WO2024048793A1 - Attenuated virus for treating infections - Google Patents

Attenuated virus for treating infections Download PDF

Info

Publication number
WO2024048793A1
WO2024048793A1 PCT/JP2023/032142 JP2023032142W WO2024048793A1 WO 2024048793 A1 WO2024048793 A1 WO 2024048793A1 JP 2023032142 W JP2023032142 W JP 2023032142W WO 2024048793 A1 WO2024048793 A1 WO 2024048793A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
nucleic acid
composition according
ag85b
attenuated
Prior art date
Application number
PCT/JP2023/032142
Other languages
French (fr)
Japanese (ja)
Inventor
康宏 保富
智崇 岡村
Original Assignee
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical 国立研究開発法人医薬基盤・健康・栄養研究所
Publication of WO2024048793A1 publication Critical patent/WO2024048793A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • A61K39/165Mumps or measles virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/02Hepadnaviridae, e.g. hepatitis B virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/115Paramyxoviridae, e.g. parainfluenza virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/15Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus human T-cell leukaemia-lymphoma virus
    • C07K14/155Lentiviridae, e.g. visna-maedi virus, equine infectious virus, FIV, SIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/04Inactivation or attenuation; Producing viral sub-units

Definitions

  • compositions and related techniques for treating viral infections More particularly, techniques are provided relating to nucleic acid constructs comprising a nucleic acid sequence encoding an attenuated virus or equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule.
  • Non-Patent Document 1 There are two cases in which HIV remission was achieved by cell transplantation. The development of an effective vaccine could prevent the spread of HIV infection, but there has been little success in vaccine development over the past 30 years. The only successful HIV vaccine to date was evaluated in the RV144 clinical trial, with an overall efficacy of only 31% (Non-Patent Document 2).
  • nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or its equivalent and a nucleic acid sequence encoding an adjuvant molecule treats a viral infection in a subject, completing the invention. reached.
  • Any adjuvant molecule may be used as long as it has adjuvant activity.
  • the idea of using such a nucleic acid construct therapeutically is unprecedented, and it is a highly versatile technology that can be used with any virus.
  • the present invention provides, for example, the following items.
  • (Item 1) A composition for treating a viral infection in a subject, comprising a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule.
  • (Item 2) The composition according to the above item, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of accessory genes and regulatory genes.
  • Item 3 The composition according to any one of the above items, wherein the attenuated virus is deficient in an accessory gene.
  • composition according to any one of the above items wherein the nucleic acid sequence encoding the adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus.
  • attenuated virus is a chronically infectious virus.
  • the attenuated virus is an attenuated virus selected from the group consisting of AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV).
  • AIDS virus HIV
  • HTLV human T-cell leukemia virus
  • measles virus measles virus
  • rubella virus hepatitis C virus
  • HBV hepatitis B virus
  • composition according to any one of the above items, wherein the adjuvant molecule is an adjuvant molecule derived from acid-fast bacteria.
  • the adjuvant molecule is selected from the group consisting of Ag85B proteins.
  • composition induces a Th1 type immune response.
  • composition completely eliminates the virus in the subject.
  • composition according to any of the preceding items wherein the nucleic acid construct is cloned.
  • a kit for treating a viral infection in a subject comprising a composition according to any one of the above items, a diagnostic agent for viral infection, and instructions.
  • a method for treating a viral infection in a subject comprising administering to the subject a composition according to any one of the preceding items.
  • compositions according to any of the above items in the manufacture of a medicament for treating a viral infection in a subject.
  • Item 1A A method of treating a viral infection in a subject, the method comprising administering an effective amount of a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or an equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule. Including, methods.
  • (Item 2A) The method according to the above item, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of accessory genes and regulatory genes.
  • (Item 3A) The method according to any one of the above items, wherein the attenuated virus is deficient in an accessory gene.
  • (Item 4A) The method according to any one of the above items, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of Vif, Vpr, Vpx, Vpu, and Nef or its corresponding gene.
  • (Item 5A) The method according to any one of the above items, wherein the attenuated virus is a nef-deficient attenuated virus.
  • (Item 6A) A method according to any of the preceding items, wherein the nucleic acid sequence encoding the adjuvant molecule is incorporated into the nucleic acid sequence encoding the attenuated virus or equivalent thereof.
  • (Item 7A) The method according to any one of the above items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus.
  • (Item 8A) A method according to any of the preceding items, wherein the attenuated virus is a chronically infectious virus.
  • the attenuated virus is an attenuated virus selected from the group consisting of AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV).
  • the adjuvant molecule is an adjuvant molecule derived from acid-fast bacteria.
  • the adjuvant molecule is selected from the group consisting of Ag85B proteins.
  • (Item 12A) The method according to any of the preceding items, wherein the nucleic acid construct induces a Th1-type immune response.
  • (Item 13A) The method of any one of the preceding items, wherein the nucleic acid construct completely eliminates the virus in the subject.
  • (Item 14A) Method according to any of the preceding items, characterized in that the nucleic acid construct is administered after viral infection.
  • (Item 15A) The method according to any of the preceding items, wherein the nucleic acid construct is cloned.
  • (Item 16A) A method of determining whether a subject requires treatment with a composition according to any one of the above items, the method comprising administering to the subject a diagnostic agent for viral infection. .
  • (Item 17A) A method of treating a viral infection in a subject, the method comprising: administering to the subject a diagnostic agent for viral infection; and administering to the subject an effective amount of the composition according to any one of the above items. A method, including doing.
  • (Item 18A) The method of any one of the preceding items, wherein the subject has previously been vaccinated with a BCG vaccine.
  • (Item 1B) Use of a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or its equivalent and a nucleic acid sequence encoding an adjuvant molecule in the manufacture of a medicament for treating a viral infection in a subject.
  • (Item 2B) The use according to the above item, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of accessory genes and regulatory genes.
  • (Item 3B) The use according to any of the above items, wherein the attenuated virus is deficient in an accessory gene.
  • (Item 4B) The use according to any one of the above items, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of Vif, Vpr, Vpx, Vpu, and Nef or its corresponding gene.
  • (Item 5B) The use according to any one of the above items, wherein the attenuated virus is a nef-deficient attenuated virus.
  • (Item 6B) Use according to any of the preceding items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated into the nucleic acid sequence encoding the attenuated virus or its equivalent.
  • (Item 7B) The use according to any of the above items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus.
  • (Item 8B) The use according to any of the preceding items, wherein the attenuated virus is a chronically infectious virus.
  • the attenuated virus is an attenuated virus selected from the group consisting of AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV).
  • AIDS virus human T-cell leukemia virus
  • HTLV human T-cell leukemia virus
  • HCV hepatitis C virus
  • HBV hepatitis B virus
  • the adjuvant molecule is an adjuvant molecule derived from acid-fast bacteria.
  • said adjuvant molecule is selected from the group consisting of Ag85B proteins.
  • (Item 12B) The use according to any of the above items, wherein the nucleic acid construct induces a Th1 type immune response.
  • (Item 13B) The use according to any of the preceding items, wherein said nucleic acid construct completely eliminates the virus in said subject.
  • (Item 14B) Use according to any of the above items, characterized in that the nucleic acid construct is administered after viral infection.
  • (Item 15B) The use according to any of the above items, wherein said nucleic acid construct is cloned.
  • (Item 16B) The use according to any of the preceding items, wherein said subject has previously been vaccinated with a BCG vaccine.
  • nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or an equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule for treating a viral infection in a subject.
  • nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or an equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule for treating a viral infection in a subject.
  • nucleic acid construct according to the above item wherein the attenuated virus is deficient in at least one gene selected from the group consisting of accessory genes and regulatory genes.
  • (Item 4C) The nucleic acid construct according to any one of the above items, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of Vif, Vpr, Vpx, Vpu, and Nef or its corresponding gene.
  • (Item 5C) The nucleic acid construct according to any one of the above items, wherein the attenuated virus is a nef-deficient attenuated virus.
  • (Item 6C) Nucleic acid construct according to any of the preceding items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated into the nucleic acid sequence encoding the attenuated virus or equivalent thereof.
  • the attenuated virus is an attenuated virus selected from the group consisting of AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV).
  • nucleic acid construct according to any one of the above items which is a viral virus.
  • the adjuvant molecule is an adjuvant molecule derived from acid-fast bacteria.
  • nucleic acid construct according to any one of the preceding items wherein said adjuvant molecule is selected from the group consisting of Ag85B proteins.
  • nucleic acid construct according to any one of the above items wherein the nucleic acid construct induces a Th1 type immune response.
  • nucleic acid construct according to any one of the above items characterized in that said nucleic acid construct is administered after viral infection.
  • compositions, nucleic acid molecule, method, use or nucleic acid construct according to any one of the preceding items, wherein said composition, nucleic acid molecule, method, use or nucleic acid construct is for treating a viral infection.
  • FIG. 1 shows an overview of the experiment in Example 3.
  • Figure 2 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#137) administered only with anti-HIV drugs.
  • Figure 3 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#139) administered only with anti-HIV drugs.
  • Figure 4 shows the dynamics of plasma viral load and CD4 + T cell number in a monkey (#142) administered twice with low-dose SHIV-Ag85B.
  • Figure 5 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#141) administered once with high dose SHIV-Ag85B.
  • Figure 6 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#140) administered multiple times with high-dose SHIV-Ag85B.
  • FIG. 7 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#138) administered once each with low and high doses of SHIV-Ag85B.
  • FIG. 8 shows the administration schedule for each individual in Example 2.
  • FIG. 9A shows the change in plasma virus amount in a monkey (#138) that was administered twice with low doses of SHIV-Ag85B in Example 3.
  • FIG. 9B shows the change in plasma virus amount in a monkey (#142) that was administered once with a high dose of SHIV-Ag85B in Example 3.
  • Figure 10 shows that in Example 3, for one monkey (#141) that was administered a dose of SHIV-Ag85B, only a short-term effect was observed at the beginning; , shows a long-term suppressive effect after the fifth vaccination.
  • FIG. 9A shows the change in plasma virus amount in a monkey (#138) that was administered twice with low doses of SHIV-Ag85B in Example 3.
  • FIG. 9B shows the change in plasma virus amount in a
  • FIG. 11A shows the results of an untreated monkey (#137) that received only anti-HIV drugs in Example 4.
  • FIG. 11B shows the results of an untreated monkey (#139) that received only anti-HIV drugs in Example 4.
  • FIG. 12 is an experimental protocol for verifying the change in plasma virus amount when the composition according to the present disclosure is administered after inoculation with the HIV virus in Example 4.
  • FIG. 13 shows the results of Example 4 showing that the anti-HIV drug was successful regardless of individual differences.
  • Figure 14 shows that monkeys (#164, #165 and #167) that received high doses (5.0 x 104 TCID50 ) of SHIV-Ag85B were treated with high doses of SHIV-Ag85B four times at one week intervals. It is a figure showing the amount of virus in plasma when administered.
  • FIG. 15 shows that monkeys (#162, #166, and #168) that received high doses (5.0 ⁇ 10 4 TCID 50 ) of SHIV-NI in Example 5 were treated with high doses of SHIV-NI four times. These are the results of plasma virus amount at the time of administration.
  • FIG. 16 shows the results of the plasma virus amount in the control group not containing Ag85B in Example 5, 2 weeks after discontinuation of the drug.
  • Attenuated virus refers to a virus that has reduced pathogenicity compared to the parent virus but retains the ability to induce an immune response. Attenuation can be confirmed by the toxicity to cells and/or pathogenicity to animals. It is preferably determined by animal experiments or the like. Viruses to be attenuated include, but are not limited to, chronically infectious viruses such as AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, and hepatitis C virus (HCV). Generally, the term “attenuation” refers to artificially reducing the virulence of a pathogen by mutating its genes so that the pathogen loses virulence but retains immunogenicity.
  • AIDS virus HIV
  • HTLV human T-cell leukemia virus
  • HCV hepatitis C virus
  • Attenuation of pathogen toxicity is achieved by UV irradiation, chemical treatment, or in vitro continuous high-order subculturing.
  • Genes are artificially modified, for example by deleting specific nucleotides in a known sequence, to reduce toxicity.
  • chronically infectious virus refers to an infectious virus that exhibits lifelong infection.
  • adjuvant molecule refers to one or more substances that cause stimulation of the immune system.
  • the adjuvant molecule can be a protein derived from mycobacteria, for example Ag85B protein.
  • nucleic acid construct or “nucleic acid construct” refers to a DNA or RNA molecule that includes a nucleotide sequence that encodes a protein.
  • subject refers to mammals, including human patients, who are the targets of the treatment of the present disclosure.
  • viral infection refers to the entry of a virus into a cell such that the encoded protein product is expressed.
  • accessory gene refers to a gene that is not essential for virus proliferation. Examples include, but are not limited to, Vif, Vpr, Vpx, Vpu, and Nef.
  • nef (negative factor) is a protein of approximately 27 kDa that is encoded on the 3' side of the HIV-1 gene. Although it was originally reported as a factor that suppresses virus proliferation, it has since been found to actually accelerate virus proliferation in primary cultured cells and in vivo, and to be associated with HIV-1 pathogenicity. HIV-1 Nef protein, anchor domain superfamily (IPR027480), HIV-1 Nef protein, core domain superfamily (IPR027481) etc. are known.
  • Nucleic acid constructs comprising a nucleic acid sequence encoding an attenuated virus or its equivalent of the present disclosure and a nucleic acid sequence encoding an adjuvant molecule unexpectedly exhibit increased safety, reduced toxicity, and effective targeting. For the first time, we have been able to provide a practical therapeutic and prophylactic vaccine against a viral disease.
  • regulatory gene refers to a gene that controls gene expression.
  • defect refers to the loss of a gene. Defect also includes the fact that a part of the gene has disappeared and is no longer functioning.
  • corresponding genes refer to genes that have different names between different species but are functionally equivalent.
  • incorporated refers to the addition of one or more nucleic acids into a nucleic acid construct.
  • cloned refers to producing and/or isolating a population with the same genetic makeup.
  • reagent refers to a reagent used to test whether a therapeutic agent is effective before treatment.
  • kits refers to parts that should be provided (e.g., vaccines, test reagents, diagnostic reagents, therapeutic reagents, antibodies, labels, instructions, etc.) usually divided into two or more compartments. unit.
  • This kit format is preferable when the purpose is to provide a composition that should not be provided mixed for reasons of stability etc., but is preferably mixed immediately before use.
  • kits preferably include the parts provided (e.g., instructions or instructions describing how to use the test, diagnostic, or therapeutic agent, or how to process the reagents).
  • the kit When the kit is used as a reagent kit herein, the kit usually includes instructions on how to use the vaccine, test agent, diagnostic agent, therapeutic agent, antibody, etc. This includes books, etc.
  • Ag85B refers to an immunogenic protein secreted by acid-fast bacteria. When bacteria are dyed with a pigment, acid-fast bacteria exhibit a property that the pigment is not bleached by acid, that is, they are resistant to acid. Acid-fast bacteria (mycobacteria) are broadly classified into Mycobacterium tuberculosis, Mycobacterium leprae, and non-tuberculous mycobacteria. A typical source of Ag85B is Mycobacterium Tuberculosis. Ag85B is antigen 85-B, 85B, Extracellular alpha-antigen, Antigen 85 complex B, Ag85B, Mycolyl transfera se 85B, EC 2.3.1.
  • a typical access number is Q847N4. https://www. uniprot. See org/uniprotkb/Q847N4/entry.
  • a typical nucleic acid sequence ID is AY207396g, and a typical protein sequence ID is AAO62005.1. In this specification, it is shown as SEQ ID NO: 1 (nucleic acid sequence) and SEQ ID NO: 2 (amino acid sequence), but is not limited to this, and any immunogenic protein secreted by acid-fast bacteria is within the scope of the present disclosure.
  • Ag85B is an immunoadjuvant.
  • Antigen 85B (Ag85B) is considered an immunogenic protein that induces a strong Th1 immune response in hosts sensitized with Bacillus Calmette-Guerin.
  • Ag85B belongs to the Ag85 family and is one of the most predominant proteins secreted by most mycobacterial species.
  • operably refers to a state in which transcription or translation of a nucleic acid sequence is under the control of an expression control element, transcription or translation of a nucleic acid sequence is appropriately controlled, and functional expression is achieved. refers to something in
  • Th1 type immune response is a cellular immune response mediated by T lymphocytes, and refers to a response by cytokines and/or chemokines produced by activated T cells.
  • Th2-type immune response refers to a humoral immune response mediated by secreted antibodies produced by B cells.
  • SHIV simian/human immunodeficiency (chimeric) virus
  • completely eliminating the virus refers to a state in which the virus is completely removed from the living body.
  • a state in which the virus has been completely removed from the living body means that it is below the detection limit by highly sensitive detection methods such as PCR, and it does not show any clinical symptoms.
  • vaccine refers to a substance containing or encoding an antigen that provides active immunity against the substance containing the antigen but does not cause disease.
  • vaccine refers to one used prophylactically.
  • DNA vaccine means a nucleic acid encoding a vaccine antigen, and this general name is used because DNA (particularly plasmid DNA) is mainly used.
  • nucleic acid there is also an embodiment in which it is incorporated into a viral vector or the like and delivered into a living body, and in this case, it is understood that the nucleic acid may be provided in a form other than DNA.
  • DNA vaccines usually take the form of plasmid DNA, but when a DNA vaccine in the form of plasmid DNA is subcutaneously administered, the plasmid DNA is taken up into subcutaneous cells and produces the target antigen protein within the cells.
  • the term "antigen” (also referred to as Ag) refers to any substrate that can be specifically bound by an antibody molecule.
  • immunogen refers to an antigen capable of initiating lymphocyte activation resulting in an antigen-specific immune response.
  • nucleic acid construct As used herein, “nucleic acid construct,” “construct,” “construct,” or “gene construct” are used interchangeably and are isolated from naturally occurring genes or combined in a non-naturally occurring manner; A nucleic acid molecule that includes a plurality of juxtaposed collections of nucleic acids.
  • Amino acids may be referred to herein by either their commonly known three-letter symbol or the one-letter symbol recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides may also be referred to by their commonly recognized one-letter codes.
  • comparisons of similarity, identity, and homology of amino acid sequences and base sequences are calculated using default parameters using BLAST, a sequence analysis tool.
  • the identity search can be performed using, for example, NCBI's BLAST 2.2.28 (published on April 2, 2013) (Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993).
  • the identity value in this specification usually refers to the value obtained when alignment is performed using the above-mentioned BLAST under default conditions.
  • identity is taken as the identity value.
  • identity is evaluated in multiple areas, the highest value among them is taken as the identity value.
  • Similarity is a value that takes into account similar amino acids in addition to identity.
  • Blastp can be used as an algorithm with default settings. The measurement results are quantified as Positives or Identities. Homology of amino acid sequences and base sequences can be determined by the algorithm BLAST by Karlin and Altschul. Based on this algorithm, programs called BLASTN and BLASTX have been developed (Altschul et al. J. Mol. Biol. 215:403-410, 1990).
  • BLAST and Gapped When using BLAST programs, use the default parameters for each program. Specific techniques for these analysis methods are publicly known (http://www.ncbi.nlm.nih.gov.).
  • the nucleic acid or protein used in the present disclosure may include a target amino acid or base sequence in which one or more amino acids or nucleotides are substituted, deleted, and/or added.
  • “one or more” usually means within 50 amino acids, preferably within 30 amino acids, and more preferably within 10 amino acids (for example, within 5 amino acids, within 3 amino acids, 1 amino acid).
  • "one or more” usually means 6 amino acids or less, preferably 5 amino acids or less, and more preferably 4 amino acids or less (for example, 3 amino acids or less, 2 amino acids or less, 1 amino acid or less). amino acids).
  • amino acid residue to be mutated be mutated to another amino acid in which the properties of the amino acid side chain are conserved.
  • the properties of amino acid side chains include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), amino acids with aliphatic side chains (G, A, V, L, I, P), amino acids with hydroxyl group-containing side chains (S, T, Y), sulfur atom-containing side chains (C, M), amino acids with carboxylic acid and amide-containing side chains (D, N, E, Q), amino acids with base-containing side chains (R, K, H), aromatic-containing side chains
  • amino acids (H, F, Y, W) having the following (each in parentheses represents a one-letter code for an amino acid).
  • “several” may be, for example, 10, 8, 6, 5, 4, 3, or 2, or may be less than or equal to any of these values.
  • Chimeric proteins with deletions etc. can be produced, for example, by site-directed mutagenesis, random mutagenesis, biopanning using an antibody phage library, or the like.
  • "70% or more” may be, for example, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99% or more
  • "80% or more” may be, for example, 80% or more. , 85, 90, 95, 96, 97, 98, 99% or more.
  • “90% or more” may be, for example, 90, 95, 96, 97, 98, 99% or more; It may be within the range of any two values.
  • "Homology” may be calculated as the ratio of the number of homologous amino acids in two or more amino acid sequences according to a method known in the art. Before calculating the ratio, the amino acid sequences of the group of amino acid sequences to be compared are aligned, and gaps are introduced into part of the amino acid sequences if necessary to maximize the ratio of identical amino acids. Methods for alignment, ratio calculation, comparison, and related computer programs are conventionally well known in the art (eg, BLAST, GENETYX, etc.). In the case of "identity”, the proportion of identical amino acids is calculated, and in the case of “similarity”, the proportion of similar amino acids is calculated. Similar amino acids include, but are not limited to, amino acids that allow conservative substitutions.
  • part refers to a polypeptide having a sequence length of 1 to n-1 relative to the full-length polypeptide or polynucleotide (length n). or polynucleotide.
  • length n polynucleotide
  • the length of the fragment can be changed as appropriate depending on the purpose. For example, the lower limit of the length is 3, 4, 5, 6, 7, 8, 9, 10, Examples include 15, 20, 25, 30, 40, 50 and more amino acids; lengths expressed in integers not specifically listed here (e.g., 11, etc.) are also suitable as lower limits. obtain.
  • examples include 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100 and more nucleotides, which are specifically listed here.
  • a length expressed as an integer eg, 11, etc.
  • such fragments fall within the scope of the disclosure, for example, if the full-length version functions as a vaccine, so long as the fragment itself also functions as a vaccine.
  • “Functional equivalents” of those specifically shown in this disclosure are also encompassed by this disclosure.
  • the term “functional equivalent” refers to any object that has the same intended function but a different structure with respect to the original entity.
  • the term "activity" herein refers to the function of a molecule in the broadest sense.
  • Activity generally includes, but is not intended to be limiting, a biological, biochemical, physical, or chemical function of the molecule.
  • Activity includes, for example, enzymatic activity, the ability to interact with other molecules, and the ability to activate, promote, stabilize, inhibit, suppress, or destabilize the function of other molecules. stability, and the ability to localize to specific subcellular locations.
  • the term also relates to the function of protein complexes in the broadest sense.
  • biological activity includes activation of photoreactions and the like.
  • an "HIV virus-encoded protein” or a chimeric functional equivalent thereof is not the HIV virus-encoded protein or chimera thereof itself, but a variant or variant of the HIV virus-encoded protein or chimera thereof ( (e.g., amino acid sequence variants, etc.) which have the biological effects of the protein encoded by the HIV virus or chimera thereof, and the protein encoded by the HIV virus or its antibody itself or its chimera at the time of action.
  • a protein encoded by the HIV virus or a chimeric variant or variant thereof e.g., a protein encoded by the HIV virus or a chimera thereof or a protein encoded by the HIV virus or a chimeric variant or variant thereof
  • the invention encompasses the encoding nucleic acids, as well as vectors, cells, etc. that contain the nucleic acids.
  • Functional equivalents of the present disclosure may include insertions, substitutions and/or deletions of one or more amino acids, or additions to one or both ends of the amino acid sequence.
  • insertion, substitution, and/or deletion of one or more amino acids, or addition to one or both ends of an amino acid sequence refers to the well-known method such as site-directed mutagenesis. It means that a modification has been made by a technical method or by natural mutation, such as substitution of a plurality of amino acids to the extent that they can occur naturally.
  • the modified amino acid sequence may include insertions, substitutions, or deletions of, for example, 1 to 30, preferably 1 to 20, more preferably 1 to 9, even more preferably 1 to 5, particularly preferably 1 to 2 amino acids. It can be deleted or added to one or both ends.
  • the modified amino acid sequence preferably has one or more (preferably one or several or one, two, three, or four) conservative substitutions in the amino acid sequence of the protein encoded by the HIV virus. It may be an amino acid sequence having
  • treatment refers to preventing the worsening of a disease or disorder (e.g., due to a viral infection), preferably maintaining the status quo, if such a disease or disorder occurs. , more preferably alleviation, and even more preferably eradication, and includes the ability to exhibit a symptom-improving effect or preventive effect on a patient's disease or one or more symptoms associated with the disease.
  • Performing a diagnosis in advance and providing appropriate treatment is called “companion treatment,” and the diagnostic agent used for this purpose is sometimes called a “companion diagnostic agent.”
  • a “therapeutic drug” in a broad sense refers to any drug that can treat a target condition (eg, retinal degenerative disease, etc.).
  • a “therapeutic agent” may be a pharmaceutical composition comprising an active ingredient and one or more pharmacologically acceptable carriers.
  • the pharmaceutical composition can be produced, for example, by mixing the active ingredient and the carrier described above, and by any method known in the technical field of pharmaceutical science.
  • the therapeutic agent is not limited in its usage form as long as it is used for treatment, and may be an active ingredient alone or a mixture of an active ingredient and any other ingredient.
  • the shape of the carrier is not particularly limited, and may be, for example, solid or liquid (eg, buffer).
  • prevention refers to preventing a certain disease or disorder (for example, retinal degenerative disease) from developing into such a condition before it occurs. Diagnosis can be performed using the drug of the present disclosure, and if necessary, the drug of the present disclosure can be used to prevent, for example, retinal degenerative diseases, or to take preventive measures.
  • the term “preventive drug (agent)” broadly refers to any drug that can prevent a desired condition (eg, vesicular transport disorder, apoptosis, etc.).
  • kits refers to parts that are usually divided into two or more compartments and provided (e.g., multiple nucleic acid constructs, lyophilized drugs and administration buffer, instructions, etc.) ) is the unit provided.
  • kits preferably include provided parts, such as instructions or instructions describing how to use the nucleic acid construct or how to treat the reagents.
  • the specification also includes instructions for use and the like.
  • active ingredient refers to an ingredient that is contained in the amount necessary for the composition of the present disclosure to achieve the desired therapeutic, preventive, or progression-suppressing effect, and the effect is less than the desired level. Other ingredients may also be included as long as they do not impair the quality.
  • the medicament, composition, etc. of the present disclosure may be formulated.
  • the route of administration of the medicament, composition, etc. of the present disclosure may be either oral or parenteral, and can be appropriately determined depending on the form of the preparation and the like. Constructs of the present disclosure can be used as active ingredients.
  • instructions describe instructions to a physician or other user on how to use the present disclosure.
  • This instruction sheet contains words instructing the administration of the medicament of the present disclosure.
  • the instructions may include language instructing intravenous administration (for example, by injection) as the administration site.
  • This instruction is prepared in accordance with the format prescribed by the regulatory authority of the country where the disclosure will be made (e.g., the Ministry of Health, Labor and Welfare in Japan, the Food and Drug Administration (FDA) in the United States, etc.), and approved by that regulatory authority. It will be clearly stated that it was received.
  • the instruction sheet is a so-called package insert or label, and is usually provided in paper media, but is not limited to this, and may also be provided in electronic media (e.g., a homepage provided on the Internet, PDF, etc.). It may also be provided in a format such as email).
  • the present disclosure provides attenuated viral adjuvant complex molecules that exhibit breakthrough effects against viral infections.
  • the molecule of the present disclosure which shows potential as a new modality, offers the possibility of eradicating viral infection, and can be used in various ways.
  • the present disclosure provides a composition for treating a viral infection in a subject, comprising a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or an equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule.
  • a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or an equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule.
  • the complex molecule of an attenuated virus and an adjuvant molecule used in the present disclosure can be provided in both a protein form and a nucleic acid form, or can be provided in a form other than these.
  • a nucleic acid construct is provided that includes a nucleic acid sequence encoding an attenuated virus or equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule.
  • Such nucleic acid constructs can be provided in a form that incorporates adjuvant molecules in an attenuated virus.
  • such attenuated viral adjuvant molecule complex molecules are superior to conventional therapeutic agents in that they can sense the targeted viral disease and prevent recurrence. It is attracting attention as having a unique effect.
  • the attenuated virus may be deleted in one or more genes such as accessory genes and regulatory genes.
  • deletion refers to a gene that has been modified in such a way that it no longer performs its original function. Refers to the fact that the person is no longer able to perform his or her functions.
  • the genes that can be deleted in the attenuated virus may advantageously be accessory genes, such as Vif, Vpr, Vpx, Vpu, and Nef or their equivalents (e.g., corresponding genes). be able to. Even if such a gene is deleted, it may still function as a virus, but it may be advantageous to have reduced toxicity.
  • the attenuated virus may be an attenuated nef-deficient virus. This is because while the toxicity is reduced, it is also effective in treating viruses.
  • Nucleic acid sequences encoding adjuvant molecules used in the present disclosure may advantageously be incorporated into nucleic acid sequences encoding attenuated viruses or equivalents thereof.
  • Constructs of the present disclosure may be produced as follows. Representative examples thereof are described in the Examples.
  • a molecular clone is created from the gene using the virus isolated from the patient.
  • a gene such as Nef of a virus (for example, HIV), which induces attenuation when deleted, is removed from a molecular clone by gene editing technology.
  • An adjuvant gene eg, Ag85B gene
  • Ag85B gene is inserted into the removal site to produce an attenuated virus expressing the adjuvant gene.
  • a nucleic acid sequence encoding an adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus. Since the nef gene is a gene that controls immune evasion of the AIDS virus, deletion of this portion results in attenuation by the body's immune function. Incorporation of adjuvant molecules induces strong cellular immunity, induces a strong immune response, and further attenuates the virus.
  • the attenuated virus used can be, but is not limited to, a chronically infectious virus.
  • the compositions of the present disclosure are applicable to any virus, not just chronically infected viruses.
  • Attenuated viruses that may be utilized in the present disclosure include attenuated viruses such as AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV). could be. These attenuated viruses may be prepared by using known attenuated viruses or by isolating the virus from a patient and deleting the gene that induces attenuation.
  • HTLV human T-cell leukemia virus
  • HCV hepatitis C virus
  • HBV hepatitis B virus
  • any adjuvant molecule can be used, and for example, an adjuvant molecule derived from acid-fast bacteria (eg, Ag85B) can be used.
  • an adjuvant molecule derived from acid-fast bacteria eg, Ag85B
  • One specific exemplary adjuvant molecule may be Ag85B protein.
  • Ag85B protein
  • the addition of Ag85B induces strong cellular immunity, induces a strong immune response, and further attenuates the virus.
  • the subject has previously been vaccinated with a BCG vaccine.
  • a BCG vaccine since BCG inoculation enhances the effect of the adjuvant of the present disclosure such as Ag85B, it is expected that in the BCG inoculated group, the therapeutic effect of HIV-Ag85B against HIV will be high. .
  • the BCG vaccine is not necessarily required. Sufficient effects are expected even in the BCG non-inoculated group.
  • Attenuated virus adjuvant molecule complex of the present disclosure may be that it induces a Th1 type immune response. Additionally, the attenuated virus adjuvant molecule complexes of the present disclosure can substantially eliminate, and preferably completely eliminate, the virus in a subject.
  • the attenuated virus adjuvant molecule complex of the present disclosure is advantageous in that it can burn out the virus even when administered after viral infection. Without wishing to be bound by theory, this is because inducing a Th1 type immune response has been shown to be effective in substantially eliminating viruses.
  • the nucleic acid construct used may be one that has been cloned.
  • the present disclosure provides companion reagents, including diagnostic agents for viral infection, for use in methods of determining whether treatment according to the present disclosure is required. If the presence of viruses is tested in advance using a companion reagent, the effectiveness of treatment with the composition of the present disclosure can be diagnosed. In this diagnosis, if a positive result is obtained, it can be determined that treatment with the composition of the present disclosure is effective.
  • "companion diagnosis” includes diagnosis performed for the purpose of assisting in optimal medication administration by predicting individual patient differences in drug effects and side effects through testing.
  • Companion reagents include diagnostic agents for viral infection for detecting viruses in subjects suspected of infection, such as antibodies against viral antigens, antigen-binding proteins or peptides, nucleic acids that bind to viral nucleic acids, and variants thereof. These include, but are not limited to:
  • kits The present disclosure provides a kit for treating a viral infection in a subject, comprising a composition of the present disclosure, a diagnostic agent for a viral infection, and instructions.
  • This kit includes diagnostic agents for viral infection for detecting the virus in a subject suspected of infection, such as antibodies against viral antigens, antigen-binding proteins or peptides, nucleic acids that bind to viral nucleic acids, and modified versions thereof. These include, but are not limited to:
  • the kit further includes a composition of the present disclosure, embodiments of which can be used alone or in combination with any of the embodiments of the present disclosure.
  • the present disclosure is a method for treating a viral infection in a subject, the method comprising administering a therapeutically effective amount of a composition or nucleic acid construct of the present disclosure to the subject in need thereof.
  • the present disclosure provides a method of prophylaxis by administering a composition or medicament of the present disclosure.
  • a composition or nucleic acid construct of the present disclosure is administered by injection.
  • a composition or nucleic acid construct of the present disclosure is administered internally.
  • a composition or nucleic acid construct of the present disclosure may be provided with a preservation solution.
  • the storage solution can be a buffer.
  • a composition or nucleic acid construct of the present disclosure may be provided in a container.
  • a container containing a composition or nucleic acid construct of the present disclosure can be a syringe.
  • the disclosure provides the use of a composition or nucleic acid construct of the disclosure in the manufacture of a medicament for treating a viral infection in a subject.
  • Administration of agents associated with the attenuated viruses of the present disclosure can be carried out by any suitable means that, in combination with other ingredients, provides concentrations of therapeutic agent effective in preventing, ameliorating, or mitigating the virus.
  • the agent may be contained in any suitable carrier material in any suitable amount and is generally present in an amount from 1 to 95% by weight of the total weight of the composition.
  • the compositions may be provided in dosage forms suitable for parenteral (eg, subcutaneous, intravenous, intramuscular, or intraperitoneal) routes of administration.
  • Pharmaceutical compositions can be formulated according to conventional pharmaceutical practice (eg, Remington: The Science and Practice of Pharmacy (20th ed.), ed. A.R.
  • compositions of the present disclosure can be formulated to release the active compound substantially immediately after administration, or at a predetermined time or after a predetermined time after administration.
  • the present disclosure When used for parenteral administration, it may be formulated in unit-dose ampoules or multi-dose containers or tubes, and may include stabilizers, buffers, preservatives, isotonic agents, etc. It may also contain additives such as agents.
  • the preparation for parenteral administration may be formulated into a powder that can be redissolved in an appropriate carrier (sterile water, etc.) at the time of use.
  • parenteral administration include intravenous administration, intramuscular administration, and subcutaneous administration, with intravenous administration being preferred.
  • compositions described herein, active ingredients may be administered together with a carrier.
  • a carrier includes a diluent, adjuvant, excipient, or vehicle.
  • the composition may also contain minor amounts of wetting or emulsifying agents, or pH buffering agents, as desired. These compositions may take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained release formulations, combinations thereof, and the like.
  • a pharmaceutically acceptable carrier as used in the present disclosure refers to a vehicle containing the constructs or agents described herein that can be injected into a subject without side effects.
  • Pharmaceutically acceptable carriers include sterile liquids such as water and oils, including oils of petroleum, animal, vegetable, or synthetic origin, such as peanut oil, soybean oil, mineral oil. , sesame oil, and combinations thereof.
  • Suitable pharmaceutically acceptable carriers include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dry skim milk, Includes glycerol, propylene, glycols, water, ethanol, combinations thereof, and the like.
  • Administration of the vaccine may be by any route typically used for vaccination, including topical, subcutaneous, intravenous, intramuscular, intradermal, intraperitoneal, oral, inhalation routes, or combinations thereof. It may be due to the route.
  • compositions described herein can be formulated into vaccines.
  • the vaccines described herein comprise a suitably formulated full-length genomic RNA molecule of an infectious, non-pathogenic and/or attenuated virus operably linked to a suitable promoter for expression in eukaryotic cells. including the vectors described herein that include DNA encoding.
  • the constructs, medicaments, etc. of the present disclosure are administered one or more times during a treatment period.
  • the medicine of the present disclosure is effective when administered at least once, and patient compliance is considered to be good.
  • Example 1 Construct production method SHIV-NM3rN having the HIV-1 NL432 gene in the SIVmac239 background was used as a starting material. Recombinant SHIV was constructed according to previously reported methods (15, 16).
  • the SHIV-nef vector (SHIV-NI) was constructed from an infectious molecular clone of SHIV-NM3rN (48).
  • the source of the SHIV-NI env gene was HIV-1 NL432, an X4-tropic virus.
  • the nef gene was replaced with unique restriction enzyme sites such as ClaI and ApaI.
  • the Ag85B gene was generated using Mycobacterium kansasii as a template, 5'-ATATCGATAACCATGTTCTCCCGTCCCGGGCT-3' (ClaI) (SEQ ID NO: 5) and 5'-AGGGCCCCTAGCGGGCGCCCAGGCTGG-3' (ApaI). Amplified by PCR using primers (SEQ ID NO: 6) . The PCR product was then digested with restriction enzymes at ClaI and ApaI sites. This plasmid is called pSHIV-Ag85B.
  • SHIV-Ag85B was prepared by transfecting 293T cells with pSHIV-Ag85B using FuGENE 6 Transfection Reagent (Roche Diagnostics, Indianapolis, IN), and the culture supernatant 48 hours after transfection was stored in liquid nitrogen until use. Medium Saved with.
  • the sequence of SHIV-Ag85B is shown in SEQ ID NO:3.
  • Example 2 Performance confirmation of construct (Detection of Ag85B protein) M8166 cells were infected with SHIV-Ag85B at an MOI of 0.1 and cultured for 1 hour. After washing the cells three times with phosphate buffered saline (PBS), they were further cultured in culture medium for 48 hours. After three additional washes with PBS, cells were lysed with PBS containing 1.5 M urea, 2% NP-40 and 5% 2-mercaptoethanol. They were then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroblotted onto nitrocellulose membranes, and blocked with 5% nonfat dry milk in PBS containing 0.01% Tween 20 (PBST).
  • PBS phosphate buffered saline
  • the membrane was incubated with rabbit anti-Ag85B polyclonal antibody for 2 hours.
  • the membrane was washed three times with NBT/BCIP (Roche Diagnostics, Mannheim, Germany) and then incubated with alkaline phosphatase-labeled anti-rabbit IgG (New England Biolabs, Beverly, MA).
  • Example 3 Evaluation of SHIV-Ag85B therapeutic vaccine The outline of the experiment of this example is shown in FIG. 1. In this example, changes in plasma virus amount and CD4 + T cell count were examined when the composition according to the present invention was administered after inoculation with HIV virus.
  • virus strain (material and method) (virus strain)
  • SHIV-Ag85B, SHIV-NI, and SHIV89.6P were used. These virus strains were grown in cynomolgus monkey PBMC. PBMCs separated by standard Ficoll density gradient separation were cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 2mM L-glutamine, and 100 units/ml IL-2 (Shionogi & Co., Ltd.), and stimulated with phytohemagglutinin for 72 hours. , cells were infected with SHIV-Ag85B, SHIV-NI, or SHIV89.6P at a multiplicity of infection (MOI) of 0.1.
  • MOI multiplicity of infection
  • the TCID 50 of each SHIV was measured using M8166 cells.
  • the TCID 50 values of the virus stocks were 5 ⁇ 10 4 for SHIV-Ag85B, 4.7 ⁇ 10 4 for SHIV-NI, and 3 ⁇ 10 5 for SHIV89.6P.
  • the primers used in this study were Outer SIVgag-F (5'-CCATTAGTGCCAACAGGCTCAG-3' (SEQ ID NO: 7)) and Outer SIVgag-R (5'-CCCCAGTTGGATCCATCTCCTG-3' (SEQ ID NO: 8)) in the first round of PCR. ), and Nested SIVgag-F (5'-ACTGTCTGCGTCATCTGGTG-3' (SEQ ID NO: 9)) and Nested SIVgag-R (5'-GTCCCAATCTGCAGCCTCCTC-3') were used in the second round of PCR.
  • SHIV infection levels were monitored by measuring the amount of viral RNA in plasma using sensitive quantitative real-time RT-PCR as previously described (23, 51, 52).
  • Viral RNA was isolated from plasma using the MagnA PureCompact Nucleic Acid Isolation Kit (Roche Diagnostics).
  • Real-time RT-PCR was performed using a QuantiTec Probe RT-PCR Kit (Qiagen) and a LightCycler 480 thermocycler (Roche Diagnostics, Rotnch, Switzerland).
  • the gag gene of SIVmac239 was probed with probe 5'-FAM-TGTCCACCTGCCATTAAGTCCCGA-TAMRA-3' (where FAM is 6-carboxyfluorescein and TAMRA is 6-carboxytetramethylrhodamine) (SEQ ID NO: 11), primer 5'- TGGAAGAAAGACCTCCAGAAAATG-3' (SEQ ID NO: 12) and 5'-CAAGTGCAGTTAGCAAGCGAGGAT-3' (SEQ ID NO: 13) were amplified. The detection limit was calculated to be 1000 viral RNA copies/ml.
  • DNA samples were extracted from PBMC and lymphoid tissue using the DNeasy tissue kit (QIAGEN) according to the manufacturer's protocol. Ultra-high sensitivity digital PCR was performed with QX200 Droplet Digital PCR system (Bio-Rad). A 20 ⁇ l reaction mixture was prepared containing 2 ⁇ l of DNA sample, ddPCR supermix for probes (without dUTP) (Bio-Rad), 900 nM of each primer, 200 nM of probe, and demineralized water. This mixed solution was placed in a DG8 cartridge along with 70 ⁇ l of droplet generation oil (Bio-Rad), and droplets were formed using a droplet generator (Bio-Rad).
  • the droplets were then transferred to a 96-well microplate.
  • PCR amplification was performed with the following program: initial denaturation and stabilization at 95°C for 10 min, 40 cycles of denaturation at 94°C for 30 s, annealing/extension at 57°C for 60 s, followed by 10 min at 98°C.
  • Droplets were then sorted and analyzed on a QX200 droplet reader (Bio-Rad) using QuantaSoft v1.6 (Bio-Rad) software. Samples were only considered if 20,000 or more droplets were read. Cell numbers were monitored by sensitive quantitative real-time PCR as previously described (53).
  • DNA samples were extracted from PBMC and lymphoid tissue using a DNA DNAeasy tissue kit (QIAGEN) according to the manufacturer's protocol.
  • Cell numbers were determined using rhesus IL-4 specific primers 5'-TGTGCTCCGGCAGTTCTACA-3' (SEQ ID NO: 14) and 5'-CCGTTTCAGGAATCGGATCA-3' (SEQ ID NO: 15) and probe 5'-FAM-TGCACAGCAGTTCCACAGGCACAAG-TAMRA-3' ( The cellular IL-4 sequence was detected and confirmed using SEQ ID NO: 16).
  • CD4 + T cell number 100 ⁇ l of whole blood from each cynomolgus monkey was stained with fluorescently labeled monoclonal antibodies: anti-CD3 (clone SP34-2, Alexa700; BD), anti-CD4 (clone L200, PerCP-Cy5.5; BD). Flow cytometry was performed on a FACSCanto II flow cytometer (BD). Data were analyzed using FACSDiVa software.
  • the monkey (#138) received low dose SHIV-Ag85B twice, and when low dose (1x10 4 TCID50) SHIV-Ag85B was administered on the 4th and 11th day after stopping the treatment, no virus was detected in the plasma.
  • CD4 + cells have also recovered to normal levels and are maintained below the limit.
  • the monkey (#142) received one dose of high-dose SHIV-Ag85B, and when high-dose SHIV-Ag85B (5x10 4 TCID50) was administered 7 days after treatment was stopped, the virus in plasma remained below the detection limit. However, CD4 + cells also recovered to normal values and were maintained.
  • the monkey (#141) that received a high dose of SHIV-Ag85B was treated with a high dose of SHIV-Ag85B (5x10 4 TCID50) on the 7th day after stopping the treatment, and the virus in the plasma remained below the detection limit for a short period of time.
  • SHIV-Ag85B 5x10 4 TCID50
  • CD4 + cells also returned to normal levels and were maintained.
  • Example 4 Further clinical studies with SHIV-Ag85B Cynomolgus monkeys are administered high doses of SHIV-Ag85B four times weekly. Thereafter, changes in the amount of virus in plasma and the number of CD4 + T cells in the cynomolgus monkeys were measured.
  • FIG. 11A is a control untreated monkey (#137) that received anti-HIV drugs only.
  • the virus in the plasma appeared on the 7th day after discontinuation of the drug, and then increased, and inversely proportional to this, the number of CD4 + cells decreased, and the patient died 170 days after infection.
  • FIG. 11B is a control untreated monkey (#139) that received anti-HIV drugs only.
  • the virus in the plasma appeared 110 days after discontinuation of the drug, and then increased, and inversely proportional to this, the number of CD4 + cells decreased, and the patient died 500 days after infection.
  • SHIV-Ag85B (5x10 4 TCID50) was administered four times at one-week intervals starting 7 days after the treatment drug was discontinued.
  • SHIV infection levels were monitored by measuring the amount of viral RNA in plasma using sensitive quantitative real-time RT-PCR as previously described (23, 51, 52).
  • Viral RNA was isolated from plasma using the MagnA PureCompact Nucleic Acid Isolation Kit (Roche Diagnostics).
  • Real-time RT-PCR was performed using a QuantiTec Probe RT-PCR Kit (Qiagen) and a LightCycler 480 thermocycler (Roche Diagnostics, Rotnch, Switzerland).
  • the gag gene of SIVmac239 was probed with probe 5'-FAM-TGTCCACCTGCCATTAAGTCCCGA-TAMRA-3' (where FAM is 6-carboxyfluorescein and TAMRA is 6-carboxytetramethylrhodamine) (SEQ ID NO: 11), primer 5'- TGGAAGAAAGACCTCCAGAAAATG-3' (SEQ ID NO: 12) and 5'-CAAGTGCAGTTAGCAAGCGAGGAT-3' (SEQ ID NO: 13) were amplified. The detection limit was calculated to be 1000 viral RNA copies/ml.
  • CD4 + T cell number 100 ⁇ l of whole blood from each cynomolgus monkey was stained with fluorescently labeled monoclonal antibodies: anti-CD3 (clone SP34-2, Alexa700; BD), anti-CD4 (clone L200, PerCP-Cy5.5; BD). Flow cytometry was performed on a FACSCanto II flow cytometer (BD). Data were analyzed using FACSDiVa software.
  • Example 5 Treatment optimization
  • SHIV-Ag85B Treatment optimization
  • SHIV-NI 4 doses In monkeys (#162, #166, and #168) that received a high dose (5.0 x 10 4 TCID 50 ) of SHIV-NI, four doses of high-dose SHIV-NI increased the plasma concentration in #168. Although the virus amount remained below the detection limit, the plasma virus amount increased in #162 and #166 ( Figure 15). In the control group that does not contain Ag85B, virus appeared in the plasma 2 weeks after drug withdrawal, but in the SHIV-Ag85B administration group, the virus in the plasma remained below the detection limit ( Figure 15 for the control group that does not contain Ag85B. -Ag85B inoculated group is shown in Figure 14; untreated group is shown in Figure 16).
  • Attenuated HCV incorporating adjuvant molecules material and method (Construct manufacturing method) HCV-Ag85B is produced according to Example 1.
  • a gene of HCV that induces attenuation when deleted is replaced with an adjuvant molecule (eg, Ag85B).
  • HCV virus strains are grown in cynomolgus monkey PBMC.
  • PBMCs separated by standard Ficoll density gradient separation were cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 2mM L-glutamine, and 100 units/ml IL-2 (Shionogi & Co., Ltd.), and stimulated with phytohemagglutinin for 72 hours.
  • cells are infected with HCV at a multiplicity of infection (MOI) of 0.1.
  • Half of the culture medium is replaced with fresh culture medium every 3 days, and cell-free supernatants are collected 6-9 days post-infection.
  • the TCID 50 of HCV is measured using M8166 cells.
  • nested PCR is used to amplify fragments of HCV-specific gene segments.
  • Proviral DNA is extracted from PBMC of inoculated monkeys. Cellular DNA was extracted using DNeasy tissue kits (QIAGEN). Nested PCR is performed using TaKaRa Ex Taq (Takara Bio Inc., Shiga, Japan).
  • HCV infection levels are monitored by measuring the amount of viral RNA in plasma using sensitive quantitative real-time RT-PCR, as described above.
  • Viral RNA is isolated from plasma using the MagnA PureCompact Nucleic Acid Isolation Kit (Roche Diagnostics).
  • Real-time RT-PCR is performed using a QuantiTec Probe RT-PCR Kit (Qiagen) and a LightCycler 480 thermocycler (Roche Diagnostics, Rotnch, Switzerland).
  • HCV-specific genes are amplified using probes and primers.
  • DNA samples are extracted from PBMC and lymphoid tissue using the DNeasy tissue kit (QIAGEN) according to the manufacturer's protocol.
  • Ultra-high sensitivity digital PCR is performed with QX200 Droplet Digital PCR system (Bio-Rad). Prepare a 20 ⁇ l reaction mixture containing 2 ⁇ l of DNA sample, ddPCR supermix for probes (no dUTP) (Bio-Rad), 900 nM of each primer, 200 nM of probe, and demineralized water. This mixed solution is placed in a DG8 cartridge along with 70 ⁇ l of droplet generation oil (Bio-Rad), and droplets are formed using a droplet generator (Bio-Rad).
  • the droplets were then transferred to a 96-well microplate.
  • PCR amplification was performed with the following program: initial denaturation and stabilization at 95°C for 10 min, 40 cycles of denaturation at 94°C for 30 s, annealing/extension at 57°C for 60 s, followed by 10 min at 98°C.
  • Droplets are then sorted and analyzed on a QX200 droplet reader (Bio-Rad) using QuantaSoft v1.6 (Bio-Rad) software. A sample is only considered if 20,000 or more droplets are read.
  • Cell numbers are monitored by sensitive quantitative real-time PCR as described above.
  • DNA samples are extracted from PBMC and lymphoid tissue using a DNA DNAeasy tissue kit (QIAGEN) according to the manufacturer's protocol.
  • CD4 + T cell number 100 ⁇ l of whole blood from each cynomolgus monkey is stained with fluorescently labeled monoclonal antibodies: anti-CD3 (clone SP34-2, Alexa700; BD), anti-CD4 (clone L200, PerCP-Cy5.5; BD). Flow cytometry is performed on a FACSCanto II flow cytometer (BD). Data are analyzed using FACSDiVa software.
  • HTLV-Ag85B Attenuated HTLV incorporating adjuvant molecules (material and method) (Construct manufacturing method) HTLV-Ag85B is produced according to Example 1. Genes that induce attenuation when deleted in HTLV are replaced with adjuvant molecules (eg, Ag85B).
  • HTLV virus strain is grown in cynomolgus monkey PBMC.
  • PBMCs separated by standard Ficoll density gradient separation were cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 2mM L-glutamine, and 100 units/ml IL-2 (Shionogi & Co., Ltd.), and stimulated with phytohemagglutinin for 72 hours.
  • cells are infected with HCV at a multiplicity of infection (MOI) of 0.1.
  • Half of the culture medium is replaced with fresh culture medium every 3 days, and cell-free supernatants are collected 6-9 days post-infection.
  • the TCID 50 of HCV is measured using M8166 cells.
  • nested PCR is used to amplify fragments of HTLV-specific gene segments.
  • Proviral DNA is extracted from PBMC of inoculated monkeys.
  • Cellular DNA was extracted using DNeasy tissue kits (QIAGEN).
  • Nested PCR is performed using TaKaRa Ex Taq (Takara Bio Inc., Shiga, Japan).
  • HTLV infection levels are monitored by measuring the amount of viral RNA in plasma using sensitive quantitative real-time RT-PCR, as described above.
  • Viral RNA is isolated from plasma using the MagnA PureCompact Nucleic Acid Isolation Kit (Roche Diagnostics).
  • Real-time RT-PCR is performed using a QuantiTec Probe RT-PCR Kit (Qiagen) and a LightCycler 480 thermocycler (Roche Diagnostics, Rotnch, Switzerland).
  • HCV-specific genes are amplified using probes and primers.
  • DNA samples are extracted from PBMC and lymphoid tissue using the DNeasy tissue kit (QIAGEN) according to the manufacturer's protocol.
  • Ultra-high sensitivity digital PCR is performed with QX200 Droplet Digital PCR system (Bio-Rad). Prepare a 20 ⁇ l reaction mixture containing 2 ⁇ l of DNA sample, ddPCR supermix for probes (no dUTP) (Bio-Rad), 900 nM of each primer, 200 nM of probe, and demineralized water. This mixed solution is placed in a DG8 cartridge along with 70 ⁇ l of droplet generation oil (Bio-Rad), and droplets are formed using a droplet generator (Bio-Rad).
  • the droplets were then transferred to a 96-well microplate.
  • PCR amplification was performed with the following program: initial denaturation and stabilization at 95°C for 10 min, 40 cycles of denaturation at 94°C for 30 s, annealing/extension at 57°C for 60 s, followed by 10 min at 98°C.
  • Droplets are then sorted and analyzed on a QX200 droplet reader (Bio-Rad) using QuantaSoft v1.6 (Bio-Rad) software. A sample is only considered if 20,000 or more droplets are read.
  • Cell numbers are monitored by sensitive quantitative real-time PCR as described above.
  • DNA samples are extracted from PBMC and lymphoid tissue using a DNA DNAeasy tissue kit (QIAGEN) according to the manufacturer's protocol.
  • CD4 + T cell number 100 ⁇ l of whole blood from each cynomolgus monkey is stained with fluorescently labeled monoclonal antibodies: anti-CD3 (clone SP34-2, Alexa700; BD), anti-CD4 (clone L200, PerCP-Cy5.5; BD). Flow cytometry is performed on a FACSCanto II flow cytometer (BD). Data are analyzed using FACSDiVa software.
  • Example 8 Other attenuated viruses incorporating adjuvant molecules (measles virus, rubella virus, etc.) Similar to Examples 6 and 7, an attenuated virus incorporating an adjuvant is produced and a similar experiment is performed. Genes whose deletion induces attenuation in measles and rubella viruses are replaced with adjuvant molecules (eg, Ag85B). Alternatively, adjuvants are added to known attenuated measles and rubella viruses to create attenuated viruses incorporating adjuvants.
  • adjuvant molecules eg, Ag85B
  • HIV-Ag85B SEQ ID NO: 4
  • HCV-Ag85B HCV-Ag85B
  • HTLV-Ag85B HTLV-Ag85B
  • the drug is administered subcutaneously or intravenously 4 to 8 times at intervals of 1 to 2 weeks after cessation of the corresponding treatment to virus-infected humans (BCG vaccinated and non-BCG vaccinated groups) who have received or have not received the drug.
  • the therapeutic effect of HIV-Ag85B, HCV-Ag85B, or HTLV-Ag85B is confirmed.
  • the plasma viral load and CD4 + cell count are confirmed. Since BCG vaccination is expected to enhance the adjuvant effect of Ag85B, it is expected that the BCG vaccinated group will have a high therapeutic effect against viruses caused by HIV-Ag85B, HCV-Ag85B, and HTLV-Ag85B.
  • Example 1 An appropriate volume of physiological saline can be directly added to an appropriate amount of lyophilized nucleic acid construct to prepare a solution for injection.
  • Example 2 An appropriate volume of isotonic 5% glucose solution can be added to an appropriate amount of the lyophilized nucleic acid construct to prepare a solution for injection.
  • Example 3 An appropriate volume of electrolyte correction solution Otsuka Salt Injection 10% or the like is added to an appropriate amount of the nucleic acid construct dissolved in water to adjust the concentration to 0.9% NaCl to prepare a solution for injection.
  • Example 4 An appropriate amount of the nucleic acid construct dissolved in water can be lyophilized to obtain a lyophilized preparation of the sodium salt of the nucleic acid construct.
  • a genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques.
  • Simian immunodeficiency virus SIVmac239 infection and simian human immunodeficiency virus SHIV89.6P infection result in progression to AIDS in cynomolgus macaques of Asian origin. J. Gen. Virol. 97, 3413-3426 (2016). 24. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of doublestranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738 (2001). 25. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105 (2006).
  • Type I interferon understanding its role in HIV pathogenesis and therapy. Curr. HIV/AIDS Rep. 12, 41-53 (2015). 33. Co, J. G., Witwer, K. W., Gama, L., Zink, M. C. & Clements, J. E. Induction of innate immune responses by SIV in vivo and in vitro: differential expression and function of RIG-I and MDA5. J. Infect. Dis. 204, 1104-1114 (2011). 34. Mogensen, T. H., Melchjorsen, J., Larsen, C. S. & Paludan, S. R. Innate immune recognition and activation during HIV infection. Retrovirology 7, 54 (2010). 35. Borducchi, E. N. et al.
  • the present disclosure is useful in the pharmaceutical industry.
  • SEQ ID NO: 1 Nucleic acid sequence of Ag85B SEQ ID NO: 2: Amino acid sequence of Ag85B SEQ ID NO: 3: Nucleic acid sequence of SHIV-Ag85B SEQ ID NO: 4: Nucleic acid sequence of HIV-Ag85B SEQ ID NO: 5: ClaI primer SEQ ID NO: 6: ApaI primer SEQ ID NO: 7: Outer SIVgag-F primer SEQ ID NO: 8: Outer SIVgag-R primer SEQ ID NO: 9: Nested SIVgag-F primer SEQ ID NO: 10: Nested SIVgag-R primer SEQ ID NO: 11: Probe for SIVmac239 gag SEQ ID NO: 12: SIVmac239 gag Primer 1 for SEQ ID NO: 13: Primer 2 for gag of SIVmac239 SEQ ID NO: 14: Primer 1 for IL-4 SEQ ID NO: 15: Primer 2 for IL-4 SEQ ID NO: 16: Probe for IL-4

Abstract

The present disclosure provides a composition for treating viral infections. In one aspect, the present disclosure provides a composition for treating viral infections in a subject, the composition comprising a nucleic acid construct which contains a nucleic acid sequence encoding an attenuated virus or an equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule. In one embodiment, a composition according to the present disclosure is characterized by being administered after viral infections. A composition according to the present disclosure completely eliminates viruses in a subject.

Description

感染を治療するための弱毒化ウイルスAttenuated viruses to treat infections
 本開示は、ウイルス感染を治療するための組成物および関連技術を提供する。より特定すると、弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物に関する技術を提供する。 The present disclosure provides compositions and related techniques for treating viral infections. More particularly, techniques are provided relating to nucleic acid constructs comprising a nucleic acid sequence encoding an attenuated virus or equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule.
 ウイルス感染症対策の治療薬の開発に多大な資源が投入されてきたにもかかわらず、多くの感染症ではこの課題はいまだ達成されていない。抗レトロウイルス療法は、HIV関連の罹患率および死亡率の劇的な減少をもたらしたが、それはHIVを治癒することはできない(非特許文献1)。細胞移植によってHIVの寛解が達成された2つの症例がある。有効なワクチンが開発されれば、HIV感染の拡大を防ぐことができるが、過去30年間、ワクチンの開発はほとんど成功していない。現在までに唯一成功したHIVワクチンはRV144臨床試験で評価され、総合的な有効性はわずか31%であった(非特許文献2)。 Although significant resources have been invested in the development of therapeutic drugs to combat viral infections, this task has not yet been achieved for many infectious diseases. Although antiretroviral therapy has resulted in a dramatic reduction in HIV-related morbidity and mortality, it cannot cure HIV (Non-Patent Document 1). There are two cases in which HIV remission was achieved by cell transplantation. The development of an effective vaccine could prevent the spread of HIV infection, but there has been little success in vaccine development over the past 30 years. The only successful HIV vaccine to date was evaluated in the RV144 clinical trial, with an overall efficacy of only 31% (Non-Patent Document 2).
 本発明者らは、弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物が、対象におけるウイルス感染を治療することを見出し、本発明を完成するに至った。アジュバント分子は、アジュバント活性をもつものであれば、どのようなものを使用してもよい。このような核酸構築物を感染後の患者に投与するとウイルスが体内から排除されることを新たに見出した。このような核酸構築物を治療的に使用するという発想はこれまでになく、また、どのようなウイルスであっても使用可能であり汎用性の高い技術である。 The inventors have now discovered that a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or its equivalent and a nucleic acid sequence encoding an adjuvant molecule treats a viral infection in a subject, completing the invention. reached. Any adjuvant molecule may be used as long as it has adjuvant activity. We have newly discovered that when such a nucleic acid construct is administered to a patient after infection, the virus is eliminated from the body. The idea of using such a nucleic acid construct therapeutically is unprecedented, and it is a highly versatile technology that can be used with any virus.
 したがって、本発明は、例えば、以下の項目を提供する。
(項目1)
 弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物を含む、対象におけるウイルス感染を治療するための組成物。
(項目2)
 前記弱毒化ウイルスが、アクセサリー遺伝子および制御遺伝子からなる群より選択される少なくとも1つの遺伝子が欠損する、上記項目に記載の組成物。
(項目3)
 前記弱毒化ウイルスが、アクセサリー遺伝子が欠損する、上記項目のいずれか一項に記載の組成物。
(項目4)
 前記弱毒化ウイルスが、Vif、Vpr、Vpx、Vpu、およびNefからなる群より選択される少なくとも1つの遺伝子またはその対応遺伝子が欠損する、上記項目のいずれか一項に記載の組成物。
(項目5)
 前記弱毒化ウイルスが、nef欠損型弱毒化ウイルスである、上記項目のいずれか一項に記載の組成物。
(項目6)
 前記アジュバント分子をコードする核酸配列が、前記弱毒化ウイルスまたはその等価物をコードする核酸配列中に組み込まれている、上記項目のいずれか一項に記載の組成物。
(項目7)
 前記アジュバント分子をコードする核酸配列が、前記nef欠損型弱毒化ウイルスにおける欠損されたnef遺伝子の位置に組み込まれている、上記項目のいずれか一項に記載の組成物。
(項目8)
 前記弱毒化ウイルスが、慢性感染ウイルスである、上記項目のいずれか一項に記載の組成物。
(項目9)
 前記弱毒化ウイルスが、エイズウイルス、ヒトT細胞白血病ウイルス(HTLV)、麻疹ウイルス、風疹ウイルス、C型肝炎ウイルス(HCV)、およびB型肝炎ウイルス(HBV)からなる群から選択されるウイルスの弱毒化ウイルスである、上記項目のいずれか一項に記載の組成物。
(項目10)
 前記アジュバント分子が、抗酸菌由来のアジュバント分子である、上記項目のいずれか一項に記載の組成物。
(項目11)
 前記アジュバント分子が、Ag85Bタンパク質からなる群から選択される、上記項目のいずれか一項に記載の組成物。
(項目12)
 前記組成物が、Th1型の免疫応答を誘導する、上記項目のいずれか一項に記載の組成物。
(項目13)
 前記組成物が、前記対象におけるウイルスを完全に排除する、上記項目のいずれか一項に記載の組成物。
(項目14)
 前記組成物が、ウイルス感染後に投与されることを特徴とする、上記項目のいずれか一項に記載の組成物。
(項目15)
 前記核酸構築物が、クローン化されている、上記項目のいずれか一項に記載の組成物。
(項目16)
 ウイルス感染の診断薬を含む、上記項目のいずれか一項に記載の組成物による治療を必要とするかどうかを判断する方法において使用するためのコンパニオン試薬。
(項目17)
 上記項目のいずれか一項に記載の組成物と、ウイルス感染の診断薬と、指示書とを含む、対象におけるウイルス感染を治療するためのキット。
(項目18)
 対象におけるウイルス感染を治療するための方法であって、該方法が、上記項目のいずれか一項に記載の組成物を該対象に投与する工程を含む、方法。
(項目19)
 対象におけるウイルス感染を治療するための医薬の製造における、上記項目のいずれか一項に記載の組成物の使用。
(項目20)
 前記対象が、以前にBCGワクチンの接種を受けている、上記項目のいずれか一項に記載の組成物。
(項目1A)
 対象におけるウイルス感染を治療する方法であって、該方法が、弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物の有効量を投与することを含む、方法。
(項目2A)
 前記弱毒化ウイルスが、アクセサリー遺伝子および制御遺伝子からなる群より選択される少なくとも1つの遺伝子が欠損する、上記項目に記載の方法。
(項目3A)
 前記弱毒化ウイルスが、アクセサリー遺伝子が欠損する、上記項目のいずれか一項に記載の方法。
(項目4A)
 前記弱毒化ウイルスが、Vif、Vpr、Vpx、Vpu、およびNefからなる群より選択される少なくとも1つの遺伝子またはその対応遺伝子が欠損する、上記項目のいずれか一項に記載の方法。
(項目5A)
 前記弱毒化ウイルスが、nef欠損型弱毒化ウイルスである、上記項目のいずれか一項に記載の方法。
(項目6A)
 前記アジュバント分子をコードする核酸配列が、前記弱毒化ウイルスまたはその等価物をコードする核酸配列中に組み込まれている、上記項目のいずれか一項に記載の方法。
(項目7A)
 前記アジュバント分子をコードする核酸配列が、前記nef欠損型弱毒化ウイルスにおける欠損されたnef遺伝子の位置に組み込まれている、上記項目のいずれか一項に記載の方法。
(項目8A)
 前記弱毒化ウイルスが、慢性感染ウイルスである、上記項目のいずれか一項に記載の方法。
(項目9A)
 前記弱毒化ウイルスが、エイズウイルス、ヒトT細胞白血病ウイルス(HTLV)、麻疹ウイルス、風疹ウイルス、C型肝炎ウイルス(HCV)、およびB型肝炎ウイルス(HBV)からなる群から選択されるウイルスの弱毒化ウイルスである、上記項目のいずれか一項に記載の方法。
(項目10A)
 前記アジュバント分子が、抗酸菌由来のアジュバント分子である、上記項目のいずれか一項に記載の方法。
(項目11A)
 前記アジュバント分子が、Ag85Bタンパク質からなる群から選択される、上記項目のいずれか一項に記載の方法。
(項目12A)
 前記核酸構築物が、Th1型の免疫応答を誘導する、上記項目のいずれか一項に記載の方法。
(項目13A)
 前記核酸構築物が、前記対象におけるウイルスを完全に排除する、上記項目のいずれか一項に記載の方法。
(項目14A)
 前記核酸構築物が、ウイルス感染後に投与されることを特徴とする、上記項目のいずれか一項に記載の方法。
(項目15A)
 前記核酸構築物が、クローン化されている、上記項目のいずれか一項に記載の方法。
(項目16A)
 対象において上記項目のいずれか一項に記載の組成物による治療を必要とするかどうかを判断する方法であって、該方法が、ウイルス感染の診断薬を該対象に投与することを含む、方法。
(項目17A)
 対象におけるウイルス感染を治療する方法であって、該方法が、ウイルス感染の診断薬を該対象に投与することと、上記項目のいずれか一項に記載の組成物の有効量を該対象に投与することとを含む、方法。
(項目18A)
 前記対象が、以前にBCGワクチンの接種を受けている、上記項目のいずれか一項に記載の方法。
(項目1B)
 対象におけるウイルス感染を治療するための医薬の製造における、弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物の使用。
(項目2B)
 前記弱毒化ウイルスが、アクセサリー遺伝子および制御遺伝子からなる群より選択される少なくとも1つの遺伝子が欠損する、上記項目に記載の使用。
(項目3B)
 前記弱毒化ウイルスが、アクセサリー遺伝子が欠損する、上記項目のいずれか一項に記載の使用。
(項目4B)
 前記弱毒化ウイルスが、Vif、Vpr、Vpx、Vpu、およびNefからなる群より選択される少なくとも1つの遺伝子またはその対応遺伝子が欠損する、上記項目のいずれか一項に記載の使用。
(項目5B)
 前記弱毒化ウイルスが、nef欠損型弱毒化ウイルスである、上記項目のいずれか一項に記載の使用。
(項目6B)
 前記アジュバント分子をコードする核酸配列が、前記弱毒化ウイルスまたはその等価物をコードする核酸配列中に組み込まれている、上記項目のいずれか一項に記載の使用。
(項目7B)
 前記アジュバント分子をコードする核酸配列が、前記nef欠損型弱毒化ウイルスにおける欠損されたnef遺伝子の位置に組み込まれている、上記項目のいずれか一項に記載の使用。
(項目8B)
 前記弱毒化ウイルスが、慢性感染ウイルスである、上記項目のいずれか一項に記載の使用。
(項目9B)
 前記弱毒化ウイルスが、エイズウイルス、ヒトT細胞白血病ウイルス(HTLV)、麻疹ウイルス、風疹ウイルス、C型肝炎ウイルス(HCV)、およびB型肝炎ウイルス(HBV)からなる群から選択されるウイルスの弱毒化ウイルスである、上記項目のいずれか一項に記載の使用。
(項目10B)
 前記アジュバント分子が、抗酸菌由来のアジュバント分子である、上記項目のいずれか一項に記載の使用。
(項目11B)
 前記アジュバント分子が、Ag85Bタンパク質からなる群から選択される、上記項目のいずれか一項に記載の使用。
(項目12B)
 前記核酸構築物が、Th1型の免疫応答を誘導する、上記項目のいずれか一項に記載の使用。
(項目13B)
 前記核酸構築物が、前記対象におけるウイルスを完全に排除する、上記項目のいずれか一項に記載の使用。
(項目14B)
 前記核酸構築物が、ウイルス感染後に投与されることを特徴とする、上記項目のいずれか一項に記載の使用。
(項目15B)
 前記核酸構築物が、クローン化されている、上記項目のいずれか一項に記載の使用。
(項目16B)
 前記対象が、以前にBCGワクチンの接種を受けている、上記項目のいずれか一項に記載の使用。
(項目1C)
 対象におけるウイルス感染を治療するための、弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物。
(項目2C)
 前記弱毒化ウイルスが、アクセサリー遺伝子および制御遺伝子からなる群より選択される少なくとも1つの遺伝子が欠損する、上記項目に記載の核酸構築物。
(項目3C)
 前記弱毒化ウイルスが、アクセサリー遺伝子が欠損する、上記項目のいずれか一項に記載の核酸構築物。
(項目4C)
 前記弱毒化ウイルスが、Vif、Vpr、Vpx、Vpu、およびNefからなる群より選択される少なくとも1つの遺伝子またはその対応遺伝子が欠損する、上記項目のいずれか一項に記載の核酸構築物。
(項目5C)
 前記弱毒化ウイルスが、nef欠損型弱毒化ウイルスである、上記項目のいずれか一項に記載の核酸構築物。
(項目6C)
 前記アジュバント分子をコードする核酸配列が、前記弱毒化ウイルスまたはその等価物をコードする核酸配列中に組み込まれている、上記項目のいずれか一項に記載の核酸構築物。
(項目7C)
 前記アジュバント分子をコードする核酸配列が、前記nef欠損型弱毒化ウイルスにおける欠損されたnef遺伝子の位置に組み込まれている、上記項目のいずれか一項に記載の核酸構築物。
(項目8C)
 前記弱毒化ウイルスが、慢性感染ウイルスである、上記項目のいずれか一項に記載の核酸構築物。
(項目9C)
 前記弱毒化ウイルスが、エイズウイルス、ヒトT細胞白血病ウイルス(HTLV)、麻疹ウイルス、風疹ウイルス、C型肝炎ウイルス(HCV)、およびB型肝炎ウイルス(HBV)からなる群から選択されるウイルスの弱毒化ウイルスである、上記項目のいずれか一項に記載の核酸構築物。
(項目10C)
 前記アジュバント分子が、抗酸菌由来のアジュバント分子である、上記項目のいずれか一項に記載の核酸構築物。
(項目11C)
 前記アジュバント分子が、Ag85Bタンパク質からなる群から選択される、上記項目のいずれか一項に記載の核酸構築物。
(項目12C)
 前記核酸構築物が、Th1型の免疫応答を誘導する、上記項目のいずれか一項に記載の核酸構築物。
(項目13C)
 前記核酸構築物が、前記対象におけるウイルスを完全に排除する、上記項目のいずれか一項に記載の核酸構築物。
(項目14C)
 前記核酸構築物が、ウイルス感染後に投与されることを特徴とする、上記項目のいずれか一項に記載の核酸構築物。
(項目15C)
 前記核酸構築物が、クローン化されている、上記項目のいずれか一項に記載の核酸構築物。
(項目16C)
 上記項目のいずれか一項に記載の組成物による治療を必要とするかどうかを判断する方法において使用するための、ウイルス感染の診断薬。
(項目17C)
 前記対象が、以前にBCGワクチンの接種を受けている、上記項目のいずれか一項に記載の核酸構築物。
(項目1D)
 前記組成物、核酸分子、方法、使用または核酸構築物は、ウイルス感染症を治療するものである、上記項目のいずれか一項に記載の組成物、核酸分子、方法、使用または核酸構築物。
Therefore, the present invention provides, for example, the following items.
(Item 1)
A composition for treating a viral infection in a subject, comprising a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule.
(Item 2)
The composition according to the above item, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of accessory genes and regulatory genes.
(Item 3)
The composition according to any one of the above items, wherein the attenuated virus is deficient in an accessory gene.
(Item 4)
The composition according to any one of the above items, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of Vif, Vpr, Vpx, Vpu, and Nef or its corresponding gene.
(Item 5)
The composition according to any one of the above items, wherein the attenuated virus is a nef-deficient attenuated virus.
(Item 6)
Composition according to any of the preceding items, wherein the nucleic acid sequence encoding the adjuvant molecule is incorporated into the nucleic acid sequence encoding the attenuated virus or equivalent thereof.
(Item 7)
The composition according to any one of the above items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus.
(Item 8)
The composition according to any of the preceding items, wherein the attenuated virus is a chronically infectious virus.
(Item 9)
The attenuated virus is an attenuated virus selected from the group consisting of AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV). The composition according to any one of the above items, which is an infected virus.
(Item 10)
The composition according to any one of the above items, wherein the adjuvant molecule is an adjuvant molecule derived from acid-fast bacteria.
(Item 11)
Composition according to any one of the preceding items, wherein the adjuvant molecule is selected from the group consisting of Ag85B proteins.
(Item 12)
The composition according to any one of the preceding items, wherein the composition induces a Th1 type immune response.
(Item 13)
The composition according to any one of the preceding items, wherein the composition completely eliminates the virus in the subject.
(Item 14)
Composition according to any of the preceding items, characterized in that said composition is administered after a viral infection.
(Item 15)
The composition according to any of the preceding items, wherein the nucleic acid construct is cloned.
(Item 16)
A companion reagent for use in a method for determining whether treatment with a composition according to any of the above items is required, comprising a diagnostic agent for viral infection.
(Item 17)
A kit for treating a viral infection in a subject, comprising a composition according to any one of the above items, a diagnostic agent for viral infection, and instructions.
(Item 18)
A method for treating a viral infection in a subject, the method comprising administering to the subject a composition according to any one of the preceding items.
(Item 19)
Use of a composition according to any of the above items in the manufacture of a medicament for treating a viral infection in a subject.
(Item 20)
The composition according to any one of the preceding items, wherein the subject has previously been vaccinated with a BCG vaccine.
(Item 1A)
A method of treating a viral infection in a subject, the method comprising administering an effective amount of a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or an equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule. Including, methods.
(Item 2A)
The method according to the above item, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of accessory genes and regulatory genes.
(Item 3A)
The method according to any one of the above items, wherein the attenuated virus is deficient in an accessory gene.
(Item 4A)
The method according to any one of the above items, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of Vif, Vpr, Vpx, Vpu, and Nef or its corresponding gene.
(Item 5A)
The method according to any one of the above items, wherein the attenuated virus is a nef-deficient attenuated virus.
(Item 6A)
A method according to any of the preceding items, wherein the nucleic acid sequence encoding the adjuvant molecule is incorporated into the nucleic acid sequence encoding the attenuated virus or equivalent thereof.
(Item 7A)
The method according to any one of the above items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus.
(Item 8A)
A method according to any of the preceding items, wherein the attenuated virus is a chronically infectious virus.
(Item 9A)
The attenuated virus is an attenuated virus selected from the group consisting of AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV). The method according to any one of the above items, wherein the virus is a virus.
(Item 10A)
The method according to any one of the above items, wherein the adjuvant molecule is an adjuvant molecule derived from acid-fast bacteria.
(Item 11A)
A method according to any of the preceding items, wherein the adjuvant molecule is selected from the group consisting of Ag85B proteins.
(Item 12A)
The method according to any of the preceding items, wherein the nucleic acid construct induces a Th1-type immune response.
(Item 13A)
The method of any one of the preceding items, wherein the nucleic acid construct completely eliminates the virus in the subject.
(Item 14A)
Method according to any of the preceding items, characterized in that the nucleic acid construct is administered after viral infection.
(Item 15A)
The method according to any of the preceding items, wherein the nucleic acid construct is cloned.
(Item 16A)
A method of determining whether a subject requires treatment with a composition according to any one of the above items, the method comprising administering to the subject a diagnostic agent for viral infection. .
(Item 17A)
A method of treating a viral infection in a subject, the method comprising: administering to the subject a diagnostic agent for viral infection; and administering to the subject an effective amount of the composition according to any one of the above items. A method, including doing.
(Item 18A)
The method of any one of the preceding items, wherein the subject has previously been vaccinated with a BCG vaccine.
(Item 1B)
Use of a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or its equivalent and a nucleic acid sequence encoding an adjuvant molecule in the manufacture of a medicament for treating a viral infection in a subject.
(Item 2B)
The use according to the above item, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of accessory genes and regulatory genes.
(Item 3B)
The use according to any of the above items, wherein the attenuated virus is deficient in an accessory gene.
(Item 4B)
The use according to any one of the above items, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of Vif, Vpr, Vpx, Vpu, and Nef or its corresponding gene.
(Item 5B)
The use according to any one of the above items, wherein the attenuated virus is a nef-deficient attenuated virus.
(Item 6B)
Use according to any of the preceding items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated into the nucleic acid sequence encoding the attenuated virus or its equivalent.
(Item 7B)
The use according to any of the above items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus.
(Item 8B)
The use according to any of the preceding items, wherein the attenuated virus is a chronically infectious virus.
(Item 9B)
The attenuated virus is an attenuated virus selected from the group consisting of AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV). The use according to any one of the above items, which is a modified virus.
(Item 10B)
The use according to any of the above items, wherein the adjuvant molecule is an adjuvant molecule derived from acid-fast bacteria.
(Item 11B)
Use according to any of the above items, wherein said adjuvant molecule is selected from the group consisting of Ag85B proteins.
(Item 12B)
The use according to any of the above items, wherein the nucleic acid construct induces a Th1 type immune response.
(Item 13B)
The use according to any of the preceding items, wherein said nucleic acid construct completely eliminates the virus in said subject.
(Item 14B)
Use according to any of the above items, characterized in that the nucleic acid construct is administered after viral infection.
(Item 15B)
The use according to any of the above items, wherein said nucleic acid construct is cloned.
(Item 16B)
The use according to any of the preceding items, wherein said subject has previously been vaccinated with a BCG vaccine.
(Item 1C)
A nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or an equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule for treating a viral infection in a subject.
(Item 2C)
The nucleic acid construct according to the above item, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of accessory genes and regulatory genes.
(Item 3C)
The nucleic acid construct according to any one of the above items, wherein the attenuated virus is deficient in an accessory gene.
(Item 4C)
The nucleic acid construct according to any one of the above items, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of Vif, Vpr, Vpx, Vpu, and Nef or its corresponding gene.
(Item 5C)
The nucleic acid construct according to any one of the above items, wherein the attenuated virus is a nef-deficient attenuated virus.
(Item 6C)
Nucleic acid construct according to any of the preceding items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated into the nucleic acid sequence encoding the attenuated virus or equivalent thereof.
(Item 7C)
The nucleic acid construct according to any one of the above items, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus.
(Item 8C)
The nucleic acid construct according to any one of the above items, wherein the attenuated virus is a chronically infectious virus.
(Item 9C)
The attenuated virus is an attenuated virus selected from the group consisting of AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV). The nucleic acid construct according to any one of the above items, which is a viral virus.
(Item 10C)
The nucleic acid construct according to any one of the above items, wherein the adjuvant molecule is an adjuvant molecule derived from acid-fast bacteria.
(Item 11C)
Nucleic acid construct according to any one of the preceding items, wherein said adjuvant molecule is selected from the group consisting of Ag85B proteins.
(Item 12C)
The nucleic acid construct according to any one of the above items, wherein the nucleic acid construct induces a Th1 type immune response.
(Item 13C)
The nucleic acid construct according to any one of the preceding items, wherein the nucleic acid construct completely eliminates the virus in the subject.
(Item 14C)
Nucleic acid construct according to any one of the above items, characterized in that said nucleic acid construct is administered after viral infection.
(Item 15C)
The nucleic acid construct according to any one of the above items, wherein the nucleic acid construct is cloned.
(Item 16C)
A diagnostic agent for viral infection for use in a method for determining whether treatment with the composition according to any one of the above items is required.
(Item 17C)
The nucleic acid construct according to any one of the preceding items, wherein said subject has previously been vaccinated with a BCG vaccine.
(Item 1D)
A composition, nucleic acid molecule, method, use or nucleic acid construct according to any one of the preceding items, wherein said composition, nucleic acid molecule, method, use or nucleic acid construct is for treating a viral infection.
 本開示において、上記1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。本開示のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。 In the present disclosure, it is intended that the one or more features described above may be provided in further combinations in addition to the specified combinations. Still further embodiments and advantages of the present disclosure will be recognized by those skilled in the art upon reading and understanding the following detailed description, as appropriate.
図1は、実施例3における実験の概要を示す。FIG. 1 shows an overview of the experiment in Example 3. 図2は、抗HIV薬のみを投与したサル(#137)における血漿中ウイルス量およびCD4T細胞数の動態を示す。Figure 2 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#137) administered only with anti-HIV drugs. 図3は、抗HIV薬のみを投与したサル(#139)における血漿中ウイルス量およびCD4T細胞数の動態を示す。Figure 3 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#139) administered only with anti-HIV drugs. 図4は、低用量SHIV-Ag85Bを2回投与したサル(#142)における血漿中ウイルス量およびCD4T細胞数の動態を示す。Figure 4 shows the dynamics of plasma viral load and CD4 + T cell number in a monkey (#142) administered twice with low-dose SHIV-Ag85B. 図5は、高用量SHIV-Ag85Bを1回投与したサル(#141)における血漿中ウイルス量およびCD4T細胞数の動態を示す。Figure 5 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#141) administered once with high dose SHIV-Ag85B. 図6は、高用量SHIV-Ag85Bを複数回投与したサル(#140)における血漿中ウイルス量およびCD4T細胞数の動態を示す。Figure 6 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#140) administered multiple times with high-dose SHIV-Ag85B. 図7は、低用量および高用量SHIV-Ag85Bをそれぞれ1回投与したサル(#138)における血漿中ウイルス量およびCD4T細胞数の動態を示す。Figure 7 shows the dynamics of plasma viral load and CD4 + T cell number in monkeys (#138) administered once each with low and high doses of SHIV-Ag85B. 図8は、実施例2における各個体における投与スケジュールを示す。FIG. 8 shows the administration schedule for each individual in Example 2. 図9Aは、実施例3において、低用量のSHIV-Ag85Bを2回投与されたサル(#138)における血漿中ウイルス量の推移を示す。FIG. 9A shows the change in plasma virus amount in a monkey (#138) that was administered twice with low doses of SHIV-Ag85B in Example 3. 図9Bは、実施例3において、高用量のSHIV-Ag85Bを1回投与されたサル(#142)における血漿中ウイルス量の推移を示す。FIG. 9B shows the change in plasma virus amount in a monkey (#142) that was administered once with a high dose of SHIV-Ag85B in Example 3. 図10は、実施例3において、用量のSHIV-Ag85Bを投与されたサル1頭(#141)に関しては初期に短期間の効果しか認められず、血漿中にウイルスが出現するたびに投与したところ、5度目の接種以降に長期の抑制効果を示す。Figure 10 shows that in Example 3, for one monkey (#141) that was administered a dose of SHIV-Ag85B, only a short-term effect was observed at the beginning; , shows a long-term suppressive effect after the fifth vaccination. 図11Aは、実施例4において抗HIV薬のみを投与された未治療のサル(#137)の結果である。FIG. 11A shows the results of an untreated monkey (#137) that received only anti-HIV drugs in Example 4. 図11Bは、実施例4において抗HIV薬のみを投与された未治療のサル(#139)の結果である。FIG. 11B shows the results of an untreated monkey (#139) that received only anti-HIV drugs in Example 4. 図12は、実施例4におけるHIVウイルスの接種後に本開示に係る組成物を投与した場合の血漿中ウイルス量の推移を検証する実験プロトコールである。FIG. 12 is an experimental protocol for verifying the change in plasma virus amount when the composition according to the present disclosure is administered after inoculation with the HIV virus in Example 4. 図13は実施例4において、抗HIV薬は個体の相違にかかわらず奏功していることを示す結果である。FIG. 13 shows the results of Example 4 showing that the anti-HIV drug was successful regardless of individual differences. 図14は、高用量(5.0×10TCID50)のSHIV-Ag85Bを投与されたサル(#164、#165および#167)において、高用量のSHIV-Ag85Bを1週間間隔で4回投与した場合の血漿中ウイルス量を示す図である。Figure 14 shows that monkeys (#164, #165 and #167) that received high doses (5.0 x 104 TCID50 ) of SHIV-Ag85B were treated with high doses of SHIV-Ag85B four times at one week intervals. It is a figure showing the amount of virus in plasma when administered. 図15は、実施例5における高用量(5.0×10TCID50)のSHIV-NIを投与されたサル(#162、#166および#168)において、高用量のSHIV-NIを4回投与したときの血漿中ウイルス量の結果である。FIG. 15 shows that monkeys (#162, #166, and #168) that received high doses (5.0×10 4 TCID 50 ) of SHIV-NI in Example 5 were treated with high doses of SHIV-NI four times. These are the results of plasma virus amount at the time of administration. 図16は、実施例5におけるAg85Bを含まない対照群は休薬後2週での血漿中ウイルス量の結果である。FIG. 16 shows the results of the plasma virus amount in the control group not containing Ag85B in Example 5, 2 weeks after discontinuation of the drug.
 以下、本開示を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 The present disclosure will be described below. Throughout this specification, references to the singular should be understood to include the plural unless specifically stated otherwise. Accordingly, singular articles (e.g., "a," "an," "the," etc. in English) should be understood to also include the plural concept, unless specifically stated otherwise. Further, it should be understood that the terms used herein have the meanings commonly used in the art unless otherwise specified. Accordingly, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In case of conflict, the present specification (including definitions) will control.
 (用語の定義)
 以下に本明細書において特に使用される用語の定義を列挙する。
(Definition of terms)
Definitions of terms specifically used in this specification are listed below.
 本明細書において、「約」とは、示される値の±10%を意味する。 As used herein, "about" means ±10% of the indicated value.
 本明細書において、「弱毒化ウイルス」とは、親ウイルスと比較して病原性が減少しているが免疫応答を誘導する能力を保持するウイルスを指す。弱毒化されているかどうかは、細胞に対する毒性および/または動物に対する病原性により確認することができる。動物実験等により決定されるのが好ましい。弱毒化対象となるウイルスとしては、エイズウイルス、ヒトT細胞白血病ウイルス(HTLV)、麻疹ウイルス、風疹ウイルス、C型肝炎ウイルス(HCV)などの慢性感染ウイルスを挙げることができるがそれに限定されない。一般に、「弱毒化」という用語は、病原体が病原性を失ったが、免疫原性を保持するように、遺伝子を突然変異して人工的に病原体の毒性を低下させることである。一般的には、UV照射、化学処理或いは体外連続高次継代培養によって病原体毒性を弱める弱毒化を実現する。人工的に遺伝子を変更し、たとえば既知の配列における特定のヌクレオチドを欠失させて毒性を弱める。 As used herein, "attenuated virus" refers to a virus that has reduced pathogenicity compared to the parent virus but retains the ability to induce an immune response. Attenuation can be confirmed by the toxicity to cells and/or pathogenicity to animals. It is preferably determined by animal experiments or the like. Viruses to be attenuated include, but are not limited to, chronically infectious viruses such as AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, and hepatitis C virus (HCV). Generally, the term "attenuation" refers to artificially reducing the virulence of a pathogen by mutating its genes so that the pathogen loses virulence but retains immunogenicity. Generally, attenuation of pathogen toxicity is achieved by UV irradiation, chemical treatment, or in vitro continuous high-order subculturing. Genes are artificially modified, for example by deleting specific nucleotides in a known sequence, to reduce toxicity.
 本明細書において「慢性感染ウイルス」とは、終生感染を示す感染性ウイルスを指す。 As used herein, the term "chronically infectious virus" refers to an infectious virus that exhibits lifelong infection.
 本明細書において「アジュバント分子」とは、免疫系の刺激を引き起こす1つまたは複数の物質を指す。アジュバント分子は、抗酸菌由来のタンパク質であり得、例えば、Ag85Bタンパク質であり得る。 As used herein, "adjuvant molecule" refers to one or more substances that cause stimulation of the immune system. The adjuvant molecule can be a protein derived from mycobacteria, for example Ag85B protein.
 本明細書において「核酸構築物」または「核酸コンストラクト」とは、タンパク質をコードするヌクレオチド配列を含むDNAまたはRNA分子を指す。 As used herein, "nucleic acid construct" or "nucleic acid construct" refers to a DNA or RNA molecule that includes a nucleotide sequence that encodes a protein.
 本明細書において「対象」とは、本開示の治療の対象となるヒト患者を含む哺乳動物を指す。 As used herein, "subject" refers to mammals, including human patients, who are the targets of the treatment of the present disclosure.
 本明細書において「ウイルス感染」とは、ウイルスが、コードされるタンパク質産物が発現されるように細胞内に侵入することを指す。 As used herein, "viral infection" refers to the entry of a virus into a cell such that the encoded protein product is expressed.
 本明細書において「アクセサリー遺伝子」とは、ウイルスの増殖に必須ではない遺伝子を指す。例えば、Vif、Vpr、Vpx、Vpu、およびNefなどが挙げられるが、これらに限定されない。 As used herein, the term "accessory gene" refers to a gene that is not essential for virus proliferation. Examples include, but are not limited to, Vif, Vpr, Vpx, Vpu, and Nef.
 nef(negative factor)は,約27kDaの蛋白質でHIV-1遺伝子の3’側にコードされているものである。もともとウイルス増殖を抑制する因子として報告されたが、その後、初代培養細胞や生体内ではむしろウイルス増殖を昂進させ、HIV-1病原性と関連するとされている。HIV-1 Nef protein, anchor domain superfamily (IPR027480)、HIV-1 Nef protein, core domain superfamily (IPR027481)などが知られている。 nef (negative factor) is a protein of approximately 27 kDa that is encoded on the 3' side of the HIV-1 gene. Although it was originally reported as a factor that suppresses virus proliferation, it has since been found to actually accelerate virus proliferation in primary cultured cells and in vivo, and to be associated with HIV-1 pathogenicity. HIV-1 Nef protein, anchor domain superfamily (IPR027480), HIV-1 Nef protein, core domain superfamily (IPR027481) etc. are known.
 本開示の弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物は、予想外にも、安全性が高まり、毒性が低いうえに、有効に対象におけるウイルス感染を治療し得ることが判明し、ウイルス疾患に対して実用に耐えうる治療用および予防用ワクチンを初めて提供することができた。 Nucleic acid constructs comprising a nucleic acid sequence encoding an attenuated virus or its equivalent of the present disclosure and a nucleic acid sequence encoding an adjuvant molecule unexpectedly exhibit increased safety, reduced toxicity, and effective targeting. For the first time, we have been able to provide a practical therapeutic and prophylactic vaccine against a viral disease.
 本明細書において「制御遺伝子」とは、遺伝子発現を制御する遺伝子を指す。 As used herein, the term "regulatory gene" refers to a gene that controls gene expression.
 本明細書において「欠損」とは、遺伝子が消失することを指す。欠損は、遺伝子の一部が消失して機能していないことも包含する。 As used herein, "deficient" refers to the loss of a gene. Defect also includes the fact that a part of the gene has disappeared and is no longer functioning.
 本明細書において「対応遺伝子」とは、異なる種間で名称が異なるが機能的に対応する遺伝子を指す。 As used herein, "corresponding genes" refer to genes that have different names between different species but are functionally equivalent.
 本明細書において「組み込まれている」とは、核酸構築物中に1つ以上の核酸が付加されることを指す。 As used herein, "incorporated" refers to the addition of one or more nucleic acids into a nucleic acid construct.
 本明細書において「クローン化されている」とは、同一の遺伝子構成をもつ集団を生成および/または単離することを指す。 As used herein, "cloned" refers to producing and/or isolating a population with the same genetic makeup.
 本明細書において「コンパニオン試薬」とは、治療前に治療薬が効果的であるかどうか、検査するための試薬を指す。 As used herein, the term "companion reagent" refers to a reagent used to test whether a therapeutic agent is effective before treatment.
 本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、ワクチン、検査薬、診断薬、治療薬、抗体、標識、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分(例えば、検査薬、診断薬、治療薬をどのように使用するか、あるいは、試薬をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが試薬キットとして使用される場合、キットには、通常、ワクチン、検査薬、診断薬、治療薬、抗体等の使い方などを記載した指示書などが含まれる。 As used herein, the term "kit" refers to parts that should be provided (e.g., vaccines, test reagents, diagnostic reagents, therapeutic reagents, antibodies, labels, instructions, etc.) usually divided into two or more compartments. unit. This kit format is preferable when the purpose is to provide a composition that should not be provided mixed for reasons of stability etc., but is preferably mixed immediately before use. Such kits preferably include the parts provided (e.g., instructions or instructions describing how to use the test, diagnostic, or therapeutic agent, or how to process the reagents). When the kit is used as a reagent kit herein, the kit usually includes instructions on how to use the vaccine, test agent, diagnostic agent, therapeutic agent, antibody, etc. This includes books, etc.
 本明細書において、「Ag85B」とは、抗酸菌が分泌する免疫原性タンパク質を指す。抗酸菌は細菌を色素で染めたときに、酸で色素が脱色されない、つまり酸に抵抗性を示す性質を示す。抗酸菌(マイコバクテリム)は、結核菌、らい菌、非結核性抗酸菌に大別される。Ag85Bの代表的なソースは、Mycobacterium Tuberculosisである。Ag85Bは、antigen 85-B, 85B, Extracellular alpha-antigen, Antigen 85 complex B, Ag85B, Mycolyl transferase 85B, EC 2.3.1.-, Fibronectin-binding protein B, 30 kDa extracellular protein, fbpB, A85B, Major Secretory Protein Antigen 85Bなどとも称される。Accession番号は、Q847N4が代表的である。https://www.uniprot.org/uniprotkb/Q847N4/entryを参照。核酸配列のIDはAY207396gが代表的であり、タンパク質の配列のIDは、AAO62005.1が代表的である。本明細書では、配列番号1(核酸配列)および配列番号2(アミノ酸配列)として示されるが、これに限定されず、抗酸菌が分泌する免疫原性タンパク質であれば、本開示の範囲内にあることが理解される。本開示で示されるように、Ag85Bは免疫アジュバントである。抗原85B(Ag85B)は、Bacillus Calmette-Guerinで感作された宿主において、強いTh1免疫応答を誘導する免疫原性タンパク質と考えられている。Ag85Bは、Ag85ファミリーに属し、ほとんどのマイコバクテリア種から分泌される最も優勢なタンパク質の一つである。 As used herein, "Ag85B" refers to an immunogenic protein secreted by acid-fast bacteria. When bacteria are dyed with a pigment, acid-fast bacteria exhibit a property that the pigment is not bleached by acid, that is, they are resistant to acid. Acid-fast bacteria (mycobacteria) are broadly classified into Mycobacterium tuberculosis, Mycobacterium leprae, and non-tuberculous mycobacteria. A typical source of Ag85B is Mycobacterium Tuberculosis. Ag85B is antigen 85-B, 85B, Extracellular alpha-antigen, Antigen 85 complex B, Ag85B, Mycolyl transfera se 85B, EC 2.3.1. -, Fibronectin-binding protein B, 30 kDa extracellular protein, fbpB, A85B, Major Secretory Prote Also referred to as in Antigen 85B. A typical access number is Q847N4. https://www. uniprot. See org/uniprotkb/Q847N4/entry. A typical nucleic acid sequence ID is AY207396g, and a typical protein sequence ID is AAO62005.1. In this specification, it is shown as SEQ ID NO: 1 (nucleic acid sequence) and SEQ ID NO: 2 (amino acid sequence), but is not limited to this, and any immunogenic protein secreted by acid-fast bacteria is within the scope of the present disclosure. It is understood that there is As indicated in this disclosure, Ag85B is an immunoadjuvant. Antigen 85B (Ag85B) is considered an immunogenic protein that induces a strong Th1 immune response in hosts sensitized with Bacillus Calmette-Guerin. Ag85B belongs to the Ag85 family and is one of the most predominant proteins secreted by most mycobacterial species.
 本明細書において、「作動可能に」とは、核酸配列の転写または翻訳が、発現制御エレメントによる制御下にあり、核酸配列の転写または翻訳が適切に制御され、機能的に発現がなされる状態にあることを指す。 As used herein, "operably" refers to a state in which transcription or translation of a nucleic acid sequence is under the control of an expression control element, transcription or translation of a nucleic acid sequence is appropriately controlled, and functional expression is achieved. refers to something in
 本明細書において、「Th1型の免疫応答」とは、Tリンパ球により媒介される細胞性免疫応答であり、活性化されたT細胞により産生されるサイトカインおよび/またはケモカインによる応答を指す。 As used herein, "Th1 type immune response" is a cellular immune response mediated by T lymphocytes, and refers to a response by cytokines and/or chemokines produced by activated T cells.
 本明細書において、「Th2型の免疫応答」とは、B細胞で産生される分泌抗体によって媒介される液性免疫応答を指す。 As used herein, "Th2-type immune response" refers to a humoral immune response mediated by secreted antibodies produced by B cells.
 本明細書において、「サル/ヒト免疫不全(キメラ)ウイルス(SHIV)」とは、少なくとも一部の遺伝子がHIV-1遺伝子のものと置き換えたサル/ヒト免疫不全キメラウイルスを指す。SHIVは、env遺伝子に加えてvpr、rev、tat、vpu遺伝子がさらにHIV-1のものに置き換えられ得る。 As used herein, "simian/human immunodeficiency (chimeric) virus (SHIV)" refers to a simian/human immunodeficiency chimeric virus in which at least some genes have been replaced with those of the HIV-1 gene. In SHIV, in addition to the env gene, the vpr, rev, tat, and vpu genes can be further replaced with those of HIV-1.
 本明細書において、「ウイルスを完全に排除する」とは、ウイルスが生体から完全に取り除かれた状態を指す。ウイルスが完全に生体から取り除かれた状態は、PCR等の高感度の検出法で検出限界以下であり、臨床上の症状も示さないことを意味する。 As used herein, "completely eliminating the virus" refers to a state in which the virus is completely removed from the living body. A state in which the virus has been completely removed from the living body means that it is below the detection limit by highly sensitive detection methods such as PCR, and it does not show any clinical symptoms.
 本明細書において、「ワクチン」とは、抗原を含む物質に対し能動免疫を提供するが、疾患は引き起こさない抗原を含有またはコードする物質を意味する。本明細書において、ワクチンは、予防的に使用されるものを指す。本明細書において「DNAワクチン」とは、ワクチン抗原をコードする核酸を意味し、主としてDNA(特に、プラスミドDNA)が使用されるためこのような一般名称が使用される。なお、核酸を使用した実施形態としては、ウイルスベクターなどに組み込んで生体内に送達する態様もあり、この場合、DNA以外の核酸形態での提供もされ得ることが理解される。このような場合は「核酸ワクチン」とも称する。通常、DNAワクチンはプラスミドDNAの形態をとるが、プラスミドDNAの形態でDNAワクチンを皮下に投与すると、プラスミドDNAは皮下細胞に取り込まれ、その細胞内で目的の抗原タンパク質を産生する。 As used herein, "vaccine" refers to a substance containing or encoding an antigen that provides active immunity against the substance containing the antigen but does not cause disease. As used herein, vaccine refers to one used prophylactically. As used herein, "DNA vaccine" means a nucleic acid encoding a vaccine antigen, and this general name is used because DNA (particularly plasmid DNA) is mainly used. In addition, as an embodiment using a nucleic acid, there is also an embodiment in which it is incorporated into a viral vector or the like and delivered into a living body, and in this case, it is understood that the nucleic acid may be provided in a form other than DNA. In such cases, it is also called a "nucleic acid vaccine." DNA vaccines usually take the form of plasmid DNA, but when a DNA vaccine in the form of plasmid DNA is subcutaneously administered, the plasmid DNA is taken up into subcutaneous cells and produces the target antigen protein within the cells.
 本明細書において「抗原」(antigen;Agともいう。)とは、抗体分子によって特異的に結合され得る任意の基質をいう。本明細書において「免疫原」(immunogen)とは、抗原特異的免疫応答を生じるリンパ球活性化を開始し得る抗原をいう。 As used herein, the term "antigen" (also referred to as Ag) refers to any substrate that can be specifically bound by an antibody molecule. As used herein, "immunogen" refers to an antigen capable of initiating lymphocyte activation resulting in an antigen-specific immune response.
 本明細書において、「核酸コンストラクト」、「コンストラクト」、「構築物」または「遺伝子コンストラクト」は互換可能に使用され、天然に存在する遺伝子から単離されるか、または天然には存在しない様式で組み合わせ、並置した核酸の集合を複数含む核酸分子である。 As used herein, "nucleic acid construct," "construct," "construct," or "gene construct" are used interchangeably and are isolated from naturally occurring genes or combined in a non-naturally occurring manner; A nucleic acid molecule that includes a plurality of juxtaposed collections of nucleic acids.
 アミノ酸は、その一般に公知の3文字記号か、またはIUPAC-IUB Biochemical Nomenclature Commissionにより推奨される1文字記号のいずれかにより、本明細書中で言及され得る。ヌクレオチドも同様に、一般に認知された1文字コードにより言及され得る。本明細書では、アミノ酸配列および塩基配列の類似性、同一性および相同性の比較は、配列分析用ツールであるBLASTを用いてデフォルトパラメータを用いて算出される。同一性の検索は例えば、NCBIのBLAST2.2.28(2013.4.2発行)を用いて行うことができる(Proc.Natl.Acad.Sci.USA 90:5873-5877,1993)。本明細書における同一性の値は通常は上記BLASTを用い、デフォルトの条件でアラインした際の値をいう。ただし、パラメータの変更により、より高い値が出る場合は、最も高い値を同一性の値とする。複数の領域で同一性が評価される場合はそのうちの最も高い値を同一性の値とする。類似性は、同一性に加え、類似のアミノ酸についても計算に入れた数値である。BLASTでアミノ酸配列を比較するときのアルゴリズムには、Blastpをデフォルト設定で使用できる。測定結果はPositivesまたはIdentitiesとして数値化される。アミノ酸配列や塩基配列の相同性は、Karlin and AltschulによるアルゴリズムBLASTによって決定することができる。このアルゴリズムに基づいて、BLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul et al.J.Mol.Biol. 215:403-410,1990)。BLASTに基づいてBLASTNによって塩基配列を解析する場合には、パラメータは例えばscore=100、wordlength=12とする。また、BLASTに基づいてBLASTXによってアミノ酸配列を解析する場合には、パラメータは例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメータを用いる。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov.)。 Amino acids may be referred to herein by either their commonly known three-letter symbol or the one-letter symbol recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides may also be referred to by their commonly recognized one-letter codes. As used herein, comparisons of similarity, identity, and homology of amino acid sequences and base sequences are calculated using default parameters using BLAST, a sequence analysis tool. The identity search can be performed using, for example, NCBI's BLAST 2.2.28 (published on April 2, 2013) (Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993). The identity value in this specification usually refers to the value obtained when alignment is performed using the above-mentioned BLAST under default conditions. However, if a higher value is obtained by changing the parameters, the highest value is taken as the identity value. When identity is evaluated in multiple areas, the highest value among them is taken as the identity value. Similarity is a value that takes into account similar amino acids in addition to identity. When comparing amino acid sequences with BLAST, Blastp can be used as an algorithm with default settings. The measurement results are quantified as Positives or Identities. Homology of amino acid sequences and base sequences can be determined by the algorithm BLAST by Karlin and Altschul. Based on this algorithm, programs called BLASTN and BLASTX have been developed (Altschul et al. J. Mol. Biol. 215:403-410, 1990). When a base sequence is analyzed by BLASTN based on BLAST, the parameters are, for example, score=100 and wordlength=12. Furthermore, when an amino acid sequence is analyzed by BLASTX based on BLAST, the parameters are, for example, score=50 and wordlength=3. BLAST and Gapped When using BLAST programs, use the default parameters for each program. Specific techniques for these analysis methods are publicly known (http://www.ncbi.nlm.nih.gov.).
 本開示で使用される核酸またはタンパク質は、対象となるアミノ酸または塩基配列において1もしくは複数のアミノ酸またはヌクレオチドが置換、欠失および/または付加された配列を含み得る。ここで、キメラタンパク質全長アミノ酸配列において「1もしくは複数」とは、通常、50アミノ酸以内であり、好ましくは30アミノ酸以内であり、更に好ましくは10アミノ酸以内(例えば、5アミノ酸以内、3アミノ酸以内、1アミノ酸)である。また、ドメインのアミノ酸配列において、「1もしくは複数」とは、通常、6アミノ酸以内であり、好ましくは5アミノ酸以内であり、更に好ましくは4アミノ酸以内(例えば、3アミノ酸以内、2アミノ酸以内、1アミノ酸)である。キメラタンパク質の本開示の生物学的活性を維持する場合、変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸およびアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ離(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる(括弧内はいずれもアミノ酸の一文字標記を表す)。これらは本明細書において「保存的置換」ともいう。なお、あるアミノ酸配列に対する1または複数個のアミノ酸残基の欠失、付加および/または他のアミノ酸による置換により修飾されたアミノ酸配列を有するタンパク質がその生物学的活性を維持することは公知である(Mark,D.F.et al.,Proc.Natl.Acad.Sci.USA(1984)81,5662-5666、Zoller,M.J.& Smith,M.Nucleic Acids Research(1982)10,6487-6500、Wang,A.et al.,Science 224,1431-1433、Dalbadie-McFarland,G.et al.,Proc.Natl.Acad.Sci.USA(1982)79,6409-6413)。したがって、本開示の一実施形態において「数個」は、例えば、10、8、6、5、4、3、または2個であってもよく、それらいずれかの値以下であってもよい。欠失等がなされたキメラタンパク質は、例えば、部位特異的変異導入法、ランダム変異導入法、または抗体ファージライブラリを用いたバイオパニング等によって作製できる。本開示において、「70%以上」は、例えば、70、75、80、85、90、95、96、97、98、99%以上などであってもよく「80%以上」は、例えば、80、85、90、95、96、97、98、99%以上であってもよく「90%以上」は、例えば、90、95、96、97、98、99%以上であってもよく、それらいずれか2つの値の範囲内であってもよい。「相同性」は、2つもしくは複数間のアミノ酸配列において相同なアミノ酸数の割合を、当該技術分野で公知の方法に従って算定してもよい。割合を算定する前には、比較するアミノ酸配列群のアミノ酸配列を整列させ、同一アミノ酸の割合を最大にするために必要である場合はアミノ酸配列の一部に間隙を導入する。整列のための方法、割合の算定方法、比較方法、およびそれらに関連するコンピュータプログラムは、当該技術分野で従来からよく知られている(例えば、BLAST、GENETYX等)。「同一性」の場合は、同一のアミノ酸の割合、「類似性」の場合は、類似するアミノ酸の割合を算出する。類似なアミノ酸としては、保存的置換が可能なアミノ酸を挙げることができるがこれらに限定されない。 The nucleic acid or protein used in the present disclosure may include a target amino acid or base sequence in which one or more amino acids or nucleotides are substituted, deleted, and/or added. Here, in the full-length chimeric protein amino acid sequence, "one or more" usually means within 50 amino acids, preferably within 30 amino acids, and more preferably within 10 amino acids (for example, within 5 amino acids, within 3 amino acids, 1 amino acid). In addition, in the amino acid sequence of a domain, "one or more" usually means 6 amino acids or less, preferably 5 amino acids or less, and more preferably 4 amino acids or less (for example, 3 amino acids or less, 2 amino acids or less, 1 amino acid or less). amino acids). In order to maintain the biological activity of the present disclosure of the chimeric protein, it is desirable that the amino acid residue to be mutated be mutated to another amino acid in which the properties of the amino acid side chain are conserved. For example, the properties of amino acid side chains include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), amino acids with aliphatic side chains (G, A, V, L, I, P), amino acids with hydroxyl group-containing side chains (S, T, Y), sulfur atom-containing side chains (C, M), amino acids with carboxylic acid and amide-containing side chains (D, N, E, Q), amino acids with base-containing side chains (R, K, H), aromatic-containing side chains Examples include amino acids (H, F, Y, W) having the following (each in parentheses represents a one-letter code for an amino acid). These are also referred to herein as "conservative substitutions." It is known that proteins having amino acid sequences modified by deletion, addition and/or substitution of one or more amino acid residues with other amino acids maintain their biological activity. (Mark, D.F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666, Zoller, M.J. & Smith, M. Nucleic Acids Research (1982) 10, 6487 - 6500, Wang, A. et al., Science 224, 1431-1433, Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413). Therefore, in one embodiment of the present disclosure, "several" may be, for example, 10, 8, 6, 5, 4, 3, or 2, or may be less than or equal to any of these values. Chimeric proteins with deletions etc. can be produced, for example, by site-directed mutagenesis, random mutagenesis, biopanning using an antibody phage library, or the like. In the present disclosure, "70% or more" may be, for example, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99% or more, and "80% or more" may be, for example, 80% or more. , 85, 90, 95, 96, 97, 98, 99% or more. "90% or more" may be, for example, 90, 95, 96, 97, 98, 99% or more; It may be within the range of any two values. "Homology" may be calculated as the ratio of the number of homologous amino acids in two or more amino acid sequences according to a method known in the art. Before calculating the ratio, the amino acid sequences of the group of amino acid sequences to be compared are aligned, and gaps are introduced into part of the amino acid sequences if necessary to maximize the ratio of identical amino acids. Methods for alignment, ratio calculation, comparison, and related computer programs are conventionally well known in the art (eg, BLAST, GENETYX, etc.). In the case of "identity", the proportion of identical amino acids is calculated, and in the case of "similarity", the proportion of similar amino acids is calculated. Similar amino acids include, but are not limited to, amino acids that allow conservative substitutions.
 本開示において本開示の具体的に示されるコンストラクトの一部も、本開示の範囲に包含される。本明細書において「一部」、「フラグメント」または「断片」とは、全長のポリペプチドまたはポリヌクレオチド(長さがn)に対して、1~n-1までの配列長さを有するポリペプチドまたはポリヌクレオチドをいう。フラグメントの長さは、その目的に応じて、適宜変更することができ、例えば、その長さの下限としては、ポリペプチドの場合、3、4、5、6、7、8、9、10、15、20、25、30、40、50およびそれ以上のアミノ酸が挙げられ、ここの具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。また、ポリヌクレオチドの場合、5、6、7、8、9、10、15、20、25、30、40、50、75、100およびそれ以上のヌクレオチドが挙げられ、ここの具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。本明細書において、このようなフラグメントは、例えば、全長のものがワクチンとして機能する場合、そのフラグメント自体もまたワクチンとしての機能を有する限り、本開示の範囲内に入ることが理解される。本開示において本開示に具体的に示されるもの(コンストラクト等)の「機能的等価物」も本開示に包含される。本明細書において「機能的等価物」とは、対象となるもとの実体に対して、目的となる機能が同じであるが構造が異なる任意のものをいう。 Some of the constructs specifically shown in the present disclosure are also included within the scope of the present disclosure. As used herein, "part", "fragment", or "fragment" refers to a polypeptide having a sequence length of 1 to n-1 relative to the full-length polypeptide or polynucleotide (length n). or polynucleotide. The length of the fragment can be changed as appropriate depending on the purpose. For example, the lower limit of the length is 3, 4, 5, 6, 7, 8, 9, 10, Examples include 15, 20, 25, 30, 40, 50 and more amino acids; lengths expressed in integers not specifically listed here (e.g., 11, etc.) are also suitable as lower limits. obtain. In the case of polynucleotides, examples include 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100 and more nucleotides, which are specifically listed here. A length expressed as an integer (eg, 11, etc.) may also be suitable as a lower limit. It is understood herein that such fragments fall within the scope of the disclosure, for example, if the full-length version functions as a vaccine, so long as the fragment itself also functions as a vaccine. "Functional equivalents" of those specifically shown in this disclosure (such as constructs) are also encompassed by this disclosure. As used herein, the term "functional equivalent" refers to any object that has the same intended function but a different structure with respect to the original entity.
 本開示に従って、用語「活性」は、本明細書において、最も広い意味での分子の機能を指す。活性は、限定を意図するものではないが、概して、分子の生物学的機能、生化学的機能、物理的機能または化学的機能を含む。活性は、例えば、酵素活性、他の分子と相互作用する能力、および他の分子の機能を活性化するか、促進するか、安定化するか、阻害するか、抑制するか、または不安定化する能力、安定性、特定の細胞内位置に局在する能力を含む。適用可能な場合、この用語はまた、最も広い意味でのタンパク質複合体の機能にも関する。本明細書では、「生物学的活性」は、光反応の活性化などを含む。 In accordance with the present disclosure, the term "activity" herein refers to the function of a molecule in the broadest sense. Activity generally includes, but is not intended to be limiting, a biological, biochemical, physical, or chemical function of the molecule. Activity includes, for example, enzymatic activity, the ability to interact with other molecules, and the ability to activate, promote, stabilize, inhibit, suppress, or destabilize the function of other molecules. stability, and the ability to localize to specific subcellular locations. Where applicable, the term also relates to the function of protein complexes in the broadest sense. As used herein, "biological activity" includes activation of photoreactions and the like.
 本明細書において「機能的等価物」とは、対象となるもとの実体に対して、目的となる機能が同じであるが構造が異なる任意のものをいう。したがって、「HIVウイルスがコードするタンパク質」またはそのキメラの機能的等価物は、HIVウイルスがコードするタンパク質またはそのキメラ自体ではないが、HIVウイルスがコードするタンパク質またはそのキメラの変異体または改変体(例えば、アミノ酸配列改変体等)であって、HIVウイルスがコードするタンパク質またはそのキメラの持つ生物学的作用を有するもの、ならびに、作用する時点において、HIVウイルスがコードするタンパク質またはその抗体自体またはこのHIVウイルスがコードするタンパク質またはそのキメラの変異体もしくは改変体に変化することができるもの(例えば、HIVウイルスがコードするタンパク質またはそのキメラまたはHIVウイルスがコードするタンパク質またはそのキメラ変異体もしくは改変体をコードする核酸、およびその核酸を含むベクター、細胞等を含む)が包含されることが理解される。本開示の機能的等価物としては、アミノ酸配列において、1もしくは複数個のアミノ酸の挿入、置換および/もしくは欠失、またはその一方もしくは両末端への付加されたものを用いることができる。本明細書において、「アミノ酸配列において、1もしくは複数個のアミノ酸の挿入、置換および/もしくは欠失、またはその一方もしくは両末端への付加」とは、部位特異的突然変異誘発法等の周知の技術的方法により、あるいは天然の変異により、天然に生じ得る程度の複数個の数のアミノ酸の置換等により改変がなされていることを意味する。改変アミノ酸配列は、例えば1~30個、好ましくは1~20個、より好ましくは1~9個、さらに好ましくは1~5個、特に好ましくは1~2個のアミノ酸の挿入、置換、もしくは欠失、またはその一方もしくは両末端への付加がなされたものであることができる。改変アミノ酸配列は、好ましくは、そのアミノ酸配列が、HIVウイルスがコードするタンパク質のアミノ酸配列において1または複数個(好ましくは1もしくは数個または1、2、3、もしくは4個)の保存的置換を有するアミノ酸配列であってもよい。 As used herein, the term "functional equivalent" refers to any object that has the same intended function but a different structure with respect to the original entity. Therefore, an "HIV virus-encoded protein" or a chimeric functional equivalent thereof is not the HIV virus-encoded protein or chimera thereof itself, but a variant or variant of the HIV virus-encoded protein or chimera thereof ( (e.g., amino acid sequence variants, etc.) which have the biological effects of the protein encoded by the HIV virus or chimera thereof, and the protein encoded by the HIV virus or its antibody itself or its chimera at the time of action. that can be changed into a protein encoded by the HIV virus or a chimeric variant or variant thereof (e.g., a protein encoded by the HIV virus or a chimera thereof or a protein encoded by the HIV virus or a chimeric variant or variant thereof); It is understood that the invention encompasses the encoding nucleic acids, as well as vectors, cells, etc. that contain the nucleic acids. Functional equivalents of the present disclosure may include insertions, substitutions and/or deletions of one or more amino acids, or additions to one or both ends of the amino acid sequence. As used herein, "insertion, substitution, and/or deletion of one or more amino acids, or addition to one or both ends of an amino acid sequence" refers to the well-known method such as site-directed mutagenesis. It means that a modification has been made by a technical method or by natural mutation, such as substitution of a plurality of amino acids to the extent that they can occur naturally. The modified amino acid sequence may include insertions, substitutions, or deletions of, for example, 1 to 30, preferably 1 to 20, more preferably 1 to 9, even more preferably 1 to 5, particularly preferably 1 to 2 amino acids. It can be deleted or added to one or both ends. The modified amino acid sequence preferably has one or more (preferably one or several or one, two, three, or four) conservative substitutions in the amino acid sequence of the protein encoded by the HIV virus. It may be an amino acid sequence having
 本明細書において「治療」とは、ある疾患または障害(例えば、ウイルス感染によるもの)について、そのような状態になった場合に、そのような疾患または障害の悪化を防止、好ましくは、現状維持、より好ましくは、軽減、さらに好ましくは消退させることをいい、患者の疾患、もしくは疾患に伴う1つ以上の症状の、症状改善効果あるいは予防効果を発揮しうることを含む。事前に診断を行って適切な治療を行うことは「コンパニオン治療」といい、そのための診断薬を「コンパニオン診断薬」ということがある。 As used herein, "treatment" refers to preventing the worsening of a disease or disorder (e.g., due to a viral infection), preferably maintaining the status quo, if such a disease or disorder occurs. , more preferably alleviation, and even more preferably eradication, and includes the ability to exhibit a symptom-improving effect or preventive effect on a patient's disease or one or more symptoms associated with the disease. Performing a diagnosis in advance and providing appropriate treatment is called "companion treatment," and the diagnostic agent used for this purpose is sometimes called a "companion diagnostic agent."
 本明細書において「治療薬(剤)」とは、広義には、目的の状態(例えば、網膜変性疾患など)を治療できるあらゆる薬剤をいう。本開示の一実施形態において「治療薬」は、有効成分と、薬理学的に許容される1つもしくはそれ以上の担体とを含む医薬組成物であってもよい。医薬組成物は、例えば有効成分と上記担体とを混合し、製剤学の技術分野において知られる任意の方法により製造できる。また治療薬は、治療のために用いられる物であれば使用形態は限定されず、有効成分単独であってもよいし、有効成分と任意の成分との混合物であってもよい。また上記担体の形状は特に限定されず、例えば、固体または液体(例えば、緩衝液)であってもよい。 As used herein, the term "therapeutic drug (agent)" in a broad sense refers to any drug that can treat a target condition (eg, retinal degenerative disease, etc.). In one embodiment of the present disclosure, a "therapeutic agent" may be a pharmaceutical composition comprising an active ingredient and one or more pharmacologically acceptable carriers. The pharmaceutical composition can be produced, for example, by mixing the active ingredient and the carrier described above, and by any method known in the technical field of pharmaceutical science. The therapeutic agent is not limited in its usage form as long as it is used for treatment, and may be an active ingredient alone or a mixture of an active ingredient and any other ingredient. Further, the shape of the carrier is not particularly limited, and may be, for example, solid or liquid (eg, buffer).
 本明細書において「予防」とは、ある疾患または障害(例えば、網膜変性疾患)について、そのような状態になる前に、そのような状態にならないようにすることをいう。本開示の薬剤を用いて、診断を行い、必要に応じて本開示の薬剤を用いて例えば、網膜変性疾患等の予防をするか、あるいは予防のための対策を講じることができる。本明細書において「予防薬(剤)」とは、広義には、目的の状態(例えば、小胞輸送障害やアポトーシスなど)を予防できるあらゆる薬剤をいう。 As used herein, "prevention" refers to preventing a certain disease or disorder (for example, retinal degenerative disease) from developing into such a condition before it occurs. Diagnosis can be performed using the drug of the present disclosure, and if necessary, the drug of the present disclosure can be used to prevent, for example, retinal degenerative diseases, or to take preventive measures. In the present specification, the term "preventive drug (agent)" broadly refers to any drug that can prevent a desired condition (eg, vesicular transport disorder, apoptosis, etc.).
 本開示のものは、キットとして提供され得る。本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、複数の核酸コンストラクト、薬剤を凍結乾燥したものと投与用の緩衝液など、説明書など)が提供されるユニットをいう。そのようなキットは、好ましくは、提供される部分(例えば、核酸コンストラクトをどのように使用するか、あるいは、試薬をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書はまた、使い方などを記載した指示書などが含まれる。 The present disclosure may be provided as a kit. As used herein, the term "kit" refers to parts that are usually divided into two or more compartments and provided (e.g., multiple nucleic acid constructs, lyophilized drugs and administration buffer, instructions, etc.) ) is the unit provided. Such kits preferably include provided parts, such as instructions or instructions describing how to use the nucleic acid construct or how to treat the reagents. Advantageously, the specification also includes instructions for use and the like.
 本明細書における「有効成分」は、本開示の組成物などが目的とする治療、予防または進行抑制などの効果を得るために必要な量で含有される成分を指し、効果が所望のレベル未満にまで損なわれない限りにおいて、他の成分も含有されてよい。また、本開示の医薬、組成物などは製剤化されたものであってもよい。また、本開示の医薬、組成物などの投与経路は、経口または非経口のいずれであってもよく、製剤の形態等に応じて適宜設定することができる。本開示のコンストラクトは有効成分として用いられ得る。 The term "active ingredient" as used herein refers to an ingredient that is contained in the amount necessary for the composition of the present disclosure to achieve the desired therapeutic, preventive, or progression-suppressing effect, and the effect is less than the desired level. Other ingredients may also be included as long as they do not impair the quality. Furthermore, the medicament, composition, etc. of the present disclosure may be formulated. Furthermore, the route of administration of the medicament, composition, etc. of the present disclosure may be either oral or parenteral, and can be appropriately determined depending on the form of the preparation and the like. Constructs of the present disclosure can be used as active ingredients.
 本明細書において「指示書」(添付文書や米国FDAが利用するラベルなどを含む)は、本開示を使用する方法を医師または他の使用者に対する説明を記載したものである。この指示書は、本開示の医薬などを投与することを指示する文言が記載されている。また、指示書には、投与部位として、静脈投与等(例えば、注射などによる)することを指示する文言が記載されていてもよい。この指示書は、本開示が実施される国の監督官庁(例えば、日本であれば厚生労働省、米国であれば食品医薬品局(FDA)など)が規定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指示書は、いわゆる添付文書(package insert)やラベル(label)であり、通常は紙媒体で提供されるが、それに限定されず、例えば、電子媒体(例えば、インターネットで提供されるホームページ、PDF、電子メール)のような形態でも提供され得る。 As used herein, "instructions" (including package inserts, labels used by the U.S. FDA, etc.) describe instructions to a physician or other user on how to use the present disclosure. This instruction sheet contains words instructing the administration of the medicament of the present disclosure. In addition, the instructions may include language instructing intravenous administration (for example, by injection) as the administration site. This instruction is prepared in accordance with the format prescribed by the regulatory authority of the country where the disclosure will be made (e.g., the Ministry of Health, Labor and Welfare in Japan, the Food and Drug Administration (FDA) in the United States, etc.), and approved by that regulatory authority. It will be clearly stated that it was received. The instruction sheet is a so-called package insert or label, and is usually provided in paper media, but is not limited to this, and may also be provided in electronic media (e.g., a homepage provided on the Internet, PDF, etc.). It may also be provided in a format such as email).
 (好ましい実施形態)
 以下に好ましい実施形態の説明を記載するが、この実施形態は本開示の例示であり、本開示の範囲はそのような好ましい実施形態に限定されないことが理解されるべきである。当業者はまた、以下のような好ましい実施例を参考にして、本開示の範囲内にある改変、変更などを容易に行うことができることが理解されるべきである。これらの実施形態について、当業者は適宜、任意の実施形態を組み合わせ得る。
(Preferred embodiment)
Although a description of preferred embodiments is provided below, it should be understood that this embodiment is an illustration of the present disclosure and that the scope of the present disclosure is not limited to such preferred embodiments. It should also be understood that those skilled in the art can readily make modifications, changes, etc. within the scope of the present disclosure with reference to the following preferred embodiments. Those skilled in the art can combine any of these embodiments as appropriate.
 (弱毒化ウイルスアジュバント複合分子)
 本開示は、ウイルス感染に対して画期的な効果を示す弱毒化ウイルスアジュバント複合分子を提供する。新規モダリティとしての可能性を示す本開示の分子はウイルス感染を根治させる可能性を提示しており、種々の利活用が考えられる。
(Attenuated virus adjuvant complex molecule)
The present disclosure provides attenuated viral adjuvant complex molecules that exhibit breakthrough effects against viral infections. The molecule of the present disclosure, which shows potential as a new modality, offers the possibility of eradicating viral infection, and can be used in various ways.
 一つの局面において、本開示は、弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物を含む、対象におけるウイルス感染を治療するための組成物、これを利用する治療または予防方法、用途などの関連技術を提供する。 In one aspect, the present disclosure provides a composition for treating a viral infection in a subject, comprising a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or an equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule. We provide related technologies such as therapeutic or preventive methods and uses that utilize this.
 本開示で使用される弱毒化ウイルスとアジュバント分子との複合分子は、タンパク質形態および核酸形態のいずれでも提供されることができ、あるいは、これら以外の形態であっても提供されることができる。好ましくは、弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物が提供される。このような核酸構築物は、弱毒化ウイルスにおいてアジュバント分子が組み込まれた形式で提供され得る。 The complex molecule of an attenuated virus and an adjuvant molecule used in the present disclosure can be provided in both a protein form and a nucleic acid form, or can be provided in a form other than these. Preferably, a nucleic acid construct is provided that includes a nucleic acid sequence encoding an attenuated virus or equivalent thereof and a nucleic acid sequence encoding an adjuvant molecule. Such nucleic acid constructs can be provided in a form that incorporates adjuvant molecules in an attenuated virus.
 理論に束縛されることを望まないが、このような弱毒化ウイルスアジュバント分子複合分子は、対象となるウイルス疾患を感知させ得ることができ、再発を防止することができる点で従来の治療薬にない効果を奏するものとして注目される。 Without wishing to be bound by theory, such attenuated viral adjuvant molecule complex molecules are superior to conventional therapeutic agents in that they can sense the targeted viral disease and prevent recurrence. It is attracting attention as having a unique effect.
 ここで、弱毒化ウイルスは、アクセサリー遺伝子および制御遺伝子などの1つ以上の遺伝子が欠損されていてもよい。本開示において欠損とは、対象となる遺伝子が本来の機能を発揮しなくなるように改変されたことをいい、完全に消失していることの他一部が改変または消失することにより、元の遺伝子の機能を発揮し得なくなっていることを指す。 Here, the attenuated virus may be deleted in one or more genes such as accessory genes and regulatory genes. In the present disclosure, deletion refers to a gene that has been modified in such a way that it no longer performs its original function. Refers to the fact that the person is no longer able to perform his or her functions.
 一つの実施形態では、弱毒化ウイルスにおいて欠損させ得る遺伝子は、アクセサリー遺伝子が有利であり得、例えば、Vif、Vpr、Vpx、Vpu、およびNef又はこれらの等価物(例えば、対応遺伝子)などを挙げることができる。このような遺伝子は欠損させたとしても、ウイルスとして機能する反面、毒性が減少されていることが有利でありうる。好ましい実施形態の一つにおいて、弱毒化ウイルスは、nef欠損型弱毒化ウイルスであり得る。毒性が減少する半面、ウイルス治療効果が認められるからである。 In one embodiment, the genes that can be deleted in the attenuated virus may advantageously be accessory genes, such as Vif, Vpr, Vpx, Vpu, and Nef or their equivalents (e.g., corresponding genes). be able to. Even if such a gene is deleted, it may still function as a virus, but it may be advantageous to have reduced toxicity. In one preferred embodiment, the attenuated virus may be an attenuated nef-deficient virus. This is because while the toxicity is reduced, it is also effective in treating viruses.
 本開示において使用されるアジュバント分子をコードする核酸配列は、弱毒化ウイルスまたはその等価物をコードする核酸配列中に組み込まれていることが有利であり得る。 Nucleic acid sequences encoding adjuvant molecules used in the present disclosure may advantageously be incorporated into nucleic acid sequences encoding attenuated viruses or equivalents thereof.
 (コンストラクトの製造法)
 本開示のコンストラクトは、以下のようにして製造し得る。その代表例は実施例に記載されている。
(Construct manufacturing method)
Constructs of the present disclosure may be produced as follows. Representative examples thereof are described in the Examples.
 患者から分離したウイルスを用いて遺伝子より、分子クローンを作製する。ウイルス(例えばHIV)のNefの様な欠損させれば弱毒化を誘導する遺伝子を分子クローンから遺伝子編集技術により、取り除く。その除去部位にアジュバント遺伝子(例えばAg85B遺伝子)を組み込み、アジュバント遺伝子発現弱毒ウイルスを作製する。 A molecular clone is created from the gene using the virus isolated from the patient. A gene, such as Nef of a virus (for example, HIV), which induces attenuation when deleted, is removed from a molecular clone by gene editing technology. An adjuvant gene (eg, Ag85B gene) is inserted into the removal site to produce an attenuated virus expressing the adjuvant gene.
 一つの実施形態では、アジュバント分子をコードする核酸配列が、前記nef欠損型弱毒化ウイルスにおける欠損されたnef遺伝子の位置に組み込まれているものが有利であり得る。nef遺伝子はエイズウイルスの免疫回避を司る遺伝子であるためにこの部分を欠損させると生体の免疫機能により、弱毒化される。アジュバント分子が組み込まれると、強い細胞性免疫が誘導され、強い免疫反応が誘導され、よりウイルスが弱毒化される。 In one embodiment, it may be advantageous that a nucleic acid sequence encoding an adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus. Since the nef gene is a gene that controls immune evasion of the AIDS virus, deletion of this portion results in attenuation by the body's immune function. Incorporation of adjuvant molecules induces strong cellular immunity, induces a strong immune response, and further attenuates the virus.
 使用される弱毒化ウイルスは、慢性感染ウイルスであり得るがこれに限定されない。本開示の組成物は、慢性感染ウイルスだけでなく、あらゆるウイルスに応用可能である。 The attenuated virus used can be, but is not limited to, a chronically infectious virus. The compositions of the present disclosure are applicable to any virus, not just chronically infected viruses.
 本開示において利用され得る弱毒化ウイルスは、エイズウイルス、ヒトT細胞白血病ウイルス(HTLV)、麻疹ウイルス、風疹ウイルス、C型肝炎ウイルス(HCV)、B型肝炎ウイルス(HBV)等の弱毒化ウイルスであり得る。これらの弱毒化ウイルスは、既知の弱毒化ウイルスを用いてもよいし、患者からウイルスを単離して弱毒化を誘導する遺伝子を欠損させることで調製し得る。 Attenuated viruses that may be utilized in the present disclosure include attenuated viruses such as AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV). could be. These attenuated viruses may be prepared by using known attenuated viruses or by isolating the virus from a patient and deleting the gene that induces attenuation.
 本開示の実施例において、使用されるアジュバント分子は任意のものが使用され得るが、たとえば抗酸菌由来のアジュバント分子(例えば、Ag85B)が利用可能である。世界的に日本を含む多くの人がBCGワクチンを接種しており、BCGの接種はAg85Bのアジュバント効果を増強させることが期待されるからである。一つの具体的な例示的なアジュバント分子は、Ag85Bタンパク質であり得る。理論に束縛されることを望まないが、Ag85Bを加えると、強い細胞性免疫が誘導され、強い免疫反応が誘導され、よりウイルスが弱毒化される。 In the examples of the present disclosure, any adjuvant molecule can be used, and for example, an adjuvant molecule derived from acid-fast bacteria (eg, Ag85B) can be used. This is because many people worldwide, including in Japan, have been vaccinated with BCG vaccine, and BCG vaccination is expected to enhance the adjuvant effect of Ag85B. One specific exemplary adjuvant molecule may be Ag85B protein. Without wishing to be bound by theory, the addition of Ag85B induces strong cellular immunity, induces a strong immune response, and further attenuates the virus.
 好ましい実施形態において、対象は、以前にBCGワクチンの接種を受けている。理論に束縛されることを望まないが、BCGの接種はAg85B等の本開示のアジュバント効果を増強させるものであるから、BCG接種群では、HIV-Ag85BによるHIVに対する治療効果が高いと予想される。BCGワクチンは、禁忌等により実施されていない国(米国等)もあり、必ずしもBCGワクチンを必要とするものではない。BCG非接種群においても、十分な効果が期待される。 In a preferred embodiment, the subject has previously been vaccinated with a BCG vaccine. Without wishing to be bound by theory, since BCG inoculation enhances the effect of the adjuvant of the present disclosure such as Ag85B, it is expected that in the BCG inoculated group, the therapeutic effect of HIV-Ag85B against HIV will be high. . There are some countries (such as the United States) where the BCG vaccine is not implemented due to contraindications, so the BCG vaccine is not necessarily required. Sufficient effects are expected even in the BCG non-inoculated group.
 本開示の弱毒化ウイルスアジュバント分子複合体は、Th1型の免疫応答を誘導することが特徴の一つであり得る。また、本開示の弱毒化ウイルスアジュバント分子複合体は、対象におけるウイルスを実質的に消失させることができ、好ましくは完全に排除することができる。 One of the characteristics of the attenuated virus adjuvant molecule complex of the present disclosure may be that it induces a Th1 type immune response. Additionally, the attenuated virus adjuvant molecule complexes of the present disclosure can substantially eliminate, and preferably completely eliminate, the virus in a subject.
 本開示の弱毒化ウイルスアジュバント分子複合体は、ウイルス感染後に投与されても、そのウイルスを焼失させることができる点で有利である。理論に束縛されることを望まないが、Th1型の免疫応答を誘導することにより、ウイルスを実質的に排除する効果が認められるからである。 The attenuated virus adjuvant molecule complex of the present disclosure is advantageous in that it can burn out the virus even when administered after viral infection. Without wishing to be bound by theory, this is because inducing a Th1 type immune response has been shown to be effective in substantially eliminating viruses.
 一つの実施形態では、使用される核酸構築物は、クローン化されているものであってもよい。 In one embodiment, the nucleic acid construct used may be one that has been cloned.
 (コンパニオン試薬)
 一つの局面において、本開示は、ウイルス感染の診断薬を含む、本開示による治療を必要とするかどうかを判断する方法において使用するためのコンパニオン試薬を提供する。コンパニオン試薬を用いて事前にウイルスに関しているかどうかを検査しておけば、本開示の組成物による治療の有効性を診断することができる。なおこの診断において、陽性の結果がでれば、本開示の組成物による治療が有効だと判断できる。本発明の一実施形態において「コンパニオン診断」は、薬剤効果や副作用の患者個人差を検査により予測することで、最適な投薬を補助することを目的として実施される診断を含む。コンパニオン試薬は、感染が疑われる対象におけるウイルスを検出するためのウイルス感染の診断薬を含み、例えば、ウイルス抗原に対する抗体、抗原結合タンパク質またはペプチド、ウイルス核酸に結合する核酸等、およびこれらの改変体が挙げられるが、これらに限定されない。
(companion reagent)
In one aspect, the present disclosure provides companion reagents, including diagnostic agents for viral infection, for use in methods of determining whether treatment according to the present disclosure is required. If the presence of viruses is tested in advance using a companion reagent, the effectiveness of treatment with the composition of the present disclosure can be diagnosed. In this diagnosis, if a positive result is obtained, it can be determined that treatment with the composition of the present disclosure is effective. In one embodiment of the present invention, "companion diagnosis" includes diagnosis performed for the purpose of assisting in optimal medication administration by predicting individual patient differences in drug effects and side effects through testing. Companion reagents include diagnostic agents for viral infection for detecting viruses in subjects suspected of infection, such as antibodies against viral antigens, antigen-binding proteins or peptides, nucleic acids that bind to viral nucleic acids, and variants thereof. These include, but are not limited to:
 (キット)
 本開示は、本開示の組成物と、ウイルス感染の診断薬と、指示書とを含む、対象におけるウイルス感染を治療するためのキットを提供する。このキットは、感染が疑われる対象におけるウイルスを検出するためのウイルス感染の診断薬を含み、例えば、ウイルス抗原に対する抗体、抗原結合タンパク質またはペプチド、ウイルス核酸に結合する核酸等、およびこれらの改変体が挙げられるが、これらに限定されない。このキットは、さらに本開示の組成物を含み、その実施形態は、本開示の任意の実施形態を単独または組み合わせ用いることができる。
(kit)
The present disclosure provides a kit for treating a viral infection in a subject, comprising a composition of the present disclosure, a diagnostic agent for a viral infection, and instructions. This kit includes diagnostic agents for viral infection for detecting the virus in a subject suspected of infection, such as antibodies against viral antigens, antigen-binding proteins or peptides, nucleic acids that bind to viral nucleic acids, and modified versions thereof. These include, but are not limited to: The kit further includes a composition of the present disclosure, embodiments of which can be used alone or in combination with any of the embodiments of the present disclosure.
 (治療法)
 本開示は、対象におけるウイルス感染を治療するための方法であって、該方法が、本開示の組成物または核酸構築物の治療有効量をそれを必要とする該対象に投与する工程を含む、方法を提供する。1つの局面において、本開示は、本開示の組成物または医薬を投与することによる予防法を提供する。1つの実施形態において、本開示の組成物または核酸構築物は、注射により投与される。別の実施形態において、本開示の組成物または核酸構築物は体内に投与される。特定の実施形態において、本開示の組成物または核酸構築物は保存液と共に提供され得る。一部の実施形態において、保存液は緩衝液であり得る。他の実施形態において、本開示の組成物または核酸構築物は、容器に格納された状態で提供され得る。特定の実施形態において、本開示の組成物または核酸構築物を格納する容器は、シリンジであり得る。
(Treatment)
The present disclosure is a method for treating a viral infection in a subject, the method comprising administering a therapeutically effective amount of a composition or nucleic acid construct of the present disclosure to the subject in need thereof. I will provide a. In one aspect, the present disclosure provides a method of prophylaxis by administering a composition or medicament of the present disclosure. In one embodiment, a composition or nucleic acid construct of the present disclosure is administered by injection. In another embodiment, a composition or nucleic acid construct of the present disclosure is administered internally. In certain embodiments, a composition or nucleic acid construct of the present disclosure may be provided with a preservation solution. In some embodiments, the storage solution can be a buffer. In other embodiments, a composition or nucleic acid construct of the present disclosure may be provided in a container. In certain embodiments, a container containing a composition or nucleic acid construct of the present disclosure can be a syringe.
 別の局面において、本開示は、対象におけるウイルス感染を治療するための医薬の製造における、本開示の組成物または核酸構築物の使用を提供する。 In another aspect, the disclosure provides the use of a composition or nucleic acid construct of the disclosure in the manufacture of a medicament for treating a viral infection in a subject.
 本開示の弱毒化ウイルスに関連する薬剤の投与は、他の成分と併用して、ウイルスの予防、改善、又は軽減に有効な治療薬の濃度をもたらす任意の好適な手段によって行うことができる。薬剤は、任意の好適な担体物質中に任意の適切な量で含有させてよく、一般に、組成物の全重量の1~95重量%の量で存在する。組成物は、非経口(例えば、皮下、静脈内、筋肉内、又は腹腔内)投与経路に好適な投薬形態で提供してよい。医薬組成物は、慣行的薬局業務規範(pharmaceutical practice)に従って製剤化することができる(例えば、Remington:The Science and Practice of Pharmacy(20th ed.),ed.A.R.Gennaro,Lippincott Williams&Wilkins,2000及びEncyclopedia of Pharmaceutical Technology,eds.J.Swarbrick and J.C.Boylan,1988-1999,Marcel Dekker,New Yorkを参照のこと)。本開示の医薬組成物は、ほぼ投与直後、又は投与からの予定時点若しくは予定時間後に、活性化合物を放出するように製剤化することができる。 Administration of agents associated with the attenuated viruses of the present disclosure can be carried out by any suitable means that, in combination with other ingredients, provides concentrations of therapeutic agent effective in preventing, ameliorating, or mitigating the virus. The agent may be contained in any suitable carrier material in any suitable amount and is generally present in an amount from 1 to 95% by weight of the total weight of the composition. The compositions may be provided in dosage forms suitable for parenteral (eg, subcutaneous, intravenous, intramuscular, or intraperitoneal) routes of administration. Pharmaceutical compositions can be formulated according to conventional pharmaceutical practice (eg, Remington: The Science and Practice of Pharmacy (20th ed.), ed. A.R. Gennaro, Lippincott Williams & Wilkins, 2000 and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and JC Boylan, 1988-1999, Marcel Dekker, New York. ). Pharmaceutical compositions of the present disclosure can be formulated to release the active compound substantially immediately after administration, or at a predetermined time or after a predetermined time after administration.
 本開示が非経口投与で使用される場合、単位投与量アンプルもしくは多投与量容器またはチューブ内に収容された状態に製剤化してもよく、また、安定剤、緩衝剤、保存剤、等張化剤等の添加剤も含有させてもよい。また、非経口投与の場合における製剤は、使用時に、適当な担体(滅菌水等)で再溶解可能な粉体に製剤化されてもよい。非経口投与としては、静脈内投与、筋肉内投与、皮下投与などが挙げられ、静脈内投与であることが好ましい。本開示の組成物などは、上記で述べたような方法で、ヒトに投与することにより、ワクチン効果、特にウイルスに感染した対象においてTh1型の免疫応答を誘導する目的などに用いることができる。本明細書において記載されるコンストラクト、有効成分は、担体と共に投与され得る。担体とは、希釈剤、アジュバント、賦形剤、または媒体を含む。組成物はまた、必要に応じて、微量の湿潤剤もしくは乳化剤、またはpH緩衝剤を含有し得る。これらの組成物は、溶液、懸濁液、エマルジョン、錠剤、ピル、カプセル、粉末、持続放出製剤、その組合せなどの形態を取り得る。 When the present disclosure is used for parenteral administration, it may be formulated in unit-dose ampoules or multi-dose containers or tubes, and may include stabilizers, buffers, preservatives, isotonic agents, etc. It may also contain additives such as agents. In addition, the preparation for parenteral administration may be formulated into a powder that can be redissolved in an appropriate carrier (sterile water, etc.) at the time of use. Examples of parenteral administration include intravenous administration, intramuscular administration, and subcutaneous administration, with intravenous administration being preferred. By administering the composition of the present disclosure to humans in the manner described above, it can be used for vaccine effects, particularly for the purpose of inducing a Th1 type immune response in a subject infected with a virus. The constructs described herein, active ingredients, may be administered together with a carrier. A carrier includes a diluent, adjuvant, excipient, or vehicle. The composition may also contain minor amounts of wetting or emulsifying agents, or pH buffering agents, as desired. These compositions may take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained release formulations, combinations thereof, and the like.
 本開示において使用され得る 薬学的に許容される担体は、副作用を伴わずに対象内に注射され得る、本明細書において記載されるコンストラクトまたは薬剤を含有する媒体を指す。薬学的に許容される担体には、無菌の液体、例えば水および油が含まれ、油には、石油由来、動物由来、植物由来、または合成由来の油、例えば、ピーナッツ油、大豆油、鉱油、ごま油、その組合せなどが含まれる。適切な薬学的に許容される担体には、デンプン、グルコース、ラクトース、スクロース、ゼラチン、麦芽、米、小麦粉、チョーク、シリカゲル、ステアリン酸ナトリウム、モノステアリン酸グリセロール、タルク、塩化ナトリウム、乾燥脱脂乳、グリセロール、プロピレン、グリコール、水、エタノール、その組合せなどが含まれる。適切な薬学的担体の他の例は、E. W. Martinによる「Remington's Pharmaceutical Sciences」において記載されている。ワクチンの投与は、局所経路、皮下経路、静脈内経路、筋肉内経路、皮内経路、腹腔内経路、経口経路、吸入経路、またはその組合せを含む、ワクチン接種に典型的に使用される任意の経路によるものであり得る。 A pharmaceutically acceptable carrier as used in the present disclosure refers to a vehicle containing the constructs or agents described herein that can be injected into a subject without side effects. Pharmaceutically acceptable carriers include sterile liquids such as water and oils, including oils of petroleum, animal, vegetable, or synthetic origin, such as peanut oil, soybean oil, mineral oil. , sesame oil, and combinations thereof. Suitable pharmaceutically acceptable carriers include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dry skim milk, Includes glycerol, propylene, glycols, water, ethanol, combinations thereof, and the like. Other examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin. Administration of the vaccine may be by any route typically used for vaccination, including topical, subcutaneous, intravenous, intramuscular, intradermal, intraperitoneal, oral, inhalation routes, or combinations thereof. It may be due to the route.
 本明細書において記載される組成物は、ワクチンに製剤化することができる。本明細書において記載されるワクチンは、適切に製剤化された、真核細胞における発現に適切なプロモーターに作動可能に連結した感染性の非病原性および/または弱毒化ウイルスの完全長ゲノムRNA分子をコードするDNAを含む本明細書において記載されるベクターを含む。 The compositions described herein can be formulated into vaccines. The vaccines described herein comprise a suitably formulated full-length genomic RNA molecule of an infectious, non-pathogenic and/or attenuated virus operably linked to a suitable promoter for expression in eukaryotic cells. including the vectors described herein that include DNA encoding.
 1つの特定の実施形態では、本開示のコンストラクト、医薬等は、治療期間において1回または2回以上投与される。実施例に記載されるとおり、本開示の医薬等は少なくとも1回投与することで、その効果を奏することが確認されており、患者に対するコンプライアンスもよいと考えられる。 In one particular embodiment, the constructs, medicaments, etc. of the present disclosure are administered one or more times during a treatment period. As described in the Examples, it has been confirmed that the medicine of the present disclosure is effective when administered at least once, and patient compliance is considered to be good.
 (一般技術)
 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Current Protocols in Molecular Biology(http://onlinelibrary.wiley.com/book/10.1002/0471142727)およびMolecular Cloning: A Laboratory Manual (Fourth Edition)(http://www.molecularcloning.com)などに記載されており、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
(General technology)
The molecular biological techniques, biochemical techniques, and microbiological techniques used in this specification are well known and commonly used in the field, and can be found, for example, in Current Protocols in Molecular Biology (http://onlinelibrary. wiley.com/book/10.1002/0471142727) and Molecular Cloning: A Laboratory Manual (Fourth Edition) (http://www.molecularcloning.com), etc. , and these are the relevant parts of this specification. (which may be all) are incorporated by reference.
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したものではない。したがって、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、請求の範囲によってのみ限定される。 The present disclosure has been described above by showing preferred embodiments for ease of understanding. The present disclosure will be described below based on examples, but the above description and the following examples are provided for illustrative purposes only and are not provided for the purpose of limiting the present disclosure. Therefore, the scope of the disclosure is not limited to the embodiments or examples specifically described herein, but is limited only by the claims.
 (実施例1)コンストラクトの製法
 HIV-1 NL432遺伝子をSIVmac239バックグラウンドに持つSHIV-NM3rNを出発物質として利用した。組換えSHIVは、以前報告された方法に従って構築した(15,16)。SHIV-nefベクター(SHIV-NI)は、SHIV-NM3rNの感染性分子クローンから構築したものである(48)。SHIV-NIのenv遺伝子のソースは、X4-トロピックウイルスであるHIV-1 NL432とした。SHIV-NIではnef遺伝子が、ClaIおよびApaIなどのユニークな制限酵素部位に置き換えられた。Ag85B遺伝子は、Mycobacterium kansasiiを鋳型として,5’-ATATCGATACCATGTTCTCCCGTCCCGGGCT-3’(ClaI)(配列番号5)および5’-AGGGCCCCTAGCGGGCGCCCAGGCTGG-3’(ApaI)プライマー(配列番号6)を用いてPCRにより増幅された。その後、PCR産物をClaIおよびApaI部位の制限酵素で消化した。このプラスミドをpSHIV-Ag85Bと呼ぶ。SHIV-Ag85Bは、FuGENE 6 Transfection Reagent(Roche Diagnostics, Indianapolis, IN)を用いてpSHIV-Ag85Bを293T細胞にトランスフェクションして調製し、トランスフェクション後48時間の培養上清を使用時まで液体窒素中で保存した。SHIV-Ag85Bの配列は配列番号3に示される。
(Example 1) Construct production method SHIV-NM3rN having the HIV-1 NL432 gene in the SIVmac239 background was used as a starting material. Recombinant SHIV was constructed according to previously reported methods (15, 16). The SHIV-nef vector (SHIV-NI) was constructed from an infectious molecular clone of SHIV-NM3rN (48). The source of the SHIV-NI env gene was HIV-1 NL432, an X4-tropic virus. In SHIV-NI, the nef gene was replaced with unique restriction enzyme sites such as ClaI and ApaI. The Ag85B gene was generated using Mycobacterium kansasii as a template, 5'-ATATCGATAACCATGTTCTCCCGTCCCGGGCT-3' (ClaI) (SEQ ID NO: 5) and 5'-AGGGCCCCTAGCGGGCGCCCAGGCTGG-3' (ApaI). Amplified by PCR using primers (SEQ ID NO: 6) . The PCR product was then digested with restriction enzymes at ClaI and ApaI sites. This plasmid is called pSHIV-Ag85B. SHIV-Ag85B was prepared by transfecting 293T cells with pSHIV-Ag85B using FuGENE 6 Transfection Reagent (Roche Diagnostics, Indianapolis, IN), and the culture supernatant 48 hours after transfection was stored in liquid nitrogen until use. Medium Saved with. The sequence of SHIV-Ag85B is shown in SEQ ID NO:3.
 (実施例2)コンストラクトの性能確認
 (Ag85Bタンパク質の検出)
 M8166細胞にSHIV-Ag85BをMOI 0.1で感染させ、1時間培養した。細胞をリン酸緩衝生理食塩水(PBS)で3回洗浄した後、さらに48時間培養液中で培養を行った。PBSでさらに3回洗浄した後、細胞を、1.5M尿素、2%NP-40および5%2-メルカプトエタノールを含むPBSで溶解した。次いで、ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動で分離し、ニトロセルロース膜にエレクトロブロットで移し、0.01%Tween20(PBST)含有PBS中の5%脱脂乾燥乳でブロックした。PBSTで3回洗浄した後、膜をウサギの抗Ag85Bポリクローナル抗体で2時間インキュベートした。膜をNBT/BCIP(Roche Diagnostics、Mannheim、Germany)で3回洗浄した後、アルカリホスファターゼ標識抗ウサギIgG(New England Biolabs、Beverly、MA)と共にインキュベートした。
(Example 2) Performance confirmation of construct (Detection of Ag85B protein)
M8166 cells were infected with SHIV-Ag85B at an MOI of 0.1 and cultured for 1 hour. After washing the cells three times with phosphate buffered saline (PBS), they were further cultured in culture medium for 48 hours. After three additional washes with PBS, cells were lysed with PBS containing 1.5 M urea, 2% NP-40 and 5% 2-mercaptoethanol. They were then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroblotted onto nitrocellulose membranes, and blocked with 5% nonfat dry milk in PBS containing 0.01% Tween 20 (PBST). After washing three times with PBST, the membrane was incubated with rabbit anti-Ag85B polyclonal antibody for 2 hours. The membrane was washed three times with NBT/BCIP (Roche Diagnostics, Mannheim, Germany) and then incubated with alkaline phosphatase-labeled anti-rabbit IgG (New England Biolabs, Beverly, MA).
 (挿入されたAg85B遺伝子のin vivo安定性)
 接種したマカクザルの1×10PBMCからプロウイルスDNAを抽出した。ウイルスが再分離される場合、M8166細胞と共培養したCD8枯渇PBMCもモニターした。細胞DNAは、DNeasy組織キット(QIAGEN社)を用いて抽出した。SHIV-Ag85Bにおける挿入されたAg85B遺伝子の安定性を確認するため、SHIV-Ag85Bにおける挿入されたAg85B遺伝子を包含するプロウイルスDNA断片を、プライマーを用いてPCR増幅した。プライマーの配列は上記のとおりである。
(In vivo stability of inserted Ag85B gene)
Proviral DNA was extracted from 1×10 6 PBMC of inoculated macaque monkeys. CD8 + depleted PBMCs co-cultured with M8166 cells were also monitored if the virus was re-isolated. Cellular DNA was extracted using the DNeasy tissue kit (QIAGEN). To confirm the stability of the inserted Ag85B gene in SHIV-Ag85B, a proviral DNA fragment containing the inserted Ag85B gene in SHIV-Ag85B was PCR amplified using primers. The sequences of the primers are as described above.
 (実施例3)SHIV-Ag85B治療ワクチンの評価
 本実施例の実験の概要を図1に示す。本実施例では、HIVウイルスの接種後に本願発明に係る組成物を投与した場合の血漿中ウイルス量およびCD4T細胞数の推移を検証した。
(Example 3) Evaluation of SHIV-Ag85B therapeutic vaccine The outline of the experiment of this example is shown in FIG. 1. In this example, changes in plasma virus amount and CD4 + T cell count were examined when the composition according to the present invention was administered after inoculation with HIV virus.
 (材料および方法)
 (ウイルス株)
 本研究では、SHIV-Ag85B、SHIV-NI、SHIV89.6Pを使用した。これらのウイルス株は、カニクイザルのPBMCで増殖させた。標準フィコール密度勾配分離法で分離したPBMCを10%ウシ胎児血清、2mM L-グルタミン、100ユニット/mlのIL-2(塩野義製薬)を添加したRPMI1640で培養し、フィトヘマグルチニンで72時間刺激し、感染倍率(MOI)が0.1のSHIV-Ag85B、SHIV-NIまたはSHIV89.6Pを細胞に感染させた。3日ごとに培養液の半分を新しい培養液に交換し、感染後6~9日目に無細胞上清を回収した。M8166細胞を用いて、各SHIVのTCID50を測定した。ウイルスストックのTCID50値は、SHIV-Ag85Bにおいて5×10、SHIV-NIにおいて4.7×10、SHIV89.6Pにおいて3×10であった。
(material and method)
(virus strain)
In this study, SHIV-Ag85B, SHIV-NI, and SHIV89.6P were used. These virus strains were grown in cynomolgus monkey PBMC. PBMCs separated by standard Ficoll density gradient separation were cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 2mM L-glutamine, and 100 units/ml IL-2 (Shionogi & Co., Ltd.), and stimulated with phytohemagglutinin for 72 hours. , cells were infected with SHIV-Ag85B, SHIV-NI, or SHIV89.6P at a multiplicity of infection (MOI) of 0.1. Half of the culture medium was replaced with fresh culture medium every 3 days, and cell-free supernatants were collected 6 to 9 days after infection. The TCID 50 of each SHIV was measured using M8166 cells. The TCID 50 values of the virus stocks were 5×10 4 for SHIV-Ag85B, 4.7×10 4 for SHIV-NI, and 3×10 5 for SHIV89.6P.
 (動物)
 サルSIV、D型レトロウイルス、T細胞リンパ腫ウイルス、サル泡沫状ウイルス、Epstein-Barrウイルス、サイトメガロウイルス、およびBウイルスのすべてが陰性である成人サル(インドネシア、フィリピン、マレーシア産)を使用した。7頭のサルにSHIV89.6P50を10 TCID50で静脈内接種した。その後、SHIV89.6P感染後1週間または2週間後(#137のみ5週間後)、抗HIV薬(テノホビル20 mg/kg、エムトリシタビン 40 mg/kgまたはドルテグラビル 2.5 mg/kg)を1日1回皮下投与した。抗HIV薬投薬休止後に、5頭のサルにSHIV-Ag85Bを静脈内接種した(高用量SHIV-Ag85B接種;8×10TCID50、低用量SHIV-Ag85B接種;10 TCID50)。血液を、抗凝固剤としてクエン酸ナトリウムを用いて定期的に採取し、CD4T細胞数の測定、血漿ウイルス量の定量化、および免疫学的分析に使用した。リンパ組織試料を、生検で入手し、プロウイルスDNA量の測定および病理学的検査に使用した。
(animal)
Adult monkeys (from Indonesia, the Philippines, and Malaysia) that were negative for simian SIV, type D retrovirus, T-cell lymphoma virus, simian foamy virus, Epstein-Barr virus, cytomegalovirus, and B virus were all used. Seven monkeys were inoculated intravenously with SHIV89.6P50 at 10 4 TCID 50 . Then, 1 or 2 weeks after SHIV89.6P infection (after 5 weeks for #137), anti-HIV drugs (tenofovir 20 mg/kg, emtricitabine 40 mg/kg or dolutegravir 2.5 mg/kg) were administered subcutaneously once a day. administered. Five monkeys were inoculated intravenously with SHIV-Ag85B (high-dose SHIV-Ag85B inoculation; 8x10 4 TCID 50 , low-dose SIV-Ag85B inoculation; 10 4 TCID 50 ) after stopping anti-HIV drug dosing. Blood was collected periodically with sodium citrate as an anticoagulant and used for measurement of CD4 + T cell counts, quantification of plasma viral load, and immunological analysis. Lymph tissue samples were obtained by biopsy and used for proviral DNA content determination and pathological examination.
 (DNA試料の調製およびネステッドPCRによるSHIV gag遺伝子の増幅)
 SHIV-Ag85Bを接種したサルにおけるプロウイルスDNAを測定するために、ネステッドPCRを用いてgag遺伝子セグメントの断片を増幅した。プロウイルスDNAは、接種したサルのPBMCから抽出した。細胞DNAをDNeasy tissue kits(QIAGEN)を用いて抽出した。ネステッドPCRをTaKaRa Ex Taq(Takara Bio Inc.、Shiga、Japan)を用いて実施した。最初のプロトコルおよびネステッドPCRのプロトコルは、参考文献49および50において説明されている(49および50)。本研究で使用したプライマーは、第1ラウンドのPCRにおいてOuter SIVgag-F(5’-CCATTAGTGCCAACAGGCTCAG-3’(配列番号7))およびOuter SIVgag-R(5’-CCCCAGTTGGATCCATCTCCTG-3’(配列番号8))を使用し、第2ラウンドのPCRにおいてNested SIVgag-F(5’-ACTGTCTGCGTCATCTGGTG-3’(配列番号9))およびNested SIVgag-R(5’-GTCCCAATCTGCAGCCTCCTC-3’)を使用した。2回目の増幅後、ネステッドPCRで増幅した産物10μlを1.0%アガロースゲルにかけ、エチジウムブロマイドで染色し、DNAバンドを可視化した。outer gagプライマー対による最初の増幅で、このPCR法で検出されたプラスミドSIV DNAの最低濃度は100コピーであった。さらにnested/internal gagプライマーで増幅すると、1コピーのプラスミドDNAが慣例的に検出される(49、50)。
(Preparation of DNA sample and amplification of SHIV gag gene by nested PCR)
To measure proviral DNA in monkeys vaccinated with SHIV-Ag85B, nested PCR was used to amplify fragments of the gag gene segment. Proviral DNA was extracted from PBMC of inoculated monkeys. Cellular DNA was extracted using DNeasy tissue kits (QIAGEN). Nested PCR was performed using TaKaRa Ex Taq (Takara Bio Inc., Shiga, Japan). The original protocol and the nested PCR protocol are described in references 49 and 50 (49 and 50). The primers used in this study were Outer SIVgag-F (5'-CCATTAGTGCCAACAGGCTCAG-3' (SEQ ID NO: 7)) and Outer SIVgag-R (5'-CCCCAGTTGGATCCATCTCCTG-3' (SEQ ID NO: 8)) in the first round of PCR. ), and Nested SIVgag-F (5'-ACTGTCTGCGTCATCTGGTG-3' (SEQ ID NO: 9)) and Nested SIVgag-R (5'-GTCCCAATCTGCAGCCTCCTC-3') were used in the second round of PCR. After the second amplification, 10 μl of the product amplified by nested PCR was applied to a 1.0% agarose gel and stained with ethidium bromide to visualize the DNA bands. Upon initial amplification with the outer gag primer pair, the lowest concentration of plasmid SIV DNA detected with this PCR method was 100 copies. Further amplification with nested/internal gag primers routinely detects one copy of plasmid DNA (49, 50).
 (血漿中ウイルスRNA量)
 SHIV感染レベルは、先に述べたように、高感度定量リアルタイムRT-PCRを用いて血漿中のウイルスRNA量を測定することによってモニターした(23、51、52)。ウイルスRNAをMagNA PureCompact Nucleic Acid Isolation Kit(Roche Diagnos-tics)を用いて血漿から単離した。リアルタイムRT-PCRは、QuantiTec Probe RT-PCR Kit(Qiagen)およびLightCycler 480サーモサイクラー(Roche Diagnostics、 Rotkreuz、 Switzerland)を用いて実施した。SIVmac239のgag遺伝子を、プローブ5’-FAM-TGTCCACCTGCCATTAAGTCCCGA-TAMRA-3’(ここでFAMは6-カルボキシフルオレセインおよびTAMRAは、6-カルボキシテトラメチルローダミンである)(配列番号11)、プライマー5’-TGGAAGAAAGACCTCCAGAAAATG-3’(配列番号12)および5’-CAAGTGCAGTTAGCAAGCGAGGAT-3’(配列番号13)で増幅した。検出限界を1000ウイルスRNAコピー/mlと算出した。
(Amount of viral RNA in plasma)
SHIV infection levels were monitored by measuring the amount of viral RNA in plasma using sensitive quantitative real-time RT-PCR as previously described (23, 51, 52). Viral RNA was isolated from plasma using the MagnA PureCompact Nucleic Acid Isolation Kit (Roche Diagnostics). Real-time RT-PCR was performed using a QuantiTec Probe RT-PCR Kit (Qiagen) and a LightCycler 480 thermocycler (Roche Diagnostics, Rotkreuz, Switzerland). The gag gene of SIVmac239 was probed with probe 5'-FAM-TGTCCACCTGCCATTAAGTCCCGA-TAMRA-3' (where FAM is 6-carboxyfluorescein and TAMRA is 6-carboxytetramethylrhodamine) (SEQ ID NO: 11), primer 5'- TGGAAGAAAGACCTCCAGAAAATG-3' (SEQ ID NO: 12) and 5'-CAAGTGCAGTTAGCAAGCGAGGAT-3' (SEQ ID NO: 13) were amplified. The detection limit was calculated to be 1000 viral RNA copies/ml.
 (プロウイルスDNA量)
 DNeasy tissue kit(QIAGEN)を用いて、PBMCおよびリンパ組織からDNA試料を製造者のプロトコルにしたがって抽出した。超高感度デジタルPCRは、QX200 Droplet Digital PCR system(Bio-Rad)で行った。DNA試料2μl、ddPCR supermix for probes(dUTPなし)(Bio-Rad)、各プライマー900nM、プローブ200nM、および脱塩水を含む20μlの反応混合物を調製した。この混合液を液滴生成オイル(Bio-Rad)70μlとともにDG8カートリッジに入れ、液滴生成器(Bio-Rad)で液滴を形成した。その後、96ウェルマイクロプレートに液滴を移した。PCR増幅は以下のプログラムで行った:95℃で10分間の初期変性および安定化、94℃で30秒間の変性、57℃で60秒間のアニーリング/伸長を40サイクル行い、その後10分間98℃。その後、QuantaSoft v1.6(Bio- Rad)ソフトウェアを使用して、QX200液滴リーダー(Bio-Rad)で液滴をソートし、分析した。試料は、20、000以上の液滴が読み取られた場合のみ考慮された。細胞数を、先に述べたように、高感度定量リアルタイムPCRによってモニターした(53)。DNADNeasy tissue kit(QIAGEN)を用いて、製造者のプロトコルに従って、DNA試料をPBMCおよびリンパ系組織から抽出した。細胞数は、アカゲザルIL-4特異的プライマー5’-TGTGCTCCGGCAGTTCTACA-3’(配列番号14)および5’-CCGTTTCAGGAATCGGATCA-3’(配列番号15)ならびにプローブ5’-FAM-TGCACAGCAGTTCCACAGGCACAAG-TAMRA-3’(配列番号16)を用いて細胞性IL-4配列を検出して確認した。
(Proviral DNA amount)
DNA samples were extracted from PBMC and lymphoid tissue using the DNeasy tissue kit (QIAGEN) according to the manufacturer's protocol. Ultra-high sensitivity digital PCR was performed with QX200 Droplet Digital PCR system (Bio-Rad). A 20 μl reaction mixture was prepared containing 2 μl of DNA sample, ddPCR supermix for probes (without dUTP) (Bio-Rad), 900 nM of each primer, 200 nM of probe, and demineralized water. This mixed solution was placed in a DG8 cartridge along with 70 μl of droplet generation oil (Bio-Rad), and droplets were formed using a droplet generator (Bio-Rad). The droplets were then transferred to a 96-well microplate. PCR amplification was performed with the following program: initial denaturation and stabilization at 95°C for 10 min, 40 cycles of denaturation at 94°C for 30 s, annealing/extension at 57°C for 60 s, followed by 10 min at 98°C. Droplets were then sorted and analyzed on a QX200 droplet reader (Bio-Rad) using QuantaSoft v1.6 (Bio-Rad) software. Samples were only considered if 20,000 or more droplets were read. Cell numbers were monitored by sensitive quantitative real-time PCR as previously described (53). DNA samples were extracted from PBMC and lymphoid tissue using a DNA DNAeasy tissue kit (QIAGEN) according to the manufacturer's protocol. Cell numbers were determined using rhesus IL-4 specific primers 5'-TGTGCTCCGGCAGTTCTACA-3' (SEQ ID NO: 14) and 5'-CCGTTTCAGGAATCGGATCA-3' (SEQ ID NO: 15) and probe 5'-FAM-TGCACAGCAGTTCCACAGGCACAAG-TAMRA-3' ( The cellular IL-4 sequence was detected and confirmed using SEQ ID NO: 16).
 (CD4T細胞数)
 それぞれのカニクイザルの全血100μlを、蛍光標識モノクローナル抗体:抗CD3(クローンSP34-2、Alexa700;BD)、抗CD4(クローンL200、PerCP-Cy5.5;BD)で染色した。フローサイトメトリーを、FACSCanto IIフローサイトメーター(BD)で行った。データをFACSDiVaソフトウェアを用いて解析した。
(CD4 + T cell number)
100 μl of whole blood from each cynomolgus monkey was stained with fluorescently labeled monoclonal antibodies: anti-CD3 (clone SP34-2, Alexa700; BD), anti-CD4 (clone L200, PerCP-Cy5.5; BD). Flow cytometry was performed on a FACSCanto II flow cytometer (BD). Data were analyzed using FACSDiVa software.
 (結果)
 (抗HIV薬のみの投与)
 抗HIV薬のみを投与されたサル(#137および#139)において、血漿中ウイルス量は低レベルを維持していたが、抗HIV薬の投与を中止すると、血漿中ウイルス量が増加した(図2および図3)。また、SHIV89.6Pを接種し、抗HIV薬を投与されたたサル(#137および#139)において、観察期間中、CD4T細胞数は非常に低かった(図2および図3)。
(result)
(Administration of anti-HIV drugs only)
In monkeys that received only anti-HIV drugs (#137 and #139), the plasma viral load remained at a low level, but when anti-HIV drug administration was discontinued, the plasma viral load increased (Figure 2 and Figure 3). Additionally, in the monkeys (#137 and #139) that were inoculated with SHIV89.6P and administered anti-HIV drugs, the number of CD4 + T cells was very low during the observation period (Figures 2 and 3).
 (低用量SHIV-Ag85B 2回投与)
 低用量のSHIV-Ag85Bを2回投与されたサル(#138)において、抗HIV薬の投与を中止した後もほとんど血漿中ウイルスが検出されず、1回目のSHIV-Ag85B投与14週間後には、血漿中ウイルス量は検出限界以下に達した(図4)。また、低用量のSHIV-Ag85Bを2回投与されたサル(#138)において、SHIV-Ag85B投与後、CD4T細胞数は正常レベルを維持した(図4)。
(Low dose SHIV-Ag85B administered twice)
In the monkey (#138) that received two low doses of SHIV-Ag85B, almost no virus was detected in the plasma even after anti-HIV drug administration was discontinued, and 14 weeks after the first administration of SHIV-Ag85B, The amount of virus in plasma reached below the detection limit (Figure 4). Furthermore, in the monkey (#138) that received low doses of SHIV-Ag85B twice, the number of CD4 + T cells remained at normal levels after SHIV-Ag85B administration (Figure 4).
 (高用量SHIV-Ag85B 1回投与)
 高用量のSHIV-Ag85Bを1回投与されたサル(#142)において、抗HIV薬の投与を中止した後、血漿中ウイルス量は検出限界以下を観察期間にわたって維持した(図5)。また、高用量のSHIV-Ag85Bを1回投与されたサル(#142)において、SHIV-Ag85B投与後、CD4T細胞数は正常レベルを維持した(図5)。
(High dose SHIV-Ag85B once administered)
In the monkey (#142) that received a single high dose of SHIV-Ag85B, the plasma viral load remained below the detection limit over the observation period after anti-HIV drug administration was discontinued (Figure 5). Furthermore, in the monkey (#142) that received one high dose of SHIV-Ag85B, the number of CD4 + T cells remained at a normal level after SHIV-Ag85B administration (Figure 5).
 (高用量SHIV-Ag85B 5回投与)
 高用量のSHIV-Ag85Bを投与されたサル(#141)において、高用量のSHIV-Ag85Bを2回投与すると低いレベルまで血漿中ウイルス量は低下するが、しばらくすると血漿中ウイルス量は増加した(図6)。再度低用量のSHIV-Ag85Bを投与すると(感染後91日目、147日目および154日目)、血漿中ウイルス量は低下した。このような例においても、SHIV-Ag85Bを複数回投与することにより、血漿中ウイルス量を低レベルに維持することが可能と考えられる。CD4T細胞は、正常レベルを維持していた(図6)。
(High dose SHIV-Ag85B 5 times administration)
In the monkey (#141) that received a high dose of SHIV-Ag85B, the plasma virus load decreased to a low level after two doses of high dose SHIV-Ag85B, but after a while the plasma virus load increased ( Figure 6). When low doses of SHIV-Ag85B were again administered (days 91, 147, and 154 post-infection), the plasma viral load decreased. Even in such cases, it is considered possible to maintain the plasma viral load at a low level by administering SHIV-Ag85B multiple times. CD4 + T cells maintained normal levels (Figure 6).
 (低用量および高用量SHIV-Ag85Bそれぞれ1回投与)
 感染後66日目に低用量SHIV-Ag85Bを投与したサル(#140)において、感染後77日目以降に血漿中ウイルス量が増加した。感染後98日目に高用量SHIV-Ag85Bを投与したが、血漿中ウイルス量は上昇したままであった(図7)。CD4T細胞数は、観察期間中にわたって低いレベルであった(図7)。
(low dose and high dose SHIV-Ag85B administered once each)
In monkeys (#140) administered low-dose SHIV-Ag85B on day 66 post-infection, the amount of virus in plasma increased from day 77 post-infection onwards. High-dose SHIV-Ag85B was administered on day 98 post-infection, but the plasma viral load remained elevated (Figure 7). CD4 + T cell numbers remained at low levels throughout the observation period (Figure 7).
 本実施例の実験の方法は図1に準じて行った。 The experimental method of this example was conducted according to FIG. 1.
 具体的には以下のとおりである。
 抗HIV薬投与開始:
SHIV89.6P感染後、血漿中ウイルスがピークを示したのち(#137除く)。
投与方法:
1日1回;皮下投与
 抗HIV薬:
テノホビル      20 mg/kg
エムトリシタビン   40 mg/kg
ドルテグラビル        2.5 mg/kg
参考文献(Goswami R, et al.. Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model. mBio. 2019 Sep 5;10(5):e01971-19. doi: 10.1128/mBio.01971-19., Nishimura Y, et al., Prevention and treatment of SHIVAD8 infection in rhesus macaques by a potent d-peptide HIV entry inhibitor. Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22436-22442. doi: 10.1073/pnas.2009700117)
Specifically, the details are as follows.
Start of anti-HIV drug administration:
After infection with SHIV89.6P and after the virus in plasma peaked (excluding #137).
Administration method:
Once a day; subcutaneous administration Anti-HIV drugs:
Tenofovir 20 mg/kg
Emtricitabine 40 mg/kg
Dolutegravir 2.5 mg/kg
References (Goswami R, et al.. Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Hum an Immunodeficiency Virus-Infected Infant Rhesus Macaque Model. mBio. 2019 Sep 5;10(5):e01971-19. doi : 10.1128/mBio.01971-19., Nishimura Y, et al., Prevention and treatment of SHIVAD8 infection in rhesus macaques by a pote nt d-peptide HIV entry inhibitor. Proc Natl Acad Sci USA. 2020 Sep 8; 117(36):22436-22442. doi: 10.1073/pnas.2009700117)
 具体的には上述のSHIVと実質的に同様の手順で実施した。各個体における投与スケジュールは図8記載のとおりである。 Specifically, it was carried out using substantially the same procedure as for SHIV described above. The administration schedule for each individual is as shown in FIG.
 低用量のSHIV-Ag85Bを2回投与されたサル(#138)および高用量のSHIV-Ag85Bを1回投与されたサル(#142)において、SHIV-Ag85Bの接種後は長期にわたり血漿中ウイルス量が検出限界以下を維持した(図9Aおよび図9B)。また、高用量のSHIV-Ag85Bを投与されたサル1頭(#141)に関しては初期に短期間の効果しか認められず、血漿中にウイルスが出現するたびに投与したところ、5度目の接種以降に長期の抑制効果が認められた(図10)。 In monkeys that received two doses of low-dose SHIV-Ag85B (#138) and monkeys that received one dose of high-dose SHIV-Ag85B (#142), the plasma viral load remained low for a long time after vaccination with SHIV-Ag85B. remained below the detection limit (FIGS. 9A and 9B). In addition, for one monkey (#141) that received a high dose of SHIV-Ag85B, only a short-term effect was observed at the beginning, and when it was administered every time the virus appeared in the plasma, after the fifth vaccination, A long-term suppressive effect was observed (Figure 10).
 上記結果の説明は以下のとおりである。 The explanation of the above results is as follows.
 低用量のSHIV-Ag85Bを2回投与されたサル(#138)は、低用量(1x10TCID50)SHIV-Ag85Bを治療薬休止後4日目と11日目に投与したところ血漿中ウイルスは検出限界以下を維持し、CD4細胞も正常値に回復し、維持されている。 The monkey (#138) received low dose SHIV-Ag85B twice, and when low dose (1x10 4 TCID50) SHIV-Ag85B was administered on the 4th and 11th day after stopping the treatment, no virus was detected in the plasma. CD4 + cells have also recovered to normal levels and are maintained below the limit.
 上記結果の説明は以下のとおりである。 The explanation of the above results is as follows.
 高用量のSHIV-Ag85Bを1回投与されたサル(#142)は、高用量SHIV-Ag85B(5x10TCID50)を治療薬休止後7日目に投与したところ血漿中ウイルスは検出限界以下を維持し、CD4細胞も正常値に回復し、維持されている。 The monkey (#142) received one dose of high-dose SHIV-Ag85B, and when high-dose SHIV-Ag85B (5x10 4 TCID50) was administered 7 days after treatment was stopped, the virus in plasma remained below the detection limit. However, CD4 + cells also recovered to normal values and were maintained.
 高用量のSHIV-Ag85Bを投与されたサル(#141)は、高用量SHIV-Ag85B(5x10TCID50)を治療薬休止後7日目に投与したところ血漿中ウイルスは検出限界以下には短期間しか維持されなかったために血漿中にウイルスが出現するたびに投与したところ、5度目の接種以降に長期の抑制効果が認められた。CD4細胞も正常値に回復し、維持されている。 The monkey (#141) that received a high dose of SHIV-Ag85B was treated with a high dose of SHIV-Ag85B (5x10 4 TCID50) on the 7th day after stopping the treatment, and the virus in the plasma remained below the detection limit for a short period of time. However, when the vaccine was administered every time the virus appeared in plasma, a long-term suppressive effect was observed after the fifth vaccination. CD4 + cells also returned to normal levels and were maintained.
 (実施例4)SHIV-Ag85Bでのさらなる臨床試験
 カニクイザルに高用量SHIV-Ag85Bを1週間毎に4回投与する。その後、カニクイザルにおける血漿中ウイルス量およびCD4T細胞数の推移を測定した。
(1)休薬による影響
 休薬による影響について、SHIV-Ag85Bの接種回数および接種量を検討し、実施例3と同様の実験を行った。休薬は8週間の投与後、3日間投薬を中止することによって行った。
Example 4 Further clinical studies with SHIV-Ag85B Cynomolgus monkeys are administered high doses of SHIV-Ag85B four times weekly. Thereafter, changes in the amount of virus in plasma and the number of CD4 + T cells in the cynomolgus monkeys were measured.
(1) Effects of drug suspension Regarding the effects of drug suspension, the number of inoculations and the amount of SHIV-Ag85B inoculation were investigated, and an experiment similar to that in Example 3 was conducted. A drug holiday was performed by discontinuing the drug for 3 days after 8 weeks of administration.
 上記結果は図11に示す(#137は図11A、#139は図11B。)のとおりである。 The above results are shown in FIG. 11 (#137 is FIG. 11A, #139 is FIG. 11B).
 上記結果の説明は以下のとおりである。 The explanation of the above results is as follows.
 図11Aは、抗HIV薬のみを投与された未治療のサル(#137)のコントロールである。休薬後7日目には血漿中ウイルスが出現し、その後上昇、それと反比例の形でCD4細胞は減少し、感染後170日で死亡した。 FIG. 11A is a control untreated monkey (#137) that received anti-HIV drugs only. The virus in the plasma appeared on the 7th day after discontinuation of the drug, and then increased, and inversely proportional to this, the number of CD4 + cells decreased, and the patient died 170 days after infection.
 図11Bは、抗HIV薬のみを投与された未治療のサル(#139)のコントロールである。休薬後110日目には血漿中ウイルスが出現し、その後上昇、それと反比例の形でCD4細胞は減少し、感染後500日で死亡した。 FIG. 11B is a control untreated monkey (#139) that received anti-HIV drugs only. The virus in the plasma appeared 110 days after discontinuation of the drug, and then increased, and inversely proportional to this, the number of CD4 + cells decreased, and the patient died 500 days after infection.
 (2)治療プロトコールの最適化
 本実施例の実験の概要を図12に示す。本実施例では、HIVウイルスの接種後に本開示に係る組成物を投与した場合の血漿中ウイルス量の推移を検証した。
(2) Optimization of treatment protocol An outline of the experiment of this example is shown in FIG. 12. In this example, the change in plasma virus amount when the composition according to the present disclosure was administered after inoculation with the HIV virus was verified.
(プロトコール)
 SHIV感染後1週目より投薬を開始する。治療薬を休薬後7日目から1週間隔で4回SHIV-Ag85B(5x10TCID50)を投与した。
(protocol)
Medication will begin 1 week after SHIV infection. SHIV-Ag85B (5x10 4 TCID50) was administered four times at one-week intervals starting 7 days after the treatment drug was discontinued.
 (検証手法)
 (血漿中ウイルスRNA量)
 SHIV感染レベルは、先に述べたように、高感度定量リアルタイムRT-PCRを用いて血漿中のウイルスRNA量を測定することによってモニターした(23、51、52)。ウイルスRNAをMagNA PureCompact Nucleic Acid Isolation Kit(Roche Diagnos-tics)を用いて血漿から単離した。リアルタイムRT-PCRは、QuantiTec Probe RT-PCR Kit(Qiagen)およびLightCycler 480サーモサイクラー(Roche Diagnostics、 Rotkreuz、 Switzerland)を用いて実施した。SIVmac239のgag遺伝子を、プローブ5’-FAM-TGTCCACCTGCCATTAAGTCCCGA-TAMRA-3’(ここでFAMは6-カルボキシフルオレセインおよびTAMRAは、6-カルボキシテトラメチルローダミンである)(配列番号11)、プライマー5’-TGGAAGAAAGACCTCCAGAAAATG-3’(配列番号12)および5’-CAAGTGCAGTTAGCAAGCGAGGAT-3’(配列番号13)で増幅した。検出限界を1000ウイルスRNAコピー/mlと算出した。
(Verification method)
(Amount of viral RNA in plasma)
SHIV infection levels were monitored by measuring the amount of viral RNA in plasma using sensitive quantitative real-time RT-PCR as previously described (23, 51, 52). Viral RNA was isolated from plasma using the MagnA PureCompact Nucleic Acid Isolation Kit (Roche Diagnostics). Real-time RT-PCR was performed using a QuantiTec Probe RT-PCR Kit (Qiagen) and a LightCycler 480 thermocycler (Roche Diagnostics, Rotkreuz, Switzerland). The gag gene of SIVmac239 was probed with probe 5'-FAM-TGTCCACCTGCCATTAAGTCCCGA-TAMRA-3' (where FAM is 6-carboxyfluorescein and TAMRA is 6-carboxytetramethylrhodamine) (SEQ ID NO: 11), primer 5'- TGGAAGAAAGACCTCCAGAAAATG-3' (SEQ ID NO: 12) and 5'-CAAGTGCAGTTAGCAAGCGAGGAT-3' (SEQ ID NO: 13) were amplified. The detection limit was calculated to be 1000 viral RNA copies/ml.
 (CD4T細胞数)
 それぞれのカニクイザルの全血100μlを、蛍光標識モノクローナル抗体:抗CD3(クローンSP34-2、Alexa700;BD)、抗CD4(クローンL200、PerCP-Cy5.5;BD)で染色した。フローサイトメトリーを、FACSCanto IIフローサイトメーター(BD)で行った。データをFACSDiVaソフトウェアを用いて解析した。
(CD4 + T cell number)
100 μl of whole blood from each cynomolgus monkey was stained with fluorescently labeled monoclonal antibodies: anti-CD3 (clone SP34-2, Alexa700; BD), anti-CD4 (clone L200, PerCP-Cy5.5; BD). Flow cytometry was performed on a FACSCanto II flow cytometer (BD). Data were analyzed using FACSDiVa software.
 (結果) (Result)
 図13に結果を示す。使用した抗HIV薬は個体の相違にかかわらず奏功していることが示された。。 The results are shown in Figure 13. The anti-HIV drugs used were shown to be effective regardless of individual differences. .
 (実施例5:治療最適化)
 本実施例では、SHIV-Ag85B 4回投与の試験を行った。実質的には上述のプロトコールと同様である。
(Example 5: Treatment optimization)
In this example, a test was conducted in which SHIV-Ag85B was administered four times. The protocol is essentially the same as described above.
 (SHIV-Ag85B 4回投与)
 高用量(5.0×10TCID50)のSHIV-Ag85Bを投与されたサル(#164、#165および#167)において、高用量のSHIV-Ag85Bを1週間間隔で4回投与すると血漿中ウイルス量は検出限界以下を観察期間にわたって維持した(図14)。Ag85Bを含まない、対照群は休薬後2週で血漿中ウイルスが出現したが、SHIV-Ag85B投与群は血漿中ウイルスは検出限界以下を維持した。
(SHIV-Ag85B 4 times administration)
In monkeys (#164, #165, and #167) that received a high dose (5.0×10 4 TCID 50 ) of SHIV-Ag85B, administration of high dose SHIV-Ag85B four times at one-week intervals resulted in plasma The viral load remained below the detection limit over the observation period (Figure 14). In the control group that did not contain Ag85B, virus appeared in the plasma two weeks after the drug was discontinued, but in the SHIV-Ag85B administration group, the virus in the plasma remained below the detection limit.
 (SHIV-NI 4回投与)
 高用量(5.0×10TCID50)のSHIV-NIを投与されたサル(#162、#166および#168)において、高用量のSHIV-NIを4回投与すると#168においては血漿中ウイルス量は検出限界以下を維持したが、#162と#166において血漿中ウイルス量は増加した(図15)。Ag85Bを含まない、対照群は休薬後2週で血漿中ウイルスが出現したが、SHIV-Ag85B投与群は血漿中ウイルスは検出限界以下を維持した(Ag85Bを含まない対照群は図15。SHIV-Ag85B接種群は図14、未治療群は図16である)。
(SHIV-NI 4 doses)
In monkeys (#162, #166, and #168) that received a high dose (5.0 x 10 4 TCID 50 ) of SHIV-NI, four doses of high-dose SHIV-NI increased the plasma concentration in #168. Although the virus amount remained below the detection limit, the plasma virus amount increased in #162 and #166 (Figure 15). In the control group that does not contain Ag85B, virus appeared in the plasma 2 weeks after drug withdrawal, but in the SHIV-Ag85B administration group, the virus in the plasma remained below the detection limit (Figure 15 for the control group that does not contain Ag85B. -Ag85B inoculated group is shown in Figure 14; untreated group is shown in Figure 16).
 (実施例6)アジュバント分子が組み込まれた弱毒化HCV
 (材料および方法)
 (コンストラクトの製法)
 HCV-Ag85Bを実施例1に準じて作製する。欠損させると弱毒化を誘導するHCVの遺伝子を、アジュバント分子(例えば、Ag85B)で置き換える。
(Example 6) Attenuated HCV incorporating adjuvant molecules
(material and method)
(Construct manufacturing method)
HCV-Ag85B is produced according to Example 1. A gene of HCV that induces attenuation when deleted is replaced with an adjuvant molecule (eg, Ag85B).
 (ウイルス株)
 本実施例では、HCVウイルス株を、カニクイザルのPBMCで増殖させる。標準フィコール密度勾配分離法で分離したPBMCを10%ウシ胎児血清、2mM L-グルタミン、100ユニット/mlのIL-2(塩野義製薬)を添加したRPMI1640で培養し、フィトヘマグルチニンで72時間刺激し、感染倍率(MOI)が0.1のHCVを細胞に感染させる。3日ごとに培養液の半分を新しい培養液に交換し、感染後6~9日目に無細胞上清を回収する。M8166細胞を用いて、HCVのTCID50を測定する。
(virus strain)
In this example, HCV virus strains are grown in cynomolgus monkey PBMC. PBMCs separated by standard Ficoll density gradient separation were cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 2mM L-glutamine, and 100 units/ml IL-2 (Shionogi & Co., Ltd.), and stimulated with phytohemagglutinin for 72 hours. , cells are infected with HCV at a multiplicity of infection (MOI) of 0.1. Half of the culture medium is replaced with fresh culture medium every 3 days, and cell-free supernatants are collected 6-9 days post-infection. The TCID 50 of HCV is measured using M8166 cells.
 (動物)
 サルSIV、D型レトロウイルス、T細胞リンパ腫ウイルス、サル泡沫状ウイルス、Epstein-Barrウイルス、サイトメガロウイルス、およびBウイルスのすべてが陰性である成人サル(インドネシア、フィリピン、マレーシア産)を使用する。7頭のサルにHCVを10 TCID50で静脈内接種する。その後、HCV-Ag85Bを静脈内接種する。血液を、抗凝固剤としてクエン酸ナトリウムを用いて定期的に採取し、CD4T細胞数の測定、血漿ウイルス量の定量化、および免疫学的分析に使用する。リンパ組織試料を、生検で入手し、プロウイルスDNA量の測定および病理学的検査に使用する。
(animal)
Adult monkeys (from Indonesia, the Philippines, and Malaysia) that are negative for simian SIV, type D retrovirus, T-cell lymphoma virus, simian foamy virus, Epstein-Barr virus, cytomegalovirus, and B virus are all used. Seven monkeys are inoculated intravenously with HCV at 10 4 TCID 50 . Thereafter, HCV-Ag85B is inoculated intravenously. Blood is collected periodically with sodium citrate as an anticoagulant and used for determination of CD4 + T cell counts, quantification of plasma viral load, and immunological analyses. Lymphoid tissue samples are obtained by biopsy and used for proviral DNA content determination and pathological examination.
 (DNA試料の調製およびネステッドPCRによるHCV毒性遺伝子の増幅)
 HCV-Ag85Bを接種したサルにおけるプロウイルスDNAを測定するために、ネステッドPCRを用いてHCV特異的遺伝子セグメントの断片を増幅する。プロウイルスDNAは、接種したサルのPBMCから抽出する。細胞DNAをDNeasy tissue kits(QIAGEN)を用いて抽出した。ネステッドPCRをTaKaRa Ex Taq(Takara Bio Inc.、Shiga、Japan)を用いて実施する。
(Preparation of DNA sample and amplification of HCV virulence gene by nested PCR)
To measure proviral DNA in monkeys inoculated with HCV-Ag85B, nested PCR is used to amplify fragments of HCV-specific gene segments. Proviral DNA is extracted from PBMC of inoculated monkeys. Cellular DNA was extracted using DNeasy tissue kits (QIAGEN). Nested PCR is performed using TaKaRa Ex Taq (Takara Bio Inc., Shiga, Japan).
 (血漿中ウイルスRNA量)
 HCV感染レベルは、先に述べたように、高感度定量リアルタイムRT-PCRを用いて血漿中のウイルスRNA量を測定することによってモニターする。ウイルスRNAをMagNA PureCompact Nucleic Acid Isolation Kit(Roche Diagnos-tics)を用いて血漿から単離する。リアルタイムRT-PCRは、QuantiTec Probe RT-PCR Kit(Qiagen)およびLightCycler 480サーモサイクラー(Roche Diagnostics、 Rotkreuz、 Switzerland)を用いて実施する。HCV特異的遺伝子をプローブおよびプライマーを用いて増幅する。
(Amount of viral RNA in plasma)
HCV infection levels are monitored by measuring the amount of viral RNA in plasma using sensitive quantitative real-time RT-PCR, as described above. Viral RNA is isolated from plasma using the MagnA PureCompact Nucleic Acid Isolation Kit (Roche Diagnostics). Real-time RT-PCR is performed using a QuantiTec Probe RT-PCR Kit (Qiagen) and a LightCycler 480 thermocycler (Roche Diagnostics, Rotkreuz, Switzerland). HCV-specific genes are amplified using probes and primers.
 (プロウイルスDNA量)
 DNeasy tissue kit(QIAGEN)を用いて、PBMCおよびリンパ組織からDNA試料を製造者のプロトコルにしたがって抽出する。超高感度デジタルPCRは、QX200 Droplet Digital PCR system(Bio-Rad)で行う。DNA試料2μl、ddPCR supermix for probes(dUTPなし)(Bio-Rad)、各プライマー900nM、プローブ200nM、および脱塩水を含む20μlの反応混合物を調製する。この混合液を液滴生成オイル(Bio-Rad)70μlとともにDG8カートリッジに入れ、液滴生成器(Bio-Rad)で液滴を形成する。その後、96ウェルマイクロプレートに液滴を移した。PCR増幅は以下のプログラムで行った:95℃で10分間の初期変性および安定化、94℃で30秒間の変性、57℃で60秒間のアニーリング/伸長を40サイクル行い、その後10分間98℃。その後、QuantaSoft v1.6(Bio- Rad)ソフトウェアを使用して、QX200液滴リーダー(Bio-Rad)で液滴をソートし、分析する。試料は、20、000以上の液滴が読み取られた場合のみ考慮する。細胞数を、先に述べたように、高感度定量リアルタイムPCRによってモニターする。DNADNeasy tissue kit(QIAGEN)を用いて、製造者のプロトコルに従って、DNA試料をPBMCおよびリンパ系組織から抽出する。
(Proviral DNA amount)
DNA samples are extracted from PBMC and lymphoid tissue using the DNeasy tissue kit (QIAGEN) according to the manufacturer's protocol. Ultra-high sensitivity digital PCR is performed with QX200 Droplet Digital PCR system (Bio-Rad). Prepare a 20 μl reaction mixture containing 2 μl of DNA sample, ddPCR supermix for probes (no dUTP) (Bio-Rad), 900 nM of each primer, 200 nM of probe, and demineralized water. This mixed solution is placed in a DG8 cartridge along with 70 μl of droplet generation oil (Bio-Rad), and droplets are formed using a droplet generator (Bio-Rad). The droplets were then transferred to a 96-well microplate. PCR amplification was performed with the following program: initial denaturation and stabilization at 95°C for 10 min, 40 cycles of denaturation at 94°C for 30 s, annealing/extension at 57°C for 60 s, followed by 10 min at 98°C. Droplets are then sorted and analyzed on a QX200 droplet reader (Bio-Rad) using QuantaSoft v1.6 (Bio-Rad) software. A sample is only considered if 20,000 or more droplets are read. Cell numbers are monitored by sensitive quantitative real-time PCR as described above. DNA samples are extracted from PBMC and lymphoid tissue using a DNA DNAeasy tissue kit (QIAGEN) according to the manufacturer's protocol.
 (CD4T細胞数)
 それぞれのカニクイザルの全血100μlを、蛍光標識モノクローナル抗体:抗CD3(クローンSP34-2、Alexa700;BD)、抗CD4(クローンL200、PerCP-Cy5.5;BD)で染色する。フローサイトメトリーを、FACSCanto IIフローサイトメーター(BD)で行う。データをFACSDiVaソフトウェアを用いて解析する。
(CD4 + T cell number)
100 μl of whole blood from each cynomolgus monkey is stained with fluorescently labeled monoclonal antibodies: anti-CD3 (clone SP34-2, Alexa700; BD), anti-CD4 (clone L200, PerCP-Cy5.5; BD). Flow cytometry is performed on a FACSCanto II flow cytometer (BD). Data are analyzed using FACSDiVa software.
 (実施例7)アジュバント分子が組み込まれた弱毒化HTLV
 (材料および方法)
 (コンストラクトの製法)
 HTLV-Ag85Bを実施例1に準じて作製する。HTLVの欠損させると弱毒化を誘導する遺伝子を、アジュバント分子(例えば、Ag85B)で置き換える。
(Example 7) Attenuated HTLV incorporating adjuvant molecules
(material and method)
(Construct manufacturing method)
HTLV-Ag85B is produced according to Example 1. Genes that induce attenuation when deleted in HTLV are replaced with adjuvant molecules (eg, Ag85B).
 (ウイルス株)
 本実施例では、HTLVウイルス株を、カニクイザルのPBMCで増殖させる。標準フィコール密度勾配分離法で分離したPBMCを10%ウシ胎児血清、2mM L-グルタミン、100ユニット/mlのIL-2(塩野義製薬)を添加したRPMI1640で培養し、フィトヘマグルチニンで72時間刺激し、感染倍率(MOI)が0.1のHCVを細胞に感染させる。3日ごとに培養液の半分を新しい培養液に交換し、感染後6~9日目に無細胞上清を回収する。M8166細胞を用いて、HCVのTCID50を測定する。
(virus strain)
In this example, an HTLV virus strain is grown in cynomolgus monkey PBMC. PBMCs separated by standard Ficoll density gradient separation were cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 2mM L-glutamine, and 100 units/ml IL-2 (Shionogi & Co., Ltd.), and stimulated with phytohemagglutinin for 72 hours. , cells are infected with HCV at a multiplicity of infection (MOI) of 0.1. Half of the culture medium is replaced with fresh culture medium every 3 days, and cell-free supernatants are collected 6-9 days post-infection. The TCID 50 of HCV is measured using M8166 cells.
 (動物)
 サルSIV、D型レトロウイルス、T細胞リンパ腫ウイルス、サル泡沫状ウイルス、Epstein-Barrウイルス、サイトメガロウイルス、およびBウイルスのすべてが陰性である成人サル(インドネシア、フィリピン、マレーシア産)を使用する。サルにHTLVを10 TCID50で静脈内接種する。その後、HTLV-Ag85Bを静脈内接種する。血液を、抗凝固剤としてクエン酸ナトリウムを用いて定期的に採取し、CD4T細胞数の測定、血漿ウイルス量の定量化、および免疫学的分析に使用する。リンパ組織試料を、生検で入手し、プロウイルスDNA量の測定および病理学的検査に使用する。
(animal)
Adult monkeys (from Indonesia, the Philippines, and Malaysia) that are negative for simian SIV, type D retrovirus, T-cell lymphoma virus, simian foamy virus, Epstein-Barr virus, cytomegalovirus, and B virus are all used. Monkeys are inoculated intravenously with HTLV at 10 4 TCID 50 . Thereafter, HTLV-Ag85B is inoculated intravenously. Blood is collected periodically with sodium citrate as an anticoagulant and used for determination of CD4 + T cell counts, quantification of plasma viral load, and immunological analyses. Lymphoid tissue samples are obtained by biopsy and used for proviral DNA content determination and pathological examination.
 (DNA試料の調製およびネステッドPCRによるHTLV毒性遺伝子の増幅)
 HTLV-Ag85Bを接種したサルにおけるプロウイルスDNAを測定するために、ネステッドPCRを用いてHTLV特異的遺伝子セグメントの断片を増幅する。プロウイルスDNAは、接種したサルのPBMCから抽出する。細胞DNAをDNeasy tissue kits(QIAGEN)を用いて抽出した。ネステッドPCRをTaKaRa Ex Taq(Takara Bio Inc.、Shiga、Japan)を用いて実施する。
(Preparation of DNA sample and amplification of HTLV virulence gene by nested PCR)
To measure proviral DNA in monkeys inoculated with HTLV-Ag85B, nested PCR is used to amplify fragments of HTLV-specific gene segments. Proviral DNA is extracted from PBMC of inoculated monkeys. Cellular DNA was extracted using DNeasy tissue kits (QIAGEN). Nested PCR is performed using TaKaRa Ex Taq (Takara Bio Inc., Shiga, Japan).
 (血漿中ウイルスRNA量)
 HTLV感染レベルは、先に述べたように、高感度定量リアルタイムRT-PCRを用いて血漿中のウイルスRNA量を測定することによってモニターする。ウイルスRNAをMagNA PureCompact Nucleic Acid Isolation Kit(Roche Diagnos-tics)を用いて血漿から単離する。リアルタイムRT-PCRは、QuantiTec Probe RT-PCR Kit(Qiagen)およびLightCycler 480サーモサイクラー(Roche Diagnostics、 Rotkreuz、 Switzerland)を用いて実施する。HCV特異的遺伝子をプローブおよびプライマーを用いて増幅する。
(Amount of viral RNA in plasma)
HTLV infection levels are monitored by measuring the amount of viral RNA in plasma using sensitive quantitative real-time RT-PCR, as described above. Viral RNA is isolated from plasma using the MagnA PureCompact Nucleic Acid Isolation Kit (Roche Diagnostics). Real-time RT-PCR is performed using a QuantiTec Probe RT-PCR Kit (Qiagen) and a LightCycler 480 thermocycler (Roche Diagnostics, Rotkreuz, Switzerland). HCV-specific genes are amplified using probes and primers.
 (プロウイルスDNA量)
 DNeasy tissue kit(QIAGEN)を用いて、PBMCおよびリンパ組織からDNA試料を製造者のプロトコルにしたがって抽出する。超高感度デジタルPCRは、QX200 Droplet Digital PCR system(Bio-Rad)で行う。DNA試料2μl、ddPCR supermix for probes(dUTPなし)(Bio-Rad)、各プライマー900nM、プローブ200nM、および脱塩水を含む20μlの反応混合物を調製する。この混合液を液滴生成オイル(Bio-Rad)70μlとともにDG8カートリッジに入れ、液滴生成器(Bio-Rad)で液滴を形成する。その後、96ウェルマイクロプレートに液滴を移した。PCR増幅は以下のプログラムで行った:95℃で10分間の初期変性および安定化、94℃で30秒間の変性、57℃で60秒間のアニーリング/伸長を40サイクル行い、その後10分間98℃。その後、QuantaSoft v1.6(Bio- Rad)ソフトウェアを使用して、QX200液滴リーダー(Bio-Rad)で液滴をソートし、分析する。試料は、20、000以上の液滴が読み取られた場合のみ考慮する。細胞数を、先に述べたように、高感度定量リアルタイムPCRによってモニターする。DNADNeasy tissue kit(QIAGEN)を用いて、製造者のプロトコルに従って、DNA試料をPBMCおよびリンパ系組織から抽出する。
(Proviral DNA amount)
DNA samples are extracted from PBMC and lymphoid tissue using the DNeasy tissue kit (QIAGEN) according to the manufacturer's protocol. Ultra-high sensitivity digital PCR is performed with QX200 Droplet Digital PCR system (Bio-Rad). Prepare a 20 μl reaction mixture containing 2 μl of DNA sample, ddPCR supermix for probes (no dUTP) (Bio-Rad), 900 nM of each primer, 200 nM of probe, and demineralized water. This mixed solution is placed in a DG8 cartridge along with 70 μl of droplet generation oil (Bio-Rad), and droplets are formed using a droplet generator (Bio-Rad). The droplets were then transferred to a 96-well microplate. PCR amplification was performed with the following program: initial denaturation and stabilization at 95°C for 10 min, 40 cycles of denaturation at 94°C for 30 s, annealing/extension at 57°C for 60 s, followed by 10 min at 98°C. Droplets are then sorted and analyzed on a QX200 droplet reader (Bio-Rad) using QuantaSoft v1.6 (Bio-Rad) software. A sample is only considered if 20,000 or more droplets are read. Cell numbers are monitored by sensitive quantitative real-time PCR as described above. DNA samples are extracted from PBMC and lymphoid tissue using a DNA DNAeasy tissue kit (QIAGEN) according to the manufacturer's protocol.
 (CD4T細胞数)
 それぞれのカニクイザルの全血100μlを、蛍光標識モノクローナル抗体:抗CD3(クローンSP34-2、Alexa700;BD)、抗CD4(クローンL200、PerCP-Cy5.5;BD)で染色する。フローサイトメトリーを、FACSCanto IIフローサイトメーター(BD)で行う。データをFACSDiVaソフトウェアを用いて解析する。
(CD4 + T cell number)
100 μl of whole blood from each cynomolgus monkey is stained with fluorescently labeled monoclonal antibodies: anti-CD3 (clone SP34-2, Alexa700; BD), anti-CD4 (clone L200, PerCP-Cy5.5; BD). Flow cytometry is performed on a FACSCanto II flow cytometer (BD). Data are analyzed using FACSDiVa software.
 (実施例8)アジュバント分子を組み込んだその他の弱毒化ウイルス(麻疹ウイルス、風疹ウイルス等)
 実施例6および7と同様に、アジュバントを組み込んだ弱毒化ウイルスを作製し、同様の実験を行う。麻疹ウイルスおよび風疹ウイルスの欠損することで弱毒化を誘導する遺伝子を、アジュバント分子(例えば、Ag85B)で置き換える。または、既知の弱毒化麻疹ウイルスおよび風疹ウイルスにアジュバントを付加して、アジュバントを組み込んだ弱毒化ウイルスを作製する。
(Example 8) Other attenuated viruses incorporating adjuvant molecules (measles virus, rubella virus, etc.)
Similar to Examples 6 and 7, an attenuated virus incorporating an adjuvant is produced and a similar experiment is performed. Genes whose deletion induces attenuation in measles and rubella viruses are replaced with adjuvant molecules (eg, Ag85B). Alternatively, adjuvants are added to known attenuated measles and rubella viruses to create attenuated viruses incorporating adjuvants.
 (実施例9)HIV-Ag85B、HCV-Ag85B、HTLV-Ag85Bでの臨床試験
 本実施例では、HIV-Ag85B(配列番号4)、HCV-Ag85B、またはHTLV-Ag85Bを、対応する治療薬による治療を受けているか受けていないウイルス感染したヒト(BCGワクチン接種群およびBCGワクチン非接種群)に、対応する治療薬の休止後1~2週間間隔で4~8回皮下投与もしくは静脈内投与する。HIV-Ag85B、HCV-Ag85B、またはHTLV-Ag85Bによる治療効果を確認する。
(Example 9) Clinical trial with HIV-Ag85B, HCV-Ag85B, HTLV-Ag85B In this example, HIV-Ag85B (SEQ ID NO: 4), HCV-Ag85B, or HTLV-Ag85B was treated with the corresponding therapeutic agent. The drug is administered subcutaneously or intravenously 4 to 8 times at intervals of 1 to 2 weeks after cessation of the corresponding treatment to virus-infected humans (BCG vaccinated and non-BCG vaccinated groups) who have received or have not received the drug. The therapeutic effect of HIV-Ag85B, HCV-Ag85B, or HTLV-Ag85B is confirmed.
 実施例1~6に基づき、血漿中ウイルス量およびCD4細胞数を確認する。BCGワクチンの接種はAg85Bのアジュバント効果を増強させると期待されるため、BCG接種群では、HIV-Ag85B、HCV-Ag85B、HTLV-Ag85Bによるウイルスに対する治療効果が高いと期待される。 Based on Examples 1 to 6, the plasma viral load and CD4 + cell count are confirmed. Since BCG vaccination is expected to enhance the adjuvant effect of Ag85B, it is expected that the BCG vaccinated group will have a high therapeutic effect against viruses caused by HIV-Ag85B, HCV-Ag85B, and HTLV-Ag85B.
 (実施例10)製剤化例
 製剤化する場合には、以下のような製法によって製造することができる。
(Example 10) Formulation Example When forming a formulation, it can be manufactured by the following manufacturing method.
 (例1)凍結乾燥した核酸構築物の適宜の量に適宜の容積の生理食塩水を直接加えて注射用溶液製剤とすることができる。 (Example 1) An appropriate volume of physiological saline can be directly added to an appropriate amount of lyophilized nucleic acid construct to prepare a solution for injection.
 (例2)凍結乾燥した核酸構築物の適宜の量に適宜の容積の等張液5%ブドウ糖液を加えて注射用溶液製剤とすることができる。 (Example 2) An appropriate volume of isotonic 5% glucose solution can be added to an appropriate amount of the lyophilized nucleic acid construct to prepare a solution for injection.
 (例3)水に溶解された核酸構築物の適宜の量に適宜の容積の電解質補正液大塚食塩注10%などを加え0.9%NaCl濃度に調製し注射用溶液製剤とすることができる。 (Example 3) An appropriate volume of electrolyte correction solution Otsuka Salt Injection 10% or the like is added to an appropriate amount of the nucleic acid construct dissolved in water to adjust the concentration to 0.9% NaCl to prepare a solution for injection.
 (例4)水に溶解された核酸構築物の適宜の量を凍結乾燥し、核酸構築物ナトリウム塩の凍結乾燥製剤とすることができる。 (Example 4) An appropriate amount of the nucleic acid construct dissolved in water can be lyophilized to obtain a lyophilized preparation of the sodium salt of the nucleic acid construct.
 参考文献
1. Cohen, M. S. et al. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 365, 493-505 (2011).
2. Gupta, R. K. et al. HIV-1 remission following CCR5Delta32/Delta32 haematopoietic stem-cell transplantation. Nature 568, 244-248 (2019).
3. Hutter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692-698 (2009).
4. Burton, D. R. et al. A blueprint for HIV vaccine discovery. Cell Host Microbe 12, 396-407 (2012).
5. Haynes, B. F. et al. HIV-host interactions: implications for vaccine design. Cell Host Microbe 19, 292-303 (2016).
6. Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209-2220 (2009).
7. Kestler, H. W. 3rd et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65, 651-662 (1991).
8. Daniel, M. D., Kirchhoff, F., Czajak, S. C., Sehgal, P. K. & Desrosiers, R. C. Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258, 1938-1941 (1992).
9. Johnson, R. P. & Desrosiers, R. C. Protective immunity induced by live attenuated simian immunodeficiency virus. Curr. Opin. Immunol. 10, 436-443 (1998).
10. Koff, W. C. et al. HIV vaccine design: insights from live attenuated SIV vaccines. Nat. Immunol. 7, 19-23 (2006).
11. Picker, L. J., Hansen, S. G. & Lifson, J. D. New paradigms for HIV/AIDS vaccine development. Annu. Rev. Med. 63, 95-111 (2012).
12. Baba, T. W. et al. Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques. Science 267, 1820-1825 (1995).
13. Baba, T. W. et al. Live attenuated, multiply deleted simian immunodeficiency virus causes AIDS in infant and adult macaques. Nat. Med. 5, 194-203 (1999).
14. Wyand, M. S., Manson, K. H., Lackner, A. A. & Desrosiers, R. C. Resistance of neonatal monkeys to live attenuated vaccine strains of simian immunodeficiency virus. Nat. Med. 3, 32-36 (1997).
15. Shimizu, Y. et al. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques. Virology 361, 68-79 (2007).
16. Shimizu, Y. et al. Induction of immune response in macaque monkeys infected with simian-human immunodeficiency virus having the TNF-alpha gene at an early stage of infection. Virology 343, 151-161 (2005).
17. Stahl-Hennig, C. et al. Replication, immunogenicity, and protective properties of live-attenuated simian immunodeficiency viruses expressing interleukin-4 or interferon-gamma. Virology 305, 473-485 (2003).
18. Takamura, S., Matsuo, K., Takebe, Y. & Yasutomi, Y. Ag85B of mycobacteria elicits effective CTL responses through activation of robust Th1 immunity as a novel adjuvant in DNA vaccine. J. Immunol. 175, 2541-2547 (2005).
19. Mori, H. et al. Administration of Ag85B showed therapeutic effects to Th2-type cytokine-mediated acute phase atopic dermatitis by inducing regulatory T cells. Arch. Dermatol. Res. 301, 151-157 (2009).
20. Tsujimura, Y. et al. Effects of mycobacteria major secretion protein, Ag85B, on allergic inflammation in the lung. PLoS ONE 9, e106807 (2014).
21. Tsujimura, Y. & Yasutomi, Y. Allergy vaccines using a mycobacterium-secreted antigen, Ag85B, and an IL-4 antagonist. Methods Mol. Biol. 1403, 723-738 (2016).
22. Watanabe, K. et al. Recombinant Ag85B vaccine by taking advantage of characteristics of human parainfluenza type 2 virus vector showed Mycobacteriaspecific immune responses by intranasal immunization. Vaccine 32, 1727-1735 (2014).
23. Okamura, T. et al. Simian immunodeficiency virus SIVmac239 infection and simian human immunodeficiency virus SHIV89.6P infection result in progression to AIDS in cynomolgus macaques of Asian origin. J. Gen. Virol. 97, 3413-3426 (2016).
24. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of doublestranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738 (2001).
25. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105 (2006).
26. Fukazawa, Y. et al. Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines. Nat. Med. 18, 1673-1681 (2012).
27. Reynolds, M. R. et al. Macaques vaccinated with live-attenuated SIV control replication of heterologous virus. J. Exp. Med. 205, 2537-2550 (2008).
28. Villinger, F. et al. Induction of long-term protective effects against heterologous challenge in SIVhu-infected macaques. Virology 278, 194-206 (2000).
29. Giavedoni, L. D., Velasquillo, M. C., Parodi, L. M., Hubbard, G. B. & Hodara, V. L. Expression of IL-18 by SIV does not modify the outcome of the antiviral immune response. Virology 303, 327-337 (2002).
30. Giavedoni, L. D. & Yilma, T. Construction and characterization of replicationcompetent simian immunodeficiency virus vectors that express gamma interferon. J. Virol. 70, 2247-2251 (1996).
31. Berg, R. K. et al. Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA. PLoS ONE 7, e29291 (2012).
32. Bosinger, S. E. & Utay, N. S. Type I interferon: understanding its role in HIV pathogenesis and therapy. Curr. HIV/AIDS Rep. 12, 41-53 (2015).
33. Co, J. G., Witwer, K. W., Gama, L., Zink, M. C. & Clements, J. E. Induction of innate immune responses by SIV in vivo and in vitro: differential expression and function of RIG-I and MDA5. J. Infect. Dis. 204, 1104-1114 (2011).
34. Mogensen, T. H., Melchjorsen, J., Larsen, C. S. & Paludan, S. R. Innate immune recognition and activation during HIV infection. Retrovirology 7, 54 (2010).
35. Borducchi, E. N. et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 540, 284-287 (2016).
36. Vaccari, M. et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat. Med. 22, 762-770 (2016).
37. Goulder, P. J. & Watkins, D. I. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat. Rev. Immunol. 8, 619-630 (2008).
38. Loffredo, J. T. et al. Mamu-B*08-positive macaques control simian immunodeficiency virus replication. J. Virol. 81, 8827-8832 (2007).
39. Muhl, T., Krawczak, M., Ten Haaft, P., Hunsmann, G. & Sauermann, U. MHC class I alleles influence set-point viral load and survival time in simian immunodeficiency virus-infected rhesus monkeys. J. Immunol. 169, 3438-3446 (2002).
40. Yant, L. J. et al. The high-frequency major histocompatibility complex class I allele Mamu-B*17 is associated with control of simian immunodeficiency virus SIVmac239 replication. J. Virol. 80, 5074-5077 (2006).
41. Saito, Y., Naruse, T. K., Akari, H., Matano, T. & Kimura, A. Diversity of MHC class I haplotypes in cynomolgus macaques. Immunogenetics 64, 131-141 (2012).
42. Hansen, S. G. et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523-527 (2011).
43. Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 15, 293-299 (2009).
44. Hansen, S. G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100-104 (2013).
45. Martinez-Navio, J. M. et al. Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression. Immunity 50, 567-575.e565 (2019).
46. Borducchi, E. N. et al. Antibody and TLR7 agonist delay viral rebound in SHIVinfected monkeys. Nature 563, 360-364 (2018).
47. Lim, S. Y. et al. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci. Transl. Med. 10, eaao4521 (2018).
48. Igarashi, T. et al. Infectivity and immunogenicity of SIVmac/HIV-1 chimeric viruses (SHIVs) with deletions in two or three genes (vpr, nef and vpx). Microbiol. Immunol. 42, 71-74 (1998).
49. Unger, R. E. et al. Detection of simian immunodeficiency virus DNA in macrophages from infected rhesus macaques. J. Med. Primatol. 21, 74-81 (1992).
50. Yoshino, N. et al. Intradermal delivery of recombinant vaccinia virus vector DIs induces gut-mucosal immunity. Scand. J. Immunol. 72, 98-105 (2010).
51. Mori, K. et al. Quintuple deglycosylation mutant of simian immunodeficiency virus SIVmac239 in rhesus macaques: robust primary replication, tightly contained chronic infection, and elicitation of potent immunity against the parental wild-type strain. J. Virol. 75, 4023-4028 (2001).
52. Enose, Y. et al. Protection by intranasal immunization of a nef-deleted, nonpathogenic SHIV against intravaginal challenge with a heterologous pathogenic SHIV. Virology 298, 306-316 (2002).
53. Sugimoto, C. et al. Glycosylation of simian immunodeficiency virus influences immune-tissue targeting during primary infection, leading to immunodeficiency or viral control. J. Virol. 86, 9323-9336 (2012).
54. Amara, R. R. et al. Different patterns of immune responses but similar control of a simian-human immunodeficiency virus 89.6P mucosal challenge by modified vaccinia virus Ankara (MVA) and DNA/MVA vaccines. J. Virol. 76, 7625-7631 (2002).
55. Montefiori, D. C. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol. Biol. 485, 395-405 (2009).
56. Pollara, J. et al. Bridging Vaccine-Induced HIV-1 Neutralizing and Effector Antibody Responses in Rabbit and Rhesus Macaque Animal Models. J. Virol. 93, e02119-18 (2019).
57. Yamamoto, T. et al. Virus inhibition activity of effector memory CD8(+) T cells determines simian immunodeficiency virus load in vaccinated monkeys after vaccine breakthrough infection. J. Virol. 86, 5877-5884 (2012).
58. Yamamoto, T. et al. STING agonists activate latently infected cells and enhance SIV-specific responses ex vivo in naturally SIV controlled cynomolgus macaques. Sci. Rep. 9, 5917 (2019).
59.Kuromatsu,I., Matsuo,K., Takamura,S., Kim,G., Takebe,Y., Kawamura,J and Yasutomi,Y. Induction of effective antitumor immune responses by using DNA of an αAg from mycobacteria. Cancer Gene Ther. 2001;8:483-490.
 (注記)
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、この実施形態に限定して解釈されるべきものではない。本開示は、請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本開示の具体的な好ましい実施形態の記載から、本開示の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本出願は、日本国で2022年9月2日に出願された特願2022-140223号に対して優先権主張を伴うものであり、必要に応じその内容はすべて本願において参考として引用される。
References
1. Cohen, M. S. et al. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 365, 493-505 (2011).
2. Gupta, R. K. et al. HIV-1 remission following CCR5Delta32/Delta32 haematopoietic stem-cell transplantation. Nature 568, 244-248 (2019).
3. Hutter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692-698 (2009).
4. Burton, D. R. et al. A blueprint for HIV vaccine discovery. Cell Host Microbe 12, 396-407 (2012).
5. Haynes, B. F. et al. HIV-host interactions: implications for vaccine design. Cell Host Microbe 19, 292-303 (2016).
6. Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209-2220 (2009).
7. Kestler, H. W. 3rd et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65, 651-662 (1991).
8. Daniel, M. D., Kirchhoff, F., Czajak, S. C., Sehgal, P. K. & Desrosiers, R. C. Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258, 1938-1941 (1992).
9. Johnson, R. P. & Desrosiers, R. C. Protective immunity induced by live attenuated simian immunodeficiency virus. Curr. Opin. Immunol. 10, 436-443 (1998).
10. Koff, W. C. et al. HIV vaccine design: insights from live attenuated SIV vaccines. Nat. Immunol. 7, 19-23 (2006).
11. Picker, L. J., Hansen, S. G. & Lifson, J. D. New paradigms for HIV/AIDS vaccine development. Annu. Rev. Med. 63, 95-111 (2012).
12. Baba, T. W. et al. Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques. Science 267, 1820-1825 (1995).
13. Baba, T. W. et al. Live attenuated, multiply deleted simian immunodeficiency virus causes AIDS in infant and adult macaques. Nat. Med. 5, 194-203 (1999).
14. Wyand, M. S., Manson, K. H., Lackner, A. A. & Desrosiers, R. C. Resistance of neonatal monkeys to live attenuated vaccine strains of simian immunodeficiency virus. Nat. Med. 3, 32-36 (1997).
15. Shimizu, Y. et al. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques. Virology 361, 68-79 (2007).
16. Shimizu, Y. et al. Induction of immune response in macaque monkeys infected with simian-human immunodeficiency virus having the TNF-alpha gene at an early stage of infection. Virology 343, 151-161 (2005).
17. Stahl-Hennig, C. et al. Replication, immunogenicity, and protective properties of live-attenuated simian immunodeficiency viruses expressing interleukin-4 or interferon-gamma. Virology 305, 473-485 (2003).
18. Takamura, S., Matsuo, K., Takebe, Y. & Yasutomi, Y. Ag85B of mycobacteria elicits effective CTL responses through activation of robust Th1 immunity as a novel adjuvant in DNA vaccine. J. Immunol. 175, 2541- 2547 (2005).
19. Mori, H. et al. Administration of Ag85B showed therapeutic effects to Th2-type cytokine-mediated acute phase atopic dermatitis by inducing regulatory T cells. Arch. Dermatol. Res. 301, 151-157 (2009).
20. Tsujimura, Y. et al. Effects of mycobacteria major secretion protein, Ag85B, on allergic inflammation in the lung. PLoS ONE 9, e106807 (2014).
21. Tsujimura, Y. & Yasutomi, Y. Allergy vaccines using a mycobacterium-secreted antigen, Ag85B, and an IL-4 antagonist. Methods Mol. Biol. 1403, 723-738 (2016).
22. Watanabe, K. et al. Recombinant Ag85B vaccine by taking advantage of characteristics of human parainfluenza type 2 virus vector showed Mycobacteriaspecific immune responses by intranasal immunization. Vaccine 32, 1727-1735 (2014).
23. Okamura, T. et al. Simian immunodeficiency virus SIVmac239 infection and simian human immunodeficiency virus SHIV89.6P infection result in progression to AIDS in cynomolgus macaques of Asian origin. J. Gen. Virol. 97, 3413-3426 (2016).
24. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of doublestranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738 (2001).
25. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105 (2006).
26. Fukazawa, Y. et al. Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines. Nat. Med. 18, 1673-1681 (2012).
27. Reynolds, M. R. et al. Macaques pneumonia with live-attenuated SIV control replication of heterologous virus. J. Exp. Med. 205, 2537-2550 (2008).
28. Villinger, F. et al. Induction of long-term protective effects against heterologous challenge in SIVhu-infected macaques. Virology 278, 194-206 (2000).
29. Giavedoni, L. D., Velasquillo, M. C., Parodi, L. M., Hubbard, G. B. & Hodara, V. L. Expression of IL-18 by SIV does not modify the outcome of the antiviral immune response. Virology 303, 327-337 (2002).
30. Giavedoni, L. D. & Yilma, T. Construction and characterization of replicationcompetent simian immunodeficiency virus vectors that express gamma interferon. J. Virol. 70, 2247-2251 (1996).
31. Berg, R. K. et al. Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA. PLoS ONE 7, e29291 (2012).
32. Bosinger, S. E. & Utay, N. S. Type I interferon: understanding its role in HIV pathogenesis and therapy. Curr. HIV/AIDS Rep. 12, 41-53 (2015).
33. Co, J. G., Witwer, K. W., Gama, L., Zink, M. C. & Clements, J. E. Induction of innate immune responses by SIV in vivo and in vitro: differential expression and function of RIG-I and MDA5. J. Infect. Dis. 204, 1104-1114 (2011).
34. Mogensen, T. H., Melchjorsen, J., Larsen, C. S. & Paludan, S. R. Innate immune recognition and activation during HIV infection. Retrovirology 7, 54 (2010).
35. Borducchi, E. N. et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 540, 284-287 (2016).
36. Vaccari, M. et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat. Med. 22, 762-770 (2016).
37. Goulder, P. J. & Watkins, D. I. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat. Rev. Immunol. 8, 619-630 (2008).
38. Loffredo, J. T. et al. Mamu-B*08-positive macaques control simian immunodeficiency virus replication. J. Virol. 81, 8827-8832 (2007).
39. Muhl, T., Krawczak, M., Ten Haaft, P., Hunsmann, G. & Sauermann, U. MHC class I alleles influence set-point viral load and survival time in simian immunodeficiency virus-infected rhesus monkeys. J Immunol. 169, 3438-3446 (2002).
40. Yant, L. J. et al. The high-frequency major histocompatibility complex class I allele Mamu-B*17 is associated with control of simian immunodeficiency virus SIVmac239 replication. J. Virol. 80, 5074-5077 (2006).
41. Saito, Y., Naruse, T. K., Akari, H., Matano, T. & Kimura, A. Diversity of MHC class I haplotypes in cynomolgus macaques. Immunogenetics 64, 131-141 (2012).
42. Hansen, S. G. et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523-527 (2011).
43. Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 15, 293-299 (2009).
44. Hansen, S. G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100-104 (2013).
45. Martinez-Navio, J. M. et al. Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression. Immunity 50, 567-575.e565 (2019).
46. Borducchi, E. N. et al. Antibody and TLR7 agonist delay viral rebound in SHIVinfected monkeys. Nature 563, 360-364 (2018).
47. Lim, S. Y. et al. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci. Transl. Med. 10, eaao4521 (2018).
48. Igarashi, T. et al. Infectivity and immunogenicity of SIVmac/HIV-1 chimeric viruses (SHIVs) with deletions in two or three genes (vpr, nef and vpx). Microbiol. Immunol. 42, 71-74 (1998) .
49. Unger, R. E. et al. Detection of simian immunodeficiency virus DNA in macrophages from infected rhesus macaques. J. Med. Primatol. 21, 74-81 (1992).
50. Yoshino, N. et al. Intradermal delivery of recombinant vaccinia virus vector DIs induces gut-mucosal immunity. Scand. J. Immunol. 72, 98-105 (2010).
51. Mori, K. et al. Quintuple deglycosylation mutant of simian immunodeficiency virus SIVmac239 in rhesus macaques: robust primary replication, tightly contained chronic infection, and elicitation of potent immunity against the parental wild-type strain. J. Virol. 75, 4023 -4028 (2001).
52. Enose, Y. et al. Protection by intranasal immunization of a nef-deleted, nonpathogenic SHIV against intravaginal challenge with a heterologous pathogenic SHIV. Virology 298, 306-316 (2002).
53. Sugimoto, C. et al. Glycosylation of simian immunodeficiency virus influences immune-tissue targeting during primary infection, leading to immunodeficiency or viral control. J. Virol. 86, 9323-9336 (2012).
54. Amara, R. R. et al. Different patterns of immune responses but similar control of a simian-human immunodeficiency virus 89.6P mucosal challenge by modified vaccinia virus Ankara (MVA) and DNA/MVA vaccines. J. Virol. 76, 7625-7631 (2002).
55. Montefiori, D. C. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol. Biol. 485, 395-405 (2009).
56. Pollara, J. et al. Bridging Vaccine-Induced HIV-1 Neutralizing and Effector Antibody Responses in Rabbit and Rhesus Macaque Animal Models. J. Virol. 93, e02119-18 (2019).
57. Yamamoto, T. et al. Virus inhibition activity of effector memory CD8(+) T cells determines simian immunodeficiency virus load in vaccine monkeys after vaccine breakthrough infection. J. Virol. 86, 5877-5884 (2012).
58. Yamamoto, T. et al. STING agonists activate latently infected cells and enhance SIV-specific responses ex vivo in naturally SIV controlled cynomolgus macaques. Sci. Rep. 9, 5917 (2019).
59. Kuromatsu, I., Matsuo, K., Takamura, S., Kim, G., Takebe, Y., Kawamura, J and Yasutomi, Y. Induction of effective antitumor immune responses by using DNA of an αAg from mycobacteria. Cancer Gene Ther. 2001;8:483-490.
(Note)
As described above, although the present disclosure has been illustrated using the preferred embodiment of the present disclosure, the present disclosure should not be construed as being limited to this embodiment. It is understood that the scope of this disclosure is to be construed solely by the claims. It is understood that those skilled in the art can implement the present invention to an equivalent extent based on the description of the present disclosure and common general technical knowledge from the description of the specific preferred embodiments of the present disclosure. The patents, patent applications, and publications cited herein are hereby incorporated by reference to the same extent as if the contents were specifically set forth herein. be understood. This application claims priority to Japanese Patent Application No. 2022-140223 filed on September 2, 2022 in Japan, and the contents thereof are all cited as reference in this application as necessary.
 本開示は、医薬を産業とする分野において有用である。 The present disclosure is useful in the pharmaceutical industry.
 配列番号1:Ag85Bの核酸配列
配列番号2:Ag85Bのアミノ酸配列
配列番号3:SHIV-Ag85Bの核酸配列
配列番号4:HIV-Ag85Bの核酸配列
配列番号5:ClaIプライマー
配列番号6:ApaIプライマー
配列番号7:Outer SIVgag-Fプライマー
配列番号8:Outer SIVgag-Rプライマー
配列番号9:Nested SIVgag-Fプライマー
配列番号10:Nested SIVgag-Rプライマー
配列番号11:SIVmac239のgagに対するプローブ
配列番号12:SIVmac239のgagに対するプライマー1
配列番号13:SIVmac239のgagに対するプライマー2
配列番号14:IL-4に対するプライマー1
配列番号15:IL-4に対するプライマー2
配列番号16:IL-4に対するプローブ
SEQ ID NO: 1: Nucleic acid sequence of Ag85B SEQ ID NO: 2: Amino acid sequence of Ag85B SEQ ID NO: 3: Nucleic acid sequence of SHIV-Ag85B SEQ ID NO: 4: Nucleic acid sequence of HIV-Ag85B SEQ ID NO: 5: ClaI primer SEQ ID NO: 6: ApaI primer SEQ ID NO: 7: Outer SIVgag-F primer SEQ ID NO: 8: Outer SIVgag-R primer SEQ ID NO: 9: Nested SIVgag-F primer SEQ ID NO: 10: Nested SIVgag-R primer SEQ ID NO: 11: Probe for SIVmac239 gag SEQ ID NO: 12: SIVmac239 gag Primer 1 for
SEQ ID NO: 13: Primer 2 for gag of SIVmac239
SEQ ID NO: 14: Primer 1 for IL-4
SEQ ID NO: 15: Primer 2 for IL-4
SEQ ID NO: 16: Probe for IL-4

Claims (20)

  1.  弱毒化ウイルスまたはその等価物をコードする核酸配列と、アジュバント分子をコードする核酸配列とを含む核酸構築物を含む、対象におけるウイルス感染を治療するための組成物。 A composition for treating a viral infection in a subject, comprising a nucleic acid construct comprising a nucleic acid sequence encoding an attenuated virus or its equivalent and a nucleic acid sequence encoding an adjuvant molecule.
  2.  前記弱毒化ウイルスが、アクセサリー遺伝子および制御遺伝子からなる群より選択される少なくとも1つの遺伝子が欠損する、請求項1に記載の組成物。 The composition according to claim 1, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of accessory genes and regulatory genes.
  3.  前記弱毒化ウイルスが、アクセサリー遺伝子が欠損する、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the attenuated virus is deficient in an accessory gene.
  4.  前記弱毒化ウイルスが、Vif、Vpr、Vpx、Vpu、およびNefからなる群より選択される少なくとも1つの遺伝子またはその対応遺伝子が欠損する、請求項1~3のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the attenuated virus is deficient in at least one gene selected from the group consisting of Vif, Vpr, Vpx, Vpu, and Nef or its corresponding gene. .
  5.  前記弱毒化ウイルスが、nef欠損型弱毒化ウイルスである、請求項1~4のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein the attenuated virus is a nef-deficient attenuated virus.
  6.  前記アジュバント分子をコードする核酸配列が、前記弱毒化ウイルスまたはその等価物をコードする核酸配列中に組み込まれている、請求項1~5のいずれか一項に記載の組成物。 A composition according to any one of claims 1 to 5, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated into the nucleic acid sequence encoding the attenuated virus or its equivalent.
  7.  前記アジュバント分子をコードする核酸配列が、前記nef欠損型弱毒化ウイルスにおける欠損されたnef遺伝子の位置に組み込まれている、請求項5に記載の組成物。 The composition according to claim 5, wherein the nucleic acid sequence encoding the adjuvant molecule is integrated at the position of the deleted nef gene in the nef-deficient attenuated virus.
  8.  前記弱毒化ウイルスが、慢性感染ウイルスである、請求項1~7のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 7, wherein the attenuated virus is a chronically infectious virus.
  9.  前記弱毒化ウイルスが、エイズウイルス、ヒトT細胞白血病ウイルス(HTLV)、麻疹ウイルス、風疹ウイルス、C型肝炎ウイルス(HCV)、およびB型肝炎ウイルス(HBV)からなる群から選択されるウイルスの弱毒化ウイルスである、請求項1~8のいずれか一項に記載の組成物。 The attenuated virus is an attenuated virus selected from the group consisting of AIDS virus, human T-cell leukemia virus (HTLV), measles virus, rubella virus, hepatitis C virus (HCV), and hepatitis B virus (HBV). 9. The composition according to any one of claims 1 to 8, which is an infected virus.
  10.  前記アジュバント分子が、抗酸菌由来のアジュバント分子である、請求項1~9のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 9, wherein the adjuvant molecule is an adjuvant molecule derived from acid-fast bacteria.
  11.  前記アジュバント分子が、Ag85Bタンパク質からなる群から選択される、請求項1~10のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 10, wherein the adjuvant molecule is selected from the group consisting of Ag85B proteins.
  12.  前記組成物が、Th1型の免疫応答を誘導する、請求項1~11のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 11, wherein the composition induces a Th1 type immune response.
  13.  前記組成物が、前記対象におけるウイルスを完全に排除する、請求項1~12のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 12, wherein the composition completely eliminates the virus in the subject.
  14.  前記組成物が、ウイルス感染後に投与されることを特徴とする、請求項1~13のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 13, characterized in that the composition is administered after a viral infection.
  15.  前記核酸構築物が、クローン化されている、請求項1~14のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 14, wherein the nucleic acid construct is cloned.
  16.  ウイルス感染の診断薬を含む、請求項1~15のいずれか一項に記載の組成物による治療を必要とするかどうかを判断する方法において使用するためのコンパニオン試薬。 A companion reagent for use in a method for determining whether treatment with the composition according to any one of claims 1 to 15 is necessary, comprising a diagnostic agent for viral infection.
  17.  請求項1~15のいずれか一項に記載の組成物と、ウイルス感染の診断薬と、指示書とを含む、対象におけるウイルス感染を治療するためのキット。 A kit for treating a viral infection in a subject, comprising the composition according to any one of claims 1 to 15, a diagnostic agent for viral infection, and instructions.
  18.  対象におけるウイルス感染を治療するための方法であって、該方法が、請求項1~15のいずれか一項に記載の組成物を該対象に投与する工程を含む、方法。 A method for treating a viral infection in a subject, said method comprising administering to said subject a composition according to any one of claims 1 to 15.
  19.  対象におけるウイルス感染を治療するための医薬の製造における、請求項1~15のいずれか一項に記載の組成物の使用。 Use of a composition according to any one of claims 1 to 15 in the manufacture of a medicament for treating a viral infection in a subject.
  20.  前記対象が、以前にBCGワクチンの接種を受けている、請求項1~15のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 15, wherein the subject has previously been vaccinated with a BCG vaccine.
PCT/JP2023/032142 2022-09-02 2023-09-01 Attenuated virus for treating infections WO2024048793A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-140223 2022-09-02
JP2022140223 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048793A1 true WO2024048793A1 (en) 2024-03-07

Family

ID=90097974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032142 WO2024048793A1 (en) 2022-09-02 2023-09-01 Attenuated virus for treating infections

Country Status (1)

Country Link
WO (1) WO2024048793A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05501654A (en) * 1990-07-12 1993-04-02 プレジデント アンド フェロウズ オブ ハーバード カレッジ primate lentivirus vaccine
JPH10511400A (en) * 1994-12-27 1998-11-04 サテーシ エヌ アープテ Human immunodeficiency virus vaccine containing replication-defective HIV-1 nef deletion mutant and method of treatment
JP2002114708A (en) * 2000-10-06 2002-04-16 Puraimyuun Corporation:Kk Adjuvant against dna vaccine
JP2005525085A (en) * 2001-11-01 2005-08-25 ジェンファー インコーポレイテッド Genetic vaccine against human immunodeficiency virus
JP2009535343A (en) * 2006-04-26 2009-10-01 インターナショナル エイズ バクシーン イニシアティブ Genetic adjuvants for viral vaccines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05501654A (en) * 1990-07-12 1993-04-02 プレジデント アンド フェロウズ オブ ハーバード カレッジ primate lentivirus vaccine
JPH10511400A (en) * 1994-12-27 1998-11-04 サテーシ エヌ アープテ Human immunodeficiency virus vaccine containing replication-defective HIV-1 nef deletion mutant and method of treatment
JP2002114708A (en) * 2000-10-06 2002-04-16 Puraimyuun Corporation:Kk Adjuvant against dna vaccine
JP2005525085A (en) * 2001-11-01 2005-08-25 ジェンファー インコーポレイテッド Genetic vaccine against human immunodeficiency virus
JP2009535343A (en) * 2006-04-26 2009-10-01 インターナショナル エイズ バクシーン イニシアティブ Genetic adjuvants for viral vaccines

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Long-term protective immunity induced by an adjuvant-containing live-attenuated AIDS virus", NATIONAL INSTITUTES OF BIOMEDICAL INNOVATION, HEALTH AND NUTRITION (NIBIOHN) PRESS RELEASE, 8 November 2021 (2021-11-08), XP093145529, Retrieved from the Internet <URL:https://www.nibiohn.go.jp/information/nibio/2021/11/007362.html> [retrieved on 20240326] *
OKAMURA TOMOTAKA, SHIMIZU YUYA, ASAKA MASAMITSU N., KANUMA TOMOHIRO, TSUJIMURA YUSUKE, YAMAMOTO TAKUYA, MATSUO KAZUHIRO, YASUTOMI : "Long-term protective immunity induced by an adjuvant-containing live-attenuated AIDS virus", NPJ VACCINES, NATURE PUBLISHING GROUP, vol. 6, no. 1, 1 January 2021 (2021-01-01), pages 124, XP093143337, ISSN: 2059-0105, DOI: 10.1038/s41541-021-00386-5 *

Similar Documents

Publication Publication Date Title
Lahaye et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells
Nishimura et al. Generation of the pathogenic R5-tropic simian/human immunodeficiency virus SHIVAD8 by serial passaging in rhesus macaques
Ami et al. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guerin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity
Mansfield et al. Vaccine protection by live, attenuated simian immunodeficiency virus in the absence of high-titer antibody responses and high-frequency cellular immune responses measurable in the periphery
Lin et al. An attenuated EIAV vaccine strain induces significantly different immune responses from its pathogenic parental strain although with similar in vivo replication pattern
Mascola et al. Cellular immunity elicited by human immunodeficiency virus type 1/simian immunodeficiency virus DNA vaccination does not augment the sterile protection afforded by passive infusion of neutralizing antibodies
Greene et al. Extralymphoid CD8+ T cells resident in tissue from simian immunodeficiency virus SIVmac239Δnef-vaccinated macaques suppress SIVmac239 replication ex vivo
Nakane et al. Limited impact of passive non-neutralizing antibody immunization in acute SIV infection on viremia control in rhesus macaques
EP2485759A2 (en) Methods, agents and peptides for inducing an innate immune response in hiv vaccination
Gorelick et al. Protection of Macaca nemestrina from disease following pathogenic simian immunodeficiency virus (SIV) challenge: utilization of SIV nucleocapsid mutant DNA vaccines with and without an SIV protein boost
Berry et al. Resistance to superinfection by a vigorously replicating, uncloned stock of simian immunodeficiency virus (SIVmac251) stimulates replication of a live attenuated virus vaccine (SIVmacC8)
Giannecchini et al. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: failure to protect and possible enhancement of challenge infection by four cell-based vaccines prepared with autologous lymphoblasts
WO2024048793A1 (en) Attenuated virus for treating infections
Kawahara et al. Intradermal and oral immunization with recombinant Mycobacterium bovis BCG expressing the simian immunodeficiency virus Gag protein induces long-lasting, antigen-specific immune responses in guinea pigs
WO2024048792A1 (en) Composition for treating hiv infection
WO2024047875A1 (en) COMPOSITION FOR INDUCING Th1-TYPE IMMUNE RESPONSE IN HIV-INFECTED PATIENT
Pedreño-Lopez et al. Induction of transient virus replication facilitates antigen-independent isolation of SIV-specific monoclonal antibodies
Watanabe et al. Protective immune responses elicited by deglycosylated live-attenuated Simian Immunodeficiency virus vaccine are associated with IL-15 effector Functions
Mackay et al. Protection against late-onset AIDS in macaques prophylactically immunized with a live simian HIV vaccine was dependent on persistence of the vaccine virus
Mooij et al. Evidence for viral virulence as a predominant factor limiting human immunodeficiency virus vaccine efficacy
Pistello et al. Evaluation of feline immunodeficiency virus ORF-A mutants as candidate attenuated vaccine
WAKRIM et al. Superinfection of HIV-2-preinfected macaques after rectal exposure to a primary isolate of SIVmac251
Enose et al. Protective effects of nef-deleted SHIV or that having IFN-γ against disease induced with a pathogenic virus early after vaccination
Villinger et al. Induction of long-term protective effects against heterologous challenge in SIVhu-infected macaques
Metzner et al. Evaluation of CD8+ T-cell and antibody responses following transient increased viraemia in rhesus macaques infected with live, attenuated simian immunodeficiency virus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860553

Country of ref document: EP

Kind code of ref document: A1