WO2024051322A1 - 一种三相ac-dc双向变换电路 - Google Patents

一种三相ac-dc双向变换电路 Download PDF

Info

Publication number
WO2024051322A1
WO2024051322A1 PCT/CN2023/104843 CN2023104843W WO2024051322A1 WO 2024051322 A1 WO2024051322 A1 WO 2024051322A1 CN 2023104843 W CN2023104843 W CN 2023104843W WO 2024051322 A1 WO2024051322 A1 WO 2024051322A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
inductor
phase
switch
capacitor
Prior art date
Application number
PCT/CN2023/104843
Other languages
English (en)
French (fr)
Inventor
向小路
李俊敏
Original Assignee
深圳深源技术能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳深源技术能源有限公司 filed Critical 深圳深源技术能源有限公司
Publication of WO2024051322A1 publication Critical patent/WO2024051322A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of power conversion technology, and more specifically to a three-phase AC-DC bidirectional conversion circuit.
  • AC and DC bidirectional conversion circuits are power frequency AC and DC mutual conversion circuits, making the power conversion system simpler and more efficient.
  • AC and DC bidirectional conversion circuits are widely used in photovoltaic energy storage, APF and many other applications.
  • photovoltaics, wind power, integrated charging and storage have been combined with energy storage, and they have developed towards high power.
  • high-power three-phase AC and DC conversion and its applications are becoming more and more widespread.
  • the current industry still uses the traditional T-type three-level or I-type three-level technology to achieve bidirectional conversion of AC and DC.
  • LCL filters Due to industry habits and limitations of high-voltage semiconductors, the switching frequency rarely exceeds 20kHz, whether in power inductors or EMC filtering. There are many challenges, such as large size, high cost, and difficulty in filtering; especially in inverter three-level filtering into standard sine waves. In order to achieve filtering at low cost, the industry usually uses LCL filters. The second resonance of LCL filters is very It is easy to cause control loop oscillation, especially when multiple machines are connected in parallel, the impact of the secondary resonance of the LCL filter is more obvious, and oscillation is more likely to occur, bringing more challenges to loop control.
  • the technical problem to be solved by this application is to provide a three-phase AC-DC bidirectional conversion circuit that can increase the switching frequency, realize low-cost filtering, reduce input and output voltage and current ripples, and reduce control difficulty.
  • this application provides a three-phase AC-DC bidirectional conversion circuit, including three boost circuits with the same structure and one output capacitor circuit, wherein each boost circuit includes an inductor circuit and a switch circuit, and the inductor
  • the circuit includes a first inductor and an auto-coupling inductor.
  • the switching circuit includes eight switch tubes and four diodes. Each four switch tubes are connected in series to form a bridge arm. Two bridge arms are connected in parallel and connected to one side of the output capacitor circuit. Each two diodes are connected in series and connected in parallel with the two switching tubes located in the middle of one bridge arm, and the connection point between the two diodes connected in series is connected to the output capacitor circuit.
  • the same name terminal of the primary winding of the auto-coupling inductor and the same name terminal of the secondary winding Both ends are connected to one end of the first inductor.
  • the different ends of the primary winding and the same end of the secondary winding of the auto-coupling inductor are respectively connected to the midpoint of a bridge arm.
  • the other side of the output capacitor circuit serves as a three-phase AC-DC
  • the second external side of the bidirectional conversion circuit, the other end of the first inductor in the three-way boost circuit serves as the first external side of the three-phase AC-DC bidirectional conversion circuit.
  • the output capacitor circuit includes a fourth capacitor and a fifth capacitor.
  • the fourth capacitor and the fifth capacitor are connected in series and connected in parallel with the bridge arm of the three-way boost circuit.
  • the fourth capacitor and the fifth capacitor are connected in series.
  • the connection point of the capacitor is the midpoint of the output capacitor circuit and is connected to the connection point between the two diodes connected in series.
  • the three-phase AC-DC bidirectional conversion circuit also includes an EMI filter circuit
  • the EMI filter circuit includes a first capacitor, a second capacitor and a third capacitor, the first capacitor, the second capacitor
  • the third capacitor is connected in parallel between the first external side of the three-phase AC-DC bidirectional conversion circuit and the midpoint of the output capacitor circuit.
  • the switching tube is selected from MOSFET, IGBT tube, GaN tube or SiC power tube.
  • this application also provides a three-phase AC-DC bidirectional conversion circuit, including three boost circuits with the same structure and one output capacitor circuit, wherein each of the boost circuits includes an inductor circuit and a switch circuit,
  • the inductor circuit includes a first inductor and an auto-coupling inductor.
  • the switch circuit includes four switch tubes, a first bidirectional switch and a second bidirectional switch. Each two switch tubes are connected in series to form a bridge arm.
  • the same terminal of the primary winding of the auto-coupling inductor and the different terminal of the secondary winding are both connected to one end of the first inductor, the different terminal of the primary winding of the auto-coupling inductor and the different terminal of the secondary winding
  • the ends with the same name are respectively connected to the first bidirectional switch and the second bidirectional switch.
  • the other ends of the first bidirectional switch and the second bidirectional switch are connected to the output capacitor circuit.
  • the midpoints of the two bridge arms are respectively connected to the auto-coupling inductor and the first bidirectional switch.
  • the other side of the output capacitor circuit serves as the second external side of the three-phase AC-DC bidirectional conversion circuit.
  • the first inductor in the three-way boost circuit The other end serves as the first external side of the three-phase AC-DC bidirectional conversion circuit.
  • this application also provides a three-phase AC-DC bidirectional conversion circuit, including three boost circuits with the same structure and one output capacitor circuit, wherein each boost circuit includes an inductor circuit and a switch circuit,
  • the inductor circuit includes a first inductor and an auto-coupling inductor.
  • the switch circuit includes four switch tubes. Each two switch tubes are connected in series to form a bridge arm. The two bridge arms are connected in parallel and connected to one side of the output capacitor circuit.
  • the same-name terminal of the primary winding of the auto-coupling inductor and the different-name terminal of the secondary winding are both connected to one end of the first inductor.
  • the different-name terminal of the primary winding and the same-name terminal of the secondary winding of the auto-coupling inductor are respectively connected to the midpoint of a bridge arm.
  • the other side of the output capacitor circuit serves as the second external side of the three-phase AC-DC bidirectional conversion circuit
  • the other end of the first inductor in the three-way boost circuit serves as the first external side of the three-phase AC-DC bidirectional conversion circuit .
  • the output capacitor circuit includes a sixth capacitor, and the sixth capacitor is connected in parallel with the bridge arms of the three-way boost circuit.
  • the switching tube of the boost circuit in the three-phase AC-DC bidirectional conversion circuit of this application can realize the two-way flow of energy.
  • the three-way boost circuit adopts three-phase interleaved technology, and the three-phase input and output currents are 120° apart.
  • the input and output current fluctuations of the three-phase boost circuit are complementary, making the input and output voltage and current ripples of the three-phase AC-DC bidirectional conversion circuit smaller, thereby achieving good circuit performance
  • each boost circuit is equipped with a first inductor and auto-coupling inductors, through staggered parallel connection, the switching frequency can be increased, low-cost filtering can be achieved, control difficulty can be reduced, and input and output voltage and current ripples can be further reduced.
  • Each boost circuit can also be auto-coupled through interleaving.
  • the two branches where the inductor is located can achieve equal current flow regardless of whether the energy flows in the forward or reverse direction, which can prevent uneven heating of the branch devices and enable the circuit to operate normally.
  • Figure 1 is a circuit schematic diagram of the first embodiment of the three-phase AC-DC bidirectional conversion circuit of the present application.
  • Figure 2 is a circuit schematic diagram of the second embodiment of the three-phase AC-DC bidirectional conversion circuit of the present application.
  • Figure 3 is a circuit schematic diagram of the third embodiment of the three-phase AC-DC bidirectional conversion circuit of the present application.
  • FIG. 1 is a circuit schematic diagram of a first embodiment of a three-phase AC-DC bidirectional conversion circuit 10 of the present application.
  • the three-phase AC-DC bidirectional conversion circuit 10 includes three boost circuits with the same structure and one output capacitor circuit, wherein each of the boost circuits includes an inductor circuit and a switch circuit,
  • the inductor circuit includes a first inductor and an auto-coupling inductor.
  • the switch circuit includes eight switch tubes and four diodes. Each four switch tubes are connected in series to form a bridge arm. Two bridge arms are connected in parallel and connected to the output capacitor circuit.
  • every two diodes are connected in series and connected in parallel with the two switching tubes located in the middle of one bridge arm, and the connection point between the two diodes connected in series is connected to the output capacitor circuit.
  • the same terminal of the primary winding of the auto-coupling inductor and the secondary winding The different ends of the auto-coupling inductor primary winding and the same end of the secondary winding are connected to the midpoint of a bridge arm respectively.
  • the other side of the output capacitor circuit serves as a three-phase
  • the second external side of the AC-DC bidirectional conversion circuit 10 and the other end of the first inductor in the three-way boost circuit serve as the first external side of the three-phase AC-DC bidirectional conversion circuit 10 .
  • both the first external side and the second external side in the three-phase AC-DC bidirectional conversion circuit 10 of the present application can be connected to a load and an AC power supply.
  • the first external side When the first external side is used as the AC side, it can be connected to an external AC power supply.
  • the second external side serves as the DC output side and can be connected to an external load.
  • the second external side When the second external side serves as the AC side, it can be connected to an AC power supply.
  • the first external side serves as the DC output side and can be connected to an external load.
  • each boost circuit is equipped with a first inductor and an auto-coupling inductor.
  • the switching frequency can be increased, low-cost filtering can be achieved, control difficulty can be reduced, stress can be reduced, and input and output voltage and current ripples can be reduced.
  • the three-way boost circuit adopts three-phase interleaving technology.
  • the three-phase input and output currents are 120° different.
  • the input and output current fluctuations of the three-phase boost circuit are complementary, which further makes the input and output currents of the three-phase AC-DC bidirectional conversion circuit 10
  • the ripple is small, and the staggered method can also make the two branches where the auto-coupling inductor is located can achieve equal current flow regardless of whether the energy flows in the forward or reverse direction, which can prevent uneven heating of the branch devices and prevent the branch components from being heated due to branch failure. Uneven current in the circuit triggers overcurrent protection, allowing the circuit to operate normally, thereby achieving the purpose of improving circuit performance.
  • the three boost circuits with the same structure are respectively a first boost circuit, a second boost circuit and a third boost circuit, wherein the inductor circuit in the first boost circuit includes a first inductor.
  • L1, auto-coupling inductor L2 its switching circuit includes the first switching tube Q1, the second switching tube Q2, the third switching tube Q3, the fourth switching tube Q4, the fifth switching tube Q5, the sixth switching tube Q6, the seventh switch tube Q7, the eighth switching tube Q8, the first diode D1, the second diode D2, the third diode D3 and the fourth diode D4.
  • the first switching tube Q1 and the second switching tube Q2 , the midpoint of the bridge arm formed by the series connection of the third switching tube Q3 and the fourth switching tube Q4 is connected to the opposite end of the primary winding of the auto-coupling inductor L2.
  • the third switching tube Q3 and the fourth switching tube Q4 in the bridge arm are located in the middle.
  • the first diode D1 and the second diode D2 are connected in series and connected in parallel with the series-connected third switching tube Q3 and the fourth switching tube Q4. The connection point between the first diode D1 and the second diode D2 is connected.
  • the output capacitor circuit that is, the anode of the first diode D1 and the cathode of the second diode D2 are connected to the output capacitor circuit; the fifth switch tube Q5, the sixth switch tube Q6, the seventh switch tube Q7 and The midpoint of the bridge arm formed by the series connection of the eighth switch tube Q8 is connected to the same terminal of the secondary winding of the auto-coupling inductor L2.
  • the seventh switch tube Q7 and the eighth switch tube Q8 are located in the middle of the bridge arm.
  • the third diode D3 and The fourth diode D4 is connected in series and connected in parallel with the series-connected seventh switching tube Q7 and eighth switching tube Q8.
  • connection point between the third diode D3 and the fourth diode D4 is connected to the output capacitor circuit, that is, the third The anode of the diode D3 and the cathode of the fourth diode D4 are connected to the output capacitor circuit.
  • the inductor circuit in the second boost circuit includes a first inductor L3 and an auto-coupling inductor L4, and its switch circuit includes a ninth switch Q9, a tenth switch Q10, an eleventh switch Q11, and a twelfth switch Q12.
  • the first and second ends are connected.
  • the eleventh switch Q11 and the twelfth switch Q12 in the bridge arm are located in the middle.
  • the fifth diode D5 and the sixth diode D6 are connected in series with the eleventh switch Q11 and the twelfth switch Q12 in series. Twelve switching tubes Q12 are connected in parallel, and the connection point between the fifth diode D5 and the sixth diode D6 is connected to the output capacitor circuit, that is, the anode of the fifth diode D5 and the cathode of the sixth diode D6 are connected.
  • the midpoint of the bridge arm formed by the series connection of the thirteenth switching tube Q13, the fourteenth switching tube Q14, the fifteenth switching tube Q15 and the sixteenth switching tube Q16 is connected in series with the secondary winding of the auto-coupling inductor L4
  • the fifteenth switching tube Q15 and the sixteenth switching tube Q16 in the bridge arm are located in the middle
  • the seventh diode D7 and the eighth diode D8 are connected in series with the series connected fifteenth switching tube Q15 and
  • the sixteenth switch Q16 is connected in parallel, and the connection point between the seventh diode D7 and the eighth diode D8 is connected to the output capacitor circuit, that is, the anode of the seventh diode D7 and the cathode of the eighth diode D8 are connected. Then connect the output capacitor circuit.
  • the inductor circuit in the third boost circuit includes a first inductor L5 and an auto-coupling inductor L6, and its switch circuit includes a seventeenth switch Q17, an eighteenth switch Q18, a nineteenth switch Q19, a twentieth switch tube Q20, the twenty-first switching tube Q21, the twenty-second switching tube Q22, the twenty-third switching tube Q23, the twenty-fourth switching tube Q24, the ninth diode D9, the twelfth switching tube D10, the The eleventh diode D11 and the twelfth diode D12 are in the bridge arm formed by the series connection of the seventeenth switching tube Q17, the eighteenth switching tube Q18, the nineteenth switching tube Q19 and the twentieth switching tube Q20.
  • the point is connected to the opposite end of the primary winding of auto-coupling inductor L6.
  • the nineteenth switching tube Q19 and the twentieth switching tube Q20 in the bridge arm are located in the middle.
  • the ninth diode D9 and the twelfth diode D10 are connected in series with
  • the nineteenth switching tube Q19 and the twentieth switching tube Q20 are connected in parallel, and the connection point between the ninth diode D9 and the twelfth diode D10 is connected to the output capacitor circuit, that is, the anode of the ninth diode D9 and
  • the cathodes of the twelfth transistor D10 are connected to the output capacitor circuit;
  • the twenty-first switching transistor Q21, the twenty-second switching transistor Q22, the twenty-third switching transistor Q23 and the twenty-fourth switching transistor Q24 are connected in series
  • the midpoint of the formed bridge arm is connected to the same end of the secondary winding of auto-coupling inductor L4.
  • the twenty-third switching tube Q23 and the twenty-fourth switching tube Q24 are located in the middle, and the eleventh diode D11 and the Twelve diodes D12 are connected in series with the twenty-third switching tube Q23 and the twenty-fourth switching tube Q24 connected in series, and the connection point between the eleventh diode D11 and the twelfth diode D12 is connected to the output.
  • the capacitor circuit that is, the anode of the eleventh diode D11 and the cathode of the twelfth diode D12 are connected to the output capacitor circuit.
  • the switch tube is made of MOS, IGBT, GaN tube, SiC power tube or other controllable power switch tube to achieve better circuit performance.
  • a diode is connected in parallel to the switch tube. If the switch If a MOS tube is used as the tube, a diode is connected in parallel between its drain and source. If an IGBT tube is used as the switch tube, a diode is connected in parallel between its emitter and collector.
  • this embodiment uses the PFM method to control the operation of the switching tube, that is, using a constant duty cycle to constant the on and off times of the switching tube, and then modulating the square wave frequency to achieve adjustment, thereby achieving low-frequency operation. In this state, the zero current of the three-phase AC-DC bidirectional conversion circuit 10 is turned on.
  • the output capacitor circuit includes a fourth capacitor C4 and a fifth capacitor C5.
  • the fourth capacitor C4 and the fifth capacitor C5 are connected in series and connected in parallel with the bridge arm of the three-way boost circuit.
  • the connection point of the fourth capacitor C4 and the fifth capacitor C5 is the midpoint of the output capacitor circuit, and is connected between the first diode D1 and the second diode D2 connected in series, and between the third diode D3 and the third diode D3.
  • between the fourth diode D4 between the fifth diode D5 and the sixth diode D6, between the seventh diode D7 and the eighth diode D8, between the ninth diode D9 and the twelfth diode D9.
  • the three-phase AC-DC bidirectional conversion circuit 10 also includes an EMI filter circuit 13.
  • the EMI filter circuit 13 includes a first capacitor C1, a second capacitor C2, and a third capacitor C3.
  • the first capacitor C1, the second capacitor C2 and the third capacitor C3 are respectively connected in parallel between the first external side of the three-phase AC-DC bidirectional conversion circuit 10 and the midpoint of the output capacitor circuit.
  • the added EMI filter circuit 13 allows the common mode noise of the entire three-phase AC-DC bidirectional conversion circuit 10 to have a bypass channel, which greatly reduces the common mode noise, helps suppress electromagnetic interference, and improves circuit reliability. .
  • FIG 2 is a circuit schematic diagram of a second embodiment of the three-phase AC-DC bidirectional conversion circuit 10 of the present application.
  • the difference between this embodiment and the above-mentioned first embodiment lies in the specific structure of the switch circuit in the boost circuit.
  • the other structures are similar or identical.
  • the switch circuit includes four switch tubes, a first bidirectional switch and a second bidirectional switch. Each two switch tubes are connected in series to form a bridge arm. The two bridge arms are connected in parallel and connected to one end of the output capacitor circuit.
  • the same-name terminal of the primary winding of the auto-coupling inductor and the different-name terminal of the secondary winding are both connected to one end of the first inductor
  • the different-name terminals of the primary winding and the same-name terminal of the secondary winding of the auto-coupling inductor are respectively connected to the first bidirectional switch and a second bidirectional switch
  • the other ends of the first bidirectional switch and the second bidirectional switch are both connected to the output capacitor circuit
  • the midpoints of the two bridge arms are respectively connected to the connection node and self-coupling inductor of the first bidirectional switch.
  • the switch circuit in the first boost circuit includes a first switch Q1, a second switch Q2, a third switch Q3, a fourth switch Q4, a first bidirectional switch S1 and a second bidirectional switch.
  • Switch S2 the midpoint of the bridge arm formed by the series connection of the first switching tube Q1 and the second switching tube Q2 is connected to the connection node of the first bidirectional switch S1 and the opposite end of the primary winding of the auto-coupling inductor L2, the third switching tube Q3 and
  • the midpoint of the bridge arm formed by the series connection of the fourth switch tube Q4 is connected to the connection node of the second bidirectional switch S2 and the same terminal of the secondary winding of the auto-coupling inductor L2, and the first bidirectional switch S1 and the second bidirectional switch S2 are both connected to the output capacitor circuit.
  • the midpoint of The midpoint of the bridge arm formed by the series connection of the first switching tube Q21 and the second switching tube Q22 is connected to the connection node of the first bidirectional switch S3 and the opposite end of the primary winding of the auto-coupling inductor L4, and the third switching tube Q23 and the fourth switching tube
  • the midpoint of the bridge arm formed by the series connection of Q24 is connected to the connection node of the second bidirectional switch S4 and the same terminal of the secondary winding of the auto-coupling inductor L4, and the first bidirectional switch S3 and the second bidirectional switch S4 are both connected to the midpoint of the output capacitor circuit;
  • the switch circuit in the third boost circuit includes a first switch Q31, a second switch Q32, a third switch Q33, a fourth switch Q34, a first bidirectional switch S5 and a second bidirectional switch S6.
  • the first switch The midpoint of the bridge arm formed by the series connection of the tube Q31 and the second switching tube Q32 is connected to the connection node of the first bidirectional switch S5 and the opposite end of the primary winding of the auto-coupling inductor L6.
  • the third switching tube Q33 and the fourth switching tube Q34 are connected in series.
  • the midpoint of the bridge arm is connected to the connection node of the second bidirectional switch S6 and the same terminal of the secondary winding of the auto-coupling inductor L6, and both the first bidirectional switch S5 and the second bidirectional switch S6 are connected to the midpoint of the output capacitor circuit.
  • FIG. 3 is a circuit schematic diagram of a third embodiment of the three-phase AC-DC bidirectional conversion circuit 10 of the present application.
  • the switch circuit includes four switch tubes, and each two switch tubes are connected in series to form a bridge arm. The two bridge arms are connected in parallel and connected to one side of the output capacitor circuit.
  • the primary winding of the auto-coupling inductor The same terminal and the different terminal of the secondary winding are both connected to one end of the first inductor.
  • the different terminal of the primary winding and the same terminal of the secondary winding of the auto-coupling inductor are respectively connected to the midpoint of a bridge arm; and the output capacitor circuit It includes a sixth capacitor C6, which is connected in parallel with the bridge arms of the three-way boost circuit.
  • the switching circuit in the first boost circuit includes a first switching tube Q41, a second switching tube Q42, a third switching tube Q43 and a fourth switching tube Q44.
  • the first switching tube Q41 and the fourth switching tube Q44 are The midpoint of the bridge arm formed by the series connection of the two switching tubes Q42 is connected to the opposite end of the primary winding of the auto-coupling inductor L2, and the mid-point of the bridge arm formed by the series connection of the third switching tube Q43 and the fourth switching tube Q44 is connected to the secondary winding of the auto-coupling inductor L2.
  • the switching circuit in the second boost circuit includes a first switching tube Q51, a second switching tube Q52, a third switching tube Q53 and a fourth switching tube Q54.
  • the first switching tube Q51 and the second switching tube Q52 are connected in series.
  • the midpoint of the bridge arm formed is connected to the different end of the primary winding of the auto-coupling inductor L4, and the mid-point of the bridge arm formed by the series connection of the third switching tube Q53 and the fourth switching tube Q54 is connected to the same-name end of the secondary winding of the auto-coupling inductor L4;
  • the third The switching circuit in the boost circuit includes a first switching tube Q61, a second switching tube Q62, a third switching tube Q63 and a fourth switching tube Q64.
  • the first switching tube Q61 and the second switching tube Q62 are connected in series in a bridge arm.
  • the point is connected to the different end of the primary winding of the auto-coupling inductor L6, and the middle point of the bridge arm formed by the series connection of the third switching tube Q63 and the fourth switching tube Q64 is connected to the same-name end of the secondary winding of the auto-coupling inductor L6.
  • the switching tube in the three-phase AC-DC bidirectional conversion circuit of this application can realize the two-way flow of energy.
  • the three-way boost circuit adopts three-phase interleaved technology.
  • the three-phase input and output currents differ by 120°.
  • the three-phase boost circuit The input and output current fluctuations are complementary, making the input and output voltage and current ripples of the three-phase AC-DC bidirectional conversion circuit smaller, thereby achieving good circuit performance, and each boost circuit consists of two phases with the same frequency and a phase difference of 180°
  • the boost circuit is composed of a parallel connection.
  • the boost inductor adopts a three-inductor structure of the first inductor and an auto-coupling inductor.
  • the switching frequency can be increased, low-cost filtering can be achieved, control difficulty can be reduced, and the input and output voltage and current can be further reduced.
  • Ripple and at the same time, the two branches where the auto-coupling inductor is located can achieve current sharing regardless of whether the energy flows in the forward or reverse direction, which can prevent uneven heating of the branch devices and further improve the circuit performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

本申请公开一种三相AC-DC双向变换电路,包括三路boost电路和一路输出电容电路,每一boost电路包括电感电路和开关电路,所述电感电路包括第一电感及自耦电感,开关电路包括八个开关管及四个二极管,每四个开关管串联构成一个桥臂,两个桥臂并联后连接输出电容电路的一侧,每两二极管串联后与位于一桥臂中间的两开关管并联,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接一桥臂的中点,输出电容电路的另一侧作为三相AC-DC双向变换电路的第二外接侧,三路boost电路中第一电感的另一端作为三相AC-DC双向变换电路的第一外接侧。

Description

一种三相AC-DC双向变换电路
本申请是以申请号为202211104497.2、申请日为2022年9月9日的中国专利申请为基础,并主张其优先权,该申请的全部内容在此作为整体引入本申请中。
技术领域
本申请涉及电源转换技术领域,更具体地涉及一种三相AC-DC双向变换电路。
背景技术
交直流双向变换电路是工频交流和直流相互转换电路,使得电源转换系统变得更简单高效,随着新能源行业的快速发展,交直流双向变换电路被广泛运用于光伏储能、APF等诸多新能源电力电子装置中,尤其近年来,光伏、风电、充储一体与储能结合及向大功率发展,大功率三相交直流变换需求越来越多,应用也越来越广泛。但是当前行业还是沿用传统的T型三电平或I型三电平技术,使之交直流双向变换,由于行业习惯和高压半导体限制,开关频率目前很少超过20kHz,无论在功率电感或EMC滤波都有很多挑战,例如体积大,成本高,滤波难度大;尤其是在逆变三电平滤成标准正弦波,为了低成本实现滤波,业内通常采用LCL滤波器,LCL滤波器二次谐振非常容易引起控制环路振荡,尤其在多机并联中,LCL滤波器二次谐振带来的影响更加明显,振荡更容易发生,给环路控制带来更多挑战。
申请内容
本申请所要解决的技术问题是提供一种可提高开关频率,实现低成本滤波,同时减少输入输出电压电流纹波、降低控制难度的三相AC-DC双向变换电路。
为解决上述技术问题,本申请提供一种三相交直流双向变换电路,包括三路结构相同的boost电路和一路输出电容电路,其中,每一所述boost电路包括电感电路和开关电路,所述电感电路包括第一电感以及自耦电感,所述开关电路包括八个开关管以及四个二极管,每四个开关管串联构成一个桥臂,两个桥臂并联后连接至输出电容电路的一侧,每两二极管串联后与位于一桥臂中间的两开关管并联,且串联连接的两二极管之间的连接点连接输出电容电路,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接一桥臂的中点,所述输出电容电路的另一侧作为三相AC-DC双向变换电路的第二外接侧,三路boost电路中第一电感的另一端作为三相AC-DC双向变换电路的第一外接侧。
其进一步技术方案为:所述输出电容电路包括第四电容和第五电容,所述第四电容和第五电容串联后与三路boost电路的桥臂并联连接,所述第四电容和第五电容的连接点为所述输出电容电路的中点,并连接串联连接的两二极管之间的连接点。
其进一步技术方案为:所述三相AC-DC双向变换电路还包括一EMI滤波电路,所述EMI滤波电路包括第一电容、第二电容以及第三电容,所述第一电容、第二电容以及第三电容分别并联于三相AC-DC双向变换电路的第一外接侧和所述输出电容电路的中点之间。
其进一步技术方案为:所述开关管选用MOSFET、IGBT管、GaN管或SiC功率管。
为解决上述技术问题,本申请还提供一种三相AC-DC双向变换电路,包括三路结构相同的boost电路和一路输出电容电路,其中,每一所述boost电路包括电感电路和开关电路,所述电感电路包括第一电感以及自耦电感,所述开关电路包括四个开关管、第一双向开关以及第二双向开关,每两个开关管串联构成一个桥臂,两个桥臂并联后连接至输出电容电路的一侧,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接第一双向开关和第二双向开关,该第一双向开关和第二双向开关的另一端均连接输出电容电路,两桥臂的中点分别连接于所述自耦电感与第一双向开关的连接节点和自耦电感与第二双向开关的连接节点,所述输出电容电路的另一侧作为三相AC-DC双向变换电路的第二外接侧,三路boost电路中第一电感的另一端作为三相AC-DC双向变换电路的第一外接侧。
为解决上述技术问题,本申请还提供一种三相AC-DC双向变换电路,包括三路结构相同的boost电路和一路输出电容电路,其中,每一所述boost电路包括电感电路和开关电路,所述电感电路包括第一电感以及自耦电感,所述开关电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后连接至输出电容电路的一侧,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接一桥臂的中点,所述输出电容电路的另一侧作为三相AC-DC双向变换电路的第二外接侧,三路boost电路中第一电感的另一端作为三相AC-DC双向变换电路的第一外接侧。
其进一步技术方案为:所述输出电容电路包括第六电容,所述第六电容与三路boost电路的桥臂并联连接。
与现有技术相比,本申请三相AC-DC双向变换电路中boost电路的开关管可实现能量的双向流动,三路boost电路采用三相交错技术,三相输入和输出电流相差120°,三相boost电路的输入和输出电流波动互补,使得三相AC-DC双向变换电路的输入和输出电压电流纹波较小,从而实现良好的电路性能,且每一路boost电路中设置有第一电感和自耦电感,通过交错并联的方式可提高开关频率,实现低成本滤波,降低控制难度,同时还可进一步减少输入输出电压电流纹波,而每一boost电路通过交错的方式还可使得自耦电感所在的两个支路不管是在能量正向还是反向流动时可实现均流,可防止支路器件发热不均,使电路能够正常工作。
附图说明
图1是本申请三相AC-DC双向变换电路第一实施例的电路示意图。
图2是本申请三相AC-DC双向变换电路第二实施例的电路示意图。
图3是本申请三相AC-DC双向变换电路第三实施例的电路示意图。
实施方式
为使本领域的普通技术人员更加清楚地理解本申请的目的、技术方案和优点,以下结合附图和实施例对本申请做进一步的阐述。
参照图1,图1为本申请三相AC-DC双向变换电路10第一实施例的电路示意图。在附图所示的实施例中,所述三相AC-DC双向变换电路10包括三路结构相同的boost电路和一路输出电容电路,其中,每一所述boost电路包括电感电路和开关电路,所述电感电路包括第一电感以及自耦电感,所述开关电路包括八个开关管以及四个二极管,每四个开关管串联构成一个桥臂,两个桥臂并联后连接至输出电容电路的一侧,每两二极管串联后与位于一桥臂中间的两开关管并联,且串联连接的两二极管之间的连接点连接输出电容电路,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接一桥臂的中点,所述输出电容电路的另一侧作为三相AC-DC双向变换电路10的第二外接侧,三路boost电路中第一电感的另一端作为三相AC-DC双向变换电路10的第一外接侧。可理解地,本申请三相AC-DC双向变换电路10中的第一外接侧和第二外接侧均可连接负载和交流电源,当第一外接侧作为交流侧时可外接交流电源,其第二外接侧作为直流输出侧,可外接负载,而当第二外接侧作为交流侧时可外接交流电源,其第一外接侧作为直流输出侧,可外接负载。基于上述设计,每一路boost电路中设置有第一电感和自耦电感,通过交错并联的方式可提高开关频率,实现低成本滤波,降低控制难度,同时还可降低应力,减少输入输出电压电流纹波,三路boost电路采用三相交错技术,三相输入和输出电流相差120°,三相boost电路的输入和输出电流波动互补,进一步使得三相AC-DC双向变换电路10的输入和输出电流纹波较小,且通过交错的方式还可使得自耦电感所在的两个支路不管是在能量正向还是反向流动时可实现均流,可防止支路器件发热不均,防止因支路电流不均触发过流保护,使电路能够正常工作,从而实现改善电路性能的目的。
具体地,本实施例中,所述三路结构相同的boost电路分别为第一boost电路、第二boost电路和第三boost电路,其中,所述第一boost电路中的电感电路包括第一电感L1、自耦电感L2,其开关电路包括第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第五开关管Q5、第六开关管Q6、第七开关管Q7、第八开关管Q8、第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4,所述第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4串联构成的桥臂中点与自耦电感L2初级绕组的异名端连接,该桥臂中第三开关管Q3和第四开关管Q4位于中间,第一二极管D1和第二二极管D2串联后与串联的第三开关管Q3和第四开关管Q4并联,第一二极管D1和第二二极管D2之间的连接点连接输出电容电路,即第一二极管D1的阳极和第二二极管D2的阴极连接后均连接输出电容电路;所述第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8串联构成的桥臂中点与自耦电感L2次级绕组的同名端连接,该桥臂中第七开关管Q7和第八开关管Q8位于中间,第三二极管D3和第四二极管D4串联后与串联的第七开关管Q7和第八开关管Q8并联,第三二极管D3和第四二极管D4之间的连接点连接输出电容电路,即第三二极管D3的阳极和第四二极管D4的阴极连接后均连接输出电容电路。
所述第二boost电路中的电感电路包括第一电感L3、自耦电感L4,其开关电路包括第九开关管Q9、第十开关管Q10、第十一开关管Q11、第十二开关管Q12、第十三开关管Q13、第十四开关管Q14、第十五开关管Q15、第十六开关管Q16、第五二极管D5、第六二极管D6、第七二极管D7和第八二极管D8,所述第九开关管Q9、第十开关管Q10、第十一开关管Q11和第十二开关管Q12串联构成的桥臂中点与自耦电感L4初级绕组的异名端连接,该桥臂中第十一开关管Q11和第十二开关管Q12位于中间,第五二极管D5和第六二极管D6串联后与串联的第十一开关管Q11和第十二开关管Q12并联,第五二极管D5和第六二极管D6之间的连接点连接输出电容电路,即第五二极管D5的阳极和第六二极管D6的阴极连接后均连接输出电容电路;所述第十三开关管Q13、第十四开关管Q14、第十五开关管Q15和第十六开关管Q16串联构成的桥臂中点与自耦电感L4次级绕组的同名端连接,该桥臂中第十五开关管Q15和第十六开关管Q16位于中间,第七二极管D7和第八二极管D8串联后与串联的第十五开关管Q15和第十六开关管Q16并联,第七二极管D7和第八二极管D8之间的连接点连接输出电容电路,即第七二极管D7的阳极和第八二极管D8的阴极连接后均连接输出电容电路。
所述第三boost电路中的电感电路包括第一电感L5、自耦电感L6,其开关电路包括第十七开关管Q17、第十八开关管Q18、第十九开关管Q19、第二十开关管Q20、第二十一开关管Q21、第二十二开关管Q22、第二十三开关管Q23、第二十四开关管Q24、第九二极管D9、第十二极管D10、第十一二极管D11和第十二二极管D12,所述第十七开关管Q17、第十八开关管Q18、第十九开关管Q19和第二十开关管Q20串联构成的桥臂中点与自耦电感L6初级绕组的异名端连接,该桥臂中第十九开关管Q19和第二十开关管Q20位于中间,第九二极管D9和第十二极管D10串联后与串联的第十九开关管Q19和第二十开关管Q20并联,第九二极管D9和第十二极管D10之间的连接点连接输出电容电路,即第九二极管D9的阳极和第十二极管D10的阴极连接后均连接输出电容电路;所述第二十一开关管Q21、第二十二开关管Q22、第二十三开关管Q23和第二十四开关管Q24串联构成的桥臂中点与自耦电感L4次级绕组的同名端连接,该桥臂中第二十三开关管Q23和第二十四开关管Q24位于中间,第十一二极管D11和第十二二极管D12串联后与串联的第二十三开关管Q23和第二十四开关管Q24并联,第十一二极管D11和第十二二极管D12之间的连接点连接输出电容电路,即第十一二极管D11的阳极和第十二二极管D12的阴极连接后均连接输出电容电路。
优选地,所述开关管选用MOS、IGBT、GaN管、SiC功率管或其他可控功率开关管,以实现更好的电路性能,本实施例中,在开关管上还并联有二极管,若开关管选用MOS管,则在其漏极和源极之间并联一二极管,而若开关管选用IGBT管,则在其发射极和集电极之间并联一二极管。进一步地,本实施例采用PFM方式控制开关管的工作,即采用恒定占空比,以恒定开关管的导通和关断时间,然后以调制方波频率方式来实现调节,从而可实现低频工作状态下三相AC-DC双向变换电路10的零电流开通。
在某些实施例中,所述输出电容电路包括第四电容C4和第五电容C5,所述第四电容C4和第五电容C5串联后与三路boost电路的桥臂并联连接,所述第四电容C4和第五电容C5的连接点为所述输出电容电路的中点,并连接串联连接的第一二极管D1和第二二极管D2之间、第三二极管D3和第四二极管D4之间、第五二极管D5和第六二极管D6之间、 第七二极管D7和第八二极管D8之间、第九二极管D9和第十二极管D10之间以及第十一二极管D11和第十二二极管D12之间的连接点。
进一步地,在本实施例中,所述三相AC-DC双向变换电路10还包括一EMI滤波电路13,所述EMI滤波电路13包括第一电容C1、第二电容C2以及第三电容C3,所述第一电容C1、第二电容C2以及第三电容C3分别并联于三相AC-DC双向变换电路10的第一外接侧和所述输出电容电路的中点之间。基于上述设计,增加的EMI滤波电路13使得整个三相AC-DC双向变换电路10的共模噪音有旁路的通道,极大的减小了共模噪音,利于抑制电磁干扰,提高电路可靠性。
参照图2,图2为本申请三相AC-DC双向变换电路10第二实施例的电路示意图。本实施例与上述第一实施例的不同在于boost电路中开关电路的具体结构不同,其余结构相似或相同。在本实施例中,所述开关电路包括四个开关管、第一双向开关以及第二双向开关,每两个开关管串联构成一个桥臂,两个桥臂并联后连接至输出电容电路的一侧,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接第一双向开关和第二双向开关,该第一双向开关和第二双向开关的另一端均连接输出电容电路,两桥臂的中点分别连接于所述自耦电感与第一双向开关的连接节点和自耦电感与第二双向开关的连接节点。本实施例同样可以实现良好的电路性能。
具体地,本实施例中,第一boost电路中的开关电路包括第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第一双向开关S1以及第二双向开关S2,所述第一开关管Q1和第二开关管Q2串联构成的桥臂中点连接于第一双向开关S1和自耦电感L2初级绕组的异名端的连接节点,第三开关管Q3和第四开关管Q4串联构成的桥臂中点连接于第二双向开关S2和自耦电感L2次级绕组的同名端的连接节点,且第一双向开关S1和第二双向开关S2均连接输出电容电路的中点;第二boost电路中的开关电路包括第一开关管Q21、第二开关管Q22、第三开关管Q23、第四开关管Q24、第一双向开关S3以及第二双向开关S4,所述第一开关管Q21和第二开关管Q22串联构成的桥臂中点连接于第一双向开关S3和自耦电感L4初级绕组的异名端的连接节点,第三开关管Q23和第四开关管Q24串联构成的桥臂中点连接于第二双向开关S4和自耦电感L4次级绕组的同名端的连接节点,且第一双向开关S3和第二双向开关S4均连接输出电容电路的中点;第三boost电路中的开关电路包括第一开关管Q31、第二开关管Q32、第三开关管Q33、第四开关管Q34、第一双向开关S5以及第二双向开关S6,所述第一开关管Q31和第二开关管Q32串联构成的桥臂中点连接于第一双向开关S5和自耦电感L6初级绕组的异名端的连接节点,第三开关管Q33和第四开关管Q34串联构成的桥臂中点连接于第二双向开关S6和自耦电感L6次级绕组的同名端的连接节点,且第一双向开关S5和第二双向开关S6均连接输出电容电路的中点。
参照图3,图3为本申请三相AC-DC双向变换电路10第三实施例的电路示意图。本实施例与上述第一实施例的不同在于boost电路中开关电路以及输出电容电路的具体结构不同,且本实施例中未设置EMI滤波电路,其余结构相似或相同。在本实施例中,所述开关电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后连接至输出电容电路的一侧,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接一桥臂的中点;而所述输出电容电路包括第六电容C6,所述第六电容C6与三路boost电路的桥臂并联连接。
具体地,本实施例中,第一boost电路中的开关电路包括第一开关管Q41、第二开关管Q42、第三开关管Q43和第四开关管Q44,所述第一开关管Q41和第二开关管Q42串联构成的桥臂中点连接自耦电感L2初级绕组的异名端,第三开关管Q43和第四开关管Q44串联构成的桥臂中点连接自耦电感L2次级绕组的同名端;第二boost电路中的开关电路包括第一开关管Q51、第二开关管Q52、第三开关管Q53和第四开关管Q54,所述第一开关管Q51和第二开关管Q52串联构成的桥臂中点连接自耦电感L4初级绕组的异名端,第三开关管Q53和第四开关管Q54串联构成的桥臂中点连接自耦电感L4次级绕组的同名端;第三boost电路中的开关电路包括第一开关管Q61、第二开关管Q62、第三开关管Q63和第四开关管Q64,所述第一开关管Q61和第二开关管Q62串联构成的桥臂中点连接自耦电感L6初级绕组的异名端,第三开关管Q63和第四开关管Q64串联构成的桥臂中点连接自耦电感L6次级绕组的同名端。
综上所述,本申请三相AC-DC双向变换电路中的开关管可实现能量的双向流动,三路boost电路采用三相交错技术,三相输入和输出电流相差120°,三相boost电路的输入和输出电流波动互补,使得三相AC-DC双向变换电路的输入和输出电压电流纹波较小,从而实现良好的电路性能,且每一路boost电路由两相频率相同,相位相差180°的升压电路并联构成,升压电感采用第一电感和自耦电感的三电感结构,通过交错的方式可提高开关频率,实现低成本滤波,降低控制难度,同时还可进一步减少输入输出电压电流纹波,同时还可使得自耦电感所在的两个支路不管是在能量正向还是反向流动时可实现均流,可防止支路器件发热不均,进一步改善电路工作性能。
以上所述仅为本申请的优选实施例,而非对本申请做任何形式上的限制。本领域的技术人员可在上述实施例的基础上施以各种等同的更改和改进,凡在权利要求范围内所做的等同变化或修饰,均应落入本申请的保护范围之内。

Claims (7)

  1. 一种三相AC-DC双向变换电路,其特征在于:所述三相AC-DC双向变换电路包括三路结构相同的boost电路和一路输出电容电路,其中,每一所述boost电路包括电感电路和开关电路,所述电感电路包括第一电感以及自耦电感,所述开关电路包括八个开关管以及四个二极管,每四个开关管串联构成一个桥臂,两个桥臂并联后连接至输出电容电路的一侧,每两二极管串联后与位于一桥臂中间的两开关管并联,且串联连接的两二极管之间的连接点连接输出电容电路,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接一桥臂的中点,所述输出电容电路的另一侧作为三相AC-DC双向变换电路的第二外接侧,三路boost电路中第一电感的另一端作为三相AC-DC双向变换电路的第一外接侧。
  2. 如权利要求1所述的三相AC-DC双向变换电路,其特征在于:所述输出电容电路包括第四电容和第五电容,所述第四电容和第五电容串联后与三路boost电路的桥臂并联连接,所述第四电容和第五电容的连接点为所述输出电容电路的中点,并连接串联连接的两二极管之间的连接点。
  3. 如权利要求2所述的三相AC-DC双向变换电路,其特征在于:所述三相AC-DC双向变换电路还包括一EMI滤波电路,所述EMI滤波电路包括第一电容、第二电容以及第三电容,所述第一电容、第二电容以及第三电容分别并联于三相AC-DC双向变换电路的第一外接侧和所述输出电容电路的中点之间。
  4. 如权利要求1所述的三相AC-DC双向变换电路,其特征在于:所述开关管选用MOSFET、IGBT管、GaN管或SiC功率管。
  5. 一种三相AC-DC双向变换电路,其特征在于:所述三相AC-DC双向变换电路包括三路结构相同的boost电路和一路输出电容电路,其中,每一所述boost电路包括电感电路和开关电路,所述电感电路包括第一电感以及自耦电感,所述开关电路包括四个开关管、第一双向开关以及第二双向开关,每两个开关管串联构成一个桥臂,两个桥臂并联后连接至输出电容电路的一侧,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接第一双向开关和第二双向开关,该第一双向开关和第二双向开关的另一端均连接输出电容电路,两桥臂的中点分别连接于所述自耦电感与第一双向开关的连接节点和自耦电感与第二双向开关的连接节点,所述输出电容电路的另一侧作为三相AC-DC双向变换电路的第二外接侧,三路boost电路中第一电感的另一端作为三相AC-DC双向变换电路的第一外接侧。
  6. 一种三相AC-DC双向变换电路,其特征在于:所述三相AC-DC双向变换电路包括三路结构相同的boost电路和一路输出电容电路,其中,每一所述boost电路包括电感电路和开关电路,所述电感电路包括第一电感以及自耦电感,所述开关电路包括四个开关管,每两个开关管串联构成一个桥臂,两个桥臂并联后连接至输出电容电路的一侧,所述自耦电感初级绕组的同名端和次级绕组的异名端均连接第一电感的一端,该自耦电感初级绕组的异名端和次级绕组的同名端分别连接一桥臂的中点,所述输出电容电路的另一侧作为三相AC-DC双向变换电路的第二外接侧,三路boost电路中第一电感的另一端作为三相AC-DC双向变换电路的第一外接侧。
  7. 如权利要求6所述的三相AC-DC双向变换电路,其特征在于:所述输出电容电路包括第六电容,所述第六电容与三路boost电路的桥臂并联连接。
PCT/CN2023/104843 2022-09-09 2023-06-30 一种三相ac-dc双向变换电路 WO2024051322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211104497.2 2022-09-09
CN202211104497.2A CN116131651A (zh) 2022-09-09 2022-09-09 一种三相ac-dc双向变换电路

Publications (1)

Publication Number Publication Date
WO2024051322A1 true WO2024051322A1 (zh) 2024-03-14

Family

ID=86296117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104843 WO2024051322A1 (zh) 2022-09-09 2023-06-30 一种三相ac-dc双向变换电路

Country Status (2)

Country Link
CN (1) CN116131651A (zh)
WO (1) WO2024051322A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116131651A (zh) * 2022-09-09 2023-05-16 深圳深源技术能源有限公司 一种三相ac-dc双向变换电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024571A (zh) * 2014-04-29 2015-11-04 艾默生网络能源有限公司 一种三相逆变电路
CN107204720A (zh) * 2017-07-03 2017-09-26 珠海英搏尔电气股份有限公司 一种交直流变换电路、交直流变换器及其控制方法
CN108400705A (zh) * 2017-02-04 2018-08-14 中兴通讯股份有限公司 一种无桥pfc电路
US20180302006A1 (en) * 2015-10-05 2018-10-18 Heliox B.V. A bidirectional power converter
CN109802587A (zh) * 2019-02-28 2019-05-24 山东大学 基于耦合电感的模块化三电平npc变流器系统及控制方法
CN218549779U (zh) * 2022-09-09 2023-02-28 深圳深源技术能源有限公司 一种三相ac-dc双向变换电路
CN116131651A (zh) * 2022-09-09 2023-05-16 深圳深源技术能源有限公司 一种三相ac-dc双向变换电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024571A (zh) * 2014-04-29 2015-11-04 艾默生网络能源有限公司 一种三相逆变电路
US20180302006A1 (en) * 2015-10-05 2018-10-18 Heliox B.V. A bidirectional power converter
CN108400705A (zh) * 2017-02-04 2018-08-14 中兴通讯股份有限公司 一种无桥pfc电路
CN107204720A (zh) * 2017-07-03 2017-09-26 珠海英搏尔电气股份有限公司 一种交直流变换电路、交直流变换器及其控制方法
CN109802587A (zh) * 2019-02-28 2019-05-24 山东大学 基于耦合电感的模块化三电平npc变流器系统及控制方法
CN218549779U (zh) * 2022-09-09 2023-02-28 深圳深源技术能源有限公司 一种三相ac-dc双向变换电路
CN116131651A (zh) * 2022-09-09 2023-05-16 深圳深源技术能源有限公司 一种三相ac-dc双向变换电路

Also Published As

Publication number Publication date
CN116131651A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2016206547A1 (zh) 一种混合直流输电系统
Liu et al. Comparative evaluation of three Z-source/quasi-Z-source indirect matrix converters
US9787217B2 (en) Power conversion circuit and power conversion system
CA2942254C (en) Five-level inverter and application circuit of the same
US9331595B2 (en) Multi-level inverter
EP3072229B1 (en) Soft switching inverter
US11139754B1 (en) Inverter circuit for realizing high-efficiency control of single-phase power of single-phase three-wire power supply
CN103208929A (zh) 基于mmc的电子电力变压器
WO2024051322A1 (zh) 一种三相ac-dc双向变换电路
CN107104600B (zh) 模块化多电平变换器及电力电子变压器
CN108173442B (zh) 基于高频链技术的隔离型模块化多电平变换器
CN111869084A (zh) 功率转换器
CN213305280U (zh) 一种基于开关电容的高降压变比整流器
US20230017288A1 (en) Topology of series-connected mmc with a small number of modules
US20220416671A1 (en) Power electronic transformer and power supply system
US20240339941A1 (en) Three-level control circuit, power conversion device, and control method thereof
WO2018171769A1 (zh) Z源网络有源中点钳位五电平光伏并网逆变系统
CN113328649A (zh) 一种变换电路及其控制方法
CN218549779U (zh) 一种三相ac-dc双向变换电路
CN212367151U (zh) 一种逆变电路
CN112202351A (zh) 一种宽范围软开关的单级式隔离型三相ac/dc整流器
CN108683345B (zh) 一种基于SiC二极管的三相改进型双Buck/Boost变流器
CN215498755U (zh) 一种钳位式五电平电压源型变换器
CN109546853A (zh) 防浪涌的有源pfc电路及变频驱动系统
CN112713596B (zh) 高压侧无功及谐波的低压侧加变压器补偿系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862023

Country of ref document: EP

Kind code of ref document: A1