WO2024048813A1 - Hydraulic machine - Google Patents

Hydraulic machine Download PDF

Info

Publication number
WO2024048813A1
WO2024048813A1 PCT/KR2022/013034 KR2022013034W WO2024048813A1 WO 2024048813 A1 WO2024048813 A1 WO 2024048813A1 KR 2022013034 W KR2022013034 W KR 2022013034W WO 2024048813 A1 WO2024048813 A1 WO 2024048813A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
torque
rotation speed
rotational speed
pressure
Prior art date
Application number
PCT/KR2022/013034
Other languages
French (fr)
Korean (ko)
Inventor
배상기
김영훈
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
배상기
김영훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비, 배상기, 김영훈 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to PCT/KR2022/013034 priority Critical patent/WO2024048813A1/en
Publication of WO2024048813A1 publication Critical patent/WO2024048813A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure

Definitions

  • This disclosure relates to hydraulic machines, and more specifically to hydraulic machines having a CPR (Common Pressure Rail) that supplies hydraulic oil to actuators.
  • CPR Common Pressure Rail
  • Hydraulic machines perform work by obtaining power from the pressure of fluid.
  • Such hydraulic machinery includes, for example, heavy equipment such as excavators.
  • CPR Common Pressure Rail
  • CPR Common Pressure Rail
  • an actuator a high-pressure accumulator, a high-pressure line that supplies hydraulic oil to the actuator and to which the high-pressure accumulator is connected, a pump that supplies hydraulic oil to the high-pressure line, and driving the pump a driving unit that controls the pump and the driving unit, and the control unit controls the rotational speed of the driving unit to be maintained at a preset first rotational speed when the pressure in the high pressure line is higher than a preset threshold pressure. and, when the pressure in the high pressure line becomes less than the threshold pressure, the rotational speed of the driving unit is controlled to become a second rotational speed greater than the first rotational speed.
  • the first rotational speed may be a rotational speed within a region representing optimal braking fuel consumption.
  • the second rotational speed may be determined depending on the pressure in the high pressure line.
  • control unit if the pressure in the high pressure line is greater than or equal to the threshold pressure, controls the rotation speed of the drive unit to be maintained at the first rotation speed, and also controls the torque of the drive unit to be maintained at the first rotation speed. Control to maintain the torque, and when the pressure in the high pressure line becomes less than the threshold pressure, the rotation speed of the drive unit is controlled to be a second rotation speed greater than the first rotation speed, and the torque of the drive unit is controlled to be a second rotation speed greater than the first rotation speed. It can be controlled to become the second torque.
  • the first rotational speed and the first torque may be a rotational speed and torque within a region representing an optimal braking fuel consumption rate of the hydraulic machine.
  • the second rotational speed is determined depending on the pressure in the high pressure line, and the second torque may be a torque representing the optimal braking fuel consumption rate at the second rotational speed.
  • control unit integrates the values obtained by multiplying the difference between the second torque and the current torque (T req -T cur ) by the gain value and dividing the values by the inlet and outlet pressure difference values of the pump.
  • the volume of the pump can be controlled depending on the value.
  • the controller may increase the volume of the pump when the integral value increases and may decrease the volume of the pump when the integral value decreases.
  • the controller may prevent the integral value from increasing any further when the integral value reaches a preset maximum value.
  • control unit calculates the torque of the pump from the pressure and volume of the pump, and rotates the drive unit at a rotation speed greater than the second rotation speed if the instantaneous rate of change of the torque of the pump is positive, If the instantaneous rate of change of the torque of the pump is negative, the driving unit may be rotated at a rotational speed smaller than the second rotational speed.
  • control unit calculates the torque of the pump from the pressure and volume of the pump, and if the instantaneous rate of change of the torque of the pump is positive, 'second rotation speed + D*dT' greater than the second rotation speed. /dt', and if the instantaneous rate of change of the torque of the pump is negative, the driving part is rotated at 'second rotation speed + D*dT/dt', which is smaller than the second rotation speed, where D is The gain value, dT/dt, may be the instantaneous rate of change of the torque of the pump.
  • FIG. 1 is a diagram showing a schematic configuration of a hydraulic machine according to an example of the present disclosure.
  • Figure 2 is a brake-specific fuel consumption (BSFC) map of a hydraulic machine according to an example of the present disclosure.
  • BSFC brake-specific fuel consumption
  • Figure 3 is a block diagram schematically showing the configuration of a torque controller of a driving part of a control part of a hydraulic machine according to an example of the present disclosure.
  • Figure 4 is a graph showing how the drive unit torque controller adjusts the volume of the pump to control the torque of the drive unit.
  • Figure 5 is a block diagram schematically showing the configuration of a rotational speed compensator of a driving unit of a hydraulic machine control unit according to an example of the present disclosure.
  • Figure 6 is a graph showing how the drive unit rotation speed compensator performs compensation.
  • Figure 7 is a block diagram schematically showing the overall configuration of a control unit of a hydraulic machine according to an example of the present disclosure.
  • FIG. 1 is a diagram showing a schematic configuration of a hydraulic machine according to an example of the present disclosure.
  • Hydraulic machines of the present disclosure typically relate to heavy equipment such as excavators, but are not limited thereto and may include any machine that performs work by obtaining power from the pressure of a fluid.
  • the hydraulic machine may include at least one actuator, a high pressure accumulator 310, a high pressure line 315, a pump 120, a driving unit 110, and a control unit 600. Additionally, in some examples, the hydraulic machine may include a low pressure accumulator 320 and a low pressure line 325. Additionally, in some examples, the hydraulic machine may include a tank. Additionally, in some examples, the hydraulic machine may include a valve 210 that allows or blocks the flow of fluid from the pump 120 to the high pressure line 315. Additionally, in some instances, the hydraulic machine may include a valve 210 that allows or blocks the flow of fluid from the low pressure line 325 to the tank.
  • the hydraulic machine may include a valve (not shown) that allows or blocks the flow of fluid from the high pressure line 315 to the actuator, and a valve (not shown) that allows or blocks the flow of fluid from the actuator to the low pressure line 325. It may include a blocking valve (not shown).
  • the actuator is connected to the high pressure line 315, receives high pressure hydraulic oil from the high pressure line 315, and uses power from the pressure of the hydraulic oil to enable the hydraulic machine to perform work. Additionally, the actuator may be connected to the low-pressure line 325 and discharge operating oil into the low-pressure line 325.
  • the actuator may include, for example, a boom actuator 410, an arm actuator 420, a bucket actuator 430, a swing actuator 440, and travel actuators 451 and 453.
  • Boom actuator 410, arm actuator 420, and bucket actuator 430 may be hydraulic cylinders.
  • the swing actuator 440 and travel actuators 451 and 453 may be hydraulic motors.
  • the actuator may include an inlet port through which the actuator is connected to the high pressure line 315, and an outlet port through which the actuator is connected to the low pressure line 325.
  • a high pressure accumulator 310 is connected to the high pressure line 315. Additionally, as described above, the high pressure line 315 may be connected to the actuator to supply pressure oil to the actuator.
  • a low-pressure accumulator 320 is connected to the low-pressure line 325. Additionally, as described above, the low pressure line 325 is connected to the actuator so that hydraulic oil can be discharged from the actuator through the low pressure line 325.
  • the pump 120 pressurizes the hydraulic oil to produce pressure oil and sends the pressure oil to the high pressure accumulator 310 and the actuator through the high pressure line 315.
  • the pump 120 may be a variable capacity pump whose volume (volume of hydraulic oil discharged per rotation) is variable.
  • the volume of the pump 120 may be controlled by the control unit 600.
  • the pump 120 has a swash plate, and the control unit 600 sends a signal to the pump 120 to change the inclination angle of the swash plate of the pump 120 to control the volume of the pump 120. You can.
  • the hydraulic machine may include at least one pump 120.
  • the driving unit 110 is a component that drives the pump 120 and may typically include an engine. However, the present disclosure is not limited to this, and may be another type of driving unit capable of driving the pump 120, such as an electric motor.
  • the control unit 600 can control each component of the hydraulic machine, particularly the volume of the pump 120 and the rotation speed of the drive unit 110.
  • the control unit 600 may include an electronic control unit that receives commands input through an operator interface and/or reads values from various sensors, interprets the commands and/or data, and then generates and outputs a control signal. You can.
  • the tank may provide hydraulic oil to the hydraulic pump 120 and store hydraulic oil returned from the actuator through the low pressure line 325.
  • Figure 2 is a brake-specific fuel consumption (BSFC) map of a hydraulic machine according to an example of the present disclosure.
  • BSFC brake-specific fuel consumption
  • the rotational speed of the drive unit 110 and the volume of the pump 120 are variable in order to maintain performance.
  • the rotation speed of the drive unit 110 in a normal state in which the actuator consumes a flow rate less than the maximum flow rate that the pump 120 can supply, the rotation speed of the drive unit 110 is the preset first rotation. The speed can be controlled to be maintained. Additionally, at this time, the torque of the driving unit 110 may be controlled to be maintained at a preset first torque.
  • the first rotational speed and first torque may be the rotational speed and torque within a region representing the optimal braking fuel consumption rate of the hydraulic machine, the so-called sweet spot.
  • Low brake fuel consumption means that the same power can be achieved with relatively less fuel consumption.
  • the first rotation speed and first torque may be provided as preset values.
  • the first rotation speed may be preset to, for example, 1400 rpm and the first torque may be preset to, for example, 700 Nm, and in this setting, the pump 120 operates at a maximum flow rate that the pump 120 can supply, for example, 220 lpm. Can be supplied to the high pressure line 315.
  • the rotation speed of the driving unit 110 can be directly controlled by a control signal.
  • the torque of the driving unit 110 (assuming that most of the torque is consumed by the pump 120) is determined by the volume of the pump 120 and the inlet and outlet pressure difference of the pump 120 (i.e., the outlet of the pump 120). Pressure - controlled depending on the inlet pressure of the pump 120).
  • the pump 120 may be controlled to have a maximum volume, for example, in accordance with a torque of 700 Nm.
  • these settings may have the following limitations:
  • the actuator consumes a flow rate that exceeds the maximum flow rate that the pump 120 can supply, the pressure in the high pressure line 315 drops rapidly and the performance of the actuator deteriorates. Therefore, in order to recharge the high-pressure accumulator 310 and send the required flow rate to the actuator, the supply flow rate of the pump 120 supplied to the high-pressure line 315 must be increased. However, fixed rotation speed and torque cannot cope with this situation.
  • the control unit 600 controls the driving unit 110 in the normal state in which the actuator consumes a flow rate less than the maximum flow rate that the pump 120 can supply.
  • the rotation speed may be controlled to be maintained at the first rotation speed, and the torque of the drive unit 110 may be controlled to be maintained at the first torque.
  • the control unit 600 controls the drive unit 110 so that the pump 120 can supply more flow rate to the high pressure line 315.
  • the rotation speed can be controlled to be a second rotation speed that is greater than the first rotation speed.
  • the control unit 600 controls the rotational speed of the driver 110 to be maintained at the preset first rotational speed, and the pressure in the high pressure line 315 When the pressure falls below this threshold, the rotational speed of the drive unit 110 can be controlled to become a second rotational speed that is greater than the first rotational speed.
  • the second rotation speed may be determined according to the pressure in the high pressure line 315.
  • a lookup table in which the value of the pressure in the high pressure line 315 and the value of the second rotational speed are mapped may be stored in advance in the memory, and the second rotational speed may be determined by referring to this lookup-table. there is.
  • the rotation speed of the drive unit 110 is controlled to be a second rotation speed that is greater than the first rotation speed, the rotation speed of the drive unit 110 deviates from the above-described sweet spot. Therefore, the torque of the driving unit 110 must be newly set, and in the hydraulic machine according to an example of the present disclosure, when the actuator consumes a flow rate exceeding the maximum flow rate that the pump 120 can supply, that is, the high pressure line 315 ) When the pressure within the unit becomes less than the threshold pressure, the torque of the drive unit 110 can be controlled to become the second torque.
  • the second torque is a torque representing optimal fuel consumption efficiency at the second rotation speed, and the points of the second rotation speed and second torque form a new spot line in the BSFC map, as shown in FIG. 2.
  • a lookup-table in which the value of the second rotational speed and the value of the second torque are mapped may be stored in advance in the memory, and the second torque may be determined by referring to this lookup-table.
  • the drive unit 110 can maintain an idle state at 800 rpm.
  • the pressure in the high pressure line 315 increases because the flow rate of the accumulator is additionally used. It falls.
  • the rotational speed of the driving unit 110 is controlled to increase to the second rotational speed according to the amount of pressure drop in the high pressure line 315, thereby increasing the discharge flow rate of the pump 120.
  • the second torque corresponding to the second rotation speed on the sweet line is controlled to become the torque of the driving unit 110. Referring to FIG. 2, the sweet line starts at, for example, 1400 rpm and 700 Nm, and the second rotation speed increases and the second torque slightly decreases along the sweet line.
  • Figure 3 is a block diagram schematically showing the configuration of the driving part torque controller of the control part of the hydraulic machine according to an example of the present disclosure
  • Figure 4 shows the driving part torque controller of the pump 120 to control the torque of the driving part 110. This is a graph showing volume control.
  • the control unit 600 can control the torque of the drive unit 110 to become the second torque (T req ) on the sweet line.
  • engine torque is the sum of the torque of the main pump, the torque of other small pumps, and other torques.
  • the main pump occupies a large portion of the torque of the drive unit 110, the torque of the drive unit 110 may not be maintained at the second torque (T req ) due to other torques and may deviate. Additionally, it is difficult to predict how much the torque of the driving unit 110 will deviate.
  • control unit 600 may perform feedback control so that the current torque (T cur ) of the driving unit 110 is equal to the second torque (T req ).
  • the control unit 600 may multiply the difference between the second torque (T req ) and the current torque (T cur ) (T req - T cur ) by a gain value.
  • the volume (V com ) of the pump 120 can be adjusted according to the integral value obtained by dividing the values by the inlet and outlet pressure difference values of the pump (P pump ).
  • the controller 600 may increase the volume of the pump 120 when the integral value increases and may decrease the volume of the pump 120 when the integral value decreases. for example,
  • represents the pi
  • the volume (V com ) of the pump 120 has a maximum value that cannot be further increased in terms of hardware. Therefore, anti-windup functionality can be added to the integrator.
  • the anti-windup function prevents the integral value from increasing further when the integral value reaches a preset maximum value. As long as the integral value is within the maximum value, the anti-windup function does not work. If you do not do so, the volume (V com ) of the pump 120 has reached the maximum value, but the integral value continues to increase, and even if you try to reduce the volume (V com ) of the pump 120, the maximum value of the integral value This is because the volume (V com ) of the pump 120 cannot be reduced until the amount exceeding is eliminated.
  • the hydraulic machine may include an engine sensor 520 to determine engine torque.
  • FIG. 5 is a block diagram schematically showing the configuration of a drive unit rotation speed compensator of a control unit of a hydraulic machine according to an example of the present disclosure
  • FIG. 6 is a graph showing the drive unit rotation speed compensator performing compensation.
  • the main cause of the decrease in rotation speed of the drive unit 110 is the rate of change of the torque of the drive unit 110.
  • the main part of the torque of the drive unit 110 is related to the torque of the main pump calculated by the following equation.
  • the control unit 600 may compensate for the rotational speed of the driving unit 110 using the instantaneous rate of change of the torque of the pump 120.
  • the control unit 600 calculates the torque of the pump 120 from the inlet and outlet pressure difference (Ppump) and the volume (Vcom) of the pump 120, and the instantaneous rate of change of the torque of the pump 120 is If positive, the drive unit 110 is rotated at a rotation speed ( ⁇ com ) greater than the second rotation speed ( ⁇ req ), and if the instantaneous rate of change of torque of the pump 120 is negative, the rotation is less than the second rotation speed ( ⁇ req ).
  • the driving unit 110 can be rotated at a speed ( ⁇ com ). If the instantaneous rate of change of the torque of the pump 120 is positive, a drop in rotational speed is expected, so the drop in rotational speed is compensated by rotating the drive unit 110 at a rotational speed ( ⁇ com ) greater than the second rotational speed ( ⁇ req ). By doing so, the rotational speed of the pump 120 is ultimately controlled to be maintained at the second rotational speed ( ⁇ req ).
  • control unit 600 if the instantaneous rate of change of the torque of the pump 120 is positive, 'second rotation speed ( ⁇ req ) + D*dT/dt' greater than the second rotation speed ( ⁇ req ).
  • the driving unit 110 is rotated, and if the instantaneous rate of change of the torque of the pump 120 is negative, the driving unit 110 is rotated at a 'second rotational speed ( ⁇ req ) + D*dT/dt' that is smaller than the second rotational speed ( ⁇ req ). ) can be rotated.
  • D is the gain value
  • dT/dt is the instantaneous rate of change of the torque of the pump 120.
  • the control unit 600 multiplies the torque value of the pump 120 obtained by calculation by the gain value, and if the instantaneous rate of change of the product is positive, it is faster than the second rotation speed ( ⁇ req ).
  • the driving unit 110 is rotated at a large second rotation speed ( ⁇ req ) + D*dT/dt, and if negative, the second rotation speed ( ⁇ req ) + D* is smaller than the second rotation speed ( ⁇ req ).
  • the driving unit 110 can be rotated by 'dT/dt'.
  • Figure 7 is a block diagram schematically showing the overall configuration of a control unit of a hydraulic machine according to an example of the present disclosure.
  • control of the rotational speed ( ⁇ com ) of the driving unit 110 and the volume (V com ) of the pump 120 will be sequentially examined as follows.
  • Process 1 Using the pressure sensor 510, the pressure in the high pressure line 315 is measured, and the rotation speed determination unit 630 determines the rotation speed of the driving unit 110. As described above with reference to FIG. 2, when the pressure in the high pressure line 315 is greater than the threshold pressure, the rotational speed is maintained at the preset first rotational speed, and when the pressure in the high pressure line 315 is less than the threshold pressure, The rotation speed increases to the second rotation speed ( ⁇ req ).
  • Process 2 Receives a second rotational speed value ( ⁇ req ) from process 1, and the torque determination unit 640 generates a second torque value (T req ) corresponding to the second rotational speed ( ⁇ req ) on the sweet line ( That is, the second torque value (T req ) representing the optimal fuel consumption efficiency at the second rotation speed is found.
  • the second torque value (T req ) is received from process 2, and the current torque value (T cur ) of the driving unit 110 is read using the engine sensor 520 .
  • the drive unit torque controller 610 transmits a pump volume command (V com ) to the pump 120 to control the volume of the pump 120 .
  • the drive unit rotation speed compensator 620 receives the pump volume command value (V com ) for controlling the volume of the pump 120 from Process 3 and also receives the second rotation speed value ( ⁇ req ) from Process 1. Receive. And using the pump volume command value (V com ) and the second rotation speed value ( ⁇ req ), how much value should be added or subtracted from the second rotation speed ( ⁇ req ) to prevent the rotation speed droop phenomenon. A rotation speed command ( ⁇ com ) is transmitted to the drive unit 110 .
  • Comparative terms such as “below,” “above,” “above,” “further below,” “horizontal,” or “vertical” are used herein to describe the relationship of any element shown in the figures to another element. You can. These terms and the foregoing may include other orientations of the device as well as the orientation shown in the figures. When an element is said to be connected or combined with another element, this may include not only a direct connection, but also other intervening elements. On the other hand, when an element is said to be directly connected or coupled to another element, this means that no intermediate elements exist.

Abstract

A hydraulic machine comprising: an actuator; a high pressure accumulator; a high pressure line that supplies pressure oil to the actuator and to which the high pressure accumulator is connected; a pump that supplies pressure oil to the high pressure line; a drive unit that drives the pump; and a control unit that controls the pump and the drive unit, wherein the control unit performs control such that, when the pressure in the high pressure line is more than or equal to a preset threshold pressure, the rotational speed of the drive unit is maintained at a preset first rotation speed, and when the pressure in the high pressure line is less than the threshold pressure, the rotational speed of the drive unit is made to be a second rotational speed that is greater than the first rotational speed.

Description

유압기계hydraulic machinery
본 개시물은 유압기계에 관한 것으로서, 더욱 상세하게는 액츄에이터들에 압유를 공급하는 CPR(Common Pressure Rail)을 갖는 유압기계에 관한 것이다.This disclosure relates to hydraulic machines, and more specifically to hydraulic machines having a CPR (Common Pressure Rail) that supplies hydraulic oil to actuators.
유압기계는, 유체의 압력으로부터 파워를 얻어 작업을 수행한다. 그러한 유압기계는, 예컨대, 굴착기와 같은 중장비를 포함한다. 최근, 어큐뮬레이터에 연결되고 액츄에이터들에 압유를 공급하는 고압 라인을 구비하는 CPR(Common Pressure Rail) 유압기계가 알려져 있다.Hydraulic machines perform work by obtaining power from the pressure of fluid. Such hydraulic machinery includes, for example, heavy equipment such as excavators. Recently, CPR (Common Pressure Rail) hydraulic machines are known, which are connected to an accumulator and have a high pressure line that supplies hydraulic oil to the actuators.
본 개시물의 제1 측면에 따르면, 액츄에이터와, 고압 어큐뮬레이터와, 상기 액츄에이터에 압유를 공급하고, 상기 고압 어큐뮬레이터가 연결되는, 고압 라인과, 상기 고압 라인에 압유를 공급하는 펌프와, 상기 펌프를 구동하는 구동부와, 상기 펌프 및 상기 구동부를 제어하는 제어부를 포함하고, 상기 제어부는, 상기 고압 라인 내의 압력이 기설정된 쓰레숄드 압력 이상이면, 상기 구동부의 회전속도가 기설정된 제1 회전속도로 유지되도록 제어하고, 상기 고압 라인 내의 압력이 상기 쓰레숄드 압력 미만이 되면, 상기 구동부의 회전속도가 상기 제1 회전속도보다 큰 제2 회전속도가 되도록 제어하는, 유압기계를 제공한다. According to the first aspect of the present disclosure, an actuator, a high-pressure accumulator, a high-pressure line that supplies hydraulic oil to the actuator and to which the high-pressure accumulator is connected, a pump that supplies hydraulic oil to the high-pressure line, and driving the pump a driving unit that controls the pump and the driving unit, and the control unit controls the rotational speed of the driving unit to be maintained at a preset first rotational speed when the pressure in the high pressure line is higher than a preset threshold pressure. and, when the pressure in the high pressure line becomes less than the threshold pressure, the rotational speed of the driving unit is controlled to become a second rotational speed greater than the first rotational speed.
본 개시물의 제1 측면에 따르면 우수한 연료 소비 효율을 갖는 CPR 유압기계를 제공할 수 있는 이점이 있다. According to the first aspect of the present disclosure, there is an advantage in providing a CPR hydraulic machine with excellent fuel consumption efficiency.
어떠한 예시들에서, 상기 제1 회전속도는 최적의 제동연료소비율을 나타내는 영역 내의 회전속도일 수 있다.In some examples, the first rotational speed may be a rotational speed within a region representing optimal braking fuel consumption.
어떠한 예시들에서, 상기 제2 회전속도는 상기 고압 라인 내의 압력에 따라 결정될 수 있다.In some examples, the second rotational speed may be determined depending on the pressure in the high pressure line.
어떠한 예시들에서, 상기 제어부는, 상기 고압 라인 내의 압력이 상기 쓰레숄드 압력 이상이면, 상기 구동부의 회전속도가 상기 제1 회전속도로 유지되도록 제어함과 아울러, 상기 구동부의 토크가 기설정된 제1 토크로 유지되도록 제어하고, 상기 고압 라인 내의 압력이 상기 쓰레숄드 압력 미만이 되면, 상기 구동부의 회전 속도가 상기 제1 회전속도보다 큰 제2 회전속도가 되도록 제어함과 아울러, 상기 구동부의 토크가 제2 토크가 되도록 제어할 수 있다.In some examples, the control unit, if the pressure in the high pressure line is greater than or equal to the threshold pressure, controls the rotation speed of the drive unit to be maintained at the first rotation speed, and also controls the torque of the drive unit to be maintained at the first rotation speed. Control to maintain the torque, and when the pressure in the high pressure line becomes less than the threshold pressure, the rotation speed of the drive unit is controlled to be a second rotation speed greater than the first rotation speed, and the torque of the drive unit is controlled to be a second rotation speed greater than the first rotation speed. It can be controlled to become the second torque.
어떠한 예시들에서, 상기 제1 회전속도 및 상기 제1 토크는 상기 유압기계의 최적 제동연료소비율을 나타내는 영역 내의 회전속도 및 토크일 수 있다.In some examples, the first rotational speed and the first torque may be a rotational speed and torque within a region representing an optimal braking fuel consumption rate of the hydraulic machine.
어떠한 예시들에서, 상기 제2 회전속도는 상기 고압 라인 내의 압력에 따라 결정되고, 상기 제2 토크는 그 제2 회전속도에서 최적의 제동연료소비율을 나타내는 토크일 수 있다.In some examples, the second rotational speed is determined depending on the pressure in the high pressure line, and the second torque may be a torque representing the optimal braking fuel consumption rate at the second rotational speed.
어떠한 예시들에서, 상기 제어부는, 상기 제2 토크와 상기 현재 토크 사이의 차이의 값들(Treq-Tcur)과 게인 값을 곱한 값들을 상기 펌프의 입출구 압력차 값들로 나눈 값들을 적분한 적분 값에 따라 상기 펌프의 용적을 제어할 수 있다.In some examples, the control unit integrates the values obtained by multiplying the difference between the second torque and the current torque (T req -T cur ) by the gain value and dividing the values by the inlet and outlet pressure difference values of the pump. The volume of the pump can be controlled depending on the value.
어떠한 예시들에서, 상기 제어부는, 상기 적분 값이 증가하면 상기 펌프의 용적을 증가시키고, 상기 적분 값이 감소하면 상기 펌프의 용적을 감소시킬 수 있다.In some examples, the controller may increase the volume of the pump when the integral value increases and may decrease the volume of the pump when the integral value decreases.
어떠한 예시들에서, 상기 제어부는, 상기 적분 값이 기설정된 최대 값에 도달하면, 상기 적분 값이 더 이상 증가하지 않도록 할 수 있다.In some examples, the controller may prevent the integral value from increasing any further when the integral value reaches a preset maximum value.
어떠한 예시들에서, 상기 제어부는, 상기 펌프의 압력 및 용적으로부터 상기 펌프의 토크를 계산하고, 상기 펌프의 토크의 순간 변화율이 양이면 상기 제2 회전속도보다 큰 회전속도로 상기 구동부를 회전시키고, 상기 펌프의 토크의 순간 변화율이 음이면 상기 제2 회전속도보다 작은 회전속도로 상기 구동부를 회전시킬 수 있다.In some examples, the control unit calculates the torque of the pump from the pressure and volume of the pump, and rotates the drive unit at a rotation speed greater than the second rotation speed if the instantaneous rate of change of the torque of the pump is positive, If the instantaneous rate of change of the torque of the pump is negative, the driving unit may be rotated at a rotational speed smaller than the second rotational speed.
어떠한 예시들에서, 상기 제어부는, 상기 펌프의 압력 및 용적으로부터 상기 펌프의 토크를 계산하고, 상기 펌프의 토크의 순간 변화율이 양이면 상기 제2 회전속도보다 큰 '제2 회전속도 + D*dT/dt' 로 상기 구동부를 회전시키고, 상기 펌프의 토크의 순간 변화율이 음이면 상기 제2 회전속도보다 작은 '제2 회전속도 + D*dT/dt' 로 상기 구동부를 회전시키고, 여기서, D는 게인 값, dT/dt 는 상기 펌프의 토크의 순간 변화율일 수 있다,In some examples, the control unit calculates the torque of the pump from the pressure and volume of the pump, and if the instantaneous rate of change of the torque of the pump is positive, 'second rotation speed + D*dT' greater than the second rotation speed. /dt', and if the instantaneous rate of change of the torque of the pump is negative, the driving part is rotated at 'second rotation speed + D*dT/dt', which is smaller than the second rotation speed, where D is The gain value, dT/dt, may be the instantaneous rate of change of the torque of the pump.
상기한 측면들, 첨부 특허청구범위 및 전술하거나 후술하여 여기에서 개시된 예시들은 적절하게 상호 결합될 수 있고, 이는 통상의 지식을 가지는 자에게는 명백할 것이다. The foregoing aspects, the appended claims and the examples disclosed herein above or below may be appropriately combined with each other, as will be apparent to those skilled in the art.
추가적인 특징들 및 이점들은 후술하는 설명, 특허청구범위, 도면들에서 개시되며, 추가적인 특징들 및 이점들은 어느 정도는 본 기술분야에서 통상의 지식을 가지는 자에게 어려움 없이 명백해지거나, 여기에서 기술된 개시물을 실현함으로써 이해될 수 있을 것이다. 또한, 전술한 기술적 이점들과 관련된 제어 유닛들, 컴퓨터 읽기 가능한 매체 및 컴퓨터 프로그램 프로덕트들이 여기에 개시된다. Additional features and advantages are disclosed in the following description, claims, and drawings, and additional features and advantages will to some extent be readily apparent to a person of ordinary skill in the art or disclosed herein. It can be understood by realizing water. Also disclosed herein are control units, computer-readable media, and computer program products related to the technical advantages described above.
첨부 도면을 참조하여 예시로서 인용된 본 개시물의 측면들을 이하에서 상세히 설명한다.Aspects of the disclosure, cited by way of example, are described in detail below with reference to the accompanying drawings.
도 1은 본 개시물의 일 예시에 따른 유압기계의 개략적인 구성을 보여주는 도면이다.1 is a diagram showing a schematic configuration of a hydraulic machine according to an example of the present disclosure.
도 2는 본 개시물의 일 예시에 따른 유압기계의 BSFC(Brake-specific fuel consumption) 맵이다.Figure 2 is a brake-specific fuel consumption (BSFC) map of a hydraulic machine according to an example of the present disclosure.
도 3은 본 개시물의 일 예시에 따른 유압기계의 제어부의 구동부 토크 컨트롤러의 구성을 개략적으로 보여주는 블록 다이어그램이다.Figure 3 is a block diagram schematically showing the configuration of a torque controller of a driving part of a control part of a hydraulic machine according to an example of the present disclosure.
도 4는 구동부 토크 컨트롤러가 구동부의 토크를 컨트롤하기 위하여 펌프의 용적을 조절하는 것을 보여주는 그래프이다. Figure 4 is a graph showing how the drive unit torque controller adjusts the volume of the pump to control the torque of the drive unit.
도 5는 본 개시물의 일 예시에 따른 유압기계의 제어부의 구동부 회전속도 보상기의 구성을 개략적으로 보여주는 블록 다이어그램이다.Figure 5 is a block diagram schematically showing the configuration of a rotational speed compensator of a driving unit of a hydraulic machine control unit according to an example of the present disclosure.
도 6은 구동부 회전속도 보상기가 보상을 수행하는 것을 보여주는 그래프이다.Figure 6 is a graph showing how the drive unit rotation speed compensator performs compensation.
도 7는 본 개시물의 일 예시에 따른 유압기계의 제어부의 전체 구성을 개략적으로 보여주는 블록 다이어그램이다.Figure 7 is a block diagram schematically showing the overall configuration of a control unit of a hydraulic machine according to an example of the present disclosure.
이하 첨부 도면을 참조하여 예시로서 인용된 본 개시물의 측면들을 상세히 설명한다. 이하에서 기재된 측면들은 본 기술 분야의 통상의 지식을 가지는 자가 본 개시물을 실행시킬 수 있도록 필요한 정보를 제시한다.BRIEF DESCRIPTION OF THE DRAWINGS Aspects of the present disclosure cited by way of example will be described in detail below with reference to the accompanying drawings. The aspects described below present the necessary information to enable a person skilled in the art to practice the present disclosure.
도 1은 본 개시물의 일 예시에 따른 유압기계의 개략적인 구성을 보여주는 도면이다.1 is a diagram showing a schematic configuration of a hydraulic machine according to an example of the present disclosure.
본 개시물의 유압기계는 전형적으로 굴착기와 같은 중장비에 관한 것이나, 이에 국한되지 않고 유체의 압력으로부터 파워를 얻어 작업을 수행하는 모든 기계를 포함할 수 있다. Hydraulic machines of the present disclosure typically relate to heavy equipment such as excavators, but are not limited thereto and may include any machine that performs work by obtaining power from the pressure of a fluid.
유압기계는, 적어도 하나의 액츄에이터와, 고압 어큐뮬레이터(310)와, 고압 라인(315)과, 펌프(120)와, 구동부(110)와, 제어부(600)를 포함할 수 있다. 또한, 어떠한 예시들에서, 유압기계는 저압 어큐뮬레이터(320)와 저압 라인(325)을 포함할 수 있다. 또한, 어떠한 예시들에서, 유압기계는 탱크를 포함할 수 있다. 또한, 어떠한 예시들에서, 유압기계는 펌프(120)로부터 고압 라인(315)으로의 유체의 흐름을 허용 또는 차단하는 밸브(210)를 포함할 수 있다. 또한, 어떠한 예시들에서, 유압기계는 저압 라인(325)으로부터 탱크로의 유체의 흐름을 허용 또는 차단하는 밸브(210)를 포함할 수 있다. 또한, 어떠한 예시들에서, 유압기계는, 고압 라인(315)으로부터 액츄에이터로의 유체의 흐름을 허용 또는 차단하는 밸브(미도시)와, 액츄에이터로부터 저압 라인(325)으로의 유체의 흐름을 허용 또는 차단하는 밸브(미도시)를 포함할 수 있다. The hydraulic machine may include at least one actuator, a high pressure accumulator 310, a high pressure line 315, a pump 120, a driving unit 110, and a control unit 600. Additionally, in some examples, the hydraulic machine may include a low pressure accumulator 320 and a low pressure line 325. Additionally, in some examples, the hydraulic machine may include a tank. Additionally, in some examples, the hydraulic machine may include a valve 210 that allows or blocks the flow of fluid from the pump 120 to the high pressure line 315. Additionally, in some instances, the hydraulic machine may include a valve 210 that allows or blocks the flow of fluid from the low pressure line 325 to the tank. Additionally, in some examples, the hydraulic machine may include a valve (not shown) that allows or blocks the flow of fluid from the high pressure line 315 to the actuator, and a valve (not shown) that allows or blocks the flow of fluid from the actuator to the low pressure line 325. It may include a blocking valve (not shown).
액츄에이터는 고압 라인(315)과 연결되어 고압 라인(315)으로부터 고압의 압유를 공급 받고, 그 압유의 압력에 의한 파워를 이용하여 유압기계가 작업을 수행할 수 있도록 한다. 또한, 액츄에이터는 저압 라인(325)과 연결되어 작동유를 저압 라인(325)으로 배출할 수 있다. 액츄에이터는 예컨대, 붐 액츄에이터(410), 암 액츄에이터(420), 버킷 액츄에이터(430), 스윙 액츄에이터(440), 주행 액츄에이터(451, 453) 등을 포함할 수 있다. 붐 액츄에이터(410), 암 액츄에이터(420) 및 버킷 액츄에이터(430)는 유압 실린더일 수 있다. 스윙 액츄에이터(440) 및 주행 액츄에이터(451, 453)는 유압 모터일 수 있다. 액츄에이터는 액츄에이터가 고압 라인(315)과 연결되는 유입 포트와, 액츄에이터가 저압 라인(325)과 연결되는 유출 포트를 포함할 수 있다. The actuator is connected to the high pressure line 315, receives high pressure hydraulic oil from the high pressure line 315, and uses power from the pressure of the hydraulic oil to enable the hydraulic machine to perform work. Additionally, the actuator may be connected to the low-pressure line 325 and discharge operating oil into the low-pressure line 325. The actuator may include, for example, a boom actuator 410, an arm actuator 420, a bucket actuator 430, a swing actuator 440, and travel actuators 451 and 453. Boom actuator 410, arm actuator 420, and bucket actuator 430 may be hydraulic cylinders. The swing actuator 440 and travel actuators 451 and 453 may be hydraulic motors. The actuator may include an inlet port through which the actuator is connected to the high pressure line 315, and an outlet port through which the actuator is connected to the low pressure line 325.
고압 라인(315)에는 고압 어큐뮬레이터(310)가 연결된다. 또한, 전술한 바와 같이, 고압 라인(315)은, 액츄에이터에 연결되어 액츄에이터에 압유를 공급할 수 있다. A high pressure accumulator 310 is connected to the high pressure line 315. Additionally, as described above, the high pressure line 315 may be connected to the actuator to supply pressure oil to the actuator.
저압 라인(325)에는 저압 어큐뮬레이터(320)가 연결된다. 또한, 전술한 바와 같이, 저압 라인(325)은 액츄에이터에 연결되어 작동유가 액츄에이터로부터 저압 라인(325)을 통하여 배출될 수 있다.A low-pressure accumulator 320 is connected to the low-pressure line 325. Additionally, as described above, the low pressure line 325 is connected to the actuator so that hydraulic oil can be discharged from the actuator through the low pressure line 325.
펌프(120)는 작동유를 가압하여 압유를 만들어내고 그 압유를 고압 라인(315)을 통하여 고압 어큐뮬레이터(310) 및 액츄에이터로 보낸다. 펌프(120)는 용적 (1회전 당 배출하는 압유의 체적)이 가변되는 가변용량 펌프일 수 있다. 펌프(120)의 용적은 제어부(600)에 의하여 제어될 수 있다. 어떠한 예시에서, 펌프(120)는 사판(swash plate)를 갖고, 제어부(600)는 펌프(120)의 사판의 경사각을 변화시키는 신호를 펌프(120)에 보내어 펌프(120)의 용적을 제어할 수 있다. 유압기계는 적어도 하나의 펌프(120)를 포함할 수 있다. The pump 120 pressurizes the hydraulic oil to produce pressure oil and sends the pressure oil to the high pressure accumulator 310 and the actuator through the high pressure line 315. The pump 120 may be a variable capacity pump whose volume (volume of hydraulic oil discharged per rotation) is variable. The volume of the pump 120 may be controlled by the control unit 600. In some examples, the pump 120 has a swash plate, and the control unit 600 sends a signal to the pump 120 to change the inclination angle of the swash plate of the pump 120 to control the volume of the pump 120. You can. The hydraulic machine may include at least one pump 120.
구동부(110)는 펌프(120)를 구동하는 구성부로서, 전형적으로 엔진을 포함할 수 있다. 그러나, 본 개시물이 이에 한정되는 것은 아니고, 전기 모터와 같이 펌프(120)를 구동할 수 있는 다른 형태의 구동부일 수 있다. The driving unit 110 is a component that drives the pump 120 and may typically include an engine. However, the present disclosure is not limited to this, and may be another type of driving unit capable of driving the pump 120, such as an electric motor.
제어부(600)는 유압기계의 각 구성부, 특히 펌프(120)의 용적 및 구동부(110)의 회전속도를 제어할 수 있다. 제어부(600)는 오퍼레이터 인터페이스를 통하여 입력된 명령을 수신하거나 및/또는 각종 센서들로부터 값을 읽어 들이고, 명령 및/또는 데이터를 해석한 뒤, 제어 시그널을 생성하여 출력하는 전자 제어 유닛을 포함할 수 있다. The control unit 600 can control each component of the hydraulic machine, particularly the volume of the pump 120 and the rotation speed of the drive unit 110. The control unit 600 may include an electronic control unit that receives commands input through an operator interface and/or reads values from various sensors, interprets the commands and/or data, and then generates and outputs a control signal. You can.
탱크는 유압 펌프(120)에 작동유를 제공하고, 저압 라인(325)을 통하여 액츄에이터로부터 리턴된 작동유를 저장할 수 있다.The tank may provide hydraulic oil to the hydraulic pump 120 and store hydraulic oil returned from the actuator through the low pressure line 325.
도 2는 본 개시물의 일 예시에 따른 유압기계의 BSFC(Brake-specific fuel consumption) 맵이다.Figure 2 is a brake-specific fuel consumption (BSFC) map of a hydraulic machine according to an example of the present disclosure.
어큐뮬레이터를 갖지 않는 통상의 유압기계는, 퍼포먼스를 유지하기 위하여, 구동부(110)의 회전속도와 펌프(120)의 용적이 가변한다. 이에 반하여, 본 개시물의 일 예시에 따른 CPR 유압기계는, 펌프(120)가 공급할 수 있는 최대 유량 이하의 유량을 액츄에이터가 소모하는 노말 상태에서는, 구동부(110)의 회전속도가 기설정된 제1 회전속도로 유지되도록 제어될 수 있다. 또한, 이때 구동부(110)의 토크도 기설정된 제1 토크로 유지되도록 제어될 수 있다. In a typical hydraulic machine without an accumulator, the rotational speed of the drive unit 110 and the volume of the pump 120 are variable in order to maintain performance. On the other hand, in the CPR hydraulic machine according to an example of the present disclosure, in a normal state in which the actuator consumes a flow rate less than the maximum flow rate that the pump 120 can supply, the rotation speed of the drive unit 110 is the preset first rotation. The speed can be controlled to be maintained. Additionally, at this time, the torque of the driving unit 110 may be controlled to be maintained at a preset first torque.
제1 회전속도 및 제1 토크는 소위 스윗 스팟이라는 불리우는, 유압기계의 최적의 제동연료소비율을 나타내는 영역 내의 회전속도 및 토크일 수 있다. 낮은 제동연료소비율이란 상대적으로 작은 연료 소비로 동일한 파워를 얻을 수 있음을 의미한다. The first rotational speed and first torque may be the rotational speed and torque within a region representing the optimal braking fuel consumption rate of the hydraulic machine, the so-called sweet spot. Low brake fuel consumption means that the same power can be achieved with relatively less fuel consumption.
어떠한 예시에서, 제1 회전속도와 제1 토크는 기설정된 값으로 제공될 수 있다. 도 2를 참조할 때, 제1 회전속도는 예컨대 1400rpm이고 제1 토크는 예컨대 700Nm으로 미리 설정될 수 있고, 이러한 설정에서 펌프(120)는 펌프(120)가 공급할 수 있는 최대 유량, 예컨대 220 lpm을 고압 라인(315)에 공급할 수 있다. In some examples, the first rotation speed and first torque may be provided as preset values. Referring to FIG. 2, the first rotation speed may be preset to, for example, 1400 rpm and the first torque may be preset to, for example, 700 Nm, and in this setting, the pump 120 operates at a maximum flow rate that the pump 120 can supply, for example, 220 lpm. Can be supplied to the high pressure line 315.
구동부(110)의 회전속도는 제어 시그널에 의하여 직접적으로 제어될 수 있다. 그러나, 구동부(110)의 토크는 (대부분의 토크가 펌프(120)에 의하여 소비된다고 가정할 때) 펌프(120)의 용적 및 펌프(120)의 입출구 압력차(즉, 펌프(120)의 출구 압력 - 펌프(120)의 입구 압력)에 따라 제어된다. 구동부(110)가 1400rpm의 회전속도로 작동될 때, 700Nm의 토크에 맞춰 펌프(120)가 예컨대 최대 용적을 갖도록 제어될 수 있다. 그러나 이러한 설정은 다음과 같은 한계를 가질 수 있다.The rotation speed of the driving unit 110 can be directly controlled by a control signal. However, the torque of the driving unit 110 (assuming that most of the torque is consumed by the pump 120) is determined by the volume of the pump 120 and the inlet and outlet pressure difference of the pump 120 (i.e., the outlet of the pump 120). Pressure - controlled depending on the inlet pressure of the pump 120). When the drive unit 110 is operated at a rotation speed of 1400 rpm, the pump 120 may be controlled to have a maximum volume, for example, in accordance with a torque of 700 Nm. However, these settings may have the following limitations:
펌프(120)가 공급할 수 있는 최대 유량을 초과하는 유량을 액츄에이터가 소비하면, 고압 라인(315) 내의 압력은 급격하게 떨어지고 액츄에이터의 퍼포먼스는 저하된다. 따라서, 고압 어큐뮬레이터(310)를 재충전함과 아울러 액츄에이터에 필요한 유량을 보내기 위하여 고압 라인(315)에 공급되는 펌프(120)의 공급 유량은 증가되어야 한다. 그러나, 고정된 회전속도와 토크로는 이러한 상황에 대처할 수 없다. If the actuator consumes a flow rate that exceeds the maximum flow rate that the pump 120 can supply, the pressure in the high pressure line 315 drops rapidly and the performance of the actuator deteriorates. Therefore, in order to recharge the high-pressure accumulator 310 and send the required flow rate to the actuator, the supply flow rate of the pump 120 supplied to the high-pressure line 315 must be increased. However, fixed rotation speed and torque cannot cope with this situation.
따라서, 본 개시물의 일 예시에 따른 유압기계에서는, 펌프(120)가 공급할 수 있는 최대 유량 이하의 유량을 액츄에이터가 소비하는 노말 상태에서는, 전술한 바와 같이, 제어부(600)는 구동부(110)의 회전속도가 제1 회전속도로 유지되도록 제어하고, 구동부(110)의 토크가 제1 토크로 유지되도록 제어할 수 있다. 그러나, 펌프(120)가 공급할 수 있는 최대 유량을 초과하는 유량을 액츄에이터가 소비하면, 펌프(120)가 더 많은 유량을 고압 라인(315)에 공급할 수 있도록 제어부(600)는 구동부(110)의 회전속도가 제1 회전속도보다 큰 제2 회전속도가 되도록 제어할 수 있다.Therefore, in the hydraulic machine according to an example of the present disclosure, in the normal state in which the actuator consumes a flow rate less than the maximum flow rate that the pump 120 can supply, as described above, the control unit 600 controls the driving unit 110. The rotation speed may be controlled to be maintained at the first rotation speed, and the torque of the drive unit 110 may be controlled to be maintained at the first torque. However, if the actuator consumes a flow rate that exceeds the maximum flow rate that the pump 120 can supply, the control unit 600 controls the drive unit 110 so that the pump 120 can supply more flow rate to the high pressure line 315. The rotation speed can be controlled to be a second rotation speed that is greater than the first rotation speed.
펌프(120)가 공급할 수 있는 최대 유량을 초과하는 유량을 액츄에이터가 소비하면 고압 라인(315) 내의 압력이 떨어지게 되므로, 펌프(120)가 공급할 수 있는 최대 유량을 초과하는 유량을 액츄에이터가 소비하는지는 고압 라인(315) 내의 압력을 측정함으로써 알 수 있다. 따라서, 제어부(600)는, 고압 라인(315) 내의 압력이 기설정된 쓰레숄드 압력 이상이면 구동부(110)의 회전속도가 기설정된 제1 회전속도로 유지되도록 제어하고, 고압 라인(315) 내의 압력이 쓰레숄드 압력 미만이 되면 구동부(110)의 회전속도가 제1 회전속도보다 큰 제2 회전속도가 되도록 제어할 수 있다. 여기서, 제2 회전속도는 고압 라인(315) 내의 압력에 따라 결정될 수 있다. 어떠한 예시에서, 고압 라인(315) 내의 압력의 값과 제2 회전속도의 값이 매핑된 룩업-테이블이 메모리 내에 미리 저장될 수 있고, 제2 회전속도는 이러한 룩업-테이블을 참조하여, 결정될 수 있다.If the actuator consumes a flow rate that exceeds the maximum flow rate that the pump 120 can supply, the pressure in the high pressure line 315 drops, so it is important to determine whether the actuator consumes a flow rate that exceeds the maximum flow rate that the pump 120 can supply. This can be known by measuring the pressure in the high pressure line 315. Therefore, if the pressure in the high pressure line 315 is higher than the preset threshold pressure, the control unit 600 controls the rotational speed of the driver 110 to be maintained at the preset first rotational speed, and the pressure in the high pressure line 315 When the pressure falls below this threshold, the rotational speed of the drive unit 110 can be controlled to become a second rotational speed that is greater than the first rotational speed. Here, the second rotation speed may be determined according to the pressure in the high pressure line 315. In some examples, a lookup table in which the value of the pressure in the high pressure line 315 and the value of the second rotational speed are mapped may be stored in advance in the memory, and the second rotational speed may be determined by referring to this lookup-table. there is.
구동부(110)의 회전속도가 제1 회전속도보다 큰 제2 회전속도가 되도록 제어하면, 구동부(110)의 회전속도는 전술한 스윗 스팟을 벗어나게 된다. 따라서, 구동부(110)의 토크는 새롭게 설정되어야 하는데, 본 개시물의 일 예시에 따른 유압기계는, 펌프(120)가 공급할 수 있는 최대 유량을 초과하는 유량을 액츄에이터가 소비하면, 즉 고압 라인(315) 내의 압력이 쓰레숄드 압력 미만이 되면, 구동부(110)의 토크가 제2 토크가 되도록 제어할 수 있다. 제2 토크는 해당 제2 회전속도에서 최적의 연료소비효율을 나타내는 토크이고, 제2 회전속도 및 제2 토크의 지점들은 도 2에 도시한 바와 같이, BSFC 맵에서 새로운 스팟 라인을 형성한다. 어떠한 예시에서, 제2 회전속도의 값과 제2 토크의 값이 매핑된 룩업-테이블 (또는, 제2 회전속도는 고압 라인(315) 내의 압력에 종속하여 결정되므로, 고압 라인(315) 내의 압력의 값과 제2 토크의 값이 매핑된 룩업-테이블)이 메모리 내에 미리 저장될 수 있고, 제2 토크는 이러한 룩업-테이블을 참조하여, 결정될 수 있다.If the rotation speed of the drive unit 110 is controlled to be a second rotation speed that is greater than the first rotation speed, the rotation speed of the drive unit 110 deviates from the above-described sweet spot. Therefore, the torque of the driving unit 110 must be newly set, and in the hydraulic machine according to an example of the present disclosure, when the actuator consumes a flow rate exceeding the maximum flow rate that the pump 120 can supply, that is, the high pressure line 315 ) When the pressure within the unit becomes less than the threshold pressure, the torque of the drive unit 110 can be controlled to become the second torque. The second torque is a torque representing optimal fuel consumption efficiency at the second rotation speed, and the points of the second rotation speed and second torque form a new spot line in the BSFC map, as shown in FIG. 2. In some examples, a lookup-table in which the value of the second rotational speed and the value of the second torque are mapped (or, since the second rotational speed is determined depending on the pressure in the high pressure line 315, the pressure in the high pressure line 315 A lookup-table in which the value of and the value of the second torque are mapped may be stored in advance in the memory, and the second torque may be determined by referring to this lookup-table.
도 2를 참조하여, 일 예시를 들면, Referring to Figure 2, for example,
(1) 안전 레버(safety lever)가 내려가 있는 상태에서는 구동부(110)가 800rpm에서 아이들 상태를 유지할 수 있다. (1) When the safety lever is lowered, the drive unit 110 can maintain an idle state at 800 rpm.
(2) 운전자가 안전 레버를 올렸으나, 액츄에이터 조작 레버(미도시)를 조작하지 않은 상태에서는 구동부(110)의 회전속도는 1400rpm으로, 토크는 최소 토크로 유지한다.(2) When the driver raises the safety lever but does not operate the actuator operation lever (not shown), the rotation speed of the drive unit 110 is maintained at 1400 rpm and the torque is maintained at the minimum torque.
(3) 안전 레버를 올린 상태에서 운전자가 액츄에이터 조작 레버를 조작하고, 액츄에이터가 소모하는 유량이 펌프(120)가 1400rpm에서 최대 용적으로 제공할 수 있는 유량 이하일 때는 회전속도를 1400rpm으로 유지하면서 구동부(110)의 토크는 스윗 스팟 내에서 오르락 내리락을 반복한다. 이 상태에서 유압기계는 최대 효율로 운용된다. (3) With the safety lever raised, the driver operates the actuator operation lever, and when the flow rate consumed by the actuator is less than the flow rate that the pump 120 can provide at the maximum volume at 1400 rpm, the rotation speed is maintained at 1400 rpm and the drive unit ( The torque of 110) repeatedly rises and falls within the sweet spot. In this state, hydraulic machines operate at maximum efficiency.
(4) 안전 레버를 올린 상태에서 운전자가 액츄에이터 조작 레버를 조작하고, 액츄에이터가 펌프(120)의 최대 유량보다 많이 소모하는 경우에는 어큐뮬레이터의 유량을 추가로 사용하기 때문에 고압 라인(315) 내의 압력이 떨어지게 된다. 이 경우, 구동부(110)의 회전속도를 고압 라인(315) 내의 압력이 떨어진 크기에 맞춰 증가시켜 제2 회전속도가 되도록 제어함으로서 펌프(120)의 토출 유량을 증가시킨다. 아울러, 스윗 라인 상에서 제2 회전속도에 대응되는 제2 토크가 구동부(110)의 토크가 되도록 제어한다. 도 2를 참조하면, 스윗 라인은 예컨대 1400rpm, 700Nm에서 시작되고, 스윗 라인을 따라 제2 회전속도는 증가하고, 제2 토크는 약간 감소한다.(4) If the driver operates the actuator operation lever with the safety lever raised and the actuator consumes more than the maximum flow rate of the pump 120, the pressure in the high pressure line 315 increases because the flow rate of the accumulator is additionally used. It falls. In this case, the rotational speed of the driving unit 110 is controlled to increase to the second rotational speed according to the amount of pressure drop in the high pressure line 315, thereby increasing the discharge flow rate of the pump 120. In addition, the second torque corresponding to the second rotation speed on the sweet line is controlled to become the torque of the driving unit 110. Referring to FIG. 2, the sweet line starts at, for example, 1400 rpm and 700 Nm, and the second rotation speed increases and the second torque slightly decreases along the sweet line.
도 3은 본 개시물의 일 예시에 따른 유압기계의 제어부의 구동부 토크 컨트롤러의 구성을 개략적으로 보여주는 블록 다이어그램이고, 도 4는 구동부 토크 컨트롤러가 구동부(110)의 토크를 컨트롤하기 위하여 펌프(120)의 용적을 조절하는 것을 보여주는 그래프이다.Figure 3 is a block diagram schematically showing the configuration of the driving part torque controller of the control part of the hydraulic machine according to an example of the present disclosure, and Figure 4 shows the driving part torque controller of the pump 120 to control the torque of the driving part 110. This is a graph showing volume control.
도 2를 참조할 때, 어떠한 예시들에서, 제어부(600)는 구동부(110)의 토크가 스윗 라인 상의 제2 토크(Treq)가 되도록 제어할 수 있음을 앞서 살펴 보았다. 그러나, 엔진 토크는 메인 펌프의 토크와 다른 소형 펌프의 토크 및 기타 토크들의 합이다. 비록 메인 펌프가 구동부(110)의 토크의 큰 부분을 차지하지만, 다른 토크로 인하여 구동부(110)의 토크가 제2 토크(Treq)로 유지되지 못하고 벗어날 수 있다. 또한, 구동부(110)의 토크가 얼마나 벗어날 것인지도 예측하기 어렵다. Referring to FIG. 2 , we have previously seen that in some examples, the control unit 600 can control the torque of the drive unit 110 to become the second torque (T req ) on the sweet line. However, engine torque is the sum of the torque of the main pump, the torque of other small pumps, and other torques. Although the main pump occupies a large portion of the torque of the drive unit 110, the torque of the drive unit 110 may not be maintained at the second torque (T req ) due to other torques and may deviate. Additionally, it is difficult to predict how much the torque of the driving unit 110 will deviate.
따라서, 어떠한 예시들에서, 제어부(600)는, 구동부(110)의 현재 토크(Tcur)가 제2 토크(Treq)에 같아지도록 피드백 컨트롤을 수행할 수 있다. Accordingly, in some examples, the control unit 600 may perform feedback control so that the current torque (T cur ) of the driving unit 110 is equal to the second torque (T req ).
도 3을 참조할 때, 어떠한 예시들에서, 제어부(600)는, 제2 토크(Treq)와 현재 토크(Tcur) 사이의 차이의 값들(Treq - Tcur)과 게인 값을 곱한 값들을 펌프의 입출구 압력차 값들(Ppump)로 나눈 값들을 적분한 적분 값에 따라 펌프(120)의 용적(Vcom)을 조절할 수 있다. 제어부(600)는 적분 값이 증가하면 펌프(120)의 용적을 증가시키고 적분 값이 감소하면 펌프(120)의 용적을 감소시킬 수 있다. 예컨대, Referring to FIG. 3 , in some examples, the control unit 600 may multiply the difference between the second torque (T req ) and the current torque (T cur ) (T req - T cur ) by a gain value. The volume (V com ) of the pump 120 can be adjusted according to the integral value obtained by dividing the values by the inlet and outlet pressure difference values of the pump (P pump ). The controller 600 may increase the volume of the pump 120 when the integral value increases and may decrease the volume of the pump 120 when the integral value decreases. for example,
용적 변화량 [cc/rev] = 20 * π * 토크 차이[Nm] / 펌프 입출구 압력차[bar] * 게인Volume change [cc/rev] = 20 * π * Torque difference [Nm] / Pump inlet/outlet pressure difference [bar] * Gain
으로 주어질 수 있다. 여기서, π 는 원주율을 나타낸다.It can be given as . Here, π represents the pi.
한편, 펌프(120)의 용적(Vcom)은 하드웨어적으로 더 이상 증가시킬 수 없는 최대 값을 갖는다. 따라서, 안티-와인드업 기능이 적분기에 추가될 수 있다. 안티-와인드업 기능은, 적분 값이 기설정된 최대 값에 도달하면, 적분 값이 더 이상 증가하지 않도록 하는 것이다. 적분 값이 최대 값 이내에 있는 한, 안티-와인드업 기능은 작동되지 않는다. 만약 그렇게 하지 않으면, 펌프(120)의 용적(Vcom)은 최대 값에 도달했는데 적분 값은 계속해서 증가하고, 이때 펌프(120)의 용적(Vcom)을 감소시키려 해도, 적분 값의 최대 값을 넘는 양만큼이 해소될 때까지 펌프(120)의 용적(Vcom)을 감소시키지 못하게 되기 때문이다. Meanwhile, the volume (V com ) of the pump 120 has a maximum value that cannot be further increased in terms of hardware. Therefore, anti-windup functionality can be added to the integrator. The anti-windup function prevents the integral value from increasing further when the integral value reaches a preset maximum value. As long as the integral value is within the maximum value, the anti-windup function does not work. If you do not do so, the volume (V com ) of the pump 120 has reached the maximum value, but the integral value continues to increase, and even if you try to reduce the volume (V com ) of the pump 120, the maximum value of the integral value This is because the volume (V com ) of the pump 120 cannot be reduced until the amount exceeding is eliminated.
어떠한 예시들에서, 유압기계는 엔진 토크를 알아내기 위하여 엔진 센서(520)를 포함할 수 있다.In some examples, the hydraulic machine may include an engine sensor 520 to determine engine torque.
도 5는 본 개시물의 일 예시에 따른 유압기계의 제어부의 구동부 회전속도 보상기의 구성을 개략적으로 보여주는 블록 다이어그램이고, 도 6은 구동부 회전속도 보상기가 보상을 수행하는 것을 보여주는 그래프이다.FIG. 5 is a block diagram schematically showing the configuration of a drive unit rotation speed compensator of a control unit of a hydraulic machine according to an example of the present disclosure, and FIG. 6 is a graph showing the drive unit rotation speed compensator performing compensation.
구동부(110)에 높은 토크가 걸리면, 구동부(110)의 회전속도는 떨어지게 된다. 따라서, 이러한 현상을 해결할 필요가 있다. 해결 방안으로, 가장 먼저 실제 회전속도 값을 이용하여 회전속도 드랍을 보상하는 것을 생각해볼 수 있다. 그러나, 이는 회전속도의 떨림 변동(fluctuation)을 야기하고, 그 결과 연료 소비 효율을 저하시킬 수 있다. 따라서, 다른 해결 방안이 필요하다. When a high torque is applied to the drive unit 110, the rotation speed of the drive unit 110 decreases. Therefore, there is a need to solve this phenomenon. As a solution, you can first consider compensating for the rotation speed drop using the actual rotation speed value. However, this may cause fluctuations in rotational speed and, as a result, reduce fuel consumption efficiency. Therefore, another solution is needed.
구동부(110)의 회전속도가 떨어지는 주 원인은 구동부(110)의 토크의 변화율이다. 구동부(110)의 토크의 주요 부분은 다음 식으로 계산되는 메인 펌프의 토크와 관련된다. The main cause of the decrease in rotation speed of the drive unit 110 is the rate of change of the torque of the drive unit 110. The main part of the torque of the drive unit 110 is related to the torque of the main pump calculated by the following equation.
Figure PCTKR2022013034-appb-img-000001
, 여기서 V는 용적(Volumetric displacement)
Figure PCTKR2022013034-appb-img-000001
, where V is volumetric displacement
따라서, 본 개시물의 일 예시에 따른 유압기계에서, 제어부(600)는, 펌프(120)의 토크의 순간 변화율을 이용하여 구동부(110)의 회전속도를 보상할 수 있다. 예컨대, 어떠한 예시들에서, 제어부(600)는, 펌프(120)의 입출구 압력차(Ppump) 및 용적(Vcom)으로부터 펌프(120)의 토크를 계산하고, 펌프(120)의 토크의 순간 변화율이 양이면 제2 회전속도(ωreq)보다 큰 회전속도(ωcom)로 구동부(110)를 회전시키고, 펌프(120)의 토크의 순간 변화율이 음이면 제2 회전속도(ωreq)보다 작은 회전속도(ωcom)로 구동부(110)를 회전시킬 수 있다. 펌프(120)의 토크의 순간 변화율이 양이면 회전속도의 드랍이 예정되므로, 제2 회전속도(ωreq)보다 큰 회전속도(ωcom)로 구동부(110)를 회전시켜 회전속도의 드랍을 보상함으로써, 종국적으로 펌프(120)의 회전속도가 제2 회전속도(ωreq)로 유지되도록 제어하는 것이다. Accordingly, in the hydraulic machine according to an example of the present disclosure, the control unit 600 may compensate for the rotational speed of the driving unit 110 using the instantaneous rate of change of the torque of the pump 120. For example, in some examples, the control unit 600 calculates the torque of the pump 120 from the inlet and outlet pressure difference (Ppump) and the volume (Vcom) of the pump 120, and the instantaneous rate of change of the torque of the pump 120 is If positive, the drive unit 110 is rotated at a rotation speed (ω com ) greater than the second rotation speed (ω req ), and if the instantaneous rate of change of torque of the pump 120 is negative, the rotation is less than the second rotation speed (ω req ). The driving unit 110 can be rotated at a speed (ω com ). If the instantaneous rate of change of the torque of the pump 120 is positive, a drop in rotational speed is expected, so the drop in rotational speed is compensated by rotating the drive unit 110 at a rotational speed (ω com ) greater than the second rotational speed (ω req ). By doing so, the rotational speed of the pump 120 is ultimately controlled to be maintained at the second rotational speed (ω req ).
어떠한 예시들에서, 제어부(600)는, 펌프(120)의 토크의 순간 변화율이 양이면 제2 회전속도(ωreq)보다 큰 '제2 회전속도(ωreq) + D*dT/dt' 로 구동부(110)를 회전시키고, 펌프(120)의 토크의 순간 변화율이 음이면 제2 회전속도(ωreq)보다 작은 '제2 회전속도(ωreq) + D*dT/dt' 로 구동부(110)를 회전시킬 수 있다. 여기서, D는 게인 값, dT/dt 는 펌프(120)의 토크의 순간 변화율.In some examples, the control unit 600, if the instantaneous rate of change of the torque of the pump 120 is positive, 'second rotation speed (ω req ) + D*dT/dt' greater than the second rotation speed (ω req ). The driving unit 110 is rotated, and if the instantaneous rate of change of the torque of the pump 120 is negative, the driving unit 110 is rotated at a 'second rotational speed (ω req ) + D*dT/dt' that is smaller than the second rotational speed (ω req ). ) can be rotated. Here, D is the gain value, and dT/dt is the instantaneous rate of change of the torque of the pump 120.
도 5를 참조하면, 어떠한 예시들에서, 제어부(600)는 계산에 의하여 얻어진 펌프(120)의 토크 값에 게인 값을 곱하고, 그 곱의 순간 변화율이 양이면 제2 회전속도(ωreq)보다 큰 '제2 회전속도(ωreq) + D*dT/dt' 로 구동부(110)를 회전시키고, 음이면 제2 회전속도(ωreq)보다 작은 '제2 회전속도(ωreq) + D*dT/dt' 로 구동부(110)를 회전시킬 수 있다.Referring to FIG. 5, in some examples, the control unit 600 multiplies the torque value of the pump 120 obtained by calculation by the gain value, and if the instantaneous rate of change of the product is positive, it is faster than the second rotation speed (ω req ). The driving unit 110 is rotated at a large second rotation speed (ω req ) + D*dT/dt, and if negative, the second rotation speed (ω req ) + D* is smaller than the second rotation speed (ω req ). The driving unit 110 can be rotated by 'dT/dt'.
도 7는 본 개시물의 일 예시에 따른 유압기계의 제어부의 전체 구성을 개략적으로 보여주는 블록 다이어그램이다.Figure 7 is a block diagram schematically showing the overall configuration of a control unit of a hydraulic machine according to an example of the present disclosure.
일 예시에 따른, 구동부(110)의 회전속도(ωcom) 및 펌프(120)의 용적(Vcom)의 제어를 순차적으로 살펴보면 아래와 같다. According to one example, the control of the rotational speed (ω com ) of the driving unit 110 and the volume (V com ) of the pump 120 will be sequentially examined as follows.
프로세스 1) 압력 센서(510)을 이용하여, 고압 라인(315) 내의 압력을 측정하고, 회전속도 결정부(630)는 구동부(110)의 회전속도를 결정한다. 도 2를 참조하여 전술한 바와 같이, 고압 라인(315) 내의 압력이 쓰레숄드 압력 이상이면 회전속도는 기설정된 제1 회전속도로 유지되고, 고압 라인(315) 내의 압력이 쓰레숄드 압력 미만이 되면 회전속도는 제2 회전속도(ωreq) 로 증가시킨다. Process 1) Using the pressure sensor 510, the pressure in the high pressure line 315 is measured, and the rotation speed determination unit 630 determines the rotation speed of the driving unit 110. As described above with reference to FIG. 2, when the pressure in the high pressure line 315 is greater than the threshold pressure, the rotational speed is maintained at the preset first rotational speed, and when the pressure in the high pressure line 315 is less than the threshold pressure, The rotation speed increases to the second rotation speed (ω req ).
프로세스 2) 프로세스 1로부터 제2 회전속도 값(ωreq) 을 수신하고, 토크 결정부(640)는 스윗 라인 상에서 그 제2 회전속도(ωreq) 에 대응되는 제2 토크 값(Treq) (즉, 그 제2 회전속도에서 최적의 연료 소비 효율을 나타내는 제2 토크 값(Treq))를 알아낸다. Process 2) Receives a second rotational speed value (ω req ) from process 1, and the torque determination unit 640 generates a second torque value (T req ) corresponding to the second rotational speed (ω req ) on the sweet line ( That is, the second torque value (T req ) representing the optimal fuel consumption efficiency at the second rotation speed is found.
프로세스 3) 프로세스 2로부터 제2 토크 값(Treq)을 수신하고, 엔진 센서(520)를 이용하여 구동부(110)의 현재 토크 값(Tcur)을 읽어들인다. 도 3에 도시한 바와 같이, 구동부 토크 컨트롤러(610)는, 펌프(120)의 용적을 제어하는 펌프 용적 커맨드(Vcom)를 펌프(120)에 전송한다.Process 3) The second torque value (T req ) is received from process 2, and the current torque value (T cur ) of the driving unit 110 is read using the engine sensor 520 . As shown in FIG. 3 , the drive unit torque controller 610 transmits a pump volume command (V com ) to the pump 120 to control the volume of the pump 120 .
프로세스 4) 구동부 회전속도 보상기(620)는, 프로세스 3으로부터 펌프(120)의 용적을 제어하는 펌프 용적 커맨드 값(Vcom)을 수신함과 아울러, 프로세스 1로부터 제2 회전속도 값(ωreq)을 수신한다. 그리고 펌프 용적 커맨드 값(Vcom) 및 제2 회전속도 값(ωreq)을 이용하여, 회전속도 droop 현상을 방지하기 위하여 제2 회전속도(ωreq)에 어느 정도의 값이 가감되어야 하는지에 대한 회전속도 커맨드(ωcom)를 구동부(110)에 전송한다. Process 4) The drive unit rotation speed compensator 620 receives the pump volume command value (V com ) for controlling the volume of the pump 120 from Process 3 and also receives the second rotation speed value (ω req ) from Process 1. Receive. And using the pump volume command value (V com ) and the second rotation speed value (ω req ), how much value should be added or subtracted from the second rotation speed (ω req ) to prevent the rotation speed droop phenomenon. A rotation speed command (ω com ) is transmitted to the drive unit 110 .
여기에서 사용된 용어는 단지 특정 측면들을 기술하기 위한 목적으로 사용된 것이며, 본 개시물을 제한하기 위한 의도는 아니다. 문맥 상 명시적으로 다르게 가리키지 않는 한, 단수의 형태로 기재하더라도 복수의 형태를 포함할 수 있다. 또한, "및/또는"의 용어는 관련된 리스팅된 항목들의 하나 이상의 어떠한 조합 및 모든 조합들을 포함한다. 용어, "포함"은 언급된 특징들, 정수들, 단계들, 오퍼레이션들, 엘리먼트들 및/또는 콤포넌트들의 존재를 특정하지만, 하나 이상의 다른 특징들, 정수들, 단계들, 오퍼레이션들, 엘리먼트들, 콤포넌트들 및/또는 그 것들의 그룹들의 존재 또는 추가를 배제하는 것은 아니다. The terminology used herein is for the purpose of describing certain aspects only and is not intended to limit the disclosure. Unless the context clearly indicates otherwise, plural forms may be included even if written in singular form. Additionally, the term “and/or” includes any and all combinations of one or more of the associated listed items. The term “comprising” specifies the presence of stated features, integers, steps, operations, elements and/or components, but also includes one or more other features, integers, steps, operations, elements, It does not exclude the presence or addition of components and/or groups thereof.
"아래에", "위에", "더 위에", "더 아래", "수평" 또는 "수직"와 같은 비교 용어들은 여기에서 도면들에 도시된 어떠한 엘리먼트의 다른 엘리먼트에 대한 관계를 기술하는데 사용될 수 있다. 이러한 용어들 및 전술한 것들은 도면들에 도시된 오리엔테이션뿐 아니라 그 장치의 다른 오리엔테이션들을 포함할 수 있다. 엘리먼트가 다른 엘리먼트에 연결 또는 결합된다고 언급될 때, 이는 직접적인 연결뿐 아니라, 다른 매개 엘리먼트가 개재될 수도 있다. 반면, 엘리먼트가 다른 엘리먼트에 직접 연결 또는 결합된다고 언급되면, 이는 매개 엘리먼트들이 존재하지 않음을 의미한다. Comparative terms such as “below,” “above,” “above,” “further below,” “horizontal,” or “vertical” are used herein to describe the relationship of any element shown in the figures to another element. You can. These terms and the foregoing may include other orientations of the device as well as the orientation shown in the figures. When an element is said to be connected or combined with another element, this may include not only a direct connection, but also other intervening elements. On the other hand, when an element is said to be directly connected or coupled to another element, this means that no intermediate elements exist.
다르게 정의되지 않는 한, 여기에서 사용되는 모든 용어들 (기술적 및 과학적 용어들을 포함)은 본 개시물이 속하는 기술분야에서 통상의 지식을 가지는 자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다. 여기에서 사용된 용어들은, 본 명세서의 문맥과 관련 기술에서의 그들의 의미와 일치되는 의미를 가지는 것으로 해석되어야 하고, 여기에서 명시적으로 정의되지 않는 한, 이상화되거나 과도하게 포멀한 의미로 해석되지 않을 것이다.Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by a person of ordinary skill in the art to which this disclosure pertains. Terms used herein should be construed to have meanings consistent with their meanings in the context of this specification and related art, and, unless explicitly defined herein, should not be interpreted in an idealized or overly formal sense. will be.
본 개시물은 전술하고 도면들에서 도시된 측면들에 국한되는 것은 아니고, 그보다는 통상의 지식을 가지는 자는 본 개시물 및 첨부 특허청구범위의 범위 내에서 다양한 변경들 및 수정들이 이루어질 수 있음을 이해하여야 한다. 도면들 및 명세서에, 제한하기 위한 목적이 아니라, 예시의 목적으로 많은 측면들이 개시되었고, 본 발명 개념의 범위는 뒤따르는 특허청구범위에 기재된다. The present disclosure is not limited to the aspects shown in the foregoing and drawings, but rather, those skilled in the art will understand that various changes and modifications may be made within the scope of the present disclosure and the appended claims. shall. Many aspects are disclosed in the drawings and specification for purposes of illustration rather than limitation, and the scope of the inventive concept is set forth in the claims that follow.

Claims (11)

  1. 액츄에이터와,an actuator,
    고압 어큐뮬레이터와, A high pressure accumulator,
    상기 액츄에이터에 압유를 공급하고, 상기 고압 어큐뮬레이터가 연결되는, 고압 라인과,A high pressure line that supplies pressure oil to the actuator and to which the high pressure accumulator is connected,
    상기 고압 라인에 압유를 공급하는 펌프와,A pump that supplies pressure oil to the high pressure line,
    상기 펌프를 구동하는 구동부와,A driving unit that drives the pump,
    상기 펌프 및 상기 구동부를 제어하는 제어부를 포함하고, It includes a control unit that controls the pump and the driving unit,
    상기 제어부는, The control unit,
    상기 고압 라인 내의 압력이 기설정된 쓰레숄드 압력 이상이면, 상기 구동부의 회전속도가 기설정된 제1 회전속도로 유지되도록 제어하고, If the pressure in the high pressure line is higher than the preset threshold pressure, the rotational speed of the driving unit is controlled to be maintained at the preset first rotational speed,
    상기 고압 라인 내의 압력이 상기 쓰레숄드 압력 미만이 되면, 상기 구동부의 회전속도가 상기 제1 회전속도보다 큰 제2 회전속도가 되도록 제어하는,When the pressure in the high pressure line becomes less than the threshold pressure, the rotation speed of the driving unit is controlled to be a second rotation speed greater than the first rotation speed,
    유압기계. Hydraulic machinery.
  2. 제1 항에 있어서,According to claim 1,
    상기 제1 회전속도는 최적의 제동연료소비율을 나타내는 영역 내의 회전속도인,The first rotational speed is a rotational speed within a region representing the optimal braking fuel consumption rate,
    유압기계.Hydraulic machinery.
  3. 제1 항에 있어서,According to claim 1,
    상기 제2 회전속도는 상기 고압 라인 내의 압력에 따라 결정되는,The second rotation speed is determined depending on the pressure in the high pressure line,
    유압기계. Hydraulic machinery.
  4. 제1 항에 있어서,According to claim 1,
    상기 제어부는,The control unit,
    상기 고압 라인 내의 압력이 상기 쓰레숄드 압력 이상이면, 상기 구동부의 회전속도가 상기 제1 회전속도로 유지되도록 제어함과 아울러, 상기 구동부의 토크가 기설정된 제1 토크로 유지되도록 제어하고,If the pressure in the high pressure line is equal to or higher than the threshold pressure, the rotational speed of the driving unit is controlled to be maintained at the first rotational speed, and the torque of the driving unit is controlled to be maintained at a preset first torque,
    상기 고압 라인 내의 압력이 상기 쓰레숄드 압력 미만이 되면, 상기 구동부의 회전 속도가 상기 제1 회전속도보다 큰 제2 회전속도가 되도록 제어함과 아울러, 상기 구동부의 토크가 제2 토크가 되도록 제어하는,When the pressure in the high pressure line is less than the threshold pressure, the rotation speed of the drive unit is controlled to be a second rotation speed greater than the first rotation speed, and the torque of the drive unit is controlled to be a second torque. ,
    유압기계.Hydraulic machinery.
  5. 제4 항에 있어서,According to clause 4,
    상기 제1 회전속도 및 상기 제1 토크는 상기 유압기계의 최적 제동연료소비율을 나타내는 영역 내의 회전속도 및 토크인, The first rotational speed and the first torque are the rotational speed and torque within a region representing the optimal braking fuel consumption rate of the hydraulic machine,
    유압기계.Hydraulic machinery.
  6. 제4 항에 있어서,According to clause 4,
    상기 제2 회전속도는 상기 고압 라인 내의 압력에 따라 결정되고,The second rotation speed is determined according to the pressure in the high pressure line,
    상기 제2 토크는 그 제2 회전속도에서 최적의 제동연료소비율을 나타내는 토크인,The second torque is a torque representing the optimal braking fuel consumption rate at the second rotation speed,
    유압기계. Hydraulic machinery.
  7. 제4 항에 있어서,According to clause 4,
    상기 제어부는, 상기 제2 토크와 상기 현재 토크 사이의 차이의 값들(Treq-Tcur)과 게인 값을 곱한 값들을 상기 펌프의 입출구 압력차 값들로 나눈 값들을 적분한 적분 값에 따라 상기 펌프의 용적을 제어하는,The control unit operates the pump according to an integral value obtained by dividing the difference between the second torque and the current torque (T req -T cur ) by the gain value divided by the inlet and outlet pressure difference values of the pump. controlling the volume of,
    유압기계.Hydraulic machinery.
  8. 제7 항에 있어서,According to clause 7,
    상기 제어부는, The control unit,
    상기 적분 값이 증가하면 상기 펌프의 용적을 증가시키고, When the integral value increases, the volume of the pump increases,
    상기 적분 값이 감소하면 상기 펌프의 용적을 감소시키는,When the integral value decreases, the volume of the pump is reduced,
    유압기계. Hydraulic machinery.
  9. 제8 항에 있어서,According to clause 8,
    상기 제어부는, 상기 적분 값이 기설정된 최대 값에 도달하면, 상기 적분 값이 더 이상 증가하지 않도록 하는,The control unit prevents the integral value from increasing further when the integral value reaches a preset maximum value.
    유압기계.Hydraulic machinery.
  10. 제1 항에 있어서,According to claim 1,
    상기 제어부는,The control unit,
    상기 펌프의 압력 및 용적으로부터 상기 펌프의 토크를 계산하고, Calculate the torque of the pump from the pressure and volume of the pump,
    상기 펌프의 토크의 순간 변화율이 양이면 상기 제2 회전속도보다 큰 회전속도로 상기 구동부를 회전시키고, 상기 펌프의 토크의 순간 변화율이 음이면 상기 제2 회전속도보다 작은 회전속도로 상기 구동부를 회전시키는, If the instantaneous rate of change of the torque of the pump is positive, the driving unit is rotated at a rotational speed greater than the second rotational speed, and if the instantaneous rate of change of the torque of the pump is negative, the driving unit is rotated at a rotational speed less than the second rotational speed. Shiki,
    유압기계.Hydraulic machinery.
  11. 제10 항에 있어서,According to claim 10,
    상기 제어부는,The control unit,
    상기 펌프의 압력 및 용적으로부터 상기 펌프의 토크를 계산하고, Calculate the torque of the pump from the pressure and volume of the pump,
    상기 펌프의 토크의 순간 변화율이 양이면 상기 제2 회전속도보다 큰 '제2 회전속도 + D*dT/dt' 로 상기 구동부를 회전시키고, 상기 펌프의 토크의 순간 변화율이 음이면 상기 제2 회전속도보다 작은 '제2 회전속도 + D*dT/dt' 로 상기 구동부를 회전시키고, If the instantaneous rate of change of the torque of the pump is positive, the driving unit is rotated at a 'second rotation speed + D*dT/dt' greater than the second rotation speed, and if the instantaneous rate of change of the torque of the pump is negative, the second rotation is performed. Rotate the driving unit at a 'second rotation speed + D*dT/dt' that is smaller than the speed,
    여기서, D는 게인 값, dT/dt 는 상기 펌프의 토크의 순간 변화율인,Here, D is the gain value, and dT/dt is the instantaneous rate of change of the torque of the pump,
    유압기계.Hydraulic machinery.
PCT/KR2022/013034 2022-08-31 2022-08-31 Hydraulic machine WO2024048813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/013034 WO2024048813A1 (en) 2022-08-31 2022-08-31 Hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/013034 WO2024048813A1 (en) 2022-08-31 2022-08-31 Hydraulic machine

Publications (1)

Publication Number Publication Date
WO2024048813A1 true WO2024048813A1 (en) 2024-03-07

Family

ID=90098038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013034 WO2024048813A1 (en) 2022-08-31 2022-08-31 Hydraulic machine

Country Status (1)

Country Link
WO (1) WO2024048813A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030126981A1 (en) * 2001-11-05 2003-07-10 Keith Bridger Compact hybrid actuator
KR20070086781A (en) * 2004-12-01 2007-08-27 할덱스 하이드럴릭스 코포레이션 Hydraulic drive system
US20110142632A1 (en) * 2009-12-16 2011-06-16 Eaton Corporation Piecewise Variable Displacement power transmission
KR20120080645A (en) * 2009-11-10 2012-07-17 카와사키 주코교 카부시키 카이샤 Hydraulic pressure control device
KR20210151890A (en) * 2019-04-08 2021-12-14 볼보 컨스트럭션 이큅먼트 에이비 Hydraulic system and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030126981A1 (en) * 2001-11-05 2003-07-10 Keith Bridger Compact hybrid actuator
KR20070086781A (en) * 2004-12-01 2007-08-27 할덱스 하이드럴릭스 코포레이션 Hydraulic drive system
KR20120080645A (en) * 2009-11-10 2012-07-17 카와사키 주코교 카부시키 카이샤 Hydraulic pressure control device
US20110142632A1 (en) * 2009-12-16 2011-06-16 Eaton Corporation Piecewise Variable Displacement power transmission
KR20210151890A (en) * 2019-04-08 2021-12-14 볼보 컨스트럭션 이큅먼트 에이비 Hydraulic system and its control method

Similar Documents

Publication Publication Date Title
WO2011078578A2 (en) Power control apparatus and power control method for construction machinery
WO2012015087A1 (en) Swirl flow control system for construction equipment and method of controlling the same
WO2018190615A1 (en) Hydraulic system of construction machinery
US9963855B2 (en) Method and apparatus for recovering inertial energy
EP2329155B1 (en) Method of controlling an electro-hydraulic actuator system having multiple functions
WO2011078586A9 (en) System for driving a boom of a hybrid excavator, and method for controlling same
US10315508B2 (en) Hybrid work machine
JP2002188177A (en) Controller for construction equipment
WO2012087080A2 (en) Hybrid excavator boom actuating system and method for controlling same
WO2014157988A1 (en) Device and method for controlling hydraulic pump in construction machine
WO2004053332A1 (en) Method and device for controlling pump torque for hydraulic construction machine
CN112154271B (en) Construction machine
WO2014148855A1 (en) Method for controlling hydraulic system of construction machinery
US9777463B2 (en) Construction machine
WO2012033233A1 (en) Flow rate control device for variable displacement type hydraulic pump for construction equipment
WO2017010840A1 (en) Construction machinery and method of controlling construction machinery
WO2012074145A1 (en) Hydraulic pump control system for construction machinery
WO2024048813A1 (en) Hydraulic machine
WO2014163362A1 (en) Apparatus and method for variably controlling spool displacement of construction machine
WO2015093791A1 (en) Closed-circuit hydraulic system for construction machine
CN111059091B (en) Load-sensitive oil supply module, load-sensitive system and control method thereof
WO2022234926A1 (en) Electrohydraulic system having improved electrical efficiency
WO2022019691A1 (en) Construction machine and control method thereof
KR20210124745A (en) Method for improving fuel efficiency using pump torque according to engine load in a construction machinery
KR20230054726A (en) Hydraulic Active Suspension Flow Control System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957492

Country of ref document: EP

Kind code of ref document: A1