WO2024051255A1 - 一种掉电保护电路及电子设备 - Google Patents

一种掉电保护电路及电子设备 Download PDF

Info

Publication number
WO2024051255A1
WO2024051255A1 PCT/CN2023/100525 CN2023100525W WO2024051255A1 WO 2024051255 A1 WO2024051255 A1 WO 2024051255A1 CN 2023100525 W CN2023100525 W CN 2023100525W WO 2024051255 A1 WO2024051255 A1 WO 2024051255A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
protection circuit
voltage
switch
down protection
Prior art date
Application number
PCT/CN2023/100525
Other languages
English (en)
French (fr)
Inventor
郑金龙
黄强
朱建勋
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Publication of WO2024051255A1 publication Critical patent/WO2024051255A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/24Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the technical field of power supply protection, and in particular to a power-down protection circuit and electronic equipment.
  • the existing protection circuit detects the voltage value of the power input to determine the input under-voltage, drives the short-circuit switch to short-circuit the gate-source of the PMOS switch, and turns off the PMOS switch to quickly respond to voltage drops and implement hot-swap protection.
  • the existing protection circuit's undervoltage detection method can only start protection by setting a threshold, and the PMOS switch does not turn off fast enough. Therefore, the performance of the existing protection circuit is poor and the circuit reliability is low.
  • This application provides a power-down protection circuit and electronic equipment to immediately cut off the current when the voltage fluctuates to prevent the electronic equipment from crashing, which is beneficial to improving the reliability of the circuit and the protection capability of the product.
  • this application provides a power-down protection circuit, including:
  • a power-on switch module the power-on switch module is connected between the input end of the power-down protection circuit and the output end of the power-down protection circuit;
  • a voltage holding module the voltage holding module is connected to the input end of the power-down protection circuit, the voltage holding module is used to charge based on the voltage of the input end of the power-down protection circuit, and when the power-down protection circuit When the input terminal is powered off, the voltage after charging is maintained;
  • the voltage detection module is connected to the input end of the power-down protection circuit, and is used to detect the voltage of the input end of the power-down protection circuit; the voltage detection module is also connected to the voltage maintenance module, power-on The switch module connection is used to connect the voltage holding module and the power-on switch module to turn off the power-on switch module when the input end of the power-off protection circuit is powered off.
  • the voltage detection module includes a control switch, the control switch includes an input terminal, a control terminal and an output terminal;
  • the input end of the control switch is connected to the voltage maintenance module, the control end of the control switch is connected to the input end of the power-down protection circuit, and the output end of the control switch is connected to the power-on switch module;
  • the control switch is used to be turned on when the input end of the power-down protection circuit is powered off, and the voltage holding module discharges charge to the power-on switch module to turn off the power-on switch module.
  • the power-on switch module includes a power-on switch, the input end of the power-on switch is connected to the input end of the power-down protection circuit, and the output end of the power-on switch is connected to the power-down protection circuit.
  • the output terminal is connected, and the control terminal of the power-on switch is connected with the voltage detection module.
  • the voltage maintenance module includes:
  • a diode, the anode of the diode is connected to the input end of the power-down protection circuit
  • a first capacitor a first end of the first capacitor is connected to the cathode of the diode and the voltage detection module, and a second end of the first capacitor is connected to ground.
  • the voltage holding module further includes a first resistor connected between the cathode of the diode and the first end of the first capacitor.
  • the power-on switch module further includes a second capacitor
  • the first terminal of the second capacitor is connected to the input terminal of the power-on switch, the second terminal of the second capacitor is connected to the control terminal of the power-on switch, and the capacitance value of the first capacitor is greater than that of the third capacitor. The capacitance value of the second capacitor.
  • the power-down protection circuit further includes a second resistor, and the second resistor and the second capacitor are connected in parallel to the input end of the power-on switch and the control end of the power-on switch.
  • the power-down protection circuit further includes a third resistor, the first end of the third resistor is connected to the control end of the power-on switch, and the second end of the third resistor is connected to ground.
  • the power-down protection circuit further includes a fourth resistor, and the fourth resistor is connected between the output end of the control switch and the power-on switch module.
  • this application also provides an electronic device, including the power-down protection circuit described in the first aspect.
  • the voltage detection module detects the voltage at the input end of the power-down protection circuit, and the voltage holding module charges based on the voltage at the input end of the power-down protection circuit.
  • the voltage detection module The module connects the voltage holding module and the power-on switch module.
  • the voltage holding module discharges the charge to the power-on switch module, applies a reverse voltage to the power-on switch module, and accelerates the shutdown of the power-on switch module.
  • this application can quickly turn off the power-on switch module on the power path and immediately Cutting off the current prevents electronic equipment from crashing and solves the problem of slow action of the existing protection circuit when the power supply is hot-plugged. It helps avoid device damage in the event of voltage fluctuations and effectively improves the reliability of the circuit and the protection of the product. ability.
  • Figure 1 is a schematic structural diagram of a power-down protection circuit provided by this application.
  • FIG. 2 is a schematic structural diagram of another power-down protection circuit provided by this application.
  • FIG. 3 is a schematic structural diagram of another power-down protection circuit provided by this application.
  • Figure 4 is a voltage waveform diagram of a power-down protection circuit provided by this application when the power supply voltage drops;
  • Figure 5 is a protection waveform diagram of a power-down protection circuit provided by this application when the power supply voltage drops slightly;
  • Figure 6 is a protection waveform diagram of a power-down protection circuit provided by this application when the power supply voltage drops too small;
  • Figure 7 is a protection waveform diagram of another power-down protection circuit provided by this application when the power supply voltage drops.
  • the existing protection circuit can only start protection by setting a threshold for under-voltage detection.
  • the PMOS switch turns off not fast enough.
  • the actual test turn-off time of the circuit is more than 20ms, and the circuit structure is relatively complex. Therefore, the existing protection circuit has The performance is poor and the circuit reliability is low.
  • FIG. 1 is a schematic structural diagram of a power-down protection circuit provided by embodiments of the present application.
  • the power-down protection circuit includes a power-on switch module 100 , a voltage holding module 200 and a voltage detection module 300 .
  • the power-on switch module 100 is connected between the input terminal Vin of the power-down protection circuit and the output terminal Vout of the power-down protection circuit; the voltage holding module 200 is connected to the input terminal Vin of the power-down protection circuit, and the voltage holding module 200 is used based on The voltage of the input terminal Vin of the power-down protection circuit is charged, and when the input terminal Vin of the power-down protection circuit is powered off, the charged voltage is maintained; the voltage detection module 300 is connected to the input terminal Vin of the power-down protection circuit for detection.
  • the voltage of the input terminal Vin of the power-down protection circuit, the voltage detection module 300 is also connected to the voltage holding module 200 and the power-on switch module 100, and is used to connect the voltage holding module 200 and the power-on switch module 100 when the input terminal Vin of the power-down protection circuit is powered off. Power on the switch module 100 to speed up the shutdown of the power on switch module 100 .
  • the power-on switch module 100 may, but is not limited to, use a Metal Oxide Semiconductor Field Effect Transistor (MOSFET), such as a PMOS transistor. It can be seen that since the power-on switch module 100 is connected between the input terminal Vin of the power-down protection circuit and the output terminal Vout of the power-down protection circuit, when the input terminal Vin of the power-down protection circuit is powered on, the power-on switch The module 100 is turned on, so that the input terminal Vin and its output terminal Vout of the power-down protection circuit are connected to each other. It can be understood that when the power-on switch module 100 is turned off, the input terminal Vin and the output terminal Vout of the power-down protection circuit will be disconnected from each other, that is, the power supply will be cut off.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the voltage holding module 200 is used to charge based on the voltage of the input terminal Vin of the power-down protection circuit, and maintain the voltage value after charging when the input terminal Vin of the power-down protection circuit loses power, which means that during the power-down protection When the input terminal Vin of the circuit and its output terminal Vout are connected to each other, the voltage holding module 200 is charged. When the input terminal Vin of the power-down protection circuit is powered off, the voltage holding module 200 can maintain its internal voltage at the charged voltage. value.
  • the voltage detection module 300 is used to detect the voltage of the input terminal Vin of the power-down protection circuit together with the voltage maintenance module 200. When the rate and amplitude of the voltage drop of the input terminal Vin of the power-down protection circuit exceed the threshold, the voltage detection module 300 serves as an action switch of the power-down protection circuit to control the action of the protection circuit, connect the voltage holding module 200 and the power-on switch module 100, and apply a reverse voltage to the power-on switch module 100 to turn off the power-on switch module 100.
  • the working principle of the power-down protection circuit is as follows.
  • the battery connection shrapnel will vibrate, causing voltage jitter and arcing; when voltage jitter occurs, the power-down protection
  • the voltage holding module 200 can maintain its internal voltage at the voltage value after charging.
  • the voltage detection module 300 and the voltage holding module 200 detect that the voltage of the input terminal Vin of the power-down protection circuit drops.
  • the voltage detection module 300 connects the voltage holding module 200 and the power-on switch module 100, applies a reverse voltage to the power-on switch module 100, and turns off the power-on switch module 100 quickly, thereby cutting off the electrical protection circuit.
  • this embodiment can turn off the power-on switch module on the power path and immediately Cutting off the current prevents electronic equipment from crashing and solves the problem of slow action of the existing protection circuit when the power supply is hot-plugged. It helps avoid device damage in the event of voltage fluctuations and effectively improves the reliability of the circuit and the protection of the product. ability.
  • FIG. 2 is a schematic structural diagram of another power-down protection circuit provided by an embodiment of the present application.
  • the power-on switch module 100 includes a power-on switch 110.
  • the input end of the power-on switch 110 and the power-down protection circuit The input terminal Vin of the circuit is connected, the output terminal of the power-on switch 110 is connected with the output terminal Vout of the power-down protection circuit, and the control terminal of the power-on switch 110 is connected with the voltage detection module 300 .
  • the voltage detection module 300 includes a control switch 310, which includes an input terminal, a control terminal and an output terminal; the input terminal of the control switch 310 is connected to the voltage holding module 200, and the control terminal of the control switch 310 is connected to the input terminal Vin of the power-down protection circuit.
  • the output terminal of the control switch 310 is connected to the control terminal of the power-on switch 110 .
  • the voltage holding module 200 includes a diode D1 and a first capacitor C1.
  • the anode of the diode D1 is connected to the input terminal Vin of the power-down protection circuit; it is used to conduct current in one direction, and forms a high-voltage holding function with the first capacitor C1, and avoids the generation of the first capacitor C1 when the power-down protection circuit is powered on. Large current causes sparks and ignition, protecting circuits and components.
  • the first end of the first capacitor C1 is connected to the cathode of the diode D1 and the voltage detection module 300, and the second end of the first capacitor C1 is connected to ground; the first capacitor C1 is used to form a high voltage holding function with the diode D1, and when the voltage detection module When 300 is turned on, the first capacitor C1 discharges charge to the control terminal of the upper power switch 110 .
  • the power-on switch module 100 also includes a second capacitor C2; the first end of the second capacitor C2 is connected to the input end of the power-on switch 110, and the second end of the second capacitor C2 is connected to the control end of the power-on switch 110; When the electric switch 110 is powered on, it starts with a delay to prevent the switch 110 from generating sparks and ignition or arcing.
  • the capacitance value of the first capacitor C1 is greater than the capacitance value of the second capacitor C2; when the voltage at the control end of the control switch 310 drops to the point where it is turned on, the first capacitor C1 can discharge a large current to the second capacitor C2 through the control switch 310. charge, and since the first capacitor C1 is much larger than the second capacitor C2, the voltage at the control terminal of the power-on switch 110 can be higher than the voltage at the input terminal.
  • the power-down protection circuit also includes a second resistor R1 and a third resistor R2.
  • the second resistor R1 and the second capacitor C2 are connected in parallel between the input end of the power-on switch 110 and the control end of the power-on switch 110.
  • the first end of the resistor R2 is connected to the control end of the power-on switch 110, and the second end of the third resistor R2 is connected to ground; the second resistor R1 is used to divide the voltage of the power-on switch 110 to avoid the control end and the input end of the power-on switch 110.
  • the voltage difference overvoltage causes breakdown and protects the power-on switch 110.
  • the third resistor R2 is used to divide the voltage of the power-on switch 110 together with the second resistor R1 to avoid overvoltage caused by the voltage difference between the control terminal and the input terminal of the power-on switch 110. Breakdown to protect the power-on switch 110.
  • the battery connecting shrapnel When the battery is removed or inserted or the electronic device is dropped, the battery connecting shrapnel will vibrate, causing voltage jitter and arcing; when voltage jitter occurs and the input terminal Vin of the power-down protection circuit loses power, the voltage at the control terminal of the control switch 310 increases with the The input terminal Vin of the power-down protection circuit decreases. Since the first capacitor C1 can maintain its internal voltage at the voltage value after charging, the voltage at the input terminal of the control switch 310 is maintained at a higher voltage value by the first capacitor C1.
  • control switch 310 When the voltage difference between the control terminal and the input terminal of the control switch 310 is greater than its threshold voltage, the control switch 310 is turned on, and the first capacitor C1 discharges the charge to the second terminal of the second capacitor C2, causing the voltage across the second capacitor C2 to change.
  • the voltage difference between the two ends of the second capacitor C2 is equal to the power-on The voltage difference between the control terminal and the input terminal of the switch 110; since the input terminal Vin of the power-down protection circuit is powered off, the first capacitor C1 discharges charge to the second terminal of the second capacitor C2, causing the second terminal of the second capacitor C2 to The voltage rises, so the voltage at the input terminal of the power-on switch 110 drops, and the voltage at the control terminal of the power-on switch 110 rises.
  • the voltage at the control terminal of the power-on switch 110 is much greater than the voltage at the input terminal of the power-on switch 110, and the power-on switch 110 will quickly Shut down.
  • this embodiment can turn off the power-on switch module on the power path and immediately Cutting off the current prevents electronic equipment from crashing and solves the problem of slow action of the existing protection circuit when the power supply is hot-plugged. It helps avoid device damage in the event of voltage fluctuations and effectively improves the reliability of the circuit and the protection of the product. ability.
  • Figure 3 is a schematic structural diagram of another power-down protection circuit provided by an embodiment of the present application.
  • the power-down protection circuit further includes a first resistor R3.
  • the first resistor R3 is connected to the cathode and the cathode of the diode D1. Between the first terminal of the first capacitor C1; the first resistor R3 is used to limit the current of the diode D1 to prevent the diode D1 from being burned due to excessive current.
  • the power-down protection circuit also includes a fourth resistor R4.
  • the fourth resistor R4 is connected between the output end of the control switch 310 and the power-on switch module 100; the fourth resistor R4 is used to limit the current of the control switch 310 to avoid The control switch 310 is burned out due to excessive current.
  • DC voltage is used to test the equipment loaded with the power-down protection circuit shown in Figure 3.
  • FIG. 4 is a voltage waveform diagram of a power-down protection circuit provided by an embodiment of the present application when the power supply voltage drops.
  • Vout refers to the voltage waveform at the output terminal of the power-down protection circuit
  • Vin refers to the voltage waveform at the input terminal of the power-down protection circuit
  • Vc refers to the voltage waveform at the second terminal of the second capacitor C2 of the power-down protection circuit.
  • the embodiment of the present application sets a power-down protection circuit so that when the voltage of the device fluctuates, the control terminal voltage of the power-on switch 110 will be raised, and the control terminal voltage of the power-on switch 110 is greater than the input of the power-on switch 110 terminal voltage, effectively turning off the power-on switch 110, which is helpful to avoid device damage in the event of voltage fluctuations.
  • DC voltage is used to test the equipment loaded with the power-down protection circuit shown in Figure 3.
  • FIG. 5 is a protection waveform diagram of a power-down protection circuit provided by an embodiment of the present application when the power supply voltage drops slightly.
  • Vout refers to the voltage waveform at the output end of the power-down protection circuit
  • Vin refers to the voltage waveform at the input end of the power-down protection circuit
  • Vc refers to the voltage waveform at the second end of the second capacitor C2 of the power-down protection circuit
  • Vh It refers to the voltage waveform at the first end of the first capacitor C1 of the power-down protection circuit.
  • the embodiment of the present application sets a power-down protection circuit so that the device can effectively turn off the power-on switch 110 when the voltage jitter is small, effectively improving the reliability of the circuit and the protection capability of the product.
  • the third aspect is to test the operation of the power-down protection circuit when the power supply voltage drops too small.
  • Figure 6 is a protection waveform diagram of a power-down protection circuit provided by an embodiment of the present application when the power supply voltage drops too small.
  • Vin refers to the voltage waveform at the input terminal of the power-down protection circuit
  • Vc refers to the voltage waveform at the second terminal of the second capacitor C2 of the power-down protection circuit
  • Vh refers to the voltage waveform of the first capacitor C1 of the power-down protection circuit. voltage waveform at one end.
  • the embodiment of the present application sets a power-down protection circuit so that when the voltage jitter of the device is too small to cause any impact, the power-down protection circuit does not take action, thereby avoiding unnecessary turning off of the power-on switch 110, effectively Improved circuit reliability.
  • the fourth aspect is to test the response time of the power-down protection circuit for protective action when the voltage drops.
  • FIG. 7 is a protection waveform diagram of another power-down protection circuit provided by an embodiment of the present application when the power supply voltage drops.
  • Vout refers to the voltage waveform at the output terminal of the power-down protection circuit
  • Vin refers to the voltage waveform at the input terminal of the power-down protection circuit
  • Vg refers to the voltage waveform at the control terminal of the power-on switch 110 of the power-down protection circuit
  • Iin is Refers to the current waveform at the input end of the power-down protection circuit.
  • the response time of the power-down protection circuit is 3.67ms, and the voltage rise time of the control terminal of the power-on switch 110 is within 1ms.
  • the protection action is rapid and solves the problem. This solves the problem of slow action of the protection circuit when the power supply is hot-plugged in the existing protection circuit, helps avoid device damage in the event of voltage fluctuations, and effectively improves the reliability of the circuit and the protection capability of the product.
  • this embodiment can turn off the power-on switch module on the power supply path, immediately cut off the current, prevent the electronic device from crashing, solve the problem of slow action of the protection circuit when the power supply is hot-plugged in the existing protection circuit, and help avoid Device damage occurs under voltage fluctuations, which effectively improves circuit reliability and product protection capabilities.
  • the embodiments of the present application also provide an electrical device, including the power-down protection circuit provided by any embodiment of the present application.
  • the technical principles and achieved effects are similar and will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

本申请公开了一种掉电保护电路及电子设备。掉电保护电路包括上电开关模块、电压保持模块和电压检测模块,电压保持模块用于基于掉电保护电路的输入端的电压进行充电,并在掉电保护电路的输入端掉电时,保持充电后电压;电压检测模块用于检测掉电保护电路的输入端的电压,在掉电保护电路的输入端掉电时,连通电压保持模块和上电开关模块,以加速关断上电开关模块。在电子设备不慎掉落,电池的连接弹片发生振动,导致触点接触不良,电压快速跌落起伏,产生电弧时,本申请能够关断电源通路上的上电开关模块,立即切断电流,防止电子设备死机,解决了现有保护电路存在电源热插拔时保护电路动作慢的问题。

Description

一种掉电保护电路及电子设备
本申请要求于2022年09月07日提交的申请号为202211090113.6、发明名称为“一种掉电保护电路及电子产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电源保护技术领域,尤其涉及一种掉电保护电路及电子设备。
背景技术
在电池的连接方式为弹片式触点接触的电子产品或设备使用过程中,当电子产品或设备不慎掉落,例如从某一高度掉落到地面时,电池的连接弹片会发生振动,导致触点接触不良,电压快速跌落起伏,产生电弧并有概率出现死机。
现有的保护电路通过检测电源输入的电压值来判断输入欠压,驱动短路开关将PMOS开关栅源极短路,关断PMOS开关,来实现迅速响应电压跌落,实现热插拔保护。然而,现有的保护电路进行欠压检测的方式只能通过设置阈值启动保护,PMOS开关关断速度不够快,因此,现有保护电路的性能较差,电路可靠性偏低。
发明内容
本申请提供一种掉电保护电路及电子设备,以在电压抖动时立即切断电流,防止电子设备死机,有利于提高电路的可靠性和产品的保护能力。
第一方面,本申请提供了一种掉电保护电路,包括:
上电开关模块,所述上电开关模块连接于所述掉电保护电路的输入端以及所述掉电保护电路的输出端之间;
电压保持模块,所述电压保持模块与所述掉电保护电路的输入端连接,所述电压保持模块用于基于所述掉电保护电路的输入端的电压进行充电,并在所述掉电保护电路的输入端掉电时,保持充电后电压; 
电压检测模块,所述电压检测模块与所述掉电保护电路的输入端连接,用于检测所述掉电保护电路的输入端的电压;所述电压检测模块还与所述电压保持模块、上电开关模块连接,用于在所述掉电保护电路的输入端掉电时,连通所述电压保持模块和所述上电开关模块,以关断所述上电开关模块。
可选地,所述电压检测模块包括控制开关,所述控制开关包括输入端、控制端和输出端;
所述控制开关的输入端与所述电压保持模块连接,所述控制开关的控制端与所述掉电保护电路的输入端连接,所述控制开关的输出端与所述上电开关模块连接;所述控制开关用于在所述掉电保护电路的输入端掉电时导通,所述电压保持模块向所述上电开关模块泄放电荷,以使所述上电开关模块关断。
可选地,所述上电开关模块包括上电开关,所述上电开关的输入端与所述掉电保护电路的输入端连接,所述上电开关的输出端与所述掉电保护电路的输出端连接,所述上电开关的控制端与所述电压检测模块连接。
可选地,所述电压保持模块包括:
二极管,所述二极管的阳极与所述掉电保护电路的输入端连接;
第一电容,所述第一电容的第一端与所述二极管的阴极以及所述电压检测模块连接,所述第一电容的第二端接地。
可选地,所述所述电压保持模块还包括第一电阻,所述第一电阻连接于所述二极管的阴极和所述第一电容的第一端之间。
可选地,所述上电开关模块还包括第二电容;
所述第二电容的第一端连接所述上电开关的输入端,所述第二电容的第二端连接所述上电开关的控制端,所述第一电容的电容值大于所述第二电容的电容值。
可选地,所述掉电保护电路还包括第二电阻,所述第二电阻与所述第二电容并联连接于所述上电开关的输入端与所述上电开关的控制端。
可选地,所述掉电保护电路还包括第三电阻,所述第三电阻的第一端连接所述上电开关的控制端,所述第三电阻的第二端接地。
可选地,所述掉电保护电路还包括第四电阻,所述第四电阻连接于所述控制开关的输出端和所述上电开关模块之间。
第二方面,本申请还提供了一种电子设备,包括第一方面所述的掉电保护电路。
本申请所提供的技术方案,电压检测模块检测掉电保护电路的输入端的电压,电压保持模块基于掉电保护电路的输入端的电压进行充电,在掉电保护电路的输入端掉电时,电压检测模块使电压保持模块和上电开关模块连通,电压保持模块向上电开关模块泄放电荷,给上电开关模块施加反向电压,加速关断上电开关模块。由此可见,在电子设备不慎掉落,电池的连接弹片发生振动,导致触点接触不良,电压快速跌落起伏,产生电弧时,本申请能够快速关断电源通路上的上电开关模块,立即切断电流,防止电子设备死机,解决了现有保护电路存在电源热插拔时保护电路动作慢的问题,有利于避免在电压波动情况下发生器件损坏,有效提高了电路的可靠性和产品的保护能力。
附图说明
图1是本申请提供的一种掉电保护电路的结构示意图;
图2是本申请提供的另一种掉电保护电路的结构示意图;
图3是本申请提供的又一种掉电保护电路的结构示意图;
图4是本申请提供的一种掉电保护电路在电源电压跌落时的电压波形图;
图5是本申请提供的一种掉电保护电路在电源电压小幅跌落时的保护波形图;
图6是本申请提供的一种掉电保护电路在电源电压跌落幅度过小时的保护波形图;
图7是本申请提供的另一种掉电保护电路在电源电压跌落时的保护波形图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
现有的保护电路进行欠压检测的方式只能通过设置阈值启动保护,PMOS开关关断速度不够快,电路实际测试关断时间在20ms以上,且电路结构较为复杂,因此,现有保护电路的性能较差,电路可靠性偏低。
针对上述技术问题,本申请实施例提供了一种掉电保护电路,图1是本申请实施例提供的一种掉电保护电路的结构示意图。参见图1,掉电保护电路包括上电开关模块100、电压保持模块200和电压检测模块300。
上电开关模块100连接于掉电保护电路的输入端Vin,以及掉电保护电路的输出端Vout之间;电压保持模块200与掉电保护电路的输入端Vin连接,电压保持模块200用于基于掉电保护电路的输入端Vin的电压进行充电,并在掉电保护电路的输入端Vin掉电时,保持充电后电压;电压检测模块300与掉电保护电路的输入端Vin连接,用于检测掉电保护电路的输入端Vin的电压,电压检测模块300还与电压保持模块200、上电开关模块100连接,用于在掉电保护电路的输入端Vin掉电时,连通电压保持模块200和上电开关模块100,以加速关断上电开关模块100。
其中,上电开关模块100可以但不限于采用金属氧化物半导体场效晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET),例如PMOS管。可知地,由于上电开关模块100连接于掉电保护电路的输入端Vin,以及掉电保护电路的输出端Vout之间,因此,在掉电保护电路的输入端Vin上电时,上电开关模块100导通,使得掉电保护电路的输入端Vin及其输出端Vout相互连通。可以理解的是,当上电开关模块100关断,会使得掉电保护电路的输入端Vin及其输出端Vout相互断开,即切断电源。
可知地,电压保持模块200用于基于掉电保护电路的输入端Vin的电压进行充电,并在掉电保护电路的输入端Vin掉电时,保持充电后电压值,是指,在掉电保护电路的输入端Vin及其输出端Vout相互连通时,向电压保持模块200充电,在掉电保护电路的输入端Vin掉电时,电压保持模块200能够将其内部的电压保持在充电后的电压值。
可知地,电压检测模块300用于与电压保持模块200共同检测掉电保护电路的输入端Vin的电压,当掉电保护电路的输入端Vin电压跌落的速率和幅值超过阈值时,电压检测模块300作为掉电保护电路的动作开关控制保护电路动作,使电压保持模块200和上电开关模块100连通,向上电开关模块100施加反向电压,以关断上电开关模块100。
继续参见图1,可知的,掉电保护电路的工作原理具体如下,在拔插电池或电子设备跌落时,电池连接弹片会产生振动,导致电压抖动,产生电弧;当产生电压抖动,掉电保护电路的输入端Vin掉电时,电压保持模块200能够将其内部电压保持在充电后的电压值,当电压检测模块300和电压保持模块200检测到掉电保护电路的输入端Vin的电压跌落的速率和幅值超过阈值时,电压检测模块300使电压保持模块200和上电开关模块100连通,向上电开关模块100施加反向电压,使上电开关模块100快速关断,进而切断电保护电路的输入端Vin及其输出端Vout之间的连接。
由此可见,在电子设备不慎掉落,电池的连接弹片发生振动,导致触点接触不良,电压快速跌落起伏,产生电弧时,本实施例能够关断电源通路上的上电开关模块,立即切断电流,防止电子设备死机,解决了现有保护电路存在电源热插拔时保护电路动作慢的问题,有利于避免在电压波动情况下发生器件损坏,有效提高了电路的可靠性和产品的保护能力。
在上述实施例的基础上,以下对掉电保护电路的具体结构进行说明,但不作为对本申请的限定。图2是本申请实施例提供的另一种掉电保护电路的结构示意图,参见图2,可选地,上电开关模块100包括上电开关110,上电开关110的输入端与掉电保护电路的输入端Vin连接,上电开关110的输出端与掉电保护电路的输出端Vout连接,上电开关110的控制端与电压检测模300连接。电压检测模300包括控制开关310,控制开关310包括输入端、控制端和输出端;控制开关310的输入端与电压保持模块200连接,控制开关310的控制端与掉电保护电路的输入端Vin连接,控制开关310的输出端与上电开关110的控制端连接。
可选地,电压保持模块200包括二极管D1和第一电容C1。二极管D1的阳极与掉电保护电路的输入端Vin连接;用于单向导通电流,并与第一电容C1形成高电压保持功能,以及避免在掉电保护电路上电时,第一电容C1产生大电流造成电火花打火,保护电路及元器件。
第一电容C1的第一端与二极管D1的阴极以及电压检测模块300连接,第一电容C1的第二端接地;第一电容C1用于与二极管D1形成高电压保持功能,以及当电压检测模块300导通时,第一电容C1向上电开关110的控制端泄放电荷。
上电开关模块100还包括第二电容C2;第二电容C2的第一端连接上电开关110的输入端,第二电容C2的第二端连接上电开关110的控制端;用于使上电开关110上电时延时启动,防止上电时上电开关110产生电火花打火或产生电弧。
其中,第一电容C1的电容值大于第二电容C2的电容值;当控制开关310的控制端的电压跌落至其开通时,第一电容C1能够通过控制开关310给第二电容C2大电流泄放电荷,并且由于第一电容C1远大于第二电容C2,上电开关110的控制端的电压可以高于输入端的电压。
可选地,掉电保护电路还包括第二电阻R1和第三电阻R2,第二电阻R1与第二电容C2并联连接于上电开关110的输入端与上电开关110的控制端,第三电阻R2的第一端连接上电开关110的控制端,第三电阻R2的第二端接地;第二电阻R1用于给上电开关110分压,避免上电开关110的控制端与输入端电压差过压造成击穿,保护上电开关110,第三电阻R2用于与第二电阻R1一起为上电开关110分压,避免上电开关110的控制端与输入端电压差过压造成击穿,保护上电开关110。
由此可见,图2所示掉电保护电路的具体工作原理如下:
在拔插电池或电子设备跌落时,电池连接弹片会产生振动,导致电压抖动,产生电弧;当产生电压抖动,掉电保护电路的输入端Vin掉电时,控制开关310的控制端的电压随着掉电保护电路的输入端Vin下降,由于第一电容C1能够将其内部电压保持在充电后的电压值,控制开关310的输入端的电压被第一电容C1保持在一个较高的电压值,当控制开关310的控制端与输入端的电压差大于其阈值电压时,控制开关310导通,第一电容C1向第二电容C2的第二端泄放电荷,使第二电容C2两端的电压发生变化;由于第二电容C2的第一端连接上电开关110的输入端,第二电容C2的第二端连接上电开关110的控制端,所以第二电容C2两端的电压差就等同于上电开关110的控制端与输入端的电压差;由于掉电保护电路的输入端Vin掉电,而第一电容C1向第二电容C2的第二端泄放电荷,使第二电容C2的第二端电压升高,所以上电开关110的输入端电压下降,上电开关110的控制端电压升高,上电开关110的控制端电压远大于上电开关110输入端的电压,上电开关110会迅速关断。
由此可知,在电子设备不慎掉落,电池的连接弹片发生振动,导致触点接触不良,电压快速跌落起伏,产生电弧时,本实施例能够关断电源通路上的上电开关模块,立即切断电流,防止电子设备死机,解决了现有保护电路存在电源热插拔时保护电路动作慢的问题,有利于避免在电压波动情况下发生器件损坏,有效提高了电路的可靠性和产品的保护能力。
图3是本申请实施例提供的又一种掉电保护电路的结构示意图,参见图3,可选地,掉电保护电路还包括第一电阻R3,第一电阻R3连接于二极管D1的阴极和第一电容C1的第一端之间;第一电阻R3用于给二极管D1限流,避免二极管D1因电流过大而烧毁。
可选地,掉电保护电路还包括第四电阻R4,第四电阻R4连接于控制开关310的输出端和上电开关模块100之间;第四电阻R4用于给控制开关310限流,避免控制开关310因电流过大而烧毁。
基于图3所示的掉电保护电路,以下通过实际掉电保护电路的测试结果对本申请实施例所提供技术方案的有益效果分四个方面进行阐述,但不作为对本申请的限定。
第一方面,采用直流电压对加载图3所示的掉电保护电路的设备进行测试。
图4是本申请实施例提供的一种掉电保护电路在电源电压跌落时的电压波形图。参见图4,Vout是指掉电保护电路的输出端的电压波形,Vin是指掉电保护电路的输入端的电压波形,Vc是指掉电保护电路的第二电容C2的第二端的电压波形。
根据测试结果,采用图3中掉电保护电路的设备在电源电压跌落时,第二电容C2的第二端的电压Vc大于掉电保护电路的输入端的电压Vin,即上电开关110的控制端电压大于掉电保护电路的输入端的电压Vin。由此可见,本申请实施例通过设置掉电保护电路,使得设备在电压抖动时,上电开关110的控制端电压会被抬高,上电开关110的控制端电压大于上电开关110的输入端电压,有效地关断上电开关110,有利于避免在电压波动情况下发生器件损坏。
第二方面,采用直流电压对加载图3所示的掉电保护电路的设备进行测试。
图5是本申请实施例提供的一种掉电保护电路在电源电压小幅跌落时的保护波形图。参见图5,Vout是指掉电保护电路的输出端的电压波形,Vin是指掉电保护电路的输入端的电压波形,Vc是指掉电保护电路的第二电容C2的第二端的电压波形;Vh是指掉电保护电路的第一电容C1的第一端的电压波形。
根据测试结果,采用图3中掉电保护电路的设备在电源电压小幅跌落时,第一电容C1向第二电容C2少量泄放电荷,第二电容C2的第二端的电压Vc大于掉电保护电路的输入端的电压Vin,即上电开关110的控制端电压大于掉电保护电路的输入端的电压Vin,且掉电保护电路的输出端的电压Vout延时上电。由此可见,本申请实施例通过设置掉电保护电路,使得设备在电压抖动较小时,也可以有效地关断上电开关110,有效提高了电路的可靠性和产品的保护能力。
第三方面,对电源电压跌落的幅度过小时,掉电保护电路的动作情况进行测试。
图6是本申请实施例提供的一种掉电保护电路在电源电压跌落幅度过小时的保护波形图。参见图6,Vin是指掉电保护电路的输入端的电压波形,Vc是指掉电保护电路的第二电容C2的第二端的电压波形;Vh是指掉电保护电路的第一电容C1的第一端的电压波形。
根据测试结果,采用图3中掉电保护电路的设备在电源电压跌落幅度过小时,第一电容C1无动作,不泄放电荷,第二电容C2的第二端的电压Vc随着掉电保护电路的输入端的电压Vin产生细微抖动。由此可见,本申请实施例通过设置掉电保护电路,使得设备在电压抖动过小,不会造成影响时,掉电保护电路不进行动作,可以避免不必要地关断上电开关110,有效提高了电路的可靠性。
第四方面,对掉电保护电路在电压跌落时进行保护动作的响应时间进行测试。
图7是本申请实施例提供的另一种掉电保护电路在电源电压跌落时的保护波形图。参见图7,Vout是指掉电保护电路的输出端的电压波形,Vin是指掉电保护电路的输入端的电压波形,Vg是指掉电保护电路的上电开关110的控制端的电压波形;Iin是指掉电保护电路的输入端的电流波形。
根据测试结果,采用图3中掉电保护电路的设备在电源电压跌落时,掉电保护电路的响应时间为3.67ms,上电开关110的控制端的电压上升时间在1ms以内,保护动作迅速,解决了现有保护电路存在电源热插拔时保护电路动作慢的问题,有利于避免在电压波动情况下发生器件损坏,有效提高了电路的可靠性和产品的保护能力。
由此可见,本实施例能够关断电源通路上的上电开关模块,立即切断电流,防止电子设备死机,解决了现有保护电路存在电源热插拔时保护电路动作慢的问题,有利于避免在电压波动情况下发生器件损坏,有效提高了电路的可靠性和产品的保护能力。
本申请实施例还提供了一种用电设备,包括本申请任意实施例所提供的掉电保护电路,其技术原理和实现的效果类似,不再赘述。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (10)

  1.  一种掉电保护电路,其特征在于,包括:
    上电开关模块,所述上电开关模块连接于所述掉电保护电路的输入端以及所述掉电保护电路的输出端之间;
    电压保持模块,所述电压保持模块与所述掉电保护电路的输入端连接,所述电压保持模块用于基于所述掉电保护电路的输入端的电压进行充电,并在所述掉电保护电路的输入端掉电时,保持充电后的电压;
    电压检测模块,所述电压检测模块与所述掉电保护电路的输入端连接,用于检测所述掉电保护电路的输入端的电压;所述电压检测模块还与所述电压保持模块、上电开关模块连接,用于在所述掉电保护电路的输入端掉电时,连通所述电压保持模块和所述上电开关模块,以关断所述上电开关模块。
  2. 根据权利要求1所述的掉电保护电路,其特征在于,所述电压检测模块包括控制开关,所述控制开关包括输入端、控制端和输出端;
    所述控制开关的输入端与所述电压保持模块连接,所述控制开关的控制端与所述掉电保护电路的输入端连接,所述控制开关的输出端与所述上电开关模块连接;所述控制开关用于在所述掉电保护电路的输入端掉电时导通,所述电压保持模块向所述上电开关模块泄放电荷,以使所述上电开关模块关断。
  3. 根据权利要求1所述的掉电保护电路,其特征在于,所述上电开关模块包括上电开关,所述上电开关的输入端与所述掉电保护电路的输入端连接,所述上电开关的输出端与所述掉电保护电路的输出端连接,所述上电开关的控制端与所述电压检测模块连接。
  4. 根据权利要求3所述的掉电保护电路,其特征在于,所述电压保持模块包括:
    二极管,所述二极管的阳极与所述掉电保护电路的输入端连接;
    第一电容,所述第一电容的第一端与所述二极管的阴极以及所述电压检测模块连接,所述第一电容的第二端接地。
  5. 根据权利要求4所述的掉电保护电路,其特征在于,所述电压保持模块还包括第一电阻,所述第一电阻连接于所述二极管的阴极和所述第一电容的第一端之间。
  6. 根据权利要求4所述的掉电保护电路,其特征在于,所述上电开关模块还包括第二电容;
    所述第二电容的第一端连接所述上电开关的输入端,所述第二电容的第二端连接所述上电开关的控制端,所述第一电容的电容值大于所述第二电容的电容值。
  7. 根据权利要求6所述的掉电保护电路,其特征在于,所述掉电保护电路还包括第二电阻,所述第二电阻与所述第二电容并联连接于所述上电开关的输入端与所述上电开关的控制端。
  8. 根据权利要求6所述的掉电保护电路,其特征在于,所述掉电保护电路还包括第三电阻,所述第三电阻的第一端连接所述上电开关的控制端,所述第三电阻的第二端接地。
  9. 根据权利要求2所述的掉电保护电路,其特征在于,所述掉电保护电路还包括第四电阻,所述第四电阻连接于所述控制开关的输出端和所述上电开关模块之间。
  10.  一种电子设备,其特征在于,包括如权利要求1-9任一项所述的掉电保护电路。
PCT/CN2023/100525 2022-09-07 2023-06-15 一种掉电保护电路及电子设备 WO2024051255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211090113.6A CN117712989A (zh) 2022-09-07 2022-09-07 一种掉电保护电路及电子产品
CN202211090113.6 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024051255A1 true WO2024051255A1 (zh) 2024-03-14

Family

ID=90146661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100525 WO2024051255A1 (zh) 2022-09-07 2023-06-15 一种掉电保护电路及电子设备

Country Status (2)

Country Link
CN (1) CN117712989A (zh)
WO (1) WO2024051255A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201001039Y (zh) * 2006-12-29 2008-01-02 深圳市振华微电子有限公司 一种大电流直流电源瞬间掉电保持电路
CN102355046A (zh) * 2011-09-09 2012-02-15 Tcl新技术(惠州)有限公司 电压检测和掉电保护装置及其实现方法
US20140097798A1 (en) * 2012-10-05 2014-04-10 Korea Lsi Co.,Ltd Battery protection circuit module device
CN111509318A (zh) * 2020-05-22 2020-08-07 锐奇控股股份有限公司 电池的电源管理系统及电池供电系统
CN113659819A (zh) * 2021-07-08 2021-11-16 广州金升阳科技有限公司 一种掉电延时控制方法及控制电路
CN218472760U (zh) * 2022-09-07 2023-02-10 海能达通信股份有限公司 一种掉电保护电路及电子产品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201001039Y (zh) * 2006-12-29 2008-01-02 深圳市振华微电子有限公司 一种大电流直流电源瞬间掉电保持电路
CN102355046A (zh) * 2011-09-09 2012-02-15 Tcl新技术(惠州)有限公司 电压检测和掉电保护装置及其实现方法
US20140097798A1 (en) * 2012-10-05 2014-04-10 Korea Lsi Co.,Ltd Battery protection circuit module device
CN111509318A (zh) * 2020-05-22 2020-08-07 锐奇控股股份有限公司 电池的电源管理系统及电池供电系统
CN113659819A (zh) * 2021-07-08 2021-11-16 广州金升阳科技有限公司 一种掉电延时控制方法及控制电路
CN218472760U (zh) * 2022-09-07 2023-02-10 海能达通信股份有限公司 一种掉电保护电路及电子产品

Also Published As

Publication number Publication date
CN117712989A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US9088157B2 (en) Boost type power converting apparatus with protection circuit
EP3082209A1 (en) Overcurrent protection circuit and method for battery discharge
WO2020062817A1 (zh) 一种抑制电源浪涌电压电流的控制电路及电源
CN218472760U (zh) 一种掉电保护电路及电子产品
JP2015535678A (ja) 過電圧保護装置および方法
CN101876846A (zh) 电脑电源及其上的备用电压放电电路
CN111082495A (zh) 一种bms电源系统及其控制方法
CN110829386A (zh) 电池保护电路及其充电功率开关控制信号产生电路
WO2024051255A1 (zh) 一种掉电保护电路及电子设备
CN101694938A (zh) 一种浪涌电流抑制方法
JP2012226756A (ja) 電源アダプタ回路
CN112018724B (zh) 一种过压保护电路
CN212541261U (zh) 一种关机复位电路、电子设备
CN113746079A (zh) 热插拔电路、控制装置及设备
CN1320751C (zh) 为脉宽调制器集成电路提供抵抗单粒子翻转能力的电路
CN114172358A (zh) 星载二次电源单粒子瞬态抑制电路
CN107241014A (zh) 用于scr脉宽调制器的单粒子瞬态效应抵抗电路
CN201781412U (zh) 一种直流电源电路
CN210490445U (zh) 一种输入过压保护模块及终端设备
CN211296247U (zh) 一种bms电源系统
CN115313303A (zh) 掉电保护电路和用电设备
CN211195875U (zh) 一种应用于无人机的电源缓启动控制电路及无人机
CN116032105B (zh) 一种电源过压保护ic
CN113489299B (zh) 开关电源控制电路及驱动芯片
CN219204349U (zh) 一种防止接入大电流产生的电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861958

Country of ref document: EP

Kind code of ref document: A1