 1.73g/cm 3
  • the porosity is 42.3%.
  • the tailing mortar ratio used is: tailings concentration 28%.
  • the measurement system adopted is: it takes 5 seconds for the speed to go from 0 liters to a constant speed, the constant speed is 9.55 rpm, the duration of the constant speed phase is 10 minutes, and it takes 5 seconds for the speed to drop from the constant speed to 0.
  • the constant rotation speed is manifested as the rotation speed oscillating back and forth within a very small range. That is, when the actual rotation speed exceeds the set constant rotation speed, the rotor 2 The speed automatically decreases; when the actual speed is lower than the set constant speed, the speed of rotor 2 automatically increases.
  • a precision rheometer can narrow the range of rotational speed oscillation, but it cannot change the law of rotational speed oscillation.
  • Origin software was used to perform nonlinear fitting on the collected torque data.
  • the fitting results are shown in Figure 7. This process can also be performed using tools with nonlinear fitting functions such as Matlab software.
  • tailings sedimentation rate function With parameter b 1 and the data collected at time t, calculate the data of tailings sedimentation rate v corresponding to time t one-to-one.
  • the tailings settlement test device and method provided by the above embodiments have at least the following advantages:
  • the mortar mixing uniformity before and after the test is better.
  • the test bottle 3 used in the above embodiment is a transparent, slender, hollow cylindrical test bottle, and the sealing cap 4 has good sealing performance.
  • a stirring rod is first used for stirring. After stirring until the tail mortar is uniform in color, the stirring rod is taken out, the sealing cap 4 is tightened, and the tail mortar is shaken evenly by turning it upside down several times. This method of operation produces much better uniformity than just using a stirring rod to stir the tail mortar. This can be clearly observed from the process of turning the test bottle 3 upside down.
  • tailings settlement test data can be automatically collected at high frequency. Manually record the scale value on the measuring cylinder over time, even if one is recorded every 20 seconds Secondary experimental data also has high requirements on the observation ability, mental reaction speed, and data recording speed of the experimenters.
  • the above embodiment relies on the rheometer body 1 to automatically collect test data at high frequency. Even the rheometer body 1 with a low configuration can collect experimental data once per second, and the rheometer body 1 with a high configuration can even collect test data every second. More than a hundred experimental data. Therefore, the tailings settlement test device and method provided by the above embodiments greatly improve the collection frequency and collection ability of experimental data, and also reduce the workload of test personnel.
  • the collected test data is more accurate.
  • the stratified liquid level is often blurred, making it difficult to determine the effective stratified liquid level in a short time.
  • Different testers often have different judgment results for the unclear stratified liquid level.
  • the torque, rotational speed and other data collected by the rheometer body 1 can have up to five or six significant digits, and the accuracy of the data collected by the rheometer body 1 with high configuration will be even higher. Therefore, the tailings settlement test device and method provided in the above embodiments greatly improve the accuracy of the collected test data.
  • the amount of tailings used in the test is small, and the test preparation process is more convenient.
  • the test bottle 3 of the above embodiment can be much smaller in volume than the existing graduated cylinder used in the tailings static sedimentation test.
  • the amount of tailings and water required for the test will be much less, and the test preparation process will be more convenient.
  • the static settling performance of tailings can be quantitatively evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

提供一种尾砂沉降试验装置及方法,尾砂沉降试验装置包括流变仪本体(1)、转子(2)、试验瓶(3)和密封盖(4),转子(2)与流变仪本体(1)连接以在流变仪本体(1)的带动下自转,试验瓶(3)具有第一使用状态和第二使用状态;当试验瓶(3)处于第一使用状态时,试验瓶(3)上扣合有密封盖(4)或者试验瓶(3)打开;当试验瓶(3)处于第二使用状态时,试验瓶(3)的瓶口与流变仪本体(1)连接,转子(2)伸入试验瓶(3)内并与试验瓶(3)同轴设置以在盛有尾砂浆的试验瓶(3)内旋转测量。尾砂沉降试验装置允许试验人员采用上下颠倒多次的方式对尾砂浆进行摇匀,从而使得尾砂浆的均匀性更好,另外具有采集试验数据频次高、精确度高、试验可重复性能好等优点。

Description

一种尾砂沉降试验装置及方法 技术领域
本发明涉及尾砂性能评价技术领域,尤其是涉及一种尾砂沉降试验装置及方法。
背景技术
尾砂沉降特性是矿山充填系统选择的关键要素之一。尾砂沉降特性受尾砂粒级组成、浓度、尾砂密度等属性影响,直接影响着矿山尾砂充填浓密效率。尾砂沉降特性通过尾砂沉降试验进行测量。根据尾砂浆能否在试验过程中连续供出料,可将尾砂沉降试验分为静态沉降试验与动态沉降试验。根据是否添加絮凝剂,可将尾砂静态沉降试验分为静态自然沉降试验和静态絮凝沉降试验。
现有的尾砂静态沉降试验过程中,可选择利用电机带动转子对尾砂浆进行搅动。尾砂静态沉降特性试验可根据需要选择是否添加絮凝剂。通过人工观察并经时记录尾砂浆在量筒中分层液面的位置进而判断尾砂的沉降效果:依据量筒上的刻度数值,经时记录尾砂浆在量筒沉降过程中分层液面的高度,汇总处理记录的分层液面高度与沉降时间的数据,分析尾砂的沉降效果。
然而现有技术的尾砂静态沉降实验装置及方法存在以下技术缺陷:
其一、试验前尾砂浆的均匀性较差。在尾砂沉降试验前将尾砂浆搅拌均匀是确保整个实验过程有效和数据可信的关键和前提,现有的实验装置及方法仅采用搅拌方式混合尾砂浆。不论搅拌棒形状如何,都无法让尾砂在试验量筒内均匀地分散,量筒底部总有部分尾砂沉积,这在分级粗尾砂制备的尾砂浆中更为明显。
其二、试验过程中无法高频获取数据。根据现有的尾砂沉降试验方法,需通过人工观察并记录量筒内尾砂浆分层液面的位置。限于试验人员的观察能力、头脑反应速度以及数据记录速度,无法高频地记录尾砂浆的沉降试验数据。在试验开始后的前2min 内,尾砂的沉降速度很快,无法高频地获取尾砂浆的沉降试验数据就无法全面准确地分析尾砂浆的沉降性能。
其三、人工采集数据的精确度较低。人工记录的尾砂沉降数据精确度较低,这主要源于以下四点原因:1、尾砂静态自然沉降或静态絮凝沉降过程中分层液面模糊不清,难以短时间内判断清楚有效的分层液面,不同的试验人员可能对模糊不清的分层液面有不同的判断结果;2、尾砂静态沉降过程中分层液面的位置变化较快,尤其沉降试验开始后的前2min内,通过人工记录的方式经时准确记录量筒上的刻度数值对试验人员的观察能力、头脑反应速度、数据记录速度的要求很高,这也造成了数据记录的精确度低;3、量筒上的刻度数值的精确度一般为1mm,人工记录数据的方法下无法进一步提高该试验的精确度;4、对于有电机驱动式转子的尾砂静态沉降性能测量装置,因转子高度过高且其底部未与量筒底部固定而呈现悬空状况,试验过程中转子在量筒中的位置飘忽不定,这也是同一组尾砂浆开展多次静态沉降试验时数据差异的来源之一。
发明内容
本发明的目的在于提供一种尾砂沉降试验装置,可允许试验人员采用上下颠倒多次的方式对尾砂浆进行摇匀,从而使得尾砂浆的均匀性更好,另外具有采集试验数据频次高、精确度高、试验可重复性能好等优点。另外提供一种使用上述尾砂沉降试验装置的尾砂沉降试验方法。
为实现上述目的,本发明提供以下技术方案:
第一方面,本发明提供一种尾砂沉降试验装置,包括流变仪本体、转子、试验瓶和密封盖,所述转子与所述流变仪本体连接以在所述流变仪本体的带动下自转,所述试验瓶具有第一使用状态和第二使用状态;
当所述试验瓶处于第一使用状态时,所述试验瓶上扣合有所述密封盖或者所述试验瓶打开;
当所述试验瓶处于第二使用状态时,所述试验瓶的瓶口与所述流变仪本体连接,所述转子伸入所述试验瓶内并与所述试验瓶 同轴设置以在盛有尾砂浆的试验瓶内旋转测量。
进一步地,所述转子包括位于端部的测头;
所述测头的底端与所述试验瓶的底壁之间的距离不小于尾砂最大颗粒尺寸,不大于尾砂最大颗粒尺寸的5倍;
所述测头的侧边与所述试验瓶的侧壁之间的距离不小于尾砂最大颗粒尺寸,不大于尾砂最大颗粒尺寸的5倍。
进一步地,所述测头包括第一转轴和多个叶片,所述叶片包括外框和实心部;
多个所述外框均连接于所述第一转轴,且多个所述外框围绕所述第一转轴呈散射状分布;
所述实心部与所述外框连接并位于所述外框与所述第一转轴所包围的空间内,所述实心部与所述第一转轴之间形成有镂空结构。
进一步地,所述转子还包括连接头和第二转轴,所述第二转轴的两端分别与所述连接头和所述测头连接,所述连接头与所述流变仪本体连接。
进一步地,所述试验瓶的长度与内径的比值不低于5∶1。
进一步地,还包括旋转座和驱动机构,所述旋转座用于承载处于第一使用状态时的所述试验瓶,所述驱动机构与所述旋转座连接,以带动所述旋转座往复转动。
第二方面,本发明还提供一种尾砂沉降试验方法,采用上述方案所述的尾砂沉降试验装置,包括:
制备待测量尾砂浆并混合:用所述试验瓶制备尾砂浆,用搅拌棒对所述尾砂浆进行搅拌后取出所述搅拌棒,拧紧所述密封盖,采用上下颠倒的方式进行混合后,搁置待用;
编录测量程序:将编写的尾砂静态沉降试验所需的测量制度录入所述流变仪本体的测量程序中,调试至可正常运行状态;
运行测量程序开始试验:安装所述转子,启动编录的所述测量程序,采用上下颠倒的方式混合所述试验瓶内的尾砂浆,打开所述密封盖,将所述试验瓶与所述流变仪本体连接;
待流变仪测量程序运行完毕后,导出试验数据,结束试验程序。
进一步地,所述测量制度包括:测量开始时所述转子的转速从0升至恒定转速,测量过程结束时所述转子的转速从恒定转速降至0,所述转子处于恒定转速时为尾砂的静态沉降性能试验有效数据的采集区域;
所述测量制度还包括设置数据采集频率。
进一步地,所述有效数据包括所述流变仪本体采集的所述转子处于恒定转速时的扭矩数据。
进一步地,还包括:
将时间与所测得的扭矩建立对应关系,绘制扭矩与时间散点图;
采用尾砂沉降性能拟合函数对扭矩与时间散点进行拟合,求解所述尾砂沉降性能拟合函数中的参数的数值;
根据求解的所述尾砂沉降性能拟合函数中的参数的数值和尾砂沉降速率函数,计算尾砂沉降速率与时间一一对应的数据;
绘制尾砂沉降速率与时间散点图,并采用所述尾砂沉降速率函数对其拟合。
本发明提供的一种尾砂沉降试验装置及方法能产生如下有益效果:
在使用上述尾砂沉降试验装置时,可将尾砂与水放入试验瓶形成尾砂浆,视情况可加可不加絮凝剂;随后可用搅拌棒搅拌试验瓶内的尾砂浆;随后可将密封盖扣合在试验瓶上,采用上下颠倒的方式进行混合,上述过程中试验瓶处于第一使用状态;随后打开密封盖,将试验瓶与流变仪本体连接,此时转子与试验瓶同轴设置,试验瓶处于第二使用状态,流变仪本体启动后,转子转动搅拌试验瓶内的尾砂浆,进行试验。
当然,根据实际情况,上述试验过程也可以进行适当调整。
相对于现有技术来说,本发明第一方面提供的尾砂沉降试验装置配置有密封盖,相对于传统试验前仅使用搅拌棒对量筒内的尾砂浆进行搅拌来说,还可以允许试验人员采用上下颠倒多次的方式对尾砂浆进行摇匀,从而使得尾砂浆的均匀性更好。另外试验过程不需人工判断浆体分层液面位置与记录数据,基于流变仪本体所采集试到的验数据频次高,精确度高,试验可重复性能好。
相对于现有技术来说,本发明第二方面提供的尾砂沉降试验方法具有可定量评估尾砂静态沉降性能,更为全面地呈现尾砂静态沉降性能特征等优点。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种尾砂沉降试验装置的结构示意图;
图2为本发明实施例提供的一种转子的结构示意图;
图3为本发明实施例提供的一种试验瓶的结构示意图;
图4为本发明实施例提供的一种密封盖的结构示意图;
图5为本发明实施例提供的可采用上下颠倒多次的方式对尾砂浆进行摇匀的驱动装置的结构示意图;
图6为本发明实施例中需在流变仪内编入的测量制度示意图;
图7为本发明实施例提供的扭矩与时间拟合关系图;
图8为本发明实施例提供的沉降速率与时间关系图。
图标:1-流变仪本体;2-转子;21-测头;211-第一转轴;212-外框;213-实心部;22-连接头;23-第二转轴;3-试验瓶;4-密封盖;5-旋转座;6-驱动机构。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、 “下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明第一方面的实施例在于提供一种尾砂沉降试验装置,如图1至图4所示,包括流变仪本体1、转子2、试验瓶3和密封盖4,转子2与流变仪本体1连接以在流变仪本体1的带动下自转,试验瓶3具有第一使用状态和第二使用状态;当试验瓶3处于第一使用状态时,试验瓶3上扣合有密封盖4或者试验瓶3打开;当试验瓶3处于第二使用状态时,试验瓶3的瓶口与流变仪本体1连接,转子2伸入试验瓶3内并与试验瓶3同轴设置以在盛有尾砂浆的试验瓶3内旋转测量。
在试验前,试验瓶3处于第一使用状态,试验瓶3打开,使用搅拌棒对试验瓶3内的尾砂浆进行搅拌,为进一步使得尾砂浆混合的更加均匀,可以将密封盖4盖设于试验瓶3上,采用上下颠倒的方式进一步混合;随后将试验瓶3调整至第二使用状态,即取下试验瓶3上的密封盖4,将试验瓶3与流变仪本体1连接,此时转子2伸入试验瓶3内且其转动轴线与试验瓶3的轴线重合,对试验瓶3内的尾砂浆进行旋转测量,进行试验。
上述尾砂浆沉降试验装置是基于流变仪研发的适宜于测量尾 砂静态沉降性能的试验装置,与传统的基于量筒测量尾砂浆静态沉降性能的试验装置来说,试验前尾砂浆混合后的均匀性更好,且试验过程中不需要人工判断浆体分层液面位置与记录数据,采集试验数据的频次高,精确度高,试验可重复性能好,适用于掺有絮凝剂或不掺加絮凝剂的尾砂静态沉降性能测试试验。
上述流变仪本体1可以为RST-SST型流变仪。当然,也可以选用其他型号的流变仪。
以下对转子2的结构进行具体说明:
在至少一个实施例中,上述转子2具有以下特性:在同一流体同转速下测得的扭矩值较高,以减小采集数据误差;转子2的有效测量高度较小,大小基本等于转子2的直径,以使转子2可在试验瓶尾砂浆底部旋转测量。
如图2所示,转子2包括位于端部的测头21;测头21的底端与试验瓶3的底壁之间的距离不小于尾砂最大颗粒尺寸,不大于尾砂最大颗粒尺寸的5倍,具体可以不大于尾砂最大颗粒尺寸的1、2、3、4或5倍。
进一步地,测头21的侧边与试验瓶3的侧壁之间的距离不小于尾砂最大颗粒尺寸,不大于尾砂最大颗粒尺寸的5倍,具体可以不大于尾砂最大颗粒尺寸的1、2、3、4或5倍。
而一般地,尾砂最大粒径不到1mm。因此测头21的底端与试验瓶3的底壁之间的距离以及测头21的侧边与试验瓶3的侧壁之间的距离优选为1-3mm,例如测头21的底端与试验瓶3的底壁之间的距离为1mm、2mm或3mm,测头21的侧边与试验瓶3的侧壁之间的距离为1mm、2mm或3mm。
在一些实施例中,如图2所示,测头21包括第一转轴211和多个叶片,叶片可以为两个、三个、四个等,叶片包括外框212和实心部213;多个外框212均连接于第一转轴211,且多个外框212围绕第一转轴211呈散射状分布;实心部213与外框212连接并位于外框212与第一转轴211所包围的空间内,实心部与第一转轴211之间形成有镂空结构,镂空结构能够使得尾砂顺利穿过。
上述测头21相比于传统仅具有边框来说,流变仪本体1采集 的扭矩数据值更大,减小采集试验数据的误差。
在至少一个实施例中,外框212和实心部213采用一体式结构。
上述转子2可以是基于2叶、3叶或4叶Vane型部分镂空式转子的基础上加装实心部213所构成,每片叶片靠近转动轴线的部分呈镂空状态。
当然,转子2也可以为其他基于上述转子形状的其他改装型转子,即凡是满足上述转子2特性的转子结构,均在上述实施例的保护范围内。
具体地,如图2所示,转子2还包括连接头22和第二转轴23,第二转轴23为细长圆柱状,两端分别与连接头22和测头21中的第一转轴211连接,连接头22与流变仪本体1连接,以在流变仪本体1的带动下自转。
上述转子2的材料优选为304钢,转子2表面粗糙度参数Ra不大于3.2μm,硬度不低于18HRC。
以下对试验瓶3进行具体说明:
在一些实施例中,试验瓶3的形状为细长空心圆柱体,试验瓶3的长度与内径的比值不低于5∶1,具体可以为5∶1、6∶1、7∶1、8∶1或9∶1。
试验瓶3的高度可以为180mm-220mm,具体可以为180mm、190mm、200mm、210mm或220mm。
为便于观察尾砂的沉降过程,试验瓶3采用透明材质,如塑料、玻璃等。
另外,试验瓶3与流变仪本体1之间的连接可以为卡接,也可以为螺纹连接等,即凡是能够实现试验瓶3与流变仪本体1之间连接的结构均可,优选便于二者连接的结构,目的在于使得转子2伸入试验瓶3内且其转动轴线与试验瓶3的轴线重合。
试验瓶3与密封盖4之间也可以采用多种连接方式,例如螺纹连接、插接等,即凡是能够实现二者密封作用的结构都可以,优选便于二者拆装的连接结构。
在至少一个实施例中,试验瓶3的外壁上可以附加刻度尺以便于试验人员观察并人工记录尾砂浆在试验瓶3沉降过程中分 层液面的位置,便于对比研究。
可以理解的是,简单的改变盛放尾砂浆的试验瓶3的形状、材质,颜色等要素,理应在上述实施例的保护范围内。
以下对尾砂沉降试验装置的另一类实施例进行具体说明:
在一些实施例中,如图5所示,尾砂沉降试验装置还包括旋转座5和驱动机构6,旋转座5用于承载处于第一使用状态时的试验瓶3,驱动机构6与旋转座5连接,以带动旋转座5往复转动。
当试验瓶3处于第一使用状态时,在试验前,可先通过驱动机构6驱动旋转座5往复转动,使得旋转座5上的试验瓶3能够同步往复转动,起到晃动试验瓶3的目的,从而使得试验前尾砂浆混合的更加的均匀,节省人力,避免晃动过程中造成试验人员手腕疲劳。
需要说明的是,凡是能够带动旋转座5往复转动的结构都可以是上述实施例所提及的驱动机构6,例如驱动机构6为转动电机等做旋转运动的结构,或者驱动机构6为液压缸、气压缸等做直线运动的机构与传动组件的组合,传动组件能够将直线运动机构的直线运动转化的旋转运动。
在使用时,每一个往复驱动机构6可带动旋转座5顺时针转动180°再逆时针转动180°,实现以上下颠倒的方式来混合试验瓶3内的尾砂浆。
本发明第二方面的实施例在于提供一种尾砂沉降试验方法,本发明第二方面的实施例提供的尾砂沉降试验方法采用上述尾砂沉降试验装置,包括:
制备待测量尾砂浆并混合:用试验瓶3制备尾砂浆,用搅拌棒对尾砂浆进行搅拌后取出搅拌棒,拧紧密封盖4,采用上下颠倒的方式进行混合后,搁置待用;
编录测量程序:将编写的尾砂静态沉降试验所需的测量制度录入流变仪本体1的测量程序中,调试至可正常运行状态;
运行测量程序开始试验:安装转子2,启动编录的测量程序,采用上下颠倒的方式混合试验瓶3内的尾砂浆,打开密封盖4,将试验瓶3与流变仪本体1连接;
待流变仪测量程序运行完毕后,导出试验数据,结束试验程序。
上述尾砂沉降试验方法具有可定量评估尾砂静态沉降性能,更为全面地呈现尾砂静态沉降性能特征等优点。
需要说明的是,尾砂不同于水泥等胶凝材料,没有胶凝性能,不需要考虑试验过程中触变性能对静态沉降性能采集数据的影响。
另外,将测量制度录入流变仪本体1的测量程序中的教学内容可通过流变仪本体1的说明书获得,即本领域技术人员可通过观看说明书知晓如何进行测量制度的录入。
具体地,在制备待测量尾砂浆并混合步骤中,用试验瓶3称量尾砂和水来制备尾砂浆,或者用试验瓶3称量尾砂、水和絮凝剂来制备尾砂浆。
另外,尾砂浆充分搅拌的判断标准为:搅拌至尾砂浆颜色均匀一致。尾砂浆上下颠倒混合均匀的判断标准为:上下颠倒试验瓶3的过程中试验瓶3的底部和顶部没有尾砂沉积不动。
在运行测量程序开始试验步骤中,再次对尾砂浆进行上下颠倒混合,然后打开密封盖4后,再将试验瓶3与所述流变仪本体1连接;或者将试验瓶3与旋转座5连接,开启驱动机构6,上下颠倒混合尾砂浆后再打开密封盖4,再将试验瓶3与所述流变仪本体1连接,然后进行试验。尾砂浆充分搅拌的判断标准以及上下颠倒混合均匀的判断标准同制备待测量尾砂浆并混合步骤。
另外,在上述步骤中尾砂静态沉降试验可自动进行,流变仪本体1开始自动采集有效试验数据,通过程序界面可观察到流变仪采集数据过程。
在编录测量程序步骤中,如图6所示,测量制度的特点在于:测量开始时转子2的转速从0升至恒定转速,测量过程结束时转子2的转速从恒定转速降至0,转子2处于恒定转速时为尾砂的静态沉降性能试验有效数据的采集区域;测量制度还包括设置数据采集频率。
可以理解的是,上述恒定转速可理解为转子2转速在极小的范围内来回震荡,具体地,震荡范围可以为设定转速的0.98-1.02 倍。
在上述实施例的基础上,上述数据包括转子2的扭矩数据。具体地,流变试验一旦启动,流变仪便开始采集扭矩数据。在后期数据处理时,通过采集到的完整版数据人工判断并摘取恒定转速下的扭矩、时间的数据作为有效数据,进行计算。
在上述实施例的基础上,尾砂沉降试验方法还包括:
将时间与所测得的扭矩建立对应关系,绘制扭矩与时间散点图;
采用尾砂沉降性能拟合函数对扭矩与时间散点进行拟合,求解尾砂沉降性能拟合函数中的参数的数值;
根据求解的尾砂沉降性能拟合函数中的参数的数值和尾砂沉降速率函数,计算尾砂沉降速率与时间一一对应的数据;
绘制尾砂沉降速率与时间散点图,并采用尾砂沉降速率函数对其拟合。
其中,尾砂沉降性能拟合函数的特点在于:该函数描述的扭矩与时间关系为单调增函数且存在水平渐近线,随着时间增长,扭矩值逐渐靠近渐近线但不能穿过渐近线。
尾砂沉降速率函数的特点在于:该函数为尾砂沉降性能拟合函数的导函数,该函数描述的尾砂沉降速率与时间关系为单调减函数,随着时间的增长,尾砂沉降速率逐渐接近于零但不能等于或小于零。
上述尾砂沉降性能拟合函数以及尾砂沉降速率函数均可以有多种,以下以两个实施例对上述尾砂沉降性能拟合函数进行具体说明:
实施例一:
在本实施例一中,尾砂沉降性能拟合函数为:
式中:T为扭矩,t为时间,t>0,a1和b1为尾砂沉降性能拟合函数的参数,且a1>0,b1>0。
在本实施例一中,尾砂沉降速率函数为:
式中:v为尾砂沉降速率。
在上述实施例一的尾砂沉降性能拟合函数中,也可以采用线性拟合的方式,即将扭矩T与时间的倒数1/t进行线性拟合,进而求解尾砂沉降性能拟合函数的参数,上述实施例一中直接给出的是将扭矩T与时间t进行非线性拟合,这只是求解参数的拟合方式不同,理应在本实施例的保护范围内。
实施例二:
在本实施例二中,尾砂沉降性能拟合函数为:
T=b2arctan[k(t-a2)]+c2
式中:T为扭矩,t为时间,a2、b2、c2和k为尾砂沉降性能拟合函数的参数,且a2>0,b2>0,c2>0,k>0。
在本实施例二中,尾砂沉降速率函数为:
式中:v为尾砂沉降速率。
需要说明的是,上述两个实施例中具体列举了两种尾砂沉降性能拟合函数以及两种尾砂沉降速率函数,如果有其他的不同于上述两个实施例的函数但符合两个实施例的函数特点描述,理应在本实施例的保护范围内。
以下以一个具体实施例对上述函数的求解过程进行具体说明:
所使用的原材料包括尾砂、水。未添加絮凝剂。其中所用尾砂密度为3.00g/cm3,容重为1.73g/cm3,孔隙率为42.3%。
所使用的尾砂浆配比为:尾砂浓度28%。
所采用的测量制度为:转速从0升到恒定转速用时5s,恒定转速为9.55rpm,转速恒定阶段持续时间为10min,转速从恒定转速下降至0用时5s。
在上述尾砂沉降试验装置中,恒定转速表现为在极小的范围内转速来回震荡,即当实际转速超过设定的恒定转速时,转子2 转速自动降低;当实际转速低于设定的恒定转速时,转子2转速自动升高。精密的流变仪在于能缩小转速震荡的范围,但不能改变转速震荡的规律。
选择作为尾砂沉降性能拟合函数,针对采集的扭矩数据利用Origin软件进行非线性拟合,拟合结果如图7所示。此过程也可利用Matlab软件等具有非线性拟合功能的工具进行。
基于上述选定的尾砂沉降性能拟合函数计算参数b1为3.39981;
根据尾砂沉降速率函数和参数b1、采集的时间t的数据,计算与时间t一一对应的尾砂沉降速率v的数据。
根据计算得到的时间t与尾砂沉降速率v的数据,绘制尾砂沉降速率与时间关系图像,如图8所示。
扭矩与时间散点拟合图(图7)、尾砂沉降速率与时间图(图8)、尾砂沉降性能拟合函数T=0.10089-3.39981/t和尾砂沉降速率函数v=3.39981/t2共同作为尾砂静态沉降性能评价结果。
综上所述,上述实施例所提供的尾砂沉降试验装置及方法至少具有以下优点:
1、试验前尾砂浆混合的均匀性更好。上述实施例所使用的试验瓶3为透明细长空心圆柱型试验瓶,密封盖4密封性能良好。为使得尾砂浆的均匀性良好,上述实施例中先用搅拌棒进行搅拌,待搅拌至尾砂浆颜色均匀一致后,取出搅拌棒,拧紧密封盖4,上下颠倒多次将尾砂浆摇匀。这种方式操作要比仅利用搅拌棒搅拌尾砂浆的均匀性好得多。这可以从上下颠倒试验瓶3的过程中很明显地观察出来,即使搅拌棒搅拌的时间长,上下颠倒试验瓶3的前几次都能明显观察到试验瓶3的底部有尾砂沉积不动,需多次上下颠倒摇匀后,才能使得试验瓶3的底部和顶部没有尾砂沉积。
2、试验过程中可以高频自动采集尾砂沉降试验数据。通过人工记录的方式经时记录量筒上的刻度数值,即使每20秒记录一 次实验数据,对试验人员的观察能力、头脑反应速度、数据记录速度的要求也很高。而上述实施例依靠流变仪本体1高频自动采集试验数据,即使配置很低的流变仪本体1也能每秒采集1次实验数据,高配置的流变仪本体1甚至能每秒采集百次以上的实验数据。因此上述实施例所提供的尾砂沉降试验装置及方法大大提升了实验数据的采集频率与采集能力,也降低了试验人员的工作量。
3、采集到的试验数据的精确度更高。尾砂静态沉降过程中分层液面经常模糊不清,难以短时间内判断清楚有效的分层液面,不同的试验人员往往对模糊不清的分层液面有不同的判断结果。即使能够快速清楚地分辨分层液面的位置,但限于量筒上最小刻度数值1mm的精确度,也无法进一步提高该试验的精确度。而流变仪本体1采集的扭矩、转速等数据,其有效数字位数可达五、六位,高配置的流变仪本体1能采集到的数据的精确度还会更高。因此,上述实施例所提供的尾砂沉降试验装置及方法极大地提升了采集的试验数据的精确度。
4、试验所用尾砂量少,试验准备过程更为便捷。上述实施例的试验瓶3比现有的尾砂静态沉降试验所用量筒体积可以小很多,试验所需要的尾砂与水的量会少很多,试验准备过程会更为便捷。
5、可定量评估尾砂静态沉降性能。
6、可函数描述、多指标图像显示,更为全面地呈现尾砂静态沉降性能特征。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种尾砂沉降试验装置,其特征在于,包括流变仪本体(1)、转子(2)、试验瓶(3)和密封盖(4),所述转子(2)与所述流变仪本体(1)连接以在所述流变仪本体(1)的带动下自转,所述试验瓶(3)具有第一使用状态和第二使用状态;
    当所述试验瓶(3)处于第一使用状态时,所述试验瓶(3)上扣合有所述密封盖(4)或者所述试验瓶(3)打开;
    当所述试验瓶(3)处于第二使用状态时,所述试验瓶(3)的瓶口与所述流变仪本体(1)连接,所述转子(2)伸入所述试验瓶(3)内并与所述试验瓶(3)同轴设置以在盛有尾砂浆的试验瓶(3)内旋转测量。
  2. 根据权利要求1所述的尾砂沉降试验装置,其特征在于,所述转子(2)包括位于端部的测头(21);
    所述测头(21)的底端与所述试验瓶(3)的底壁之间的距离不小于尾砂最大颗粒尺寸,不大于尾砂最大颗粒尺寸的5倍;
    所述测头(21)的侧边与所述试验瓶(3)的侧壁之间的距离不小于尾砂最大颗粒尺寸,不大于尾砂最大颗粒尺寸的5倍。
  3. 根据权利要求2所述的尾砂沉降试验装置,其特征在于,所述测头(21)包括第一转轴(211)和多个叶片,所述叶片包括外框(212)和实心部(213);
    多个所述外框(212)均连接于所述第一转轴(211),且多个所述外框(212)围绕所述第一转轴(211)呈散射状分布;
    所述实心部(213)与所述外框(212)连接并位于所述外框(212)与所述第一转轴(211)所包围的空间内,所述实心部与所述第一转轴(211)之间形成有镂空结构。
  4. 根据权利要求2所述的尾砂沉降试验装置,其特征在于,所述转子(2)还包括连接头(22)和第二转轴(23),所述第二转轴(23)的两端分别与所述连接头(22)和所述测头(21)连接,所述连接头(22)与所述流变仪本体(1)连接。
  5. 根据权利要求1所述的尾砂沉降试验装置,其特征在于,所述试验瓶(3)的长度与内径的比值不低于5∶1。
  6. 根据权利要求1所述的尾砂沉降试验装置,其特征在于,还包括旋转座(5)和驱动机构(6),所述旋转座(5)用于承载处于第一使用状态时的所述试验瓶(3),所述驱动机构(6)与所述旋转座(5)连接,以带动所述旋转座(5)往复转动。
  7. 一种尾砂沉降试验方法,其特征在于,采用如权利要求1-6任一项所述的尾砂沉降试验装置,包括:
    制备待测量尾砂浆并混合:用所述试验瓶(3)制备尾砂浆,用搅拌棒对所述尾砂浆进行搅拌后取出所述搅拌棒,拧紧所述密封盖(4),采用上下颠倒的方式进行混合后,搁置待用;
    编录测量程序:将编写的尾砂静态沉降试验所需的测量制度录入所述流变仪本体(1)的测量程序中,调试至可正常运行状态;
    运行测量程序开始试验:安装所述转子(2),启动编录的所述测量程序,采用上下颠倒的方式混合所述试验瓶(3)内的尾砂浆,打开所述密封盖(4),将所述试验瓶(3)与所述流变仪本体(1)连接;
    待流变仪测量程序运行完毕后,导出试验数据,结束试验程序。
  8. 根据权利要求7所述的尾砂沉降试验方法,其特征在于,所述测量制度包括:测量开始时所述转子(2)的转速从0升至恒定转速,测量过程结束时所述转子(2)的转速从恒定转速降至0,所述转子(2)处于恒定转速时为尾砂的静态沉降性能试验有效数据的采集区域;
    所述测量制度还包括设置数据采集频率。
  9. 根据权利要求8所述的尾砂沉降试验方法,其特征在于,所述有效数据包括所述流变仪本体(1)采集的所述转子(2)处于恒定转速时的扭矩数据。
  10. 根据权利要求9所述的尾砂沉降试验方法,其特征在于,还包括:
    将时间与所测得的扭矩建立对应关系,绘制扭矩与时间散点图;
    采用尾砂沉降性能拟合函数对扭矩与时间散点进行拟合,求 解所述尾砂沉降性能拟合函数中的参数的数值;
    根据求解的所述尾砂沉降性能拟合函数中的参数的数值和尾砂沉降速率函数,计算尾砂沉降速率与时间一一对应的数据;
    绘制尾砂沉降速率与时间散点图,并采用所述尾砂沉降速率函数对其拟合。
PCT/CN2023/117123 2022-09-06 2023-09-06 一种尾砂沉降试验装置及方法 WO2024051711A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211081245.2A CN115165688B (zh) 2022-09-06 2022-09-06 一种尾砂沉降试验装置及方法
CN202211081245.2 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024051711A1 true WO2024051711A1 (zh) 2024-03-14

Family

ID=83480531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117123 WO2024051711A1 (zh) 2022-09-06 2023-09-06 一种尾砂沉降试验装置及方法

Country Status (2)

Country Link
CN (1) CN115165688B (zh)
WO (1) WO2024051711A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115165688B (zh) * 2022-09-06 2022-12-13 矿冶科技集团有限公司 一种尾砂沉降试验装置及方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616831A (en) * 1995-04-21 1997-04-01 Alcan International Limited Process and apparatus for controlling gravity settling system
CA2820665A1 (en) * 2012-06-21 2013-12-21 Suncor Energy Inc. Sub-aerial deposition and handling techniques for dewatering fine tailings
CN203658214U (zh) * 2014-01-07 2014-06-18 长沙矿山研究院有限责任公司 浆体沉降性能测试装置
US20160356691A1 (en) * 2015-06-03 2016-12-08 Tailpro Consulting Spa Apparatus and method for static sedimentation tests comprising a plurality of sedimentation cylinders, which are subject to the same mixing conditions
CN109580922A (zh) * 2018-12-07 2019-04-05 昆明理工大学 一种全尾砂动态剪切作用下连续浓密测试系统及测试方法
CN110542626A (zh) * 2019-09-10 2019-12-06 北京科技大学 一种基于流变仪的尾矿脱水性能检测装置及使用方法
CN110618061A (zh) * 2018-06-20 2019-12-27 中国石油化工股份有限公司 一种携砂流变仪用转子、携砂流变仪及方法
CN211652440U (zh) * 2020-03-09 2020-10-09 北京科氏力科学仪器有限公司 高温高压动态加重泥浆沉降稳定性测定仪
CN212045343U (zh) * 2020-03-27 2020-12-01 江苏昆腾新材料科技有限公司 一种用于建筑混凝土生产的絮凝剂防沉淀装置
CN113109515A (zh) * 2021-04-14 2021-07-13 北京科技大学 三段式全尾砂絮凝沉降与浓密脱水实验研究装置
CN214503263U (zh) * 2021-03-16 2021-10-26 滇西科技师范学院 实验室用矿浆絮凝沉降检测装置
CN114993898A (zh) * 2022-04-18 2022-09-02 金诚信矿业管理股份有限公司 一种尾砂智能浓密实验系统及方法
CN115165689A (zh) * 2022-09-06 2022-10-11 矿冶科技集团有限公司 一种尾砂沉降性能定量评价方法
CN115165688A (zh) * 2022-09-06 2022-10-11 矿冶科技集团有限公司 一种尾砂沉降试验装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205665141U (zh) * 2016-03-31 2016-10-26 安徽理工大学 一种实验室用聚团沉降装置
CN211978602U (zh) * 2020-02-25 2020-11-20 清华大学 一种测量净浆与砂浆流变性能的流变仪转子
CN113049447A (zh) * 2021-03-10 2021-06-29 河南理工大学 一种全尾砂膏体结构流变学实验系统及方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616831A (en) * 1995-04-21 1997-04-01 Alcan International Limited Process and apparatus for controlling gravity settling system
CA2820665A1 (en) * 2012-06-21 2013-12-21 Suncor Energy Inc. Sub-aerial deposition and handling techniques for dewatering fine tailings
CN203658214U (zh) * 2014-01-07 2014-06-18 长沙矿山研究院有限责任公司 浆体沉降性能测试装置
US20160356691A1 (en) * 2015-06-03 2016-12-08 Tailpro Consulting Spa Apparatus and method for static sedimentation tests comprising a plurality of sedimentation cylinders, which are subject to the same mixing conditions
CN110618061A (zh) * 2018-06-20 2019-12-27 中国石油化工股份有限公司 一种携砂流变仪用转子、携砂流变仪及方法
CN109580922A (zh) * 2018-12-07 2019-04-05 昆明理工大学 一种全尾砂动态剪切作用下连续浓密测试系统及测试方法
CN110542626A (zh) * 2019-09-10 2019-12-06 北京科技大学 一种基于流变仪的尾矿脱水性能检测装置及使用方法
CN211652440U (zh) * 2020-03-09 2020-10-09 北京科氏力科学仪器有限公司 高温高压动态加重泥浆沉降稳定性测定仪
CN212045343U (zh) * 2020-03-27 2020-12-01 江苏昆腾新材料科技有限公司 一种用于建筑混凝土生产的絮凝剂防沉淀装置
CN214503263U (zh) * 2021-03-16 2021-10-26 滇西科技师范学院 实验室用矿浆絮凝沉降检测装置
CN113109515A (zh) * 2021-04-14 2021-07-13 北京科技大学 三段式全尾砂絮凝沉降与浓密脱水实验研究装置
CN114993898A (zh) * 2022-04-18 2022-09-02 金诚信矿业管理股份有限公司 一种尾砂智能浓密实验系统及方法
CN115165689A (zh) * 2022-09-06 2022-10-11 矿冶科技集团有限公司 一种尾砂沉降性能定量评价方法
CN115165688A (zh) * 2022-09-06 2022-10-11 矿冶科技集团有限公司 一种尾砂沉降试验装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FERNANDO, C. ET AL.: "Audit industrial thickeners with new on-line instrumentation", POWDER TECHNOLOGY, vol. 314, 30 March 2017 (2017-03-30), pages 680 - 689, XP085008429, ISSN: 0032-5910, DOI: 10.1016/j.powtec.2017.03.040 *
HONG -MEI LU, ZHONG HONG: "Application of New High-molecular Flocculant in Red Mud Settlement──A Study", MINING AND METALLURGICAL ENGINEERING, vol. 22, no. 4, 30 December 2002 (2002-12-30), pages 47 - 50, XP093147460 *

Also Published As

Publication number Publication date
CN115165688A (zh) 2022-10-11
CN115165688B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2024051711A1 (zh) 一种尾砂沉降试验装置及方法
Banfill Rheological methods for assessing the flow properties of mortar and related materials
WO2010012975A1 (en) Flow-through apparatus for testing particle laden fluids and methods of making and using same
CN206420877U (zh) 一种钢纤维混凝土中纤维分散性和体积率试验设备
Norton et al. The measurement of particle sizes in clays
CN210410521U (zh) 一种面漆原料预处理设备
CN202895470U (zh) 浆料搅拌机及浆料实时监控系统
Gerland et al. A simulation-based approach to evaluate objective material parameters from concrete rheometer measurements
CN106570304A (zh) 一种获取沥青混合集料比表面积的方法
Mork A Presentation of the BML Viscometer
CN208060249U (zh) 一种大豆检测用升降式分样器
CN114858548A (zh) 一种黏土液塑限联合测定方法及测定系统
CN211978602U (zh) 一种测量净浆与砂浆流变性能的流变仪转子
CN209727691U (zh) 一种稠度测试仪
CN113832808A (zh) 一种稀浆混合料拌和装置及方法
Feys et al. An overview of RILEM TC MRP Round–Robin testing of concrete and mortar rheology in bethune, France, May 2018
CN208060330U (zh) 一种具有粘度测试功能的锂离子电池浆料配制装置
CN102590048B (zh) 用于颗粒分析实验密度计法搅拌均匀土粒悬液的装置
WO2005029045A1 (en) A method of measuring the consistency of a mixture as well as an apparatus for carrying out the method
CN213985927U (zh) 一种分散剂等电点测量设备
CN207231955U (zh) 料浆细度快速测试装置
CN220231191U (zh) 一种土壤检测用多功能土壤稀释装置
CN218782287U (zh) 一种膨润土水化性能的全自动检测装置
CN219320293U (zh) 一种用于渣土改良性能评价测试装置
CN213316617U (zh) 一种负压筛析仪筛盖清理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862405

Country of ref document: EP

Kind code of ref document: A1