WO2024048970A1 - Air conditioner and controlling method therefor - Google Patents

Air conditioner and controlling method therefor Download PDF

Info

Publication number
WO2024048970A1
WO2024048970A1 PCT/KR2023/009634 KR2023009634W WO2024048970A1 WO 2024048970 A1 WO2024048970 A1 WO 2024048970A1 KR 2023009634 W KR2023009634 W KR 2023009634W WO 2024048970 A1 WO2024048970 A1 WO 2024048970A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
temperature
compressor
heat exchanger
frequency
Prior art date
Application number
PCT/KR2023/009634
Other languages
French (fr)
Korean (ko)
Inventor
손이규
김영진
문효주
서범석
유승천
인성진
임진호
장석현
조일용
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of WO2024048970A1 publication Critical patent/WO2024048970A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the disclosed invention relates to an air conditioner capable of maintaining constant indoor humidity and indoor temperature during dehumidifying operation and a method of controlling the same.
  • An air conditioner is a device that cools or heats air using the movement of heat generated from evaporation and condensation of a refrigerant, and discharges the cooled or heated air to condition the air in an indoor space.
  • the air conditioner circulates refrigerant through a compressor, an indoor heat exchanger, and an outdoor heat exchanger, and discharges heat-exchanged air from the indoor heat exchanger into the indoor space, thereby cooling or heating the indoor space.
  • the dehumidifying operation of an air conditioner is performed to lower indoor humidity by removing moisture contained in indoor air.
  • indoor air can also be cooled during dehumidification operation.
  • the compressor is controlled to repeatedly turn on or off depending on changes in indoor temperature. However, as the compressor is repeatedly turned on or off, the fluctuation range of indoor temperature increases and the fluctuation range of indoor humidity increases. This may cause the user to feel uncomfortable.
  • the disclosed invention provides an air conditioner and its control method that can reduce fluctuations in indoor temperature and indoor humidity by performing comfortable operation by appropriately adjusting the frequency of the compressor without on-off control of the compressor during dehumidifying operation.
  • An air conditioner includes an indoor unit including an indoor heat exchanger; an outdoor unit including a compressor that supplies refrigerant to the indoor heat exchanger; an indoor heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger; an indoor humidity sensor that detects indoor humidity; an indoor temperature sensor that detects indoor temperature; During the dehumidifying operation, it is determined whether to perform a comfortable operation to maintain the temperature of the indoor heat exchanger below the dew point temperature based on the indoor humidity and the indoor humidity, and during the comfortable operation, the temperature of the indoor heat exchanger and the dew point temperature are determined. It includes a control unit that adjusts the frequency of the compressor based on.
  • the controller maintains the indoor temperature below the predetermined first threshold temperature and the desired temperature set by the user for a predetermined first time in the dehumidification operation, and the indoor humidity is maintained below the predetermined threshold humidity. , you can enter the comfortable driving mode.
  • the control unit controls the comfortable operation based on the indoor temperature being maintained above a second threshold temperature higher than the first threshold temperature or the indoor humidity being maintained above the threshold humidity for a predetermined second time in the comfortable operation. You can stop driving.
  • the control unit calculates the dew point temperature from the indoor humidity and the indoor temperature during the comfortable operation, and operates the compressor based on the difference value between the temperature of the indoor heat exchanger and the dew point temperature and the temperature change value of the indoor heat exchanger. It may be decided to increase the frequency or decrease the frequency of the compressor.
  • the control unit determines the difference value between the temperature of the indoor heat exchanger and the dew point temperature and the increase in frequency of the compressor or the frequency of the compressor corresponding to the temperature change value of the indoor heat exchanger from a fuzzy table stored in the memory.
  • the reduction value of can be determined.
  • the control unit increases the rotational speed of the outdoor fan included in the outdoor unit in response to an increase in the frequency of the compressor, increases the opening degree of the expansion valve included in the indoor unit, or responds to a decrease in the frequency of the compressor.
  • the rotational speed of the outdoor fan can be reduced and the opening degree of the expansion valve can be reduced.
  • the control unit adjusts the first rotational speed of the compressor in the comfortable operation to be slower than the second rotational speed of the compressor in the dehumidifying operation, and adjusts the third rotational speed of the outdoor fan included in the outdoor unit in the comfortable operation to the dehumidifying operation.
  • the rotation speed can be adjusted to be slower than the fourth rotation speed of the outdoor fan.
  • a method of controlling an air conditioner includes detecting indoor humidity using an indoor humidity sensor included in the indoor unit during a dehumidifying operation; detecting the indoor temperature using an indoor temperature sensor included in the indoor unit during the dehumidifying operation; During the dehumidifying operation, determine whether to perform a comfortable operation to maintain the temperature of the indoor heat exchanger below the dew point temperature based on the indoor humidity and the indoor humidity; and adjusting the frequency of the compressor based on the temperature of the indoor heat exchanger and the dew point temperature during the comfortable operation.
  • the comfortable operation may be performed by maintaining the indoor temperature below a predetermined first threshold temperature and a desired temperature set by a user for a predetermined first time in the dehumidifying operation, and maintaining the indoor humidity below a predetermined threshold humidity. It can be performed based on
  • the control method of the air conditioner is such that the indoor temperature is maintained above a second critical temperature higher than the first critical temperature or the indoor humidity is maintained above the critical humidity for a predetermined second time in the comfortable operation. Based on this, it may further include stopping the comfortable driving.
  • Adjusting the frequency of the compressor includes calculating the dew point temperature from the indoor humidity and the indoor humidity; It may include determining an increase in the frequency of the compressor or a decrease in the frequency of the compressor based on a difference value between the temperature of the indoor heat exchanger and the dew point temperature and a temperature change value of the indoor heat exchanger.
  • Adjusting the frequency of the compressor includes increasing the frequency of the compressor corresponding to the difference value between the temperature of the indoor heat exchanger and the dew point temperature and the temperature change value of the indoor heat exchanger from a fuzzy table stored in memory. It may include; determining a value or a reduction value of the frequency of the compressor.
  • the method of controlling the air conditioner includes: increasing the rotational speed of the outdoor fan included in the outdoor unit in response to an increase in the frequency of the compressor, and increasing the opening degree of the expansion valve included in the indoor unit; Alternatively, the method may further include reducing the rotational speed of the outdoor fan and reducing the opening degree of the expansion valve in response to a decrease in the frequency of the compressor.
  • the first rotational speed of the compressor is adjusted to be slower than the second rotational speed of the compressor in the dehumidifying operation
  • the third rotational speed of the outdoor fan included in the outdoor unit is adjusted to the above in the dehumidifying operation. It can be adjusted to be slower than the fourth rotation speed of the outdoor fan.
  • the disclosed air conditioner and its control method can reduce fluctuations in indoor temperature and indoor humidity by performing comfortable operation by appropriately adjusting the frequency of the compressor without on-off control of the compressor based on predetermined conditions during dehumidification operation. .
  • fluctuations in indoor temperature and indoor humidity are reduced, power consumption efficiency can be improved and a more comfortable indoor environment can be provided to users.
  • FIG 1 is an external view of an air conditioner according to an embodiment.
  • Figure 2 shows the flow of refrigerant when an air conditioner performs a heating operation or cooling operation according to an embodiment.
  • Figure 3 is a block diagram showing the control configuration of an outdoor unit according to an embodiment.
  • Figure 4 is a block diagram showing a control configuration of an indoor unit according to an embodiment.
  • Figure 5 is a flowchart explaining a control method of an air conditioner according to an embodiment.
  • FIG. 6 is a flowchart explaining in more detail the control method of the air conditioner described in FIG. 5.
  • Figure 7 shows a fuzzy table according to one embodiment.
  • Figure 8 is a graph showing changes in indoor humidity, changes in indoor temperature, and changes in compressor frequency during general dehumidification operation.
  • Figure 9 is a graph showing the change in indoor humidity, change in indoor temperature, and change in frequency of the compressor when comfortable operation is performed during dehumidification operation.
  • first”, “second”, etc. used in this specification may be used to describe various components, but the components are not limited by the terms, and the terms It is used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • ⁇ unit may refer to a unit that processes at least one function or operation.
  • the terms may refer to at least one hardware such as a field-programmable gate array (FPGA) / application specific integrated circuit (ASIC), at least one software stored in memory, or at least one process processed by a processor. there is.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • the codes attached to each step are used to identify each step, and these codes do not indicate the order of each step.
  • Each step is performed differently from the specified order unless a specific order is clearly stated in the context. It can be.
  • FIG 1 is an external view of an air conditioner according to an embodiment.
  • the air conditioner 1 includes an outdoor unit 1a provided in an outdoor space to perform heat exchange between outdoor air and a refrigerant, and an indoor unit 1b provided in an indoor space to perform heat exchange between indoor air and a refrigerant. ) includes.
  • the outdoor unit 1a may be located outside the air conditioning space, and the indoor unit 1b may be located within the air conditioning space.
  • the air conditioned space refers to a space that is cooled or heated by the air conditioner (1).
  • the outdoor unit 1a may be placed outside a building, and the indoor unit 1b may be placed in a space separated from the outside by a wall, such as a living room or office.
  • the outdoor unit 1a and the indoor unit 1b are connected through external pipes P1 and P2.
  • the refrigerant can circulate through the outdoor unit (1a), external pipes (P1, P2), and indoor unit (1b).
  • One end of the external pipes P1 and P2 may be connected to a pipe valve provided on one side of the outdoor unit 1a. Additionally, the external pipes P1 and P2 may be connected to refrigerant pipes provided inside the outdoor unit 1a and the indoor unit 1b.
  • An outdoor fan 150 may be provided within the housing of the outdoor unit 1a. When the outdoor fan 150 operates, air may be discharged to the outside of the outdoor unit 1a through the discharge port of the housing.
  • a fan guard 22 may be provided at the discharge port to protect the outdoor fan 150. The fan guard 22 may cover the discharge port and may have a grill or mesh shape.
  • the indoor unit 1b may include a body case 201 and a front panel 202. Additionally, the indoor unit 1b may include at least one outlet 205 of the front panel 202 and at least one door 204 that can open and close the outlet 205.
  • the door 204 may include a first door 204a, a second door 204b, and a third door 204c.
  • the outlet 205 may include a first outlet 205a, a second outlet 205b, and a third outlet 205c.
  • the discharge port 205 and the door 204 may be provided in the upper area of the front panel 202.
  • the front panel 202 may include a plurality of holes 202h that are distinct from the discharge port 205.
  • a plurality of holes 202h may be provided in an area of the front panel 202 where the discharge port 205 is not formed. The size of each of the plurality of holes 202h is smaller than the size of the discharge port 205.
  • the discharge port 205 is provided so that air heat-exchanged by the indoor heat exchanger 230 can be directly discharged to the outside. That is, the discharge port 205 may be provided to be exposed to the outside of the indoor unit 1b.
  • the door 204 can open or close the discharge port 205. When the outlet 205 is opened by moving the door 204, heat-exchanged air may be discharged through the outlet 205.
  • the first door 204a opens the first outlet 205a
  • the second door 204b opens the second outlet 205b
  • the third door 204c opens the third outlet 205c.
  • heat-exchanged air may be discharged through the first outlet 205a and the second outlet 205b, and heat-exchanged air may not be discharged from the third outlet 205c.
  • the doors 204 and the discharge ports 205 may be provided in equal numbers and arranged in one-to-one correspondence.
  • the door 204 may have a shape corresponding to the shape of the discharge port 205.
  • the discharge port 205 and the door 204 may be circular.
  • the door 204 can move between an open position that opens the discharge port 205 and a closed position that closes the discharge port 205 .
  • the door 204 can move between the open and closed positions in the forward and backward directions.
  • the door 204 can be moved by a door actuator (not shown).
  • the indoor fan 250 provided inside the indoor unit 1b may be disposed inside the body case 201 to correspond to the discharge port 205.
  • the number of indoor fans 250 may correspond to the number of discharge ports 205.
  • the indoor fan 250 includes a fan motor and can rotate using power generated by the fan motor. When there are a plurality of indoor fans 250, each indoor fan 250 may be controlled to operate at the same rotation speed or different rotation speeds.
  • An air inlet 203 may be provided at the rear of the body case 201.
  • the air flowing into the air inlet 203 is heat-exchanged in the indoor heat exchanger 230, and the heat-exchanged air may be discharged to the outside of the indoor unit 1b (i.e., the indoor space) through the discharge port 205. Additionally, the heat-exchanged air may be discharged to the outside (indoor) of the indoor unit 1b through the plurality of holes 202h of the front panel 202.
  • heat-exchanged air may be discharged into the indoor space through the outlet 205 and the plurality of holes 202h of the front panel 202.
  • the heat-exchanged air may be discharged to the outside of the indoor unit 1b through the plurality of holes 202h of the front panel 202.
  • the rotation speed of the indoor fan 250 can be controlled to be relatively low.
  • the flow rate of air discharged through the plurality of holes 202h when the discharge port 205 is closed may be slower than the flow rate of air discharged through the open discharge port 205.
  • the indoor unit 1b can control the door 204 to open or close the discharge port 205 and change the discharge path of the air flowing into the air inlet 203.
  • the air conditioner 1 has been described as including one outdoor unit 1a and one indoor unit 1b, it may also include a plurality of outdoor units 1a and a plurality of indoor units 1b.
  • a plurality of indoor units 1b may be connected to one outdoor unit 1a.
  • the shape of the indoor unit 1b is not limited to that described. As long as the indoor unit 1b is installed in an indoor space and can cool or heat the indoor space, any type of indoor unit 1b can be applied.
  • Figure 2 shows the flow of refrigerant when an air conditioner performs a heating operation or cooling operation according to an embodiment.
  • the air conditioner 1 includes a refrigerant flow path for circulating refrigerant between the indoor unit 1b and the outdoor unit 1a.
  • the refrigerant circulates between the indoor unit (1b) and the outdoor unit (1a) along the refrigerant flow path, and can absorb or release heat through a change in state (e.g., change of state from gas to liquid, change of state from liquid to gas). You can.
  • the air conditioner (1) may include a liquid pipe (P1) that connects the outdoor unit (1a) and the indoor unit (1b) and serves as a passage through which the liquid refrigerant flows, and a gas pipe (P2) as a passage through which the gaseous refrigerant flows. there is.
  • the liquid pipe (P1) and the gas pipe (P2) may extend inside the outdoor unit (1a) and the indoor unit (1b).
  • the refrigerant may emit heat from the outdoor heat exchanger 130 and absorb heat from the indoor heat exchanger 230.
  • the refrigerant compressed in the compressor 110 may first be supplied to the outdoor heat exchanger 130 through the four-way valve 120 and then to the indoor heat exchanger 230 through the expansion valve 220.
  • the outdoor heat exchanger 130 operates as a condenser that condenses the refrigerant
  • the indoor heat exchanger 230 operates as an evaporator that evaporates the refrigerant.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 110 moves to the outdoor heat exchanger 130.
  • the liquid or near-liquid refrigerant condensed in the outdoor heat exchanger 130 is expanded and depressurized in the expansion valve 220.
  • Two-phase refrigerant that has passed through the expansion valve 220 moves to the indoor heat exchanger 230.
  • the refrigerant flowing into the indoor heat exchanger 230 exchanges heat with the surrounding air and is evaporated. Accordingly, the temperature of the air passing through the indoor heat exchanger 230 decreases, and the cooled air is discharged to the outside of the indoor unit 1b. Additionally, since the moisture contained in the air passing through the indoor heat exchanger 230 is condensed, the air from which the moisture has been removed may be discharged into the indoor space.
  • the frequency of the compressor 110 is controlled to be relatively low. Therefore, the temperature of the air discharged from the indoor unit 1b during the dehumidifying operation may be higher than the temperature of the air discharged during the cooling operation.
  • the refrigerant may emit heat from the indoor heat exchanger 230 and absorb heat from the outdoor heat exchanger 130. That is, during the heating operation, the refrigerant compressed in the compressor 110 may be first supplied to the indoor heat exchanger 230 through the four-way valve 120 and then to the outdoor heat exchanger 130.
  • the indoor heat exchanger 230 operates as a condenser that condenses the refrigerant
  • the outdoor heat exchanger 130 operates as an evaporator that evaporates the refrigerant.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 110 moves to the indoor heat exchanger 230.
  • the high-temperature, high-pressure gaseous refrigerant passing through the indoor heat exchanger 230 exchanges heat with low-temperature dry air.
  • the refrigerant condenses into a liquid or near-liquid refrigerant and releases heat, and as the air absorbs the heat, warmth is discharged to the outside of the indoor unit 1b.
  • the outdoor unit 1a is a compressor 110 that compresses the refrigerant, an outdoor heat exchanger 130 that performs heat exchange between outdoor air and the refrigerant, and compressed by the compressor 110 based on cooling operation, dehumidification operation, or heating operation.
  • a four-way valve (120) that guides the refrigerant to the outdoor heat exchanger (130) or the indoor heat exchanger (230), and an accumulator (160) that prevents liquid refrigerant that has not evaporated from flowing into the compressor (110). ) includes.
  • the compressor 110 may operate by receiving electrical energy from an external power source.
  • the compressor 110 includes a compressor motor (not shown) and compresses low-pressure gaseous refrigerant to high pressure using the rotational force of the compressor motor.
  • the frequency of the compressor 110 may be changed to correspond to the capability required by the indoor unit 1b.
  • the compressor 110 may be an inverter air compressor, a positive displacement compressor, or a dynamic compressor, and various types of compressors that the designer can consider may be used.
  • the four-way valve 120 can change the flow direction of the high-temperature, high-pressure gas refrigerant discharged from the compressor 110.
  • the four-way valve 120 is controlled to guide the refrigerant compressed in the compressor 110 to the outdoor heat exchanger 130 during cooling or dehumidifying operation.
  • the four-way valve 120 is controlled to guide the refrigerant compressed in the compressor 110 to the indoor unit 1b during heating operation.
  • the outdoor heat exchanger 130 functions as a condenser that condenses the refrigerant compressed in the compressor 110 during cooling or dehumidifying operation.
  • the outdoor heat exchanger 130 functions as an evaporator that evaporates the refrigerant depressurized in the indoor unit 1b during heating operation.
  • the outdoor heat exchanger 130 may include an outdoor heat exchanger refrigerant pipe (not shown) through which the refrigerant passes, and outdoor heat exchanger cooling fins (not shown) to increase the surface area in contact with outdoor air. If the surface area in contact between the outdoor heat exchanger refrigerant pipe (not shown) and outdoor air is increased, the heat exchange efficiency between the refrigerant and outdoor air can be improved.
  • the outdoor fan 150 is provided around the outdoor heat exchanger 130 to flow outdoor air into the outdoor heat exchanger 130.
  • the outdoor fan 150 can blow outdoor air before heat exchange to the outdoor heat exchanger 130 and simultaneously blow the heat-exchanged air outdoors.
  • the outdoor fan 150 can disperse the heat emitted by the liquefaction of the refrigerant in the outdoor heat exchanger 130 by discharging air around the outdoor heat exchanger 130 to the outside.
  • the accumulator 160 may store liquid refrigerant and vaporize the stored liquid refrigerant.
  • the accumulator 160 can prevent liquid refrigerant from flowing into the compressor 110. However, if the circulating amount of refrigerant is excessive, vaporization of the liquid refrigerant by the accumulator 160 may not be properly performed. In this case, liquid refrigerant may flow into the compressor 110, and damage to the compressor 110 may occur.
  • the outdoor unit 1a may include an outdoor temperature sensor 171 to detect the outdoor temperature.
  • An outdoor heat exchanger temperature sensor 172 may be provided on at least one side of the outdoor heat exchanger 130 to detect the temperature of the outdoor heat exchanger 130.
  • the outdoor temperature sensor 171 and the outdoor heat exchanger temperature sensor 172 may be implemented as at least one of a bimetal thermometer, a thermistor thermometer, or an infrared thermometer.
  • the outdoor heat exchanger temperature sensor 172 Based on a cooling operation or dehumidification operation in which refrigerant flows from the compressor 110 to the outdoor heat exchanger 130, the outdoor heat exchanger temperature sensor 172 will be placed on the outlet side of the outdoor heat exchanger 130 from which the refrigerant comes out. You can. Therefore, the outdoor heat exchanger temperature sensor 172 may be referred to as an ‘outdoor heat exchanger outlet temperature sensor’. Although not shown, a temperature sensor (not shown) may also be provided on the inlet side of the outdoor heat exchanger 130, and may be referred to as an 'outdoor heat exchanger inlet temperature sensor'. In other words, temperature sensors may be provided at each of the inlet and outlet of the outdoor heat exchanger 130. The outdoor heat exchanger temperature sensor 172 may be installed around the inlet and/or outlet of the outdoor heat exchanger 130, or may be installed in contact with a refrigerant pipe connected to the inlet and/or outlet of the outdoor heat exchanger 130. .
  • the circulation direction of the refrigerant is reversed, so the inlet of the outdoor heat exchanger 130, where the refrigerant enters, and the outlet of the outdoor heat exchanger 130, where the refrigerant comes out, may be defined as opposite.
  • the inlet and outlet of the outdoor heat exchanger 130 may be described based on the time of cooling operation.
  • a compressor outlet temperature sensor 173 may be provided at the outlet of the compressor 110.
  • the compressor outlet temperature sensor 173 can detect the discharge temperature of the refrigerant discharged from the compressor 110.
  • the discharge temperature of the refrigerant discharged from the compressor 110 may be referred to as compressor discharge temperature or compressor outlet temperature.
  • the indoor unit 1b may include an expansion valve 220, an indoor heat exchanger 230, and an indoor fan 250.
  • the indoor heat exchanger 230 performs heat exchange between indoor air and refrigerant.
  • the indoor fan 250 may flow indoor air into the indoor heat exchanger 230.
  • a plurality of indoor fans 250 may be provided.
  • the expansion valve 220 can expand a high-temperature, high-pressure liquid refrigerant and discharge a low-temperature, low-pressure gas and liquid refrigerant mixture.
  • the expansion valve 220 may control the amount of refrigerant provided to the indoor heat exchanger 230.
  • the expansion valve 220 depressurizes the refrigerant using a throttling action.
  • the throttling action means that when the refrigerant passes through a narrow passage, the pressure decreases without heat exchange with the outside.
  • the expansion valve 220 may be an electronic expansion valve (EEV) whose opening is adjustable.
  • the expansion valve 220 includes, for example, a thermoelectric electromagnetic expansion valve using deformation of a bimetal, a thermoelectric electromagnetic expansion valve using volume expansion by heating the encapsulating wax, and a pulse width modulation valve that opens and closes a solenoid valve by a pulse signal. It may be an electronic expansion valve or a stem motor-type electronic expansion valve that opens and closes the valve using a motor.
  • expansion valve 220 is illustrated as being included in the indoor unit 1b, the expansion valve 220 may also be included in the outdoor unit 1a. Additionally, expansion valves 220 may be provided in both the outdoor unit 1a and the indoor unit 1b. That is, the expansion valve 220 may be provided in the liquid pipe P1, which is a pipe that forms a refrigerant flow path between the outdoor heat exchanger 130 and the indoor heat exchanger 230.
  • the indoor heat exchanger 230 functions as an evaporator that evaporates low-pressure liquid refrigerant during cooling or dehumidifying operation.
  • the indoor heat exchanger 230 functions as a condenser that condenses high-pressure gaseous refrigerant during heating operation.
  • the indoor heat exchanger 230 like the outdoor heat exchanger 130 of the outdoor unit 1a, cools the indoor heat exchanger to improve the heat exchange efficiency between the indoor heat exchanger refrigerant pipe (not shown) through which the refrigerant passes and the refrigerant and indoor air. Includes pins (not shown).
  • the indoor fan 250 is provided around the indoor heat exchanger 230 to blow indoor air into the indoor heat exchanger 230.
  • the indoor heat exchanger 230 can perform heat exchange with indoor air.
  • the indoor fan 250 can blow indoor air before heat exchange to the indoor heat exchanger 230 and simultaneously blow the heat-exchanged air into the indoor space.
  • the indoor heat exchanger 230 may be provided with an indoor heat exchanger temperature sensor 211 to detect the temperature of the indoor heat exchanger 230.
  • the indoor heat exchanger temperature sensor 211 may be disposed on the outer surface of the indoor heat exchanger 230 and/or at a location adjacent to the indoor heat exchanger 230.
  • the temperature of the indoor heat exchanger 230 may represent the temperature of air that exchanges heat with the indoor heat exchanger 230.
  • an indoor temperature sensor 213 may be provided inside the indoor unit 1b to detect the indoor temperature.
  • the indoor temperature sensor 213 can detect the temperature of indoor air sucked through the air inlet 203 located at the rear of the body case 201 of the indoor unit 1b.
  • the indoor heat exchanger temperature sensor 211 and the indoor temperature sensor 213 may be implemented as at least one of a bimetal thermometer, a thermistor thermometer, or an infrared thermometer.
  • the air conditioner 1 may include various temperature sensors.
  • the indoor humidity sensor 212 can detect indoor humidity. Indoor humidity can be expressed as relative humidity. The humidity of indoor air sucked through the air inlet 203 located at the rear of the body case 201 of the indoor unit 1b can be detected. The indoor humidity sensor 212 may transmit an electrical signal corresponding to the detected indoor humidity to the second control unit 270 of the indoor unit 1b.
  • the indoor temperature sensor 213 and the indoor humidity sensor 212 may be placed inside the body case 201, but are not limited thereto.
  • the indoor temperature sensor 213 and the indoor humidity sensor 212 may be placed outside the body case 201.
  • Figure 3 is a block diagram showing the control configuration of an outdoor unit according to an embodiment.
  • the outdoor unit 1a of the air conditioner 1 includes a compressor 110, a four-way valve 120, an outdoor fan 150, an outdoor temperature sensor 171, and an outdoor heat exchanger temperature sensor 172. , may include a compressor outlet temperature sensor 173, a first communication interface 180, and a first control unit 190.
  • the first control unit 190 may include a first memory 192 and a first processor 191.
  • the first control unit 190 may be electrically connected to the components of the outdoor unit 1a and control the operation of each component. For example, the first control unit 190 can adjust the frequency of the compressor 110 and control the four-way valve 120 to change the circulation direction of the refrigerant. The first control unit 190 can adjust the rotation speed of the outdoor fan 150. The rotation speed of the outdoor fan 150 may be adjusted according to the outdoor temperature. Additionally, the first control unit 190 may generate a control signal to adjust the opening degree of the expansion valve 220 of the indoor unit 1b.
  • the refrigerant flows along the refrigerant circulation circuit including the compressor 110, the four-way valve 120, the outdoor heat exchanger 130, the expansion valve 220, and the indoor heat exchanger 230. It can circulate.
  • the compressor 110 may compress gaseous refrigerant and discharge high-temperature/high-pressure gaseous refrigerant. Additionally, the compressor 110 may not operate in a blowing operation that does not require cooling or heating.
  • the four-way valve 120 can change the circulation direction of the refrigerant discharged from the compressor 110 under the control of the first control unit 190.
  • the four-way valve 120 guides the refrigerant compressed in the compressor 110 to the outdoor heat exchanger 130 during cooling operation, and guides the refrigerant compressed in the compressor 110 to the indoor heat exchanger 230 during heating operation. Guide.
  • the outdoor temperature sensor 171 may transmit an electrical signal corresponding to the detected outdoor temperature to the first control unit 190.
  • the outdoor heat exchanger temperature sensor 172 may transmit an electrical signal corresponding to the detected inlet temperature and/or outlet temperature of the outdoor heat exchanger to the first control unit 190.
  • the compressor outlet temperature sensor 173 may transmit an electrical signal corresponding to the compressor discharge temperature to the first control unit 190.
  • the first communication interface 180 may perform communication with the indoor unit 1b.
  • the first communication interface 180 of the outdoor unit 1a transmits the control signal transmitted from the first control unit 190 to the indoor unit 1b, or transmits the control signal transmitted from the indoor unit 1b to the first control unit 190. It can be delivered.
  • the outdoor unit 1a and the indoor unit 1b can perform two-way communication.
  • the outdoor unit 1a and the indoor unit 1b can transmit and receive various signals during operation.
  • the first memory 192 can memorize/store various information necessary for the operation of the air conditioner 1.
  • the first memory 192 may store instructions, applications, data, and/or programs necessary for the operation of the air conditioner 1.
  • the first memory 192 may store programs for cooling, heating, and defrosting operations of the air conditioner 1.
  • the first memory 192 may include volatile memory such as Static Random Access Memory (S-RAM) or Dynamic Random Access Memory (D-RAM) for temporarily storing data.
  • volatile memory such as Static Random Access Memory (S-RAM) or Dynamic Random Access Memory (D-RAM) for temporarily storing data.
  • D-RAM Dynamic Random Access Memory
  • the first memory 192 is a non-volatile memory such as Read Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM), or Electrically Erasable Programmable Read Only Memory (EEPROM) for long-term storage of data. May contain memory.
  • ROM Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • the first processor 191 may generate a control signal for controlling the operation of the air conditioner 1 based on instructions, applications, data, and/or programs stored in the first memory 192.
  • the first processor 191 is hardware and may include a logic circuit and an operation circuit.
  • the first processor 191 may process data according to programs and/or instructions provided from the first memory 192 and generate control signals according to the processing results.
  • the first memory 192 and the first processor 191 may be implemented as one control circuit or as a plurality of circuits.
  • the outdoor unit 1a may further include a control panel.
  • the control panel may be provided in the cabinet 10 of the outdoor unit 1a.
  • the control panel can obtain user input related to the operation of the air conditioner 1 and output information about the operation of the air conditioner 1.
  • the control panel may transmit an electrical signal (voltage or current) corresponding to the user input to the first control unit 190.
  • the first control unit 190 may control the operation of the air conditioner 1 based on an electrical signal transmitted from the control panel.
  • the control panel may include buttons and displays.
  • Figure 4 is a block diagram showing a control configuration of an indoor unit according to an embodiment.
  • the indoor unit 1b of the air conditioner 1 includes an expansion valve 220, an indoor fan 250, an indoor heat exchanger temperature sensor 211, an indoor humidity sensor 212, and an indoor temperature sensor ( 213), a second communication interface 260, and a second control unit 270. Additionally, the indoor unit 1b may include a user interface 280.
  • the second control unit 270 may include a second memory 272 and a second processor 271.
  • the second control unit 270 of the indoor unit 1b may be electrically connected to the components of the indoor unit 1b and may control the operation of each component.
  • the indoor heat exchanger temperature sensor 211 may transmit an electrical signal corresponding to the detected temperature of the indoor heat exchanger 230 to the second processor 271.
  • the indoor humidity sensor 212 may transmit an electrical signal corresponding to the detected indoor humidity to the second processor 271.
  • the indoor temperature sensor 213 may transmit an electrical signal corresponding to the detected indoor temperature to the second processor 271.
  • the expansion valve 220 can depressurize the refrigerant. Additionally, the expansion valve 220 may adjust the amount of refrigerant supplied to ensure sufficient heat exchange in the outdoor heat exchanger 130 or the indoor heat exchanger 230. The expansion valve 220 depressurizes the refrigerant by using the throttling action of the refrigerant, in which the pressure decreases as the refrigerant passes through a narrow passage.
  • the second communication interface 260 can communicate with the outdoor unit 1a.
  • the second communication interface 260 of the indoor unit 1b transmits the control signal transmitted from the second control unit 270 to the outdoor unit 1a, or transmits the control signal transmitted from the outdoor unit 200 to the second control unit 270. It can be delivered.
  • a control signal for adjusting the opening degree of the expansion valve 220 may be transmitted from the outdoor unit 1a to the indoor unit 1b.
  • the second control unit 270 may adjust the opening degree of the expansion valve 220 based on a signal transmitted from the first control unit 190 of the outdoor unit 1a.
  • the second communication interface 260 can communicate with an access point (AP) (not shown) provided separately in the air conditioning space, and can be connected to a network through the access point.
  • the second communication interface 260 may communicate with a user terminal device (eg, a smartphone) through an access point.
  • the second communication interface 260 can receive information on the user terminal device connected to the access point and transmit the information on the user terminal device to the second control unit 270. Through this, the user can remotely control the air conditioner (1).
  • the second memory 272 can memorize/store various information necessary for the operation of the air conditioner 1.
  • the second memory 272 may store instructions, applications, data, and/or programs necessary for the operation of the air conditioner 1.
  • the second memory 272 may store programs for cooling, heating, and defrosting operations of the air conditioner 1.
  • the second memory 272 may include volatile memory and/or non-volatile memory.
  • the second processor 271 may generate a control signal for controlling the operation of the air conditioner 1 based on instructions, applications, data, and/or programs stored in the second memory 272.
  • the second processor 271 is hardware and may include a logic circuit and an operation circuit.
  • the second processor 271 may process data according to programs and/or instructions provided from the second memory 272 and generate a control signal according to the processing results.
  • the second memory 272 and the second processor 271 may be implemented as one control circuit or as a plurality of circuits.
  • the user interface 280 may be provided on at least one of the body case 201 or the door 204 of the indoor unit 1b.
  • the user interface 280 can obtain user input related to the operation of the air conditioner 1 and output information about the operation of the air conditioner 1.
  • the user interface 280 may transmit an electrical signal (voltage or current) corresponding to the user input to the second control unit 270.
  • the second control unit 270 may control the operation of the air conditioner 1 based on the electrical signal transmitted from the user interface 280.
  • the user interface 280 may include a plurality of buttons.
  • the plurality of buttons include an operation mode button for selecting operation modes such as cooling operation, heating operation, blowing operation, defrosting operation, and dehumidification operation, and a temperature button for setting the target temperature of the indoor space (air-conditioning space).
  • it may include a wind direction button to set the wind direction and/or a wind volume button to set the wind strength (rotation speed of the indoor fan).
  • user interface 280 may include a display.
  • the display can display information input by the user or information provided to the user on various screens. For example, information such as the selected driving mode, wind direction, wind volume, and temperature may be displayed as at least one of an image or text.
  • the indoor unit 1b may further include a control panel.
  • the control panel can obtain user input related to the operation of the air conditioner 1 and output information about the operation of the air conditioner 1.
  • the air conditioner 1 may include at least one control unit 190 or 270. Although it has been described that control units are provided separately for the outdoor unit 1a and the indoor unit 1b, an integrated control unit capable of controlling both the outdoor unit 1a and the indoor unit 1b may be provided. Hereinafter, it will be explained that control of the air conditioner 1 is performed by the first control unit 190 of the outdoor unit 1a.
  • the disclosed air conditioner 1 can perform a dehumidifying operation.
  • Dehumidification operation can be performed according to the selection of an operation mode input through the user interface 280 of the indoor unit 1b.
  • dehumidification operation is performed to lower indoor humidity by removing moisture contained in indoor air.
  • Indoor air can also be cooled by dehumidifying operation.
  • the frequency of the compressor 110 in the dehumidifying operation may be controlled to be relatively lower than the frequency of the compressor 110 in the cooling operation. Additionally, the rotation speed of the compressor 110 in the dehumidifying operation may be adjusted to be slower than the rotation speed of the compressor 110 in the cooling operation. As the frequency of the compressor 110 decreases, the rotation speed of the compressor 110 may also slow down. The rotation speed of the outdoor fan 150 in the dehumidifying operation may also be adjusted to be slower than the rotation speed of the outdoor fan 150 in the cooling operation.
  • the compressor 110 may be controlled to repeatedly turn on or off. This is to maintain the indoor temperature and humidity within a certain range.
  • the compressor 110 is turned on or off, the fluctuation range of indoor temperature increases and the fluctuation range of indoor humidity increases.
  • the indoor temperature is lower than the desired temperature set by the user by a predetermined offset value (ex. 2°C)
  • the compressor 110 is turned off, and the indoor temperature is lowered by the offset value (ex. 2°C) than the desired temperature.
  • the compressor 110 turns on. That is, the indoor temperature fluctuates within a temperature range from the desired temperature - the offset value to the desired temperature + the offset value.
  • power consumption efficiency decreases, and users may feel uncomfortable due to inconsistent indoor temperature and indoor humidity.
  • the first control unit 190 of the disclosed air conditioner 1 can perform comfortable operation by appropriately adjusting the frequency of the compressor 110 without on-off control of the compressor 110 during dehumidifying operation.
  • the temperature of the indoor heat exchanger 230 may be maintained below the dew point temperature.
  • comfortable driving fluctuations in indoor temperature and indoor humidity can be reduced.
  • indoor temperature and indoor humidity can be maintained constant through comfortable driving. As fluctuations in indoor temperature and indoor humidity are reduced, power consumption efficiency can be improved and a more comfortable indoor environment can be provided to users.
  • FIG. 5 is a flowchart explaining a control method of an air conditioner according to an embodiment.
  • FIG. 6 is a flowchart explaining in more detail the control method of the air conditioner described in FIG. 5.
  • the first control unit 190 of the air conditioner 1 detects indoor humidity by controlling the indoor humidity sensor 212 during dehumidification operation, and controls the indoor temperature sensor 213 to set the indoor temperature. Can be detected (501).
  • the first control unit 190 may generate control signals for controlling the indoor humidity sensor 212 and the indoor temperature sensor 213.
  • the second control unit 270 controls the indoor humidity sensor 212 and the indoor temperature sensor 213 according to control signals transmitted from the first control unit 190, and generates signals corresponding to the detected indoor humidity and the detected indoor temperature. Detection signals may be transmitted to the first control unit 190.
  • the detection cycle of indoor humidity and indoor temperature can be determined in various ways depending on the design.
  • the first control unit 190 may determine whether the conditions for comfortable driving are satisfied based on the indoor humidity and indoor temperature (502). For example, referring to FIG. 6, when the indoor temperature is below the predetermined first threshold temperature and the desired temperature set by the user (601) and the indoor humidity is below the predetermined threshold humidity (602), comfortable driving This can begin (603).
  • the first control unit 190 of the air conditioner 1 sets the indoor temperature to a predetermined first critical temperature (e.g., 5 minutes) during the dehumidifying operation. 23°C) and is maintained below the desired temperature set by the user, and the indoor humidity is maintained below a predetermined critical humidity (e.g., 60%), comfortable driving can be entered.
  • the first time may be set to various values within the range of 0 seconds to 10 minutes.
  • comfortable operation may be performed even when the indoor temperature is maintained lower than the desired temperature for a longer time (eg, 10 minutes) than the first time in the dehumidification operation.
  • the first control unit 190 may adjust the frequency of the compressor 110 to maintain the temperature of the indoor heat exchanger 230 below the dew point temperature (503). Specifically, the first control unit 190 can calculate the dew point temperature from the indoor humidity and indoor temperature during comfortable driving (604).
  • a dew point temperature table including a plurality of indoor humidity values and a plurality of dew point temperature values corresponding to the plurality of indoor temperature values may be stored in advance in the memory 192. The first control unit 190 may obtain the dew point temperature corresponding to the current indoor humidity and current indoor temperature from the dew point temperature table.
  • the first control unit 190 may obtain a difference value between the temperature and dew point temperature of the indoor heat exchanger 230 and a temperature change value of the indoor heat exchanger 230 (605).
  • the temperature change value of the indoor heat exchanger 230 is the difference between the previous temperature of the indoor heat exchanger 230 detected at the previous detection time (N-1 cycle) and the indoor heat exchanger 230 detected at the current detection time (N cycle). It refers to the difference between the current temperatures.
  • the first control unit 190 increases the frequency of the compressor 110 or decreases the frequency of the compressor 110 based on the difference value between the temperature and the dew point temperature of the indoor heat exchanger 230 and the temperature change value of the indoor heat exchanger 230. can be determined (606).
  • the first control unit 190 corresponds to the difference value between the temperature and dew point temperature of the indoor heat exchanger 230 and the temperature change value of the indoor heat exchanger 230 from the fuzzy table 700 stored in the memory 192.
  • the increase in frequency of the compressor 110 or the decrease in frequency of the compressor 110 can be determined. By adjusting the compressor frequency, the temperature of the indoor heat exchanger 230 can follow the dew point temperature.
  • the first control unit 190 may determine whether the condition for stopping comfortable driving is satisfied (504).
  • the air conditioner 1 may return to dehumidifying operation when comfortable operation is stopped (505).
  • the first control unit 190 sets the indoor temperature to a second threshold temperature higher than the first threshold temperature (e.g., 23° C.) for a predetermined second time (e.g., 5 minutes) in comfortable driving. If the temperature is maintained above (for example, 26°C), comfortable driving may cease.
  • the first control unit 190 may stop comfortable driving when the indoor humidity is maintained above the critical humidity (eg, 60%) for a second predetermined time (eg, 5 minutes) in comfortable driving. .
  • the first control unit 190 may stop comfortable driving even when an error in the indoor humidity sensor 212 is detected.
  • the first control unit 190 may determine that an error in the indoor humidity sensor 212 has occurred when a detection signal related to indoor humidity is not received from the indoor unit 1b or when a change in indoor humidity is identified as abnormal. .
  • the first control unit 190 of the air conditioner 1 may adjust the rotational speed of the outdoor fan 150 and the opening degree of the expansion valve 220 based on changes in compressor frequency.
  • a control data table including the rotational speed of the outdoor fan 150 and the opening degree of the expansion valve 220 corresponding to the compressor frequency may be stored in advance in the first memory 192.
  • the first control unit 190 increases the rotation speed of the outdoor fan 150 included in the outdoor unit 1a and expands the outdoor fan 150 included in the indoor unit 1b.
  • the opening degree of the valve 220 can be increased.
  • the first control unit 190 reduces the rotation speed of the outdoor fan 150 included in the outdoor unit 1a in response to a decrease in the frequency of the compressor 110, and the expansion valve included in the indoor unit 1b ( 220) can be reduced.
  • the frequency of the compressor 110 may be controlled to be relatively lower than the frequency of the compressor 110 in the dehumidification operation. Additionally, the first rotation speed of the compressor 110 in comfortable operation may be adjusted to be slower than the second rotation speed of the compressor 110 in dehumidification operation. As the frequency of the compressor 110 decreases, the rotation speed of the compressor 110 may also slow down. The third rotation speed of the outdoor fan 150 in comfortable operation may also be adjusted to be slower than the fourth rotation speed of the outdoor fan 150 in dehumidification operation.
  • the frequency of the compressor 110 in the dehumidifying operation is adjusted to be lower than the frequency of the compressor 110 in the cooling operation
  • the rotation speed of the compressor 110 and the rotation speed of the outdoor fan 150 in the dehumidification operation is adjusted to be slower than the rotation speed of the compressor 110 and the rotation speed of the outdoor fan 150 in cooling operation.
  • the frequency of the compressor 110 in comfortable operation is adjusted to be lower than the frequency of the compressor 110 in cooling operation, and the rotational speed of the compressor 110 and the rotational speed of the outdoor fan 150 in comfortable operation are adjusted to the compressor (110) in cooling operation. 110) and may be adjusted to be slower than the rotation speed of the outdoor fan 150.
  • the disclosed air conditioner 1 can reduce the variability of compressor frequency by performing comfortable operation to maintain the temperature of the indoor heat exchanger 230 below the dew point temperature without on-off control of the compressor 110. Additionally, the variability of the rotation speed of the outdoor fan 150 may be reduced.
  • Figure 7 shows a fuzzy table according to one embodiment.
  • the first control unit 190 of the air conditioner 1 uses the fuzzy table 700 previously stored in the memory 192 to determine the increase in compressor frequency. Alternatively, the reduction value can be determined.
  • ⁇ fa is a control value of the compressor frequency and represents an increase or decrease in the compressor frequency.
  • the air conditioner 1 displays the difference value (Td(N)) between the temperature and dew point temperature of the indoor heat exchanger 230 and the temperature change value of the indoor heat exchanger 230 ( ⁇ Td) can be calculated.
  • the temperature change value of the indoor heat exchanger 230 is the previous temperature (Td(N-1)) of the indoor heat exchanger 230 detected at the previous detection time (N-1 cycle) and the current detection time (N cycle). It means the difference between the current temperature (Td(N)) of the indoor heat exchanger 230. That is, the temperature change value ( ⁇ Td) of the indoor heat exchanger 230 can be obtained by subtracting the previous temperature (Td(N-1)) from the current temperature (Td(N)).
  • the first control unit 190 of the air conditioner 1 determines the difference value (Td(N)) between the temperature and dew point temperature of the indoor heat exchanger 230 and the temperature change of the indoor heat exchanger 230 from the purge table 700.
  • the adjustment value (increase or decrease) of the compressor frequency corresponding to the value ( ⁇ Td) can be determined.
  • the difference value (Td(N)) between the temperature of the indoor heat exchanger 230 and the dew point temperature is E1
  • the temperature change value ( ⁇ Td) of the indoor heat exchanger 230 is E1.
  • the adjustment value ( ⁇ fa) of the compressor frequency can be determined as -df1.
  • the first control unit 190 may adjust the frequency of the compressor 110 by adding the adjustment value ⁇ fa to the current frequency of the compressor 110. That is, the frequency of the compressor 110 may be reduced by df1.
  • the unit of compressor frequency may be hertz (Hz), and -df6 to df2 illustrated in FIG. 7 may be set to various values.
  • Figure 8 is a graph showing changes in indoor humidity, changes in indoor temperature, and changes in compressor frequency during general dehumidification operation.
  • the compressor 110 when the dehumidifying operation of the air conditioner 1 starts, the compressor 110 operates at the maximum frequency f1 to quickly lower the indoor temperature and indoor humidity.
  • the compressor 110 operates at the maximum frequency (f1) until the indoor temperature reaches the first predetermined temperature (c1), and at time t1 when the indoor temperature reaches the first temperature (c1), the compressor 110 operates. It turns off.
  • the first temperature c1 may be a temperature lower than the set desired temperature by an offset value.
  • indoor humidity may also decrease.
  • the indoor humidity may decrease after the start of the dehumidification operation and reach the first humidity (h1) at time t1.
  • the first humidity (h1) may mean the above-described critical humidity.
  • the compressor 110 When the compressor 110 is turned off at time t1, the indoor temperature and indoor humidity increase again. At time t2 when the indoor temperature reaches the second temperature c2, the compressor 110 turns on again and operates at the maximum frequency f1.
  • the second temperature c2 is a temperature higher than the set desired temperature by an offset value. As the compressor 110 is driven, the indoor temperature and indoor humidity decrease again. Afterwards, the compressor 110 is turned off again at time t3 when the indoor temperature decreases and reaches the first temperature c1 again.
  • Figure 9 is a graph showing the change in indoor humidity, change in indoor temperature, and change in frequency of the compressor when comfortable operation is performed during dehumidification operation.
  • the disclosed air conditioner 1 operates the compressor 110 at the maximum frequency f1 to quickly lower the indoor temperature and indoor humidity during dehumidification operation.
  • the disclosed air conditioner 1 operates for a predetermined first time after the indoor temperature reaches the third temperature c3 and the indoor humidity reaches the third humidity h3. From this time point t1, comfortable operation can be performed by appropriately adjusting the frequency of the compressor 110 without on-off control of the compressor 110.
  • the third temperature c3 may be lower than or equal to the desired temperature set by the user. Additionally, the third temperature c3 may be lower than or equal to the first predetermined critical temperature.
  • the third humidity (h3) may be lower than or equal to a predetermined threshold humidity.
  • the frequency of the compressor 110 may be adjusted so that the temperature of the indoor heat exchanger 230 is maintained below the dew point temperature.
  • the frequency of the compressor 110 may be adjusted based on the difference between the temperature and dew point temperature of the indoor heat exchanger 230 and the temperature change value of the indoor heat exchanger 230.
  • the fluctuation range of the compressor frequency during comfortable operation is smaller than the fluctuation range of the compressor frequency during general dehumidification operation.
  • the air conditioner 1 can adjust the frequency of the compressor 110 using the purge table 700. Because of this, the frequency of the compressor 110 can follow the optimal frequency (f2), which is lower than the maximum frequency (f1). Accordingly, the temperature of the indoor heat exchanger 230 can follow the dew point temperature.
  • the frequency of the compressor 110 in the comfort operation performed during the dehumidification operation may be controlled to be relatively lower than the frequency of the compressor 110 in the dehumidification operation.
  • the first rotation speed of the compressor 110 in comfortable operation may be adjusted to be slower than the second rotation speed of the compressor 110 in dehumidification operation.
  • the rotation speed of the compressor 110 may also slow down.
  • the third rotation speed of the outdoor fan 150 in comfortable operation may also be adjusted to be slower than the fourth rotation speed of the outdoor fan 150 in dehumidification operation.
  • the indoor temperature may slightly increase and the indoor humidity may also slightly increase.
  • fluctuations in indoor temperature and indoor humidity are reduced, and ideally, indoor temperature and indoor humidity can be maintained constant.
  • the disclosed air conditioner and its control method perform comfortable operation by appropriately adjusting the frequency of the compressor without on-off control of the compressor based on predetermined conditions during dehumidification operation, thereby reducing fluctuations in indoor temperature and indoor humidity. It can be reduced. As fluctuations in indoor temperature and indoor humidity are reduced, power consumption efficiency can be improved and a more comfortable indoor environment can be provided to users.
  • the disclosed embodiments may be implemented in the form of a storage medium that stores instructions executable by a computer. Instructions may be stored in the form of program code, and when executed by a processor, may create program modules to perform operations of the disclosed embodiments.
  • a storage medium that can be read by a device may be provided in the form of a non-transitory storage medium.
  • 'non-transitory storage medium' simply means that it is a tangible device and does not contain signals (e.g. electromagnetic waves). This term refers to cases where data is semi-permanently stored in a storage medium and temporary storage media. It does not distinguish between cases where it is stored as .
  • a 'non-transitory storage medium' may include a buffer where data is temporarily stored.
  • Computer program products are commodities and can be traded between sellers and buyers.
  • the computer program product may be distributed in the form of a machine-readable storage medium (e.g. compact disc read only memory (CD-ROM)) or through an application store (e.g. Play StoreTM) or on two user devices (e.g. It can be distributed (e.g. downloaded or uploaded) directly between smartphones) or online.
  • a machine-readable storage medium e.g. compact disc read only memory (CD-ROM)
  • an application store e.g. Play StoreTM
  • two user devices e.g. It can be distributed (e.g. downloaded or uploaded) directly between smartphones) or online.
  • at least a portion of the computer program product e.g., a downloadable app
  • a machine-readable storage medium such as the memory of a manufacturer's server, an application store's server, or a relay server. It can be temporarily stored or created temporarily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The disclosed air conditioner comprises: an indoor unit comprising an indoor heat exchanger; an outdoor unit comprising a compressor for supplying a refrigerant to the indoor heat exchanger; an indoor heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger; an indoor humidity sensor for detecting indoor humidity; an indoor temperature sensor for detecting the indoor temperature; and a control unit which determines, on the basis of the indoor humidity and temperature during a dehumidification operation, whether to perform a comfortable operation for maintaining the temperature of the indoor heat exchanger to at most a dew point temperature, and which controls the frequency of the compressor on the basis of the dew point temperature and the temperature of the indoor heat exchanger during the comfortable operation.

Description

공기 조화기 및 그 제어 방법Air conditioner and its control method
개시된 발명은 제습 운전 시 실내 습도와 실내 온도를 일정하게 유지할 수 있는 공기 조화기 및 그 제어 방법에 관한 것이다.The disclosed invention relates to an air conditioner capable of maintaining constant indoor humidity and indoor temperature during dehumidifying operation and a method of controlling the same.
공기 조화기는 냉매의 증발 및 응축에서 생기는 열의 이동을 이용하여 공기를 냉각 또는 가열하고, 냉각 또는 가열된 공기를 토출시켜 실내 공간의 공기를 조화시키는 기기이다. 공기 조화기는 냉방 운전 또는 난방 운전 시, 압축기와 실내 열교환기와 실외 열교환기를 통해 냉매를 순환시키고, 실내 열교환기에서 열교환된 공기를 실내 공간으로 토출함으로써 실내 공간을 냉각 또는 가열할 수 있다.An air conditioner is a device that cools or heats air using the movement of heat generated from evaporation and condensation of a refrigerant, and discharges the cooled or heated air to condition the air in an indoor space. During cooling or heating operation, the air conditioner circulates refrigerant through a compressor, an indoor heat exchanger, and an outdoor heat exchanger, and discharges heat-exchanged air from the indoor heat exchanger into the indoor space, thereby cooling or heating the indoor space.
일반적으로, 공기 조화기의 제습 운전은 실내 공기에 포함된 습기를 제거하여 실내 습도를 낮추기 위해 수행된다. 냉방 운전에 의해 실내 공기가 냉각되듯이, 제습 운전에서도 실내 공기가 냉각될 수 있다. 일반적인 제습 운전에서 압축기는 실내 온도의 변화에 따라 온 또는 오프를 반복하도록 제어된다. 그런데, 압축기의 온 또는 오프가 반복됨에 따라, 실내 온도의 변동폭이 커지고 실내 습도의 변동폭이 커진다. 이로 인해 사용자는 불편함을 느낄 수 있다.Generally, the dehumidifying operation of an air conditioner is performed to lower indoor humidity by removing moisture contained in indoor air. Just as indoor air is cooled during cooling operation, indoor air can also be cooled during dehumidification operation. In general dehumidification operation, the compressor is controlled to repeatedly turn on or off depending on changes in indoor temperature. However, as the compressor is repeatedly turned on or off, the fluctuation range of indoor temperature increases and the fluctuation range of indoor humidity increases. This may cause the user to feel uncomfortable.
개시된 발명은 제습 운전 시 압축기의 온-오프 제어 없이 압축기의 주파수를 적절히 조절하는 쾌적 운전을 수행함으로써 실내 온도의 변동과 실내 습도의 변동을 줄일 수 있는 공기 조화기 및 그 제어 방법을 제공한다.The disclosed invention provides an air conditioner and its control method that can reduce fluctuations in indoor temperature and indoor humidity by performing comfortable operation by appropriately adjusting the frequency of the compressor without on-off control of the compressor during dehumidifying operation.
일 실시예에 따른 공기 조화기는, 실내 열교환기를 포함하는 실내기; 상기 실내 열교환기로 냉매를 공급하는 압축기를 포함하는 실외기; 상기 실내 열교환기의 온도를 검출하는 실내 열교환기 온도 센서; 실내 습도를 검출하는 실내 습도 센서; 실내 온도를 검출하는 실내 온도 센서; 제습 운전 중 상기 실내 습도와 상기 실내 습도에 기초하여 상기 실내 열교환기의 온도를 노점 온도 이하로 유지하기 위한 쾌적 운전의 수행 여부를 결정하고, 상기 쾌적 운전 시 상기 실내 열교환기의 온도와 상기 노점 온도에 기초하여 상기 압축기의 주파수를 조절하는 제어부;를 포함한다.An air conditioner according to an embodiment includes an indoor unit including an indoor heat exchanger; an outdoor unit including a compressor that supplies refrigerant to the indoor heat exchanger; an indoor heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger; an indoor humidity sensor that detects indoor humidity; an indoor temperature sensor that detects indoor temperature; During the dehumidifying operation, it is determined whether to perform a comfortable operation to maintain the temperature of the indoor heat exchanger below the dew point temperature based on the indoor humidity and the indoor humidity, and during the comfortable operation, the temperature of the indoor heat exchanger and the dew point temperature are determined. It includes a control unit that adjusts the frequency of the compressor based on.
상기 제어부는 상기 제습 운전에서 미리 정해진 제1 시간 동안, 상기 실내 온도가 미리 정해진 제1 임계 온도 및 사용자에 의해 설정된 희망 온도 이하로 유지되고, 상기 실내 습도가 미리 정해진 임계 습도 이하로 유지됨에 기초하여, 상기 쾌적 운전으로 진입할 수 있다.The controller maintains the indoor temperature below the predetermined first threshold temperature and the desired temperature set by the user for a predetermined first time in the dehumidification operation, and the indoor humidity is maintained below the predetermined threshold humidity. , you can enter the comfortable driving mode.
상기 제어부는 상기 쾌적 운전에서 미리 정해진 제2 시간 동안, 상기 실내 온도가 상기 제1 임계 온도보다 높은 제2 임계 온도 이상으로 유지되거나, 상기 실내 습도가 상기 임계 습도 이상으로 유지됨에 기초하여, 상기 쾌적 운전을 중지할 수 있다.The control unit controls the comfortable operation based on the indoor temperature being maintained above a second threshold temperature higher than the first threshold temperature or the indoor humidity being maintained above the threshold humidity for a predetermined second time in the comfortable operation. You can stop driving.
상기 제어부는 상기 쾌적 운전 시 상기 실내 습도와 상기 실내 온도로부터 상기 노점 온도를 산출하고, 상기 실내 열교환기의 온도와 상기 노점 온도 간 차이값 및 상기 실내 열교환기의 온도 변화값에 기초하여 상기 압축기의 주파수 증가 또는 상기 압축기의 주파수 감소를 결정할 수 있다.The control unit calculates the dew point temperature from the indoor humidity and the indoor temperature during the comfortable operation, and operates the compressor based on the difference value between the temperature of the indoor heat exchanger and the dew point temperature and the temperature change value of the indoor heat exchanger. It may be decided to increase the frequency or decrease the frequency of the compressor.
상기 제어부는 메모리에 저장된 퍼지 테이블(fuzzy table)로부터 상기 실내 열교환기의 온도와 상기 노점 온도 간 차이값 및 상기 실내 열교환기의 온도 변화값에 대응하는 상기 압축기의 주파수의 증가값 또는 상기 압축기의 주파수의 감소값을 결정할 수 있다.The control unit determines the difference value between the temperature of the indoor heat exchanger and the dew point temperature and the increase in frequency of the compressor or the frequency of the compressor corresponding to the temperature change value of the indoor heat exchanger from a fuzzy table stored in the memory. The reduction value of can be determined.
상기 제어부는 상기 압축기의 주파수의 증가에 대응하여, 상기 실외기에 포함된 실외팬의 회전 속도를 증가시키고, 상기 실내기에 포함된 팽창 밸브의 개도를 증가시키거나, 상기 압축기의 주파수의 감소에 대응하여 상기 실외팬의 회전 속도를 감소시키고, 상기 팽창 밸브의 개도를 감소시킬 수 있다.The control unit increases the rotational speed of the outdoor fan included in the outdoor unit in response to an increase in the frequency of the compressor, increases the opening degree of the expansion valve included in the indoor unit, or responds to a decrease in the frequency of the compressor. The rotational speed of the outdoor fan can be reduced and the opening degree of the expansion valve can be reduced.
상기 제어부는 상기 쾌적 운전에서 상기 압축기의 제1 회전 속도를 상기 제습 운전에서 상기 압축기의 제2 회전 속도보다 느리게 조절하고, 상기 쾌적 운전에서 상기 실외기에 포함된 실외팬의 제3 회전 속도를 상기 제습 운전에서 상기 실외팬의 제4 회전 속도보다 느리게 조절할 수 있다.The control unit adjusts the first rotational speed of the compressor in the comfortable operation to be slower than the second rotational speed of the compressor in the dehumidifying operation, and adjusts the third rotational speed of the outdoor fan included in the outdoor unit in the comfortable operation to the dehumidifying operation. During operation, the rotation speed can be adjusted to be slower than the fourth rotation speed of the outdoor fan.
일 실시예에 따른 공기 조화기의 제어 방법은, 제습 운전 중 상기 실내기에 포함된 실내 습도 센서를 이용하여 실내 습도를 검출하고; 상기 제습 운전 중 상기 실내기에 포함된 실내 온도 센서를 이용하여 실내 온도를 검출하고; 상기 제습 운전 중 상기 실내 습도와 상기 실내 습도에 기초하여 상기 실내 열교환기의 온도를 노점 온도 이하로 유지하기 위한 쾌적 운전의 수행 여부를 결정하고; 및 상기 쾌적 운전 시 상기 실내 열교환기의 온도와 상기 노점 온도에 기초하여 상기 압축기의 주파수를 조절하는 것;을 포함한다.A method of controlling an air conditioner according to an embodiment includes detecting indoor humidity using an indoor humidity sensor included in the indoor unit during a dehumidifying operation; detecting the indoor temperature using an indoor temperature sensor included in the indoor unit during the dehumidifying operation; During the dehumidifying operation, determine whether to perform a comfortable operation to maintain the temperature of the indoor heat exchanger below the dew point temperature based on the indoor humidity and the indoor humidity; and adjusting the frequency of the compressor based on the temperature of the indoor heat exchanger and the dew point temperature during the comfortable operation.
상기 쾌적 운전은, 상기 제습 운전에서 미리 정해진 제1 시간 동안, 상기 실내 온도가 미리 정해진 제1 임계 온도 및 사용자에 의해 설정된 희망 온도 이하로 유지되고, 상기 실내 습도가 미리 정해진 임계 습도 이하로 유지됨에 기초하여 수행될 수 있다.The comfortable operation may be performed by maintaining the indoor temperature below a predetermined first threshold temperature and a desired temperature set by a user for a predetermined first time in the dehumidifying operation, and maintaining the indoor humidity below a predetermined threshold humidity. It can be performed based on
상기 공기 조화기의 제어 방법은 상기 쾌적 운전에서 미리 정해진 제2 시간 동안, 상기 실내 온도가 상기 제1 임계 온도보다 높은 제2 임계 온도 이상으로 유지되거나, 상기 실내 습도가 상기 임계 습도 이상으로 유지됨에 기초하여, 상기 쾌적 운전을 중지하는 것;을 더 포함할 수 있다.The control method of the air conditioner is such that the indoor temperature is maintained above a second critical temperature higher than the first critical temperature or the indoor humidity is maintained above the critical humidity for a predetermined second time in the comfortable operation. Based on this, it may further include stopping the comfortable driving.
상기 압축기의 주파수를 조절하는 것은, 상기 실내 습도와 상기 실내 습도로부터 상기 노점 온도를 산출하고; 상기 실내 열교환기의 온도와 상기 노점 온도 간 차이값 및 상기 실내 열교환기의 온도 변화값에 기초하여 상기 압축기의 주파수의 증가 또는 상기 압축기 주파수의 감소를 결정하는 것;을 포함할 수 있다.Adjusting the frequency of the compressor includes calculating the dew point temperature from the indoor humidity and the indoor humidity; It may include determining an increase in the frequency of the compressor or a decrease in the frequency of the compressor based on a difference value between the temperature of the indoor heat exchanger and the dew point temperature and a temperature change value of the indoor heat exchanger.
상기 압축기의 주파수를 조절하는 것은, 메모리에 저장된 퍼지 테이블(fuzzy table)로부터 상기 실내 열교환기의 온도와 상기 노점 온도 간 차이값 및 상기 실내 열교환기의 온도 변화값에 대응하는 상기 압축기의 주파수의 증가값 또는 상기 압축기의 주파수의 감소값을 결정하는 것;을 포함할 수 있다.Adjusting the frequency of the compressor includes increasing the frequency of the compressor corresponding to the difference value between the temperature of the indoor heat exchanger and the dew point temperature and the temperature change value of the indoor heat exchanger from a fuzzy table stored in memory. It may include; determining a value or a reduction value of the frequency of the compressor.
상기 공기 조화기의 제어 방법은 상기 압축기의 주파수의 증가에 대응하여, 상기 실외기에 포함된 실외팬의 회전 속도를 증가시키고, 상기 실내기에 포함된 팽창 밸브의 개도를 증가시키는 것; 또는 상기 압축기의 주파수의 감소에 대응하여 상기 실외팬의 회전 속도를 감소시키고, 상기 팽창 밸브의 개도를 감소시키는 것;을 더 포함할 수 있다.The method of controlling the air conditioner includes: increasing the rotational speed of the outdoor fan included in the outdoor unit in response to an increase in the frequency of the compressor, and increasing the opening degree of the expansion valve included in the indoor unit; Alternatively, the method may further include reducing the rotational speed of the outdoor fan and reducing the opening degree of the expansion valve in response to a decrease in the frequency of the compressor.
상기 쾌적 운전에서 상기 압축기의 제1 회전 속도는 상기 제습 운전에서 상기 압축기의 제2 회전 속도보다 느리게 조절되고, 상기 쾌적 운전에서 상기 실외기에 포함된 실외팬의 제3 회전 속도는 상기 제습 운전에서 상기 실외팬의 제4 회전 속도보다 느리게 조절될 수 있다.In the comfortable operation, the first rotational speed of the compressor is adjusted to be slower than the second rotational speed of the compressor in the dehumidifying operation, and in the comfortable operation, the third rotational speed of the outdoor fan included in the outdoor unit is adjusted to the above in the dehumidifying operation. It can be adjusted to be slower than the fourth rotation speed of the outdoor fan.
개시된 공기 조화기 및 그 제어 방법은 제습 운전 시 미리 정해진 조건에 기초하여 압축기의 온-오프 제어 없이 압축기의 주파수를 적절히 조절하는 쾌적 운전을 수행함으로써 실내 온도의 변동과 실내 습도의 변동을 줄일 수 있다. 실내 온도의 변동과 실내 습도의 변동이 감소함에 따라 전력 소비 효율이 향상될 수 있고, 사용자에게 보다 쾌적한 실내 환경이 제공될 수 있다.The disclosed air conditioner and its control method can reduce fluctuations in indoor temperature and indoor humidity by performing comfortable operation by appropriately adjusting the frequency of the compressor without on-off control of the compressor based on predetermined conditions during dehumidification operation. . As fluctuations in indoor temperature and indoor humidity are reduced, power consumption efficiency can be improved and a more comfortable indoor environment can be provided to users.
도 1은 일 실시예에 따른 공기 조화기의 외관도이다.1 is an external view of an air conditioner according to an embodiment.
도 2는 일 실시예에 따른 공기 조화기가 난방 운전 또는 냉방 운전을 수행할 때 냉매의 흐름을 보여준다.Figure 2 shows the flow of refrigerant when an air conditioner performs a heating operation or cooling operation according to an embodiment.
도 3은 일 실시예에 따른 실외기의 제어 구성을 도시한 블록도이다.Figure 3 is a block diagram showing the control configuration of an outdoor unit according to an embodiment.
도 4는 일 실시예에 따른 실내기의 제어 구성을 도시한 블록도이다.Figure 4 is a block diagram showing a control configuration of an indoor unit according to an embodiment.
도 5는 일 실시예에 따른 공기 조화기의 제어 방법을 설명하는 순서도이다.Figure 5 is a flowchart explaining a control method of an air conditioner according to an embodiment.
도 6은 도 5에서 설명된 공기 조화기의 제어 방법을 더 상세히 설명하는 순서도이다.FIG. 6 is a flowchart explaining in more detail the control method of the air conditioner described in FIG. 5.
도 7은 일 실시예에 따른 퍼지 테이블을 도시한다.Figure 7 shows a fuzzy table according to one embodiment.
도 8은 일반적인 제습 운전 시 실내 습도의 변화, 실내 온도의 변화 및 압축기의 주파수 변화를 나타내는 그래프이다.Figure 8 is a graph showing changes in indoor humidity, changes in indoor temperature, and changes in compressor frequency during general dehumidification operation.
도 9는 제습 운전 중 쾌적 운전이 수행되는 경우 실내 습도의 변화, 실내 온도의 변화 및 압축기의 주파수 변화를 나타내는 그래프이다.Figure 9 is a graph showing the change in indoor humidity, change in indoor temperature, and change in frequency of the compressor when comfortable operation is performed during dehumidification operation.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예에 불과할 뿐이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.The embodiments described in this specification and the configurations shown in the drawings are only preferred examples of the disclosed invention, and at the time of filing this application, there may be various modifications that can replace the embodiments and drawings in this specification.
본 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 간접적으로 연결되어 있는 경우를 포함하고, 간접적인 연결은 무선 통신망을 통해 연결되는 것을 포함한다.Throughout this specification, when a part is said to be “connected” to another part, this includes not only direct connection but also indirect connection, and indirect connection refers to connection through a wireless communication network. Includes.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.Additionally, the terms used herein are used to describe embodiments and are not intended to limit and/or limit the disclosed invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “have” are intended to indicate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. The existence or addition of numbers, steps, operations, components, parts, or combinations thereof is not excluded in advance.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않으며, 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.In addition, terms including ordinal numbers such as “first”, “second”, etc. used in this specification may be used to describe various components, but the components are not limited by the terms, and the terms It is used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
또한, "~부", "~기", "~블록", "~부재", "~모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미할 수 있다. 예를 들어, 상기 용어들은 FPGA(field-programmable gate array) / ASIC(application specific integrated circuit) 등 적어도 하나의 하드웨어, 메모리에 저장된 적어도 하나의 소프트웨어 또는 프로세서에 의하여 처리되는 적어도 하나의 프로세스를 의미할 수 있다.Additionally, terms such as "~unit", "~unit", "~block", "~member", and "~module" may refer to a unit that processes at least one function or operation. For example, the terms may refer to at least one hardware such as a field-programmable gate array (FPGA) / application specific integrated circuit (ASIC), at least one software stored in memory, or at least one process processed by a processor. there is.
각 단계들에 붙여지는 부호는 각 단계들을 식별하기 위해 사용되는 것으로 이들 부호는 각 단계들 상호 간의 순서를 나타내는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다.The codes attached to each step are used to identify each step, and these codes do not indicate the order of each step. Each step is performed differently from the specified order unless a specific order is clearly stated in the context. It can be.
이하에서는 본 발명에 따른 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, embodiments according to the present invention will be described in detail with reference to the attached drawings.
도 1은 일 실시예에 따른 공기 조화기의 외관도이다.1 is an external view of an air conditioner according to an embodiment.
도 1을 참조하면, 공기 조화기(1)는 실외 공간에 마련되어 실외 공기와 냉매 사이의 열교환을 수행하는 실외기(1a)와, 실내 공간에 마련되어 실내 공기와 냉매 사이에 열교환을 수행하는 실내기(1b)를 포함한다. 실외기(1a)는 공기 조화 공간 밖에 위치할 수 있으며, 실내기(1b)는 공기 조화 공간 내에 위치할 수 있다. 공기 조화 공간은 공기 조화기(1)에 의하여 냉방 또는 난방 되는 공간을 의미한다. 예를 들면, 실외기(1a)는 건물의 외부에 배치될 수 있고, 실내기(1b)는 거실 또는 사무실과 같이 벽에 의하여 외부와 분리된 공간 내에 배치될 수 있다.Referring to FIG. 1, the air conditioner 1 includes an outdoor unit 1a provided in an outdoor space to perform heat exchange between outdoor air and a refrigerant, and an indoor unit 1b provided in an indoor space to perform heat exchange between indoor air and a refrigerant. ) includes. The outdoor unit 1a may be located outside the air conditioning space, and the indoor unit 1b may be located within the air conditioning space. The air conditioned space refers to a space that is cooled or heated by the air conditioner (1). For example, the outdoor unit 1a may be placed outside a building, and the indoor unit 1b may be placed in a space separated from the outside by a wall, such as a living room or office.
실외기(1a)와 실내기(1b)는 외부 배관(P1, P2)을 통해 연결된다. 냉매는 실외기(1a), 외부 배관(P1, P2) 및 실내기(1b)를 통해 순환할 수 있다. 외부 배관(P1, P2)의 일 단은 실외기(1a)의 일 측에 마련되는 배관 밸브에 연결될 수 있다. 또한, 외부 배관(P1, P2)은 실외기(1a)와 실내기(1b) 내부에 마련되는 냉매관과 연결될 수 있다.The outdoor unit 1a and the indoor unit 1b are connected through external pipes P1 and P2. The refrigerant can circulate through the outdoor unit (1a), external pipes (P1, P2), and indoor unit (1b). One end of the external pipes P1 and P2 may be connected to a pipe valve provided on one side of the outdoor unit 1a. Additionally, the external pipes P1 and P2 may be connected to refrigerant pipes provided inside the outdoor unit 1a and the indoor unit 1b.
실외기(1a)의 하우징 내에는 실외팬(150)이 마련될 수 있다. 실외팬(150)이 동작하면, 하우징의 토출구를 통해 공기가 실외기(1a)의 외부로 토출될 수 있다. 토출구에는 실외팬(150)을 보호하기 위한 팬 가드(22)가 마련될 수 있다. 팬 가드(22)는 토출구를 커버할 수 있고, 그릴 또는 망 형상을 가질 수 있다.An outdoor fan 150 may be provided within the housing of the outdoor unit 1a. When the outdoor fan 150 operates, air may be discharged to the outside of the outdoor unit 1a through the discharge port of the housing. A fan guard 22 may be provided at the discharge port to protect the outdoor fan 150. The fan guard 22 may cover the discharge port and may have a grill or mesh shape.
실내기(1b)는, 바디 케이스(201)와 전면 패널(202)을 포함할 수 있다. 또한, 실내기(1b)는 전면 패널(202)의 적어도 하나의 토출구(205) 및 토출구(205)를 개폐할 수 있는 적어도 하나의 도어(204)를 포함할 수 있다. 예를 들면, 도어(204)는 제1 도어(204a), 제2 도어(204b) 및 제3 도어(204c)를 포함할 수 있다. 토출구(205)는 제1 토출구(205a), 제2 토출구(205b) 및 제3 토출구(205c)를 포함할 수 있다. 토출구(205)와 도어(204)는 전면 패널(202)의 상부 영역에 마련될 수 있다.The indoor unit 1b may include a body case 201 and a front panel 202. Additionally, the indoor unit 1b may include at least one outlet 205 of the front panel 202 and at least one door 204 that can open and close the outlet 205. For example, the door 204 may include a first door 204a, a second door 204b, and a third door 204c. The outlet 205 may include a first outlet 205a, a second outlet 205b, and a third outlet 205c. The discharge port 205 and the door 204 may be provided in the upper area of the front panel 202.
전면 패널(202)은 토출구(205)와 구별되는 복수의 홀들(202h)을 포함할 수 있다. 복수의 홀들(202h)은 전면 패널(202)에서 토출구(205)가 형성되지 않은 영역에 마련될 수 있다. 복수의 홀들(202h) 각각의 크기는 토출구(205)의 크기보다 작다.The front panel 202 may include a plurality of holes 202h that are distinct from the discharge port 205. A plurality of holes 202h may be provided in an area of the front panel 202 where the discharge port 205 is not formed. The size of each of the plurality of holes 202h is smaller than the size of the discharge port 205.
토출구(205)는 실내 열교환기(230)에 의해 열교환된 공기가 직접 외부로 토출될 수 있도록 마련된다. 즉, 토출구(205)는 실내기(1b)의 외부로 노출되도록 마련될 수 있다. 도어(204)는 토출구(205)를 개방하거나 폐쇄할 수 있다. 도어(204)의 이동에 의해 토출구(205)가 개방되는 경우, 토출구(205)를 통해 열교환된 공기가 토출될 수 있다. The discharge port 205 is provided so that air heat-exchanged by the indoor heat exchanger 230 can be directly discharged to the outside. That is, the discharge port 205 may be provided to be exposed to the outside of the indoor unit 1b. The door 204 can open or close the discharge port 205. When the outlet 205 is opened by moving the door 204, heat-exchanged air may be discharged through the outlet 205.
예를 들면, 제1 도어(204a)는 제1 토출구(205a)를 개방하고, 제2 도어(204b)는 제2 토출구(205b)를 개방하며, 제3 도어(204c)는 제3 토출구(205c)를 폐쇄할 수 있다. 이 경우, 제1 토출구(205a)와 제2 토출구(205b)를 통해 열교환된 공기가 토출되고, 제3 토출구(205c)에서는 열교환된 공기가 토출되지 않을 수 있다.For example, the first door 204a opens the first outlet 205a, the second door 204b opens the second outlet 205b, and the third door 204c opens the third outlet 205c. ) can be closed. In this case, heat-exchanged air may be discharged through the first outlet 205a and the second outlet 205b, and heat-exchanged air may not be discharged from the third outlet 205c.
도어(204)와 토출구(205)는 동일한 개수로 마련되고 일대일 대응하도록 배치될 수 있다. 도어(204)는 토출구(205)의 형상에 대응하는 형상을 가질 수 있다. 예를 들면, 토출구(205)와 도어(204)는 원형일 수 있다. 도어(204)는 토출구(205)를 개방하는 개방 위치와, 토출구(205)를 폐쇄하는 폐쇄 위치 사이를 이동할 수 있다. 도어(204)는 개방 위치와 폐쇄 위치를 전후 방향으로 이동할 수 있다. 도어(204)는 도어 액추에이터(미도시)에 의해 이동할 수 있다.The doors 204 and the discharge ports 205 may be provided in equal numbers and arranged in one-to-one correspondence. The door 204 may have a shape corresponding to the shape of the discharge port 205. For example, the discharge port 205 and the door 204 may be circular. The door 204 can move between an open position that opens the discharge port 205 and a closed position that closes the discharge port 205 . The door 204 can move between the open and closed positions in the forward and backward directions. The door 204 can be moved by a door actuator (not shown).
실내기(1b) 내부에 마련되는 실내팬(250)은 토출구(205)에 대응하도록 바디 케이스(201) 내부에 배치될 수 있다. 실내팬(250)은 토출구(205)의 개수에 대응하는 개수로 마련될 수 있다. 실내팬(250)은 팬 모터를 포함하고, 팬 모터에 의해 생성되는 동력을 이용하여 회전할 수 있다. 실내팬(250)이 복수 개인 경우, 각각의 실내팬(250)은 동일한 회전 속도 또는 서로 다른 회전 속도로 동작하도록 제어될 수 있다.The indoor fan 250 provided inside the indoor unit 1b may be disposed inside the body case 201 to correspond to the discharge port 205. The number of indoor fans 250 may correspond to the number of discharge ports 205. The indoor fan 250 includes a fan motor and can rotate using power generated by the fan motor. When there are a plurality of indoor fans 250, each indoor fan 250 may be controlled to operate at the same rotation speed or different rotation speeds.
바디 케이스(201)의 후방에는 공기 유입구(203)가 마련될 수 있다. 공기 유입구(203)로 유입된 공기는 실내 열교환기(230)에서 열교환되고, 열교환된 공기는 토출구(205)를 통하여 실내기(1b)의 외부(즉, 실내 공간)로 토출될 수 있다. 또한, 열교환된 공기는 전면 패널(202)의 복수의 홀(202h)을 통하여 실내기(1b)의 외부(실내)로 토출될 수 있다.An air inlet 203 may be provided at the rear of the body case 201. The air flowing into the air inlet 203 is heat-exchanged in the indoor heat exchanger 230, and the heat-exchanged air may be discharged to the outside of the indoor unit 1b (i.e., the indoor space) through the discharge port 205. Additionally, the heat-exchanged air may be discharged to the outside (indoor) of the indoor unit 1b through the plurality of holes 202h of the front panel 202.
도어(204)가 토출구(205)를 개방하는 경우 열교환된 공기는 토출구(205) 및 전면 패널(202)의 복수의 홀들(202h)을 통하여 실내 공간으로 토출될 수 있다. 도어(204)가 토출구(205)를 폐쇄하는 경우 열교환된 공기는 전면 패널(202)의 복수의 홀들(202h)을 통하여 실내기(1b)의 외부로 토출될 수 있다. When the door 204 opens the outlet 205, heat-exchanged air may be discharged into the indoor space through the outlet 205 and the plurality of holes 202h of the front panel 202. When the door 204 closes the outlet 205, the heat-exchanged air may be discharged to the outside of the indoor unit 1b through the plurality of holes 202h of the front panel 202.
도어(204)에 의해 토출구(205)가 폐쇄되는 경우, 실내팬(250)의 회전 속도는 상대적으로 낮게 제어될 수 있다. 토출구(205)가 폐쇄된 상태에서 복수의 홀들(202h)을 통해 배출되는 공기의 유속은, 개방된 토출구(205)를 통하여 배출되는 공기의 유속보다 느릴 수 있다. 이와 같이, 실내기(1b)는, 토출구(205)의 개방 또는 폐쇄를 위해 도어(204)를 제어할 수 있고, 공기 유입구(203)로 유입된 공기의 토출 유로를 변경할 수 있다.When the discharge port 205 is closed by the door 204, the rotation speed of the indoor fan 250 can be controlled to be relatively low. The flow rate of air discharged through the plurality of holes 202h when the discharge port 205 is closed may be slower than the flow rate of air discharged through the open discharge port 205. In this way, the indoor unit 1b can control the door 204 to open or close the discharge port 205 and change the discharge path of the air flowing into the air inlet 203.
공기 조화기(1)가 하나의 실외기(1a)와 하나의 실내기(1b)를 포함하는 것으로 설명되었으나, 복수의 실외기(1a) 및 복수의 실내기(1b)를 포함할 수도 있다. 예를 들면, 하나의 실외기(1a)에 복수의 실내기(1b)가 연결될 수 있다. 또한, 실내기(1b)의 형태는 설명된 것으로 제한되지 않는다. 실내 공간에 설치되어 실내 공간을 냉방 또는 난방할 수 있는 실내기(1b)라면, 어떤 형태의 실내기(1b)도 적용될 수 있다.Although the air conditioner 1 has been described as including one outdoor unit 1a and one indoor unit 1b, it may also include a plurality of outdoor units 1a and a plurality of indoor units 1b. For example, a plurality of indoor units 1b may be connected to one outdoor unit 1a. Additionally, the shape of the indoor unit 1b is not limited to that described. As long as the indoor unit 1b is installed in an indoor space and can cool or heat the indoor space, any type of indoor unit 1b can be applied.
도 2는 일 실시예에 따른 공기 조화기가 난방 운전 또는 냉방 운전을 수행할 때 냉매의 흐름을 보여준다.Figure 2 shows the flow of refrigerant when an air conditioner performs a heating operation or cooling operation according to an embodiment.
도 2를 참조하면, 공기 조화기(1)는 실내기(1b)와 실외기(1a) 간 냉매를 순환시키기 위한 냉매 유로를 포함한다. 냉매는 냉매 유로를 따라 실내기(1b)와 실외기(1a)를 순환하며, 상태 변화(예를 들어, 기체에서 액체로 상태 변화, 액체에서 기체로 상태 변화)를 통해 열을 흡수하거나 열을 방출할 수 있다. Referring to FIG. 2, the air conditioner 1 includes a refrigerant flow path for circulating refrigerant between the indoor unit 1b and the outdoor unit 1a. The refrigerant circulates between the indoor unit (1b) and the outdoor unit (1a) along the refrigerant flow path, and can absorb or release heat through a change in state (e.g., change of state from gas to liquid, change of state from liquid to gas). You can.
공기 조화기(1)는 실외기(1a)와 실내기(1b) 사이를 연결하고 액상 냉매가 유동하는 통로가 되는 액관(P1)과, 기상 냉매가 유동하는 통로가 되는 가스관(P2)을 포함할 수 있다. 액관(P1)과 가스관(P2)은 실외기(1a) 및 실내기(1b) 내부로 연장될 수 있다.The air conditioner (1) may include a liquid pipe (P1) that connects the outdoor unit (1a) and the indoor unit (1b) and serves as a passage through which the liquid refrigerant flows, and a gas pipe (P2) as a passage through which the gaseous refrigerant flows. there is. The liquid pipe (P1) and the gas pipe (P2) may extend inside the outdoor unit (1a) and the indoor unit (1b).
냉방 운전 시, 냉매는 실외 열교환기(130)에서 열을 방출하고, 실내 열교환기(230)에서 열을 흡수할 수 있다. 냉방 운전 시 압축기(110)에서 압축된 냉매는 사방 밸브(120)를 거쳐 실외 열교환기(130)로 먼저 공급되고, 팽창 밸브(220)를 거쳐 실내 열교환기(230)로 공급될 수 있다. 냉방 운전 시, 실외 열교환기(130)는 냉매를 응축시키는 응축기로 동작하고, 실내 열교환기(230)는 냉매를 증발시키는 증발기로 동작한다.During cooling operation, the refrigerant may emit heat from the outdoor heat exchanger 130 and absorb heat from the indoor heat exchanger 230. During cooling operation, the refrigerant compressed in the compressor 110 may first be supplied to the outdoor heat exchanger 130 through the four-way valve 120 and then to the indoor heat exchanger 230 through the expansion valve 220. During cooling operation, the outdoor heat exchanger 130 operates as a condenser that condenses the refrigerant, and the indoor heat exchanger 230 operates as an evaporator that evaporates the refrigerant.
냉방 운전 또는 제습 운전 시, 압축기(110)에서 토출되는 고온 고압의 기상 냉매는 실외 열교환기(130)로 이동한다. 실외 열교환기(130)에서 응축된 액상 혹은 액상에 가까운 냉매는 팽창 밸브(220)에서 팽창되어 감압된다. 팽창 밸브(220)를 통과한 이상(Two-phase) 냉매는 실내 열교환기(230)로 이동한다. 실내 열교환기(230)로 유입된 냉매는 주변 공기와 열교환하여 증발된다. 따라서 실내 열교환기(230)를 통과하는 공기의 온도가 내려가고 실내기(1b)의 외부로 냉각된 공기가 토출된다. 또한, 실내 열교환기(230)를 통과하는 공기에 포함된 습기가 응축되므로, 습기가 제거된 공기가 실내 공간으로 토출될 수 있다.During cooling or dehumidifying operation, the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 110 moves to the outdoor heat exchanger 130. The liquid or near-liquid refrigerant condensed in the outdoor heat exchanger 130 is expanded and depressurized in the expansion valve 220. Two-phase refrigerant that has passed through the expansion valve 220 moves to the indoor heat exchanger 230. The refrigerant flowing into the indoor heat exchanger 230 exchanges heat with the surrounding air and is evaporated. Accordingly, the temperature of the air passing through the indoor heat exchanger 230 decreases, and the cooled air is discharged to the outside of the indoor unit 1b. Additionally, since the moisture contained in the air passing through the indoor heat exchanger 230 is condensed, the air from which the moisture has been removed may be discharged into the indoor space.
제습 운전 시에는 압축기(110)의 주파수가 상대적으로 낮게 제어된다. 따라서 제습 운전 시 실내기(1b)로부터 토출되는 공기의 온도는 냉방 운전 시 토출되는 공기의 온도보다 높을 수 있다.During dehumidifying operation, the frequency of the compressor 110 is controlled to be relatively low. Therefore, the temperature of the air discharged from the indoor unit 1b during the dehumidifying operation may be higher than the temperature of the air discharged during the cooling operation.
난방 운전 시, 냉매는 실내 열교환기(230)에서 열을 방출하고, 실외 열교환기(130)에서 열을 흡수할 수 있다. 즉, 난방 운전 시 압축기(110)에서 압축된 냉매는 사방 밸브(120)를 거쳐 실내 열교환기(230)로 먼저 공급된 후 실외 열교환기(130)로 공급될 수 있다. 이 경우, 실내 열교환기(230)는 냉매를 응축시키는 응축기로 동작하고, 실외 열교환기(130)는 냉매를 증발시키는 증발기로 동작한다.During heating operation, the refrigerant may emit heat from the indoor heat exchanger 230 and absorb heat from the outdoor heat exchanger 130. That is, during the heating operation, the refrigerant compressed in the compressor 110 may be first supplied to the indoor heat exchanger 230 through the four-way valve 120 and then to the outdoor heat exchanger 130. In this case, the indoor heat exchanger 230 operates as a condenser that condenses the refrigerant, and the outdoor heat exchanger 130 operates as an evaporator that evaporates the refrigerant.
난방 운전 시, 압축기(110)에서 토출되는 고온 고압의 기상 냉매는 실내 열교환기(230)로 이동한다. 실내 열교환기(230)를 통과하는 고온 고압의 기상 냉매는 저온 건조한 공기와 열교환 한다. 냉매는 액상 혹은 액상에 가까운 냉매로 응축되면서 열을 방출하고, 공기가 열을 흡수함으로써 실내기(1b)의 외부로 온기가 토출된다.During the heating operation, the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 110 moves to the indoor heat exchanger 230. The high-temperature, high-pressure gaseous refrigerant passing through the indoor heat exchanger 230 exchanges heat with low-temperature dry air. The refrigerant condenses into a liquid or near-liquid refrigerant and releases heat, and as the air absorbs the heat, warmth is discharged to the outside of the indoor unit 1b.
실외기(1a)는 냉매를 압축하는 압축기(110), 실외 공기와 냉매 사이의 열교환을 수행하는 실외 열교환기(130), 냉방 운전, 제습 운전 또는 난방 운전에 기초하여 압축기(110)에 의해 압축된 냉매를 실외 열교환기(130) 또는 실내 열교환기(230)로 안내하는 사방 밸브(4-way valve)(120), 및 증발되지 못한 액상 냉매가 압축기(110)로 유입되는 것을 방지하는 어큐뮬레이터(160)를 포함한다.The outdoor unit 1a is a compressor 110 that compresses the refrigerant, an outdoor heat exchanger 130 that performs heat exchange between outdoor air and the refrigerant, and compressed by the compressor 110 based on cooling operation, dehumidification operation, or heating operation. A four-way valve (120) that guides the refrigerant to the outdoor heat exchanger (130) or the indoor heat exchanger (230), and an accumulator (160) that prevents liquid refrigerant that has not evaporated from flowing into the compressor (110). ) includes.
압축기(110)는 외부 전원으로부터 전기 에너지를 공급받아 동작할 수 있다. 압축기(110)는 압축기 모터(미도시)를 포함하고, 압축기 모터의 회전력을 이용하여 저압의 기상 냉매를 고압으로 압축한다. 압축기(110)의 주파수는 실내기(1b)에서 요구하는 능력에 대응하도록 변경될ㄹ 수 있다. 압축기(110)는 인버터 공기 압축기(Inverter air compressor), 용적형 압축기 또는 다이나믹형 압축기일 수 있으며, 설계자가 고려할 수 있는 다양한 종류의 압축기가 이용될 수 있다.The compressor 110 may operate by receiving electrical energy from an external power source. The compressor 110 includes a compressor motor (not shown) and compresses low-pressure gaseous refrigerant to high pressure using the rotational force of the compressor motor. The frequency of the compressor 110 may be changed to correspond to the capability required by the indoor unit 1b. The compressor 110 may be an inverter air compressor, a positive displacement compressor, or a dynamic compressor, and various types of compressors that the designer can consider may be used.
사방 밸브(120)는, 압축기(110)에서 토출된 고온 고압의 기체 냉매의 유동 방향을 전환할 수 있다. 사방 밸브(120)는 냉방 운전 또는 제습 운전 시 압축기(110)에서 압축된 냉매를 실외 열교환기(130)로 안내하도록 제어된다. 사방 밸브(120)는 난방 운전 시 압축기(110)에서 압축된 냉매를 실내기(1b)로 안내하도록 제어된다.The four-way valve 120 can change the flow direction of the high-temperature, high-pressure gas refrigerant discharged from the compressor 110. The four-way valve 120 is controlled to guide the refrigerant compressed in the compressor 110 to the outdoor heat exchanger 130 during cooling or dehumidifying operation. The four-way valve 120 is controlled to guide the refrigerant compressed in the compressor 110 to the indoor unit 1b during heating operation.
실외 열교환기(130)는 냉방 운전 또는 제습 운전 시 압축기(110)에서 압축된 냉매를 응축하는 응축기의 역할을 수행한다. 실외 열교환기(130)는 난방 운전 시 실내기(1b)에서 감압된 냉매를 증발시키는 증발기의 역할을 수행한다. 실외 열교환기(130)는 냉매가 통과하는 실외 열교환기 냉매관(미도시)과 실외 공기가 접촉하는 표면적을 넓히기 위한 실외 열교환기 냉각핀(미도시)을 포함할 수 있다. 실외 열교환기 냉매관(미도시)과 실외 공기가 접촉하는 표면적이 넓어지면 냉매와 실외 공기 사이의 열교환 효율이 향상될 수 있다.The outdoor heat exchanger 130 functions as a condenser that condenses the refrigerant compressed in the compressor 110 during cooling or dehumidifying operation. The outdoor heat exchanger 130 functions as an evaporator that evaporates the refrigerant depressurized in the indoor unit 1b during heating operation. The outdoor heat exchanger 130 may include an outdoor heat exchanger refrigerant pipe (not shown) through which the refrigerant passes, and outdoor heat exchanger cooling fins (not shown) to increase the surface area in contact with outdoor air. If the surface area in contact between the outdoor heat exchanger refrigerant pipe (not shown) and outdoor air is increased, the heat exchange efficiency between the refrigerant and outdoor air can be improved.
실외팬(150)은 실외 열교환기(130)의 주변에 마련되어 실외 공기를 실외 열교환기(130)로 유동시킬 수 있다. 실외팬(150)은 열교환 전의 실외 공기를 실외 열교환기(130)로 송풍시킴과 동시에 열교환된 공기를 실외로 송풍시킬 수 있다. 실외팬(150)은 실외 열교환기(130) 주변의 공기를 외부로 방출시킴으로써, 실외 열교환기(130)에서 냉매의 액화에 의해 방출되는 열을 분산시킬 수 있다.The outdoor fan 150 is provided around the outdoor heat exchanger 130 to flow outdoor air into the outdoor heat exchanger 130. The outdoor fan 150 can blow outdoor air before heat exchange to the outdoor heat exchanger 130 and simultaneously blow the heat-exchanged air outdoors. The outdoor fan 150 can disperse the heat emitted by the liquefaction of the refrigerant in the outdoor heat exchanger 130 by discharging air around the outdoor heat exchanger 130 to the outside.
어큐뮬레이터(160)는 액상 냉매를 저장하고, 저장된 액상 냉매를 기화할 수 있다. 어큐뮬레이터(160)는 압축기(110)로 액상 냉매가 유입되는 것을 방지할 수 있다. 그러나 냉매의 순환량이 과도한 경우, 어큐뮬레이터(160)에 의한 액상 냉매의 기화가 적절하게 수행되지 못할 수 있다. 이 경우 압축기(110)로 액상 냉매가 유입될 수 있고, 압축기(110)의 손상이 발생할 수 있다.The accumulator 160 may store liquid refrigerant and vaporize the stored liquid refrigerant. The accumulator 160 can prevent liquid refrigerant from flowing into the compressor 110. However, if the circulating amount of refrigerant is excessive, vaporization of the liquid refrigerant by the accumulator 160 may not be properly performed. In this case, liquid refrigerant may flow into the compressor 110, and damage to the compressor 110 may occur.
실외기(1a)는 실외 온도를 검출하기 위한 실외 온도 센서(171)를 포함할 수 있다. 실외 열교환기(130)의 적어도 일 측에는 실외 열교환기(130)의 온도를 검출하기 위한 실외 열교환기 온도 센서(172)가 마련될 수 있다. 실외 온도 센서(171)와 실외 열교환기 온도 센서(172)는 바이메탈 온도계, 서미스터 온도계(thermistor thermometer) 또는 적외선 온도계 중 적어도 하나로 구현될 수 있다.The outdoor unit 1a may include an outdoor temperature sensor 171 to detect the outdoor temperature. An outdoor heat exchanger temperature sensor 172 may be provided on at least one side of the outdoor heat exchanger 130 to detect the temperature of the outdoor heat exchanger 130. The outdoor temperature sensor 171 and the outdoor heat exchanger temperature sensor 172 may be implemented as at least one of a bimetal thermometer, a thermistor thermometer, or an infrared thermometer.
압축기(110)로부터 실외 열교환기(130)로 냉매가 유입되는 냉방 운전 또는 제습 운전을 기준으로 하면, 실외 열교환기 온도 센서(172)는 냉매가 나오는 실외 열교환기(130)의 출구 측에 배치될 수 있다. 따라서 실외 열교환기 온도 센서(172)는 '실외 열교환기 출구 온도 센서'로 호칭될 수 있다. 도시되어 있지 않으나, 실외 열교환기(130)의 입구 측에도 온도 센서(미도시)가 마련될 수 있고, 이는 '실외 열교환기 입구 온도 센서'로 호칭될 수 있다. 다시 말해, 실외 열교환기(130)의 입구와 출구 각각에 온도 센서가 마련될 수 있다. 실외 열교환기 온도 센서(172)는 실외 열교환기(130)의 입구 및/또는 출구 주변에 설치되거나, 실외 열교환기(130)의 입구 및/또는 출구와 연결되는 냉매 관에 접촉하도록 설치될 수 있다.Based on a cooling operation or dehumidification operation in which refrigerant flows from the compressor 110 to the outdoor heat exchanger 130, the outdoor heat exchanger temperature sensor 172 will be placed on the outlet side of the outdoor heat exchanger 130 from which the refrigerant comes out. You can. Therefore, the outdoor heat exchanger temperature sensor 172 may be referred to as an ‘outdoor heat exchanger outlet temperature sensor’. Although not shown, a temperature sensor (not shown) may also be provided on the inlet side of the outdoor heat exchanger 130, and may be referred to as an 'outdoor heat exchanger inlet temperature sensor'. In other words, temperature sensors may be provided at each of the inlet and outlet of the outdoor heat exchanger 130. The outdoor heat exchanger temperature sensor 172 may be installed around the inlet and/or outlet of the outdoor heat exchanger 130, or may be installed in contact with a refrigerant pipe connected to the inlet and/or outlet of the outdoor heat exchanger 130. .
난방 운전에서는 냉매의 순환 방향이 반대로 전환되므로, 냉매가 들어가는 실외 열교환기(130)의 입구와 냉매가 나오는 실외 열교환기(130)의 출구가 반대로 정의될 수 있다. 그러나 설명의 편의상, 실외 열교환기(130)의 입구와 출구는 냉방 운전일 때를 기준으로 하여 설명될 수 있다.In the heating operation, the circulation direction of the refrigerant is reversed, so the inlet of the outdoor heat exchanger 130, where the refrigerant enters, and the outlet of the outdoor heat exchanger 130, where the refrigerant comes out, may be defined as opposite. However, for convenience of explanation, the inlet and outlet of the outdoor heat exchanger 130 may be described based on the time of cooling operation.
압축기(110)의 출구에는 압축기 출구 온도 센서(173)가 마련될 수 있다. 압축기 출구 온도 센서(173)는 압축기(110)로부터 토출되는 냉매의 토출 온도를 검출할 수 있다. 압축기(110)로부터 토출되는 냉매의 토출 온도는 압축기 토출 온도 또는 압축기 출구 온도로 호칭될 수 있다.A compressor outlet temperature sensor 173 may be provided at the outlet of the compressor 110. The compressor outlet temperature sensor 173 can detect the discharge temperature of the refrigerant discharged from the compressor 110. The discharge temperature of the refrigerant discharged from the compressor 110 may be referred to as compressor discharge temperature or compressor outlet temperature.
실내기(1b)는 팽창 밸브(220), 실내 열교환기(230) 및 실내팬(250)을 포함할 수 있다. 실내 열교환기(230)는 실내 공기와 냉매 사이의 열교환을 수행한다. 실내팬(250)은 실내 공기를 실내 열교환기(230)로 유동시킬 수 있다. 실내팬(250)은 복수 개로 마련될 수 있다.The indoor unit 1b may include an expansion valve 220, an indoor heat exchanger 230, and an indoor fan 250. The indoor heat exchanger 230 performs heat exchange between indoor air and refrigerant. The indoor fan 250 may flow indoor air into the indoor heat exchanger 230. A plurality of indoor fans 250 may be provided.
팽창 밸브(220)는 고온, 고압의 액체 상태의 냉매를 팽창시켜, 저온 저압의 기체와 액체가 혼합된 냉매를 배출할 수 있다. 팽창 밸브(220)는 실내 열교환기(230)로 제공되는 냉매의 양을 조절할 수도 있다. 팽창 밸브(220)는 교축(throttling) 작용을 이용하여 냉매를 감압한다. 교축 작용은 냉매가 좁은 유로를 통과하면 외부와의 열교환 없이도 압력이 감소하는 것을 의미한다.The expansion valve 220 can expand a high-temperature, high-pressure liquid refrigerant and discharge a low-temperature, low-pressure gas and liquid refrigerant mixture. The expansion valve 220 may control the amount of refrigerant provided to the indoor heat exchanger 230. The expansion valve 220 depressurizes the refrigerant using a throttling action. The throttling action means that when the refrigerant passes through a narrow passage, the pressure decreases without heat exchange with the outside.
팽창 밸브(220)는 개도 조절이 가능한 전자식 팽창 밸브(electronic expansion valve, EEV)일 수 있다. 팽창 밸브(220)는, 예를 들면, 바이메탈의 변형을 이용하는 열전식 전자 팽창 밸브, 봉입 왁스의 가열에 의한 체적 팽창을 이용하는 열동식 전자 팽창 밸브, 펄스 신호에 의해 솔레노이드 밸브를 개폐하는 펄스 폭 변조 방식 전자 팽창 밸브 또는 모터를 이용하여 밸브를 개폐하는 스템 모터 방식의 전자 팽창 밸브일 수 있다.The expansion valve 220 may be an electronic expansion valve (EEV) whose opening is adjustable. The expansion valve 220 includes, for example, a thermoelectric electromagnetic expansion valve using deformation of a bimetal, a thermoelectric electromagnetic expansion valve using volume expansion by heating the encapsulating wax, and a pulse width modulation valve that opens and closes a solenoid valve by a pulse signal. It may be an electronic expansion valve or a stem motor-type electronic expansion valve that opens and closes the valve using a motor.
팽창 밸브(220)가 실내기(1b)에 포함되는 것으로 예시되나, 팽창 밸브(220)는 실외기(1a)에 포함될 수도 있다. 또한, 실외기(1a)와 실내기(1b) 모두에 팽창 밸브(220)가 마련될 수도 있다. 즉, 팽창 밸브(220)는 실외 열교환기(130)와 실내 열교환기(230) 사이에 냉매의 유로를 형성하는 배관인 액관(P1)에 마련될 수 있다.Although the expansion valve 220 is illustrated as being included in the indoor unit 1b, the expansion valve 220 may also be included in the outdoor unit 1a. Additionally, expansion valves 220 may be provided in both the outdoor unit 1a and the indoor unit 1b. That is, the expansion valve 220 may be provided in the liquid pipe P1, which is a pipe that forms a refrigerant flow path between the outdoor heat exchanger 130 and the indoor heat exchanger 230.
실내 열교환기(230)는 냉방 운전 또는 제습 운전 시 저압의 액상 냉매를 증발시키는 증발기의 역할을 수행한다. 실내 열교환기(230)는 난방 운전 시 고압의 기상 냉매를 응축하는 응축기의 역할을 수행한다. 실내 열교환기(230)는 실외기(1a)의 실외 열교환기(130)와 마찬가지로 냉매가 통과하는 실내 열교환기 냉매관(미도시)과 냉매와 실내 공기 사이의 열교환 효율을 향상시키기 위한 실내 열교환기 냉각핀(미도시)을 포함한다.The indoor heat exchanger 230 functions as an evaporator that evaporates low-pressure liquid refrigerant during cooling or dehumidifying operation. The indoor heat exchanger 230 functions as a condenser that condenses high-pressure gaseous refrigerant during heating operation. The indoor heat exchanger 230, like the outdoor heat exchanger 130 of the outdoor unit 1a, cools the indoor heat exchanger to improve the heat exchange efficiency between the indoor heat exchanger refrigerant pipe (not shown) through which the refrigerant passes and the refrigerant and indoor air. Includes pins (not shown).
실내팬(250)은 실내 열교환기(230)의 주변에 마련되어 실내 공기를 실내 열교환기(230)로 송풍시킬 수 있다. 실내 열교환기(230)는 실내 공기와 열교환을 수행할 수 있다. 실내팬(250)은 열교환 전의 실내 공기를 실내 열교환기(230)로 송풍시킴과 동시에 열교환된 공기를 실내 공간으로 송풍시킬 수 있다.The indoor fan 250 is provided around the indoor heat exchanger 230 to blow indoor air into the indoor heat exchanger 230. The indoor heat exchanger 230 can perform heat exchange with indoor air. The indoor fan 250 can blow indoor air before heat exchange to the indoor heat exchanger 230 and simultaneously blow the heat-exchanged air into the indoor space.
실내 열교환기(230)에는 실내 열교환기(230)의 온도를 검출하기 위한 실내 열교환기 온도 센서(211)가 마련될 수 있다. 실내 열교환기 온도 센서(211)는 실내 열교환기(230)의 외면 및/또는 실내 열교환기(230)와 인접한 위치에 배치될 수 있다. 실내 열교환기(230)의 온도는 실내 열교환기(230)와 열교환되는 공기의 온도를 나타낼 수 있다.The indoor heat exchanger 230 may be provided with an indoor heat exchanger temperature sensor 211 to detect the temperature of the indoor heat exchanger 230. The indoor heat exchanger temperature sensor 211 may be disposed on the outer surface of the indoor heat exchanger 230 and/or at a location adjacent to the indoor heat exchanger 230. The temperature of the indoor heat exchanger 230 may represent the temperature of air that exchanges heat with the indoor heat exchanger 230.
또한, 실내기(1b) 내부에는 실내 온도를 검출하기 위한 실내 온도 센서(213)가 마련될 수 있다. 실내 온도 센서(213)는 실내기(1b)의 바디 케이스(201)의 후방에 위치한 공기 유입구(203)를 통해 흡입되는 실내 공기의 온도를 검출할 수 있다. 실내 열교환기 온도 센서(211)와 실내 온도 센서(213)는 바이메탈 온도계, 서미스터 온도계(thermistor thermometer) 또는 적외선 온도계 중 적어도 하나로 구현될 수 있다. 이외에도, 공기 조화기(1)는 다양한 온도 센서를 포함할 수 있다.Additionally, an indoor temperature sensor 213 may be provided inside the indoor unit 1b to detect the indoor temperature. The indoor temperature sensor 213 can detect the temperature of indoor air sucked through the air inlet 203 located at the rear of the body case 201 of the indoor unit 1b. The indoor heat exchanger temperature sensor 211 and the indoor temperature sensor 213 may be implemented as at least one of a bimetal thermometer, a thermistor thermometer, or an infrared thermometer. In addition, the air conditioner 1 may include various temperature sensors.
실내 습도 센서(212)는 실내 습도를 검출할 수 있다. 실내 습도는 상대 습도로 나타날 수 있다. 실내기(1b)의 바디 케이스(201)의 후방에 위치한 공기 유입구(203)를 통해 흡입되는 실내 공기의 습도를 검출할 수 있다. 실내 습도 센서(212)는 검출한 실내 습도에 대응하는 전기적 신호를 실내기(1b)의 제2 제어부(270)로 전송할 수 있다.The indoor humidity sensor 212 can detect indoor humidity. Indoor humidity can be expressed as relative humidity. The humidity of indoor air sucked through the air inlet 203 located at the rear of the body case 201 of the indoor unit 1b can be detected. The indoor humidity sensor 212 may transmit an electrical signal corresponding to the detected indoor humidity to the second control unit 270 of the indoor unit 1b.
실내 온도 센서(213)와 실내 습도 센서(212)는 바디 케이스(201)의 내부에 배치될 수 있으나, 이에 제한되지 않는다. 실내 온도 센서(213)와 실내 습도 센서(212)는 바디 케이스(201)의 외부에 배치될 수도 있다.The indoor temperature sensor 213 and the indoor humidity sensor 212 may be placed inside the body case 201, but are not limited thereto. The indoor temperature sensor 213 and the indoor humidity sensor 212 may be placed outside the body case 201.
도 3은 일 실시예에 따른 실외기의 제어 구성을 도시한 블록도이다.Figure 3 is a block diagram showing the control configuration of an outdoor unit according to an embodiment.
도 3을 참조하면, 공기 조화기(1)의 실외기(1a)는 압축기(110), 사방 밸브(120), 실외팬(150), 실외 온도 센서(171), 실외 열교환기 온도 센서(172), 압축기 출구 온도 센서(173), 제1 통신 인터페이스(180) 및 제1 제어부(190)를 포함할 수 있다. 제1 제어부(190)는 제1 메모리(192) 및 제1 프로세서(191)를 포함할 수 있다.Referring to FIG. 3, the outdoor unit 1a of the air conditioner 1 includes a compressor 110, a four-way valve 120, an outdoor fan 150, an outdoor temperature sensor 171, and an outdoor heat exchanger temperature sensor 172. , may include a compressor outlet temperature sensor 173, a first communication interface 180, and a first control unit 190. The first control unit 190 may include a first memory 192 and a first processor 191.
제1 제어부(190)는 실외기(1a)의 구성 요소들과 전기적으로 연결될 수 있고, 각 구성 요소들의 동작을 제어할 수 있다. 예를 들면, 제1 제어부(190)는 압축기(110)의 주파수를 조절할 수 있고, 냉매의 순환 방향이 전환되도록 사방 밸브(120)를 제어할 수 있다. 제1 제어부(190)는 실외팬(150)의 회전 속도를 조절할 수 있다. 실외팬(150)의 회전 속도는 실외 온도에 따라 조절될 수 있다. 또한, 제1 제어부(190)는 실내기(1b)의 팽창 밸브(220)의 개도를 조절하기 위한 제어 신호를 생성할 수 있다. The first control unit 190 may be electrically connected to the components of the outdoor unit 1a and control the operation of each component. For example, the first control unit 190 can adjust the frequency of the compressor 110 and control the four-way valve 120 to change the circulation direction of the refrigerant. The first control unit 190 can adjust the rotation speed of the outdoor fan 150. The rotation speed of the outdoor fan 150 may be adjusted according to the outdoor temperature. Additionally, the first control unit 190 may generate a control signal to adjust the opening degree of the expansion valve 220 of the indoor unit 1b.
제1 제어부(190)의 제어 하에, 압축기(110), 사방 밸브(120), 실외 열교환기(130), 팽창 밸브(220) 및 실내 열교환기(230)를 포함하는 냉매 순환 회로를 따라 냉매가 순환할 수 있다. 압축기(110)는 기체 상태의 냉매를 압축하고, 고온/고압의 기체 냉매를 토출할 수 있다. 또한, 압축기(110)는 냉방과 난방이 필요하지 않은 송풍 운전에서 동작하지 않을 수 있다.Under the control of the first control unit 190, the refrigerant flows along the refrigerant circulation circuit including the compressor 110, the four-way valve 120, the outdoor heat exchanger 130, the expansion valve 220, and the indoor heat exchanger 230. It can circulate. The compressor 110 may compress gaseous refrigerant and discharge high-temperature/high-pressure gaseous refrigerant. Additionally, the compressor 110 may not operate in a blowing operation that does not require cooling or heating.
사방 밸브(120)는, 제1 제어부(190)의 제어 하에, 압축기(110)로부터 토출되는 냉매의 순환 방향을 전환할 수 있다. 사방 밸브(120)는, 냉방 운전 시에는 압축기(110)에서 압축된 냉매를 실외 열교환기(130)로 안내하고, 난방 운전 시에는 압축기(110)에서 압축된 냉매를 실내 열교환기(230)로 안내한다.The four-way valve 120 can change the circulation direction of the refrigerant discharged from the compressor 110 under the control of the first control unit 190. The four-way valve 120 guides the refrigerant compressed in the compressor 110 to the outdoor heat exchanger 130 during cooling operation, and guides the refrigerant compressed in the compressor 110 to the indoor heat exchanger 230 during heating operation. Guide.
실외 온도 센서(171)는 검출한 실외 온도에 대응하는 전기적 신호를 제1 제어부(190)로 전송할 수 있다. 실외 열교환기 온도 센서(172)는 검출한 실외 열교환기의 입구 온도 및/또는 출구 온도에 대응하는 전기적 신호를 제1 제어부(190)로 전송할 수 있다. 압축기 출구 온도 센서(173)는 압축기 토출 온도에 대응하는 전기적 신호를 제1 제어부(190)로 전송할 수 있다.The outdoor temperature sensor 171 may transmit an electrical signal corresponding to the detected outdoor temperature to the first control unit 190. The outdoor heat exchanger temperature sensor 172 may transmit an electrical signal corresponding to the detected inlet temperature and/or outlet temperature of the outdoor heat exchanger to the first control unit 190. The compressor outlet temperature sensor 173 may transmit an electrical signal corresponding to the compressor discharge temperature to the first control unit 190.
제1 통신 인터페이스(180)는 실내기(1b)와 통신을 수행할 수 있다. 실외기(1a)의 제1 통신 인터페이스(180)는 제1 제어부(190)로부터 전달되는 제어 신호를 실내기(1b)로 전송하거나, 실내기(1b)로부터 전송되는 제어 신호를 제1 제어부(190)로 전달할 수 있다. 다시 말해, 실외기(1a)와 실내기(1b)는 양방향 통신을 수행할 수 있다. 실외기(1a)와 실내기(1b)는 운전 중 다양한 신호를 송수신할 수 있다.The first communication interface 180 may perform communication with the indoor unit 1b. The first communication interface 180 of the outdoor unit 1a transmits the control signal transmitted from the first control unit 190 to the indoor unit 1b, or transmits the control signal transmitted from the indoor unit 1b to the first control unit 190. It can be delivered. In other words, the outdoor unit 1a and the indoor unit 1b can perform two-way communication. The outdoor unit 1a and the indoor unit 1b can transmit and receive various signals during operation.
제1 메모리(192)는, 공기 조화기(1)의 동작에 필요한 각종 정보를 기억/저장할 수 있다. 제1 메모리(192)는, 공기 조화기(1)의 동작에 필요한 인스트럭션, 어플리케이션, 데이터 및/또는 프로그램을 저장할 수 있다. 예를 들면, 제1 메모리(192)는 공기 조화기(1)의 냉방 운전, 난방 운전 및 제상 운전을 위한 프로그램들을 저장할 수 있다.The first memory 192 can memorize/store various information necessary for the operation of the air conditioner 1. The first memory 192 may store instructions, applications, data, and/or programs necessary for the operation of the air conditioner 1. For example, the first memory 192 may store programs for cooling, heating, and defrosting operations of the air conditioner 1.
제1 메모리(192)는 데이터를 일시적으로 기억하기 위한 S-램(Static Random Access Memory, S-RAM), D-램(Dynamic Random Access Memory)과 같은 휘발성 메모리를 포함할 수 있다. 또한, 제1 메모리(192)는 데이터를 장기간 저장하기 위한 롬(Read Only Memory), 이피롬(Erasable Programmable Read Only Memory: EPROM), 이이피롬(Electrically Erasable Programmable Read Only Memory: EEPROM)과 같은 비휘발성 메모리를 포함할 수 있다.The first memory 192 may include volatile memory such as Static Random Access Memory (S-RAM) or Dynamic Random Access Memory (D-RAM) for temporarily storing data. In addition, the first memory 192 is a non-volatile memory such as Read Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM), or Electrically Erasable Programmable Read Only Memory (EEPROM) for long-term storage of data. May contain memory.
제1 프로세서(191)는 제1 메모리(192)에 저장된 인스트럭션, 어플리케이션, 데이터 및/또는 프로그램에 기초하여 공기 조화기(1)의 동작을 제어하기 위한 제어 신호를 생성할 수 있다. 제1 프로세서(191)는 하드웨어로서, 논리 회로와 연산 회로를 포함할 수 있다. 제1 프로세서(191)는 제1 메모리(192)로부터 제공된 프로그램 및/또는 인스트럭션에 따라 데이터를 처리하고, 처리 결과에 따라 제어 신호를 생성할 수 있다. 제1 메모리(192)와 제1 프로세서(191)는 하나의 제어 회로로 구현되거나 복수의 회로로 구현될 수 있다.The first processor 191 may generate a control signal for controlling the operation of the air conditioner 1 based on instructions, applications, data, and/or programs stored in the first memory 192. The first processor 191 is hardware and may include a logic circuit and an operation circuit. The first processor 191 may process data according to programs and/or instructions provided from the first memory 192 and generate control signals according to the processing results. The first memory 192 and the first processor 191 may be implemented as one control circuit or as a plurality of circuits.
예시된 실외기(1a)의 구성 요소들 중 일부가 생략되거나, 예시된 실외기(1a)의 구성 요소들 이외에 다른 구성 요소가 추가될 수도 있다. 예를 들면, 실외기(1a)는 컨트롤 패널을 더 포함할 수 있다. 컨트롤 패널은 실외기(1a)의 캐비닛(10)에 마련될 수 있다. 컨트롤 패널은 공기 조화기(1)의 동작과 관련된 사용자 입력을 획득할 수 있으며, 공기 조화기(1)의 동작에 관한 정보를 출력할 수 있다. 컨트롤 패널은 사용자 입력에 대응하는 전기적 신호(전압 또는 전류)를 제1 제어부(190)로 전송할 수 있다. 제1 제어부(190)는 컨트롤 패널로부터 전송된 전기적 신호에 기초하여 공기 조화기(1)의 동작을 제어할 수 있다. 컨트롤 패널은 버튼 및 디스플레이를 포함할 수 있다.Some of the components of the illustrated outdoor unit 1a may be omitted, or other components may be added in addition to the illustrated components of the outdoor unit 1a. For example, the outdoor unit 1a may further include a control panel. The control panel may be provided in the cabinet 10 of the outdoor unit 1a. The control panel can obtain user input related to the operation of the air conditioner 1 and output information about the operation of the air conditioner 1. The control panel may transmit an electrical signal (voltage or current) corresponding to the user input to the first control unit 190. The first control unit 190 may control the operation of the air conditioner 1 based on an electrical signal transmitted from the control panel. The control panel may include buttons and displays.
도 4는 일 실시예에 따른 실내기의 제어 구성을 도시한 블록도이다.Figure 4 is a block diagram showing a control configuration of an indoor unit according to an embodiment.
도 4를 참조하면, 공기 조화기(1)의 실내기(1b)는 팽창 밸브(220), 실내팬(250), 실내 열교환기 온도 센서(211), 실내 습도 센서(212), 실내 온도 센서(213), 제2 통신 인터페이스(260) 및 제2 제어부(270)를 포함할 수 있다. 또한, 실내기(1b)는 사용자 인터페이스(280)를 포함할 수 있다.Referring to FIG. 4, the indoor unit 1b of the air conditioner 1 includes an expansion valve 220, an indoor fan 250, an indoor heat exchanger temperature sensor 211, an indoor humidity sensor 212, and an indoor temperature sensor ( 213), a second communication interface 260, and a second control unit 270. Additionally, the indoor unit 1b may include a user interface 280.
제2 제어부(270)는 제2 메모리(272) 및 제2 프로세서(271)를 포함할 수 있다. 실내기(1b)의 제2 제어부(270)는 실내기(1b)의 구성 요소들과 전기적으로 연결될 수 있고, 각 구성 요소들의 동작을 제어할 수 있다. The second control unit 270 may include a second memory 272 and a second processor 271. The second control unit 270 of the indoor unit 1b may be electrically connected to the components of the indoor unit 1b and may control the operation of each component.
실내 열교환기 온도 센서(211)는 검출한 실내 열교환기(230)의 온도에 대응하는 전기적 신호를 제2 프로세서(271)로 전송할 수 있다. 실내 습도 센서(212)는 검출한 실내 습도에 대응하는 전기적 신호를 제2 프로세서(271)로 전송할 수 있다. 실내 온도 센서(213)는 검출한 실내 온도에 대응하는 전기적 신호를 제2 프로세서(271)로 전송할 수 있다.The indoor heat exchanger temperature sensor 211 may transmit an electrical signal corresponding to the detected temperature of the indoor heat exchanger 230 to the second processor 271. The indoor humidity sensor 212 may transmit an electrical signal corresponding to the detected indoor humidity to the second processor 271. The indoor temperature sensor 213 may transmit an electrical signal corresponding to the detected indoor temperature to the second processor 271.
팽창 밸브(220)는 냉매를 감압할 수 있다. 또한, 팽창 밸브(220)는 실외 열교환기(130) 또는 실내 열교환기(230)에서 충분한 열교환이 이루어지도록 공급되는 냉매의 양을 조절할 수도 있다. 팽창 밸브(220)는 냉매가 좁은 유로를 통과하면서 압력이 감소하는 냉매의 교축(throttling) 작용을 이용하여 냉매를 감압한다. The expansion valve 220 can depressurize the refrigerant. Additionally, the expansion valve 220 may adjust the amount of refrigerant supplied to ensure sufficient heat exchange in the outdoor heat exchanger 130 or the indoor heat exchanger 230. The expansion valve 220 depressurizes the refrigerant by using the throttling action of the refrigerant, in which the pressure decreases as the refrigerant passes through a narrow passage.
제2 통신 인터페이스(260)는 실외기(1a)와 통신을 수행할 수 있다. 실내기(1b)의 제2 통신 인터페이스(260)는 제2 제어부(270)로부터 전달되는 제어 신호를 실외기(1a)로 전송하거나, 실외기(200)로부터 전송되는 제어 신호를 제2 제어부(270)로 전달할 수 있다. 예를 들면, 팽창 밸브(220)의 개도를 조절하기 위한 제어 신호가 실외기(1a)로부터 실내기(1b)로 전달될 수 있다. 제2 제어부(270)는 실외기(1a)의 제1 제어부(190)로부터 전송되는 신호에 기초하여 팽창 밸브(220)의 개도를 조절할 수 있다.The second communication interface 260 can communicate with the outdoor unit 1a. The second communication interface 260 of the indoor unit 1b transmits the control signal transmitted from the second control unit 270 to the outdoor unit 1a, or transmits the control signal transmitted from the outdoor unit 200 to the second control unit 270. It can be delivered. For example, a control signal for adjusting the opening degree of the expansion valve 220 may be transmitted from the outdoor unit 1a to the indoor unit 1b. The second control unit 270 may adjust the opening degree of the expansion valve 220 based on a signal transmitted from the first control unit 190 of the outdoor unit 1a.
또한, 제2 통신 인터페이스(260)는 공기 조화 공간에 별도로 마련되는 액세스 포인트(access point, AP)(미도시)와 통신을 수행할 수 있으며, 액세스 포인트를 통하여 네트워크와 연결될 수 있다. 제2 통신 인터페이스(260)는 액세스 포인트를 통해 사용자 단말 장치(예를 들면, 스마트폰)와 통신을 수행할 수 있다. 제2 통신 인터페이스(260)는 액세스 포인트에 접속된 사용자 단말 장치의 정보를 수신할 수 있으며, 사용자 단말 장치의 정보를 제2 제어부(270)로 전달할 수 있다. 이를 통해, 사용자는 공기 조화기(1)를 원격으로 제어할 수 있다.Additionally, the second communication interface 260 can communicate with an access point (AP) (not shown) provided separately in the air conditioning space, and can be connected to a network through the access point. The second communication interface 260 may communicate with a user terminal device (eg, a smartphone) through an access point. The second communication interface 260 can receive information on the user terminal device connected to the access point and transmit the information on the user terminal device to the second control unit 270. Through this, the user can remotely control the air conditioner (1).
제2 메모리(272)는, 공기 조화기(1)의 동작에 필요한 각종 정보를 기억/저장할 수 있다. 제2 메모리(272)는 공기 조화기(1)의 동작에 필요한 인스트럭션, 어플리케이션, 데이터 및/또는 프로그램을 저장할 수 있다. 예를 들면, 제2 메모리(272)는 공기 조화기(1)의 냉방 운전, 난방 운전 및 제상 운전을 위한 프로그램들을 저장할 수 있다. 제2 메모리(272)는 제1 메모리(192)와 같이 휘발성 메모리 및/또는 비휘발성 메모리를 포함할 수 있다.The second memory 272 can memorize/store various information necessary for the operation of the air conditioner 1. The second memory 272 may store instructions, applications, data, and/or programs necessary for the operation of the air conditioner 1. For example, the second memory 272 may store programs for cooling, heating, and defrosting operations of the air conditioner 1. Like the first memory 192, the second memory 272 may include volatile memory and/or non-volatile memory.
제2 프로세서(271)는 제2 메모리(272)에 저장된 인스트럭션, 어플리케이션, 데이터 및/또는 프로그램에 기초하여 공기 조화기(1)의 동작을 제어하기 위한 제어 신호를 생성할 수 있다. 제2 프로세서(271)는 하드웨어로서, 논리 회로와 연산 회로를 포함할 수 있다. 제2 프로세서(271)는 제2 메모리(272)로부터 제공된 프로그램 및/또는 인스트럭션에 따라 데이터를 처리하고, 처리 결과에 따라 제어 신호를 생성할 수 있다. 제2 메모리(272)와 제2 프로세서(271)는 하나의 제어 회로로 구현되거나 복수의 회로로 구현될 수 있다.The second processor 271 may generate a control signal for controlling the operation of the air conditioner 1 based on instructions, applications, data, and/or programs stored in the second memory 272. The second processor 271 is hardware and may include a logic circuit and an operation circuit. The second processor 271 may process data according to programs and/or instructions provided from the second memory 272 and generate a control signal according to the processing results. The second memory 272 and the second processor 271 may be implemented as one control circuit or as a plurality of circuits.
사용자 인터페이스(280)는 실내기(1b)의 바디 케이스(201) 또는 도어(204) 중 적어도 하나에 마련될 수 있다. 사용자 인터페이스(280)는 공기 조화기(1)의 동작과 관련된 사용자 입력을 획득할 수 있고, 공기 조화기(1)의 동작에 관한 정보를 출력할 수 있다. 사용자 인터페이스(280)는 사용자 입력에 대응하는 전기적 신호(전압 또는 전류)를 제2 제어부(270)로 전송할 수 있다. 제2 제어부(270)는 사용자 인터페이스(280)로부터 전송된 전기적 신호에 기초하여 공기 조화기(1)의 동작을 제어할 수 있다.The user interface 280 may be provided on at least one of the body case 201 or the door 204 of the indoor unit 1b. The user interface 280 can obtain user input related to the operation of the air conditioner 1 and output information about the operation of the air conditioner 1. The user interface 280 may transmit an electrical signal (voltage or current) corresponding to the user input to the second control unit 270. The second control unit 270 may control the operation of the air conditioner 1 based on the electrical signal transmitted from the user interface 280.
사용자 인터페이스(280)는 복수의 버튼들을 포함할 수 있다. 예를 들면, 복수의 버튼들은, 냉방 운전, 난방 운전, 송풍 운전, 제상 운전 및 제습 운전과 같은 운전 모드를 선택하기 위한 운전 모드 버튼, 실내 공간(공조 공간)의 목표 온도를 설정하기 위한 온도 버튼, 바람의 방향을 설정하기 위한 풍향 버튼 및/또는 바람의 세기(실내팬의 회전 속도)를 설정하기 위한 풍량 버튼을 포함할 수 있다.The user interface 280 may include a plurality of buttons. For example, the plurality of buttons include an operation mode button for selecting operation modes such as cooling operation, heating operation, blowing operation, defrosting operation, and dehumidification operation, and a temperature button for setting the target temperature of the indoor space (air-conditioning space). , it may include a wind direction button to set the wind direction and/or a wind volume button to set the wind strength (rotation speed of the indoor fan).
또한, 사용자 인터페이스(280)는 디스플레이를 포함할 수 있다. 디스플레이는 사용자가 입력한 정보 또는 사용자에게 제공되는 정보를 다양한 화면으로 표시할 수 있다. 예를 들면, 선택된 운전 모드, 풍향, 풍량, 온도와 같은 정보가 이미지 또는 텍스트 중 적어도 하나로 표시될 수 있다.Additionally, user interface 280 may include a display. The display can display information input by the user or information provided to the user on various screens. For example, information such as the selected driving mode, wind direction, wind volume, and temperature may be displayed as at least one of an image or text.
예시된 실내기(1b)의 구성 요소들 중 일부가 생략되거나, 예시된 실내기(1b)의 구성 요소들 이외에 다른 구성 요소가 추가될 수도 있다. 예를 들면, 실내기(1b)는 컨트롤 패널을 더 포함할 수 있다. 컨트롤 패널은 공기 조화기(1)의 동작과 관련된 사용자 입력을 획득할 수 있고, 공기 조화기(1)의 동작에 관한 정보를 출력할 수 있다. Some of the components of the illustrated indoor unit 1b may be omitted, or other components may be added in addition to the components of the illustrated indoor unit 1b. For example, the indoor unit 1b may further include a control panel. The control panel can obtain user input related to the operation of the air conditioner 1 and output information about the operation of the air conditioner 1.
도 3과 도 4에서 설명된 바와 같이, 공기 조화기(1)는 적어도 하나의 제어부(190, 270)를 포함할 수 있다. 실외기(1a)와 실내기(1b)에 각각 제어부가 마련되는 것으로 설명되었으나, 실외기(1a)와 실내기(1b)를 모두 제어 가능한 통합 제어부가 마련될 수도 있다. 이하 공기 조화기(1)의 제어가 실외기(1a)의 제1 제어부(190)에 의해 수행되는 것으로 설명된다.As described in FIGS. 3 and 4, the air conditioner 1 may include at least one control unit 190 or 270. Although it has been described that control units are provided separately for the outdoor unit 1a and the indoor unit 1b, an integrated control unit capable of controlling both the outdoor unit 1a and the indoor unit 1b may be provided. Hereinafter, it will be explained that control of the air conditioner 1 is performed by the first control unit 190 of the outdoor unit 1a.
개시된 공기 조화기(1)는 제습 운전을 수행할 수 있다. 제습 운전은 실내기(1b)의 사용자 인터페이스(280)를 통해 입력되는 운전 모드의 선택에 따라 실시될 수 있다. 일반적으로, 제습 운전은 실내 공기에 포함된 습기를 제거하여 실내 습도를 낮추기 위해 수행된다. 제습 운전에 의해서도 실내 공기가 냉각될 수 있다. The disclosed air conditioner 1 can perform a dehumidifying operation. Dehumidification operation can be performed according to the selection of an operation mode input through the user interface 280 of the indoor unit 1b. Generally, dehumidification operation is performed to lower indoor humidity by removing moisture contained in indoor air. Indoor air can also be cooled by dehumidifying operation.
제습 운전의 주 목적은 냉방이 아니므로, 냉방 운전에서 압축기(110)의 주파수보다 제습 운전에서 압축기(110)의 주파수가 상대적으로 낮게 제어될 수 있다. 또한, 제습 운전에서 압축기(110)의 회전 속도는 냉방 운전에서 압축기(110)의 회전 속도보다 느리게 조절될 수 있다. 압축기(110)의 주파수가 낮아질수록 압축기(110)의 회전 속도도 느려질 수 있다. 제습 운전에서 실외팬(150)의 회전 속도도 냉방 운전에서 실외팬(150)의 회전 속도보다 느리게 조절될 수 있다.Since the main purpose of the dehumidifying operation is not cooling, the frequency of the compressor 110 in the dehumidifying operation may be controlled to be relatively lower than the frequency of the compressor 110 in the cooling operation. Additionally, the rotation speed of the compressor 110 in the dehumidifying operation may be adjusted to be slower than the rotation speed of the compressor 110 in the cooling operation. As the frequency of the compressor 110 decreases, the rotation speed of the compressor 110 may also slow down. The rotation speed of the outdoor fan 150 in the dehumidifying operation may also be adjusted to be slower than the rotation speed of the outdoor fan 150 in the cooling operation.
일반적인 제습 운전에서 압축기(110)는 온 또는 오프를 반복하도록 제어될 수 있다. 이는 실내 온도와 실내 습도를 일정 범위 내로 유지하기 위함이다. 그런데 압축기(110)의 온 또는 오프로 인해 실내 온도의 변동폭이 커지고 실내 습도의 변동폭이 커진다. 예를 들면, 실내 온도가 사용자에 의해 설정된 희망 온도보다 미리 정해진 오프셋 값(ex. 2℃)만큼 낮아지면 압축기(110)가 오프 되고, 실내 온도가 희망 온도보다 오프셋 값(ex. 2℃)만큼 높아지면 압축기(110)가 온 된다. 즉, 실내 온도는 희망 온도 - 오프셋 값부터 희망 온도 + 오프셋 값의 온도 범위 내에서 변동한다. 압축기(110)의 온-오프가 반복되면 전력 소비 효율이 감소하고, 일정하진 않은 실내 온도와 실내 습도 때문에 사용자는 불편함을 느낄 수 있다.In general dehumidification operation, the compressor 110 may be controlled to repeatedly turn on or off. This is to maintain the indoor temperature and humidity within a certain range. However, when the compressor 110 is turned on or off, the fluctuation range of indoor temperature increases and the fluctuation range of indoor humidity increases. For example, when the indoor temperature is lower than the desired temperature set by the user by a predetermined offset value (ex. 2℃), the compressor 110 is turned off, and the indoor temperature is lowered by the offset value (ex. 2℃) than the desired temperature. When it rises, the compressor 110 turns on. That is, the indoor temperature fluctuates within a temperature range from the desired temperature - the offset value to the desired temperature + the offset value. When the compressor 110 is repeatedly turned on and off, power consumption efficiency decreases, and users may feel uncomfortable due to inconsistent indoor temperature and indoor humidity.
개시된 공기 조화기(1)의 제1 제어부(190)는 제습 운전 시 압축기(110)의 온-오프 제어 없이 압축기(110)의 주파수를 적절히 조절하는 쾌적 운전을 수행할 수 있다. 쾌적 운전 시 실내 열교환기(230)의 온도가 노점 온도 이하로 유지될 수 있다. 쾌적 운전을 통해 실내 온도의 변동과 실내 습도의 변동이 감소할 수 있다. 이상적으로는 쾌적 운전을 통해 실내 온도와 실내 습도가 일정하게 유지될 수 있다. 실내 온도의 변동과 실내 습도의 변동이 감소함에 따라 전력 소비 효율이 향상될 수 있고, 사용자에게 보다 쾌적한 실내 환경이 제공될 수 있다.The first control unit 190 of the disclosed air conditioner 1 can perform comfortable operation by appropriately adjusting the frequency of the compressor 110 without on-off control of the compressor 110 during dehumidifying operation. During comfortable operation, the temperature of the indoor heat exchanger 230 may be maintained below the dew point temperature. Through comfortable driving, fluctuations in indoor temperature and indoor humidity can be reduced. Ideally, indoor temperature and indoor humidity can be maintained constant through comfortable driving. As fluctuations in indoor temperature and indoor humidity are reduced, power consumption efficiency can be improved and a more comfortable indoor environment can be provided to users.
이하 제습 운전 시 쾌적 운전을 수행하기 위한 공기 조화기(1)의 제어 방법이 설명된다.Hereinafter, a control method of the air conditioner 1 for performing comfortable operation during dehumidifying operation will be described.
도 5는 일 실시예에 따른 공기 조화기의 제어 방법을 설명하는 순서도이다. 도 6은 도 5에서 설명된 공기 조화기의 제어 방법을 더 상세히 설명하는 순서도이다.Figure 5 is a flowchart explaining a control method of an air conditioner according to an embodiment. FIG. 6 is a flowchart explaining in more detail the control method of the air conditioner described in FIG. 5.
도 5를 참조하면, 공기 조화기(1)의 제1 제어부(190)는 제습 운전 중 실내 습도 센서(212)를 제어하여 실내 습도를 검출하고, 실내 온도 센서(213)를 제어하여 실내 온도를 검출할 수 있다(501). 제1 제어부(190)는 실내 습도 센서(212)와 실내 온도 센서(213)를 제어하기 위한 제어 신호들을 생성할 수 있다. 제2 제어부(270)는 제1 제어부(190)로부터 전송된 제어 신호들에 따라 실내 습도 센서(212)와 실내 온도 센서(213)를 제어하고, 검출된 실내 습도와 검출된 실내 온도에 대응하는 검출 신호들을 제1 제어부(190)로 전송할 수 있다. 실내 습도와 실내 온도의 검출 주기는 설계에 따라 다양하게 결정될 수 있다.Referring to FIG. 5, the first control unit 190 of the air conditioner 1 detects indoor humidity by controlling the indoor humidity sensor 212 during dehumidification operation, and controls the indoor temperature sensor 213 to set the indoor temperature. Can be detected (501). The first control unit 190 may generate control signals for controlling the indoor humidity sensor 212 and the indoor temperature sensor 213. The second control unit 270 controls the indoor humidity sensor 212 and the indoor temperature sensor 213 according to control signals transmitted from the first control unit 190, and generates signals corresponding to the detected indoor humidity and the detected indoor temperature. Detection signals may be transmitted to the first control unit 190. The detection cycle of indoor humidity and indoor temperature can be determined in various ways depending on the design.
제1 제어부(190)는 실내 습도와 실내 온도에 기초하여 쾌적 운전을 수행 하기 위한 조건의 만족 여부를 판단할 수 있다(502). 예를 들어, 도 6을 참조하면, 실내 온도가 미리 정해진 제1 임계 온도 및 사용자에 의해 설정된 희망 온도 이하로 되고(601), 실내 습도가 미리 정해진 임계 습도 이하로 되는 경우(602), 쾌적 운전이 시작될 수 있다(603). The first control unit 190 may determine whether the conditions for comfortable driving are satisfied based on the indoor humidity and indoor temperature (502). For example, referring to FIG. 6, when the indoor temperature is below the predetermined first threshold temperature and the desired temperature set by the user (601) and the indoor humidity is below the predetermined threshold humidity (602), comfortable driving This can begin (603).
구체적으로, 공기 조화기(1)의 제1 제어부(190)는, 제습 운전에서 미리 정해진 제1 시간(예를 들면, 5분) 동안, 실내 온도가 미리 정해진 제1 임계 온도(예를 들면, 23℃) 및 사용자에 의해 설정된 희망 온도 이하로 유지되고, 실내 습도가 미리 정해진 임계 습도(예를 들면, 60%) 이하로 유지됨에 기초하여, 쾌적 운전으로 진입할 수 있다. 제1 시간은 0초부터 10분 범위 내의 다양한 값으로 정해질 수 있다.Specifically, the first control unit 190 of the air conditioner 1 sets the indoor temperature to a predetermined first critical temperature (e.g., 5 minutes) during the dehumidifying operation. 23°C) and is maintained below the desired temperature set by the user, and the indoor humidity is maintained below a predetermined critical humidity (e.g., 60%), comfortable driving can be entered. The first time may be set to various values within the range of 0 seconds to 10 minutes.
다른 예로, 제습 운전에서 제1 시간보다 긴 시간(예: 10분) 동안 실내 온도가 희망 온도보다 낮게 유지되는 경우에도 쾌적 운전이 수행될 수 있다. As another example, comfortable operation may be performed even when the indoor temperature is maintained lower than the desired temperature for a longer time (eg, 10 minutes) than the first time in the dehumidification operation.
제1 제어부(190)는, 쾌적 운전으로 진입에 응답하여, 실내 열교환기(230)의 온도를 노점 온도 이하로 유지하기 위해 압축기(110)의 주파수를 조절할 수 있다(503). 구체적으로, 제1 제어부(190)는 쾌적 운전 시 실내 습도와 실내 온도로부터 노점 온도를 산출할 수 있다(604). 복수의 실내 습도 값들과 복수의 실내 온도 값들에 대응하는 복수의 노점 온도 값들이 포함된 노점 온도 테이블이 메모리(192)에 미리 저장될 수 있다. 제1 제어부(190)는 노점 온도 테이블로부터 현재 실내 습도와 현재 실내 온도에 대응하는 노점 온도를 획득할 수 있다.In response to entering comfortable driving, the first control unit 190 may adjust the frequency of the compressor 110 to maintain the temperature of the indoor heat exchanger 230 below the dew point temperature (503). Specifically, the first control unit 190 can calculate the dew point temperature from the indoor humidity and indoor temperature during comfortable driving (604). A dew point temperature table including a plurality of indoor humidity values and a plurality of dew point temperature values corresponding to the plurality of indoor temperature values may be stored in advance in the memory 192. The first control unit 190 may obtain the dew point temperature corresponding to the current indoor humidity and current indoor temperature from the dew point temperature table.
제1 제어부(190)는 실내 열교환기(230)의 온도와 노점 온도 간 차이값 및 실내 열교환기(230)의 온도 변화값을 획득할 수 있다(605). 실내 열교환기(230)의 온도 변화값은 이전 검출 시점(N-1 주기)에 검출된 실내 열교환기(230)의 이전 온도와 현재 검출 시점(N 주기)에 검출된 실내 열교환기(230)의 현재 온도 간 차이를 의미한다.The first control unit 190 may obtain a difference value between the temperature and dew point temperature of the indoor heat exchanger 230 and a temperature change value of the indoor heat exchanger 230 (605). The temperature change value of the indoor heat exchanger 230 is the difference between the previous temperature of the indoor heat exchanger 230 detected at the previous detection time (N-1 cycle) and the indoor heat exchanger 230 detected at the current detection time (N cycle). It refers to the difference between the current temperatures.
제1 제어부(190)는 실내 열교환기(230)의 온도와 노점 온도 간 차이값 및 실내 열교환기(230)의 온도 변화값에 기초하여 압축기(110)의 주파수 증가 또는 압축기(110)의 주파수 감소를 결정할 수 있다(606). 제1 제어부(190)는 메모리(192)에 저장된 퍼지 테이블(fuzzy table)(700)로부터 실내 열교환기(230)의 온도와 노점 온도 간 차이값 및 실내 열교환기(230)의 온도 변화값에 대응하는 압축기(110)의 주파수 증가값 또는 압축기(110)의 주파의 감소값을 결정할 수 있다. 압축기 주파수의 조절에 의해, 실내 열교환기(230)의 온도는 노점 온도를 추종할 수 있다.The first control unit 190 increases the frequency of the compressor 110 or decreases the frequency of the compressor 110 based on the difference value between the temperature and the dew point temperature of the indoor heat exchanger 230 and the temperature change value of the indoor heat exchanger 230. can be determined (606). The first control unit 190 corresponds to the difference value between the temperature and dew point temperature of the indoor heat exchanger 230 and the temperature change value of the indoor heat exchanger 230 from the fuzzy table 700 stored in the memory 192. The increase in frequency of the compressor 110 or the decrease in frequency of the compressor 110 can be determined. By adjusting the compressor frequency, the temperature of the indoor heat exchanger 230 can follow the dew point temperature.
퍼지 테이블(fuzzy table)(700)을 이용한 압축기(110)의 주파수 조절은 도 7에서 상세히 설명된다.Frequency control of the compressor 110 using the fuzzy table 700 is explained in detail in FIG. 7.
쾌적 운전 중 제1 제어부(190)는 쾌적 운전의 중지 조건이 만족되는지 여부를 판단할 수 있다(504). 공기 조화기(1)는 쾌적 운전의 중지에 따라 제습 운전으로 복귀할 수 있다(505). 예를 들면, 제1 제어부(190)는 쾌적 운전에서 미리 정해진 제2 시간(예를 들면, 5분) 동안, 실내 온도가 제1 임계 온도(예를 들면, 23℃)보다 높은 제2 임계 온도(예를 들면, 26℃) 이상으로 유지는 경우 쾌적 운전을 중지할 수 있다. 제1 제어부(190)는 쾌적 운전에서 미리 정해진 제2 시간(예를 들면, 5분) 동안 실내 습도가 임계 습도(예를 들면, 60%) 이상으로 유지되는 경우, 쾌적 운전을 중지할 수 있다.During comfortable driving, the first control unit 190 may determine whether the condition for stopping comfortable driving is satisfied (504). The air conditioner 1 may return to dehumidifying operation when comfortable operation is stopped (505). For example, the first control unit 190 sets the indoor temperature to a second threshold temperature higher than the first threshold temperature (e.g., 23° C.) for a predetermined second time (e.g., 5 minutes) in comfortable driving. If the temperature is maintained above (for example, 26℃), comfortable driving may cease. The first control unit 190 may stop comfortable driving when the indoor humidity is maintained above the critical humidity (eg, 60%) for a second predetermined time (eg, 5 minutes) in comfortable driving. .
다른 예로, 제1 제어부(190)는 실내 습도 센서(212)의 에러가 검출되는 경우에도 쾌적 운전을 중지할 수 있다. 제1 제어부(190)는 실내기(1b)로부터 실내 습도에 관한 검출 신호가 수신되지 않는 경우 또는 실내 습도의 변화가 비정상으로 식별되는 경우에 실내 습도 센서(212)의 에러가 발생한 것으로 판단할 수 있다.As another example, the first control unit 190 may stop comfortable driving even when an error in the indoor humidity sensor 212 is detected. The first control unit 190 may determine that an error in the indoor humidity sensor 212 has occurred when a detection signal related to indoor humidity is not received from the indoor unit 1b or when a change in indoor humidity is identified as abnormal. .
또한, 공기 조화기(1)의 제1 제어부(190)는 압축기 주파수의 변화에 기초하여 실외팬(150)의 회전 속도와 팽창 밸브(220)의 개도를 조절할 수 있다. 제1 메모리(192)에는 압축기 주파수에 대응하는 실외팬(150)의 회전 속도와 팽창 밸브(220)의 개도가 포함된 제어데이터 테이블이 미리 저장될 수 있다. 예를 들면, 제1 제어부(190)는 압축기(110)의 주파수의 증가에 대응하여, 실외기(1a)에 포함된 실외팬(150)의 회전 속도를 증가시키고, 실내기(1b)에 포함된 팽창 밸브(220)의 개도를 증가시킬 수 있다. 반대로, 제1 제어부(190)는 압축기(110)의 주파수의 감소에 대응하여, 실외기(1a)에 포함된 실외팬(150)의 회전 속도를 감소시키고, 실내기(1b)에 포함된 팽창 밸브(220)의 개도를 감소시킬 수 있다.Additionally, the first control unit 190 of the air conditioner 1 may adjust the rotational speed of the outdoor fan 150 and the opening degree of the expansion valve 220 based on changes in compressor frequency. A control data table including the rotational speed of the outdoor fan 150 and the opening degree of the expansion valve 220 corresponding to the compressor frequency may be stored in advance in the first memory 192. For example, in response to an increase in the frequency of the compressor 110, the first control unit 190 increases the rotation speed of the outdoor fan 150 included in the outdoor unit 1a and expands the outdoor fan 150 included in the indoor unit 1b. The opening degree of the valve 220 can be increased. On the contrary, the first control unit 190 reduces the rotation speed of the outdoor fan 150 included in the outdoor unit 1a in response to a decrease in the frequency of the compressor 110, and the expansion valve included in the indoor unit 1b ( 220) can be reduced.
제습 운전 도중에 수행되는 쾌적 운전에서 압축기(110)의 주파수는 제습 운전에서 압축기(110)의 주파수보다 상대적으로 낮게 제어될 수 있다. 또한, 쾌적 운전에서 압축기(110)의 제1 회전 속도는 제습 운전에서 압축기(110)의 제2 회전 속도보다 느리게 조절될 수 있다. 압축기(110)의 주파수가 낮아질수록 압축기(110)의 회전 속도도 느려질 수 있다. 쾌적 운전에서 실외팬(150)의 제3 회전 속도도 제습 운전에서 실외팬(150)의 제4 회전 속도보다 느리게 조절될 수 있다.In the comfort operation performed during the dehumidification operation, the frequency of the compressor 110 may be controlled to be relatively lower than the frequency of the compressor 110 in the dehumidification operation. Additionally, the first rotation speed of the compressor 110 in comfortable operation may be adjusted to be slower than the second rotation speed of the compressor 110 in dehumidification operation. As the frequency of the compressor 110 decreases, the rotation speed of the compressor 110 may also slow down. The third rotation speed of the outdoor fan 150 in comfortable operation may also be adjusted to be slower than the fourth rotation speed of the outdoor fan 150 in dehumidification operation.
또한, 전술된 바와 같이, 제습 운전에서 압축기(110)의 주파수는 냉방 운전에서 압축기(110)의 주파수보다 낮게 조절되고, 제습 운전에서 압축기(110)의 회전 속도 및 실외팬(150)의 회전 속도는 냉방 운전에서 압축기(110)의 회전 속도 및 실외팬(150)의 회전 속도보다 느리게 조절된다.In addition, as described above, the frequency of the compressor 110 in the dehumidifying operation is adjusted to be lower than the frequency of the compressor 110 in the cooling operation, and the rotation speed of the compressor 110 and the rotation speed of the outdoor fan 150 in the dehumidification operation is adjusted to be slower than the rotation speed of the compressor 110 and the rotation speed of the outdoor fan 150 in cooling operation.
따라서 쾌적 운전에서 압축기(110)의 주파수는 냉방 운전에서 압축기(110)의 주파수보다 낮게 조절되고, 쾌적 운전에서 압축기(110)의 회전 속도 및 실외팬(150)의 회전 속도는 냉방 운전에서 압축기(110)의 회전 속도 및 실외팬(150)의 회전 속도보다 느리게 조절될 수 있다.Therefore, the frequency of the compressor 110 in comfortable operation is adjusted to be lower than the frequency of the compressor 110 in cooling operation, and the rotational speed of the compressor 110 and the rotational speed of the outdoor fan 150 in comfortable operation are adjusted to the compressor (110) in cooling operation. 110) and may be adjusted to be slower than the rotation speed of the outdoor fan 150.
개시된 공기 조화기(1)는 압축기(110)의 온-오프 제어 없이 실내 열교환기(230)의 온도를 노점 온도 이하로 유지하는 쾌적 운전을 수행함으로써 압축기 주파수의 변동성을 감소시킬 수 있다. 또한, 실외팬(150)의 회전 속도의 변동성도 감소할 수 있다.The disclosed air conditioner 1 can reduce the variability of compressor frequency by performing comfortable operation to maintain the temperature of the indoor heat exchanger 230 below the dew point temperature without on-off control of the compressor 110. Additionally, the variability of the rotation speed of the outdoor fan 150 may be reduced.
도 7은 일 실시예에 따른 퍼지 테이블을 도시한다.Figure 7 shows a fuzzy table according to one embodiment.
도 7의 퍼지 테이블(700)을 참조하면, 공기 조화기(1)의 제1 제어부(190)는 메모리(192)에 미리 저장된 퍼지 테이블(fuzzy table)(700)을 이용하여 압축기 주파수의 증가값 또는 감소값을 결정할 수 있다. 퍼지 테이블(700)에서 Δfa는 압축기 주파수의 조절값으로서 압축기 주파수의 증가값 또는 감소값을 나타낸다.Referring to the fuzzy table 700 of FIG. 7, the first control unit 190 of the air conditioner 1 uses the fuzzy table 700 previously stored in the memory 192 to determine the increase in compressor frequency. Alternatively, the reduction value can be determined. In the fuzzy table 700, Δfa is a control value of the compressor frequency and represents an increase or decrease in the compressor frequency.
구체적으로, 공기 조화기(1)는 쾌적 운전 시 미리 정해진 검출 주기마다 실내 열교환기(230)의 온도와 노점 온도 간 차이값(Td(N)) 및 실내 열교환기(230)의 온도 변화값(ΔTd)을 산출할 수 있다. 실내 열교환기(230)의 온도 변화값은 이전 검출 시점(N-1 주기)에 검출된 실내 열교환기(230)의 이전 온도(Td(N-1))와 현재 검출 시점(N 주기)에 검출된 실내 열교환기(230)의 현재 온도(Td(N)) 간 차이를 의미한다. 즉, 실내 열교환기(230)의 온도 변화값(ΔTd)은 현재 온도(Td(N))로부터 이전 온도(Td(N-1))를 감산함으로써 획득될 수 있다. Specifically, the air conditioner 1 displays the difference value (Td(N)) between the temperature and dew point temperature of the indoor heat exchanger 230 and the temperature change value of the indoor heat exchanger 230 ( ΔTd) can be calculated. The temperature change value of the indoor heat exchanger 230 is the previous temperature (Td(N-1)) of the indoor heat exchanger 230 detected at the previous detection time (N-1 cycle) and the current detection time (N cycle). It means the difference between the current temperature (Td(N)) of the indoor heat exchanger 230. That is, the temperature change value (ΔTd) of the indoor heat exchanger 230 can be obtained by subtracting the previous temperature (Td(N-1)) from the current temperature (Td(N)).
공기 조화기(1)의 제1 제어부(190)는 퍼지 테이블(700)로부터 실내 열교환기(230)의 온도와 노점 온도 간 차이값(Td(N)) 및 실내 열교환기(230)의 온도 변화값(ΔTd)에 대응하는 압축기 주파수의 조절값(증가값 또는 감소값)을 결정할 수 있다.The first control unit 190 of the air conditioner 1 determines the difference value (Td(N)) between the temperature and dew point temperature of the indoor heat exchanger 230 and the temperature change of the indoor heat exchanger 230 from the purge table 700. The adjustment value (increase or decrease) of the compressor frequency corresponding to the value (ΔTd) can be determined.
예를 들면, 도 7의 퍼지 테이블(700)에서, 실내 열교환기(230)의 온도와 노점 온도 간 차이값(Td(N))이 E1이고, 실내 열교환기(230)의 온도 변화값(ΔTd)이 -dE2으로 산출된 경우, 압축기 주파수의 조절값(Δfa)은 -df1으로 결정될 수 있다. 제1 제어부(190)는 압축기(110)의 현재 주파수에 조절값(Δfa)을 합산하여 압축기(110)의 주파수를 조절할 수 있다. 즉, 압축기(110)의 주파수가 df1만큼 감소할 수 있다. 압축기 주파수의 단위는 헤르츠(Hz)일 수 있으며, 도 7에 예시된 -df6부터 df2는 다양한 수치로 정해질 수 있다.For example, in the purge table 700 of FIG. 7, the difference value (Td(N)) between the temperature of the indoor heat exchanger 230 and the dew point temperature is E1, and the temperature change value (ΔTd) of the indoor heat exchanger 230 is E1. ) is calculated as -dE2, the adjustment value (Δfa) of the compressor frequency can be determined as -df1. The first control unit 190 may adjust the frequency of the compressor 110 by adding the adjustment value Δfa to the current frequency of the compressor 110. That is, the frequency of the compressor 110 may be reduced by df1. The unit of compressor frequency may be hertz (Hz), and -df6 to df2 illustrated in FIG. 7 may be set to various values.
도 8은 일반적인 제습 운전 시 실내 습도의 변화, 실내 온도의 변화 및 압축기의 주파수 변화를 나타내는 그래프이다.Figure 8 is a graph showing changes in indoor humidity, changes in indoor temperature, and changes in compressor frequency during general dehumidification operation.
도 8을 참조하면, 공기 조화기(1)의 제습 운전이 시작되면 실내 온도와 실내 습도를 빠르게 낮추기 위해 압축기(110)는 최대 주파수(f1)로 동작한다. 압축기(110)는 실내 온도가 미리 정해진 제1 온도(c1)에 도달할 때까지 최대 주파수(f1)로 동작하고, 실내 온도가 제1 온도(c1)에 도달하는 t1 시점에 압축기(110)는 오프된다. 제1 온도(c1)는 설정된 희망 온도보다 오프셋 값만큼 낮은 온도일 수 있다. 실내 온도가 감소함과 동시에 실내 습도도 감소할 수 있다. 실내 습도는 제습 운전 시작 이후 감소하여 t1 시점에 제1 습도(h1)에 도달할 수 있다. 제1 습도(h1)는 전술한 임계 습도를 의미할 수 있다.Referring to FIG. 8, when the dehumidifying operation of the air conditioner 1 starts, the compressor 110 operates at the maximum frequency f1 to quickly lower the indoor temperature and indoor humidity. The compressor 110 operates at the maximum frequency (f1) until the indoor temperature reaches the first predetermined temperature (c1), and at time t1 when the indoor temperature reaches the first temperature (c1), the compressor 110 operates. It turns off. The first temperature c1 may be a temperature lower than the set desired temperature by an offset value. As the indoor temperature decreases, indoor humidity may also decrease. The indoor humidity may decrease after the start of the dehumidification operation and reach the first humidity (h1) at time t1. The first humidity (h1) may mean the above-described critical humidity.
t1 시점에 압축기(110)가 오프되면 실내 온도와 실내 습도는 다시 증가한다. 실내 온도가 제2 온도(c2)에 도달하는 t2 시점에 압축기(110)는 다시 온 되고 최대 주파수(f1)으로 동작한다. 제2 온도(c2)는 설정된 희망 온도보다 오프셋 값만큼 높은 온도이다. 압축기(110)의 구동에 따라 실내 온도와 실내 습도는 다시 감소한다. 이후 실내 온도가 감소하여 다시 제1 온도(c1)에 도달하는 t3 시점에 압축기(110)는 다시 오프된다.When the compressor 110 is turned off at time t1, the indoor temperature and indoor humidity increase again. At time t2 when the indoor temperature reaches the second temperature c2, the compressor 110 turns on again and operates at the maximum frequency f1. The second temperature c2 is a temperature higher than the set desired temperature by an offset value. As the compressor 110 is driven, the indoor temperature and indoor humidity decrease again. Afterwards, the compressor 110 is turned off again at time t3 when the indoor temperature decreases and reaches the first temperature c1 again.
도 8에 도시된 바와 같이, 압축기(110)의 온-오프를 반복하는 일반적인 제습 운전에서는 실내 온도의 변동폭과 실내 습도의 변동폭이 상대적으로 큰 것을 알 수 있다.As shown in FIG. 8, it can be seen that in a general dehumidification operation in which the compressor 110 is repeatedly turned on and off, the range of fluctuations in indoor temperature and indoor humidity are relatively large.
도 9는 제습 운전 중 쾌적 운전이 수행되는 경우 실내 습도의 변화, 실내 온도의 변화 및 압축기의 주파수 변화를 나타내는 그래프이다.Figure 9 is a graph showing the change in indoor humidity, change in indoor temperature, and change in frequency of the compressor when comfortable operation is performed during dehumidification operation.
도 9를 참조하면, 개시된 공기 조화기(1)는 제습 운전 시 실내 온도와 실내 습도를 빠르게 낮추기 위해 압축기(110)를 최대 주파수(f1)로 동작시킨다. 그러나 도 8에서 설명된 일반적인 제습 운전과 다르게, 개시된 공기 조화기(1)는 실내 온도가 제3 온도(c3)에 도달하고 실내 습도가 제3 습도(h3)에 도달한 이후 미리 정해진 제1 시간이 경과한 t1 시점부터, 압축기(110)의 온-오프 제어 없이 압축기(110)의 주파수를 적절히 조절하는 쾌적 운전을 수행할 수 있다. Referring to FIG. 9, the disclosed air conditioner 1 operates the compressor 110 at the maximum frequency f1 to quickly lower the indoor temperature and indoor humidity during dehumidification operation. However, unlike the general dehumidifying operation described in FIG. 8, the disclosed air conditioner 1 operates for a predetermined first time after the indoor temperature reaches the third temperature c3 and the indoor humidity reaches the third humidity h3. From this time point t1, comfortable operation can be performed by appropriately adjusting the frequency of the compressor 110 without on-off control of the compressor 110.
제3 온도(c3)는 사용자에 의해 설정된 희망 온도보다 낮거나 동일할 수 있다. 또한, 제3 온도(c3)는 미리 정해진 제1 임계 온도보다 낮거나 동일할 수 있다. 제3 습도(h3)는 미리 정해진 임계 습도보다 낮거나 동일할 수 있다. The third temperature c3 may be lower than or equal to the desired temperature set by the user. Additionally, the third temperature c3 may be lower than or equal to the first predetermined critical temperature. The third humidity (h3) may be lower than or equal to a predetermined threshold humidity.
쾌적 운전 시 실내 열교환기(230)의 온도가 노점 온도 이하로 유지되도록 압축기(110)의 주파수가 조절될 수 있다. 쾌적 운전 시 압축기(110)의 주파수는 실내 열교환기(230)의 온도와 노점 온도 간 차이값 및 실내 열교환기(230)의 온도 변화값에 기초하여 조절될 수 있다. 쾌적 운전 동안 압축기 주파수의 변동폭은 일반 제습 운전에서 압축기 주파수의 변동폭보다 작다. t1 시점 이후 공기 조화기(1)는 퍼지 테이블(700)을 이용하여 압축기(110)의 주파수를 조절할 수 있다. 이로 인해 압축기(110)의 주파수는 최대 주파수(f1)보다 낮은 최적 주파수(f2)를 추종할 수 있다. 이에 따라 실내 열교환기(230)의 온도는 노점 온도를 추종할 수 있다.During comfortable operation, the frequency of the compressor 110 may be adjusted so that the temperature of the indoor heat exchanger 230 is maintained below the dew point temperature. During comfortable operation, the frequency of the compressor 110 may be adjusted based on the difference between the temperature and dew point temperature of the indoor heat exchanger 230 and the temperature change value of the indoor heat exchanger 230. The fluctuation range of the compressor frequency during comfortable operation is smaller than the fluctuation range of the compressor frequency during general dehumidification operation. After time t1, the air conditioner 1 can adjust the frequency of the compressor 110 using the purge table 700. Because of this, the frequency of the compressor 110 can follow the optimal frequency (f2), which is lower than the maximum frequency (f1). Accordingly, the temperature of the indoor heat exchanger 230 can follow the dew point temperature.
즉, 도 9에 나타난 바와 같이, 제습 운전 도중에 수행되는 쾌적 운전에서 압축기(110)의 주파수는 제습 운전에서 압축기(110)의 주파수보다 상대적으로 낮게 제어될 수 있다. 또한, 쾌적 운전에서 압축기(110)의 제1 회전 속도는 제습 운전에서 압축기(110)의 제2 회전 속도보다 느리게 조절될 수 있다. 압축기(110)의 주파수가 낮아질수록 압축기(110)의 회전 속도도 느려질 수 있다. 쾌적 운전에서 실외팬(150)의 제3 회전 속도도 제습 운전에서 실외팬(150)의 제4 회전 속도보다 느리게 조절될 수 있다.That is, as shown in FIG. 9, the frequency of the compressor 110 in the comfort operation performed during the dehumidification operation may be controlled to be relatively lower than the frequency of the compressor 110 in the dehumidification operation. Additionally, the first rotation speed of the compressor 110 in comfortable operation may be adjusted to be slower than the second rotation speed of the compressor 110 in dehumidification operation. As the frequency of the compressor 110 decreases, the rotation speed of the compressor 110 may also slow down. The third rotation speed of the outdoor fan 150 in comfortable operation may also be adjusted to be slower than the fourth rotation speed of the outdoor fan 150 in dehumidification operation.
t1 시점 이후 압축기(110)의 주파수가 낮아짐으로 인해 실내 온도가 약간 상승하고 실내 습도도 약간 상승할 수 있다. 그러나 실내 온도의 변동과 실내 습도의 변동이 감소하게 되고, 이상적으로는 실내 온도와 실내 습도가 일정하게 유지될 수 있다.Since the frequency of the compressor 110 is lowered after time t1, the indoor temperature may slightly increase and the indoor humidity may also slightly increase. However, fluctuations in indoor temperature and indoor humidity are reduced, and ideally, indoor temperature and indoor humidity can be maintained constant.
이와 같이, 개시된 공기 조화기 및 그 제어 방법은 제습 운전 시 미리 정해진 조건에 기초하여 압축기의 온-오프 제어 없이 압축기의 주파수를 적절히 조절하는 쾌적 운전을 수행함으로써 실내 온도의 변동과 실내 습도의 변동을 줄일 수 있다. 실내 온도의 변동과 실내 습도의 변동이 감소함에 따라 전력 소비 효율이 향상될 수 있고, 사용자에게 보다 쾌적한 실내 환경이 제공될 수 있다.As such, the disclosed air conditioner and its control method perform comfortable operation by appropriately adjusting the frequency of the compressor without on-off control of the compressor based on predetermined conditions during dehumidification operation, thereby reducing fluctuations in indoor temperature and indoor humidity. It can be reduced. As fluctuations in indoor temperature and indoor humidity are reduced, power consumption efficiency can be improved and a more comfortable indoor environment can be provided to users.
한편, 개시된 실시예들은 컴퓨터에 의해 실행 가능한 명령어를 저장하는 저장매체의 형태로 구현될 수 있다. 명령어는 프로그램 코드의 형태로 저장될 수 있으며, 프로세서에 의해 실행되었을 때, 프로그램 모듈을 생성하여 개시된 실시예들의 동작을 수행할 수 있다.Meanwhile, the disclosed embodiments may be implemented in the form of a storage medium that stores instructions executable by a computer. Instructions may be stored in the form of program code, and when executed by a processor, may create program modules to perform operations of the disclosed embodiments.
기기로 읽을 수 있는 저장매체는, 비일시적(non-transitory) 저장매체의 형태로 제공될 수 있다. 여기서, '비일시적 저장매체'는 실재(tangible)하는 장치이고, 신호(signal)(예: 전자기파)를 포함하지 않는다는 것을 의미할 뿐이며, 이 용어는 데이터가 저장매체에 반영구적으로 저장되는 경우와 임시적으로 저장되는 경우를 구분하지 않는다. 예로, '비일시적 저장매체'는 데이터가 임시적으로 저장되는 버퍼를 포함할 수 있다.A storage medium that can be read by a device may be provided in the form of a non-transitory storage medium. Here, 'non-transitory storage medium' simply means that it is a tangible device and does not contain signals (e.g. electromagnetic waves). This term refers to cases where data is semi-permanently stored in a storage medium and temporary storage media. It does not distinguish between cases where it is stored as . For example, a 'non-transitory storage medium' may include a buffer where data is temporarily stored.
본 문서에 개시된 다양한 실시예들에 따른 방법은 컴퓨터 프로그램 제품(computer program product)에 포함되어 제공될 수 있다. 컴퓨터 프로그램 제품은 상품으로서 판매자 및 구매자 간에 거래될 수 있다. 컴퓨터 프로그램 제품은 기기로 읽을 수 있는 저장 매체(예: compact disc read only memory (CD-ROM))의 형태로 배포되거나, 또는 어플리케이션 스토어(예: 플레이 스토어TM)를 통해 또는 두개의 사용자 장치들(예: 스마트폰들) 간에 직접, 온라인으로 배포(예: 다운로드 또는 업로드)될 수 있다. 온라인 배포의 경우에, 컴퓨터 프로그램 제품(예: 다운로더블 앱(downloadable app))의 적어도 일부는 제조사의 서버, 어플리케이션 스토어의 서버, 또는 중계 서버의 메모리와 같은 기기로 읽을 수 있는 저장 매체에 적어도 일시 저장되거나, 임시적으로 생성될 수 있다.Methods according to various embodiments disclosed in this document may be provided and included in a computer program product. Computer program products are commodities and can be traded between sellers and buyers. The computer program product may be distributed in the form of a machine-readable storage medium (e.g. compact disc read only memory (CD-ROM)) or through an application store (e.g. Play StoreTM) or on two user devices (e.g. It can be distributed (e.g. downloaded or uploaded) directly between smartphones) or online. In the case of online distribution, at least a portion of the computer program product (e.g., a downloadable app) is stored on a machine-readable storage medium, such as the memory of a manufacturer's server, an application store's server, or a relay server. It can be temporarily stored or created temporarily.
이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 본 발명이 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.As described above, the disclosed embodiments have been described with reference to the attached drawings. A person skilled in the art to which the present invention pertains will understand that the present invention can be practiced in forms different from the disclosed embodiments without changing the technical idea or essential features of the present invention. The disclosed embodiments are illustrative and should not be construed as limiting.

Claims (14)

  1. 실내 열교환기를 포함하는 실내기;an indoor unit including an indoor heat exchanger;
    상기 실내 열교환기로 냉매를 공급하는 압축기를 포함하는 실외기;an outdoor unit including a compressor that supplies refrigerant to the indoor heat exchanger;
    상기 실내 열교환기의 온도를 검출하는 실내 열교환기 온도 센서;an indoor heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger;
    실내 습도를 검출하는 실내 습도 센서;an indoor humidity sensor that detects indoor humidity;
    실내 온도를 검출하는 실내 온도 센서;an indoor temperature sensor that detects indoor temperature;
    제습 운전 중 상기 실내 습도와 상기 실내 습도에 기초하여 상기 실내 열교환기의 온도를 노점 온도 이하로 유지하기 위한 쾌적 운전의 수행 여부를 결정하고, 상기 쾌적 운전 시 상기 실내 열교환기의 온도와 상기 노점 온도에 기초하여 상기 압축기의 주파수를 조절하는 제어부;를 포함하는 공기 조화기.During the dehumidifying operation, it is determined whether to perform a comfortable operation to maintain the temperature of the indoor heat exchanger below the dew point temperature based on the indoor humidity and the indoor humidity, and during the comfortable operation, the temperature of the indoor heat exchanger and the dew point temperature are determined. An air conditioner comprising a control unit that adjusts the frequency of the compressor based on.
  2. 제1항에 있어서,According to paragraph 1,
    상기 제어부는The control unit
    상기 제습 운전에서 미리 정해진 제1 시간 동안, 상기 실내 온도가 미리 정해진 제1 임계 온도 및 사용자에 의해 설정된 희망 온도 이하로 유지되고, 상기 실내 습도가 미리 정해진 임계 습도 이하로 유지됨에 기초하여, 상기 쾌적 운전으로 진입하는 공기 조화기.During the first predetermined time in the dehumidifying operation, based on the indoor temperature being maintained below the predetermined first threshold temperature and the desired temperature set by the user, and the indoor humidity being maintained below the predetermined threshold humidity, the comfortable Air conditioner entering the drive.
  3. 제2항에 있어서,According to paragraph 2,
    상기 제어부는The control unit
    상기 쾌적 운전에서 미리 정해진 제2 시간 동안, 상기 실내 온도가 상기 제1 임계 온도보다 높은 제2 임계 온도 이상으로 유지되거나, 상기 실내 습도가 상기 임계 습도 이상으로 유지됨에 기초하여, 상기 쾌적 운전을 중지하는 공기 조화기.During a predetermined second period of time in the comfortable driving, stopping the comfortable driving based on the indoor temperature being maintained above a second threshold temperature that is higher than the first threshold temperature, or the indoor humidity being maintained above the threshold humidity. air conditioner.
  4. 제1항에 있어서,According to paragraph 1,
    상기 제어부는The control unit
    상기 쾌적 운전 시 상기 실내 습도와 상기 실내 온도로부터 상기 노점 온도를 산출하고,Calculating the dew point temperature from the indoor humidity and the indoor temperature during the comfortable driving,
    상기 실내 열교환기의 온도와 상기 노점 온도 간 차이값 및 상기 실내 열교환기의 온도 변화값에 기초하여 상기 압축기의 주파수 증가 또는 상기 압축기의 주파수 감소를 결정하는 공기 조화기.An air conditioner that determines whether to increase the frequency of the compressor or to decrease the frequency of the compressor based on the difference between the temperature of the indoor heat exchanger and the dew point temperature and the temperature change value of the indoor heat exchanger.
  5. 제4항에 있어서,According to paragraph 4,
    상기 제어부는The control unit
    메모리에 저장된 퍼지 테이블(fuzzy table)로부터 상기 실내 열교환기의 온도와 상기 노점 온도 간 차이값 및 상기 실내 열교환기의 온도 변화값에 대응하는 상기 압축기의 주파수의 증가값 또는 상기 압축기의 주파수의 감소값을 결정하는 공기 조화기.From a fuzzy table stored in memory, the difference between the temperature of the indoor heat exchanger and the dew point temperature and the increase in frequency of the compressor or the decrease in frequency of the compressor corresponding to the temperature change value of the indoor heat exchanger air conditioner to determine.
  6. 제4항에 있어서,According to paragraph 4,
    상기 제어부는The control unit
    상기 압축기의 주파수의 증가에 대응하여, 상기 실외기에 포함된 실외팬의 회전 속도를 증가시키고, 상기 실내기에 포함된 팽창 밸브의 개도를 증가시키거나,In response to an increase in the frequency of the compressor, the rotation speed of the outdoor fan included in the outdoor unit is increased, and the opening degree of the expansion valve included in the indoor unit is increased,
    상기 압축기의 주파수의 감소에 대응하여 상기 실외팬의 회전 속도를 감소시키고, 상기 팽창 밸브의 개도를 감소시키는 공기 조화기.An air conditioner that reduces the rotational speed of the outdoor fan and the opening degree of the expansion valve in response to a decrease in the frequency of the compressor.
  7. 제1항에 있어서,According to paragraph 1,
    상기 제어부는The control unit
    상기 쾌적 운전에서 상기 압축기의 제1 회전 속도를 상기 제습 운전에서 상기 압축기의 제2 회전 속도보다 느리게 조절하고,Adjusting the first rotational speed of the compressor in the comfortable operation to be slower than the second rotational speed of the compressor in the dehumidification operation,
    상기 쾌적 운전에서 상기 실외기에 포함된 실외팬의 제3 회전 속도를 상기 제습 운전에서 상기 실외팬의 제4 회전 속도보다 느리게 조절하는 공기 조화기.An air conditioner that adjusts the third rotation speed of the outdoor fan included in the outdoor unit in the comfort operation to be slower than the fourth rotation speed of the outdoor fan in the dehumidification operation.
  8. 실내 열교환기를 포함하는 실내기 및 상기 실내 열교환기로 냉매를 공급하는 압축기를 포함하는 실외기를 포함하는 공기 조화기의 제어 방법에 있어서,A method of controlling an air conditioner including an indoor unit including an indoor heat exchanger and an outdoor unit including a compressor that supplies refrigerant to the indoor heat exchanger,
    제습 운전 중 상기 실내기에 포함된 실내 습도 센서를 이용하여 실내 습도를 검출하고;Detecting indoor humidity using an indoor humidity sensor included in the indoor unit during dehumidification operation;
    상기 제습 운전 중 상기 실내기에 포함된 실내 온도 센서를 이용하여 실내 온도를 검출하고;detecting the indoor temperature using an indoor temperature sensor included in the indoor unit during the dehumidifying operation;
    상기 제습 운전 중 상기 실내 습도와 상기 실내 습도에 기초하여 상기 실내 열교환기의 온도를 노점 온도 이하로 유지하기 위한 쾌적 운전의 수행 여부를 결정하고; 및During the dehumidifying operation, determine whether to perform a comfortable operation to maintain the temperature of the indoor heat exchanger below the dew point temperature based on the indoor humidity and the indoor humidity; and
    상기 쾌적 운전 시 상기 실내 열교환기의 온도와 상기 노점 온도에 기초하여 상기 압축기의 주파수를 조절하는 것;을 포함하는 공기 조화기의 제어 방법. A method of controlling an air conditioner comprising: adjusting the frequency of the compressor based on the temperature of the indoor heat exchanger and the dew point temperature during the comfortable operation.
  9. 제8항에 있어서,According to clause 8,
    상기 쾌적 운전은,The comfortable driving is,
    상기 제습 운전에서 미리 정해진 제1 시간 동안, 상기 실내 온도가 미리 정해진 제1 임계 온도 및 사용자에 의해 설정된 희망 온도 이하로 유지되고, 상기 실내 습도가 미리 정해진 임계 습도 이하로 유지됨에 기초하여 수행되는 공기 조화기.The dehumidification operation is performed on the basis that the indoor temperature is maintained below the predetermined first critical temperature and the desired temperature set by the user for a predetermined first time, and the indoor humidity is maintained below the predetermined critical humidity. Harmonizer.
  10. 제9항에 있어서,According to clause 9,
    상기 쾌적 운전에서 미리 정해진 제2 시간 동안, 상기 실내 온도가 상기 제1 임계 온도보다 높은 제2 임계 온도 이상으로 유지되거나, 상기 실내 습도가 상기 임계 습도 이상으로 유지됨에 기초하여, 상기 쾌적 운전을 중지하는 것;을 더 포함하는 공기 조화기.During a predetermined second period of time in the comfortable driving, stopping the comfortable driving based on the indoor temperature being maintained above a second threshold temperature that is higher than the first threshold temperature, or the indoor humidity being maintained above the threshold humidity. An air conditioner further comprising:
  11. 제8항에 있어서,According to clause 8,
    상기 압축기의 주파수를 조절하는 것은,Adjusting the frequency of the compressor is,
    상기 실내 습도와 상기 실내 습도로부터 상기 노점 온도를 산출하고;calculate the dew point temperature from the indoor humidity and the indoor humidity;
    상기 실내 열교환기의 온도와 상기 노점 온도 간 차이값 및 상기 실내 열교환기의 온도 변화값에 기초하여 상기 압축기의 주파수의 증가 또는 상기 압축기의 주파수의 감소를 결정하는 것;을 포함하는 공기 조화기의 제어 방법.determining an increase in the frequency of the compressor or a decrease in the frequency of the compressor based on the difference between the temperature of the indoor heat exchanger and the dew point temperature and the temperature change value of the indoor heat exchanger. Control method.
  12. 제11항에 있어서,According to clause 11,
    상기 압축기의 주파수를 조절하는 것은,Adjusting the frequency of the compressor is,
    메모리에 저장된 퍼지 테이블(fuzzy table)로부터 상기 실내 열교환기의 온도와 상기 노점 온도 간 차이값 및 상기 실내 열교환기의 온도 변화값에 대응하는 상기 압축기의 주파수의 증가값 또는 상기 압축기의 주파수의 감소값을 결정하는 것;을 포함하는 공기 조화기의 제어 방법.From a fuzzy table stored in memory, the difference between the temperature of the indoor heat exchanger and the dew point temperature and the increase in frequency of the compressor or the decrease in frequency of the compressor corresponding to the temperature change value of the indoor heat exchanger A control method of an air conditioner comprising: determining.
  13. 제11항에 있어서,According to clause 11,
    상기 압축기의 주파수의 증가에 대응하여, 상기 실외기에 포함된 실외팬의 회전 속도를 증가시키고, 상기 실내기에 포함된 팽창 밸브의 개도를 증가시키는 것; 또는In response to an increase in the frequency of the compressor, increasing the rotational speed of the outdoor fan included in the outdoor unit and increasing the opening degree of the expansion valve included in the indoor unit; or
    상기 압축기의 주파수의 감소에 대응하여 상기 실외팬의 회전 속도를 감소시키고, 상기 팽창 밸브의 개도를 감소시키는 것;을 더 포함하는 공기 조화기의 제어 방법.Reducing the rotational speed of the outdoor fan and reducing the opening degree of the expansion valve in response to a decrease in the frequency of the compressor.
  14. 제8항에 있어서,According to clause 8,
    상기 쾌적 운전에서 상기 압축기의 제1 회전 속도는 상기 제습 운전에서 상기 압축기의 제2 회전 속도보다 느리게 조절되고,In the comfortable operation, the first rotational speed of the compressor is adjusted to be slower than the second rotational speed of the compressor in the dehumidification operation,
    상기 쾌적 운전에서 상기 실외기에 포함된 실외팬의 제3 회전 속도는 상기 제습 운전에서 상기 실외팬의 제4 회전 속도보다 느리게 조절되는 공기 조화기의 제어 방법.A method of controlling an air conditioner wherein the third rotation speed of the outdoor fan included in the outdoor unit in the comfortable operation is adjusted to be slower than the fourth rotation speed of the outdoor fan in the dehumidification operation.
PCT/KR2023/009634 2022-09-02 2023-07-07 Air conditioner and controlling method therefor WO2024048970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220111737A KR20240032579A (en) 2022-09-02 2022-09-02 air conditioner and controlling method thereof
KR10-2022-0111737 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048970A1 true WO2024048970A1 (en) 2024-03-07

Family

ID=90098054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009634 WO2024048970A1 (en) 2022-09-02 2023-07-07 Air conditioner and controlling method therefor

Country Status (2)

Country Link
KR (1) KR20240032579A (en)
WO (1) WO2024048970A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043059A (en) * 2002-11-15 2004-05-22 엘지전자 주식회사 Method for air conditioning and dehumidification motion of air canditioner
JP2010133589A (en) * 2008-12-03 2010-06-17 Panasonic Corp Air conditioner
KR20190002790A (en) * 2017-06-29 2019-01-09 삼성전자주식회사 Air conditioner and method for control of air conditioner
US20200378637A1 (en) * 2017-11-29 2020-12-03 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and control method and apparatus therefor
KR102300902B1 (en) * 2014-09-05 2021-09-13 코웨이 주식회사 Apparatus for dehumidifier and method for controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043059A (en) * 2002-11-15 2004-05-22 엘지전자 주식회사 Method for air conditioning and dehumidification motion of air canditioner
JP2010133589A (en) * 2008-12-03 2010-06-17 Panasonic Corp Air conditioner
KR102300902B1 (en) * 2014-09-05 2021-09-13 코웨이 주식회사 Apparatus for dehumidifier and method for controlling the same
KR20190002790A (en) * 2017-06-29 2019-01-09 삼성전자주식회사 Air conditioner and method for control of air conditioner
US20200378637A1 (en) * 2017-11-29 2020-12-03 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and control method and apparatus therefor

Also Published As

Publication number Publication date
KR20240032579A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2018080082A1 (en) Air conditioner
WO2021080191A1 (en) Air conditioner and control method therefor
KR101676015B1 (en) Apparatus and method for controlling operation of Dehumidified dryer
JPWO2019193680A1 (en) Air conditioning system
WO2020261982A1 (en) Air conditioning system
JP2015137836A (en) Air conditioner and indoor unit of the same
WO2024048970A1 (en) Air conditioner and controlling method therefor
WO2024080548A1 (en) Air conditioner and controlling method thereof
JPH0244142A (en) Ambient air treating device
WO2023210962A1 (en) Air conditioner and controlling method thereof
WO2024039042A1 (en) Air conditioner and control method therefor
WO2023177048A1 (en) Air conditioner and control method thereof
WO2023136444A1 (en) Air conditioner and control method thereof
WO2022270719A1 (en) Air conditioner and controlling method thereof
JP6448658B2 (en) Air conditioning system
WO2023068500A1 (en) Air conditioner and control method thereof
US10852031B2 (en) Air conditioner and method for controlling the same
KR101913511B1 (en) A controlling method of an air conditioner
JP3103583B2 (en) Air conditioner
WO2023210963A1 (en) Air conditioner and control method therefor
JP3075863B2 (en) Control device for air conditioner
WO2022124668A1 (en) Ventilation system, integrated air-conditioning system, and control method therefor
WO2024085443A1 (en) Air conditioner and control method thereof
JPS61197932A (en) Ventilation device
WO2023177083A1 (en) Air conditioner and method for controlling same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860653

Country of ref document: EP

Kind code of ref document: A1