WO2024048935A1 - Graphite composite material composition for fuel cell separator - Google Patents

Graphite composite material composition for fuel cell separator Download PDF

Info

Publication number
WO2024048935A1
WO2024048935A1 PCT/KR2023/008682 KR2023008682W WO2024048935A1 WO 2024048935 A1 WO2024048935 A1 WO 2024048935A1 KR 2023008682 W KR2023008682 W KR 2023008682W WO 2024048935 A1 WO2024048935 A1 WO 2024048935A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
composition
binder
conductive filler
cell separator
Prior art date
Application number
PCT/KR2023/008682
Other languages
French (fr)
Korean (ko)
Inventor
최장식
방권용
김혁민
Original Assignee
(주)이유씨엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이유씨엔씨 filed Critical (주)이유씨엔씨
Publication of WO2024048935A1 publication Critical patent/WO2024048935A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a graphite composite material composition for fuel cell separator plates.
  • Fuel cells have recently received great attention as one of the most promising clean energy sources for the future.
  • PEMFC polymer electrolyte fuel cells
  • This polymer electrolyte fuel cell includes connections between several cells, and the electrical connection between cells is made by a separator plate (bipolar plate).
  • the separator plate is a conductive plate that separates each cell in a fuel cell stack. In two adjacent cells, it functions as an anode plate in one cell and an air electrode plate in the other cell. In particular, the separator plate not only blocks fuel gas and air, but also secures a flow path for fuel gas and air and transmits current to an external circuit, so it requires high electrical conductivity, corrosion resistance, and thermal conductivity as well as low gas permeability. In addition, considering the characteristics of the automobile and portable product markets, which are expected to be the main application areas of polymer electrolyte fuel cells, it must be light in weight and mass production must be possible.
  • separators developed so far can be divided into metal separators, resin-impregnated graphite plates, and carbon composite separators.
  • the metal separator plate is manufactured by processing/casting/molding metal (mainly stainless steel), and has very high electrical and thermal conductivity, but has the disadvantage of poor corrosion resistance. Therefore, it is used in fuel cell stacks by improving corrosion resistance through surface treatment, coating, alloy, etc.
  • the resin-impregnated graphite plate is a separator plate for fuel cells in which a gas flow path is formed by impregnating a graphite plate with resin and machining it. Because it has very high electrical and thermal conductivity and is very resistant to corrosion, it has been mainly used from the early stages of fuel cell research and development.
  • the carbon composite separator is a separator for fuel cells that is manufactured by molding a mixture of carbon and resin. The electrical and thermal conductivity may be somewhat lower than that of a resin-impregnated graphite plate, and the selection of resin and Through optimization of the molding method, fuel cell performance is achieved at a level similar to that of resin-impregnated graphite plates.
  • the solvent-type separator manufacturing process currently in general use involves complex processes such as mixing, extrusion, drying, grinding, (compression) molding, and post-processing, so it has the disadvantage of increasing the defect rate and making it difficult to reduce unit costs.
  • the present inventors made extensive research efforts to develop a solventless type graphite composite material for fuel cell separator plates that can be easily manufactured by simple compression molding or rolling molding.
  • the present invention was completed by developing a graphite composite material containing graphite and polymer resin and identifying excellent effects according to various physical properties of the material.
  • the purpose of the present invention is to provide a graphite composite material composition for fuel cell separator plates.
  • Another object of the present invention is to provide a method for manufacturing the graphite composite material composition for the fuel cell separator plate.
  • the present inventors made extensive research efforts to develop a solventless type graphite composite material for fuel cell separators that can be easily manufactured by simple compression molding or rolling molding. As a result, a graphite composite material containing graphite and polymer resin was developed, and excellent effects according to various physical properties of the material were identified.
  • the present invention relates to a graphite composite material composition for fuel cell separator plates and a method for manufacturing the composition.
  • the present invention provides a composition for a fuel cell separator including a conductive filler and a binder.
  • the conductive filler is graphite, graphene, carbon black, carbon fiber, carbon nanotube, and/or carbon nanofiber. ), but is not limited to this.
  • the binder is polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyphenylene ether (PPE), and polyphenylene sulfide (PPS).
  • PE polyethylene
  • PP polypropylene
  • PC polycarbonate
  • PPE polyphenylene ether
  • PPS polyphenylene sulfide
  • PPVC polyvinyl chloride
  • PVDF polyvinyldifluoride
  • composition for a fuel cell separator of the present invention contains polypropylene, polyphenylene ether, polycarbonate, and/or polyvinyl difluoride as a binder, so that it can be manufactured as a solventless type composition, which is the object of the present invention. .
  • the composition for a fuel cell separator includes 65 to 85 parts by weight (%) of the conductive filler and 15 to 35 parts by weight (%) of the binder based on 100 parts by weight (%) of the total composition. It may be.
  • flexural strength may decrease and/or gas permeability may increase, and conversely, if the conductive filler is below the above range, electrical conductivity may decrease.
  • binder is less than the above range, moldability may be reduced, and conversely, if the binder exceeds the above range, dimensional stability may be reduced.
  • the conductive filler and binder may be in the form of powder with an average particle diameter of 0.01 to 80 ⁇ m.
  • composition for a fuel cell separator of the present invention may contain a conductive filler and a binder in powder form, and can be manufactured into a fuel cell separator by mixing the powder and compression molding.
  • composition for a fuel cell separator of the present invention can be simultaneously applied to compression molding and rolling molding by containing a conductive filler and a binder in the above ranges, so when using the composition for a fuel cell separator of the present invention, the conventional complex solvent-type separation is possible.
  • fuel cell separator plates can be manufactured through a simple process compared to the plate manufacturing process.
  • the present invention provides a method for producing a composition for a fuel cell separator comprising the following steps:
  • the conductive filler and binder may be ground into powder form with an average particle diameter of 0.01 to 80 ⁇ m.
  • the conductive filler and binder may be mixed with the conductive filler and binder pulverized in the first step and then further pulverized or ball milled to form a mixture.
  • the mixture may be in powder form.
  • the mixed conductive filler and binder may be stirred at a high temperature of 170 to 230° C. at a speed of 50 to 55 N/m for 25 to 30 minutes.
  • the description of the conductive filler and binder used in the method of manufacturing the composition for a fuel cell separator plate of the present invention is the same or similar to the description described above for the composition for a fuel cell separator plate of the present invention and will therefore be omitted.
  • the present invention relates to a graphite composite material composition for fuel cell separator plates.
  • the graphite composite material composition for fuel cell separator plates according to the present invention can be simultaneously applied to compression molding and rolling molding, and is cheaper than the existing composition for solvent type separator plates. , it is not only easy to manufacture due to the simplification of the process, but also has the effect of improving the electrical conductivity of the separator compared to other manufacturing methods.
  • a composition for a fuel cell separator plate was prepared using polypropylene (PP) and graphite.
  • polypropylene and graphite (mixing ratios are shown in Table 1 below) were each pulverized using a ceramic mortar and pestle in the presence of liquid nitrogen.
  • the mixing of the two materials in the form of pulverized powder was carried out by stirring and mixing using a mechanical stirrer. It was stirred at 200°C for 30 minutes at a speed of 50 N/m.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 85:15 80:20 75:25 70:30 65:35
  • a separator plate was manufactured at a temperature of 210°C by compression molding using the prepared composition for a fuel cell separator plate.
  • composition was prepared in the same manner as in the example except for the graphite:polypropylene mixing ratio.
  • the specimen was manufactured by compression molding.
  • the electrical conductivity was measured using a four point probe electrical conductivity measuring device (Dasol ENG Co., Ltd., Korea), and the measurement results are shown in Table 3 below.
  • the present invention relates to a graphite composite material composition for fuel cell separator plates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a graphite composite material composition for a fuel cell separator, and the graphite composite material composition for a fuel cell separator according to the present invention can be applied to both compression molding and rolling molding, and thus is less expensive than conventional solvent-type compositions for a separator, enables easy manufacturing due to the simplification of processes, and improves the electrical conductivity of a separator compared with other manufacturing methods.

Description

연료전지 분리판용 흑연 복합소재 조성물Graphite composite material composition for fuel cell separator plate
본 발명은 연료전지 분리판용 흑연 복합소재 조성물에 관한 것이다.The present invention relates to a graphite composite material composition for fuel cell separator plates.
연료전지는 미래를 대비하는 가장 유망한 청정 에너지원 중의 하나로 최근 크게 주목받고 있다. 다양한 방식의 연료전지 중, 고분자 전해질형 연료전지(PEMFC)는 비교적 낮은 작동온도와 스택(stack) 소형화 가능성으로 인해 수소용 전력원으로 활발히 연구되고 있으며, 현재 실용화 가능성이 높다고 평가받고 있다. 이러한 고분자 전해질형 연료전지는 그 내부에 여러 셀들의 연결이 포함되는데, 셀과 셀 간의 전기적인 연결은 분리판(바이폴라 플레이트)에 의해 이루어지게 된다.Fuel cells have recently received great attention as one of the most promising clean energy sources for the future. Among various types of fuel cells, polymer electrolyte fuel cells (PEMFC) are being actively researched as a power source for hydrogen due to their relatively low operating temperature and the possibility of stack miniaturization, and are currently evaluated to have a high potential for commercialization. This polymer electrolyte fuel cell includes connections between several cells, and the electrical connection between cells is made by a separator plate (bipolar plate).
분리판은 연료전지 스택에서 각 전지를 분리하고 있는 전도성 판으로, 인접한 두 전지에서 한 전지에서는 연료극판으로 다른 한 전지에서는 공기극판으로 기능한다. 특히 분리판은 연료가스와 공기를 차단하는 역할 외에 연료가스와 공기의 유로 확보 및 외부회로에 전류를 전달하는 역할을 하므로, 높은 전기 전도성, 내식성, 열전도성과 함께 낮은 기체 투과성이 요구된다. 또한, 고분자 전해질형 연료전지의 주 응용분야로 예상되는 자동차 및 휴대용 제품 시장의 특성을 고려할 때, 무게가 가벼워야 하며 대량 생산이 가능하여야 한다.The separator plate is a conductive plate that separates each cell in a fuel cell stack. In two adjacent cells, it functions as an anode plate in one cell and an air electrode plate in the other cell. In particular, the separator plate not only blocks fuel gas and air, but also secures a flow path for fuel gas and air and transmits current to an external circuit, so it requires high electrical conductivity, corrosion resistance, and thermal conductivity as well as low gas permeability. In addition, considering the characteristics of the automobile and portable product markets, which are expected to be the main application areas of polymer electrolyte fuel cells, it must be light in weight and mass production must be possible.
지금까지 개발된 분리판 종류는 금속 분리판, 수지 함침 흑연판, 탄소 복합체 분리판으로 구분할 수 있다.The types of separators developed so far can be divided into metal separators, resin-impregnated graphite plates, and carbon composite separators.
이 중 금속 분리판은 금속(주로 스테인리스 스틸)을 가공/주물/몰딩하여 제작되며, 전기 및 열전도성은 매우 높으나 내부식성이 약한 단점이 있다. 따라서, 표면 처리나 코팅, 합금 등을 통해 내부식성을 향상시켜 연료전지 스택에 사용되고 있다. 다음으로, 수지 함침 흑연판은 흑연판에 수지(Resin)를 함침하여 기계 가공을 통해 기체 유로를 형성시킨 연료전지용 분리판이다. 전기 및 열전도성이 매우 높고 부식에 매우 강하기 때문에, 연료전지 연구개발 초기 단계부터 주로 사용되고 있다. 끝으로, 탄소 복합체 분리판은 탄소와 수지를 섞은 상태에서 몰딩을 통해 분리판을 제작한 연료전지용 분리판으로, 수지 함침 흑연판에 비해 다소 전기 전도성 및 열전도성이 낮아질 수 있는데, 수지의 선정 및 몰딩 방법의 최적화를 통해 수지 함침 흑연판과 유사한 수준의 연료전지 성능을 구현시키고 있다.Among these, the metal separator plate is manufactured by processing/casting/molding metal (mainly stainless steel), and has very high electrical and thermal conductivity, but has the disadvantage of poor corrosion resistance. Therefore, it is used in fuel cell stacks by improving corrosion resistance through surface treatment, coating, alloy, etc. Next, the resin-impregnated graphite plate is a separator plate for fuel cells in which a gas flow path is formed by impregnating a graphite plate with resin and machining it. Because it has very high electrical and thermal conductivity and is very resistant to corrosion, it has been mainly used from the early stages of fuel cell research and development. Lastly, the carbon composite separator is a separator for fuel cells that is manufactured by molding a mixture of carbon and resin. The electrical and thermal conductivity may be somewhat lower than that of a resin-impregnated graphite plate, and the selection of resin and Through optimization of the molding method, fuel cell performance is achieved at a level similar to that of resin-impregnated graphite plates.
현재 일반적으로 사용되고 있는 용제형(Solvent type) 분리판 제조 공정은 혼합, 압출, 건조, 분쇄, (압축)성형, 후처리 등의 복잡한 공정을 거치기 때문에, 불량률이 높아지고 저단가화가 어렵다는 단점이 있다.The solvent-type separator manufacturing process currently in general use involves complex processes such as mixing, extrusion, drying, grinding, (compression) molding, and post-processing, so it has the disadvantage of increasing the defect rate and making it difficult to reduce unit costs.
이에, 본 발명자들은 간단한 압축성형 혹은 압연성형으로 쉽게 제조할 수 있는 무용제형(Solventless type) 연료전지 분리판용 흑연 복합소재를 개발하고자 예의 연구 노력하였다. 그 결과, 흑연 및 고분자 수지를 포함하는 흑연 복합소재를 개발하고, 상기 소재의 다양한 물성에 따른 우수한 효과를 규명함으로써, 본 발명을 완성하였다.Accordingly, the present inventors made extensive research efforts to develop a solventless type graphite composite material for fuel cell separator plates that can be easily manufactured by simple compression molding or rolling molding. As a result, the present invention was completed by developing a graphite composite material containing graphite and polymer resin and identifying excellent effects according to various physical properties of the material.
따라서, 본 발명의 목적은 연료전지 분리판용 흑연 복합소재 조성물을 제공하는 것이다.Therefore, the purpose of the present invention is to provide a graphite composite material composition for fuel cell separator plates.
본 발명의 다른 목적은 상기 연료전지 분리판용 흑연 복합소재 조성물의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing the graphite composite material composition for the fuel cell separator plate.
본 발명자들은 간단한 압축성형 혹은 압연성형으로 쉽게 제조할 수 있는 무용제형(Solventless type) 연료전지 분리판용 흑연 복합소재를 개발하고자 예의 연구 노력하였다. 그 결과, 흑연 및 고분자 수지를 포함하는 흑연 복합소재를 개발하고, 상기 소재의 다양한 물성에 따른 우수한 효과를 규명하였다.The present inventors made extensive research efforts to develop a solventless type graphite composite material for fuel cell separators that can be easily manufactured by simple compression molding or rolling molding. As a result, a graphite composite material containing graphite and polymer resin was developed, and excellent effects according to various physical properties of the material were identified.
본 발명은 연료전지 분리판용 흑연 복합소재 조성물 및 상기 조성물의 제조방법에 관한 것이다.The present invention relates to a graphite composite material composition for fuel cell separator plates and a method for manufacturing the composition.
이하, 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 양태에 따르면, 본 발명은 전도성 충전제 및 결합제를 포함하는 연료전지 분리판용 조성물을 제공한다.According to one aspect of the present invention, the present invention provides a composition for a fuel cell separator including a conductive filler and a binder.
본 발명에서 상기 전도성 충전제는 흑연(graphite), 그래핀(graphene), 카본블랙(carbon black), 카본섬유(carbon fiber), 탄소나노튜브(carbon nano tube) 및/또는 탄소나노섬유(carbon nano fiber)일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the conductive filler is graphite, graphene, carbon black, carbon fiber, carbon nanotube, and/or carbon nanofiber. ), but is not limited to this.
본 발명에서 상기 결합제는 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 폴리카보네이트(polycarbonate, PC), 폴리페닐렌 에테르(polyphenylene ether, PPE), 폴리페닐렌 설파이드(polyphenylene sulfide, PPS), 폴리염화비닐(polyvinyl chloride, PVC) 및/또는 폴리비닐다이플루오라이드(polyvinyldifluoride, PVDF)의 열가소성 수지일 수 있고, 바람직하게는 폴리프로필렌, 폴리페닐렌 에테르, 폴리카보네이트 및/또는 폴리비닐다이플루오라이드일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the binder is polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyphenylene ether (PPE), and polyphenylene sulfide (PPS). , may be a thermoplastic resin of polyvinyl chloride (PVC) and/or polyvinyldifluoride (PVDF), preferably polypropylene, polyphenylene ether, polycarbonate, and/or polyvinyl difluoride. It may be a ride, but is not limited to this.
본 발명의 연료전지 분리판용 조성물은 결합제로 폴리프로필렌, 폴리페닐렌 에테르, 폴리카보네이트 및/또는 폴리비닐다이플루오라이드를 포함함으로써, 본 발명의 목적인 무용제형(Solventless type) 조성물로의 제조가 가능하다.The composition for a fuel cell separator of the present invention contains polypropylene, polyphenylene ether, polycarbonate, and/or polyvinyl difluoride as a binder, so that it can be manufactured as a solventless type composition, which is the object of the present invention. .
본 발명의 일 실시예에 따르면, 상기 연료전지 분리판용 조성물은 전체 조성물 100 중량부(%)에 대하여 상기 전도성 충전제 65 내지 85 중량부(%) 및 상기 결합제 15 내지 35 중량부(%)를 포함하는 것일 수 있다.According to one embodiment of the present invention, the composition for a fuel cell separator includes 65 to 85 parts by weight (%) of the conductive filler and 15 to 35 parts by weight (%) of the binder based on 100 parts by weight (%) of the total composition. It may be.
전도성 충전제가 상기 범위를 초과하는 경우 굴곡강도가 감소하거나 및/또는 가스 투과도가 증가할 수 있고, 반대로 상기 범위 미만인 경우 전기전도도가 감소할 수 있다. 또한, 결합제가 상기 범위 미만인 경우 성형성이 떨어질 수 있고, 반대로 상기 범위를 초과하는 경우 치수안정성이 떨어질 수 있다. If the conductive filler exceeds the above range, flexural strength may decrease and/or gas permeability may increase, and conversely, if the conductive filler is below the above range, electrical conductivity may decrease. In addition, if the binder is less than the above range, moldability may be reduced, and conversely, if the binder exceeds the above range, dimensional stability may be reduced.
본 발명의 다른 일 실시예에 따르면, 상기 전도성 충전제 및 결합제는 평균 입경 0.01 내지 80㎛의 분말 형태일 수 있다.According to another embodiment of the present invention, the conductive filler and binder may be in the form of powder with an average particle diameter of 0.01 to 80 μm.
본 발명의 연료전지 분리판용 조성물은 분말 형태의 전도성 충전제 및 결합제를 포함할 수 있으며, 분말의 혼합 후 압축 성형하여 연료전지 분리판으로 제작될 수 있다. The composition for a fuel cell separator of the present invention may contain a conductive filler and a binder in powder form, and can be manufactured into a fuel cell separator by mixing the powder and compression molding.
본 발명의 연료전지 분리판용 조성물은 상기 각 범위로 전도성 충전제 및 결합제를 포함함으로써 압축성형과 압연성형에 동시 적용이 가능하므로, 본 발명의 연료전지 분리판용 조성물을 사용하는 경우 종래의 복잡한 용제형 분리판 제조 공정에 비해 단순한 공정으로 연료전지 분리판을 제조할 수 있는 이점이 있다.The composition for a fuel cell separator of the present invention can be simultaneously applied to compression molding and rolling molding by containing a conductive filler and a binder in the above ranges, so when using the composition for a fuel cell separator of the present invention, the conventional complex solvent-type separation is possible. There is an advantage in that fuel cell separator plates can be manufactured through a simple process compared to the plate manufacturing process.
본 발명의 다른 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 연료전지 분리판용 조성물의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for producing a composition for a fuel cell separator comprising the following steps:
전도성 충전제 및 결합제를 각각 분쇄하는 단계(제1 단계);Grinding the conductive filler and binder respectively (first step);
전도성 충전제 및 결합제를 균일하게 혼합하는 단계(제2 단계); 및uniformly mixing the conductive filler and binder (second step); and
고온에서 교반하는 단계(제3 단계).Stirring at high temperature (third step).
상기 제1 단계에서, 전도성 충전제 및 결합제는 평균 입경 0.01 내지 80㎛의 분말 형태로 분쇄하는 것일 수 있다.In the first step, the conductive filler and binder may be ground into powder form with an average particle diameter of 0.01 to 80 μm.
상기 제2 단계에서, 상기 전도성 충전제 및 결합제는 제1 단계에서 각각 분쇄된 전도성 충전제 및 결합제를 혼합 후 추가적으로 분쇄하거나 볼 밀링하여 혼합물을 형성하는 것일 수 있다. 이때 혼합물은 분말 형태일 수 있다.In the second step, the conductive filler and binder may be mixed with the conductive filler and binder pulverized in the first step and then further pulverized or ball milled to form a mixture. At this time, the mixture may be in powder form.
상기 제3 단계에서, 상기 혼합된 전도성 충전제 및 결합제는 170 내지 230℃의 고온에서 50 내지 55 N/m의 속도로 25 내지 30분 동안 교반하는 것일 수 있다.In the third step, the mixed conductive filler and binder may be stirred at a high temperature of 170 to 230° C. at a speed of 50 to 55 N/m for 25 to 30 minutes.
본 발명의 연료전지 분리판용 조성물의 제조방법에 이용하는 전도성 충전제 및 결합제에 대한 설명은 본 발명의 연료전지 분리판용 조성물에 대하여 상술한 설명과 동일 또는 유사하므로 생략하기로 한다.The description of the conductive filler and binder used in the method of manufacturing the composition for a fuel cell separator plate of the present invention is the same or similar to the description described above for the composition for a fuel cell separator plate of the present invention and will therefore be omitted.
본 발명은 연료전지 분리판용 흑연 복합소재 조성물에 관한 것으로, 본 발명에 따른 연료전지 분리판용 흑연 복합소재 조성물은 압축성형과 압연성형에 동시 적용 가능하여 기존의 Solvent type 분리판용 조성물보다 가격이 저렴하고, 공정 단순화로 인해 제작이 용이할 뿐만 아니라, 다른 제조 방법에 비해 분리판의 전기전도도를 향상시키는 효과가 있다.The present invention relates to a graphite composite material composition for fuel cell separator plates. The graphite composite material composition for fuel cell separator plates according to the present invention can be simultaneously applied to compression molding and rolling molding, and is cheaper than the existing composition for solvent type separator plates. , it is not only easy to manufacture due to the simplification of the process, but also has the effect of improving the electrical conductivity of the separator compared to other manufacturing methods.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시 예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be obvious to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예.Example.
폴리프로필렌(PP)과 흑연을 사용하여 연료전지 분리판용 조성물을 제조하였다. A composition for a fuel cell separator plate was prepared using polypropylene (PP) and graphite.
구체적으로, 폴리프로필렌 및 흑연(혼합비는 하기 표 1에 표시하였음)을 각각 액체 질소 존재 하에서 도자기 막자사발을 이용하여 분쇄하였다. 분쇄된 가루 형태의 두 재료의 혼합은 기계적 교반기를 이용한 교반혼합으로 진행하였다. 200℃에서 30분간 50N/m의 속도로 교반하였다.Specifically, polypropylene and graphite (mixing ratios are shown in Table 1 below) were each pulverized using a ceramic mortar and pestle in the presence of liquid nitrogen. The mixing of the two materials in the form of pulverized powder was carried out by stirring and mixing using a mechanical stirrer. It was stirred at 200°C for 30 minutes at a speed of 50 N/m.
흑연:폴리프로필렌 혼합비Graphite:polypropylene mixing ratio 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5
85:1585:15 80:2080:20 75:2575:25 70:3070:30 65:3565:35
제조된 연료전지 분리판용 조성물을 이용하여 압축성형으로 210℃의 온도에서 분리판을 제작하였다.A separator plate was manufactured at a temperature of 210°C by compression molding using the prepared composition for a fuel cell separator plate.
비교예.Comparative example.
상기 실시예에서 흑연:폴리프로필렌 혼합비 외에는 실시예와 동일한 방법으로 조성물을 제조하였다.In the above example, the composition was prepared in the same manner as in the example except for the graphite:polypropylene mixing ratio.
흑연:폴리프로필렌 혼합비Graphite:polypropylene mixing ratio 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3
60:4060:40 55:4555:45 50:5050:50
실험예 1. 전기전도도 측정Experimental Example 1. Electrical conductivity measurement
시편은 압축성형법으로 제조하였다. 제조된 시편에 대하여, Four point probe 전기전도도 측정장치(㈜다솔이엔지, 한국)를 이용하여 전기전도도를 측정하였으며, 측정한 결과는 아래 표 3과 같다.The specimen was manufactured by compression molding. For the manufactured specimen, the electrical conductivity was measured using a four point probe electrical conductivity measuring device (Dasol ENG Co., Ltd., Korea), and the measurement results are shown in Table 3 below.
전기전도도(S/cm)Electrical conductivity (S/cm)
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5
120120 105105 8080 7070 6565
비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3
4545 4040 3535
그 결과, 상기 표 3에 나타낸 바와 같이, 비교예 대비 실시예에서 전기전도도가 우수한 것을 확인하였다.As a result, as shown in Table 3 above, it was confirmed that the electrical conductivity was excellent in the examples compared to the comparative examples.
본 발명은 연료전지 분리판용 흑연 복합소재 조성물에 관한 것이다.The present invention relates to a graphite composite material composition for fuel cell separator plates.

Claims (9)

  1. 전도성 충전제 및 결합제를 포함하는 연료전지 분리판용 조성물.A composition for a fuel cell separator comprising a conductive filler and a binder.
  2. 제1항에 있어서, 상기 전도성 충전제는 흑연, 그래핀, 카본블랙, 카본섬유, 탄소나노튜브 및 탄소나노섬유로 이루어지는 군으로부터 선택된 1종 이상인, 연료전지 분리판용 조성물.The composition for a fuel cell separator plate according to claim 1, wherein the conductive filler is at least one selected from the group consisting of graphite, graphene, carbon black, carbon fiber, carbon nanotube, and carbon nanofiber.
  3. 제1항에 있어서, 상기 결합제는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리페닐렌 에테르, 폴리페닐렌 설파이드, 폴리염화비닐 및 폴리비닐다이플루오라이드로 이루어지는 군으로부터 선택된 1종 이상의 열가소성 수지인, 연료전지 분리판용 조성물.The fuel cell of claim 1, wherein the binder is one or more thermoplastic resins selected from the group consisting of polyethylene, polypropylene, polycarbonate, polyphenylene ether, polyphenylene sulfide, polyvinyl chloride, and polyvinyl difluoride. Composition for separator plates.
  4. 제1항에 있어서, 상기 조성물은 조성물 100 중량부(%)에 대하여 상기 전도성 충전제 65 내지 85 중량부(%) 및 상기 결합제 15 내지 35 중량부(%)를 포함하는 것인, 연료전지 분리판용 조성물.The method of claim 1, wherein the composition includes 65 to 85 parts by weight (%) of the conductive filler and 15 to 35 parts by weight (%) of the binder based on 100 parts by weight (%) of the composition. Composition.
  5. 제1항에 있어서, 상기 전도성 충전제 및 결합제는 평균 입경 0.01 내지 80㎛의 분말 형태인 것인, 연료전지 분리판용 조성물.The composition for a fuel cell separator according to claim 1, wherein the conductive filler and binder are in the form of powder with an average particle diameter of 0.01 to 80㎛.
  6. 다음의 단계를 포함하는 연료전지 분리판용 조성물의 제조방법:Method for producing a composition for fuel cell separator plates comprising the following steps:
    전도성 충전제 및 결합제를 각각 분쇄하는 단계;Grinding the conductive filler and binder respectively;
    전도성 충전제 및 결합제를 균일하게 혼합하는 단계; 및uniformly mixing the conductive filler and binder; and
    고온에서 교반하는 단계.Stirring at high temperature.
  7. 제6항에 있어서, 상기 전도성 충전제는 전체 조성물 100 중량부(%)에 대하여 65 내지 85 중량부(%)로 포함되는 것인, 연료전지 분리판용 조성물의 제조방법.The method of claim 6, wherein the conductive filler is contained in an amount of 65 to 85 parts by weight (%) based on 100 parts by weight (%) of the total composition.
  8. 제6항에 있어서, 상기 결합제는 전체 조성물 100 중량부(%)에 대하여 15 내지 35 중량부(%)로 포함되는 것인, 연료전지 분리판용 조성물의 제조방법.The method of claim 6, wherein the binder is contained in an amount of 15 to 35 parts by weight (%) based on 100 parts by weight (%) of the total composition.
  9. 제6항에 있어서, 상기 전도성 충전제 및 결합제는 평균 입경 0.01 내지 80㎛의 분말 형태로 분쇄하는 것인, 연료전지 분리판용 조성물의 제조방법.The method of claim 6, wherein the conductive filler and binder are ground into powder form with an average particle diameter of 0.01 to 80 ㎛.
PCT/KR2023/008682 2022-08-30 2023-06-22 Graphite composite material composition for fuel cell separator WO2024048935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0109084 2022-08-30
KR1020220109084A KR20240030283A (en) 2022-08-30 2022-08-30 Graphite composite Composition for Fuel cell Separator

Publications (1)

Publication Number Publication Date
WO2024048935A1 true WO2024048935A1 (en) 2024-03-07

Family

ID=90098185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008682 WO2024048935A1 (en) 2022-08-30 2023-06-22 Graphite composite material composition for fuel cell separator

Country Status (2)

Country Link
KR (1) KR20240030283A (en)
WO (1) WO2024048935A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090123661A (en) * 2008-05-28 2009-12-02 고려대학교 산학협력단 Separator for fuel cell and method for fabricating the same
KR20100057411A (en) * 2008-11-21 2010-05-31 한국타이어 주식회사 Molding material for fuel cell separator and fuel cell separator prepared therefrom
KR20120000863A (en) * 2010-06-28 2012-01-04 한국타이어 주식회사 Material for molding a fuel cell separator, process for preparing the same, a fual cell separator and a fuel cell
KR20120096350A (en) * 2011-02-22 2012-08-30 고려대학교 산학협력단 Pem fuel cell bipolar plate comprising composite layer comprising cnts grown on the carbon fiber and method for fabricating the same
KR20140077480A (en) * 2012-12-14 2014-06-24 한국타이어 주식회사 Manufacturing method of separator for fuel cell and separator for fuel cell manufactured using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101420730B1 (en) 2007-10-31 2014-07-18 삼성전자주식회사 Image apparatus and method for receiving image signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090123661A (en) * 2008-05-28 2009-12-02 고려대학교 산학협력단 Separator for fuel cell and method for fabricating the same
KR20100057411A (en) * 2008-11-21 2010-05-31 한국타이어 주식회사 Molding material for fuel cell separator and fuel cell separator prepared therefrom
KR20120000863A (en) * 2010-06-28 2012-01-04 한국타이어 주식회사 Material for molding a fuel cell separator, process for preparing the same, a fual cell separator and a fuel cell
KR20120096350A (en) * 2011-02-22 2012-08-30 고려대학교 산학협력단 Pem fuel cell bipolar plate comprising composite layer comprising cnts grown on the carbon fiber and method for fabricating the same
KR20140077480A (en) * 2012-12-14 2014-06-24 한국타이어 주식회사 Manufacturing method of separator for fuel cell and separator for fuel cell manufactured using the same

Also Published As

Publication number Publication date
KR20240030283A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
KR101041697B1 (en) Molding material for fuel cell separator and fuel cell separator prepared therefrom
CN108365262A (en) A kind of 3D networks hybrid inorganic-organic all solid state electrolyte and a kind of lithium secondary battery
WO2015056959A1 (en) Flame retardant resin composition
Liao et al. Preparation and properties of functionalized multiwalled carbon nanotubes/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells
CN107819136B (en) Laminated structure bipolar plate and preparation method thereof
CN110148778B (en) Solid electrolyte film material, preparation method thereof and battery
US20040211943A1 (en) Coating material for fuel cell separator
WO2015076571A1 (en) Separator coating agent composition, separator formed of coating agent composition, and battery using same
CN108346822A (en) A kind of preparation method of 3D networks hybrid inorganic-organic all solid state electrolyte
CN103788654A (en) Enhanced heat-resisting and antistatic polyphenylene sulfite/poly-p-phenylene oxide (PPS/PPO) alloy material and preparation method thereof
US20150200402A1 (en) Sheet, electrode and fuel cell
US7727422B2 (en) Electrically-conductive resin composition for porous fuel cell bipolar plate and method for the production thereof
CN115368607A (en) Polyether sulfone-based composite dielectric film material and preparation method thereof
US7993767B2 (en) Solid-state polymer electrolyte membrane, method for manufacture thereof and solid-state polymer electrolyte fuel cell therewith
CN109244333B (en) Cross-linked lithium ion battery diaphragm and preparation method thereof
CN113067100A (en) Water-based PVDF (polyvinylidene fluoride) coated lithium ion battery diaphragm and preparation method thereof
WO2024048935A1 (en) Graphite composite material composition for fuel cell separator
CN113594487A (en) Bipolar plate and preparation method thereof
CN116535854B (en) Binary blending high-temperature energy storage polymer dielectric film and preparation method thereof
CN109111733A (en) Flame-retardant conductive wear resistant nylon material and preparation method thereof
CN111748178A (en) Epoxy resin composition and preparation method and application thereof
KR102003682B1 (en) Flow channel plate for fuel cell and method of manufacturing the same
KR100834607B1 (en) Compositionf for manufacturing separator for pemfc and separator for pemfc manufactured out of the same
CN115522276A (en) Preparation method of conductive and reinforced PBT fiber
CN112216854B (en) Acid-base blending membrane for fuel cell and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860620

Country of ref document: EP

Kind code of ref document: A1