WO2024049116A1 - Antiviral composition - Google Patents

Antiviral composition Download PDF

Info

Publication number
WO2024049116A1
WO2024049116A1 PCT/KR2023/012633 KR2023012633W WO2024049116A1 WO 2024049116 A1 WO2024049116 A1 WO 2024049116A1 KR 2023012633 W KR2023012633 W KR 2023012633W WO 2024049116 A1 WO2024049116 A1 WO 2024049116A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
graphene oxide
fluorescence
composition
protein
Prior art date
Application number
PCT/KR2023/012633
Other languages
French (fr)
Korean (ko)
Inventor
민달희
신호정
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority claimed from KR1020230111685A external-priority patent/KR20240034116A/en
Publication of WO2024049116A1 publication Critical patent/WO2024049116A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/225Polycarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7008Compounds having an amino group directly attached to a carbon atom of the saccharide radical, e.g. D-galactosamine, ranimustine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/7036Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin having at least one amino group directly attached to the carbocyclic ring, e.g. streptomycin, gentamycin, amikacin, validamycin, fortimicins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals

Definitions

  • the present invention relates to an antiviral composition.
  • Remdesivir acts as an inhibitor of RNA-dependent RNA Polymerase (RdRP), which is known to play a key role in the self-replication of RNA viruses, and inhibits the proliferation of the COVID-19 virus. It was approved as a treatment by the FDA in August 2020. was approved as However, considering that remdesivir, which is recognized as the first COVID-19 treatment, also has a mortality rate of 7.1% on the 14th day of administration, the development of a more effective COVID-19 treatment is required.
  • RdRP RNA-dependent RNA Polymerase
  • RNA viruses including SARS-CoV-2, which causes COVID-19 infection, proliferate through amplification and reverse transcription of RNA, the genetic material.
  • enzymes such as helicase, serine protease, and RdRP are key players.
  • drugs that directly target the replication mechanism of the virus are called direct-acting antiviral agents (DAAs), and they are known to have superior efficacy and lower side effects than other broad-spectrum antiviral drugs.
  • DAAs direct-acting antiviral agents
  • enzyme activity analysis methods and library screening have been developed with this in mind, and in particular, screening using proteases has been most actively studied. Based on this, various types of virus treatments have been discovered, but the development of a highly efficient and reliable analysis platform is still insufficient to discover effective treatments targeting helicase and RdRP.
  • RNA-dependent RNA polymerase activity using graphene oxide a method for analyzing RNA-dependent RNA polymerase activity using graphene oxide was developed, and an effective antiviral composition was derived through multiple screening of antiviral agents using this method, thereby completing the present invention.
  • the purpose of the present invention is to provide an antiviral composition.
  • the purpose of the present invention is to provide a composition for treating viral infections.
  • An antiviral composition comprising a compound represented by any one selected from the group consisting of the following formulas 1 to 7, or a pharmaceutically acceptable salt thereof.
  • n is an integer of 1 to 10
  • R 1 is an alkyl group having 1 to 30 carbon atoms
  • n is an integer from 1 to 10.
  • R 2 is an alkyl group having 1 to 10 carbon atoms
  • n is an integer of 1 to 10
  • R 3 is an alkyl group having 1 to 30 carbon atoms.
  • n is an integer of 1 to 10
  • R 4 is an alkyl group having 1 to 10 carbon atoms
  • n is an integer of 1 to 10
  • R 5 is an alkyl group having 1 to 10 carbon atoms
  • n is an integer from 1 to 10.
  • a pharmaceutical composition for preventing or treating viral infections containing the composition of 1 or 2 above.
  • composition of the present invention has an excellent effect of inhibiting the growth or killing of viruses.
  • composition of the present invention effectively inhibits the activity of RdRP, a polymerase of RNA viruses.
  • FIG 1 schematically illustrates the operating principle of the sensor used in the embodiments of the present application.
  • Figure 2 shows the results of analyzing a graphene oxide sheet by AFM analysis.
  • Figure 3 is a schematic diagram of the loop-shaped probe used in the examples herein.
  • Figure 4 shows the results of confirming dsRNA synthesis in the NTP-treated group using a 6M UREA-PAGE gel.
  • Figure 5 shows the results of an experiment to determine the concentration of graphene oxide.
  • Figure 6 shows the results of confirming the quenching effect according to ssRNA (NTP-) and dsRNA (NTP+) and its change over time.
  • Figure 7 shows the results of measuring the analytical performance of the RdRP activity assay of the examples herein using Z'-factor.
  • Figures 8a-b show the results of calculating IC50 of selected compounds.
  • the present invention relates to an antiviral composition
  • an antiviral composition comprising a compound selected from the group consisting of the following formulas 1 to 7.
  • n is an integer of 1 to 10
  • R 1 is an alkyl group having 1 to 30 carbon atoms
  • n is an integer from 1 to 10.
  • R 2 is an alkyl group having 1 to 10 carbon atoms
  • n is an integer of 1 to 10
  • R 3 is an alkyl group having 1 to 30 carbon atoms.
  • n is an integer of 1 to 10
  • R 4 is an alkyl group having 1 to 10 carbon atoms
  • n is an integer of 1 to 10
  • R 5 is an alkyl group having 1 to 10 carbon atoms
  • n is an integer from 1 to 10.
  • the alkyl group refers to a straight or branched chain alkyl group containing carbon atoms, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, n-hexyl or isomers thereof. It can be.
  • n in the above formula may specifically be 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • the carbon number is specifically 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23. , 24, 25, 26, 27, 28, 29 or 30.
  • the compound is (Fingolimod,FTY720), (Mitoxantrone), (Minocycline), (Docusate sodium), (Capreomycin sulfate), (Sisomicin sulfate) or (Tobramycin).
  • the virus may be an RNA virus.
  • Antiviral refers to the activity of killing viruses or inhibiting their growth.
  • the composition can prevent or treat diseases caused by RNA virus infection by inhibiting the activity of RdRP (RNA dependent RNA polymerase).
  • the RdRP is a universal RNA polymerase of RNA viruses.
  • the activity of RdRP is inhibited, the viral genome cannot be synthesized normally, which can prevent the proliferation of the virus.
  • the composition may have an antiviral effect by exhibiting a killing and growth inhibition effect on the target virus.
  • the RNA virus refers to all viruses that use RNA as genetic material. Specifically, the virus may be SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2).
  • the pharmaceutically acceptable salt refers to a salt prepared using a specific compound according to the present invention and a relatively non-toxic acid or base.
  • the salt may be, for example, an acid addition salt or a metal salt.
  • the composition can be used for disinfection of viruses.
  • it can be used on humans, animals, plants, or objects.
  • the formulation of the composition may be, for example, liquid, aerosol, foam, gel, powder, cream, etc.
  • composition can be prepared according to known methods by adding one or more excipients and additives commonly used in the art.
  • the composition may further include anionic surfactants, nonionic surfactants, amphoteric surfactants, etc.
  • the anionic surfactant may be alkylbenzene sulfonate, alpha olefin sulfate, sodium or ammonium lauryl ether sulfate
  • the nonionic surfactant may be fatty acid amide, alkyl polyglucoside, ethoxylated fatty alcohol, or ethoxylated nonyl phenol. It may be a system, etc., but is not limited thereto.
  • the amphoteric surfactant may be a betaine-based surfactant or amine oxide, and in addition to the surfactant, a diluent such as fragrance, colorant, and water may be optionally added.
  • the present invention also includes a pharmaceutical composition for preventing or treating viral infections containing the above-described compound or a pharmaceutically acceptable salt thereof.
  • the compound may prevent or treat the target disease by exhibiting a killing and growth inhibition effect on the target virus.
  • RNA virus infection refers to all diseases that can occur in the host due to infection by an RNA virus.
  • coronavirus disease 19 severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Zika virus infection, dengue fever, dengue hemorrhagic fever, influenza ( influenza), poliomyelitis anterior acuta, aseptic meningitis, hand-foot-mouth disease, herpes throat (herpangina), acute hemorrhagic conjunctivitis, epidemic pleurisy Pain (epidemic pleurodynia), pericarditis, myocarditis, white diarrhea in infants, rubella, congenital rubella syndrome, yellow fever, Japanese encephalitis, herpes simplex Herpes simplex encephalitis, epidemic parotitis, measles, rabies, Marburg disease, Ebola hemorrhagic fever, hemorrhagic fever with renal syndrome , Hantavirus pulmonary syndrome (HPS), Congo-Crimean hemorrhagic fever, AIDS (Acquired immunodeficiency disease), Adult T-cell leukin
  • the pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier refers to a carrier or diluent that does not significantly irritate living organisms and does not inhibit the biological activity and properties of the administered ingredient.
  • Pharmaceutically acceptable carriers in the present invention include saline solution, sterilized water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these ingredients may be used in combination. If necessary, other common additives such as antioxidants, buffers, and bacteriostatic agents can be added to formulate an injection suitable for injection into tissues or organs.
  • a target organ-specific antibody or other ligand may be used in combination with the carrier so that it can act specifically on the target organ.
  • the pharmaceutical composition of the present invention may be provided by mixing with conventionally known substances for preventing or treating viral infections. That is, the pharmaceutical composition of the present invention can be administered in parallel with known substances that have the effect of preventing or treating viral infections.
  • composition may be formulated and used in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, and sterile injectable solutions according to conventional methods. Not limited.
  • the term “effective amount” refers to the amount necessary to delay or completely promote the onset or progression of a specific disease to be treated.
  • the composition can be administered in a pharmaceutically effective amount. It is obvious to those skilled in the art that the appropriate total daily usage amount of the pharmaceutical composition can be determined by the treating physician within the scope of sound medical judgment.
  • a specific pharmaceutically effective amount for a particular patient refers to the type and degree of response to be achieved, the specific composition, including whether other agents are used as the case may be, the patient's age, weight, general health, and gender. It is desirable to apply it differently depending on various factors including diet, administration time, administration route and secretion rate of the composition, treatment period, drugs used together or simultaneously with the specific composition, and similar factors well known in the medical field.
  • the pharmaceutical composition may, if necessary, be accompanied by instructions associated with the packaging in a form directed by a government agency responsible for the manufacture, use and sale of drugs, and the instructions are in the form of the composition or in the form of a human or It indicates approval by a private interest organization for administration to animals, and may be, for example, a label approved by the U.S. Food and Drug Administration for prescription of a drug.
  • the present invention includes a method of treating viral infections using the composition.
  • the method may include administering the composition to an individual in need of treatment, and the individual may be suffering from a viral infection or may be carrying the virus.
  • the subject may be a mammal, including humans.
  • the method of administration is not limited and may be a method known in the art, and may be administered orally or parenterally.
  • the present invention includes a method for screening a drug candidate for the treatment of viral infections.
  • the method includes analyzing the fluorescence intensity of a mixture containing fluorescently labeled single-stranded nucleic acid of the target virus, a protein involved in the polymerization reaction of the viral nucleic acid, a candidate substance for the treatment of viral infections, and graphene oxide. can do.
  • the method may include first mixing the single-stranded nucleic acid, protein, and candidate material before mixing the graphene oxide, and then, before mixing the graphene oxide, the single-stranded nucleic acid, protein, and candidate material react. You can take enough time to do this.
  • the time can be appropriately selected by a person skilled in the art depending on conditions such as the type and amount of virus and protein used, temperature, etc., for example, the reaction can be 30 minutes, 1 hour, 2 hours or more. Or it may be 1 hour, 2 hours, or 3 hours or less.
  • the nucleic acid may be DNA or RNA, and its length is not particularly limited. Specifically, the nucleic acid may be a single-stranded RNA with the 3' end exposed.
  • the protein may be an enzyme.
  • the enzyme may be an enzyme that amplifies the genome of the target virus or aids proliferation through reverse transcription of RNA.
  • the enzyme may be, for example, a DNA or RNA polymerase.
  • the enzyme may be a helicase, serine protease, or RdRP, but is not limited thereto.
  • RNA virus When RdRP is used as the enzyme, an RNA virus can be used as the target virus.
  • possible examples and target diseases are the same as described above, so description is omitted.
  • the method can be performed by a person skilled in the art under appropriate conditions depending on the type of virus and protein for the reaction between the protein and single-stranded nucleic acid.
  • NTP nucleoside triphosphate
  • an appropriate auxiliary protein for the protein reaction can be treated together.
  • the viral nucleic acid may be isolated or contained within the virus.
  • Analyzing the fluorescence intensity may include comparing the fluorescence intensity with a control group.
  • the fluorescence intensity includes analysis over time.
  • control group may be a negative control group that has no effect in treating the viral infection, a positive control group that has a known therapeutic effect in the viral infection, or a control group that has an unknown therapeutic effect in the viral infection.
  • the negative control may include a substance that has no inhibitory ability on the protein activity, or may be a mixture under conditions in which the protein cannot perform the reaction even if it has an inhibitory ability.
  • it may be a mixture of RdRP enzyme reacted with single-stranded nucleic acid under NTP-free conditions.
  • the fluorescence intensity of the mixture containing the candidate substance for the treatment of viral infection is measured in the presence of graphene oxide, if the fluorescence intensity decreases compared to the case of treating the negative control, it can be selected as the virus treatment drug.
  • the corresponding candidate material can be selected as a virus treatment agent.
  • a control substance whose effectiveness in treating the viral infection is unknown that is, a substance whose fluorescence intensity is significantly reduced compared to other candidate substances, can be selected as a treatment agent.
  • the control group may be one or more.
  • the fluorescence intensity of the control group may be each value obtained from one or a plurality of control groups, or may be the average value, median value, mode, etc. of the values obtained from them.
  • the method is based on fluorescence signals, it is possible to observe and quantify enzyme activity in real time, and thus can effectively screen drug candidates for the treatment of target viruses through high-speed mass screening.
  • Graphene oxide used in the above method is an economical material that is inexpensive and can be obtained in large quantities, and can be stored stably at room temperature, making it easy to use.
  • the fluorescence of the single-stranded nucleic acid of the fluorescently labeled target virus is quenched by being adsorbed to graphene oxide in the presence of graphene oxide when the protein is inactivated and is not synthesized into a double-stranded nucleic acid and remains in a single-stranded state.
  • the fluorescence intensity of the composition may be weakened.
  • the inhibitory effect of the candidate substance on the protein can be analyzed.
  • the graphene has a planar single-layer structure in which carbon atoms are filled into a two-dimensional lattice.
  • Graphene has unique electron transfer characteristics, and because of this, graphene oxide can absorb nearby fluorescent dyes through the fluorescence resonance energy transfer (FRET) phenomenon. The fluorescence signal can be quenched.
  • FRET fluorescence resonance energy transfer
  • the adsorption may be due, for example, to the interaction between graphene oxide and the ⁇ electrons of the probe, complexation, ion exchange, electrostatic interaction, surface adsorption due to van der Waals attraction, hydrogen bonding, etc.
  • single-stranded nucleic acid can be adsorbed to graphene oxide by pi-pi bonds between the hydrophobic surfaces of graphene oxide.
  • the fluorescence emission of the fluorescent material may be detected by flow cytometry (FACS), fluorescence reader, qRT-PCR (quantitative real-time PCR), fluorescence microscope, or in vivo imaging device, but is not limited thereto.
  • the fluorescence reader may include, but is not limited to, a fluorescence microplate reader capable of measuring fluorescence ranging from about 230 nm to about 999 nm.
  • the fluorescence reader may include selecting about three organic fluorescent dyes and observing the corresponding fluorescence signals so that the cross-talk phenomenon between the fluorescence signals can be minimized.
  • the flow cytometer includes a device that flows a single cell through a tube and observes the fluorescence signal of the cell.
  • the fluorescence microscope includes, but is not limited to, one capable of observing fluorescence within cells, outside cells, or in samples.
  • Graphene oxide may be in sheet form or particle form.
  • the sheet may be composed of a single layer or multiple layers. Additionally, the sheet shape may include a flat or curved surface and may exist in various shapes. In one embodiment, the graphene oxide may be in the form of a two-dimensional single layer sheet. Additionally, particle shapes may include various shapes such as spheres, ellipses, rods, and polygons.
  • Graphene oxide can be nano-sized.
  • the sizes are, for example, 5 to 500 nm, 5 to 200 nm, 5 to 150 nm, 5 to 100 nm, 5 to 50 nm, 10 to 500 nm, 10 to 200 nm, 10 to 150 nm, 10 to 100 nm.
  • Particle size is a value calculated by averaging the experimental values obtained by measurement using dynamic light scattering or the sizes seen in atomic force microscopy (AFM) or scanning transmission microscopy (TEM) images. Nanomaterials are said to be spherical or circular. It means the value obtained by assuming.
  • the graphene oxide may be conventional graphene oxide made from graphite powder or graphene oxide nanocolloid made from graphite nanofibers.
  • the graphene oxide may be surface-modified with a water-soluble polymer.
  • Water-soluble polymer refers to a resin or polymer that can be dissolved in water or dispersed as fine particles in water.
  • the water-soluble polymer may be a natural polymer, a semi-synthetic polymer, or a synthetic polymer.
  • the water-soluble polymer usable in the present invention may have a molecular weight of 1 to 20 kDa, 5 to 15 kDa, or 8 to 12 kDa. As an example, the water-soluble polymer may be 10 kDa.
  • Water-soluble polymers include chitosan and its derivatives, chitoate, dextran and its derivatives, hyaluronic acid and its derivatives, hyaluronic acid salt, pectin and its derivatives, pectin salt, alginate and its derivatives, alginic acid, agar, galactomannan and its derivatives. May be selected from the group consisting of derivatives, galactomannan salts, xanthan and its derivatives, xanthan salts, beta-cyclodextrin and its derivatives, beta-cyclodextrin salts, polyethylene glycol (PEG), polyethyleneimine (PEI), and combinations thereof.
  • the water-soluble polymer may be selected from the group consisting of dextran, polyethylene glycol, polyethyleneimine, and combinations thereof.
  • Water-soluble polymer and graphene oxide may be chemically or physically combined.
  • the chemical bond may include an amide bond, an ester bond, and an ether bond, but is not limited thereto. Additionally, chemical bonding can be achieved through a cross-linking agent.
  • water-soluble polymers and graphene oxide may be combined through EDC coupling. Additionally, the physical bond may be electrostatic attraction, hydrogen bond, or van der Waals bond, but is not limited thereto.
  • graphene oxide whose surface has been modified with water-soluble polymers can have improved dispersion ability and stability, and improved biocompatibility.
  • the fluorescent substances include, for example, fluorescein, fluorescein chlorotriazinyl, rhodamine green, rhodamine red, tetramethylrhodamine, fluorescein isothiocyanate (FITC), and oregon green.
  • Alex Fluoro carboxyfluorescein (FAM), 6-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein (JOE), carboxy-X-rhodamine ( ROX), 6-carboxy-2',4,4',5',7, 7'-hexachlorofluorescein (HEX), Texas Red (sulforhodamine 101 acid chloride), 6-carboxy-2',4, 7',7-tetrachlorofluorescein (TET), tetramethylrhodamine-isothiocyanate (TRITC), carboxytetramethylrhodamine (TAMRA), cyanine dyes, cyadicarbocyanine dyes, and combinations thereof. It may be selected from the group consisting of: The cyanine-based dye may be selected from the group consisting of Cy3, Cy5, Cy5.5, Cy7, and combinations thereof.
  • the present invention includes a method for determining the protein activity of a virus.
  • the protein may be an enzyme or may be involved in the polymerization reaction of viral nucleic acid.
  • the protein may be RdRP.
  • the method may include analyzing the fluorescence intensity of a mixture containing fluorescently labeled viral single-stranded nucleic acid, a target protein involved in the polymerization reaction of the viral nucleic acid, and graphene oxide.
  • the method may include first mixing the single-stranded nucleic acid and the target protein before mixing the graphene oxide, and allowing sufficient time for the single-stranded nucleic acid, protein, and candidate material to react before mixing the graphene oxide. You can.
  • the method is to determine protein activity under specific conditions, it can be carried out under those conditions. For example, if you want to determine protein activity in the presence of a specific substance, you can mix the substances together.
  • the single-stranded nucleic acid is not synthesized into a double-stranded nucleic acid and remains in a single-stranded state, so the fluorescence is quenched by adsorption to graphene oxide in the presence of graphene oxide, and thus the fluorescence intensity of the composition may be weakened. .
  • the present invention includes a sensor for screening candidate substances for the treatment of viral infections.
  • the sensor includes a mixture of a fluorescently labeled single-stranded nucleic acid of a target virus, a protein involved in the polymerization reaction of the viral nucleic acid, and a candidate substance for the treatment of the viral infection; and graphene oxide.
  • a therapeutic agent for viral infections can be selected by treating the mixture with graphene oxide and analyzing the fluorescence intensity.
  • the single-stranded nucleic acid is not synthesized into a double-stranded nucleic acid and remains in a single-stranded state, so the fluorescence is quenched by adsorption on graphene oxide in the presence of graphene oxide, and thus the mixture
  • the fluorescence intensity may weaken.
  • the sensor can be set to appropriate conditions for the reaction of the protein by a person skilled in the art depending on the type of protein and virus.
  • the senor may contain NTP (nucleoside triphosphate) for polymerization of nucleic acids by enzymes.
  • NTP nucleoside triphosphate
  • the present invention relates to a sensor for determining viral protein activity.
  • the protein may be an enzyme or may be involved in the polymerization reaction of viral nucleic acid.
  • the protein may be RdRP.
  • the sensor includes a mixture of a single-stranded nucleic acid of a fluorescently labeled target virus and a target protein involved in a polymerization reaction of the viral nucleic acid; and graphene oxide.
  • the single-stranded nucleic acid is not synthesized into a double-stranded nucleic acid and remains in a single-stranded state, so the fluorescence is quenched by adsorption to graphene oxide in the presence of graphene oxide, and the fluorescence intensity of the mixture may be weakened. .
  • Graphene oxide is generally synthesized by chemically oxidizing graphite precursors using the modified Hummers' method and exfoliating them through ultrasound. In the process, the ultrasound exposure time and reaction temperature conditions are adjusted to produce uniform graphene oxide of 100 nm or less. was synthesized. 1 g of graphite is reacted with 5 g of potassium permanganate (KMnO 4 ) in 50 mL of sulfuric acid (H 2 SO 4 ) in ice for 2 hours. After removing the ice, react additionally at 40°C for 1 hour. After 1 hour, 50 mL of distilled water was slowly added using a dropping funnel, and an additional 150 mL of distilled water was added and allowed to react for an additional hour.
  • KnO 4 potassium permanganate
  • H 2 SO 4 sulfuric acid
  • ssRNA single-stranded RNA
  • the sequence is UUUUUUUUCUACGCGUAGCUUGCUAC (SEQ ID NO: 1), and the 4 bases at the 3' end are complementary to each other to form a loop, and the RdRP protein is designed to generate dsRNA by attaching NTP from the 3' end ( Figure 3 ).
  • RdRP protein (nsp12) and nsp7 and nsp8 proteins, which are accessory proteins required for activity, were obtained using an animal cell expression system and confirmed to be active at the test tube level.
  • the synthesized ssRNA was first diluted with HEPES buffer containing NaCl, subjected to a denaturation process at 95°C for 5 minutes, and then refolded.
  • the ssRNA prepared in this way was mixed with HEPES buffer containing the same equivalent amount of RdRP protein, auxiliary proteins nsp7 and nsp8 proteins, and KCl, and NTP was added to proceed with the synthesis reaction.
  • the results were compared using a sample without added NTP as a negative control.
  • the concentration of KCl used here is 10 mM, and it has been shown through previous research that RNA synthesis efficiency decreases as the concentration of KCl increases.
  • the sample was run on a 6M UREA-PAGE gel, and dsRNA synthesis was confirmed only in the NTP-added treatment group ( Figure 4 ).
  • ssRNA was mixed with refolding buffer to make it 10 ⁇ M, denatured at 95°C for 5 minutes, and then cooled down and refolded. After mixing 2 pmole of refolded ssRNA, RdRp buffer, and RNase inhibitor, pre-heated at 37°C for 5 minutes, then added NTP and reacted for 1 hour.
  • RNA After denaturing at 95°C for 5 minutes to separate the RNA from the protein, it was mixed with 5 ug/ml graphene oxide and the change in fluorescence intensity was measured after 5 minutes at room temperature. Fluorescence values were excitation at 640 nm and emission wavelength was recorded at 660 nm. In the experimental group without NTP, ssRNA was maintained, and when NTP, a substrate, was added, dsRNA was generated by the activity of RdRP.
  • the Z'-factor which is widely used as a parameter to evaluate the efficiency and superiority of the screening assay.
  • the range of the Z'-factor is from 0 to 1, and the closer it is to 1, the more perfect the analysis method is.
  • an analysis method with a Z'-factor of 0.75 or more is said to have high analysis power.
  • RdRP protein, buffer, and ssRNA were mixed in each tube, and then 30 samples without NTP and 30 samples with NTP were reacted simultaneously. The results were derived by measuring fluorescence 5 minutes after adding graphene oxide.
  • Relative fluorescence values were calculated by taking the average values of the samples without and with NTP as 0 and 1, respectively, and then plotted on a graph (FIG. 7) .
  • the dotted line on the graph represents ⁇ 1 ⁇ value.
  • the Z' factor was calculated using Equation 1 below to derive 0.79. A value between 0.5-1 indicates that the experimental method is valid, so it can be considered suitable for performing large screening using this experimental method.
  • Drug screening library was conducted on a total of 17 plates and 1,432 drug reagents.
  • All reagents dispensed at a concentration of 1 mM in DMSO were prepared by diluting them to 100 ⁇ M using DIW.
  • the reaction mix was prepared by mixing refolded RNA, RdRp protein, RdRp buffer, and RNase inhibitor.
  • the secondary screening was performed using the same experimental method as the above screening, the difference being that the reagent dispensed in DMSO at a concentration of 1 mM was used directly and a final concentration of 200 ⁇ M (final 10% DMSO) was used.
  • Fingolimod FY720
  • Mitoxantrone Minocycline
  • Docusate sodium Lisomicin sulfate
  • Tobramycin which were drugs whose fluorescence values were clearly lowered when compared to the positive control, were selected as hit compounds.
  • Inhibitory concentration 50 is a value that determines the biological or biochemical inhibition ability of a specific compound.
  • the IC50 of 7 hit compounds selected through screening was calculated. After preparing each drug at various concentrations, 2 ⁇ l of the prepared drug was dispensed into each PCR tube, and then 6 ⁇ l of the reaction mix was dispensed into each tube and pre-heated at 37°C for 5 minutes. After adding NTP, it was reacted at 37°C for 1 hour and denatured at 95°C for 5 minutes. It was mixed with 5 ug/ml graphene oxide and the fluorescence intensity was measured at each concentration after 5 minutes at room temperature.
  • Fingolimod had an IC50 value of 20.23 uM, Mitoxantrone 5.27 uM, Minocycline 166 uM, Docusate sodium 36.8 uM, Capreomycin sulfate 18.6 uM, Sisomicin sulfate 8.55 uM, and Tobramycin 11.8 uM. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to an antiviral composition and a composition for preventing or treating viral infections. Specifically, the compositions may contain one or more of compounds represented by chemical formulas 1 to 7 as an active ingredient, and may inhibit the RdRP activity of RNA viruses.

Description

항바이러스용 조성물Antiviral composition
본 발명은 항바이러스용 조성물에 관한 것이다.The present invention relates to an antiviral composition.
최근 20여 년간 중증급성호흡기증후군(SARS), 중동호흡기증후군(MERS), 지카바이러스 감염증 등의 바이러스성 질병들이 차례로 유행하며, 국내에서도 바이러스성 질병에 대한 예방 및 관리의 중요성이 점차 부각되고 있다. 초기 코로나19를 치료할 후보군으로 주목받던 클로로퀸, 칼레트라, 아비간 등의 약물들은 부작용을 야기하거나 임상에서 뚜렷한 성과를 얻지 못하여 사용이 중지된 데 비해, 길리어드 사이언스에서 임상을 진행한 렘데시비르는 코로나19 치료에 뚜렷한 효능을 보였으며, 중환자의 사망률을 비투여군에 비해 62% 줄였다는 임상결과가 보고되었다.Over the past 20 years, viral diseases such as Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Zika virus infection have been spreading one after another, and the importance of prevention and management of viral diseases is increasingly highlighted in Korea. Drugs such as chloroquine, Kaletra, and Avigan, which were initially attracting attention as candidates for treating COVID-19, were discontinued because they caused side effects or did not achieve significant results in clinical trials, while Remdesivir, which was clinically conducted by Gilead Sciences, was used to treat COVID-19. 19 It showed clear efficacy in treatment, and clinical results were reported that the mortality rate of critically ill patients was reduced by 62% compared to the non-administered group.
렘데시비르는 RNA 바이러스의 자기복제에 핵심적인 역할을 한다고 알려진 RNA 의존 RNA 중합효소 (RNA-dependent RNA Polymerase, RdRP)의 저해제로 작용, 코로나19 바이러스의 증식을 억제하여 2020년 8월 FDA로부터 치료제로서 승인을 받았다. 그러나 최초의 코로나19 치료제로서 인정을 받고 있는 렘데시비르 역시 투여 14일째 사망률이 7.1%인 점을 본다면 더욱 효과가 우수한 코로나19 치료제 개발이 요구된다. Remdesivir acts as an inhibitor of RNA-dependent RNA Polymerase (RdRP), which is known to play a key role in the self-replication of RNA viruses, and inhibits the proliferation of the COVID-19 virus. It was approved as a treatment by the FDA in August 2020. was approved as However, considering that remdesivir, which is recognized as the first COVID-19 treatment, also has a mortality rate of 7.1% on the 14th day of administration, the development of a more effective COVID-19 treatment is required.
구체적으로 코로나19 감염증을 야기하는 SARS-CoV-2이 속하는 RNA 바이러스는, 유전물질인 RNA의 증폭 및 역전사를 통해 증식한다. 이때 helicase, serine protease 및 RdRP와 같은 효소들이 핵심적으로 관여하게 된다. 이와 같이, 바이러스의 복제기전을 직접 공략하는 약물을 직접작용형 약물 (direct acting antiviral agent, DAA)라고 하며, 이들은 다른 광범위 항바이러스제보다 우월한 약효와 낮은 부작용을 가지는 것으로 알려져 있다. 과거에도 이러한 점에 착안하여 효소 활성 분석법 및 라이브러리 스크리닝이 개발된 바 있으며, 특히 protease를 이용한 스크리닝이 가장 활발히 연구되어왔다. 이를 기반으로 여러 종류의 바이러스 치료제가 발굴되기도 하였으나, 여전히 helicase와 RdRP를 타겟으로 하는 효과적인 치료제 발굴을 위해서는 고효율/고신뢰성의 분석 플랫폼의 개발이 미비한 실정이다.Specifically, RNA viruses, including SARS-CoV-2, which causes COVID-19 infection, proliferate through amplification and reverse transcription of RNA, the genetic material. At this time, enzymes such as helicase, serine protease, and RdRP are key players. Likewise, drugs that directly target the replication mechanism of the virus are called direct-acting antiviral agents (DAAs), and they are known to have superior efficacy and lower side effects than other broad-spectrum antiviral drugs. In the past, enzyme activity analysis methods and library screening have been developed with this in mind, and in particular, screening using proteases has been most actively studied. Based on this, various types of virus treatments have been discovered, but the development of a highly efficient and reliable analysis platform is still insufficient to discover effective treatments targeting helicase and RdRP.
이에 본 발명에서는 산화 그래핀을 이용한 RNA 의존적 RNA 중합효소 활성 분석 방법 개발하였으며, 이를 이용한 항바이러스제 다중 스크리닝을 통해 효과적인 항바이러스 조성물을 도출하여 본 발명을 완성하였다.Accordingly, in the present invention, a method for analyzing RNA-dependent RNA polymerase activity using graphene oxide was developed, and an effective antiviral composition was derived through multiple screening of antiviral agents using this method, thereby completing the present invention.
본 발명은 항바이러스용 조성물을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide an antiviral composition.
본 발명은 바이러스 감염증 치료용 조성물을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a composition for treating viral infections.
1. 하기 화학식 1 내지 7로 이루어진 군에서 선택된 어느 하나로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염을 포함하는 항바이러스용 조성물.1. An antiviral composition comprising a compound represented by any one selected from the group consisting of the following formulas 1 to 7, or a pharmaceutically acceptable salt thereof.
[화학식 1][Formula 1]
Figure PCTKR2023012633-appb-img-000001
Figure PCTKR2023012633-appb-img-000001
(식 중, 상기 n은 1 내지 10의 정수이고, R1은 탄소수 1 내지 30의 알킬기이다)(Wherein, n is an integer of 1 to 10, and R 1 is an alkyl group having 1 to 30 carbon atoms)
[화학식 2][Formula 2]
Figure PCTKR2023012633-appb-img-000002
Figure PCTKR2023012633-appb-img-000002
(식 중, 상기 n은 1 내지 10의 정수이다)(wherein n is an integer from 1 to 10)
[화학식 3][Formula 3]
Figure PCTKR2023012633-appb-img-000003
Figure PCTKR2023012633-appb-img-000003
(식 중, 상기 R2는 탄소수 1 내지 10의 알킬기이다)(wherein R 2 is an alkyl group having 1 to 10 carbon atoms)
[화학식 4][Formula 4]
Figure PCTKR2023012633-appb-img-000004
Figure PCTKR2023012633-appb-img-000004
(식 중, 상기 n은 1 내지 10의 정수이고, R3는 탄소수 1 내지 30의 알킬기이다.)(In the formula, n is an integer of 1 to 10, and R 3 is an alkyl group having 1 to 30 carbon atoms.)
[화학식 5][Formula 5]
Figure PCTKR2023012633-appb-img-000005
Figure PCTKR2023012633-appb-img-000005
(식 중, 상기 n은 1 내지 10의 정수이고, R4는 탄소수 1 내지 10의 알킬기이다)(Wherein, n is an integer of 1 to 10, and R 4 is an alkyl group having 1 to 10 carbon atoms)
[화학식 6][Formula 6]
Figure PCTKR2023012633-appb-img-000006
Figure PCTKR2023012633-appb-img-000006
(식 중, 상기 n은 1 내지 10의 정수이고, R5는 탄소수 1 내지 10의 알킬기이다) 및(wherein n is an integer of 1 to 10, and R 5 is an alkyl group having 1 to 10 carbon atoms) and
[화학식 7][Formula 7]
Figure PCTKR2023012633-appb-img-000007
Figure PCTKR2023012633-appb-img-000007
(식 중, 상기 n은 1 내지 10의 정수이다).(wherein n is an integer from 1 to 10).
2. 위 1에 있어서, 상기 화합물은 하기 화학식 8 내지 14로 이루어진 군에서 선택된 어느 하나로 표시되는, 항바이러스용 조성물2. The antiviral composition of 1 above, wherein the compound is represented by any one selected from the group consisting of the following formulas 8 to 14:
[화학식 8][Formula 8]
Figure PCTKR2023012633-appb-img-000008
Figure PCTKR2023012633-appb-img-000008
[화학식 9][Formula 9]
Figure PCTKR2023012633-appb-img-000009
Figure PCTKR2023012633-appb-img-000009
[화학식 10][Formula 10]
Figure PCTKR2023012633-appb-img-000010
Figure PCTKR2023012633-appb-img-000010
[화학식 11][Formula 11]
Figure PCTKR2023012633-appb-img-000011
Figure PCTKR2023012633-appb-img-000011
[화학식 12][Formula 12]
Figure PCTKR2023012633-appb-img-000012
Figure PCTKR2023012633-appb-img-000012
[화학식 13] [Formula 13]
Figure PCTKR2023012633-appb-img-000013
Figure PCTKR2023012633-appb-img-000013
and
[화학식 14][Formula 14]
Figure PCTKR2023012633-appb-img-000014
.
Figure PCTKR2023012633-appb-img-000014
.
3. 위 1에 있어서, 상기 바이러스는 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2)인, 항바이러스용 조성물.3. The antiviral composition of 1 above, wherein the virus is SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2).
4. 위 1 또는 2의 조성물을 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물.4. A pharmaceutical composition for preventing or treating viral infections containing the composition of 1 or 2 above.
5. 위 4에 있어서, 상기 바이러스 감염증은 코로나바이러스감염증-19인, 바이러스 감염증 예방 또는 치료용 약학 조성물.5. The pharmaceutical composition for preventing or treating a viral infection according to item 4 above, wherein the viral infection is coronavirus infection-19.
본 발명 조성물은 바이러스의 생육 저해 또는 사멸 효과가 우수하다.The composition of the present invention has an excellent effect of inhibiting the growth or killing of viruses.
본 발명 조성물은 RNA 바이러스의 중합효소인 RdRP 활성을 효과적으로 억제한다.The composition of the present invention effectively inhibits the activity of RdRP, a polymerase of RNA viruses.
도 1은 본원 실시예에서 사용된 센서 작동 원리를 도식화한 것이다.Figure 1 schematically illustrates the operating principle of the sensor used in the embodiments of the present application.
도 2는 AFM 분석으로 산화 그래핀 시트를 분석한 결과를 나타낸 것이다.Figure 2 shows the results of analyzing a graphene oxide sheet by AFM analysis.
도 3은 본원 실시예에서 사용된 루프 형태의 프로브를 도식화한 것이다.Figure 3 is a schematic diagram of the loop-shaped probe used in the examples herein.
도 4는 6M UREA-PAGE 겔을 이용해 NTP 처리군에서의 dsRNA 합성을 확인한 결과를 나타낸 것이다.Figure 4 shows the results of confirming dsRNA synthesis in the NTP-treated group using a 6M UREA-PAGE gel.
도 5는 산화 그래핀의 농도를 결정하기 위한 실험 결과를 나타낸 것이다.Figure 5 shows the results of an experiment to determine the concentration of graphene oxide.
도 6은 ssRNA(NTP-) 및 dsRNA(NTP+)에 따른 소광 효과 및 이의 시간에 따른 변화를 확인한 결과를 나타낸 것이다.Figure 6 shows the results of confirming the quenching effect according to ssRNA (NTP-) and dsRNA (NTP+) and its change over time.
도 7은 Z'-factor를 이용해 본원 실시예의 RdRP 활성 분석법의 분석능을 측정한 결과를 나타낸 것이다.Figure 7 shows the results of measuring the analytical performance of the RdRP activity assay of the examples herein using Z'-factor.
도 8a-b는 선별된 화합물들의 IC50을 계산한 결과를 나타낸 것이다.Figures 8a-b show the results of calculating IC50 of selected compounds.
본 발명은 하기 화학식 1 내지 7로 이루어진 군에서 선택된 어느 하나로 표시되는 화합물을 포함하는 항바이러스용 조성물에 관한 것이다.The present invention relates to an antiviral composition comprising a compound selected from the group consisting of the following formulas 1 to 7.
[화학식 1][Formula 1]
Figure PCTKR2023012633-appb-img-000015
Figure PCTKR2023012633-appb-img-000015
(식 중, 상기 n은 1 내지 10의 정수이고, R1은 탄소수 1 내지 30의 알킬기이다)(Wherein, n is an integer of 1 to 10, and R 1 is an alkyl group having 1 to 30 carbon atoms)
[화학식 2][Formula 2]
Figure PCTKR2023012633-appb-img-000016
Figure PCTKR2023012633-appb-img-000016
(식 중, 상기 n은 1 내지 10의 정수이다)(wherein n is an integer from 1 to 10)
[화학식 3][Formula 3]
Figure PCTKR2023012633-appb-img-000017
Figure PCTKR2023012633-appb-img-000017
(식 중, 상기 R2는 탄소수 1 내지 10의 알킬기이다)(wherein R 2 is an alkyl group having 1 to 10 carbon atoms)
[화학식 4][Formula 4]
Figure PCTKR2023012633-appb-img-000018
Figure PCTKR2023012633-appb-img-000018
(식 중, 상기 n은 1 내지 10의 정수이고, R3는 탄소수 1 내지 30의 알킬기이다.)(In the formula, n is an integer of 1 to 10, and R 3 is an alkyl group having 1 to 30 carbon atoms.)
[화학식 5][Formula 5]
Figure PCTKR2023012633-appb-img-000019
Figure PCTKR2023012633-appb-img-000019
(식 중, 상기 n은 1 내지 10의 정수이고, R4는 탄소수 1 내지 10의 알킬기이다)(Wherein, n is an integer of 1 to 10, and R 4 is an alkyl group having 1 to 10 carbon atoms)
[화학식 6][Formula 6]
Figure PCTKR2023012633-appb-img-000020
Figure PCTKR2023012633-appb-img-000020
(식 중, 상기 n은 1 내지 10의 정수이고, R5는 탄소수 1 내지 10의 알킬기이다) 및(wherein n is an integer of 1 to 10, and R 5 is an alkyl group having 1 to 10 carbon atoms) and
[화학식 7][Formula 7]
Figure PCTKR2023012633-appb-img-000021
Figure PCTKR2023012633-appb-img-000021
(식 중, 상기 n은 1 내지 10의 정수이다)(wherein n is an integer from 1 to 10)
상기 알킬기는 탄소 원자를 함유하는 직쇄 또는 분지쇄 알킬기를 의미하며, 예를 들면 메틸, 에틸, n-프로필, 이소프로필, n-부틸, tert-부틸, n-펜틸, n-헥실 또는 이들의 이성질체일 수 있다.The alkyl group refers to a straight or branched chain alkyl group containing carbon atoms, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, n-hexyl or isomers thereof. It can be.
상기 식의 n은 구체적으로 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 10일 수 있다.n in the above formula may specifically be 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
상기 탄소수는 구체적으로 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 또는 30일 수 있다.The carbon number is specifically 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23. , 24, 25, 26, 27, 28, 29 or 30.
구체적으로, 상기 화합물은
Figure PCTKR2023012633-appb-img-000022
(Fingolimod,FTY720),
Figure PCTKR2023012633-appb-img-000023
(Mitoxantrone),
Figure PCTKR2023012633-appb-img-000024
(Minocycline),
Figure PCTKR2023012633-appb-img-000025
(Docusate sodium),
Figure PCTKR2023012633-appb-img-000026
(Capreomycin sulfate),
Figure PCTKR2023012633-appb-img-000027
(Sisomicin sulfate) 또는
Figure PCTKR2023012633-appb-img-000028
(Tobramycin)일 수 있다.
Specifically, the compound is
Figure PCTKR2023012633-appb-img-000022
(Fingolimod,FTY720),
Figure PCTKR2023012633-appb-img-000023
(Mitoxantrone),
Figure PCTKR2023012633-appb-img-000024
(Minocycline),
Figure PCTKR2023012633-appb-img-000025
(Docusate sodium),
Figure PCTKR2023012633-appb-img-000026
(Capreomycin sulfate),
Figure PCTKR2023012633-appb-img-000027
(Sisomicin sulfate) or
Figure PCTKR2023012633-appb-img-000028
(Tobramycin).
상기 바이러스는 RNA 바이러스일 수 있다.The virus may be an RNA virus.
항바이러스란 바이러스를 사멸시키거나 성장을 억제하는 활성을 의미하며, 구체적으로 상기 조성물은 RdRP(RNA dependent RNA polymerase)의 활성을 억제함으로써, RNA 바이러스 감염으로 인한 질병을 예방 또는 치료할 수 있다.Antiviral refers to the activity of killing viruses or inhibiting their growth. Specifically, the composition can prevent or treat diseases caused by RNA virus infection by inhibiting the activity of RdRP (RNA dependent RNA polymerase).
상기 RdRP는 RNA 바이러스의 보편적인 RNA 중합효소로, RdRP의 활성이 억제되면 바이러스의 게놈이 정상적으로 합성될 수 없고, 이로 인해 바이러스의 증식을 막을 수 있다.The RdRP is a universal RNA polymerase of RNA viruses. When the activity of RdRP is inhibited, the viral genome cannot be synthesized normally, which can prevent the proliferation of the virus.
결과적으로 상기 조성물은 타겟 바이러스에 대한 사멸, 생육 저해 효과를 나타냄으로써 항바이러스 효과를 갖는 것일 수 있다.As a result, the composition may have an antiviral effect by exhibiting a killing and growth inhibition effect on the target virus.
상기 RNA 바이러스는 RNA를 유전물질로 사용하는 모든 바이러스를 의미한다. 구체적으로 상기 바이러스는 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2)일 수 있다.The RNA virus refers to all viruses that use RNA as genetic material. Specifically, the virus may be SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2).
또는, 예를 들면 아말가비리대 (Amalgaviridae), 비르나비리대 (Birnaviridae), 크리소비리대 (Chrysoviridae), 시스토비리대 (Cystoviridae), 엔도르나비리대 (Endornaviridae), 하이포비리대 (Hypoviridae), 메가비르나비리대 (Megabirnaviridae), 파르티티비리대 (Partitiviridae), 피코비르나비리대 (Picobirnaviridae), 레오비리대 (Reoviridae), 토티비리대 (Totiviridae), 콰드리비리대 (Quadriviridae), 아르테리비리대 (Arteriviridae), 코로나비리대 (Coronaviridae), 메소니비리대 (Mesoniviridae), 로니비리대 (Roniviridae), 디시스트로비리대 (Dicistroviridae), 이플라비리대 (Iflaviridae), 마르나비리대 (Marnaviridae), 피코르나비리대 (Picornaviridae), 세코비리대 (Secoviridae), 알파플렉시비리대 (Alphaflexiviridae), 베타플렉시비리대 (Betaflexiviridae), 감마플렉시비리대 (Gammaflexiviridae), 티모비리대 (Tymoviridae), 보르나비리대 (Bornaviridae), 필로비리대 (Filoviridae), 파라믹소비리대 (Paramyxoviridae), 랍도비리대 (Rhabdoviridae), 니아미비리대 (Nyamiviridae), 칼리시비리대 (Caliciviridae), 플라비비리대 (Flaviviridae), 루테오비리대 (Luteoviridae), 토가비리대 (Togaviridae), 뉴모바라대 (Pneumoviridae), 아레나비리대 (Arenaviridae), 델타비리대 (Deltavirus), 또는 오르토믹스비리대 (Orthomyxoviridae) 바이러스를 포함하나 이에 제한되는 것은 아니다.Or, for example, Amalgaviridae, Birnaviridae, Chrysoviridae, Cystoviridae, Endornaviridae, Hypoviridae, Megabirnaviridae, Partitiviridae, Picobirnaviridae, Reoviridae, Totiviridae, Quadriviridae, Arteri Arteriviridae, Coronaviridae, Mesoniviridae, Roniviridae, Dicistroviridae, Iflaviridae, Marnaviridae ), Picornaviridae, Secoviridae, Alphaflexiviridae, Betaflexiviridae, Gammaflexiviridae, Tymoviridae, Bor Bornnaviridae, Filoviridae, Paramyxoviridae, Rhabdoviridae, Nyamiviridae, Caliciviridae, Flaviviridae (Flaviviridae), Luteoviridae, Togaviridae, Pneumoviridae, Arenaviridae, Deltavirus, or Orthomyxoviridae viruses Including, but not limited to.
상기 약학적으로 허용되는 염은, 본 발명에 따른 특정 화합물과 비교적 무독성인 산 또는 염기를 이용해서 조제되는 염을 의미한다. 염은 예를 들어 산 부가염 또는 금속염일 수 있다.The pharmaceutically acceptable salt refers to a salt prepared using a specific compound according to the present invention and a relatively non-toxic acid or base. The salt may be, for example, an acid addition salt or a metal salt.
상기 조성물은 바이러스의 소독 목적으로 사용될 수 있다. 예컨대 인간, 동물, 식물 또는 물건을 대상으로 사용될 수 있다.The composition can be used for disinfection of viruses. For example, it can be used on humans, animals, plants, or objects.
상기 조성물의 제형은 예컨대 액상, 에어로졸, 폼, 겔, 분말, 크림 등일 수 있다.The formulation of the composition may be, for example, liquid, aerosol, foam, gel, powder, cream, etc.
상기 조성물은 당해 기술 분야에서 일반적으로 사용되는 하나 이상의 부형제 및 첨가제를 첨가하여 공지의 방법에 따라 제조될 수 있다.The composition can be prepared according to known methods by adding one or more excipients and additives commonly used in the art.
상기 조성물은 음이온계 계면활성제, 비이온계 계면활성제, 양쪽성 계면활성제 등을 추가로 포함할 수 있다. 상기 음이온계 계면활성제는 알킬벤젠설포네이트, 알파올레핀설페이트, 소듐 또는 암모늄라우릴에테르설페이트일 수 있으며, 상기 비온온계 계면활성제는 지방산 아미드, 알킬폴리글루코시드, 에톡시화 지방알콜계, 에톡시화 노닐 페놀계 등 일 수 있으나 이에 한정되는 것은 아니다. 상기 양쪽성 계면활성제는 베타인계 계면활성제, 아민 옥사이드 일 수 있으며, 상기 계면활성제 외에 향, 색소 및 물과 같은 희석제가 선택적으로 첨가될 수 있다.The composition may further include anionic surfactants, nonionic surfactants, amphoteric surfactants, etc. The anionic surfactant may be alkylbenzene sulfonate, alpha olefin sulfate, sodium or ammonium lauryl ether sulfate, and the nonionic surfactant may be fatty acid amide, alkyl polyglucoside, ethoxylated fatty alcohol, or ethoxylated nonyl phenol. It may be a system, etc., but is not limited thereto. The amphoteric surfactant may be a betaine-based surfactant or amine oxide, and in addition to the surfactant, a diluent such as fragrance, colorant, and water may be optionally added.
또한 본 발명은 전술한 화합물 또는 이의 약학적으로 허용 가능한 염을 포함하는 바이러스 감염증의 예방 또는 치료용 약학 조성물을 포함한다.The present invention also includes a pharmaceutical composition for preventing or treating viral infections containing the above-described compound or a pharmaceutically acceptable salt thereof.
이상의 화합물에 관하여 설명된 사항은 모두 본원의 약학 조성물의 유효성분으로서의 화합물에 그대로 적용된다.All matters described regarding the above compounds directly apply to the compounds as active ingredients of the pharmaceutical composition of the present application.
결과적으로 상기 화합물은 타겟 바이러스에 대한 사멸, 생육 저해 효과를 나타냄으로써 대상 질병을 예방 또는 치료하는 것일 수 있다As a result, the compound may prevent or treat the target disease by exhibiting a killing and growth inhibition effect on the target virus.
상기 RNA 바이러스 감염증은 RNA 바이러스의 감염에 의해 숙주에서 발생할 수 있는 모든 질환을 의미한다.The RNA virus infection refers to all diseases that can occur in the host due to infection by an RNA virus.
예를 들면 코로나바이러스감염증-19(corona virus disease 19), 중증급성호흡기증후군(SARS), 중동호흡기증후군(MERS), 지카바이러스 감염증, 뎅기열 (Dengue fever), 뎅기출혈열 (Dengue hemorrhagic fever), 인플루엔자 (influenza), 급성회백수염 (poliomyelitis anterior acuta), 무균성 뇌수막염 (aseptic meningitis), 수족구병 (hand-foot-mouth disease), 헤르페스 목구멍염 (herpangina), 급성 출혈성 결막염 (acute hemorrhagic conjunctivitis), 유행성 가슴막통증 (epidemic pleurodynia), 심장막염 (pericarditis), 심근염 (myocarditis), 유아백색설사증, 풍진 (rubella), 선천성 풍진증후군 (Congenital rubella syndrome), 황열병 (yellow fever), 일본뇌염 (Japanese encephalitis), 단순 헤르페스뇌염 (Herpes simplex encephalitis), 유행성 귀밑샘염 (epidemic parotitis), 홍역 (measles), 광견병 (rabies), 마르부르크병 (Marburg disease), 에볼라출혈열 (Ebola hemorrhagic fever), 출혈열콩팥증후군 (Hemorrhagic fever with renal syndrome), 한타바이러스 폐증후군 (HPS), 콩고-크리미아 출혈열 (Congo-Crimean hemorrhagic fever), AIDS (Acquired immunodeficiency disease), 성인 T세포 백혈병 (Adult T-cell leukemia), HTLV-1 관련 척수증 (HTLV-1 associated myelopathy), HTLV-1 포도막염 (HTLV-1 uveitis) 및 라사열 (Lassa fever)을 포함하나 이에 제한되는 것은 아니다.For example, coronavirus disease 19, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Zika virus infection, dengue fever, dengue hemorrhagic fever, influenza ( influenza), poliomyelitis anterior acuta, aseptic meningitis, hand-foot-mouth disease, herpes throat (herpangina), acute hemorrhagic conjunctivitis, epidemic pleurisy Pain (epidemic pleurodynia), pericarditis, myocarditis, white diarrhea in infants, rubella, congenital rubella syndrome, yellow fever, Japanese encephalitis, herpes simplex Herpes simplex encephalitis, epidemic parotitis, measles, rabies, Marburg disease, Ebola hemorrhagic fever, hemorrhagic fever with renal syndrome , Hantavirus pulmonary syndrome (HPS), Congo-Crimean hemorrhagic fever, AIDS (Acquired immunodeficiency disease), Adult T-cell leukemia, HTLV-1 associated myelopathy myelopathy), HTLV-1 uveitis, and Lassa fever.
본 발명의 약학 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다. 본 발명에서 용어, “약학적으로 허용 가능한 담체”란 생물체를 상당히 자극하지 않고 투여 성분의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 본 발명에서의 약학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 또는 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액 및 정균제 등 다른 통상의 첨가제를 첨가하여, 조직 또는 장기에 주입하기에 적합한 주사제의 형태로 제형화할 수 있다. 또한, 등장성 멸균 용액, 또는 경우에 따라 멸균수나 생리 식염수를 첨가하여 주사 가능한 용액이 될 수 있는 건조 제제(특히 동결 건조제제)로 제형화할 수도 있다. 또한, 표적 기관에 특이적으로 작용할 수 있도록 표적 기관 특이적 항체 또는 기타 리간드를 상기 담체와 결합시켜 사용할 수 있다.The pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier. In the present invention, the term “pharmaceutically acceptable carrier” refers to a carrier or diluent that does not significantly irritate living organisms and does not inhibit the biological activity and properties of the administered ingredient. Pharmaceutically acceptable carriers in the present invention include saline solution, sterilized water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these ingredients may be used in combination. If necessary, other common additives such as antioxidants, buffers, and bacteriostatic agents can be added to formulate an injection suitable for injection into tissues or organs. Additionally, it may be formulated as an isotonic sterile solution, or in some cases, as a dry preparation (particularly a freeze-dried preparation) that can be made into an injectable solution by adding sterile water or physiological saline. Additionally, a target organ-specific antibody or other ligand may be used in combination with the carrier so that it can act specifically on the target organ.
본 발명 약학 조성물은 종래에 알려져 있는 바이러스 감염증의 예방 또는 치료 물질과 혼합하여 제공될 수도 있다. 즉, 본 발명의 약학 조성물은 바이러스 감염증의 예방 또는 치료하는 효과를 가지는 공지의 물질과 병행하여 투여할 수 있다.The pharmaceutical composition of the present invention may be provided by mixing with conventionally known substances for preventing or treating viral infections. That is, the pharmaceutical composition of the present invention can be administered in parallel with known substances that have the effect of preventing or treating viral infections.
상기 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있으나, 이에 제한되지 않는다.The composition may be formulated and used in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, and sterile injectable solutions according to conventional methods. Not limited.
본 발명에서 용어, “유효량”은 목적하는 치료되어야 할 특정 질환의 발병 또는 진행을 지연하거나, 전적으로 증진시키는데 필요한 양을 의미한다.In the present invention, the term “effective amount” refers to the amount necessary to delay or completely promote the onset or progression of a specific disease to be treated.
본 발명에서 조성물은 약학적 유효량으로 투여될 수 있다. 상기 약학 조성물의 적합한 총 1일 사용량은 올바른 의학적 판단범위 내에서 처치의에 의해 결정될 수 있다는 것은 당업자에게 자명한 일이다.In the present invention, the composition can be administered in a pharmaceutically effective amount. It is obvious to those skilled in the art that the appropriate total daily usage amount of the pharmaceutical composition can be determined by the treating physician within the scope of sound medical judgment.
본 발명의 목적상, 특정 환자에 대한 구체적인 약학적 유효량은 달성하고자 하는 반응의 종류와 정도, 경우에 따라 다른 제제가 사용되는지의 여부를 비롯한 구체적인 조성물, 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여시간, 투여 경로 및 조성물의 분비율, 치료 기간, 구체적 조성물과 함께 사용되거나 동시 사용되는 약물을 비롯한 다양한 인자와 의약 분야에 잘 알려진 유사 인자에 따라 다르게 적용하는 것이 바람직하다.For the purposes of the present invention, a specific pharmaceutically effective amount for a particular patient refers to the type and degree of response to be achieved, the specific composition, including whether other agents are used as the case may be, the patient's age, weight, general health, and gender. It is desirable to apply it differently depending on various factors including diet, administration time, administration route and secretion rate of the composition, treatment period, drugs used together or simultaneously with the specific composition, and similar factors well known in the medical field.
본 발명에 있어서, 상기 약학 조성물은 필요에 따라 약물의 제조, 사용 및 판매를 관장하는 정부 기관에 의해 지시된 형태로 포장과 연계된 지시서가 수반될 수 있으며, 상기 지시서는 조성물의 형태 또는 인간이나 동물 투여에 관하여 사익 기관의 승인을 나타내고 있고, 예를 들어, 약물의 처방에 대하여 미국 식품의약국에서 승인된 표지일 수 있다.In the present invention, the pharmaceutical composition may, if necessary, be accompanied by instructions associated with the packaging in a form directed by a government agency responsible for the manufacture, use and sale of drugs, and the instructions are in the form of the composition or in the form of a human or It indicates approval by a private interest organization for administration to animals, and may be, for example, a label approved by the U.S. Food and Drug Administration for prescription of a drug.
본 발명은 상기 조성물을 이용한 바이러스 감염증 치료 방법을 포함한다. 구체적으로, 상기 방법은 치료를 필요로 하는 개체에 상기 조성물을 투여하는 단계를 포함할 수 있으며, 개체는 바이러스 감염증에 걸렸거나, 바이러스를 보유하고 있는 개체일 수 있다. 상기 개체는 인간을 포함한 포유류일 수 있다.The present invention includes a method of treating viral infections using the composition. Specifically, the method may include administering the composition to an individual in need of treatment, and the individual may be suffering from a viral infection or may be carrying the virus. The subject may be a mammal, including humans.
투여 방법은 제한되지 않고 당 분야에 공지된 방법에 의할 수 있으며, 경구 또는 비경구투여 가능하다.The method of administration is not limited and may be a method known in the art, and may be administered orally or parenterally.
본 발명은 바이러스 감염증 치료제 후보 약물의 스크리닝 방법에 관한 것을 포함한다.The present invention includes a method for screening a drug candidate for the treatment of viral infections.
상기 방법은, 형광 표지된 타겟 바이러스의 단일가닥 핵산, 상기 바이러스 핵산의 중합 반응에 관여하는 단백질, 상기 바이러스 감염증의 치료제 후보 물질 및 산화그래핀이 포함된 혼합물의 형광 세기를 분석하는 단계;를 포함할 수 있다.The method includes analyzing the fluorescence intensity of a mixture containing fluorescently labeled single-stranded nucleic acid of the target virus, a protein involved in the polymerization reaction of the viral nucleic acid, a candidate substance for the treatment of viral infections, and graphene oxide. can do.
상기 방법은 상기 산화그래핀의 혼합 전에 상기 단일가닥 핵산, 단백질 및 후보 물질을 먼저 혼합하는 단계;를 포함할 수 있고, 이후 산화그래핀을 혼합하기 전에 상기 단일가닥 핵산, 단백질 및 후보 물질이 반응하도록 충분한 시간을 들일 수 있다.The method may include first mixing the single-stranded nucleic acid, protein, and candidate material before mixing the graphene oxide, and then, before mixing the graphene oxide, the single-stranded nucleic acid, protein, and candidate material react. You can take enough time to do this.
상기 시간은 사용된 바이러스 및 단백질 종류나 양, 온도 등의 조건에 따라 당업자가 적절히 선택할 수 있고, 예를 들면 30분, 1시간, 2시간 이상 반응시킬 수 있다. 또는 1시간, 2시간, 3시간 이하일 수 있다. The time can be appropriately selected by a person skilled in the art depending on conditions such as the type and amount of virus and protein used, temperature, etc., for example, the reaction can be 30 minutes, 1 hour, 2 hours or more. Or it may be 1 hour, 2 hours, or 3 hours or less.
상기 핵산은 DNA 또는 RNA일 수 있고, 그 길이는 특별히 제한되지 아니한다. 구체적으로 상기 핵산은 3' 끝 부분이 노출된 RNA 단일가닥일 수 있다.The nucleic acid may be DNA or RNA, and its length is not particularly limited. Specifically, the nucleic acid may be a single-stranded RNA with the 3' end exposed.
상기 단백질은 효소일 수 있다. 상기 효소는 예를 들면 타겟 바이러스의 게놈을 증폭시키거나, RNA의 역전사를 통해 증식을 돕는 효소일 수 있다. 상기 효소는 예를 들면 DNA 또는 RNA 중합 효소일 수 있다.The protein may be an enzyme. For example, the enzyme may be an enzyme that amplifies the genome of the target virus or aids proliferation through reverse transcription of RNA. The enzyme may be, for example, a DNA or RNA polymerase.
예를 들면, 상기 효소는 helicase, serine protease 또는 RdRP일 수 있으나 이에 제한되는 것은 아니다.For example, the enzyme may be a helicase, serine protease, or RdRP, but is not limited thereto.
상기 효소로 RdRP를 사용하는 경우 RNA 바이러스를 타겟 바이러스로 할 수 있다. 이 경우 가능한 예시 및 대상 질병에 관해서는 전술한 바와 같으므로 기재를 생략한다.When RdRP is used as the enzyme, an RNA virus can be used as the target virus. In this case, possible examples and target diseases are the same as described above, so description is omitted.
상기 방법은 상기 단백질과 단일가닥 핵산의 반응을 위해 바이러스 및 단백질의 종류에 따라 당업자에 의해 적절한 조건에서 실시될 수 있다.The method can be performed by a person skilled in the art under appropriate conditions depending on the type of virus and protein for the reaction between the protein and single-stranded nucleic acid.
예를 들면 단백질에 의한 핵산의 중합반응을 위해 NTP(nucleoside triphosphate)를 넣거나, 상기 단백질이 반응하기 위한 적절한 보조 단백질을 함께 처리할 수 있다.For example, for the polymerization reaction of nucleic acids by proteins, NTP (nucleoside triphosphate) can be added, or an appropriate auxiliary protein for the protein reaction can be treated together.
상기 바이러스 핵산은 분리된 것이거나, 바이러스 내에 포함되어 있는 상태일 수 있다.The viral nucleic acid may be isolated or contained within the virus.
상기 형광 세기를 분석하는 단계는 대조군과의 형광 강도를 비교하는 단계를 포함할 수 있다. 상기 형광 세기는 시간 경과에 따라 분석하는 것을 포함한다.Analyzing the fluorescence intensity may include comparing the fluorescence intensity with a control group. The fluorescence intensity includes analysis over time.
예를 들면 상기 대조군은, 상기 바이러스 감염증 치료 효과가 없는 음성 대조군, 바이러스 감염증 치료 효과가 알려진 양성 대조군 또는 상기 바이러스 감염증 치료 효과가 알려지지 않은 대조군일 수 있다.For example, the control group may be a negative control group that has no effect in treating the viral infection, a positive control group that has a known therapeutic effect in the viral infection, or a control group that has an unknown therapeutic effect in the viral infection.
상기 음성 대조군은 예를 들면 상기 단백질 활성에 대한 저해능이 없는 물질이 포함되거나, 저해능이 있더라도 상기 단백질이 반응을 수행할 수 없는 조건인 혼합물일 수 있다. 예를 들면 RdRP 효소를 NTP가 없는 조건에서 단일가닥 핵산과 반응시킨 혼합물일 수 있다.For example, the negative control may include a substance that has no inhibitory ability on the protein activity, or may be a mixture under conditions in which the protein cannot perform the reaction even if it has an inhibitory ability. For example, it may be a mixture of RdRP enzyme reacted with single-stranded nucleic acid under NTP-free conditions.
상기 바이러스 감염증 치료제 후보 물질이 포함된 혼합물의 산화그래핀 존재 하에서의 형광 강도를 측정하였을 때, 상기 음성 대조군을 처리한 경우와 비교하여 형광 강도가 감소하면, 이를 상기 바이러스 치료제로 선별할 수 있다.When the fluorescence intensity of the mixture containing the candidate substance for the treatment of viral infection is measured in the presence of graphene oxide, if the fluorescence intensity decreases compared to the case of treating the negative control, it can be selected as the virus treatment drug.
또는 양성 대조군을 처리한 경우와 비교하여 형광 강도가 동등하게 감소하거나 더 크게 감소하면, 해당 후보 물질을 바이러스 치료제로 선별할 수 있다. 또는 상기 바이러스 감염증 치료 효과가 알려지지 않은 대조군, 즉 다른 후보 물질들과 비교하여 형광 강도가 더 크게 감소한 물질을 치료제로 선별할 수 있다.Alternatively, if the fluorescence intensity is reduced equally or more significantly compared to the case of treating the positive control, the corresponding candidate material can be selected as a virus treatment agent. Alternatively, a control substance whose effectiveness in treating the viral infection is unknown, that is, a substance whose fluorescence intensity is significantly reduced compared to other candidate substances, can be selected as a treatment agent.
상기 대조군은 하나 이상일 수 있다. 상기 대조군의 형광 강도는 하나 또는 복수개의 대조군에서 얻어진 각각의 값이거나, 이들로부터 얻어진 값들의 평균값, 중앙값, 최빈값 등이 될 수 있다.The control group may be one or more. The fluorescence intensity of the control group may be each value obtained from one or a plurality of control groups, or may be the average value, median value, mode, etc. of the values obtained from them.
상기 방법은 형광 신호를 기반으로 하므로 이를 통해 효소의 활성을 실시간으로 관찰 및 정량화하는 것이 가능하고, 따라서 고속 대량 스크리닝을 통해 타겟 바이러스의 치료제 약물 후보를 효과적으로 스크리닝할 수 있다.Since the method is based on fluorescence signals, it is possible to observe and quantify enzyme activity in real time, and thus can effectively screen drug candidates for the treatment of target viruses through high-speed mass screening.
상기 방법에서 사용되는 산화 그래핀은 저렴하고 다량 확보가 가능한 경제적인 물질이고 상온에서 안정적으로 보관 가능하여 사용이 용이하다.Graphene oxide used in the above method is an economical material that is inexpensive and can be obtained in large quantities, and can be stored stably at room temperature, making it easy to use.
구체적으로 상기 형광 표지된 타겟 바이러스의 단일가닥 핵산은, 상기 단백질이 불활성되어 이중가닥 핵산으로 합성되지 않고 단일가닥 상태로 남을 경우, 산화그래핀 존재 하에서 산화그래핀에 흡착됨으로써 형광이 소광되고, 이에 조성물의 형광 강도가 약해질 수 있다.Specifically, the fluorescence of the single-stranded nucleic acid of the fluorescently labeled target virus is quenched by being adsorbed to graphene oxide in the presence of graphene oxide when the protein is inactivated and is not synthesized into a double-stranded nucleic acid and remains in a single-stranded state. The fluorescence intensity of the composition may be weakened.
따라서, 상기 형광 강도를 분석함으로써 후보 물질의 상기 단백질에 대한 활성 억제 효과를 분석할 수 있다.Therefore, by analyzing the fluorescence intensity, the inhibitory effect of the candidate substance on the protein can be analyzed.
상기 그래핀은 탄소원자가 2차원 격자 내로 채워진 평면 단일층 구조를 가지는데, 그래핀은 특이한 전자 전달 특성을 가지며, 이로 인해 산화그래핀은 형광 공명 에너지 전달 (FRET) 현상을 통해 가까이 있는 형광 염료의 형광 신호를 소광시킬 수 있다.The graphene has a planar single-layer structure in which carbon atoms are filled into a two-dimensional lattice. Graphene has unique electron transfer characteristics, and because of this, graphene oxide can absorb nearby fluorescent dyes through the fluorescence resonance energy transfer (FRET) phenomenon. The fluorescence signal can be quenched.
상기 흡착은 예를 들면 산화그래핀과 프로브의 π전자들 간의 상호작용, 착물형성(complexation), 이온교환, 정전기적 상호작용, 반데르발스 인력에 의한 표면흡착, 수소결합 등에 의한 것일 수 있으며, 예를 들면 단일가닥 핵산은 산화그래핀의 소수성 표면 간의 pi-pi결합에 의하여 상기 산화그래핀에 흡착될 수 있다.The adsorption may be due, for example, to the interaction between graphene oxide and the π electrons of the probe, complexation, ion exchange, electrostatic interaction, surface adsorption due to van der Waals attraction, hydrogen bonding, etc., For example, single-stranded nucleic acid can be adsorbed to graphene oxide by pi-pi bonds between the hydrophobic surfaces of graphene oxide.
상기 형광물질의 형광 발광은, 유세포분석기(FACS), 형광 리더기, qRT-PCR(정량 실시간 PCR), 형광 현미경, 또는 인비보 (in vivo) 이미징 기기에 의하여 검출될 수 있으나, 이에 제한되지 않는다. 예를 들어, 상기 형광 리더기는 형광 마이크로플레이트 리더로 약 230 nm 내지 약 999 nm에 이르는 형광을 측정할 수 있는 것을 포함할 수 있으나, 이에 제한되지 않는다. 예를 들어, 상기 형광 리더기는 형광 신호 사이의 cross-talk 현상이 최소화될 수 있도록 약 세 가지의 유기 형광 염료를 선택하여 그에 대한 형광 신호를 관찰하는 것을 포함할 수 있다. 예를 들어, 상기 유세포분석기는 단일 세포를 튜브로 흘려주며 세포의 형광 신호를 관찰할 수 있는 기기인 것을 포함한다. 상기 형광 현미경은 세포 내, 세포 외, 또는 시료의 형광을 관찰할 수 있는 것을 포함하나, 이에 제한되지 않는다.The fluorescence emission of the fluorescent material may be detected by flow cytometry (FACS), fluorescence reader, qRT-PCR (quantitative real-time PCR), fluorescence microscope, or in vivo imaging device, but is not limited thereto. For example, the fluorescence reader may include, but is not limited to, a fluorescence microplate reader capable of measuring fluorescence ranging from about 230 nm to about 999 nm. For example, the fluorescence reader may include selecting about three organic fluorescent dyes and observing the corresponding fluorescence signals so that the cross-talk phenomenon between the fluorescence signals can be minimized. For example, the flow cytometer includes a device that flows a single cell through a tube and observes the fluorescence signal of the cell. The fluorescence microscope includes, but is not limited to, one capable of observing fluorescence within cells, outside cells, or in samples.
산화그래핀은 시트 형태 또는 입자 형태일 수 있다. 상기 시트는 단일층 또는 복수의 층으로 구성될 수 있다. 또한, 시트 형태는 평면 또는 곡면을 포함할 수 있으며, 다양한 형태로 존재할 수 있다. 일 실시예로는 상기 산화그래핀은 2차원 단일층 시트 형태일 수 있다. 또한, 입자 형태는 구형, 타원형, 막대형 및 다각형 등 다양한 형태를 포함할 수 있다.Graphene oxide may be in sheet form or particle form. The sheet may be composed of a single layer or multiple layers. Additionally, the sheet shape may include a flat or curved surface and may exist in various shapes. In one embodiment, the graphene oxide may be in the form of a two-dimensional single layer sheet. Additionally, particle shapes may include various shapes such as spheres, ellipses, rods, and polygons.
산화그래핀은 나노 사이즈일 수 있다. 그 사이즈는 예를 들면 5 내지 500 ㎚, 5 내지 200 ㎚, 5 내지 150 ㎚, 5 내지 100 ㎚, 5 내지 50 ㎚, 10 내지 500 ㎚, 10 내지 200 ㎚, 10 내지 150 ㎚, 10 내지 100 ㎚, 10 내지 50 ㎚, 20 내지 200 ㎚, 20 내지 150 ㎚, 20 내지 100 ㎚, 20 내지 50 ㎚, 30 내지 200 ㎚, 30 내지 150 ㎚, 30 내지 100 ㎚, 30 내지 50 ㎚, 50 내지 200 ㎚, 50 내지 150 ㎚, 50 내지 100 ㎚, 50 내지 80 ㎚, 60 내지 200㎚, 60 내지 100 ㎚, 60 내자 80 ㎚, 80 내지 200 ㎚, 80 내지 150 ㎚, 80 내지 100 ㎚, 90 내지 200 ㎚, 90 내지 150 ㎚ 또는 90 내지 100 ㎚일 수 있으나, 이에 제한되지 않는다. 입자 크기는 동적 광 산란(Dynamic Light Scattering)을 이용한 측정으로 얻어진 실험값 또는 원자력 현미경(AFM)이나 주사투과현미경(TEM) 이미지에서 보여지는 크기를 평균해서 계산한 값으로, 나노물질이 구형 또는 원형이라고 가정하고 얻어지는 값을 의미한다.Graphene oxide can be nano-sized. The sizes are, for example, 5 to 500 nm, 5 to 200 nm, 5 to 150 nm, 5 to 100 nm, 5 to 50 nm, 10 to 500 nm, 10 to 200 nm, 10 to 150 nm, 10 to 100 nm. , 10 to 50 nm, 20 to 200 nm, 20 to 150 nm, 20 to 100 nm, 20 to 50 nm, 30 to 200 nm, 30 to 150 nm, 30 to 100 nm, 30 to 50 nm, 50 to 200 ㎚ , 50 to 150 nm, 50 to 100 nm, 50 to 80 nm, 60 to 200 nm, 60 to 100 nm, 60, 80 nm, 80 to 200 nm, 80 to 150 nm, 80 to 100 nm, 90 to 20 0 nm , may be 90 to 150 nm or 90 to 100 nm, but is not limited thereto. Particle size is a value calculated by averaging the experimental values obtained by measurement using dynamic light scattering or the sizes seen in atomic force microscopy (AFM) or scanning transmission microscopy (TEM) images. Nanomaterials are said to be spherical or circular. It means the value obtained by assuming.
나노 사이즈의 산화그래핀을 사용하는 경우의 구체적인 예를 들면, 산화그래핀은 그라파이트 파우더로 제조된 통상의 산화그래핀 또는 그라파이트 나노파이버로 제조된 산화그래핀 나노콜로이드일 수 있다.For a specific example of using nano-sized graphene oxide, the graphene oxide may be conventional graphene oxide made from graphite powder or graphene oxide nanocolloid made from graphite nanofibers.
상기 산화그래핀은 수용성 고분자로 표면 개질된 것일 수 있다.The graphene oxide may be surface-modified with a water-soluble polymer.
수용성 고분자란, 물에 녹거나 물 속에서 미세한 입자로 분산될 수 있는 수지 또는 고분자를 의미한다. 상기 수용성 고분자는 천연 고분자, 반 합성 고분자 또는 합성 고분자일 수 있다. 본 발명에서 사용가능한 수용성 고분자는 1 내지 20 kDa, 5 내지 15 kDa 또는 8 내지 12 kDa의 분자량을 가질 수 있다. 일 실시예로서 상기 수용성 고분자는 10 kDa 일 수 있다.Water-soluble polymer refers to a resin or polymer that can be dissolved in water or dispersed as fine particles in water. The water-soluble polymer may be a natural polymer, a semi-synthetic polymer, or a synthetic polymer. The water-soluble polymer usable in the present invention may have a molecular weight of 1 to 20 kDa, 5 to 15 kDa, or 8 to 12 kDa. As an example, the water-soluble polymer may be 10 kDa.
수용성 고분자는 키토산 및 이의 유도체, 키토산염, 덱스트란 및 이의 유도체, 히알루론산 및 이의 유도체, 히알루론산염, 팩틴 및 이의 유도체, 팩틴염, 알긴산염 및 이의 유도체, 알긴산, 아가, 갈락토만난 및 이의 유도체, 갈락토만난염, 잔탄 및 이의 유도체, 잔탄염, 베타-사이클로덱스트린 및 이의 유도체, 베타-사이클로덱스트린염, 폴리에틸렌글리콜(PEG), 폴리에틸렌이민(PEI) 및 이의 조합으로 구성된 군으로부터 선택될 수 있다. 일 실시예로서 상기 수용성 고분자는 덱스트란, 폴리에틸렌글리콜, 폴리에틸렌이민 및 이의 조합으로 구성된 군으로부터 선택될 수 있다.Water-soluble polymers include chitosan and its derivatives, chitoate, dextran and its derivatives, hyaluronic acid and its derivatives, hyaluronic acid salt, pectin and its derivatives, pectin salt, alginate and its derivatives, alginic acid, agar, galactomannan and its derivatives. May be selected from the group consisting of derivatives, galactomannan salts, xanthan and its derivatives, xanthan salts, beta-cyclodextrin and its derivatives, beta-cyclodextrin salts, polyethylene glycol (PEG), polyethyleneimine (PEI), and combinations thereof. there is. As an example, the water-soluble polymer may be selected from the group consisting of dextran, polyethylene glycol, polyethyleneimine, and combinations thereof.
수용성 고분자 및 산화그래핀은 화학적 또는 물리적으로 결합된 것일 수 있다. 상기 화학적 결합은 아마이드 결합, 에스테르 결합, 에테르 결합 등이 가능하나 이에 한정되지 않는다. 또한, 화학적 결합은 가교제를 통해 이루어질 수 있다. 일 실시예로, 수용성 고분자와 산화그래핀은 EDC 커플링(coupling)을 통해 결합될 수 있다. 또한, 상기 물리적 결합은 정전기적 인력, 수소결합, 반데르발스 결합 일 수 있으나, 이에 한정되지 않는다. 또한, 이와 같이 수용성 고분자에 의해 표면이 개질된 산화그래핀은 분산 능력 및 안정성이 향상될 수 있고, 생체 친화성이 향상될 수 있다.Water-soluble polymer and graphene oxide may be chemically or physically combined. The chemical bond may include an amide bond, an ester bond, and an ether bond, but is not limited thereto. Additionally, chemical bonding can be achieved through a cross-linking agent. In one embodiment, water-soluble polymers and graphene oxide may be combined through EDC coupling. Additionally, the physical bond may be electrostatic attraction, hydrogen bond, or van der Waals bond, but is not limited thereto. In addition, graphene oxide whose surface has been modified with water-soluble polymers can have improved dispersion ability and stability, and improved biocompatibility.
상기 형광 물질은 예를 들면 플루오레신, 플루오레신 클로로트리아지닐, 로다민 그린, 로다민 레드, 테트라메틸로다민, 플루오레세인이소티오시안산염(fluorescein isothiocyanate, FITC), 오레곤 그린(oregon green), 알렉스 플루오로, 카복시플루오레스세인(carboxyfluorescein, FAM), 6-카복시-4',5'-디클로로-2',7'-디메톡시플루오레스세인(JOE), 카복시-X-로다민(ROX), 6-카복시-2',4,4',5',7, 7'-헥사클로로플루오레스세인(HEX), 텍사스 레드(sulforhodamine 101 acid chloride), 6-카복시-2',4,7',7-테트라클로로플루오레스세인(TET), 테트라메틸로다민-이소티오시아네이트(TRITC), 카복시테트라메틸로다민(TAMRA), 시아닌 계열 염료, 씨아디카르보시아닌 염료 및 이의 조합으로 구성된 군으로부터 선택될 수 있다. 상기 시아닌 계열 염료는 Cy3, Cy5, Cy5.5, Cy7 및 이의 조합으로 구성된 군으로부터 선택될 수 있다.The fluorescent substances include, for example, fluorescein, fluorescein chlorotriazinyl, rhodamine green, rhodamine red, tetramethylrhodamine, fluorescein isothiocyanate (FITC), and oregon green. ), Alex Fluoro, carboxyfluorescein (FAM), 6-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein (JOE), carboxy-X-rhodamine ( ROX), 6-carboxy-2',4,4',5',7, 7'-hexachlorofluorescein (HEX), Texas Red (sulforhodamine 101 acid chloride), 6-carboxy-2',4, 7',7-tetrachlorofluorescein (TET), tetramethylrhodamine-isothiocyanate (TRITC), carboxytetramethylrhodamine (TAMRA), cyanine dyes, cyadicarbocyanine dyes, and combinations thereof. It may be selected from the group consisting of: The cyanine-based dye may be selected from the group consisting of Cy3, Cy5, Cy5.5, Cy7, and combinations thereof.
본 발명은 바이러스의 단백질 활성을 판별하는 방법에 관한 것을 포함한다.The present invention includes a method for determining the protein activity of a virus.
상기 단백질은 효소일 수 있고, 바이러스 핵산의 중합 반응에 관여하는 것일 수 있다. 구체적으로 상기 단백질은 RdRP일 수 있다.The protein may be an enzyme or may be involved in the polymerization reaction of viral nucleic acid. Specifically, the protein may be RdRP.
상기 방법은, 형광 표지된 바이러스의 단일가닥 핵산, 상기 바이러스 핵산의 중합 반응에 관여하는 타겟 단백질 및 산화그래핀이 포함된 혼합물의 형광 세기를 분석하는 단계;를 포함할 수 있다.The method may include analyzing the fluorescence intensity of a mixture containing fluorescently labeled viral single-stranded nucleic acid, a target protein involved in the polymerization reaction of the viral nucleic acid, and graphene oxide.
상기 방법은 산화그래핀의 혼합 전에 상기 단일가닥 핵산, 타겟 단백질을 먼저 혼합하는 단계;를 포함할 수 있고, 산화그래핀의 혼합 전에 상기 단일가닥 핵산, 단백질 및 후보 물질이 반응하도록 충분한 시간을 들일 수 있다.The method may include first mixing the single-stranded nucleic acid and the target protein before mixing the graphene oxide, and allowing sufficient time for the single-stranded nucleic acid, protein, and candidate material to react before mixing the graphene oxide. You can.
상기 방법은 특정한 조건하에서의 단백질 활성을 판별하려는 경우 해당 조건에서 실시될 수 있다. 예를 들면 특정 물질의 존재 하에서의 단백질 활성을 판별하려는 경우 해당 물질을 함께 혼합할 수 있다.If the method is to determine protein activity under specific conditions, it can be carried out under those conditions. For example, if you want to determine protein activity in the presence of a specific substance, you can mix the substances together.
상기 단백질이 불활성이면, 상기 단일가닥 핵산이 이중가닥 핵산으로 합성되지 않고 단일가닥 상태로 남으므로, 산화그래핀 존재 하에서 산화그래핀에 흡착됨으로써 형광이 소광되고, 이에 조성물의 형광 강도가 약해질 수 있다.If the protein is inactive, the single-stranded nucleic acid is not synthesized into a double-stranded nucleic acid and remains in a single-stranded state, so the fluorescence is quenched by adsorption to graphene oxide in the presence of graphene oxide, and thus the fluorescence intensity of the composition may be weakened. .
따라서, 상기 형광 강도를 분석함으로써 상기 단백질이 활성을 가지는지 확인할 수 있다.Therefore, it can be confirmed whether the protein is active by analyzing the fluorescence intensity.
상기 방법에 대한 구체적인 설명 및 원리는 전술한 바와 중복되므로 생략한다. Detailed descriptions and principles of the method are omitted as they overlap with those described above.
본 발명은 바이러스 감염증 치료제 후보 물질의 스크리닝용 센서에 관한 것을 포함한다.The present invention includes a sensor for screening candidate substances for the treatment of viral infections.
상기 센서는, 형광 표지된 타겟 바이러스의 단일가닥 핵산 상기 바이러스 핵산의 중합 반응에 관여하는 단백질, 상기 바이러스 감염증의 치료제 후보 물질의 혼합물; 및 산화그래핀을 포함할 수 있다.The sensor includes a mixture of a fluorescently labeled single-stranded nucleic acid of a target virus, a protein involved in the polymerization reaction of the viral nucleic acid, and a candidate substance for the treatment of the viral infection; and graphene oxide.
상기 혼합물에 산화그래핀을 처리하고 형광 세기를 분석함으로써 바이러스 감염증 치료제를 선별할 수 있다.A therapeutic agent for viral infections can be selected by treating the mixture with graphene oxide and analyzing the fluorescence intensity.
상기 후보 물질이 단백질의 활성을 억제할 수 있는 경우, 상기 단일가닥 핵산이 이중가닥 핵산으로 합성되지 않고 단일가닥 상태로 남으므로, 산화그래핀 존재 하에서 산화그래핀에 흡착됨으로써 형광이 소광되고, 이에 혼합물의 형광 강도가 약해질 수 있다.When the candidate material can inhibit the activity of a protein, the single-stranded nucleic acid is not synthesized into a double-stranded nucleic acid and remains in a single-stranded state, so the fluorescence is quenched by adsorption on graphene oxide in the presence of graphene oxide, and thus the mixture The fluorescence intensity may weaken.
상기 센서는 상기 단백질의 반응을 위해 단백질 및 바이러스의 종류에 따라 당업자에 의해 적절한 조건으로 설정될 수 있다.The sensor can be set to appropriate conditions for the reaction of the protein by a person skilled in the art depending on the type of protein and virus.
예를 들면 상기 센서는 효소에 의한 핵산의 중합반응을 위해 NTP(nucleoside triphosphate)를 포함할 수 있다.For example, the sensor may contain NTP (nucleoside triphosphate) for polymerization of nucleic acids by enzymes.
상기 센서를 사용하는 구체적인 설명 및 원리는 전술한 바와 중복되므로 생략한다.Detailed descriptions and principles of using the sensor are omitted since they overlap with those described above.
또한 본 발명은 바이러스의 단백질 활성 판별용 센서에 관한 것을 포함한다.Additionally, the present invention relates to a sensor for determining viral protein activity.
상기 단백질은 효소일 수 있고, 바이러스 핵산의 중합 반응에 관여하는 것일 수 있다. 구체적으로 상기 단백질은 RdRP일 수 있다.The protein may be an enzyme or may be involved in the polymerization reaction of viral nucleic acid. Specifically, the protein may be RdRP.
상기 센서는, 형광 표지된 타겟 바이러스의 단일가닥 핵산, 상기 바이러스 핵산의 중합 반응에 관여하는 타겟 단백질의 혼합물; 및 산화그래핀을 포함할 수 있다.The sensor includes a mixture of a single-stranded nucleic acid of a fluorescently labeled target virus and a target protein involved in a polymerization reaction of the viral nucleic acid; and graphene oxide.
상기 단백질이 불활성이면, 상기 단일가닥 핵산이 이중가닥 핵산으로 합성되지 않고 단일가닥 상태로 남으므로, 산화그래핀 존재 하에서 산화그래핀에 흡착됨으로써 형광이 소광되고, 이에 혼합물의 형광 강도가 약해질 수 있다.If the protein is inactive, the single-stranded nucleic acid is not synthesized into a double-stranded nucleic acid and remains in a single-stranded state, so the fluorescence is quenched by adsorption to graphene oxide in the presence of graphene oxide, and the fluorescence intensity of the mixture may be weakened. .
따라서, 상기 혼합물에 산화그래핀을 처리하고 형광 강도를 분석함으로써 상기 단백질이 활성을 가지는지 확인할 수 있다.Therefore, it is possible to confirm whether the protein is active by treating the mixture with graphene oxide and analyzing the fluorescence intensity.
상기 센서를 사용하는 구체적인 설명 및 원리는 전술한 바와 중복되므로 생략한다.Detailed descriptions and principles of using the sensor are omitted since they overlap with those described above.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to examples.
실시예Example
1. 산화 그래핀의 제조 및 확인1. Preparation and confirmation of graphene oxide
산화그래핀은 일반적으로 흑연 전구체를 modified Hummers' method를 통해 화학적 산화와 초음파를 통해 박리함으로써 합성되었는데, 그 과정에서 초음파에 노출되는 시간과 반응 온도 조건을 조절하여 100 nm 이하의 균일한 산화그래핀을 합성하였다. 흑연 1g을 황산(H2SO4) 50mL에 과망간산칼륨 (KMnO4) 5g과 함께 얼음 속에서 2시간 동안 반응시킨다. 얼음을 제거한 후, 40℃에서 1시간 동안 추가적으로 반응시킨다. 1시간 후, 증류수 50mL을 dropping funnel을 이용하여 천천히 첨가하고 추가적으로 150mL의 증류수를 첨가한 후 1시간 동안 추가적으로 반응시킨다. 과산화수소 (H2O2)10mL을 첨가하게 되면 용액의 색깔이 노란색으로 바뀌면서 반응이 종료된다. 5% HCl과 증류수로 세척하여 합성된 graphite oxide의 잔여 산을 제거한 후 오븐에서 건조시킨다. 합성된 graphite oxide를 반복적인 초음파 분쇄와 원심분리를 통하여 graphene oxide를 얻는다.Graphene oxide is generally synthesized by chemically oxidizing graphite precursors using the modified Hummers' method and exfoliating them through ultrasound. In the process, the ultrasound exposure time and reaction temperature conditions are adjusted to produce uniform graphene oxide of 100 nm or less. was synthesized. 1 g of graphite is reacted with 5 g of potassium permanganate (KMnO 4 ) in 50 mL of sulfuric acid (H 2 SO 4 ) in ice for 2 hours. After removing the ice, react additionally at 40°C for 1 hour. After 1 hour, 50 mL of distilled water was slowly added using a dropping funnel, and an additional 150 mL of distilled water was added and allowed to react for an additional hour. When 10 mL of hydrogen peroxide (H 2 O 2 ) is added, the color of the solution changes to yellow and the reaction is completed. Residual acid in the synthesized graphite oxide was removed by washing with 5% HCl and distilled water, and then dried in an oven. Graphene oxide is obtained through repeated ultrasonic pulverization and centrifugation of the synthesized graphite oxide.
상기 제조 방법에 따라 제조된 산화 그래핀의 형성을 확인하고자 합성한 산화 그래핀을 원자간력현미경(Atomic force microscopy, AFM) 기반 분석을 통해 산화 그래핀 시트의 크기 및 두께 정보를 분석하였다. 그 결과 대략 1.1 nm의 두께를 갖는 산화 그래핀이 생성되었음을 확인할 수 있었다(도 2의 A-B).In order to confirm the formation of graphene oxide prepared according to the above manufacturing method, the size and thickness information of the graphene oxide sheet were analyzed through atomic force microscopy (AFM)-based analysis of the synthesized graphene oxide. As a result, it was confirmed that graphene oxide with a thickness of approximately 1.1 nm was produced (A-B in Figure 2).
합성된 산화 그래핀은 적외선 스펙트럼 분석을 통해 3395, 1716, 1225 그리고 1079 cm-1의 피크를 보이는 것을 확인할 수 있었으며 이는 각각 O-H 이완진동, C=O 이완진동, C-O (에폭시) 진동, 그리고 C-O (알콕시) 진동에 해당한다. 마찬가지로 Raman 스펙트럼 분석법을 통하여 합성된 덱스트란-산화 그래핀이 1351 cm-1 에서의 강한 D 밴드 흡수와 1589 cm-1 에서의 강한 G 밴드 흡수를 보이는 점을 확인할 수 있었다(도 2의 C-D).The synthesized graphene oxide was confirmed to show peaks of 3395, 1716, 1225, and 1079 cm -1 through infrared spectrum analysis, which correspond to OH relaxation vibration, C=O relaxation vibration, CO (epoxy) vibration, and CO ( Alkoxy) corresponds to vibration. Similarly, through Raman spectrum analysis, it was confirmed that the synthesized dextran-graphene oxide showed strong D band absorption at 1351 cm -1 and strong G band absorption at 1589 cm -1 (CD in Figure 2).
2. SARS-CoV-2 RdRp의 시험관 수준 활성 분석2. In vitro level activity analysis of SARS-CoV-2 RdRp
우선 프로브로 사용할 단일가닥 RNA (ssRNA) 서열을 5' 말단에 형광물질인 Cy5를 융합하여 합성하였다. 서열은 UUUUUUUCUACGCGUAGCUUGCUAC(서열번호 1)로 3' 말단의 4 base가 상보적인 결합을 이루어 루프 형태를 하고 있으며 RdRP 단백질이 3' 말단에서부터 NTP를 부착하여 dsRNA를 생성하도록 고안되었다(도 3). RdRP 단백질(nsp12)과 활성에 필요한 보조단백질인 nsp7, nsp8 단백질을 동물 세포 발현 시스템을 이용하여 확보하였고, 시험관 수준에서 활성을 나타내는지 확인하였다. 방법은 우선 합성한 ssRNA를 NaCl가 포함된 HEPES 버퍼로 희석하여 95℃에서 5분간 denaturation 과정을 거친 후 refolding 하였다. 이렇게 준비한 ssRNA에 동일한 당량의 RdRP 단백질과 보조 단백질인 nsp7, nsp8 단백질, KCl이 첨가된 HEPES 버퍼를 혼합하고, NTP를 추가하여 합성 반응을 진행하였다. NTP를 첨가하지 않은 샘플을 Negative control로 사용하여 결과를 비교하였다. 여기에서 사용된 KCl의 농도는 10 mM이며 KCl의 농도가 증가하면 RNA 합성 효율이 감소한다는 것이 선행 연구를 통해 밝혀져 있다. 합성 반응이 종료된 후 샘플을 6M UREA-PAGE 겔을 이용하여 전개한 결과, NTP를 첨가한 처리군에서만 dsRNA의 합성이 확인되었다(도 4).First, a single-stranded RNA (ssRNA) sequence to be used as a probe was synthesized by fusing Cy5, a fluorescent substance, to the 5' end. The sequence is UUUUUUUCUACGCGUAGCUUGCUAC (SEQ ID NO: 1), and the 4 bases at the 3' end are complementary to each other to form a loop, and the RdRP protein is designed to generate dsRNA by attaching NTP from the 3' end ( Figure 3 ). RdRP protein (nsp12) and nsp7 and nsp8 proteins, which are accessory proteins required for activity, were obtained using an animal cell expression system and confirmed to be active at the test tube level. In the method, the synthesized ssRNA was first diluted with HEPES buffer containing NaCl, subjected to a denaturation process at 95°C for 5 minutes, and then refolded. The ssRNA prepared in this way was mixed with HEPES buffer containing the same equivalent amount of RdRP protein, auxiliary proteins nsp7 and nsp8 proteins, and KCl, and NTP was added to proceed with the synthesis reaction. The results were compared using a sample without added NTP as a negative control. The concentration of KCl used here is 10 mM, and it has been shown through previous research that RNA synthesis efficiency decreases as the concentration of KCl increases. After the synthesis reaction was completed, the sample was run on a 6M UREA-PAGE gel, and dsRNA synthesis was confirmed only in the NTP-added treatment group ( Figure 4 ).
3. 산화그래핀을 이용한 형광 소광 능력 분석3. Analysis of fluorescence quenching ability using graphene oxide
형광 물질이 표지된 ssRNA의 형광이 산화그래핀을 통해 quenching 되는지 여부와, ssRNA와 dsRNA의 형광 quenching 정도의 차이를 식별할 수 있는 산화 그래핀의 농도를 결정하기 위한 실험을 진행하였다. 우선 ssRNA를 10 μM이 되도록 refolding buffer에 섞어서 95℃에서 5분간 denaturation한 후 cooling down 하면서 refolding 해 주었다. refolding 된 ssRNA 2 pmole과 RdRp buffer, RNase inhibitor를 섞은 후 5분간 37℃에서 pre-heat하고 난 후 NTP를 넣어 1시간 반응하였다. 95℃에서 5분간 denaturation 시켜서 단백질에서 RNA가 떨어져 나오도록 한 다음, 5 ug/ml 산화 그래핀과 혼합하여 상온에서 5분 경과 후 형광 세기의 변화를 측정하였다. 형광 값은 640 nm에서 excitation하고 660 nm에서 emission 파장을 기록하였다. NTP를 넣지 않은 실험군은 ssRNA가 유지되고, 기질인 NTP를 첨가하면 RdRP의 활성에 의해 dsRNA가 생성되는데, 각각의 샘플이 산화 그래핀과 결합하여 형광이 소광되는 정도를 비교해 본 결과 산화 그래핀을 첨가하지 않았을 때를 100%로 놓았을 때, ssRNA의 경우(NTP-)가 산화 그래핀에 의해 형광의 거의 사라지는 것을 확인할 수 있었고, dsRNA의 경우(NTP+)는 상대적으로 소광 효과가 적은 것을 확인하였다 (도 5). 시간에 따른 형광 소광 효과를 비교해 보면 30분이 경과해도 dsRNA의 소광은 더 이상 진행되지 않은 것을 확인할 수 있다(도 6). 측정된 형광값을 직접적으로 비교해 본 결과 ssRNA와 dsRNA의 형광 소광 차이가 명확하여 5 ug/ml 산화 그래핀을 drug 스크리닝에 사용하였다.An experiment was conducted to determine whether the fluorescence of ssRNA labeled with a fluorescent substance is quenched through graphene oxide and the concentration of graphene oxide that can distinguish the difference in the degree of fluorescence quenching between ssRNA and dsRNA. First, ssRNA was mixed with refolding buffer to make it 10 μM, denatured at 95°C for 5 minutes, and then cooled down and refolded. After mixing 2 pmole of refolded ssRNA, RdRp buffer, and RNase inhibitor, pre-heated at 37°C for 5 minutes, then added NTP and reacted for 1 hour. After denaturing at 95°C for 5 minutes to separate the RNA from the protein, it was mixed with 5 ug/ml graphene oxide and the change in fluorescence intensity was measured after 5 minutes at room temperature. Fluorescence values were excitation at 640 nm and emission wavelength was recorded at 660 nm. In the experimental group without NTP, ssRNA was maintained, and when NTP, a substrate, was added, dsRNA was generated by the activity of RdRP. As a result of comparing the degree to which fluorescence was quenched when each sample combined with graphene oxide, graphene oxide When the no addition was set to 100%, it was confirmed that the fluorescence almost disappeared due to graphene oxide in the case of ssRNA (NTP-), and the quenching effect was confirmed to be relatively small in the case of dsRNA (NTP+). (Figure 5). Comparing the fluorescence quenching effect over time, it can be seen that the quenching of dsRNA did not proceed any further even after 30 minutes (Figure 6). As a result of directly comparing the measured fluorescence values, there was a clear difference in fluorescence quenching between ssRNA and dsRNA, so 5 ug/ml graphene oxide was used for drug screening.
4. 산화그래핀을 이용한 RdRp 활성 분석법의 분석능 측정4. Measurement of analytical performance of RdRp activity assay using graphene oxide
산화 그래핀 기반 바이러스 RdRp 활성 분석 플랫폼의 스크리닝 분석법으로서의 우수성을 평가하기 위해, 스크리닝 분석법의 효율성 및 우수성을 가늠하기 위한 파라미터로 널리 사용되는 Z'-요소를 측정하였다. Z'-요소의 범위는 0부터 1까지이며 1에 가까울수록 완벽한 분석 방법인 것으로 간주되며, 일반적으로 0.75 이상의 Z'-요소를 가지면 높은 분석능을 가지는 분석법이라고 한다. 우선 각각의 튜브에 RdRP단백질과 buffer, ssRNA 등을 섞은 후 NTP를 넣지 않은 샘플 30개와 NTP를 넣은 샘플 30개를 동시에 반응시켰다. 산화 그래핀을 첨가한 후 5분 후에 형광을 측정하여 결과를 도출하였다. NTP를 넣지 않은 샘플과 넣은 샘플 각각의 평균값을 0 과 1로 하여 상대적인 형광값을 계산한 다음 그래프로 나타내었다(도 7). 그래프의 점선은 ±1σ값을 나타낸다. Z' factor는 하기 수학식 1로 계산하여 0.79 을 도출하였는데 0.5-1 사이의 값은 실험 방법이 유효하다는 것을 나타내므로 본 실험 방법을 이용하여 Large screening을 수행하기에 적합하다고 볼 수 있다.In order to evaluate the excellence of the graphene oxide-based viral RdRp activity analysis platform as a screening assay, the Z'-factor, which is widely used as a parameter to evaluate the efficiency and superiority of the screening assay, was measured. The range of the Z'-factor is from 0 to 1, and the closer it is to 1, the more perfect the analysis method is. In general, an analysis method with a Z'-factor of 0.75 or more is said to have high analysis power. First, RdRP protein, buffer, and ssRNA were mixed in each tube, and then 30 samples without NTP and 30 samples with NTP were reacted simultaneously. The results were derived by measuring fluorescence 5 minutes after adding graphene oxide. Relative fluorescence values were calculated by taking the average values of the samples without and with NTP as 0 and 1, respectively, and then plotted on a graph (FIG. 7) . The dotted line on the graph represents ±1σ value. The Z' factor was calculated using Equation 1 below to derive 0.79. A value between 0.5-1 indicates that the experimental method is valid, so it can be considered suitable for performing large screening using this experimental method.
[수학식 1][Equation 1]
Figure PCTKR2023012633-appb-img-000029
Figure PCTKR2023012633-appb-img-000029
5. 저분자 화합물 스크리닝5. Small molecule compound screening
상기의 실험 방법을 이용하여 저분자 화합물 스크리닝을 시도하였다. Drug screening library는 총 17 plate, 1432 개의 drug reagent를 대상으로 진행하였다. 우선 DMSO에 1 mM 농도로 분주되어 있는 reagent를 모두 DIW를 이용하여 100 μM로 희석하여 준비하였다. reaction mix는 refolding 된 RNA와 RdRp단백질, RdRp buffer, RNase inhibitor를 섞어서 준비하였다. 우선 PCR tube에 준비된 drug을 각각 2 μl씩 분주한 후 (final concentration=20 μM) reaction mix를 각 tube에 6 μl씩 분주한 다음 5분간 37℃에서 pre-heat하였다. NTP를 넣어 준 다음 37℃에서 1시간 동안 반응시키고, 95℃에서 5분간 denaturation 하였다. 5 ug/ml 산화 그래핀과 혼합하여 상온에서 5분 경과 후 형광 세기의 변화를 측정하였다. NTP- 샘플의 형광값을 0으로 하고 NTP+ 샘플의 형광값을 1로 했을 때 각각의 drug을 처리한 샘플의 상대적 형광값을 계산하였으며 상대적 형광값이 0.7 이하인 샘플 중 0.7에 근접한 값을 나타낸 약물을 선별하여 2차 스크리닝을 진행하였다.We attempted to screen low-molecular-weight compounds using the above experimental method. Drug screening library was conducted on a total of 17 plates and 1,432 drug reagents. First, all reagents dispensed at a concentration of 1 mM in DMSO were prepared by diluting them to 100 μM using DIW. The reaction mix was prepared by mixing refolded RNA, RdRp protein, RdRp buffer, and RNase inhibitor. First, 2 μl of the prepared drug was dispensed into each PCR tube (final concentration=20 μM), and then 6 μl of the reaction mix was dispensed into each tube and pre-heated at 37°C for 5 minutes. After adding NTP, it was reacted at 37°C for 1 hour and denatured at 95°C for 5 minutes. It was mixed with 5 ug/ml graphene oxide and the change in fluorescence intensity was measured after 5 minutes at room temperature. When the fluorescence value of the NTP- sample was set to 0 and the fluorescence value of the NTP+ sample was set to 1, the relative fluorescence value of the sample treated with each drug was calculated. Among the samples with a relative fluorescence value of 0.7 or less, the drug with a value close to 0.7 was selected. After selection, secondary screening was conducted.
상기의 스크리닝과 동일한 실험 방법으로 2차 스크리닝을 진행하였는데, 차이점은 DMSO에 1 mM 농도로 분주되어 있는 reagent를 직접 사용하여 final 200 μM의 농도(final 10% DMSO)를 사용하였다는 점에 있다. Positive control과 비교하였을 때 형광값이 확실하게 낮아진 약물인 Fingolimod (FTY720), Mitoxantrone, Minocycline, Docusate sodium, Capreomycin sulfate, Sisomicin sulfate, Tobramycin를 Hit compound로 선별하였다.The secondary screening was performed using the same experimental method as the above screening, the difference being that the reagent dispensed in DMSO at a concentration of 1 mM was used directly and a final concentration of 200 μM (final 10% DMSO) was used. Fingolimod (FTY720), Mitoxantrone, Minocycline, Docusate sodium, Capreomycin sulfate, Sisomicin sulfate, and Tobramycin, which were drugs whose fluorescence values were clearly lowered when compared to the positive control, were selected as hit compounds.
6. 선별된 저분자 화합물의 IC50 계산6. IC50 calculation of selected small molecule compounds
Inhibitory concentration 50 (IC50) 값은 특정 화합물의 생물학 또는 생화학적 저해 능력을 판단하는 값으로, 스크리닝을 통해 선별된 7종의 hit compound의 IC50을 계산해 보았다. 각각의 약물을 다양한 농도로 준비한 뒤 PCR tube에 준비된 drug을 각각 2 μl씩 분주한 후 reaction mix를 각 tube에 6 μl씩 분주한 다음 5분간 37℃에서 pre-heat하였다. NTP를 넣어 준 다음 37℃에서 1시간 동안 반응시키고, 95℃에서 5분간 denaturation 하였다. 5 ug/ml 산화 그래핀과 혼합하여 상온에서 5분 경과 후 각각 농도에서 형광 세기를 측정하였다. 그 결과 Fingolimod (FTY720)은 20.23 uM, Mitoxantrone은 5.27 uM, Minocycline은 166 uM, Docusate sodium은 36.8 uM, Capreomycin sulfate는 18.6 uM, Sisomicin sulfate는 8.55 uM, Tobramycin은 11.8 uM의 IC50 값을 갖는 것을 확인하였다.Inhibitory concentration 50 (IC50) is a value that determines the biological or biochemical inhibition ability of a specific compound. The IC50 of 7 hit compounds selected through screening was calculated. After preparing each drug at various concentrations, 2 μl of the prepared drug was dispensed into each PCR tube, and then 6 μl of the reaction mix was dispensed into each tube and pre-heated at 37°C for 5 minutes. After adding NTP, it was reacted at 37°C for 1 hour and denatured at 95°C for 5 minutes. It was mixed with 5 ug/ml graphene oxide and the fluorescence intensity was measured at each concentration after 5 minutes at room temperature. As a result, it was confirmed that Fingolimod (FTY720) had an IC50 value of 20.23 uM, Mitoxantrone 5.27 uM, Minocycline 166 uM, Docusate sodium 36.8 uM, Capreomycin sulfate 18.6 uM, Sisomicin sulfate 8.55 uM, and Tobramycin 11.8 uM. .

Claims (5)

  1. 하기 화학식 1 내지 7로 이루어진 군에서 선택된 어느 하나로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염을 포함하는 항바이러스용 조성물An antiviral composition comprising a compound represented by any one selected from the group consisting of the following formulas 1 to 7, or a pharmaceutically acceptable salt thereof:
    [화학식 1][Formula 1]
    Figure PCTKR2023012633-appb-img-000030
    Figure PCTKR2023012633-appb-img-000030
    (식 중, 상기 n은 1 내지 10의 정수이고, R1은 탄소수 1 내지 30의 알킬기이다)(Wherein, n is an integer of 1 to 10, and R 1 is an alkyl group having 1 to 30 carbon atoms)
    [화학식 2][Formula 2]
    Figure PCTKR2023012633-appb-img-000031
    Figure PCTKR2023012633-appb-img-000031
    (식 중, 상기 n은 1 내지 10의 정수이다)(wherein n is an integer from 1 to 10)
    [화학식 3][Formula 3]
    Figure PCTKR2023012633-appb-img-000032
    Figure PCTKR2023012633-appb-img-000032
    (식 중, 상기 R2는 탄소수 1 내지 10의 알킬기이다)(wherein R 2 is an alkyl group having 1 to 10 carbon atoms)
    [화학식 4][Formula 4]
    Figure PCTKR2023012633-appb-img-000033
    Figure PCTKR2023012633-appb-img-000033
    (식 중, 상기 n은 1 내지 10의 정수이고, R3는 탄소수 1 내지 30의 알킬기이다.)(In the formula, n is an integer of 1 to 10, and R 3 is an alkyl group having 1 to 30 carbon atoms.)
    [화학식 5][Formula 5]
    Figure PCTKR2023012633-appb-img-000034
    Figure PCTKR2023012633-appb-img-000034
    (식 중, 상기 n은 1 내지 10의 정수이고, R4는 탄소수 1 내지 10의 알킬기이다)(Wherein, n is an integer of 1 to 10, and R 4 is an alkyl group having 1 to 10 carbon atoms)
    [화학식 6][Formula 6]
    Figure PCTKR2023012633-appb-img-000035
    Figure PCTKR2023012633-appb-img-000035
    (식 중, 상기 n은 1 내지 10의 정수이고, R5는 탄소수 1 내지 10의 알킬기이다) 및(wherein n is an integer of 1 to 10, and R 5 is an alkyl group having 1 to 10 carbon atoms) and
    [화학식 7][Formula 7]
    Figure PCTKR2023012633-appb-img-000036
    Figure PCTKR2023012633-appb-img-000036
    (식 중, 상기 n은 1 내지 10의 정수이다).(wherein n is an integer from 1 to 10).
  2. 청구항 1에 있어서, 상기 화합물은 하기 화학식 8 내지 14로 이루어진 군에서 선택된 어느 하나로 표시되는, 항바이러스용 조성물The antiviral composition according to claim 1, wherein the compound is represented by any one selected from the group consisting of the following formulas 8 to 14:
    [화학식 8][Formula 8]
    Figure PCTKR2023012633-appb-img-000037
    Figure PCTKR2023012633-appb-img-000037
    [화학식 9][Formula 9]
    Figure PCTKR2023012633-appb-img-000038
    Figure PCTKR2023012633-appb-img-000038
    [화학식 10][Formula 10]
    Figure PCTKR2023012633-appb-img-000039
    Figure PCTKR2023012633-appb-img-000039
    [화학식 11][Formula 11]
    Figure PCTKR2023012633-appb-img-000040
    Figure PCTKR2023012633-appb-img-000040
    [화학식 12][Formula 12]
    Figure PCTKR2023012633-appb-img-000041
    Figure PCTKR2023012633-appb-img-000041
    [화학식 13] [Formula 13]
    Figure PCTKR2023012633-appb-img-000042
    Figure PCTKR2023012633-appb-img-000042
    and
    [화학식 14][Formula 14]
    Figure PCTKR2023012633-appb-img-000043
    .
    Figure PCTKR2023012633-appb-img-000043
    .
  3. 청구항 1에 있어서, 상기 바이러스는 SARS-CoV-2(Severe acute respiratory syndrome coronavirus 2)인, 항바이러스용 조성물.The antiviral composition according to claim 1, wherein the virus is SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2).
  4. 청구항 1 또는 2의 조성물을 포함하는 바이러스 감염증 예방 또는 치료용 조성물.A composition for preventing or treating viral infections comprising the composition of claim 1 or 2.
  5. 청구항 4에 있어서, 상기 바이러스 감염증은 코로나바이러스감염증-19인, 바이러스 감염증 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating a viral infection according to claim 4, wherein the viral infection is coronavirus infection-19.
PCT/KR2023/012633 2022-08-30 2023-08-25 Antiviral composition WO2024049116A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0109038 2022-08-30
KR20220109038 2022-08-30
KR1020230111685A KR20240034116A (en) 2022-08-30 2023-08-25 Antiviral composition
KR10-2023-0111685 2023-08-25

Publications (1)

Publication Number Publication Date
WO2024049116A1 true WO2024049116A1 (en) 2024-03-07

Family

ID=90098311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012633 WO2024049116A1 (en) 2022-08-30 2023-08-25 Antiviral composition

Country Status (1)

Country Link
WO (1) WO2024049116A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125943A (en) * 2018-04-27 2019-11-07 주식회사 레모넥스 Medicinal composition for preventing or treating flavivirus infections and method for treating the same
KR20200099114A (en) * 2020-08-03 2020-08-21 권두한 Pharmaceutical composition for preventing or treating coronaviruses infection disease containing tetracycline derivative, thereof as an active ingredient
CN112076182A (en) * 2020-09-03 2020-12-15 中山大学 Application of DNA topoisomerase inhibitor in preparing medicine for preventing and/or treating novel coronavirus infection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125943A (en) * 2018-04-27 2019-11-07 주식회사 레모넥스 Medicinal composition for preventing or treating flavivirus infections and method for treating the same
KR20200099114A (en) * 2020-08-03 2020-08-21 권두한 Pharmaceutical composition for preventing or treating coronaviruses infection disease containing tetracycline derivative, thereof as an active ingredient
CN112076182A (en) * 2020-09-03 2020-12-15 中山大学 Application of DNA topoisomerase inhibitor in preparing medicine for preventing and/or treating novel coronavirus infection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUMAR SUGANDH, SINGH BHARATI, KUMARI PRATIMA, KUMAR PREETHY V., AGNIHOTRI GEETANJALI, KHAN SHAHEERAH, KANT BEURIA TUSHAR, SYED GUL: "Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity", COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, RESEARCH NETWORK OF COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY, SWEDEN, vol. 19, 1 January 2021 (2021-01-01), Sweden , pages 1998 - 2017, XP093099128, ISSN: 2001-0370, DOI: 10.1016/j.csbj.2021.04.014 *
OLIVEIRA ALINE C., RICHARDS ELAINE M., KARAS MARIANTHI M., PEPINE CARL J., RAIZADA MOHAN K.: "Would Repurposing Minocycline Alleviate Neurologic Manifestations of COVID-19?", FRONTIERS IN NEUROSCIENCE, FRONTIERS RESEARCH FOUNDATION, CH, vol. 14, CH , XP093143970, ISSN: 1662-453X, DOI: 10.3389/fnins.2020.577780 *

Similar Documents

Publication Publication Date Title
TWI789695B (en) Methods for treating sars cov-2 infections
Hadi et al. A review on COVID-19: origin, spread, symptoms, treatment, and prevention
Rothan et al. Inhibitory effect of doxycycline against dengue virus replication in vitro
Chen et al. Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN-dependent pathways
Kharbach et al. Male genital damage in COVID-19 patients: Are available data relevant?
TW201008571A (en) Bicyclic nucleosides and nucleotides as therapeutic agents
Herzum et al. Coxsackievirus B3 infection leads to cell death of cardiac myocytes
CN115770246B (en) Use of carmofur or a pharmaceutically acceptable salt thereof for anti-coronavirus
KR102145197B1 (en) Use of l-nucleosides for treating corona virus
Geurts et al. The organoid platform: promises and challenges as tools in the fight against COVID-19
Bjork et al. Remdesivir; molecular and functional measures of mitochondrial safety
Mesgaran et al. Different inflammatory responses of bovine oviductal epithelial cells in vitro to bacterial species with distinct pathogenicity characteristics and passage number
WO2024049116A1 (en) Antiviral composition
CN101679472B (en) Compounds for preventing or treating viral infections and methods of use thereof
Li et al. The interaction of the SARS coronavirus non-structural protein 10 with the cellular oxido-reductase system causes an extensive cytopathic effect
CA2579089A1 (en) Inhibition of viruses using rnase h inhibitors
Topçu et al. Natural Alkaloids as Potential Anti-Coronavirus Compounds.
Lin et al. Inhibition of HIV-1 infection in ex vivo cervical tissue model of human vagina by palmitic acid; implications for a microbicide development
WO2021169957A1 (en) Application of n-substituted pyridyl benzisoselenazolone compound
Agca et al. The importance of tears stability in SARS-CoV-2 transmission: COVID-19 prevalance in dry eye patients
Atif et al. Serotyping of dengue virus from deadly outbreaks of Pakistan
Kokuba et al. 3-Hydroxyphthaloyl β-lactoglobulin. IV. Antiviral activity in the mouse model of genital herpesvirus infection
Chang et al. Apoptosis induced by bovine ephemeral fever virus
CN1302304A (en) AZT derivatives exhibiting spermicidal and anti-viral activity
Wen et al. Synthesis and anti-SARS-CoV-2 evaluation of lipid prodrugs of β-D-N4-hydroxycytidine (NHC) and a 3′-fluoro-substituted analogue of NHC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860793

Country of ref document: EP

Kind code of ref document: A1