WO2024048882A1 - Laser device manufacturing method - Google Patents

Laser device manufacturing method Download PDF

Info

Publication number
WO2024048882A1
WO2024048882A1 PCT/KR2023/002714 KR2023002714W WO2024048882A1 WO 2024048882 A1 WO2024048882 A1 WO 2024048882A1 KR 2023002714 W KR2023002714 W KR 2023002714W WO 2024048882 A1 WO2024048882 A1 WO 2024048882A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mask
clad layer
semi
ohmic contact
Prior art date
Application number
PCT/KR2023/002714
Other languages
French (fr)
Korean (ko)
Inventor
유준상
Original Assignee
주식회사 오이솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오이솔루션 filed Critical 주식회사 오이솔루션
Publication of WO2024048882A1 publication Critical patent/WO2024048882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present invention relates to an integrated optical device, and more specifically, to a laser device that can maintain the upper surface of the semi-insulating clad layer flat by removing sharp protrusions in the shape of rabbit ears created on the semi-insulating clad layer. It is about manufacturing method.
  • the 1550nm wavelength band which has a low absorption rate of optical fiber, is mainly used, and an electro-absorption modulator and a distributed-feedback laser diode are used.
  • DFB LD DFB LD
  • EML electro-absortion modulated laser
  • electrical isolation between the integrated distributed feedback laser diode and the field absorption optical modulator, or between the semiconductor optical amplifier and the field absorption optical modulator or distributed feedback laser diode, or optical isolation is used in the device. It is an important factor that determines performance.
  • Figure 1 is a diagram showing the configuration of an EML integrated optical device with an EMBH (Etched Mesa Buried Hetero-structure) structure.
  • EMBH Etched Mesa Buried Hetero-structure
  • the EMBH structure integrated optical device includes an n-type substrate 11, an n-type lower clad layer 12 formed on the n-type substrate 11, and an n-type lower clad layer 12 formed on the n-type lower clad layer 12.
  • the integrated optical device of the existing EMBH structure has the p-type upper clad layer 14 only on the active layer 13, so the capacitance can be reduced. Therefore, there is an advantage that there is no need to etch the surrounding unnecessary p-type upper clad layer.
  • the devices are connected by the p-type upper clad layer 14, they must be insulated through ion implantation or etching processes, and the problems inherent in each process remain.
  • the width of the p-type upper cladding layer 14 for current injection is narrow, so the resistance, including contact resistance with the electrode, increases.
  • the integrated optical device having an EMBH (Etched Mesa Buried Hetero Structure) structure has sharp protrusions in the shape of rabbit ears on the surface of the semi-insulating (SI) clad layer 17. (18) is formed.
  • EMBH Erched Mesa Buried Hetero Structure
  • the sharp protrusions 18 in the shape of rabbit ears collide with each other and break into particles.
  • sharp protrusions 18 in the shape of rabbit ears are formed on the semi-insulating clad layer 17 around the electrode 22, so that thin electrodes may break.
  • the height of the electrode 22 In order to protect the active area, the height of the electrode 22 must be higher than the rabbit ear-shaped protrusion 18 by a certain thickness t, so a metal material layer to form the electrode 19, for example, For example, Au consumption increases, which has the disadvantage of increasing not only the manufacturing cost but also the manufacturing time.
  • the purpose of the present invention is to maintain the height of the semi-insulating (SI) clad layer, but to provide a laser device manufacturing method that can reduce particle contamination caused by cracking of the protrusions by removing sharp protrusions in the shape of rabbit ears. .
  • the purpose of the present invention is to provide a laser device manufacturing method that can significantly reduce product damage by flattening the semi-insulating clad layer and reduce manufacturing costs by reducing the consumption of metal materials.
  • the present invention for achieving the above object includes the steps of sequentially stacking a first clad layer of a first conductivity type, an active layer, a second conductivity type clad layer, and an ohmic contact layer on a substrate, and applying a first mask on the ohmic contact layer. forming a forming material layer and patterning it to form a first mask layer; etching the ohmic contact layer using the first mask layer as a mask; and etching the ohmic contact layer using the first mask layer as a mask.
  • the laser device manufacturing method includes etching the second conductive clad layer, the active layer, and the first conductive clad layer using the first mask layer as a mask, the second conductive upper clad layer and The active layer and the first conductive lower clad layer may be sequentially etched to form a mesa structure.
  • the step of selectively removing the second mask layer to expose the rabbit ear-shaped protrusions corresponds to the protrusions of the ohmic contact layer and the semi-insulating clad layer surrounding it.
  • the semi-insulating clad layer may include any one of a transition element or a lanthanide-based or actinium-based element.
  • the first mask layer may include SiO 2 or SiNx.
  • the second mask layer may include a photoresist material.
  • the first conductive lower clad layer may include an n-type InP material
  • the second conductive upper clad layer may include a p-type InP material
  • the active layer has an MQW (Multi Quantum well) structure in which well layers and barrier layers are alternately stacked, and the composition of the well layers and barrier layers may include InAlGaAs or InGaAsP.
  • MQW Multi Quantum well
  • the semi-insulating clad layer is composed of InP material, and the dopants that enable the InP material to have semi-insulating properties include Fe, Co, and Cr. , Mn, Ti, and Ru may be included as transition metals.
  • the laser device manufacturing method according to the present invention flattens the upper surface of the semi-insulating clad layer by removing the protrusions formed on the semi-insulating clad layer, so that when cutting the existing substrate into multiple bars, rabbit ears are used.
  • rabbit ears As the sharp protrusions in the shape of (rabbit ears) break, contamination caused by particles is reduced, thereby reducing problems occurring on the surface of the product.
  • the laser device manufacturing method according to the present invention removes the protrusions formed on the semi-insulating clad layer to flatten the upper surface of the semi-insulating clad layer, so there is no need for a metal layer such as a metal material forming an electrode, such as Au. Since there is no need to form it too thick, not only can manufacturing costs be reduced, but manufacturing time can also be shortened.
  • Figure 1 is a diagram showing the configuration of an integrated optical device with an EMBH (Etched Mesa Buried Hetero-structure) structure according to the prior art.
  • EMBH Etched Mesa Buried Hetero-structure
  • Figure 2 is a diagram schematically showing a state in which a thick electrode material layer is formed due to protrusions of a semi-insulating clad layer in an integrated optical device with an EMBH (Etched Mesa Buried Hetero-structure) structure according to the prior art.
  • EMBH Etched Mesa Buried Hetero-structure
  • Figures 3A to 3K are cross-sectional process views for explaining the laser device manufacturing method according to the present invention.
  • the technical idea of the present invention is explained based on the configuration of the laser device of the integrated optical device, but the idea of the present invention is not limited to the laser device of the integrated optical device and can also be applied to other types of tunable lasers. Of course.
  • Figures 3A to 3K are cross-sectional views of the manufacturing process for explaining the laser device manufacturing method according to the present invention.
  • a first conductivity type for example, n-type substrate 101 is placed on a first conductivity type, for example, n-type lower clad layer 102, an active layer of a multiple quantum well (MQW) structure ( 103), a second conductive type, for example, p-type upper clad layer 104 and an ohmic contact layer 105 are sequentially stacked.
  • the substrate 101 is formed of an n-type InP material as an example, but it is not limited to this and may be formed using other materials.
  • the n-type lower clad layer 102 of the first conductivity type may include an InP material, but is not necessarily limited thereto.
  • the active layer 103 may have an MQW (Multi Quantum well) structure in which well layers and barrier layers are alternately stacked.
  • the composition of the well layer and the barrier layer may include, but are not necessarily limited to, InAlGaAs or InGaAsP.
  • the p-type upper clad layer 104 which is the second conductivity type, may include an InP material, but is not necessarily limited thereto.
  • the ohmic contact layer 105 may include an InGaAs material, but is not necessarily limited thereto.
  • a first mask material layer (not shown) is formed on the ohmic contact layer 105 using SiO 2 or SiNx to form a Buried Hetero (BH) structure.
  • the forming material of the first mask material layer may include SiO 2 or SiNx, but is not necessarily limited thereto.
  • the first mask layer 106 is formed by selectively etching the first mask material layer (not shown).
  • the ohmic contact layer 105 is selectively etched through an etching process using the first mask layer 106 as a mask. At this time , when etching the ohmic contact layer 105 , the ohmic contact layer ( 105) can be wet etched.
  • the upper clad layer 104, the active layer 103, and the lower clad layer 102 are sequentially etched through a mesa etching process using the first mask layer 106 as a mask. This forms a BH (Buried Hetero) structure.
  • BH Buried Hetero
  • the p-type InP upper clad layer 104 is formed in an inverse mesa structure, and the InGaAs active layer 103 and the n-type lower clad layer 102 are formed in a mesa structure.
  • the formation of the inverse mesa utilizes the characteristics of the wet etching process, in which the reaction with the etchant is significantly reduced, and is etched at an angle of approximately 60 degrees due to the inherent characteristics of the InP material.
  • the ancestor changes and it is no longer etched with the inverse mesa structure but with the mesa structure.
  • the process of FIG. 3D is possible only with a wet etching process, but as described above, combining the dry etching process and the wet etching process can shorten the process time.
  • the thickness between the active layer 103 and the ohmic contact layer 105 that is, the thickness of the p-type upper clad layer 104.
  • a minimum thickness for example, the thickness of the p-type upper clad layer 104, of 0.8 to 2.0 ⁇ m. do.
  • a semi-insulating clad layer 107 is formed on the sidewall of the BH structure formed through the mesa etching process. At this time, protrusions 108 in the shape of rabbit ears are formed around the side walls of the BH (Buried Hetero) structure. Additionally, the semi-insulating clad layer 107 may include a transition element or any one of a lanthanide-based or actinium-based element, but is not necessarily limited thereto.
  • the semi-insulating clad layer 107 is made of InP material to block current and electrically separate devices on the sidewalls of the inverted mesa and mesa structures.
  • transition metals such as Fe, Co, Cr, Mn, Ti, and Ru can be mainly used as dopants that allow the InP material to have semi-insulating properties.
  • the leakage current The case of doping with low Fe is given as an example, but it is not necessarily limited to this.
  • the sidewall of the BH structure includes the ohmic contact layer 105, the upper clad layer 104, the active layer 103, and the lower clad layer 102 sidewall.
  • Forming an inverted mesa in the form of an EMBH (Etched Mesa Buried Hetero-structure) has the advantage of reducing direct force resistance.
  • the first mask layer 106 is removed, and photoresist is applied to the entire upper surface of the ohmic contact layer 105 and the semi-insulating clad layer 107 to form a second mask layer 109. forms.
  • an exposure mask 110 is placed on the upper part of the second mask layer 109, and the exposure mask 110 is used as a mask to UV expose the second mask layer 109. exposed through.
  • the exposure mask 110 is composed of an opening (not shown) and a blocking part (not shown), and the opening (not shown) is connected to the ohmic contact layer 105 below the second mask layer 109 and its It is located at a position corresponding to the rabbit ear-shaped protrusion 108 of the surrounding semi-insulating clad layer 107.
  • UV exposure is performed through the opening (not shown) of the exposure mask 110 to selectively etch the exposed portion of the second mask layer 109 to form the semi-insulating clad layer.
  • the protrusion 108 of (107) is exposed.
  • the exposed protrusions 108 of the semi-insulating clad layer 107 are etched to flatten the upper part of the semi-insulating clad layer 107.
  • the selectively etched second mask layer 109 is removed to expose the semi-insulating clad layer 107 and the ohmic contact layer 105 from which the protrusions 108 have been removed.
  • a metal material such as Au, is deposited on the entire upper surface of the ohmic contact layer 105 and the semi-insulating clad layer 107, and then selectively etched through a mask process to form the ohmic contact layer 105.
  • An electrode 112 for a laser device is formed on the contact layer 105.
  • PVD physical vapor deposition
  • the case of depositing a metal using an electron beam deposition method is described as an example, but the present invention is not necessarily limited to this and the metal can be deposited using the various deposition methods described above.
  • the deposition thickness of the metal material layer does not need to be as thick as in the prior art.
  • the metal material layer is formed with a certain thickness t. It must be formed thickly.
  • the upper surface of the semi-insulating clad layer 107 is flattened by removing the protrusions 108 of the semi-insulating clad layer 107, so that the electrode 112 is formed on the ohmic contact layer 105. Since there is no need to form a thick metal material, not only the cost of manufacturing the device but also the manufacturing process time can be reduced.
  • the sharp protrusions in the shape of rabbit ears generated when forming the semi-insulating clad layer are removed through an etching process using a photo mask, thereby forming the semi-insulating clad layer.
  • the upper surface is flattened, greatly reducing damage to the product.
  • the present invention flattens the upper surface of the clad layer by removing the protrusions formed on the semi-insulating clad layer, so when cutting the existing substrate into a plurality of bars, sharp protrusions in the shape of rabbit ears are removed. When it breaks, particle contamination caused by particles colliding is reduced, so contamination occurring on the surface of the product is reduced.
  • the manufacturing cost can be reduced by eliminating the need to form the metal material layer forming the electrode unnecessarily thick, thereby reducing the manufacturing cost.
  • the manufacturing time can also be shortened.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The present invention relates to a laser device manufacturing method. The disclosed present invention comprises the steps of: laminating a first conductive clad layer, an active layer, a second conductive clad layer, and an ohmic contact layer in order on a substrate; forming a first mask layer on the ohmic contact layer, and then, by using same as a mask, etching the second conductive clad layer, the active layer, and the first conductive clad layer, along with the ohmic contact layer; forming a semi-insulating clad layer having rabbit ear-shaped protrusion parts, on the second conductive clad layer, the active layer, the first conductive clad layer, and the ohmic contact layer which have been exposed by the etching; removing the first mask layer, forming a second mask layer on the semi-insulating clad layer and the ohmic contact layer, and then selectively etching the second mask layer so as to expose the rabbit ear-shaped protrusion parts; and planarizing the semi-insulating clad layer by removing the exposed protrusion parts of the semi-insulating clad layer by using the etched second mask layer as a mask.

Description

레이저 소자 제조방법Laser device manufacturing method
본 발명은 집적 광학소자에 관한 것으로, 보다 상세하게는 반절연 (Semi-Insulating) 클래드층에 생성되는 토끼 귀 형상의 날카로운 돌기부를 제거하여 반절연 클래드층의 상부 표면을 평탄화되게 유지할 수 있는 레이저 소자 제조방법에 관한 것이다.The present invention relates to an integrated optical device, and more specifically, to a laser device that can maintain the upper surface of the semi-insulating clad layer flat by removing sharp protrusions in the shape of rabbit ears created on the semi-insulating clad layer. It is about manufacturing method.
일반적으로 광통신에서 10G bps 이상의 초고속 광신호 전송을 위하여 주로 광섬유의 흡수율이 낮은 1550nm 파장대역을 사용하고 있으며, 전계 흡수형 광변조기(electro-absorption modulator)와 분포귀환형 레이저 다이오드 (Distributed-Feedback Laser Diode: DFB LD)가 결합된 레이저(electro-absortion modulated laser: 이하 EML이라 칭함)를 사용한다.In general, for ultra-high-speed optical signal transmission of 10G bps or more in optical communication, the 1550nm wavelength band, which has a low absorption rate of optical fiber, is mainly used, and an electro-absorption modulator and a distributed-feedback laser diode are used. : DFB LD) combined laser (electro-absortion modulated laser: hereinafter referred to as EML) is used.
이러한 집적화 소자의 경우, 집적된 분포귀환형 레이저 다이오드와 전계 흡수형 광변조기 사이의 전기적 절연, 또는 반도체 광증폭기와 전계 흡수형 광변조기 또는 분포 귀환형 레이저 다이오드 사이의 전기적 절연, 광적 절연이 소자의 성능을 결정하는 중요한 요소이다.In the case of such an integrated device, electrical isolation between the integrated distributed feedback laser diode and the field absorption optical modulator, or between the semiconductor optical amplifier and the field absorption optical modulator or distributed feedback laser diode, or optical isolation, is used in the device. It is an important factor that determines performance.
도 1은 EMBH(Etched Mesa Buried Hetero-structure) 구조의 EML 집적광학장치의 구성을 나타낸 도면이다.Figure 1 is a diagram showing the configuration of an EML integrated optical device with an EMBH (Etched Mesa Buried Hetero-structure) structure.
도 1을 참조하면, EMBH 구조 집적광학장치는 n형 기판(11)과, 상기 n형 기판(11) 위에 형성된 n형 하부 클래드층(12)과, 상기 n형 하부 클래드층(12) 위에 형성된 활성층(13)과, 상기 활성층(13) 위에 형성된 p형 상부 클래드층(14)과, 상기 p형 상부 클래드층(14) 상에 형성된 오믹 콘택층(15) 및, p형 하부 클래드층 (12) 상부 및 측벽과 함께 상기 활성층(13)과 p형 상부 클래드층(14) 및 오믹 콘택층(15) 측벽을 감싸도록 형성된 반절연(Semi-Insulating) 클래드층(17)을 포함하여 구성된다.Referring to FIG. 1, the EMBH structure integrated optical device includes an n-type substrate 11, an n-type lower clad layer 12 formed on the n-type substrate 11, and an n-type lower clad layer 12 formed on the n-type lower clad layer 12. An active layer 13, a p-type upper clad layer 14 formed on the active layer 13, an ohmic contact layer 15 formed on the p-type upper clad layer 14, and a p-type lower clad layer 12 ) It is composed of a semi-insulating clad layer 17 formed to surround the upper and side walls of the active layer 13, the p-type upper clad layer 14, and the side walls of the ohmic contact layer 15.
여기서, 기존의 EMBH 구조의 집적광학장치는 활성층(13) 위에만 p형 상부 클래드층(14)이 구비되므로 정전용량을 작게 할 수 있다. 따라서, 주위의 불필요한 p형 상부 클래드층을 식각할 필요가 없는 장점이 있다. Here, the integrated optical device of the existing EMBH structure has the p-type upper clad layer 14 only on the active layer 13, so the capacitance can be reduced. Therefore, there is an advantage that there is no need to etch the surrounding unnecessary p-type upper clad layer.
그러나, 소자들이 p형 상부 클래드층(14)으로 연결되어 있기 때문에, 이를 이온주입이나 식각공정으로 절연시켜야 하며, 각 공정이 가지는 문제점을 그대로 내포하고 있다.However, since the devices are connected by the p-type upper clad layer 14, they must be insulated through ion implantation or etching processes, and the problems inherent in each process remain.
또한, EMBH 구조의 집적광학장치는 전류 주입을 위한 p형 상부 클래드층(14)의 폭이 좁기 때문에 이로 인해 전극과의 접촉 저항을 포함한 저항이 커지게 된다.In addition, in the integrated optical device of the EMBH structure, the width of the p-type upper cladding layer 14 for current injection is narrow, so the resistance, including contact resistance with the electrode, increases.
그리고, 도 1에서와 같이, EMBH(Etched Mesa Buried Hetero Structure) 구조의 집적광학장치는 반절연(SI; Semi-Insulating) 클래드층(17)의 표면상에 토끼 귀(robbit ears) 형상의 날카로운 돌기부(18)가 형성된다.As shown in Figure 1, the integrated optical device having an EMBH (Etched Mesa Buried Hetero Structure) structure has sharp protrusions in the shape of rabbit ears on the surface of the semi-insulating (SI) clad layer 17. (18) is formed.
따라서, 상기 토끼 귀(robbit ears) 모양의 날카로운 돌기부(18)로 인해, 기판을 다수의 바(bar)로 절단하는 동안에 토끼 귀 모양의 날카로운 돌기부(18)가 서로 충돌하여 입자로 부서지게 된다. Therefore, due to the sharp protrusions 18 in the shape of rabbit ears, while cutting the substrate into a plurality of bars, the sharp protrusions 18 in the shape of rabbit ears collide with each other and break into particles.
또한, 도 2에서와 같이, 전극(22) 주변에 있는 반절연 클래드층(17) 부분에토끼 귀 형상의 날카로운 돌기부(18)가 형성되어 있어 얇은 전극의 경우 끊어지는 경우도 있게 된다.In addition, as shown in FIG. 2, sharp protrusions 18 in the shape of rabbit ears are formed on the semi-insulating clad layer 17 around the electrode 22, so that thin electrodes may break.
그리고, 활성 영역을 보호하기 위해서는 전극(22)의 높이가 토끼 귀 모양의 돌기부(18)보다 일정 두께(t)만큼 더 높아야 되기 때문에, 그만큼 전극(19)을 형성하기 위한 금속 물질층, 예를들어 Au 소비가 늘어나게 되어 제조비용 뿐만 아니라 제조 시간도 늘어나게 되는 단점이 있다. In order to protect the active area, the height of the electrode 22 must be higher than the rabbit ear-shaped protrusion 18 by a certain thickness t, so a metal material layer to form the electrode 19, for example, For example, Au consumption increases, which has the disadvantage of increasing not only the manufacturing cost but also the manufacturing time.
따라서, 본 발명의 목적은 반절연(SI) 클래드층의 높이를 유지하되 토끼 귀 형상의 날카로운 돌기부를 제거하여 돌기부의 깨짐으로 인해 발생하는 입자 오염을 줄일 수 있는 레이저 소자 제조방법을 제공하는데 있는 것이다.Therefore, the purpose of the present invention is to maintain the height of the semi-insulating (SI) clad layer, but to provide a laser device manufacturing method that can reduce particle contamination caused by cracking of the protrusions by removing sharp protrusions in the shape of rabbit ears. .
또한, 본 발명의 목적은 반절연 클래드층의 평탄화로 인해 제품 파손을 크게 줄일 수 있으며, 금속 물질의 소비를 줄여 제조비용을 절감할 수 있는 레이저 소자 제조방법을 제공하는데 있는 것이다. In addition, the purpose of the present invention is to provide a laser device manufacturing method that can significantly reduce product damage by flattening the semi-insulating clad layer and reduce manufacturing costs by reducing the consumption of metal materials.
상기 목적을 달성하기 위한 본 발명은 기판 상에 제1 도전형 제1 클래드층과, 활성층, 제2 도전형 클래드층 및 오믹 콘택층을 차례로 적층하는 단계와, 상기 오믹 콘택층 상에 제1 마스크 형성 물질층을 형성하고 이를 패터닝하여 제1 마스크층을 형성하는 단계와, 상기 제1 마스크층을 마스크로 상기 오믹 콘택층을 식각하는 단계와, 상기 오믹 콘택층을 포함한 상기 제1 마스크층을 마스크로 상기 제2 도전형 클래드층과 상기 활성층 및 상기 제1 도전형 클래드층을 식각하는 단계와, 상기 식각되어 노출된 제2 도전형 클래드층과 활성층과 상기 제1 도전형 클래드층 및 오믹 콘택층 상에 토끼 귀(rabbit ears) 형상의 돌기부를 가진 반절연 (semi-insulating) 클래드층을 형성하는 단계와, 상기 제1 마스크층을 제거하고 상기 반절연 클래드층과 상기 오믹콘택층 상에 제2 마스크층을 형성하는 단계와, 상기 제2 마스크층을 선택적으로 식각하여 상기 반절연 클래드층의 토끼 귀 형상의 상기 돌기부가 노출되도록 하는 단계와, 상기 노출된 반절연 클래드층의 돌기부를 제거하여 상기 반절연 클래드층의 상부 표면을 평탄화시키는 단계 및, 상기 제2 마스크층을 제거하고 상기 노출된 오믹 콘택층상에 전극을 형성하는 단계를 포함하여 구성된다. The present invention for achieving the above object includes the steps of sequentially stacking a first clad layer of a first conductivity type, an active layer, a second conductivity type clad layer, and an ohmic contact layer on a substrate, and applying a first mask on the ohmic contact layer. forming a forming material layer and patterning it to form a first mask layer; etching the ohmic contact layer using the first mask layer as a mask; and etching the ohmic contact layer using the first mask layer as a mask. etching the second conductive clad layer, the active layer, and the first conductive clad layer; and etching the exposed second conductive clad layer, the active layer, the first conductive clad layer, and the ohmic contact layer. forming a semi-insulating clad layer with rabbit ear-shaped protrusions on the semi-insulating clad layer; removing the first mask layer; and forming a semi-insulating clad layer on the semi-insulating clad layer and the ohmic contact layer. forming a mask layer, selectively etching the second mask layer to expose the rabbit ear-shaped protrusions of the semi-insulating clad layer, and removing the exposed protrusions of the semi-insulating clad layer to Planarizing the upper surface of the semi-insulating clad layer, removing the second mask layer and forming an electrode on the exposed ohmic contact layer.
본 발명에 따른 레이저 소자 제조방법은 상기 제1 마스크층을 마스크로 상기 제2 도전형 클래드층과 상기 활성층 및 상기 제1 도전형 클래드층을 식각하는 단계에서, 상기 제2 도전형 상부 클래드층과 상기 활성층 및 제1 도전형 하부 클래드층을 차례로 식각하여 메사 구조로 형성할 수 있다. The laser device manufacturing method according to the present invention includes etching the second conductive clad layer, the active layer, and the first conductive clad layer using the first mask layer as a mask, the second conductive upper clad layer and The active layer and the first conductive lower clad layer may be sequentially etched to form a mesa structure.
본 발명에 따른 레이저 소자 제조방법은 상기 제2 마스크층을 선택적으로 제거하여 토끼 귀 형상의 돌기부가 노출되도록 하는 단계는 상기 오믹 콘택층과 그 주변에 있는 상기 반절연 클래드층의 상기 돌기부와 대응되는 상기 제2 마스크층 부분이 노출되도록 상기 제2 마스크층의 상측에 노광마스크를 배치하는 공정과, 상기 노광마스크를 마스크로 상기 제2 마스크층의 노출된 부분에 UV를 조사한 후 현상 공정을 거쳐 UV 조사된 상기 제2 마스크층 부분을 제거하여 상기 돌기부가 노출되도록 하는 공정을 포함하여 이루어질 수 있다. In the laser device manufacturing method according to the present invention, the step of selectively removing the second mask layer to expose the rabbit ear-shaped protrusions corresponds to the protrusions of the ohmic contact layer and the semi-insulating clad layer surrounding it. A process of placing an exposure mask on an upper side of the second mask layer so that a portion of the second mask layer is exposed, irradiating UV to the exposed portion of the second mask layer using the exposure mask as a mask, and then performing a UV development process. It may include a process of removing the irradiated portion of the second mask layer to expose the protrusion.
본 발명에 따른 레이저 소자 제조방법에 의하면, 상기 반절연 (Semi- Insulating) 클래드층은 전이원소 또는 란탄계 또는 악티늄계 원소 중 어느 하나를 포함할 수 있다. According to the laser device manufacturing method according to the present invention, the semi-insulating clad layer may include any one of a transition element or a lanthanide-based or actinium-based element.
본 발명에 따른 레이저 장치 제조방법에 의하면, 상기 제1 마스크층은 SiO2 또는 SiNx를 포함할 수 있다. According to the laser device manufacturing method according to the present invention, the first mask layer may include SiO 2 or SiNx.
본 발명에 따른 레이저 소자 제조방법에 의하면, 상기 제2 마스크층은 포토레지스트 물질을 포함할 수 있다. According to the laser device manufacturing method according to the present invention, the second mask layer may include a photoresist material.
본 발명에 따른 레이저 소자 제조방법에 의하면, 상기 제1 도전형 하부 클래드층은 n형 InP 물질을 포함하고, 상기 제2 도전형 상부 클래드층은 p형 InP 물질을 포함할 수 있다. According to the laser device manufacturing method according to the present invention, the first conductive lower clad layer may include an n-type InP material, and the second conductive upper clad layer may include a p-type InP material.
본 발명에 따른 레이저 소자 제조방법에 의하면, 상기 활성층은 우물층과 장벽층이 교번 적층된 MQW(Multi Quantum well) 구조이며, 상기 우물층과 장벽층의 조성은 InAlGaAs 또는 InGaAsP를 포함할 수 있다. According to the laser device manufacturing method according to the present invention, the active layer has an MQW (Multi Quantum well) structure in which well layers and barrier layers are alternately stacked, and the composition of the well layers and barrier layers may include InAlGaAs or InGaAsP.
본 발명에 따른 레이저 소자 제조방법에 의하면 상기 반절연 (Semi- Insulating) 클래드층은 InP 물질로 구성하되, 상기 InP 물질이 반절연 (Semi- Insulating) 특성을 갖도록 하는 도펀트로는 Fe, Co, Cr, Mn, Ti, Ru 의 천이 금속 (transition metal) 중 어느 하나를 포함할 수 있다. According to the laser device manufacturing method according to the present invention, the semi-insulating clad layer is composed of InP material, and the dopants that enable the InP material to have semi-insulating properties include Fe, Co, and Cr. , Mn, Ti, and Ru may be included as transition metals.
상기한 바와 같이, 본 발명에 따른 레이저 소자 제조방법에 따르면, 반절연(Semi-Insulating) 클래드층 형성시에 생성되는 토끼 귀(rabbit ears) 형상의 날카로운 돌기부를 포토 마스크를 이용한 식각 공정을 통해 제거해 줌으로써 반절연 클래드층 상부 표면이 평탄화되어 제품이 파손이 크게 줄어 들게 된다.As described above, according to the laser device manufacturing method according to the present invention, sharp protrusions in the shape of rabbit ears generated when forming a semi-insulating clad layer are removed through an etching process using a photo mask. By doing so, the upper surface of the semi-insulating clad layer is flattened, greatly reducing damage to the product.
또한, 본 발명에 따른 레이저 소자 제조방법은 반절연 클래드층에 형성되는 돌기부를 제거하여 반절연 클래드층의 상부 표면을 평탄화되도록 하기 때문에 기존에 기판을 다수의 바(bar)로 절단할 때 토끼 귀(rabbit ears) 형상의 날카로운 돌기부가 깨지면서 발생하는 입자들로 인한 오염이 감소하게 되므로 제품의 표면에 발생하는 문제가 줄어들게 된다. In addition, the laser device manufacturing method according to the present invention flattens the upper surface of the semi-insulating clad layer by removing the protrusions formed on the semi-insulating clad layer, so that when cutting the existing substrate into multiple bars, rabbit ears are used. As the sharp protrusions in the shape of (rabbit ears) break, contamination caused by particles is reduced, thereby reducing problems occurring on the surface of the product.
그리고, 본 발명에 따른 레이저 소자 제조방법은 반절연 클래드층에 형성되는 돌기부를 제거하여 반절연 클래드층의 상부 표면을 평탄화되도록 하기 때문에 전극을 형성하는 금속 물질, 예를들어 Au와 같은 금속층을 불필요하게 두껍게 형성하지 않아도 되므로 제조 비용을 줄일 수 있을 뿐만 아니라 제조 시간도 단축시킬 수 있다.In addition, the laser device manufacturing method according to the present invention removes the protrusions formed on the semi-insulating clad layer to flatten the upper surface of the semi-insulating clad layer, so there is no need for a metal layer such as a metal material forming an electrode, such as Au. Since there is no need to form it too thick, not only can manufacturing costs be reduced, but manufacturing time can also be shortened.
도 1은 종래기술에 따른 EMBH(Etched Mesa Buried Hetero-structure) 구조 집적광학장치의 구성을 나타낸 도면이다.Figure 1 is a diagram showing the configuration of an integrated optical device with an EMBH (Etched Mesa Buried Hetero-structure) structure according to the prior art.
도 2는 종래기술에 따른 EMBH(Etched Mesa Buried Hetero-structure) 구조 집적광학장치에 있어서, 반절연 클래드층의 돌기부로 인해 전극 물질층을 두껍게 형성하는 상태를 개략적으로 나타낸 도면이다.Figure 2 is a diagram schematically showing a state in which a thick electrode material layer is formed due to protrusions of a semi-insulating clad layer in an integrated optical device with an EMBH (Etched Mesa Buried Hetero-structure) structure according to the prior art.
도 3a 내지 도 3k는 본 발명에 따른 레이저 소자 제조방법을 설명하기 위한 공정 단면도들이다.Figures 3A to 3K are cross-sectional process views for explaining the laser device manufacturing method according to the present invention.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the attached drawings.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다.The present embodiments may be modified in other forms or various embodiments may be combined with each other, and the scope of the present invention is not limited to each embodiment described below.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다.Even if matters described in a specific embodiment are not explained in other embodiments, they may be understood as descriptions related to other embodiments, as long as there is no explanation contrary to or contradictory to the matter in the other embodiments.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.For example, if a feature for configuration A is described in a specific embodiment and a feature for configuration B is described in another embodiment, the description is contrary or contradictory even if an embodiment in which configuration A and configuration B are combined is not explicitly described. Unless otherwise stated, it should be understood as falling within the scope of the rights of the present invention.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly) 접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In the description of the embodiment, when an element is described as being formed “on or under” another element, or under) includes both two elements being in direct contact with each other or one or more other elements being placed between the two elements (indirectly). Additionally, when expressed as "on or under," it can include not only the upward direction but also the downward direction based on one element.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention.
본 실시 예에서는 집적광학장치의 레이저 소자 구성을 기반으로 본 발명의 기술적 사상을 설명하나, 본 발명의 사상이 집적광학장치의 레이저 소자에 국한되는 것은 아니며 다른 형태의 파장 가변 레이저에도 적용될 수 있음은 물론이다.In this embodiment, the technical idea of the present invention is explained based on the configuration of the laser device of the integrated optical device, but the idea of the present invention is not limited to the laser device of the integrated optical device and can also be applied to other types of tunable lasers. Of course.
도 3a 내지 도 3k는 본 발명에 따른 레이저 소자 제조방법을 설명하기 위한 제조 공정 단면도들이다.Figures 3A to 3K are cross-sectional views of the manufacturing process for explaining the laser device manufacturing method according to the present invention.
먼저, 도 3a를 참조하면, 제1 도전형, 예를들어 n형 기판(101) 위에 제1 도전형, 예를들어 n형 하부 클래드층(102), 다중 양자 우물(MQW) 구조의 활성층 (103), 제2 도전형, 예를들어 p형 상부 클래드층(104) 및 오믹 콘택층(105)을 차례로 적층한다. 이때, 상기 기판(101)은 n형 InP 물질로 형성된 경우를 예로 들었지만, 이에 한정되지 않으며, 다른 물질을 이용하여 형성할 수도 있다.First, referring to FIG. 3A, a first conductivity type, for example, n-type substrate 101 is placed on a first conductivity type, for example, n-type lower clad layer 102, an active layer of a multiple quantum well (MQW) structure ( 103), a second conductive type, for example, p-type upper clad layer 104 and an ohmic contact layer 105 are sequentially stacked. At this time, the substrate 101 is formed of an n-type InP material as an example, but it is not limited to this and may be formed using other materials.
또한, 상기 제1 도전형인 n형 하부 클래드층(102)은 InP 물질을 포함할 수 있으나 반드시 이에 한정하지 않는다.Additionally, the n-type lower clad layer 102 of the first conductivity type may include an InP material, but is not necessarily limited thereto.
그리고, 상기 활성층(103)은 우물층과 장벽층이 교번 적층된 MQW(Multi Quantum well) 구조일 수 있다. 우물층과 장벽층의 조성은 InAlGaAs 또는 InGaAsP를 포함할 수 있으나 반드시 이에 한정하지 않는다.Additionally, the active layer 103 may have an MQW (Multi Quantum well) structure in which well layers and barrier layers are alternately stacked. The composition of the well layer and the barrier layer may include, but are not necessarily limited to, InAlGaAs or InGaAsP.
또한, 상기 제2 도전형인 p형 상부 클래드층(104)은 InP 물질을 포함할 수 있으나 반드시 이에 한정하지 않는다.Additionally, the p-type upper clad layer 104, which is the second conductivity type, may include an InP material, but is not necessarily limited thereto.
그리고, 상기 오믹 콘택층(105)은 InGaAs 물질을 포함할 수 있으나 반드시 이에 한정하지 않는다.Additionally, the ohmic contact layer 105 may include an InGaAs material, but is not necessarily limited thereto.
그다음, 도 3b를 참조하면, 상기 오믹 콘택층(105) 상에 BH(Buried Hetero) 구조 형성을 위해 SiO2 또는 SiNx를 이용하여 제1 마스크 물질층(미도시)을 형성한다. 이때, 상기 제1 마스크 물질층(미도시)의 형성 물질로는 SiO2 또는 SiNx를 포함할 수 있으나, 반드시 이에 한정하지 않는다.Next, referring to FIG. 3B, a first mask material layer (not shown) is formed on the ohmic contact layer 105 using SiO 2 or SiNx to form a Buried Hetero (BH) structure. At this time, the forming material of the first mask material layer (not shown) may include SiO 2 or SiNx, but is not necessarily limited thereto.
이어서, 상기 제1 마스크 물질층(미도시)을 선택적으로 식각하여 제1 마스크층(106)을 형성한다.Next, the first mask layer 106 is formed by selectively etching the first mask material layer (not shown).
그 다음, 도 3c를 참조하면, 상기 제1 마스크층(106)을 마스크로 이용한 식각 공정을 통해 상기 오믹 콘택층(105)을 선택적으로 식각한다. 이때, 상기 오믹 콘택층(105) 식각시에, 선택 식각제, 예를 들어 H2PO4 : H2O = 1 : 1 : 5를 이용하여 상기 제1 마스크(106) 하부의 오믹 콘택층(105)을 습식식각할 수 있다. 여기서, 상기 선택 식각제로는 H2PO4 : H2O = 1 : 1 : 5를 포함하지만 반드시 이에 한정하지 않는다.Next, referring to FIG. 3C, the ohmic contact layer 105 is selectively etched through an etching process using the first mask layer 106 as a mask. At this time , when etching the ohmic contact layer 105 , the ohmic contact layer ( 105) can be wet etched. Here, the selective etchant includes H 2 PO 4 : H 2 O = 1 : 1 : 5, but is not necessarily limited thereto.
이어서, 도 3d를 참조하면, 상기 제1 마스크층(106)을 마스크로 이용한 메사(Mesa) 식각공정을 통해 상기 상부 클래드층(104), 활성층(103) 및 하부 클래드층(102)을 차례로 식각하여 BH(Buried Hetero) 구조를 형성한다. Next, referring to FIG. 3D, the upper clad layer 104, the active layer 103, and the lower clad layer 102 are sequentially etched through a mesa etching process using the first mask layer 106 as a mask. This forms a BH (Buried Hetero) structure.
이때, 상기 제1 마스크층(106)을 식각 마스크로 이용한 건식식각 공정(dry etching)을 통해 활성층(103)까지 수직 메사를 미리 형성한 다음, 비선택 식각제 예를들어 HBr : H2O2 : H2O = 10 : 2 : 100을 사용하여 식각할 수 있다.At this time, a vertical mesa is formed in advance up to the active layer 103 through a dry etching process using the first mask layer 106 as an etch mask, and then a non-selective etchant, such as HBr: H 2 O 2 : H 2 O = 10 : 2 : 100 can be used to etch.
상기 식각공정에 의해 p형 InP 상부 클래드층(104)은 역메사 구조로 형성되고, InGaAs 활성층(103) 및 n형 하부 클래드층(102)은 메사 구조로 형성된다. Through the etching process, the p-type InP upper clad layer 104 is formed in an inverse mesa structure, and the InGaAs active layer 103 and the n-type lower clad layer 102 are formed in a mesa structure.
역메사의 형성은 식각제(etchant) 와의 반응이 현격히 저하되는 습식 식각 공정(wet etching)의 특성을 이용한 것이며, InP 물질의 고유 특성에 의해 약 60도 각도를 이루면서 식각이 된다.The formation of the inverse mesa utilizes the characteristics of the wet etching process, in which the reaction with the etchant is significantly reduced, and is etched at an angle of approximately 60 degrees due to the inherent characteristics of the InP material.
역메사 구조의 p형 상부 클래드층(104) 형성후 InGaAs 활성층(103)을 만나게 되면 조상이 달라져 더 이상 역메사 구조로 식각되지 않고 메사 구조로 식각된다. 또한, 도 3d의 과정은 습식식각 공정만으로도 가능하지만, 전술한 바와 같이 건식식각 공정과 습식식각 공정을 병행하는 것이 공정 시간을 단축시킬 수 있다.After forming the p-type upper clad layer 104 of the inverted mesa structure, when it encounters the InGaAs active layer 103, the ancestor changes and it is no longer etched with the inverse mesa structure but with the mesa structure. In addition, the process of FIG. 3D is possible only with a wet etching process, but as described above, combining the dry etching process and the wet etching process can shorten the process time.
한편, 직렬 저항을 감소시키기 위해서는 활성층(103)과 오믹 콘택층(105) 사이의 두께, 즉 p형 상부 클래드층(104)의 두께를 얇게 하는 것이 중요하다. 두꺼운 상부 클래드층의 경우에도 가능은 하지만 광소자의 직렬 저항 특성 또는 양호한 고주파 응답 특성을 얻기 위해서는 최소한의 두께, 예를들어 p형 상부 클래드층(104)의 두께가 0.8 내지 2.0 μm가 되도록 하는 것이 바람직하다.Meanwhile, in order to reduce series resistance, it is important to thin the thickness between the active layer 103 and the ohmic contact layer 105, that is, the thickness of the p-type upper clad layer 104. Although it is possible in the case of a thick upper clad layer, in order to obtain series resistance characteristics or good high-frequency response characteristics of the optical device, it is desirable to have a minimum thickness, for example, the thickness of the p-type upper clad layer 104, of 0.8 to 2.0 μm. do.
그 다음, 도 3e를 참조하면, 상기 메사 식각 공정에 의해 형성된 BH 구조의 측벽에 반절연(Semi-Insulating) 클래드층(107)을 형성한다. 이때, 상기 BH(Buried Hetero) 구조의 측벽 주변에 토끼 귀(Rabbit ears) 형상의 돌기부(108)가 형성된다. 또한, 상기 반절연(Semi-Insulating) 클래드층(107)은 전이원소 또는 란탄계 또는 악티늄계 원소 중 어느 하나를 포함할 수 있으며, 반드시 이에 한정하지 않는다.Next, referring to FIG. 3E, a semi-insulating clad layer 107 is formed on the sidewall of the BH structure formed through the mesa etching process. At this time, protrusions 108 in the shape of rabbit ears are formed around the side walls of the BH (Buried Hetero) structure. Additionally, the semi-insulating clad layer 107 may include a transition element or any one of a lanthanide-based or actinium-based element, but is not necessarily limited thereto.
또한, 상기 반절연 클래드층(107)은 상기 역메사 및 메사 구조의 측벽에 전류 차단 및 소자간 전기적 분리를 위해 InP 물질로 구성한다. 이때, InP 물질이 반절연(Semi-Insulating) 특성을 갖도록 하는 도펀트로는 Fe, Co, Cr, Mn, Ti, Ru 등의 천이 금속(transition metal)이 주로 사용될 수 있으며, 본 실시예에서는 누설 전류가 적은 Fe를 도핑한 경우를 예로 들지만, 반드시 이에 한정하지 않는다. In addition, the semi-insulating clad layer 107 is made of InP material to block current and electrically separate devices on the sidewalls of the inverted mesa and mesa structures. At this time, transition metals such as Fe, Co, Cr, Mn, Ti, and Ru can be mainly used as dopants that allow the InP material to have semi-insulating properties. In this embodiment, the leakage current The case of doping with low Fe is given as an example, but it is not necessarily limited to this.
상기 BH 구조의 측벽은 상기 오믹 콘택층(105), 상부 클래드층(104), 활성층(103) 및 하부 클래드층(102) 측벽을 포함한다. The sidewall of the BH structure includes the ohmic contact layer 105, the upper clad layer 104, the active layer 103, and the lower clad layer 102 sidewall.
이렇게 EMBH(Etched Mesa Buried Hetero-structure) 형태의 역메사를 형성하게 되면 직력 저항이 줄어드는 장점이 있다. Forming an inverted mesa in the form of an EMBH (Etched Mesa Buried Hetero-structure) has the advantage of reducing direct force resistance.
이어서, 도 3f를 참조하면, 상기 제1 마스크층(106)을 제거하고, 상기 오믹 콘택층(105) 및 반절연 클래드층(107) 상부 전면에 포토레지스트를 도포하여 제2 마스크층(109)을 형성한다.Next, referring to FIG. 3F, the first mask layer 106 is removed, and photoresist is applied to the entire upper surface of the ohmic contact layer 105 and the semi-insulating clad layer 107 to form a second mask layer 109. forms.
그 다음, 도 3g를 참조하면, 상기 제2 마스크층(109) 상부 상측에 노광마스크(110)를 배치하고, 상기 노광마스크(110)를 마스크로 이용하여 상기 제2 마스크층(109)을 UV를 통해 노광시킨다. 이때, 상기 노광마스크(110)는 개구부(미도시)와 차단부(미도시)로 구성되는데, 상기 개구부(미도시)는 상기 제2 마스크층(109) 아래의 오믹 콘택층(105) 및 그 주변의 반절연 클래드층(107)의 토끼 귀 형상의 돌기부(108)와 대응하는 위치에 위치한다.Next, referring to FIG. 3g, an exposure mask 110 is placed on the upper part of the second mask layer 109, and the exposure mask 110 is used as a mask to UV expose the second mask layer 109. exposed through. At this time, the exposure mask 110 is composed of an opening (not shown) and a blocking part (not shown), and the opening (not shown) is connected to the ohmic contact layer 105 below the second mask layer 109 and its It is located at a position corresponding to the rabbit ear-shaped protrusion 108 of the surrounding semi-insulating clad layer 107.
이어서, 도 3h를 참조하면, 상기 노광마스크(110)의 상기 개구부(미도시)를 통해 UV 노광을 실시하여 상기 제2 마스크층(109)의 노광된 부분을 선택적으로 식각하여 상기 반절연 클래드층(107)의 돌기부(108)를 노출시킨다.Next, referring to FIG. 3H, UV exposure is performed through the opening (not shown) of the exposure mask 110 to selectively etch the exposed portion of the second mask layer 109 to form the semi-insulating clad layer. The protrusion 108 of (107) is exposed.
그 다음, 도 3i를 참조하면, 노출된 상기 반절연 클래드층(107)의 돌기부 (108)를 식각하여 반절연 클래드층(107) 상부를 평탄화시킨다.Next, referring to FIG. 3I, the exposed protrusions 108 of the semi-insulating clad layer 107 are etched to flatten the upper part of the semi-insulating clad layer 107.
이어서, 도 3j를 참조하면, 상기 선택적으로 식각되고 남은 상기 제2 마스크층(109)을 제거하여 돌기부(108)가 제거된 반절연 클래드층(107) 및 오믹 콘택층 (105)을 노출시킨다.Next, referring to FIG. 3J, the selectively etched second mask layer 109 is removed to expose the semi-insulating clad layer 107 and the ohmic contact layer 105 from which the protrusions 108 have been removed.
그 다음, 도 3k를 참조하면, 상기 오믹 콘택층(105) 및 반절연 클래드층 (107) 상부 전면에 금속물질, 예를 들어 Au 등을 증착한 후 마스크 공정을 통해 이를 선택적으로 식각하여 상기 오믹 콘택층(105) 상에 레이저 소자용 전극(112)을 형성한다. Next, referring to FIG. 3K, a metal material, such as Au, is deposited on the entire upper surface of the ohmic contact layer 105 and the semi-insulating clad layer 107, and then selectively etched through a mask process to form the ohmic contact layer 105. An electrode 112 for a laser device is formed on the contact layer 105.
이때, 전극 형성용 금속물질을 형성하는 방법으로는 스퍼터링(sputtering), 전자빔 증착(E-beam evaporation), 열증착(thermal evaporation)과 같은 물리적 기상 증착방법(Phisical Vapor Deposition, PVD)을 사용한다. At this time, physical vapor deposition (PVD) methods such as sputtering, E-beam evaporation, and thermal evaporation are used as a method of forming the metal material for forming the electrode.
실시예에서는 전자빔 증착 방법을 이용하여 금속을 증착하는 경우를 일 예로 설명하고 있지만 반드시 이에 한정되지 않으며 앞서 설명한 다양한 증착 방법으로 금속을 증착할 수 있다.In the embodiment, the case of depositing a metal using an electron beam deposition method is described as an example, but the present invention is not necessarily limited to this and the metal can be deposited using the various deposition methods described above.
이때, 상기 금속물질층의 증착 두께는 종래와는 달리 두껍게 형성하지 않아도 된다. 그 이유는, 도 2에서와 같이, 종래기술에서는 반절연 클래드층(17)에 형성된 토끼 귀 형상의 돌기부(18)로 인해 전극(22)을 형성하기 위해 금속 물질층을 일정 두께(t) 만큼 두껍게 형성해야 한다.At this time, the deposition thickness of the metal material layer does not need to be as thick as in the prior art. The reason is that, as shown in FIG. 2, in the prior art, in order to form the electrode 22 due to the rabbit ear-shaped protrusion 18 formed on the semi-insulating clad layer 17, the metal material layer is formed with a certain thickness t. It must be formed thickly.
그러나, 본 발명의 경우, 반절연 클래드층(107)의 돌기부(108)가 제거됨으로 인해 상기 반절연 클래드층(107) 상부 표면이 평탄화되기 때문에 상기 오믹 콘택층 (105) 상에 전극(112) 형성용 금속 물질을 두껍게 형성하지 않아도 되므로 그만큼 소자 제조에 드는 비용 뿐만 아니라 제조 공정 시간을 단축시킬 수 있다. However, in the case of the present invention, the upper surface of the semi-insulating clad layer 107 is flattened by removing the protrusions 108 of the semi-insulating clad layer 107, so that the electrode 112 is formed on the ohmic contact layer 105. Since there is no need to form a thick metal material, not only the cost of manufacturing the device but also the manufacturing process time can be reduced.
상기한 바와 같이, 본 발명에 따른 레이저 소자 제조방법에 따르면, 반절연 클래드층 형성시에 생성되는 토끼 귀(rabbit ears) 형상의 날카로운 돌기부를 포토 마스크를 이용한 식각 공정을 통해 제거해 줌으로써 반절연 클래드층 상부 표면이 평탄화되어 제품이 파손이 크게 줄어 들게 된다.As described above, according to the laser device manufacturing method according to the present invention, the sharp protrusions in the shape of rabbit ears generated when forming the semi-insulating clad layer are removed through an etching process using a photo mask, thereby forming the semi-insulating clad layer. The upper surface is flattened, greatly reducing damage to the product.
또한, 본 발명은 반절연 클래드층에 형성되는 돌기부를 제거하여 클래드층의 상부 표면을 평탄화되도록 하기 때문에 기존에 기판을 다수의 바(bar)로 절단할 때 토끼 귀(rabbit ears) 형상의 날카로운 돌기부가 깨지면서 입자들이 충돌하여 발생하는 입자 오염이 감소하게 되므로 제품의 표면에 발생하는 오염이 줄어들게 된다. In addition, the present invention flattens the upper surface of the clad layer by removing the protrusions formed on the semi-insulating clad layer, so when cutting the existing substrate into a plurality of bars, sharp protrusions in the shape of rabbit ears are removed. When it breaks, particle contamination caused by particles colliding is reduced, so contamination occurring on the surface of the product is reduced.
그리고, 본 발명은 반절연 클래드층에 형성되는 돌기부를 제거하여 클래드층의 상부 표면을 평탄화되도록 하기 때문에 전극을 형성하는 금속 물질층을 불필요하게 두껍게 형성하지 않아도 되므로 제조 비용을 줄일 수 있고, 그로 인해 제조 시가도 단축시킬 수 있다.In addition, since the present invention flattens the upper surface of the clad layer by removing the protrusions formed on the semi-insulating clad layer, the manufacturing cost can be reduced by eliminating the need to form the metal material layer forming the electrode unnecessarily thick, thereby reducing the manufacturing cost. The manufacturing time can also be shortened.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Although the above description focuses on examples, this is only an example and does not limit the present invention, and those skilled in the art will understand that the examples are as follows without departing from the essential characteristics of the present example. You will see that various variations and applications are possible. For example, each component specifically shown in the examples can be modified and implemented. And these variations and differences in application should be construed as being included in the scope of the present invention as defined in the appended claims.

Claims (9)

  1. 기판 상에 제1 도전형 제1 클래드층과, 활성층, 제2 도전형 클래드층 및 오믹 콘택층을 차례로 적층하는 단계;sequentially stacking a first conductive type first clad layer, an active layer, a second conductive type clad layer, and an ohmic contact layer on a substrate;
    상기 오믹 콘택층 상에 제1 마스크 형성 물질층을 형성하고 이를 패터닝하여 제1 마스크층을 형성하는 단계;forming a first mask forming material layer on the ohmic contact layer and patterning the layer to form a first mask layer;
    상기 제1 마스크층을 마스크로 상기 오믹 콘택층을 식각하는 단계;etching the ohmic contact layer using the first mask layer as a mask;
    상기 오믹 콘택층을 포함한 상기 제1 마스크층을 마스크로 상기 제2 도전형 클래드층과 상기 활성층 및 상기 제1 도전형 클래드층을 식각하는 단계;etching the second conductive clad layer, the active layer, and the first conductive clad layer using the first mask layer including the ohmic contact layer as a mask;
    상기 식각되어 노출된 제2 도전형 클래드층과 활성층과 상기 제1 도전형 클래드층 및 오믹 콘택층 상에 토끼 귀(rabbit ears) 형상의 돌기부를 가진 반절연 (semi-insulating) 클래드층을 형성하는 단계;Forming a semi-insulating clad layer having rabbit ear-shaped protrusions on the etched and exposed second conductive clad layer and active layer, and the first conductive clad layer and ohmic contact layer. step;
    상기 제1 마스크층을 제거하고, 상기 반절연 클래드층과 상기 오믹콘택층 상에 제2 마스크층을 형성하는 단계;removing the first mask layer and forming a second mask layer on the semi-insulating clad layer and the ohmic contact layer;
    상기 제2 마스크층을 선택적으로 제거하여 토끼 귀 형상의 돌기부가 노출되도록 하는 단계;selectively removing the second mask layer to expose rabbit ear-shaped protrusions;
    상기 노출된 반절연 클래드층의 상기 돌기부를 제거하여 상기 반절연 클래드층의 상부 표면을 평탄화시키는 단계; 및flattening the upper surface of the semi-insulating clad layer by removing the exposed protrusions of the semi-insulating clad layer; and
    상기 제2 마스크층을 제거하고, 상기 노출된 오믹 콘택층상에 전극을 형성하는 단계;를 포함하여 구성되는 레이저 소자 제조방법. A laser device manufacturing method comprising: removing the second mask layer and forming an electrode on the exposed ohmic contact layer.
  2. 제 1 항에 있어서, According to claim 1,
    상기 제1 마스크층을 마스크로 상기 제2 도전형 클래드층과 상기 활성층 및 상기 제1 도전형 클래드층을 식각하는 단계에서, 상기 제2 도전형 상부 클래드층과 상기 활성층 및 제1 도전형 하부 클래드층을 차례로 식각하여 메사 구조로 형성하는 것을 특징으로 하는 레이저 소자 제조방법. In the step of etching the second conductive type clad layer, the active layer, and the first conductive type clad layer using the first mask layer as a mask, the second conductive upper clad layer, the active layer, and the first conductive type lower clad layer A laser device manufacturing method characterized in that the layers are sequentially etched to form a mesa structure.
  3. 제 1 항에 있어서, According to claim 1,
    상기 노광된 제2 마스크층 부분을 제거하여 토끼 귀 형상의 상기 돌기부가 노출되도록 하는 단계는, The step of removing the exposed portion of the second mask layer to expose the rabbit ear-shaped protrusions,
    상기 오믹 콘택층과 그 주변에 있는 상기 반절연 클래드층의 상기 돌기부와 대응되는 상기 제2 마스크층 부분이 노출되도록 상기 제2 마스크층의 상측에 노광마스크를 배치하는 공정과,A process of placing an exposure mask on an upper side of the second mask layer so that a portion of the second mask layer corresponding to the protrusion of the semi-insulating clad layer in the ohmic contact layer and its surrounding area is exposed;
    상기 노광마스크를 마스크로 상기 제2 마스크층의 노출된 부분에 UV를 조사 한 후 조사된 상기 제2 마스크층 부분을 제거하여 상기 돌기부가 노출되도록 하는 공정을 포함하여 이루어지는 것을 특징으로 하는 레이저 소자 제조방법.Manufacturing a laser device comprising the step of irradiating UV to the exposed portion of the second mask layer using the exposure mask as a mask and then removing the irradiated portion of the second mask layer to expose the protrusion. method.
  4. 제1 항에 있어서, According to claim 1,
    상기 반절연(Semi-Insulating) 클래드층은 전이원소 또는 란탄계 또는 악티늄계 원소 중 어느 하나를 포함하는 것을 특징으로 하는 레이저 소자 제조방법.A method of manufacturing a laser device, wherein the semi-insulating clad layer includes a transition element or a lanthanum-based or actinium-based element.
  5. 제1 항에 있어서, According to claim 1,
    상기 반절연(Semi-Insulating) 클래드층은 InP 물질로 구성하되, 상기 InP 물질이 반절연(Semi-Insulating) 특성을 갖도록 하는 도펀트로는 Fe, Co, Cr, Mn, Ti, Ru 의 천이 금속(transition metal) 중 어느 하나를 포함하는 것을 특징으로 하는 레이저 소자 제조방법.The semi-insulating clad layer is made of an InP material, and the dopant that allows the InP material to have semi-insulating properties is a transition metal of Fe, Co, Cr, Mn, Ti, and Ru ( A laser device manufacturing method comprising any one of transition metal).
  6. 제1항에 있어서, According to paragraph 1,
    상기 제1 마스크층은 SiO2 또는 SiNx를 포함하는 것을 특징으로 하는 레이저 소자 제조방법. The first mask layer is a laser device manufacturing method, characterized in that it includes SiO 2 or SiNx.
  7. 제1항에 있어서, According to paragraph 1,
    상기 제2 마스크층은 포토레지스트 물질을 포함하는 것을 특징으로 하는 레이저 소자 제조방법.A method of manufacturing a laser device, wherein the second mask layer includes a photoresist material.
  8. 제1항에 있어서, According to paragraph 1,
    상기 제1 도전형 하부 클래드층은 n형 InP 물질을 포함하고, 상기 제2 도전형 상부 클래드층은 p형 InP 물질을 포함하는 것을 특징으로 하는 레이저 소자 제조방법.A method of manufacturing a laser device, wherein the first conductive lower clad layer includes an n-type InP material, and the second conductive upper clad layer includes a p-type InP material.
  9. 제1항에 있어서,According to paragraph 1,
    상기 활성층은 우물층과 장벽층이 교번 적층된 MQW(Multi Quantum well) 구조이며, 상기 우물층과 장벽층의 조성은 InAlGaAs 또는 InGaAsP를 포함하는 것을 특징으로 하는 레이저 소자 제조방법.The active layer is an MQW (Multi Quantum well) structure in which well layers and barrier layers are alternately stacked, and the composition of the well layers and barrier layers includes InAlGaAs or InGaAsP.
PCT/KR2023/002714 2022-08-31 2023-02-27 Laser device manufacturing method WO2024048882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0109821 2022-08-31
KR1020220109821A KR20240031544A (en) 2022-08-31 2022-08-31 Method of Manufaturing Laser Device

Publications (1)

Publication Number Publication Date
WO2024048882A1 true WO2024048882A1 (en) 2024-03-07

Family

ID=90098093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002714 WO2024048882A1 (en) 2022-08-31 2023-02-27 Laser device manufacturing method

Country Status (2)

Country Link
KR (1) KR20240031544A (en)
WO (1) WO2024048882A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236857A (en) * 1995-02-23 1996-09-13 Nec Corp Long wavelength semiconductor laser and its manufacture
KR20050110994A (en) * 2004-05-20 2005-11-24 삼성전자주식회사 Optical integrated circuit using reverse mesa structure and method for fabricating the same
KR20100074826A (en) * 2008-12-24 2010-07-02 주식회사 동부하이텍 Method of forming laser mark in wafer
JP2015162500A (en) * 2014-02-26 2015-09-07 三菱電機株式会社 Semiconductor device manufacturing method
JP6421901B1 (en) * 2018-03-26 2018-11-14 三菱電機株式会社 Manufacturing method of semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236857A (en) * 1995-02-23 1996-09-13 Nec Corp Long wavelength semiconductor laser and its manufacture
KR20050110994A (en) * 2004-05-20 2005-11-24 삼성전자주식회사 Optical integrated circuit using reverse mesa structure and method for fabricating the same
KR20100074826A (en) * 2008-12-24 2010-07-02 주식회사 동부하이텍 Method of forming laser mark in wafer
JP2015162500A (en) * 2014-02-26 2015-09-07 三菱電機株式会社 Semiconductor device manufacturing method
JP6421901B1 (en) * 2018-03-26 2018-11-14 三菱電機株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
KR20240031544A (en) 2024-03-08

Similar Documents

Publication Publication Date Title
JP3386261B2 (en) Optical semiconductor device and method of manufacturing the same
US8068526B2 (en) Semiconductor optical device
KR100670830B1 (en) Superluminescent diode and method of manufacturing the same
US5504768A (en) Semiconductor laser device and method for manufacturing the same
US6539039B2 (en) Optical semiconductor device and method of manufacturing the same
JP2006276497A (en) Method for manufacturing optical semiconductor device
US20160380023A1 (en) Semiconductor optical device integrating photodiode with optical waveguide and method of forming the same
EP1719003B1 (en) Buried heterostructure device fabricated by single step mocvd
US9482834B2 (en) Semiconductor optical device and method for producing semiconductor optical device
US5742423A (en) Semiconductor optical modulator
JP4947778B2 (en) Optical semiconductor device and manufacturing method thereof
WO2024048882A1 (en) Laser device manufacturing method
KR100413527B1 (en) Method for fabricating monolithic integrated semiconductor photonic devices
US9819153B2 (en) Optical semiconductor device and manufacturing method thereof
CN111162447B (en) Electrode window and manufacturing method of semiconductor device with electrode window
US7288422B2 (en) Photonic integrated device using reverse-mesa structure and method for fabricating the same
US6593162B1 (en) Method of manufacturing semiconductor optical device
EP3416252A1 (en) One step sibh for integrated circuits
US20210184421A1 (en) Semiconductor Optical Element
KR100670831B1 (en) Laser diode and method of manufacturing the same
US11966104B2 (en) Optical modulator
US6829275B2 (en) Hybrid confinement layers of buried heterostructure semiconductor laser
KR100576776B1 (en) Method for fabricating semiconductor optical device
CN113572021B (en) Self-aligning preparation method for front electrode window of DFB laser
CN116995531A (en) Electroabsorption modulated laser and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860571

Country of ref document: EP

Kind code of ref document: A1