WO2024051218A1 - 一种电源模组及相关设备 - Google Patents

一种电源模组及相关设备 Download PDF

Info

Publication number
WO2024051218A1
WO2024051218A1 PCT/CN2023/097025 CN2023097025W WO2024051218A1 WO 2024051218 A1 WO2024051218 A1 WO 2024051218A1 CN 2023097025 W CN2023097025 W CN 2023097025W WO 2024051218 A1 WO2024051218 A1 WO 2024051218A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power module
rectifier
inverter
circuit
Prior art date
Application number
PCT/CN2023/097025
Other languages
English (en)
French (fr)
Inventor
童建利
焦海清
马成龙
Original Assignee
超聚变数字技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 超聚变数字技术有限公司 filed Critical 超聚变数字技术有限公司
Publication of WO2024051218A1 publication Critical patent/WO2024051218A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This application relates to the field of power supply technology, and in particular, to a power supply module and related equipment.
  • the embodiment of the present application discloses a power module and related equipment, which are used to improve the power density and conversion efficiency of the server power supply system and reduce energy consumption.
  • the first aspect discloses a power module, which may include a power factor correction unit, an inverter, a transformer circuit and a rectifier.
  • the input terminal of the power module can be the input terminal of the power factor correction unit, and the output terminal of the power module can be the output terminal of the rectifier.
  • the output end of the power factor correction unit is connected to the input end of the inverter, the output end of the inverter is connected to the input end of the transformer circuit, and the output end of the transformer circuit is connected to the input end of the rectifier,
  • the transformer circuit includes N transformers connected in series, where N is an integer greater than or equal to 2.
  • the power module may only include one power factor correction unit, one inverter, A rectifier and multiple transformers connected in series between the inverter and the rectifier form a transformer circuit.
  • the number of rectifiers and inverters can be reduced, and accordingly the number of switching devices can be reduced, thereby simplifying the control of the power module and improving the stability of the power module.
  • the cost and volume of the power module can also be reduced, thereby reducing the footprint of the device and increasing the power density of the power module.
  • the reduction of rectifiers and inverters can also reduce system losses and improve the conversion efficiency of the power module.
  • the power factor correction unit is used to convert the first alternating current input to the power module into the first direct current, and adjust the power factor of the first direct current to obtain the second direct current;
  • the inverter The transformer is used to convert the second direct current into a second alternating current;
  • the transformer circuit is used to convert the second alternating current into a third alternating current;
  • the rectifier is used to convert the third alternating current into a third direct current.
  • the first alternating current after the first alternating current is input into the power module, it can first pass through the power factor correction unit Rectification and power factor correction are performed, and then the inverter can be used for inversion, and then the gain can be adjusted through the transformer circuit. Finally, the gain-adjusted third alternating current can be converted into a third direct current through the rectifier to power the load. In this way, only one inversion and one rectification can be performed, which can improve the conversion efficiency of the power module.
  • the inverter is any one of a half-bridge inverter, an H-bridge inverter, a three-phase inverter, and a multi-phase inverter.
  • the inverter may be a half-bridge inverter, an H-bridge inverter, a three-phase inverter or a multi-phase inverter, etc., wherein the half-bridge inverter generally includes two switching devices, H-bridge (full-bridge) inverters generally include four switching devices.
  • H-bridge (full-bridge) inverters generally include four switching devices.
  • Three-phase inverters generally include six switching devices, which can convert input DC power into three-way AC output with evenly separated phase angles.
  • Multi-phase inverters generally include multiple switching devices that can convert input DC power into multiple AC outputs with evenly separated phase angles. Since the above-mentioned different inverters have different structures and characteristics, different inverters can be flexibly selected according to actual usage scenarios.
  • the rectifier is a half-bridge rectifier or a full-bridge rectifier.
  • a half-bridge rectifier or a full-bridge rectifier can be selected according to the actual usage scenario, which has high flexibility.
  • the power module is a power supply unit (PSU) of the server.
  • PSU power supply unit
  • the transformer circuit includes a first transformer circuit and a second transformer circuit.
  • the first transformer circuit includes M transformers connected in series.
  • the second transformer circuit includes K transformers connected in series.
  • a transformer, M and K are both integers greater than or equal to 1, and the sum of K and M is equal to N.
  • the output end of the first transformer circuit is connected to the input end of the second transformer circuit through a connector;
  • the output end of the transformer circuit is connected to the input end of the rectifier; the first transformer circuit is used to convert the second alternating current into a fourth alternating current; the second transformer circuit is used to convert the fourth alternating current to Third AC.
  • the above-mentioned transformer circuit can be split into a first transformer circuit and a second transformer circuit.
  • the fourth alternating current output by the first transformer circuit can be transmitted to the second transformer circuit through the connector.
  • the second transformer circuit can be placed close to the load. At this time, the voltage of the fourth alternating current can be higher, which can reduce line transmission losses from the first transformer circuit to the second transformer circuit, thereby providing stable direct current to the load.
  • the power module further includes a filter circuit, the input end of the filter circuit is connected to the output end of the first transformer circuit, and the output end of the filter circuit is connected to the input end of the second transformer circuit.
  • the filter circuit can make the waveform of the alternating current output by the first transformer circuit smoother, and can improve the stability of the power module.
  • the second aspect discloses a first power module.
  • the first power module includes a power factor correction unit, an inverter and a first transformer circuit.
  • the input end of the first power module is the power factor correction unit.
  • the input terminal, the output terminal of the first power module is the output terminal of the first transformer circuit, the output terminal of the power factor correction unit is connected to the input terminal of the inverter, and the output terminal of the inverter is connected to the third
  • the first transformer circuit includes M transformers connected in series, where M is an integer greater than or equal to 1.
  • the first power module may only include a power factor correction unit, an inverter and The first transformer circuit is composed of M transformers connected in series.
  • the number of rectifiers can be reduced and accordingly The cost and volume of the first power module can be reduced, thereby reducing the footprint of the device and improving the power density of the first power module.
  • the reduction of rectifiers can also reduce system losses and improve the conversion efficiency of the first power module.
  • the power factor correction unit is used to convert the first alternating current input to the first power module into the first direct current, and adjust the power factor of the first direct current to obtain the second direct current;
  • the inverter is used to convert the second direct current power into the second alternating current power;
  • the first transformer circuit is used to convert the second alternating current power into the fourth alternating current power.
  • the first power module is a power supply unit of the server.
  • a third aspect discloses a second power module.
  • the second power module includes a second transformer circuit and a rectifier.
  • the input terminal of the second power module is the input terminal of the second transformer circuit.
  • the rectifier The output terminal is the output terminal of the second power module, and the output terminal of the second transformer circuit is connected to the input terminal of the rectifier;
  • the second transformer circuit includes K transformers connected in series, and K is greater than or equal to 1. integer.
  • the second power module may only include one rectifier and a second transformer circuit composed of K transformers connected in series.
  • the number of inverters can be reduced, and accordingly the number of switching devices can be reduced, thereby simplifying the control of the second power module and improving the stability of the second power module.
  • the cost and volume of the second power module can also be reduced, thereby reducing the footprint of the device and increasing the power density of the second power module.
  • the reduction of inverters can also reduce system losses and improve the conversion efficiency of the second power module.
  • the second transformer circuit is used to convert the fourth alternating current into a third alternating current; and the rectifier is used to convert the third alternating current into a third direct current.
  • the second power module is a voltage regulator of the server.
  • the first power module can be a power supply unit of the server
  • the second power module can be a voltage regulator of the server
  • a connector can be used between the first power module and the second power module. connect.
  • the first alternating current after the first alternating current is input to the first power module, it can first be rectified and corrected by the power factor correction unit, and then can be inverted by the inverter. After that, the gain can be adjusted by the transformer circuit and the fourth output can be output. Alternating current, and the voltage of the fourth alternating current can be higher, which can reduce line transmission losses from the first transformer circuit to the second transformer circuit.
  • the third alternating current can be output after gain adjustment through the second transformer circuit, and then the third alternating current can be converted into the third direct current required by the load through the rectifier.
  • the fourth aspect discloses a server, which includes the first power module provided by any one of the possible implementations of the second aspect to the second aspect, and the first power module provided by any one of the possible implementations of the third aspect to the third aspect.
  • a second power module is provided, and the first power module and the second power module are connected through a connector.
  • Figure 1 is a schematic diagram of a server power supply architecture disclosed in an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a power supply device disclosed in an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of another electronic device disclosed in the embodiment of the present application.
  • Figure 5 is a schematic diagram of an application scenario of an electronic device disclosed in an embodiment of the present application.
  • Figure 6A is a schematic structural diagram of a power module disclosed in an embodiment of the present application.
  • Figure 6B is a schematic structural diagram of another power module disclosed in the embodiment of the present application.
  • Figure 6C is a schematic structural diagram of another power module disclosed in the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of three inverters disclosed in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another power module disclosed in the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another power module disclosed in the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another power module disclosed in the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of yet another power module disclosed in an embodiment of the present application.
  • the embodiment of the present application discloses a power module and related equipment, which are used to improve the power density and conversion efficiency of the server power supply system and reduce energy consumption.
  • the power supply circuit of the server 10 generally includes an alternating current/direct current (AC/DC) converter 11 and a direct current/direct current (DC/DC) converter 12.
  • the AC/DC converter 11 is used to convert the alternating current V1 provided by the input power supply 14 into direct current V2.
  • the DC/DC converter 12 is used to convert the direct current V2 provided by the AC/DC converter 11 into the direct current V3 and supply power to the load.
  • the input power supply 14 can be a power grid
  • the alternating current V1 can be an alternating current of 220V, 380V, etc.
  • the AC/DC converter 11 can be a power supply unit (PSU) of the server 10 , and the PSU can convert 220V, 380V, etc. alternating current into 48V/12V direct current.
  • PSU power supply unit
  • the fan may require 12V DC power. Therefore, if the PSU output voltage is 48V DC, then the DC/DC converter needs to be used to convert the 48V DC into 12V DC to power the fan.
  • the central processing unit (CPU) it may require a power supply voltage of 1.5V.
  • the supply voltage it may require is 1.8V. Therefore, for 12V DC, the voltage can be further adjusted through the voltage regulator (VR) on the server motherboard, so that the stable DC power required by the CPU, memory and other devices can be provided.
  • VR voltage regulator
  • the power supply architecture in Figure 1 only illustrates one stage (i.e. one) DC/DC converter, but in actual scenarios, more stages of DC/DC can be included after the DC/DC converter.
  • the converter is not limited here.
  • the power supply architecture shown in Figure 1 can also be used in other power supply scenarios.
  • AC/DC converter 11 and DC/DC converter 12 are generally standard products produced by various manufacturers, they take into account many usage scenarios, have strong compatibility, and have fixed device parameters. For example, in a practical situation, in order to convert 220V AC power to 12V DC power, you can choose to purchase an AC/DC converter from manufacturer A, which can convert 220V AC power into 48V DC power, or purchase an AC/DC converter from manufacturer B. DC/DC converter, which can convert 48V DC power into 12V DC power. In this way, cascading two converters can convert 220V AC power into 12V DC power.
  • AC/DC converters from various manufacturers generally include power factor correction (PFC) units, inverters, transformers, rectifiers, etc.
  • DC/DC converters generally include inverters, Transformers, rectifiers and other parts.
  • FIG. 2 is a schematic structural diagram of a power supply device disclosed in an embodiment of the present application.
  • the AC/DC converter 11 may include a PFC unit 111, an inverter 112, a transformer 113, a rectifier 114, and a filter circuit after the rectifier 114.
  • the DC/DC converter 12 may include an inverter. 121, transformer 122, rectifier 123 and other parts.
  • the PFC unit 111 may first perform power factor correction and rectification. Alternating current (for example, 380V alternating current) can be converted into direct current for output through the PFC unit 111 . Afterwards, the DC power output by the PFC unit 111 can be converted into AC power for output through the inverter 112 .
  • the AC power output by the inverter 112 passes through the transformer 113, and gain adjustment (ie, voltage amplitude adjustment) can be performed. Afterwards, the gain-adjusted AC power passes through the rectifier 114 and can be converted into DC power for output. After that, the DC power output by the rectifier 114 passes through the filter circuit, which can filter out the AC component in the DC power, making the output waveform smooth. After that, it can be connected to the next-stage DC/DC converter 12 through a connector, and the DC power output by the AC/DC converter 11 can be input to the DC/DC converter 12 . In the DC/DC converter 12, the direct current power passes through the inverter 121 and can be converted into alternating current power for output.
  • gain adjustment ie, voltage amplitude adjustment
  • the AC power output by the inverter 121 passes through the transformer 122, and the gain can be adjusted. Then, the gain-adjusted alternating current can be converted into direct current for output through the rectifier 123 . Finally, it can be filtered through a filter capacitor to provide stable direct current to the load 13 . In this way, the stable DC power required by the final load 13 can be obtained through multiple inversions, voltage transformations, rectifiers, and filters.
  • the capacitor C1 in the DC/DC converter 12 may also cause safety hazards.
  • the capacitor C1 can be used to store energy and smooth the direct current input by the AC/DC converter 11 .
  • the capacitor C1 since the initial voltage of capacitor C1 is 0, the capacitor C1 is equivalent to a short-circuit state at the moment when it is connected through the connector. A large peak current will flow through the connector instantaneously, and sparking may occur, and even sparking may occur. Causes the connector to burn directly. Therefore, in the power supply circuit shown in Figure 2, a slow-start circuit is usually designed at the capacitor C1 to avoid sparking.
  • the slow start circuit schematically illustrated in Figure 2 can include MOSFET Q1 and a control circuit.
  • the control circuit can be connected to the gate of MOSFET Q1, and the control circuit can output a control signal to the gate of MOSFET Q1 to control MOSFET Q1 to slowly turn on. Specifically, at the moment when the connector is overlapping, the control circuit can control MOSFET Q1 to slowly turn on, so that the current through capacitor C1 in the conduction stage can gradually increase from small to large, and the small current through the initial conduction stage can Precharge capacitor C1 first. Afterwards, since the capacitor C1 has been precharged, when the MOSFET Q1 is fully turned on, there will not be a large peak current to cause sparking.
  • the number of inversion and rectification can be reduced based on the above power supply architecture. Only the first-stage inverter, the last-stage rectifier and the intermediate multi-stage transformer can be retained, and the intermediate ones can be removed. Inverter, rectifier, capacitor C1 and slow start circuit. In this way, the number of conversions of inverter and rectifier can be reduced, thereby improving the conversion efficiency of the overall power supply link and reducing the control complexity of the overall power supply link. In addition, it can also solve the problem of large inrush current and sparking at the moment when the connector is overlapped, thereby improving the safety of hot swapping.
  • the electronic equipment provided by this application can be used to convert alternating current such as AC 380V, AC 220V, or AC 110V into voltages and currents suitable for different types of electronic equipment or itself.
  • the electronic device provided by this application can be a power adapter (adaptor) for different types of electronic devices such as servers, smart cars, notebook computers, desktop computers, and industrial robots. It can also be power adapters for servers, smart cars, notebook computers, desktop computers, and industrial robots. and other types of electronic equipment.
  • the electronic device provided by this application may be a charging pile for electric vehicles such as electric motorcycles and electric vehicles, or may be a charging pile for electric vehicles such as electric motorcycles and electric vehicles.
  • FIG. 3 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present application.
  • the electronic device 30 may include a power module 31 and a load 32 .
  • the alternating current V1 ie, the first alternating current
  • V2 the direct current
  • the electronic device 30 may include a power module 31 .
  • the alternating current V1 provided by the input power supply 33 can be converted into a direct current V2 through the power module 31 and output to supply power to the load 32 .
  • the electronic device 30 may be an adapter, a charging pile, or other equipment.
  • an adapter can also be called a charger, charging head, switching power supply (switch power supply) or power converter (power converter), etc.
  • electronic device 30 may include input power source 33 .
  • Input power 33 may include AC power.
  • the electronic device 30 includes multiple power modules 31 , and the multiple power modules 31 can be connected in parallel to provide multiple output direct currents V2 to power the load 32 .
  • the power module 31 in the electronic device 30 can provide multiple output direct currents V2 to power multiple loads 32 respectively.
  • the electronic device 30 may include multiple power modules 31 , and the multiple power modules 31 respectively provide output direct current V2 for multiple loads 32 .
  • electronic device 30 may receive multiple input power supplies 33 .
  • the load 32 may be electronic equipment such as servers, smart cars, notebook computers, desktop computers, and industrial robots, or their internal components or their external electronic equipment.
  • FIG. 5 is a schematic diagram of an application scenario of an electronic device disclosed in an embodiment of the present application.
  • the electronic device 30 shown may be the electronic device 30 shown in FIG. 3 or FIG. 4 .
  • the load 50 shown in FIG. 5 may be the load 32 shown in FIG. 3 or 4 .
  • the electronic device 30 may include a power module 31 .
  • the power module 31 may include a PFC unit 311, an inverter 312, a transformer 3131, a transformer 3132, and a rectifier 314.
  • the AC power provided by the input power supply 20 can be converted into DC power for output through the PFC unit 311 .
  • the PFC unit 311 can also adjust the power factor of the circuit.
  • the DC power output by the PFC unit 311 can be converted into AC power for output through the inverter 312 .
  • the AC power output by the inverter 312 passes through the transformer 3131 and the transformer 3132, and the gain can be adjusted.
  • the AC power output by the transformer 3132 can be converted into a DC power output through the rectifier 314 , and the DC power can power the load 50 .
  • one or more stages of transformers may also be included between the transformer 3131 and the transformer 3132 to change the amplitude of the alternating current by cascading the multi-stage transformers.
  • input power source 20 may be an AC power grid.
  • the power module 31 shown in FIG. 5 may also include one or more control circuits, and the one or more control circuits may be used to provide control signals for the PFC unit 311, the inverter 312, and the rectifier 314. To adjust the output voltage or current of the PFC unit 311, the inverter 312, and the rectifier 314.
  • the power module provided by the embodiment of the present application can convert alternating current into stable direct current required by the load through a PFC unit, inverter, multi-stage transformer, and rectifier, and the conversion process only involves a first-level inverter and a first-level rectifier. It can improve the conversion efficiency of the overall power supply link. It can be understood that the above is only an example of the application scenarios of the electronic device provided by this application, rather than an exhaustive list, and this application does not limit the application scenarios.
  • FIG. 6A is a schematic structural diagram of a power module disclosed in an embodiment of the present application.
  • the power module 31 includes a PFC unit 311, an inverter 312, a transformer circuit 313, a rectifier 314 and a control circuit 315.
  • the PFC unit 311, the inverter 312, the transformer circuit 313 and the rectifier 314 are connected in series in sequence.
  • the input end of the power module 31 is the input end of the PFC unit 311, and the output end of the power module 31 is the output end of the rectifier 314. .
  • the alternating current V1 after the alternating current V1 is input through the input terminal of the PFC unit 311, it can be converted into the direct current V11 (ie, the second direct current) and output from the output terminal of the PFC unit 311.
  • the direct current V11 After being input through the input terminal of the inverter 312, the direct current V11 can be converted into the alternating current V12 (ie, the second alternating current) and output from the output terminal of the inverter 312.
  • the alternating current V12 is input through the input terminal of the transformer circuit 313, it can be converted into the alternating current V14 (ie, the third alternating current) and output from the output terminal of the transformer circuit 313.
  • the alternating current V14 After being input through the input terminal of the rectifier 314, the alternating current V14 can be converted into the direct current V2 and output from the output terminal of the rectifier 314.
  • the transformer circuit 313 may include N transformers, and the N transformers may be connected in series.
  • N is an integer greater than or equal to 2.
  • the transformer 3131 and the transformer 3132 shown in FIG. 6A may be included.
  • the alternating current V12 is input through the input terminal of the transformer 3131, it can be converted into the alternating current V13 and output from the output terminal of the transformer 3131.
  • the alternating current V13 is input through the input terminal of the transformer 3132, it can be converted into the alternating current V14 and output from the output terminal of the transformer 3132.
  • the PFC unit 311 may include a rectification circuit and a PFC circuit.
  • the rectifier circuit can be used to convert the first alternating current input to the power module 31 into the first direct current, and the PFC circuit can be used to adjust the power factor of the first direct current to obtain the second direct current.
  • the rectifier circuit and the PFC circuit in the PFC unit 311 can be separated into two independent parts. First, rectification is performed through the rectifier circuit, and then the power factor is adjusted through the PFC circuit. See Figure 6B for details. As shown in Figure 6B, the above-mentioned PFC unit 311 can be divided into a rectifier circuit 3111 and a PFC circuit 3112. After the alternating current V1 is input through the input terminal of the rectifier circuit 3111, it can be converted into the direct current V111 (ie, the first direct current) and output from the output terminal of the rectifier circuit 3111.
  • the direct current V111 After being input through the input terminal of the PFC circuit 3112, the direct current V111 can be converted into the direct current V112 (ie, the above-mentioned V11) and output from the output terminal of the PFC circuit 3112.
  • the PFC circuit may be a valley-fill PFC circuit.
  • the inverter 312 may be used to invert the direct current V11 output by the PFC unit 311 into an alternating current (square wave or sine wave) V12.
  • the inverter circuit ie, inverter 312 in the embodiment of the present application can be implemented in a variety of ways, including but not limited to half-bridge inverter, H-bridge inverter, three-phase inverter, multi-phase inverter, etc. Inverter etc.
  • the inverter circuit may also be a resonant conversion circuit composed of the above-mentioned inverter and other circuits.
  • the inverter circuit can also be composed of a full-bridge, half-bridge LLC resonant topology, or a phase-shifted full-bridge topology.
  • a half-bridge inverter generally has two switching devices and two diodes, and the control circuit can control the opening and closing of these two switching devices to achieve inversion.
  • H-bridge inverter generally has four switching devices and four diodes, and the control circuit can control the opening and closing of these four switching devices to achieve inversion.
  • Three-phase inverters generally have six switching devices and six diodes, and the control circuit can control the opening and closing of these six switching devices to achieve inversion.
  • FIG. 7 is a schematic structural diagram of three inverters disclosed in embodiments of the present application.
  • the switching devices in half-bridge inverters, H-bridge inverters and three-phase inverters can be MOSFETs, and the switching devices in half-bridge inverters, full-bridge inverters and three-phase inverters can be MOSFETs.
  • the diode may be a parasitic diode of the MOSFET.
  • the switching device may be a metal oxide semiconductor field effect transistor (metal oxide semiconductor field effect transistor, MOSFET), an insulated gate bipolar transistor (IGBT), or a gallium nitride (Gallium Nitride, GaN) transistor or triode.
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT insulated gate bipolar transistor
  • GaN gallium nitride
  • the switching device is a MOSFET as an example for explanation.
  • the above-mentioned PFC unit 311, inverter 312, and rectifier 314 may all include switching devices.
  • the transformer circuit 313 (including the transformer 3131 and the transformer 3132) between the inverter 312 and the rectifier 314 can be used for gain adjustment.
  • the rectifier 314 may be used to convert the AC power V14 output by the transformer 3132 into DC and then provide the output DC power V2 to power the load.
  • the control circuit 315 is used to provide control signals to the PFC unit 311 and the inverter 312 to adjust the output voltage or current of the PFC unit 311 and the inverter 312 . Specifically, the control circuit 315 is used to control the turn-on or turn-off of the switching devices in the PFC unit 311 and the inverter 312 or to adjust the duty cycle of the switching devices, thereby realizing inversion and power factor adjustment.
  • the control circuit may include a controller and a drive circuit.
  • the output end of the controller may be connected to the input end of the drive circuit, and the output end of the drive circuit may be connected to the drive end of the switching device (such as the gate of a MOSFET).
  • the controller can output a driving signal to the driving end of the switching device by controlling the driving circuit, where the driving signal can include a turn-on signal and a turn-off signal.
  • the control circuit 315 can also be used to provide a control signal to the rectifier 314 to adjust the output voltage or current of the rectifier 314 .
  • the controller in the control circuit 315 may be a microcontroller unit (MCU), Field programmable gate array (FPGA), complex programmable logic device (CPLD), digital signal processing (DSP) chip, etc. are not limited here.
  • the PFC unit 311 and the inverter 312 can be controlled by two independent control circuits respectively, or the PFC unit 311, the inverter 312 and the rectifier 314 can be controlled by three independent control circuits respectively. Take control.
  • the power module 31 can be split into multiple circuit units, and each circuit unit can be electrically connected through a connector. Moreover, each circuit unit can be used as an independent power module. Please refer to FIG. 6C.
  • the transformer circuit 313 can be split.
  • the transformer circuit 313 can be split into a first transformer circuit and a second transformer circuit.
  • the transformer circuit 313 can be split.
  • the power module 31 is divided into a first circuit unit (ie, the first power module) and a second circuit unit (ie, the second power module).
  • the first transformer circuit may include M transformers connected in series, and the second transformer circuit may include K transformers connected in series, M and K are both integers greater than or equal to 1, and the sum of K and M is equal to N.
  • the first circuit unit may include a PFC unit 311, an inverter 312 and a first transformer circuit
  • the second circuit unit may include a second transformer circuit and a rectifier 314.
  • the input terminal of the first circuit unit is the input terminal of the PFC unit 311, and the output terminal of the first circuit unit is the output terminal of the first transformer circuit.
  • the input terminal of the second circuit unit is the input terminal of the second transformer circuit, and the output terminal of the second circuit unit is the output terminal of the rectifier 314 .
  • the alternating current V12 can be converted into the alternating current V15 (ie, the fourth alternating current) and output from the output terminal of the first transformer circuit.
  • the alternating current V15 can be converted into the alternating current V14 and output from the output terminal of the second transformer circuit.
  • the PFC unit 311, the inverter 312 and the first transformer circuit may be a PSU of the server
  • the second transformer circuit and the rectifier 314 may be a VR on the server motherboard.
  • the PSU and VR can be connected through a connector.
  • the PSU of the server can include a control circuit
  • the PFC unit 311 and the inverter 312 can share the control circuit.
  • the rectifier 314 can be controlled by devices on the motherboard (such as CPLD or FPGA).
  • the PSU can output AC power with a higher voltage such as 48V.
  • the 48V AC power output by the PSU can then be voltage adjusted and rectified through the VR to output low-voltage DC power to power the CPU and memory. In this way, the lines from the PSU to the VR can be reduced. Transmission loss.
  • the above-mentioned connectors are mainly used to realize electrical connections between various circuit units, and can be selected according to actual conditions.
  • a filter circuit can be included between the multi-stage transformers in the transformer circuit 313, which can make the waveform of the alternating current output by the transformer smoother.
  • a filter circuit can also be included after the rectifier 314. This filter circuit can output stable DC power to power the load.
  • a filter circuit may be included between the first transformer circuit and the second transformer circuit, the input end of the filter circuit may be connected to the output end of the first transformer circuit, and the output end of the filter circuit may be connected to the second transformer circuit. input terminal.
  • a rectifier can be connected after any one-stage transformer in the power module 31, so that Different voltages of DC power can be obtained so that different loads can be provided with the voltages they require.
  • the power module 31 may include a PFC unit 811, an inverter 812, a transformer 813, a transformer 814, Transformer 815, rectifier 816, rectifier 817 and rectifier 818.
  • the alternating current V1 is input through the input terminal of the PFC unit 811 and then converted into direct current V81 and output from the output terminal of the PFC unit 811 .
  • the direct current V81 can be converted into the alternating current V82 and output from the output terminal of the inverter 812.
  • the rectifier 816 can be used to rectify the AC power V85 output by the transformer 815 into the DC power V2.
  • the rectifier 817 may be used to rectify the AC power V84 output by the transformer 814 into the DC power V3.
  • the rectifier 818 may be used to rectify the AC power V83 output by the transformer 813 into the DC power V4. In this way, three different voltages of DC power, V2, V3, and V4, can be obtained, which can be supplied to different loads.
  • the power module shown in FIG. 8 may also include a control circuit.
  • the control circuit is used to provide control signals to the PFC unit 811 and the inverter 812 to adjust the output voltage or current of the PFC unit 811 and the inverter 812.
  • a three-stage transformer is used for illustration in FIG. 8 , but in other embodiments of the present application, more stages of transformers may be included, and more rectifiers may be included, thereby providing more DC power with different voltages.
  • the power module 31 may include a first circuit unit and a second circuit unit, and the first circuit unit and the second circuit unit may be connected through a connector.
  • the first circuit unit may include a PFC unit 311, an inverter 312, a transformer 3131 and a filter circuit 316.
  • the second circuit unit may include a transformer 3132, a rectifier 314 and a filter capacitor C7.
  • the PFC unit 311 may include a rectification circuit and a PFC circuit.
  • the rectifier circuit may include diodes D1 to D4, as shown in Figure 9. Among them, the connection between the anode of diode D2 and the cathode of diode D1, the connection between the cathode of diode D3 and the anode of diode D4 respectively constitute two input terminals of the PFC unit 311, and the cathode of diode D2 and the cathode of diode D4 are connected to form a rectifier circuit. The first output terminal of the diode D1 and the anode of the diode D3 are connected to form the second output terminal of the rectifier circuit.
  • the rectifier circuit can include MOSFETs Q8 ⁇ Q11, as shown in Figure 10.
  • MOSFETs Q8 ⁇ Q11 the connection between the source (S pole) of MOSFET Q8 and the drain (D pole) of MOSFET Q10, the drain of MOSFET Q11 and the source connection of MOSFET Q9 respectively constitute two input terminals of the PFC unit 311, MOSFET Q8
  • the drain of MOSFET Q9 is connected to the drain of MOSFET Q9 to form the first output terminal of the rectifier circuit
  • the source of MOSFET Q10 to the source of MOSFET Q11 is connected to form the second output terminal of the rectifier circuit.
  • the PFC circuit can include capacitor C1, capacitor C2, capacitor C3, resistor R1, diode D5, diode D6, inductor L1, and MOSFET Q1.
  • the anode of the diode D5, one end of the inductor L1 and one end of the capacitor C1 are respectively connected to the first output terminal of the rectifier circuit.
  • the other end of the inductor L1 is connected to the anode of the diode D7 and the drain of the MOSFET Q1 respectively.
  • the other end of the capacitor C1, one end of the resistor R1 and one end of the capacitor C2 are respectively connected to the second output end of the rectifier circuit.
  • the other end of the capacitor C2 is connected to the ground terminal PE.
  • the cathode of the diode D5, the cathode of the diode D7 and one end of the capacitor C3 are connected to form the first output terminal of the PFC unit 311.
  • the other end of the resistor R1, the source of the MOSFET Q1 and the other end of the capacitor C3 are connected to form the second output end of the PFC unit 311.
  • the above-mentioned diode D6 can be a parasitic diode of MOSFET Q1, and the drain and source of MOSFET Q1 are respectively connected to the cathode and anode of the parasitic diode D1.
  • the diode D7 may be a silicon carbide (SiC) diode.
  • the inverter 312 may include MOSFET Q2, MOSFET Q3, capacitor C4, capacitor C5, inductor L2, diode D8, diode D9.
  • diode D8 can be the parasitic diode of MOSFET Q2, MOSFET
  • the drain and source of Q2 are connected to the cathode and anode of parasitic diode D8 respectively.
  • Diode D9 may be a parasitic diode of MOSFET Q3, and the drain and source of MOSFET Q3 are respectively connected to the cathode and anode of parasitic diode D9.
  • the drain of MOSFET Q2 and one end of capacitor C4 are connected to the first output terminal of PFC unit 311 .
  • the other end of the capacitor C4 and one end of the capacitor C5 are connected to form a second output end of the inverter 312 .
  • the other end of the capacitor C5 and the source of the MOSFET Q3 are connected to the second output terminal of the PFC unit 311 .
  • the source of MOSFET Q2 and the drain of MOSFET Q3 are connected to one end of the inductor L2, and the other end of the inductor L2 constitutes the first output end of the inverter 312.
  • the inductor L2 can also be used as an independent part.
  • the source of the MOSFET Q2 and the drain of the MOSFET Q3 can form the first output end of the inverter 312 after being connected.
  • One end of the inductor L2 can be connected to the first output end of the inverter 312 , and the other end of the inductor L2 can be connected to the first end of the primary winding of the transformer 3131 .
  • Transformer 3131 may include transformer T1. Among them, the left side is the primary winding and the right side is the secondary winding. The first end of the primary winding is connected to the first output end of the inverter 312 , and the second end of the primary winding is connected to the second output end of the inverter 312 . The first end of the secondary winding is the first output end of the transformer 3131, and the second end of the secondary winding is the second output end of the transformer 3131. Both the primary winding and the secondary winding are wound onto the iron core.
  • Filter circuit 316 may include an inductor L3 and a capacitor C6.
  • One end of the inductor L3 is connected to the first output end of the transformer 3131, and the other end of the inductor L3 is connected to one end of the capacitor C6 to form the first output end of the filter circuit 316.
  • the other end of the capacitor C6 is connected to the second output end of the transformer 3131 and serves as the second output end of the filter circuit 316 .
  • Transformer 3132 may include transformer T2. Among them, the left side is the primary winding and the right side is the secondary winding. The first end of the primary winding is connected to the first output end of the filter circuit 316 through the connector, and the second end of the primary winding is connected to the second output end of the filter circuit 316 through the connector. The first end of the secondary winding constitutes the first output end of the transformer 3132, and the second end of the secondary winding constitutes the second output end of the transformer 3132. Both the primary winding and the secondary winding are wound onto the iron core.
  • the rectifier 314 may include MOSFETs Q4 ⁇ Q7 and diodes D10 ⁇ D13. Among them, the source of MOSFET Q4 and the drain of MOSFET Q6 are connected to the first output end of the transformer 3132, and the source of MOSFET Q5 and the drain of MOSFET Q7 are connected to the second output end of the transformer 3132. The drain of MOSFET Q4 and the drain of MOSFET Q5 are connected to form the first output terminal of the rectifier 314, and the source of MOSFET Q6 and the source of MOSFET Q7 are connected to form the second output terminal of the rectifier 314.
  • diodes D10, D11, D12, and D13 are parasitic diodes of MOSFETs Q4, Q5, Q6, and Q7 respectively.
  • the drains and sources of MOSFETs Q4, Q5, Q6, and Q7 are respectively connected to parasitic diodes D10, D11, D12, and D13. cathode and anode.
  • the second circuit unit may further include a capacitor C7.
  • One end of the capacitor C7 is connected to the first output end of the rectifier 314 , and the other end of the capacitor C7 is connected to the second output end of the rectifier 314 .
  • Capacitor C7 can be used to filter the direct current output from the rectifier 314 . Further, both ends of the load can be connected to the first output terminal and the second output terminal of the second circuit unit respectively to obtain stable direct current.
  • the capacitor C7 can be an aluminum electrolytic capacitor or a tantalum electrolytic capacitor. At this time, the end connected to the drain of the MOSFET Q5 is the positive stage of the capacitor C7, and the end connected to the drain of the MOSFET Q7 is the capacitor. The negative terminal of C7. It should be understood that the capacitor C7 may not be included in other embodiments of the present application.
  • the gates (G poles) of the above-mentioned MOSFETs Q1 to Q7 are respectively connected to the control circuit, so that the control circuit can control the turn-on or turn-off of the MOSFET by controlling the gates of the MOSFETs.
  • the above-mentioned filter circuit 316 is optional. In other embodiments of the present application, the filter circuit 316 may not be included. It should also be noted that the above-mentioned MOSFET Q1 in the PFC unit 311, the MOSFET Q2 and Q3 in the inverter 312, and the MOSFET Q4, Q5, Q6 and Q7 in the rectifier 314 can be controlled by one or more independent control circuits. . Specifically, the control circuit can adjust the circuit power factor by controlling the on and off of MOSFET Q1. The control circuit can invert the DC power input to the inverter 312 into AC power by controlling the on and off of MOSFETs Q2 and Q3.
  • the control circuit can rectify the alternating current input to the rectifier 314 into direct current by controlling the on and off of MOSFETs Q4, Q5, Q6 and Q7. Moreover, the control circuit can adjust the output voltage and output frequency by controlling the period and duty cycle of pulse width modulation (PWM), thereby achieving stable voltage output and powering the load.
  • PWM pulse width modulation
  • the transformer in the above-mentioned transformer circuit 313 may be a high-frequency transformer.
  • the above-mentioned transformer 3131 and transformer 3132 may be high-frequency transformers.
  • the above-mentioned inverter 312, transformer 3131, filter circuit 316, transformer 3132 and rectifier 314 together form a high-frequency link (HF-LINK).
  • the high-frequency chain is a flexible and changeable circuit topology that can use high-frequency pulse transformers instead of low-frequency transformers to transmit energy and achieve electrical isolation.
  • the high-frequency chain circuit has a compact structure, high power density and reliability, and fast response speed.
  • the overall power supply system can work above 20kHz, and the power can reach above the kilowatt (kW) level.
  • the power module composed of a high-frequency chain can provide stable direct current to the load device.
  • FIG. 11 is a schematic structural diagram of yet another power module disclosed in an embodiment of the present application.
  • the transformer 3132 in the second circuit unit may be a transformer with a center tap.
  • the rectifier 314 in the second circuit unit may only include two MOSFETs (ie, MOSFET Q4 and MOSFET Q5).
  • the left side of transformer T2 is the primary winding
  • the upper right side is the first secondary winding
  • the lower right side is the second secondary winding.
  • the first end of the primary winding of the transformer T2 is connected to the first output end of the filter circuit 316 through a connector
  • the second end of the primary winding of the transformer T2 is connected to the second output end of the filter circuit 316 through the connector.
  • the first end of the first secondary winding of the transformer T2 constitutes the first output end of the transformer 3132
  • the second end of the second secondary winding constitutes the second output end of the transformer 3132
  • the second end of the first secondary winding and the third The first ends of the two secondary windings are connected to form the third output end of the transformer 3132.
  • the primary winding, the first secondary winding and the second secondary winding are all wound onto the iron core.
  • the rectifier may include MOSFET Q4, MOSFET Q5, diode D10, diode D11.
  • MOSFET Q4 is connected to the first output terminal of the transformer 3132
  • MOSFET Q5 is connected to the second output terminal of the transformer 3132.
  • the source of MOSFET Q4 is connected to the source of MOSFET Q5 to form the second output terminal of the rectifier.
  • the first output terminal of the rectifier 314 is the third output terminal of the transformer 3132.
  • diodes D10 and D11 are parasitic diodes of MOSFETs Q4 and Q5 respectively, and the drains and sources of MOSFETs Q4 and Q5 are respectively connected to the cathodes and anodes of parasitic diodes D10 and D11.
  • the rectifier can be a full-bridge rectifier or a half-bridge rectifier.
  • the rectifier device can use diodes D1 to D4 as shown in Figure 9 above, or MOSFETs Q8 to Q11 as shown in Figure 10 above.
  • the inverter can be a half-bridge inverter, an H-bridge inverter, a three-phase inverter, etc. as shown in Figure 7 above.
  • the transformer can be a transformer without a center tap (as shown in Figure 9) or a transformer with a center tap. device (as shown in Figure 11). Therefore, in actual scenarios, appropriate combinations of rectifiers, transformers, and inverters can be selected.
  • multi-stage rectifiers and inverters are reduced, which can reduce the number of switching devices, thereby simplifying the control of the overall power supply link and improving the power supply module stability.
  • this solution does not require the capacitor C1 as shown in Figure 2, which can solve the problem of sparking at the moment when the connector is overlapped.
  • the cost and volume of the power module can also be reduced, thereby reducing the footprint of the device and increasing the power density of the power module.
  • the reduction of rectifiers and inverters can reduce system losses and improve the conversion efficiency of the power module.
  • connection in this application can be understood as direct connection (ie, electrical connection); it can also be understood as indirect connection, that is, connection through other devices, components, modules, devices, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

本申请实施例公开一种电源模组及相关设备,该电源模组包括功率因数校正单元、逆变器、变压电路和整流器,电源模组的输入端为功率因数校正单元的输入端,电源模组的输出端为整流器的输出端。具体地,功率因数校正单元的输出端连接逆变器的输入端,逆变器的输出端连接变压电路的输入端,变压电路的输出端连接整流器的输入端,变压电路包括串联连接的N个变压器,N为大于或等于2的整数。本申请实施例,可以提高电源模组的功率密度和转换效率。

Description

一种电源模组及相关设备
本申请要求于2022年09月08日提交中国国家知识产权局、申请号为202211096948.2、申请名称为“一种电源模组及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电源技术领域,尤其涉及一种电源模组及相关设备。
背景技术
随着计算机技术的进步,服务器的功能和性能也不断提升和完善,在云计算、数据中心、大数据等领域也发挥着越来越重要的作用。并且,为了满足日益增长的数据处理需求,各个企业部署的数据中心的数量也越来越多,单个数据中心中部署的服务器数量也越来越多。与此同时,如何设计服务器的供电架构,提高服务器供电系统的功率密度和转换效率是技术人员关注的问题。
发明内容
本申请实施例公开了一种电源模组及相关设备,用于提高服务器供电系统的功率密度和转换效率,减小能耗。
第一方面公开一种电源模组,该电源模组可以包括功率因数校正单元、逆变器、变压电路和整流器。该电源模组的输入端可以为该功率因数校正单元的输入端,该电源模组的输出端可以为该整流器的输出端。具体地,该功率因数校正单元的输出端连接该逆变器的输入端,该逆变器的输出端连接该变压电路的输入端,该变压电路的输出端连接该整流器的输入端,该变压电路包括串联连接的N个变压器,N为大于或等于2的整数。
相较于传统的通过多个逆变器、多个变压器和多个整流器实现增益调整的服务器供电架构,本申请实施例中,电源模组可以仅包括一个功率因数校正单元、一个逆变器、一个整流器,以及逆变器和整流器之间的多个变压器串联构成的变压电路。这样,可以减少整流器和逆变器的数量,相应地可以减少开关器件的数量,从而可以简化电源模组的控制,提高电源模组的稳定性。同时,通过减少上述整流器和逆变器,还可以降低电源模组的成本和体积,从而可以减小器件的占板面积,提高电源模组的功率密度。此外,整流器和逆变器的减少还可以降低系统损耗,提高电源模组的转换效率。
作为一种可能的实施方式,该功率因数校正单元,用于将向该电源模组输入的第一交流电转换为第一直流电,并且调整该第一直流电的功率因数得到第二直流电;该逆变器,用于将该第二直流电转换为第二交流电;该变压电路,用于将该第二交流电转换为第三交流电;该整流器,用于将该第三交流电转换为第三直流电。
本申请实施例中,第一交流电输入电源模组之后,可以先通过功率因数校正单元 进行整流以及功率因数校正,然后可以通过逆变器进行逆变,之后可以通过变压电路进行增益调整,最后可以通过整流器将经增益调整之后的第三交流电转换为第三直流电为负载供电。这样,可以只经过一次逆变和一次整流,可以提高电源模组的转换效率。
作为一种可能的实施方式,该逆变器为半桥逆变器、H桥逆变器、三相逆变器、多相逆变器中的任一项。
本申请实施例中,逆变器可以为半桥逆变器、H桥逆变器、三相逆变器或多相逆变器等,其中,半桥逆变器一般包括两个开关器件,H桥(即全桥)逆变器一般包括四个开关器件。三相逆变器一般包括六个开关器件,可以将输入的直流电转换为三路相角均匀分离的交流电输出。多相逆变器一般包括多个开关器件,可以将输入的直流电转换为多路相角均匀分离的交流电输出。由于上述不同逆变器的结构和特性不同,因此可以根据实际使用场景灵活选择不同的逆变器。
作为一种可能的实施方式,该整流器为半桥整流器或全桥整流器。
本申请实施例中,可以根据实际使用场景选择使用半桥整流器或全桥整流器,灵活性高。
作为一种可能的实施方式,该电源模组为服务器的供电单元PSU。
作为一种可能的实施方式,该变压电路包括第一变压电路和第二变压电路,该第一变压电路包括串联连接的M个变压器,该第二变压电路包括串联连接的K个变压器,M、K均为大于或等于1的整数,且K和M之和等于N,该第一变压电路的输出端通过连接器连接该第二变压电路的输入端;该第二变压电路的输出端连接该整流器的输入端;该第一变压电路,用于将该第二交流电转换为第四交流电;该第二变压电路,用于将该第四交流电转换为该第三交流电。
本申请实施例中,可以将上述变压电路拆分为第一变压电路和第二变压电路,第一变压电路输出的第四交流电可以通过连接器传输到第二变压电路,第二变压电路可以靠近负载设置。此时,第四交流电的电压可以较高,这样可以减少第一变压电路到第二变压电路的线路传输损耗,从而可以为负载提供稳定的直流电。
作为一种可能的实施方式,该电源模组还包括滤波电路,该滤波电路的输入端连接该第一变压电路的输出端,该滤波电路的输出端连接该第二变压电路的输入端。
本申请实施例中,滤波电路可以使得第一变压电路输出的交流电的波形更为平滑,可以提高电源模组的稳定性。
第二方面公开一种第一电源模组,该第一电源模组包括功率因数校正单元、逆变器和第一变压电路,该第一电源模组的输入端为该功率因数校正单元的输入端,该第一电源模组的输出端为该第一变压电路的输出端,该功率因数校正单元的输出端连接该逆变器的输入端,该逆变器的输出端连接该第一变压电路的输入端;该第一变压电路包括串联连接的M个变压器,M为大于或等于1的整数。
相较于传统的包括功率因数校正单元、逆变器、变压器和整流器的交流—直流变换器,本申请实施例中,第一电源模组可以仅包括一个功率因数校正单元、一个逆变器和由M个变压器串联构成的第一变压电路。这样,可以减少整流器的数量,相应地 可以降低第一电源模组的成本和体积,从而可以减小器件的占板面积,提高第一电源模组的功率密度。此外,整流器的减少还可以降低系统损耗,提高第一电源模组的转换效率。
作为一种可能的实施方式,该功率因数校正单元,用于将向该第一电源模组输入的第一交流电转换为第一直流电,并且调整该第一直流电的功率因数得到第二直流电;该逆变器,用于将该第二直流电转换为第二交流电;该第一变压电路,用于将该第二交流电转换为第四交流电。
作为一种可能的实施方式,该第一电源模组为服务器的供电单元。
第三方面公开一种第二电源模组,该第二电源模组包括第二变压电路和整流器,该第二电源模组的输入端为该第二变压电路的输入端,该整流器的输出端为该第二电源模组的输出端,该第二变压电路的输出端连接该整流器的输入端;该第二变压电路包括串联连接的K个变压器,K为大于或等于1的整数。
相较于传统的包括逆变器、变压器和整流器的直流—直流变换器,本申请实施例中,第二电源模组可以仅包括一个整流器和由K个变压器串联构成的第二变压电路。这样,可以减少逆变器的数量,相应地可以减少开关器件的数量,从而可以简化第二电源模组的控制,提高第二电源模组的稳定性。同时,通过减少上述逆变器,还可以降低第二电源模组的成本和体积,从而可以减小器件的占板面积,提高第二电源模组的功率密度。此外,逆变器的减少还可以降低系统损耗,提高第二电源模组的转换效率。
作为一种可能的实施方式,该第二变压电路,用于将第四交流电转换为第三交流电;该整流器,用于将第三交流电转换为第三直流电。
作为一种可能的实施方式,该第二电源模组为服务器的电压调整器。
本申请实施例中,上述第一电源模组可以为服务器的供电单元,上述第二电源模组可以为服务器的电压调整器,第一电源模组和第二电源模组之间可以通过连接器连接。这样,第一交流电输入第一电源模组之后,可以先通过功率因数校正单元进行整流以及功率因数校正,然后可以通过逆变器进行逆变,之后可以通过变压电路进行增益调整后输出第四交流电,而第四交流电的电压可以较高,这样可以减少第一变压电路到第二变压电路的线路传输损耗。第四交流电输入第二电源模组之后,可以通过第二变压电路进行增益调整后输出第三交流电,之后通过整流器可以将第三交流电转换为负载所需要的第三直流电。
第四方面公开一种服务器,该服务器包括第二方面至第二方面任一种可能的实施方式所提供的第一电源模组,以及第三方面至第三方面任一种可能的实施方式所提供的第二电源模组,该第一电源模组和该第二电源模组通过连接器连接。
应理解的是,本申请上述多个方面或者任一种可能的实施方式的实现和有益效果可互相参考。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对 于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例公开的一种服务器供电架构的示意图;
图2是本申请实施例公开的一种供电装置的结构示意图;
图3是本申请实施例公开的一种电子设备的结构示意图;
图4是本申请实施例公开的另一种电子设备的结构示意图;
图5是本申请实施例公开的一种电子设备的应用场景示意图;
图6A是本申请实施例公开的一种电源模组的结构示意图;
图6B是本申请实施例公开的另一种电源模组的结构示意图;
图6C是本申请实施例公开的又一种电源模组的结构示意图;
图7是本申请实施例公开的三种逆变器的结构示意图;
图8是本申请实施例公开的又一种电源模组的结构示意图;
图9是本申请实施例公开的又一种电源模组的结构示意图;
图10是本申请实施例公开的又一种电源模组的结构示意图;
图11是本申请实施例公开的又一种电源模组的结构示意图。
具体实施方式
本申请实施例公开了一种电源模组及相关设备,用于提高服务器供电系统的功率密度和转换效率,减小能耗。下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为了更好地理解本申请实施例,下面先对本申请实施例的相关技术进行描述。
随着计算机技术的进步,服务器的功能和性能也不断提升和完善,在云计算、数据中心、大数据等领域也发挥着越来越重要的作用。并且,为了满足日益增长的数据处理需求,各个企业部署的数据中心的数量也越来越多,单个数据中心中部署的服务器数量也越来越多。与此同时,如何设计服务器的供电架构,提高服务器供电系统的功率密度,提高供电系统的转换效率,减小能耗是技术人员关注的问题。
下面介绍一种服务器供电架构的结构示意图。如图1所示,服务器10的供电电路一般包括交流—直流(alternating current/direct current,AC/DC)变换器11、直流—直流(direct current/direct current,DC/DC)变换器12。AC/DC变换器11,用于将输入电源14提供的交流电V1转换为直流电V2。DC/DC变换器12,用于将AC/DC变换器11提供的直流电V2转换为直流电V3,并对负载进行供电。
在一种可能的实现方式中,输入电源14可以为电网,交流电V1可以为220V、380V等交流电。AC/DC变换器11可以为服务器10的供电单元PSU(power supply unit),PSU可以将220V、380V等的交流电转换为48V/12V的直流电。但由于服务器中各个负载(如内存、中央处理器、风扇)需要的供电电压不同,例如,风扇可能需要12V的直流电。因此,如果PSU输出电压为48V的直流电,那么此时还需要通过DC/DC变换器将48V的直流电转换为12V的直流电,以便为风扇供电。此外,对于中央处理器(central processing unit,CPU)来说,其可能需要的供电电压为1.5V,对于内存来 说,其可能需要的供电电压为1.8V。因此,对于12V的直流电,可以继续通过服务器主板上的电压调整器(voltage regulator,VR)进一步对电压进行调节,以便可以为CPU、内存等设备提供它们需要的稳定直流电。
可以理解的是,图1中的供电架构中仅示意出一级(即一个)DC/DC变换器,但在实际场景下,在该DC/DC变换器之后还可以包括更多级DC/DC变换器,在此不作限定。并且,图1所示的供电架构除了用于服务器之外,还可以用于其它供电场景。
需要说明的是,由于上述AC/DC变换器11、DC/DC变换器12一般都为各个生产厂家生产的标准品,其考虑了很多使用场景,兼容性较强,器件参数也为固定的。例如,在一种实际情况下,为了将220V的交流电转换为12V的直流电,可以选择采购厂家A的AC/DC变换器,其可以将220V的交流电转换为48V的直流电,还可以采购厂家B的DC/DC变换器,其可以将48V的直流电转换为12V的直流电。这样,将两个变换器级联起来就可以将220V的交流电变换为12V的直流电。其中,各个生成厂家的AC/DC变换器中一般会包括功率因数校正(power factor correction,PFC)单元、逆变器、变压器、整流器等部分,DC/DC变换器中一般会包括逆变器、变压器、整流器等部分。具体地请参阅图2,图2是本申请实施例公开的一种供电装置的结构示意图。
如图2所示,AC/DC变换器11中可以包括PFC单元111、逆变器112、变压器113、整流器114以及整流器114之后的滤波电路等部分,DC/DC变换器12中可以包括逆变器121、变压器122、整流器123等部分。其中,PFC单元111可以先进行功率因数校正和整流。交流电(例如380V的交流电)通过PFC单元111,可以转换为直流电输出。之后,PFC单元111输出的直流电通过逆变器112,可以转换为交流电输出。然后,逆变器112输出的交流电通过变压器113,可以进行增益调整(即电压幅值的调整)。之后,经过增益调整后的交流电通过整流器114,可以转换为直流电输出。再之后,整流器114输出的直流电通过滤波电路,可以滤除直流电中的交流成分,使得输出波形变得平滑。再之后,可以通过连接器和下一级DC/DC变换器12相连,可以将AC/DC变换器11输出的直流电输入DC/DC变换器12。在DC/DC变换器12中,直流电通过逆变器121,可以转换为交流电输出。之后,逆变器121输出的交流电通过变压器122,可以进行增益调整。再之后,经过增益调整后的交流电通过整流器123,可以转换为直流电输出,最后,可以通过一个滤波电容进行滤波处理,可以提供稳定直流电给负载13。这样,通过多次逆变、变压、整流、滤波可以得到最终负载13所需的稳定直流电。
但是,这种通过多级变换器经过多次逆变、变压、整流实现增益调整与安全隔离的供电架构中,逆变、变压、整流的转换次数过多,导致整体供电链路的转换效率不高,并且,多级的逆变和整流会导致整体供电链路的控制较为复杂。
此外,DC/DC变换器12中电容C1还会导致存在安全隐患。具体地,电容C1可以用于储存能量,平滑AC/DC变换器11输入的直流电。但是,由于电容C1初始状态的电压为0,因此,在通过连接器搭接的瞬间电容C1相当于短路状态,连接器上会瞬间通过很大的尖峰电流,可能出现打火的情况,甚至可能导致连接器直接烧坏。因此,图2所示的供电电路中通常会在电容C1处设计缓启动电路来避免打火现象。可 以参见图2,图2中示意的缓启动电路可以包括MOSFET Q1和控制电路,控制电路可以连接MOSFET Q1的栅极,控制电路可以向MOSFET Q1的栅极输出控制信号控制MOSFET Q1缓慢开启。具体地,在通过连接器搭接的瞬间,控制电路可以控制MOSFET Q1缓慢导通,这样,可以使得导通阶段通过电容C1的电流从小逐渐变大,并且,通过初始导通阶段的小电流可以对电容C1先预充电。之后,由于电容C1已经进行了预充电,因此,在MOSFET Q1完全导通时,不会出现很大的尖峰电流而产生打火。
为了解决上述问题,本申请实施例中,可以在上述供电架构的基础上,减少逆变以及整流次数,可以仅保留第一级逆变器、最后一级整流器以及中间的多级变压器,去掉中间的逆变器、整流器、电容C1以及缓启动电路。这样,可以减少逆变和整流的转换次数,从而可以提高整体供电链路的转换效率,以及可以降低整体供电链路的控制复杂度。并且,还可以解决通过连接器搭接的瞬间存在的较大冲击电流以及打火的问题,从而可以提高热插拔的安全性。
需要说明的是,本申请提供的电子设备可以用于将AC 380V或者AC 220V或者AC 110V等交流电转化成适用于不同类型的电子设备或者自身的电压和电流。本申请提供的电子设备可以是服务器、智能汽车、笔记本电脑、台式计算机以及工业机器人等不同类型的电子设备的电源适配器(adaptor),也可以是服务器、智能汽车、笔记本电脑、台式计算机以及工业机器人等不同类型的电子设备。或者,本申请提供的电子设备可以是电动摩托车、电动汽车等电动交通工具的充电桩,也可以是电动摩托车、电动汽车等电动交通工具。
请参阅图3,图3是本申请实施例公开的一种电子设备的结构示意图。如图3所示,电子设备30可以包括电源模组31和负载32。其中,输入电源33提供的交流电V1(即第一交流电)通过电源模组31,可以转换为直流电V2(即第三直流电)输出为负载32供电。
请参阅图4,图4是本申请实施例公开的另一种电子设备的结构示意图。如图4所示,电子设备30可以包括电源模组31。输入电源33提供的交流电V1通过电源模组31,可以转换为直流电V2输出为负载32供电。在本申请实施例中,电子设备30可以是适配器、充电桩等设备。通常,适配器(adaptor)也可以被称为充电器(charger)、充电头、开关电源(switch power supply)或者功率变换器(power converter)等。
在一些实施例中,电子设备30可以包括输入电源33。输入电源33可以包括交流电源。在另一些实施例中,电子设备30中包括多个电源模组31,多个电源模组31可以并联,可以提供多个输出直流电V2为负载32供电。在又一些实施例中,电子设备30中电源模组31可以提供多个输出直流电V2分别为多个负载32供电。在又一些实施例中,电子设备30可以包括多个电源模组31,多个电源模组31分别为多个负载32提供输出直流电V2。在又一些实施例中,电子设备30可以接收多个输入电源33。在又一些实施例中,负载32可以是服务器、智能汽车、笔记本电脑、台式计算机以及工业机器人等电子设备或者它们内部的元器件或者它们的外接电子设备。
请参阅图5,图5是本申请实施例公开的一种电子设备的应用场景示意图。图5 所示的电子设备30可以为图3或图4所示的电子设备30。图5所示的负载50可以为图3或图4所示的负载32。如图5所示,电子设备30可以包括电源模组31。电源模组31可以包括PFC单元311、逆变器312、变压器3131、变压器3132、整流器314。其中,输入电源20提供的交流电通过PFC单元311,可以转换为直流电输出。并且,PFC单元311还可以调节电路的功率因数。PFC单元311输出的直流电通过逆变器312,可以转换为交流电输出。逆变器312输出的交流电通过变压器3131和变压器3132,可以进行增益调整。变压器3132输出的交流电通过整流器314,可以转换为直流电输出,该直流电可以为负载50供电。需要说明的是,在一些实施例中,变压器3131和变压器3132之间还可以包括一级或多级变压器,通过多级变压器级联的方式改变交流电的幅值大小。
在一些实施例中,输入电源20可以是交流电网。
可以理解的是,图5所示的电源模组31还可以包括一个或多个控制电路,该一个或多个控制电路可以用于为PFC单元311、逆变器312、整流器314提供控制信号,以调节PFC单元311、逆变器312、整流器314的输出电压或电流。
本申请实施例提供的电源模组可以通过PFC单元、逆变器、多级变压器、整流器将交流电转换为负载所需要的稳定直流电,并且转换过程中仅涉及一级逆变器和一级整流器,可以提高整体供电链路的转换效率。可以理解的是,上述只是对本申请提供的电子设备的应用场景进行示例,而非穷举,本申请不对应用场景进行限制。
下面结合图6A至图11,对本申请提供的电子设备、电源模组的工作原理进行示例说明。
请参阅图6A,图6A是本申请实施例公开的一种电源模组的结构示意图。如图6A所示,电源模组31包括PFC单元311、逆变器312、变压电路313、整流器314和控制电路315。其中,PFC单元311、逆变器312、变压电路313和整流器314依次串联连接,电源模组31的输入端为PFC单元311的输入端,电源模组31的输出端为整流器314的输出端。具体地,交流电V1通过PFC单元311的输入端输入之后可以转换为直流电V11(即第二直流电),并从PFC单元311的输出端输出。直流电V11通过逆变器312的输入端输入之后可以转换为交流电V12(即第二交流电),并从逆变器312输出端输出。交流电V12通过变压电路313的输入端输入之后可以转换为交流电V14(即第三交流电),并从变压电路313的输出端输出。交流电V14通过整流器314的输入端输入之后可以转换为直流电V2,并从整流器314的输出端输出。
需要说明的是,变压电路313可以包括N个变压器,这N个变压器可以依次串联连接。N为大于或等于2的整数。例如,当N为2时,可以包括如图6A所示的变压器3131和变压器3132。交流电V12通过变压器3131的输入端输入之后可以转换为交流电V13,并从变压器3131的输出端输出。交流电V13通过变压器3132的输入端输入之后可以转换为交流电V14,并从变压器3132的输出端输出。
PFC单元311中可以包括整流电路和PFC电路。其中,整流电路可以用于将向电源模组31输入的第一交流电转换为第一直流电,PFC电路用于调整第一直流电的功率因数得到第二直流电。
需要说明的是,在一种可能的实现方式中,PFC单元311中的整流电路和PFC电路可以拆分出来,作为独立的两部分。首先通过整流电路进行整流,然后再通过PFC电路调节功率因数。具体可以参见图6B,如图6B所示,上述PFC单元311可以拆分为整流电路3111和PFC电路3112。交流电V1通过整流电路3111的输入端输入之后可以转换为直流电V111(即第一直流电),并从整流电路3111的输出端输出。直流电V111通过PFC电路3112的输入端输入之后可以转换为直流电V112(即上述V11),并从PFC电路3112的输出端输出。示例性的,PFC电路可以为填谷式PFC电路。
逆变器312可以用于将PFC单元311输出的直流电V11逆变为交流电(方波或正弦波)V12。应理解,本申请实施例中的逆变电路(即逆变器312)可以有多种实现方式,包括但不限于半桥逆变器、H桥逆变器、三相逆变器、多相逆变器等。在一种可能的实现方式中,逆变电路也可以为由上述逆变器与其他电路构成的谐振变换电路。此外,逆变电路还可以由全桥、半桥LLC谐振拓扑构成,也可以由移相全桥拓扑构成。
其中,半桥逆变器一般具有两个开关器件和两个二极管,可以通过控制电路控制这两个开关器件的开断实现逆变。H桥逆变器一般具有四个开关器件和四个二极管,可以通过控制电路控制这四个开关器件的开断实现逆变。三相逆变器一般具有六个开关器件和六个二极管,可以通过控制电路控制这六个开关器件的开断实现逆变。具体地可以参阅图7,图7是本申请实施例公开的三种逆变器的结构示意图。如图7所示,半桥逆变器、H桥逆变器和三相逆变器中的开关器件可以为MOSFET,半桥逆变器、全桥逆变器和三相逆变器中的二极管可以为MOSFET的寄生二极管。
本申请实施例中,开关器件可以是金属氧化物半导体场效应晶体管(metal oxide semiconductor Field Effect Transistor,MOSFET)、绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、氮化镓(Gallium Nitride,GaN)晶体管或者三极管中的任意一种。在本申请实施例中,以开关器件为MOSFET为例进行说明。并且,可以理解的是,上述PFC单元311、逆变器312、和整流器314中均可以包括开关器件。
逆变器312和整流器314之间的变压电路313(包括变压器3131和变压器3132)可以用于进行增益调整。
整流器314可以用于将变压器3132输出的交流电V14进行直流变换后提供输出直流电V2为负载供电。
控制电路315用于为PFC单元311、逆变器312提供控制信号,以调节PFC单元311、逆变器312的输出电压或电流。具体地,控制电路315用于控制PFC单元311和逆变器312中开关器件的导通或关断或者调节开关器件的占空比,从而实现逆变以及功率因数的调整。
其中,控制电路可以包括控制器和驱动电路,控制器的输出端可以连接驱动电路的输入端,驱动电路的输出端可以连接到开关器件的驱动端(如MOSFET的栅极)。控制器可以通过控制驱动电路向开关器件的驱动端输出驱动信号,其中,该驱动信号可以包括导通信号和关断信号。
应理解,在整流器314中使用开关器件(如MOSFET)进行整流时,控制电路315还可以用于为整流器314提供控制信号,以调节整流器314的输出电压或电流。本申请实施例中,控制电路315中的控制器可以为微控制单元(microcontroller unit,MCU)、 现场可编程逻辑门阵列(field programmable gate array,FPGA)、复杂可编程逻辑器件(complex programmable logic device,CPLD)、数字信号处理(digital signal processing,DSP)芯片等,在此不作限定。在一种可能的实现方式中,PFC单元311和逆变器312可以分别通过2个独立的控制电路进行控制,或者PFC单元311、逆变器312和整流器314可以分别通过3个独立的控制电路进行控制。
在一种可能的实现方式中,电源模组31可以被拆分为多个电路单元,各个电路单元之间可以通过连接器进行电气连接。并且,各个电路单元可以作为独立的电源模组。请参见图6C,在一些实施例中,可以在变压电路313处进行拆分,可以将变压电路313拆分为第一变压电路和第二变压电路两部分,相应地,可以将电源模组31拆分为第一电路单元(即第一电源模组)和第二电路单元(即第二电源模组)。此时,第一变压电路可以包括串联连接的M个变压器,第二变压电路可以包括串联连接的K个变压器,M、K均为大于或等于1的整数,且K和M之和等于N。相应地,第一电路单元可以包括PFC单元311、逆变器312和第一变压电路,第二电路单元可以包括第二变压电路和整流器314。其中,第一电路单元的输入端为PFC单元311的输入端,第一电路单元的输出端为第一变压电路的输出端。第二电路单元的输入端为第二变压电路的输入端,第二电路单元的输出端为整流器314的输出端。交流电V12通过第一变压电路的输入端输入之后可以转换为交流电V15(即第四交流电),并从第一变压电路的输出端输出。交流电V15通过第二变压电路的输入端输入之后可以转换为交流电V14,并从第二变压电路的输出端输出。
在一种可能的实现方式中,PFC单元311、逆变器312和第一变压电路可以为服务器的PSU,第二变压电路和整流器314可以为服务器主板上的VR。PSU和VR之间可以通过连接器进行连接,此时,服务器的PSU可以包括一个控制电路,PFC单元311、逆变器312可以共用该控制电路。而整流器314可以利用主板上的器件(如CPLD或FPGA)进行控制。并且,PSU输出的可以为48V等电压较高的交流电,之后再通过VR将PSU输出的48V交流电进行电压调整和整流后输出低压直流电为CPU和内存等供电,这样,可以减少PSU到VR的线路传输损耗。需要说明的是,上述连接器的作用主要为实现各个电路单元之间的电气连接,可以根据实际情况进行选择。
在一些实施例中,变压电路313中的多级变压器之间可以包括滤波电路,该滤波电路可以使得变压器输出的交流电的波形更为平滑,相应地,整流器314之后也可以包括滤波电路,通过该滤波电路可以输出稳定直流电为负载供电。例如,上述第一变压电路和第二变压电路之间可以包括滤波电路,滤波电路的输入端可以连接第一变压电路的输出端,滤波电路的输出端可以连接第二变压电路的输入端。
可以理解的是,由于不同的负载需要的供电电压一般不同(如服务器上的风扇、内存、显卡、CPU等),因此,在电源模组31中的任意一级变压器之后可以连接一个整流器,从而可以得到不同电压的直流电,以便可以为不同的负载提供其所需要的电压。
请参阅图8,图8是本申请实施例公开的又一种电源模组的结构示意图。如图8所示,电源模组31可以包括PFC单元811、逆变器812、变压器813、变压器814、 变压器815、整流器816、整流器817和整流器818。其中,交流电V1通过PFC单元811的输入端输入之后可以转换为直流电V81,并从PFC单元811的输出端输出。直流电V81通过逆变器812的输入端输入之后可以转换为交流电V82,并从逆变器812输出端输出。之后,整流器816可以用于将变压器815输出的交流电V85整流为直流电V2。整流器817可以用于将变压器814输出的交流电V84整流为直流电V3。整流器818可以用于将变压器813输出的交流电V83整流为直流电V4。这样,可以得到V2、V3、V4这三个不同电压的直流电,可以提供给不同的负载使用。
应理解,图8所示的电源模组中还可以包括控制电路,控制电路用于为PFC单元811、逆变器812提供控制信号,以调节PFC单元811、逆变器812的输出电压或电流。需要说明的是,图8中以三级变压器进行说明,但在本申请另一些实施例中,可以包括更多级变压器,也可以包括更多整流器,从而可以提供更多不同电压的直流电。
请参阅图9,图9是本申请实施例公开的又一种电源模组的结构示意图。如图9所示,电源模组31可以包括第一电路单元和第二电路单元,第一电路单元和第二电路单元之间可以通过连接器连接。第一电路单元中可以包括PFC单元311、逆变器312、变压器3131和滤波电路316。第二电路单元中可以包括变压器3132、整流器314和滤波电容C7。
具体地,PFC单元311可以包括整流电路和PFC电路。一种情况下,该整流电路可以包括二极管D1~D4,如图9所示。其中,二极管D2的阳极和二极管D1的阴极连接处、二极管D3的阴极和二极管D4的阳极连接处分别构成PFC单元311的两个输入端,二极管D2的阴极和二极管D4的阴极连接后构成整流电路的第一输出端,二极管D1的阳极和二极管D3的阳极连接后构成整流电路的第二输出端。
另一种情况下,该整流电路可以包括MOSFET Q8~Q11,如图10所示。其中,MOSFET Q8的源极(S极)和MOSFET Q10的漏极(D极)连接处、MOSFET Q11的漏极和MOSFET Q9的源极连接处分别构成PFC单元311的两个输入端,MOSFET Q8的漏极和MOSFET Q9的漏极连接后构成整流电路的第一输出端,MOSFET Q10的源极和MOSFET Q11的源极连接后构成整流电路的第二输出端。
PFC电路可以包括电容C1、电容C2、电容C3、电阻R1、二极管D5、二极管D6、电感L1、MOSFET Q1。二极管D5的阳极、电感L1的一端和电容C1的一端分别连接整流电路的第一输出端。电感L1的另一端分别连接二极管D7的阳极和MOSFET Q1的漏极,电容C1的另一端、电阻R1的一端和电容C2的一端分别连接整流电路的第二输出端。电容C2的另一端连接地端PE。二极管D5的阴极、二极管D7的阴极和电容C3的一端连接后构成PFC单元311的第一输出端。电阻R1的另一端、MOSFET Q1的源极和电容C3的另一端连接后构成PFC单元311的第二输出端。
应理解,上述二极管D6可以为MOSFET Q1的寄生二极管,MOSFET Q1的漏极和源极分别连接寄生二极管D1的阴极和阳极。在一些实施例中,上述二极管D7可以为碳化硅(SiC)二极管。
逆变器312可以包括MOSFET Q2、MOSFET Q3、电容C4、电容C5、电感L2、二极管D8、二极管D9。其中,二极管D8可以为MOSFET Q2的寄生二极管,MOSFET  Q2的漏极和源极分别连接寄生二极管D8的阴极和阳极。二极管D9可以为MOSFET Q3的寄生二极管,MOSFET Q3的漏极和源极分别连接寄生二极管D9的阴极和阳极。MOSFET Q2的漏极和电容C4的一端连接PFC单元311的第一输出端。电容C4的另一端和电容C5的一端连接后构成逆变器312的第二输出端。电容C5的另一端和MOSFET Q3的源极连接PFC单元311的第二输出端。MOSFET Q2的源极和MOSFET Q3的漏极连接电感L2的一端,电感L2的另一端构成逆变器312的第一输出端。在一些实施例中,也可以将电感L2作为独立的一部分,此时,MOSFET Q2的源极和MOSFET Q3的漏极连接后可以构成逆变器312的第一输出端。电感L2的一端可以连接逆变器312的第一输出端,电感L2的另一端可以连接变压器3131的原边绕组的第一端。
变压器3131可以包括变压器T1。其中,左边是原边绕组,右边为副边绕组。原边绕组的第一端连接逆变器312的第一输出端,原边绕组的第二端连接逆变器312的第二输出端。副边绕组的第一端为变压器3131的第一输出端,副边绕组的第二端为变压器3131的第二输出端。原边绕组和副边绕组均缠绕至铁芯上。
滤波电路316可以包括电感L3和电容C6。电感L3的一端连接变压器3131的第一输出端,电感L3的另一端与电容C6的一端连接后构成滤波电路316的第一输出端。电容C6的另一端连接变压器3131的第二输出端,并作为滤波电路316的第二输出端。
变压器3132可以包括变压器T2。其中,左边是原边绕组,右边为副边绕组。原边绕组的第一端通过连接器连接滤波电路316的第一输出端,原边绕组的第二端通过连接器连接滤波电路316的第二输出端。副边绕组的第一端构成变压器3132的第一输出端,副边绕组的第二端构成变压器3132的第二输出端。原边绕组和副边绕组均缠绕至铁芯上。
整流器314可以包括MOSFET Q4~Q7、二极管D10~D13。其中,MOSFET Q4的源极和MOSFET Q6的漏极连接变压器3132的第一输出端,MOSFET Q5的源极和MOSFET Q7的漏极连接变压器3132的第二输出端。MOSFET Q4的漏极和MOSFET Q5的漏极连接后构成整流器314的第一输出端,MOSFET Q6的源极和MOSFET Q7的源极连接后构成整流器314的第二输出端。应理解,二极管D10、D11、D12、D13分别为MOSFET Q4、Q5、Q6、Q7的寄生二极管,MOSFET Q4、Q5、Q6、Q7的漏极和源极分别连接寄生二极管D10、D11、D12、D13的阴极和阳极。
第二电路单元还可以包括电容C7。其中,电容C7的一端连接整流器314的第一输出端,电容C7的另一端连接整流器314的第二输出端。电容C7可以用于对整流器314输出的直流电进行滤波处理。进一步地,负载的两端可以分别连接第二电路单元的第一输出端和第二输出端,得到稳定直流电。在一些实施例中,电容C7可以为铝电解电容或钽电解电容,此时,与MOSFET Q5的漏极相连接的一端为电容C7的正级,与MOSFET Q7的漏极相连接的一端为电容C7的负极。应理解,在本申请的另一些实施例中也可以不包括电容C7。
可以理解的是,上述MOSFET Q1~Q7的栅极(G极)分别连接控制电路,以便控制电路可以通过控制MOSFET的栅极来控制MOSFET的导通或关断。
可以理解的是,上述图9仅以两级变压器为例进行说明,在本申请的另一些实施 例中,可以根据实际应用场景调整变压器的级数。
需要说明的是,上述滤波电路316是可选地,在本申请的另一些实施例中,可以不包括滤波电路316。还需要说明的是,上述PFC单元311中的MOSFET Q1,逆变器312中的MOSFET Q2和Q3,整流器314中的MOSFET Q4、Q5、Q6和Q7可以由一个或多个独立的控制电路进行控制。具体地,控制电路通过控制MOSFET Q1的导通和关断可以进行电路功率因数的调节。控制电路通过控制MOSFET Q2和Q3的导通和关断可以将输入逆变器312的直流电逆变为交流电。控制电路通过控制MOSFET Q4、Q5、Q6和Q7的导通和关断可以将输入整流器314的交流电整流为直流电。并且,控制电路可以通过控制脉冲宽度调制(pulse width modulation,PWM)的周期和占空比实现对输出电压和输出频率的调整,从而实现电压稳定输出,为负载供电。
还需要说明的是,上述变压电路313中的变压器可以为高频变压器。相应地,上述变压器3131和变压器3132可以为高频变压器。上述逆变器312、变压器3131、滤波电路316、变压器3132和整流器314共同构成高频链(HF-LINK)。高频链是一种灵活多变的电路拓扑结构,其可以采用高频脉冲变压器替代低频变压器传输能量,并且可以实现电气隔离。高频链电路结构形式紧凑,功率密度和可靠性高,响应速度快。整体供电系统可以工作在20kHz以上,并且功率可以达到千瓦(kW)级以上。本申请实施例中,通过高频链构成的电源模组,可以给负载设备提供稳定的直流电。
请参阅图11,图11是本申请实施例公开的又一种电源模组的结构示意图。图11中与图9中相同的部分,不再赘述。如图11所示,第二电路单元中的变压器3132可以为带中心抽头的变压器,这时,第二电路单元中的整流器314可以仅包括两个MOSFET(即MOSFET Q4和MOSFET Q5)。
具体地,变压器T2的左边是原边绕组,右上为第一副边绕组,右下为第二副边绕组。变压器T2的原边绕组的第一端通过连接器连接滤波电路316的第一输出端,变压器T2的原边绕组的第二端通过连接器连接滤波电路316的第二输出端。变压器T2的第一副边绕组的第一端构成变压器3132的第一输出端,第二副边绕组的第二端构成变压器3132的第二输出端,第一副边绕组的第二端和第二副边绕组的第一端连接后构成变压器3132的第三输出端。原边绕组,第一副边绕组和第二副边绕组均缠绕至铁芯上。
整流器可以包括MOSFET Q4、MOSFET Q5、二极管D10、二极管D11。其中,MOSFET Q4的漏极连接变压器3132的第一输出端,MOSFET Q5的漏极连接变压器3132的第二输出端。MOSFET Q4的源极连接MOSFET Q5的源极后构成整流器的第二输出端。整流器314的第一输出端为变压器3132的第三输出端。应理解,二极管D10、D11分别为MOSFET Q4、Q5的寄生二极管,MOSFET Q4、Q5的漏极和源极分别连接寄生二极管D10、D11的阴极和阳极。
需要说明的是,上述图9-图11所示的供电电路只是示例性说明,并不对其构成限定。本申请实施例中,整流器可以为全桥整流器,也可以为半桥整流器,整流器件可以采用如上述图9所示的二极管D1~D4,也可以采用如上述图10所示的MOSFET Q8~Q11。逆变器可以为上述图7所示的半桥逆变器、H桥逆变器、三相逆变器等。变压器可以采用不带中心抽头的变压器(如图9所示),也可以采用带中心抽头的变压 器(如图11所示)。因此,在实际场景下,可以选择合适的整流器、变压器和逆变器进行组合。
本申请实施例中,在图1和图2所示的供电架构上,减少了多级整流器、逆变器,可以减少开关器件的数量,从而可以简化整体供电链路的控制,提高电源模组的稳定性。并且,本方案中不需要如图2所示的电容C1,可以解决通过连接器搭接的瞬间存在打火的问题。同时,通过减少上述整流器、逆变器和电容,还可以降低电源模组的成本和体积,从而可以减小器件的占板面积,提高电源模组的功率密度。此外,整流器和逆变器的减少可以降低系统损耗,提高电源模组的转换效率。
应理解,本申请中的“连接”,可以理解为直接连接(即电连接);也可以理解为间接连接,也即通过其它器件、元件、模块、装置等进行连接。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (14)

  1. 一种电源模组,其特征在于,包括功率因数校正单元、逆变器、变压电路和整流器,所述电源模组的输入端为所述功率因数校正单元的输入端,所述电源模组的输出端为所述整流器的输出端;
    所述功率因数校正单元的输出端连接所述逆变器的输入端,所述逆变器的输出端连接所述变压电路的输入端,所述变压电路的输出端连接所述整流器的输入端,所述变压电路包括串联连接的N个变压器,N为大于或等于2的整数。
  2. 根据权利要求1所述的电源模组,其特征在于,所述功率因数校正单元,用于将向所述电源模组输入的第一交流电转换为第一直流电,并且调整所述第一直流电的功率因数得到第二直流电;
    所述逆变器,用于将所述第二直流电转换为第二交流电;
    所述变压电路,用于将所述第二交流电转换为第三交流电;
    所述整流器,用于将所述第三交流电转换为第三直流电。
  3. 根据权利要求1或2所述的电源模组,其特征在于,所述逆变器为半桥逆变器、H桥逆变器、三相逆变器、多相逆变器中的任一项。
  4. 根据权利要求1-3任一项所述的电源模组,其特征在于,所述整流器为半桥整流器或全桥整流器。
  5. 根据权利要求1-4任一项所述的电源模组,其特征在于,所述电源模组为服务器的供电单元PSU。
  6. 根据权利要求1-5任一项所述的电源模组,其特征在于,所述变压电路包括第一变压电路和第二变压电路,所述第一变压电路包括串联连接的M个变压器,所述第二变压电路包括串联连接的K个变压器,M、K均为大于或等于1的整数,且K和M之和等于N,所述第一变压电路的输出端通过连接器连接所述第二变压电路的输入端;所述第二变压电路的输出端连接所述整流器的输入端;
    所述第一变压电路,用于将所述第二交流电转换为第四交流电;
    所述第二变压电路,用于将所述第四交流电转换为所述第三交流电。
  7. 根据权利要求6所述的电源模组,其特征在于,所述电源模组还包括滤波电路,所述滤波电路的输入端连接所述第一变压电路的输出端,所述滤波电路的输出端连接所述第二变压电路的输入端。
  8. 一种第一电源模组,其特征在于,包括功率因数校正单元、逆变器和第一变压电路,所述第一电源模组的输入端为所述功率因数校正单元的输入端,所述第一电源模组的输出端为所述第一变压电路的输出端,所述功率因数校正单元的输出端连接所 述逆变器的输入端,所述逆变器的输出端连接所述第一变压电路的输入端;所述第一变压电路包括串联连接的M个变压器,M为大于或等于1的整数。
  9. 根据权利要求8所述的第一电源模组,其特征在于,所述功率因数校正单元,用于将向所述第一电源模组输入的第一交流电转换为第一直流电,并且调整所述第一直流电的功率因数得到第二直流电;
    所述逆变器,用于将所述第二直流电转换为第二交流电;
    所述第一变压电路,用于将所述第二交流电转换为第四交流电。
  10. 根据权利要求8或9所述的第一电源模组,其特征在于,所述第一电源模组为服务器的供电单元PSU。
  11. 一种第二电源模组,其特征在于,包括第二变压电路和整流器,所述第二电源模组的输入端为所述第二变压电路的输入端,所述整流器的输出端为所述第二电源模组的输出端,所述第二变压电路的输出端连接所述整流器的输入端;所述第二变压电路包括串联连接的K个变压器,K为大于或等于1的整数。
  12. 根据权利要求11所述的第二电源模组,其特征在于,所述第二变压电路,用于将第四交流电转换为第三交流电;
    所述整流器,用于将第三交流电转换为第三直流电。
  13. 根据权利要求11或12所述的第二电源模组,其特征在于,所述第二电源模组为服务器的电压调整器VR。
  14. 一种服务器,其特征在于,包括如权利要求8-10任一项所述的第一电源模组和如权利要求11-13任一项所述的第二电源模组,所述第一电源模组和所述第二电源模组通过连接器连接。
PCT/CN2023/097025 2022-09-08 2023-05-30 一种电源模组及相关设备 WO2024051218A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211096948.2 2022-09-08
CN202211096948.2A CN115549462A (zh) 2022-09-08 2022-09-08 一种电源模组及相关设备

Publications (1)

Publication Number Publication Date
WO2024051218A1 true WO2024051218A1 (zh) 2024-03-14

Family

ID=84725525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097025 WO2024051218A1 (zh) 2022-09-08 2023-05-30 一种电源模组及相关设备

Country Status (2)

Country Link
CN (1) CN115549462A (zh)
WO (1) WO2024051218A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549462A (zh) * 2022-09-08 2022-12-30 超聚变数字技术有限公司 一种电源模组及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109686A (ja) * 2004-09-07 2006-04-20 Fuji Electric Holdings Co Ltd ゲート駆動回路への信号伝送方式
CN201904730U (zh) * 2010-12-28 2011-07-20 天津电气传动设计研究所 新型高压隔离电源
CN103647537A (zh) * 2013-09-10 2014-03-19 许继电气股份有限公司 一种取能送能装置及高压电子式直流断路器
CN204794949U (zh) * 2015-07-17 2015-11-18 国网浙江建德市供电公司 高压电子式直流断路器的光控开闭电路
CN115549462A (zh) * 2022-09-08 2022-12-30 超聚变数字技术有限公司 一种电源模组及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109686A (ja) * 2004-09-07 2006-04-20 Fuji Electric Holdings Co Ltd ゲート駆動回路への信号伝送方式
CN201904730U (zh) * 2010-12-28 2011-07-20 天津电气传动设计研究所 新型高压隔离电源
CN103647537A (zh) * 2013-09-10 2014-03-19 许继电气股份有限公司 一种取能送能装置及高压电子式直流断路器
CN204794949U (zh) * 2015-07-17 2015-11-18 国网浙江建德市供电公司 高压电子式直流断路器的光控开闭电路
CN115549462A (zh) * 2022-09-08 2022-12-30 超聚变数字技术有限公司 一种电源模组及相关设备

Also Published As

Publication number Publication date
CN115549462A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US10523112B2 (en) Power converter and method of controlling the same
US6314007B2 (en) Multi-mode power converters incorporating balancer circuits and methods of operation thereof
EP3337024B1 (en) Bidirectional resonant conversion circuit and converter
CN109039121B (zh) 一种高频隔离型交直流变换电路及其控制方法
US20050139259A1 (en) Transformerless power conversion in an inverter for a photovoltaic system
CN109067219B (zh) 一种三相交直流变换器及其控制方法
US20110149606A1 (en) Ac-to-dc converting circuit applicable to power-charging module
WO2016119736A1 (zh) 五电平拓扑单元及五电平逆变器
EP2685620B1 (en) Bidirectional dc-dc converter, and power source system
US20210194356A1 (en) High power density power converter and uninterruptible power supply circuit and methods
US9203323B2 (en) Very high efficiency uninterruptible power supply
US11139754B1 (en) Inverter circuit for realizing high-efficiency control of single-phase power of single-phase three-wire power supply
WO2018036315A1 (zh) 谐振变换器及电流处理方法
WO2024051218A1 (zh) 一种电源模组及相关设备
CN108736756B (zh) 一种改进型双辅助谐振极型三相软开关逆变电路
KR20190115364A (ko) 단상 및 3상 겸용 충전기
TW201703417A (zh) 五電平變換裝置
TWI794329B (zh) Dc轉ac功率轉換器及適合被使用在dc轉ac功率轉換器之隔絕dc轉dc轉換器
CN111327222A (zh) 一种变流电路
US9825550B1 (en) Bi-directional power converter for converting power between alternating current and direct current
CN111404409A (zh) 基于mmc的多端口电力电子变压器拓扑及其控制方法
WO2021209036A1 (zh) 电机驱动控制电路、驱动方法、线路板及空调器
CN104734531B (zh) 变频器
CN211377892U (zh) 一种供电设备及其功率因数修正电路
CN109039139B (zh) 一种隔离型双向交直流变换电路及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861922

Country of ref document: EP

Kind code of ref document: A1