WO2024048732A1 - Secondary battery negative electrode, secondary battery, and method for manufacturing secondary battery negative electrode - Google Patents

Secondary battery negative electrode, secondary battery, and method for manufacturing secondary battery negative electrode Download PDF

Info

Publication number
WO2024048732A1
WO2024048732A1 PCT/JP2023/031854 JP2023031854W WO2024048732A1 WO 2024048732 A1 WO2024048732 A1 WO 2024048732A1 JP 2023031854 W JP2023031854 W JP 2023031854W WO 2024048732 A1 WO2024048732 A1 WO 2024048732A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
negative electrode
graphite particles
slurry
secondary battery
Prior art date
Application number
PCT/JP2023/031854
Other languages
French (fr)
Japanese (ja)
Inventor
洋輝 中土
敬光 田下
晶大 加藤木
諒 玉川
幸代 金子
Original Assignee
パナソニックエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックエナジー株式会社 filed Critical パナソニックエナジー株式会社
Publication of WO2024048732A1 publication Critical patent/WO2024048732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a negative electrode for a secondary battery, a secondary battery, and a method for manufacturing a negative electrode for a secondary battery.
  • Nonaqueous electrolyte secondary batteries especially lithium ion secondary batteries, have high voltage and high energy density, and are widely used as power sources for small electronic devices such as mobile devices.
  • Patent Document 1 discloses an electrode active material layer for a non-aqueous electrolyte secondary battery formed on a current collector, in which the porosity is graded or continuous in the thickness direction from the current collector side to the surface side.
  • An electrode active material layer for nonaqueous electrolyte secondary batteries has been proposed in which the degree of porosity gradient in the thickness direction is 3.5 to 4.0%/10 ⁇ m. .
  • one aspect of the present disclosure includes a negative electrode mixture layer containing a negative electrode active material, and a negative electrode current collector supporting the negative electrode mixture layer, the negative electrode active material containing graphite particles,
  • the graphite particles include graphite particles A having an internal porosity of more than 5% and graphite particles B having an internal porosity of 5% or less, and the negative electrode mixture layer is arranged on the side of the negative electrode current collector.
  • the second layer includes a second layer, a second layer, and a second layer, which are arranged in the first region and the second region of the first layer, respectively, in this order.
  • the present invention relates to a negative electrode for a secondary battery that satisfies the relationship MB 2b ⁇ MB 3 ⁇ 100, and where the thickness of the negative electrode mixture layer is T, the thickness of the third layer is greater than 0.05T.
  • Another aspect of the present disclosure relates to a secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, where the negative electrode is the negative electrode for a secondary battery described above.
  • Yet another aspect of the present disclosure includes a first step of preparing a negative electrode slurry containing graphite particles, and a second step of applying the negative electrode slurry to the surface of a negative electrode current collector and drying it to form a negative electrode mixture layer. and a third step of compressing the laminate of the negative electrode mixture layer and the negative electrode current collector, and in the first step, as the negative electrode slurry, a first negative electrode slurry, a second negative electrode slurry, and a third negative electrode slurry are compressed.
  • 3 negative electrode slurry is prepared, and in the second step, the first negative electrode slurry, the second negative electrode slurry, and the third negative electrode slurry are applied to the surface of the negative electrode current collector in this order, and the negative electrode slurry is applied to the surface of the negative electrode current collector.
  • the negative electrode mixture layer is formed of a first layer, a second layer, and a third layer in this order from the side, and the second negative electrode slurry includes a 2a negative electrode slurry and a 2b negative electrode slurry, and the In the step of forming two layers, a 2a negative electrode slurry and a 2b negative electrode slurry are applied to a first region and a second region of the first negative electrode slurry application region, respectively, and a 2a layer and a 2b negative electrode slurry are formed as the second layer.
  • the proportion (mass %) of the graphite particles B in the total of the graphite particles A and the graphite particles B in the second a negative electrode slurry, the second b negative electrode slurry, and the third negative electrode slurry is MB 1 ,
  • MB 2a , MB 2b , and MB 3 are MB 1 , MB 2a , MB 2b , and MB 3 , 0 ⁇ MB 1 ⁇ MB 2a ⁇ 50 ⁇ MB 2b ⁇ MB 3 ⁇
  • the present invention relates to a method for manufacturing a negative electrode for a secondary battery, in which the third layer has a thickness greater than 0.05T, where the relationship of 100 is satisfied and the thickness of the negative electrode mixture layer is T.
  • the rapid charging characteristics and cycle characteristics of a secondary battery can be improved.
  • FIG. 1 is a cross-sectional view schematically showing an example of a negative electrode for a secondary battery according to an embodiment of the present disclosure. It is a figure which shows an example of the arrangement pattern of the 2nd a layer and the 2nd b layer. It is a figure which shows the modification of the arrangement pattern of the 2nd a layer and the 2nd b layer. It is a figure which shows another modification of the arrangement pattern of the 2nd a layer and the 2nd b layer. It is a figure which shows yet another modification of the arrangement pattern of the 2nd a layer and the 2nd b layer.
  • FIG. 2 is a cross-sectional view schematically showing graphite particles that are a negative electrode active material.
  • FIG. 1 is a partially cutaway schematic perspective view of a secondary battery according to an embodiment of the present disclosure.
  • a negative electrode for a secondary battery includes a negative electrode mixture layer containing a negative electrode active material and a negative electrode current collector supporting the negative electrode mixture layer.
  • the negative electrode active material includes graphite particles, and the graphite particles include graphite particles A whose internal porosity is greater than 5% and graphite particles B whose internal porosity is 5% or less.
  • the negative electrode mixture layer includes, in order from the negative electrode current collector side, a first layer, a second layer, and a third layer.
  • the second layer includes a 2a layer and a 2b layer arranged in the first region and the second region of the first layer, respectively. The first region and the second region do not overlap with each other.
  • the proportion (mass%) of graphite particles B in the graphite particles (total of graphite particles A and graphite particles B) in the first layer, the second a layer, the second b layer, and the third layer is MB 1 and MB, respectively. 2a , MB 2b , and MB 3 .
  • MB 1 , MB 2a , MB 2b , and MB 3 satisfy the relationship 0 ⁇ MB 1 ⁇ MB 2a ⁇ 50 ⁇ MB 2b ⁇ MB 3 ⁇ 100.
  • the thickness of the negative electrode mixture layer is T
  • the thickness of the third layer is greater than 0.05T.
  • the cycle characteristics and rapid charging characteristics of the secondary battery can be improved.
  • a layer 2a and a layer 2b are respectively formed as second layers between the first layer and the third layer.
  • the second a layer (the first region of the first layer) may be divided into a plurality of parts and arranged.
  • the 2b layer (the second region of the first layer) may be divided into a plurality of parts and arranged.
  • the second a layer (the first region of the first layer) and the second b layer (the second region of the first layer) may be arranged in an alternating pattern.
  • One of the 2A layer and the 2B layer (the first region and the second region of the first layer) may be dispersed and arranged in the form of islands in the other sea.
  • the ratio of the total area of the 2b layer to the total area of the 2a layer and the 2b layer is, for example, It may be 10% or more and 75% or less, 40% or more and 55% or less, or about 50%.
  • the first layer is the layer disposed closest to the negative electrode current collector among the negative electrode mixture layers.
  • the third layer is a layer disposed closest to the surface of the negative electrode among the negative electrode mixture layers.
  • the second layer is a layer placed between the first layer and the third layer.
  • the negative electrode mixture layer may further include another layer (fourth layer) other than the first to third layers as long as the effects of the first to third layers are not impaired.
  • the fourth layer may be arranged between the first layer and the second layer, for example.
  • Such a fourth layer may be, for example, a layer that is composed of one layer, unlike the second layer, and, unlike the first layer, the ratio of graphite particles B to the graphite particles is more than 50% by mass. Can be mentioned.
  • the thickness T of the negative electrode mixture layer is the total thickness of the first layer, the second layer, and the third layer, and when the negative electrode mixture layer includes the fourth layer, the thickness T of the negative electrode mixture layer excluding the fourth layer. It means thickness.
  • the first layer and the second a layer are layers in which the ratio of graphite particles A to graphite particles is large.
  • the third layer and the second b layer are layers in which the ratio of graphite particles B to graphite particles is large.
  • Graphite particles A are easily deformed when the negative electrode is compressed, and in the first layer containing a large amount of graphite particles A, the voids between the particles are small.
  • the adhesion between the negative electrode mixture layer and the negative electrode current collector is improved, and the cycle characteristics are improved.
  • a part of the second layer is constituted by the second a layer.
  • the 2nd a layer contains many graphite particles A, which are more flexible and easily deformed than graphite particles B.
  • Graphite particles B are hard and are not easily deformed when the negative electrode is compressed, and in the third layer containing a large amount of graphite particles B, the voids between the particles are large, making it easy to form a diffusion path for the electrolyte.
  • the electrolyte can easily penetrate into the negative electrode mixture layer.
  • a part of the second layer is constituted by the second b layer.
  • the 2nd b layer contains many graphite particles B, and the voids between the particles are large.
  • the electrolyte can easily diffuse into the interior from the surface of the negative electrode mixture layer, and the electrolyte permeability of the entire negative electrode (negative electrode mixture layer) is greatly improved. This improves quick charging characteristics.
  • the above-mentioned effects due to the arrangement of the first layer and the second a layer can be efficiently obtained.
  • 50 ⁇ MB 2b ⁇ MB 3 ⁇ 100 is satisfied, the above effects due to the arrangement of the second b layer and the third layer can be efficiently obtained.
  • the thickness of the third layer is 0.05T or less, the effect of forming the third layer may be insufficient and the rapid charging characteristics may deteriorate.
  • MB 2a is 0% by mass or more and less than 50% by mass, preferably 0% by mass or more and 40% by mass or less.
  • MB 2b is more than 50% by mass and less than 100% by mass, preferably more than 60% by mass and less than 100% by mass.
  • MB 2a /MB 2b is preferably 0 or more and 2/3 or less, more preferably 0 or more and 1/4 or less.
  • the first layer (or the first layer and the second a layer) may contain only graphite particles A as graphite particles.
  • the third layer (or the third layer and the second b layer) may contain only graphite particles B as graphite particles.
  • FIG. 1 is a cross-sectional view schematically showing an example of a negative electrode for a secondary battery according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an example of the arrangement pattern of the second a layer and the second b layer.
  • FIG. 2 is a diagram of the second layer viewed from the normal direction of the main surface of the negative electrode current collector. The shaded area in FIG. 2 is the second b layer.
  • the negative electrode 30 includes a sheet-like (foil-like) negative electrode current collector 31, a negative electrode mixture layer 32 supported on one surface of the negative electrode current collector 31, and a negative electrode mixture layer 32 supported on the other surface of the negative electrode current collector 31. and a negative electrode mixture layer 33.
  • the negative electrode mixture layer 32 and the negative electrode mixture layer 33 have the same configuration.
  • the negative electrode mixture layer 32 will be described in detail below.
  • the negative electrode mixture layer 32 contains graphite particles as a negative electrode active material.
  • the graphite particles include graphite particles A whose internal porosity is greater than 5% and graphite particles B whose internal porosity is 5% or less.
  • the negative electrode mixture layer 32 includes, in order from the negative electrode current collector 31 side, a first layer 41 , a second layer 42 , and a third layer 43 .
  • the second layer 42 includes a second a layer 42 a disposed in the first region of the first layer 41 and a second b layer 42 b disposed in the second region of the first layer 41 .
  • the ratio MB 2b (mass %) of the graphite particles B to the graphite particles in the third layer 43 and the ratio MB 3 (mass %) of the graphite particles B to the graphite particles in the third layer 43 are 0 ⁇ MB 1 ⁇ MB 2a
  • the negative electrode mixture layer 32 has a thickness T.
  • the thickness T is the total thickness of the thickness T 1 of the first layer 41 , the thickness T 2 of the second layer 42 , and the thickness T 3 of the third layer 43 .
  • the thickness T of the negative electrode mixture layer 32 is, for example, 50 ⁇ m or more and 300 ⁇ m or less.
  • the thickness T 3 of the third layer 43 is greater than 0.05T.
  • the thickness ratio of the second layer 42 to the third layer 43: T 2 /T 3 is, for example, 1/3 or more and 5 or less.
  • the thickness T 2 of the second layer 42 is preferably 0.1T or more (or 0.2T or more) and 0.5T or less.
  • the thickness T 3 of the third layer 43 is preferably 0.1T or more and 0.3T or less.
  • the thickness T1 of the first layer 41 is, for example, 0.25T or more and 0.75T or less.
  • the second a layer 42a and the second b layer 42b are arranged in an alternating pattern.
  • the 2nd a layer 42a and the 2nd b layer 42b are arranged in a stripe shape in the width direction (Y direction) of the negative electrode current collector, and the 2nd a layer 42a and the 2nd b layer 42b have approximately the same width.
  • the plurality of second a layers 42a and second b layers 42b each have approximately the same width and are arranged at regular intervals.
  • the second layer preferably has a regularly repeated pattern, as shown in FIG. 2 and FIGS. 3A to 3C, which will be described later. In this case, the effects of the second a layer and the second b layer can be stably obtained throughout the negative electrode.
  • the arrangement pattern of the second a layer and the second b layer is not limited to the arrangement pattern shown in FIG.
  • the second a layer and the second b layer may be arranged in stripes in the length direction (X direction) of the negative electrode current collector, and may have different widths from each other.
  • the arrangement pattern of the second a layer and the second b layer may be a checkerboard arrangement pattern shown in FIG. 3A.
  • the rectangular second a layer 42a and second b layer 42b are arranged in a pattern that is alternately repeated in the length direction (X direction) and width direction (Y direction) of the negative electrode current collector. It is located in
  • the arrangement pattern of the second a layer and the second b layer may be a honeycomb arrangement pattern shown in FIG. 3B.
  • the hexagonal second a layer 42a is lined up in a row in the width direction (Y direction) of the negative electrode current collector, and the hexagonal second b layer 42b is aligned in the width direction (Y direction) of the negative electrode current collector.
  • the portions lined up in a row are arranged in an alternating pattern.
  • the 2B layer (or 2A layer) may be dispersed and arranged in the form of islands in the sea of the 2A layer (or 2B layer).
  • the shape of the island is not particularly limited, and may be circular or polygonal such as a quadrangle.
  • the plurality of islands have substantially the same shape and size and are regularly arranged at regular intervals. In this case, the effects of the second a layer and the second b layer can be stably obtained throughout the negative electrode.
  • circular island portions (hatched portions in FIG. 3C) of the second b layer 42b may be dispersed and arranged in the sea portion of the second a layer 42a.
  • the island portions of the plurality of second b layers 42b have approximately the same size and are regularly arranged at regular intervals.
  • the sea portion and the island portion may be the 2b layer and the 2a layer, respectively.
  • the negative electrode mixture layer contains graphite particles as a negative electrode active material.
  • the graphite particles include graphite particles A whose internal porosity is greater than 5% and graphite particles B whose internal porosity is 5% or less.
  • the internal porosity of graphite particles A is preferably 8% or more and 20% or less, more preferably 12% or more and 18% or less.
  • the internal porosity of graphite particles B is preferably 1% or more (or 2% or more) and 5% or less.
  • FIG. 4 is a diagram schematically showing a cross section of a graphite particle.
  • the graphite particles 20 have an internal void 21 closed inside the graphite particle 20 and an external void 22 connected to a space outside the graphite particle 20 .
  • the external voids 22 are included in the voids between the negative electrode active material particles in the negative electrode mixture layer.
  • Graphite particles A have more internal voids 21 and more external voids 22 than graphite particles B.
  • the internal porosity of the graphite particle 20 means the ratio of the area S2 of the internal void 21 to the area S1 of the graphite particle 20 in the cross section of the graphite particle 20, and is determined by (S2/S1) ⁇ 100.
  • the area S1 of the graphite particle 20 is the area of the region surrounded by the outer periphery of the graphite particle 20, and means the combined area of the hatched portion in FIG. 2 and the internal void 21.
  • the area S2 of the internal voids 21 means the total area of the multiple internal voids 21.
  • the internal porosity of graphite particles can be determined by the following method. Disassemble the initial battery (unused battery or battery that has been charged and discharged several times), take out the negative electrode, sample a part of the negative electrode, and use an ion milling device etc. to obtain a sample cross section of the negative electrode mixture layer. .
  • an ion milling device for example, a device name “IM4000PLUS” manufactured by Hitachi High-Tech Corporation can be used.
  • Graphite particles to be included in a negative electrode slurry used in producing a negative electrode for a secondary battery may be obtained as a sample.
  • a sample of graphite particles may be embedded in an epoxy resin or the like and polished to obtain cross sections of a plurality of graphite particles, which may be used as sample cross sections.
  • a backscattered electron image (magnification: 3,000 to 5,000 times) of the cross section of the sample is taken using a scanning electron microscope (SEM) to obtain a cross-sectional image of the sample.
  • SEM scanning electron microscope
  • the cross-sectional image of the sample obtained above is imported into a computer and subjected to binarization processing.
  • image analysis software "ImageJ" manufactured by the National Institutes of Health can be used.
  • image analysis software "ImageJ" manufactured by the National Institutes of Health can be used.
  • negative electrode active material particles including voids inside the particles
  • voids between particles are represented in white.
  • Graphite particles with a maximum diameter of 5 ⁇ m or more and 50 ⁇ m or less are arbitrarily selected using the binarized cross-sectional image.
  • the area S1 of the graphite particles and the area S2 of internal voids of the graphite particles are calculated. It should be noted that it may be difficult to distinguish between minute voids having a maximum diameter of 3 ⁇ m or less as either internal voids or external voids in image analysis. Therefore, voids with a maximum diameter of 3 ⁇ m or less are considered internal voids.
  • the graphite particles and the particles of the Si-based material can be distinguished using the SEM image (backscattered electron image) of the cross section of the sample obtained above.
  • SEM image backscattered electron image
  • graphite particles appear black
  • Si-based material particles SiOx particles, etc.
  • the internal porosity (%) of the graphite particles is calculated from the following formula.
  • Internal porosity of graphite particles (S2/S1) x 100
  • graphite particles having an internal porosity of more than 5% are referred to as graphite particles A
  • graphite particles having an internal porosity of 5% or less are referred to as graphite particles B.
  • the average value of internal porosity of 10 graphite particles A is determined.
  • the average value of internal porosity of 10 graphite particles B is determined.
  • Graphite particles A can be produced, for example, by the following method.
  • the main raw material, coke (precursor), is pulverized, a binder is added to the pulverized material, and the pulverized material is agglomerated.
  • the obtained aggregate is pressure-molded to obtain a block-shaped compact, which is then fired and graphitized.
  • the firing temperature is, for example, 2600°C or higher, and may be 2600°C or higher and 3000°C or lower.
  • the density of the molded body is, for example, 1.6 g/cm 3 or more and 1.9 g/cm 3 or less.
  • the obtained block-shaped graphitized material is crushed and sieved to obtain graphite particles A of a desired size.
  • the average particle diameter (D50) of the crushed coke is, for example, 12 ⁇ m or more and 20 ⁇ m or less.
  • the average particle diameter (D50) means the particle diameter (volume average particle diameter) at which the volume integrated value is 50% in the particle size distribution measured by laser diffraction scattering method.
  • the measuring device for example, "LA-750" manufactured by Horiba, Ltd. can be used.
  • the internal porosity of graphite particles A may be controlled by the particle size of crushed coke or aggregates, etc.
  • the internal porosity of the graphite particles A may be controlled by the amount of the volatile component added to the block-shaped molded body.
  • the binder may also serve as a volatile component added to the molded body.
  • the internal porosity may be controlled by the amount of binder added. Pitch is exemplified as such a binder.
  • the internal porosity is larger than that of graphite particles B.
  • Graphite particles A may also be produced.
  • Graphite particles B can be produced, for example, by the following method.
  • the main raw material, coke (precursor), is pulverized, a binder is added to the pulverized material, and the pulverized material is agglomerated.
  • the average particle diameter (D50) of the crushed coke is, for example, 12 ⁇ m or more and 20 ⁇ m or less.
  • the obtained aggregate is fired, graphitized, and sieved to obtain graphite particles B of a desired size.
  • the firing temperature is, for example, 2600°C or higher, and may be 2600°C or higher and 3000°C or lower.
  • the internal porosity of graphite particles B can be controlled by, for example, the particle size of crushed coke or aggregates.
  • the particle size of crushed coke or aggregates may be increased.
  • the internal porosity may be controlled by the amount of binder added. Pitch is exemplified as such a binder.
  • a method for manufacturing a negative electrode for a secondary battery includes first to third steps.
  • a negative electrode slurry containing graphite particles is prepared.
  • a negative electrode slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode mixture layer.
  • the negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces of the negative electrode current collector.
  • the laminate of the negative electrode mixture layer and the negative electrode current collector is compressed.
  • a negative electrode mixture is dispersed in a dispersion medium to prepare a negative electrode slurry.
  • the negative electrode mixture contains graphite particles, which are negative electrode active materials, as an essential component, and may also contain a binder, a conductive agent, a thickener, etc. as optional components.
  • a binder As the binder and the like, those exemplified below can be used.
  • a negative electrode slurry may be applied to one surface of a sheet (foil)-shaped negative electrode current collector, or a negative electrode slurry may be formed on both surfaces of the negative electrode current collector.
  • the third step for example, the long laminate is roll pressed.
  • a first slurry, a second slurry, and a third slurry are prepared as negative electrode slurries.
  • the surface of the negative electrode current collector is coated with a first slurry, a second slurry, and a third slurry in order, and the first layer, second layer, and third layer are applied in order from the negative electrode current collector side.
  • Form a negative electrode mixture layer consisting of: Drying in the second step may be performed each time the first slurry to third slurry are applied, or may be performed after sequentially applying the first slurry to third slurry.
  • the second slurry includes a second a slurry and a second b slurry.
  • the second layer forming step includes applying a 2a slurry and a 2b slurry to the first and second areas of the first slurry application area, respectively, to form a 2a layer and a 2b layer as the second layer. Including process.
  • the graphite particles include graphite particles A whose internal porosity is greater than 5% and graphite particles B whose internal porosity is 5% or less.
  • the proportion (mass%) of graphite particles B in the graphite particles (total of graphite particles A and graphite particles B) in the first slurry, second a slurry, second b slurry, and third slurry is MB 1 and MB 1 , respectively. 2a , MB 2b , and MB 3 .
  • MB 1 , MB 2a , MB 2b , and MB 3 satisfy the relationship 0 ⁇ MB 1 ⁇ MB 2a ⁇ 50 ⁇ MB 2b ⁇ MB 3 ⁇ 100.
  • the thickness of the negative electrode mixture layer is T
  • the thickness of the third layer is greater than 0.05T.
  • the proportion of graphite particles B in the above graphite particles may be adjusted by separately producing graphite particles A and graphite particles B and including them in a slurry at a predetermined mass ratio.
  • the thickness of each layer may be adjusted by the amount of each slurry applied.
  • Examples of the coating method in the second step include a die coating method, an inkjet printing method, a reverse coating method (transfer method), and the like.
  • the other of the 2A slurry and the 2B slurry may be applied.
  • the application of the second a slurry and the second b slurry may be performed simultaneously.
  • the 2a slurry and the 2b slurry are mixed so that the 2a layer and the 2b layer formed in the second step have the arrangement pattern exemplified in the negative electrode for a secondary battery (the arrangement pattern shown in FIGS. 2 and 3A to 3C). may be applied in a pattern.
  • a secondary battery according to an embodiment of the present disclosure includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. This negative electrode is the negative electrode for secondary batteries described above.
  • the secondary battery will be explained in detail below.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer supported on the surface of the negative electrode current collector.
  • the negative electrode mixture layer contains a negative electrode active material as an essential component, and may also contain a binder, a conductive agent, a thickener, etc. as optional components.
  • the negative electrode active material contains at least graphite particles.
  • the graphite particles particles of natural graphite, artificial graphite, etc. can be used. Artificial graphite particles are preferred from the viewpoint of easy control of internal porosity. Particles of natural graphite can be used as graphite particles A.
  • the graphite particles may partially contain amorphous carbon, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon).
  • the average particle diameter (D50) of the graphite particles is, for example, 1 ⁇ m or more and 30 ⁇ m or less.
  • Graphite is a carbon material with a developed graphite-type crystal structure.
  • the interplanar spacing d002 of the (002) planes of graphite particles measured by X-ray diffraction may be, for example, 0.340 nm or less, or 0.3354 nm or more and 0.340 nm or less.
  • the crystallite size Lc (002) of the graphite particles measured by X-ray diffraction may be, for example, 5 nm or more, 5 nm or more and 300 nm or less, or 5 nm or more (or 10 nm or more). , 200 nm or less.
  • the crystallite size Lc (002) is measured, for example, by the Scherrer method.
  • the negative electrode active material may include a Si-based material.
  • the average particle size (D50) of the particles of the Si-based material is, for example, 1 ⁇ m or more and 25 ⁇ m or less.
  • Examples of Si-based materials include simple silicon, alloys containing silicon, and composite materials containing silicon. Alloys containing silicon include, for example, silicon (Si), tin (Sn), nickel (Ni), iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), and aluminum (Al). and at least one element selected from the group.
  • a composite material containing silicon may include an ion-conducting phase (matrix phase) and a silicon phase (particulate Si phase) dispersed within the phase.
  • the ion conductive phase include a silicon oxide phase, a silicate phase (for example, a lithium silicate phase), a carbon phase, and the like.
  • the silicon oxide phase is, for example, a SiO 2 phase containing 95% by mass or more of silicon dioxide.
  • Particles of a composite material in which a silicon phase is dispersed within a SiO 2 phase are represented by SiO x , where x satisfies, for example, 0.8 ⁇ x ⁇ 1.6.
  • the lithium silicate phase may have, for example, a composition represented by the formula: Li 2z SiO 2+z (0 ⁇ z ⁇ 2). z may be 1/2 or 1.
  • Particles of a composite material in which a silicon phase is dispersed within a silicate phase can be obtained, for example, by grinding a mixture of silicate and raw silicon with stirring in a ball mill or the like to form fine particles, and then heat-treating the mixture in an inert atmosphere. Can be done.
  • the carbon phase includes, for example, amorphous carbon with low crystallinity.
  • the conductive layer includes a conductive material such as conductive carbon.
  • the coating amount of the conductive layer is, for example, 1 part by mass or more and 10 parts by mass or less per 100 parts by mass of the composite material particles and the conductive layer.
  • Composite particles having a conductive layer on the surface can be obtained, for example, by mixing coal pitch or the like with particles of a composite material and heat-treating the mixture in an inert atmosphere.
  • Si-based materials have a larger capacity density than graphite particles.
  • Graphite particles have a smaller degree of expansion and contraction during charging and discharging than Si-based materials.
  • the proportion of Si-based material in the negative electrode active material is preferably 1% by mass or more and 10% by mass or less, 3% by mass or more, More preferably, it is 7% by mass or less. In this case, it is easy to simultaneously improve cycle characteristics and increase capacity.
  • resin materials such as fluororesins such as polytetrafluoroethylene and polyvinylidene fluoride (PVDF); polyolefin resins such as polyethylene and polypropylene; polyamide resins such as aramid resins; polyimide resins such as polyimide and polyamideimide; ; Acrylic resins such as polyacrylic acid, polymethyl acrylate, and ethylene-acrylic acid copolymers; Vinyl resins such as polyacrylonitrile and polyvinyl acetate; Polyvinylpyrrolidone; Polyethersulfone; Styrene-butadiene copolymer rubber (SBR) Examples include rubber-like materials such as.
  • One type of binder may be used alone, or two or more types may be used in combination.
  • Examples of the conductive agent include carbon such as acetylene black; conductive fibers such as carbon fiber and metal fiber; and metal powder such as aluminum.
  • One type of conductive agent may be used alone, or two or more types may be used in combination.
  • thickeners examples include carboxymethylcellulose (CMC) and its modified products (including salts such as Na salt), cellulose derivatives such as methylcellulose (cellulose ethers, etc.); Examples include chemical substances.
  • CMC carboxymethylcellulose
  • cellulose derivatives such as methylcellulose (cellulose ethers, etc.)
  • chemical substances include chemical substances.
  • One type of thickener may be used alone, or two or more types may be used in combination.
  • the dispersion medium is not particularly limited, but for example, water, alcohol such as ethanol, ether such as tetrahydrofuran, amide such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), or a mixed solvent thereof may be used. .
  • the negative electrode current collector a non-porous conductive substrate (metal foil, etc.) or a porous conductive substrate (mesh body, net body, punched sheet, etc.) is used.
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer supported on the surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which the positive electrode mixture is dispersed in a dispersion medium onto the surface of the positive electrode current collector and drying the slurry. The dried coating film may be rolled if necessary.
  • the positive electrode mixture layer may be formed on one surface or both surfaces of the sheet-like positive electrode current collector.
  • the positive electrode mixture includes a positive electrode active material as an essential component, and may also include a binder, a conductive agent, etc. as optional components. NMP or the like is used as a dispersion medium for the positive electrode slurry.
  • a composite oxide containing lithium and a transition metal such as Ni, Co, or Mn can be used.
  • Me is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, at least one selected from the group consisting of Al, Cr, Pb, Sb, and B.
  • 0 ⁇ a ⁇ 1.2, 0 ⁇ b ⁇ 0.9, and 2.0 ⁇ c ⁇ 2.3 Note that the a value indicating the molar ratio of lithium increases or decreases due to charging and discharging.
  • binder and conductive agent those similar to those exemplified for the negative electrode can be used.
  • conductive agent graphite such as natural graphite or artificial graphite may be used.
  • the shape and thickness of the positive electrode current collector can be selected from a shape and range similar to those of the negative electrode current collector.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, titanium, and the like.
  • the non-aqueous electrolyte includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • the concentration of lithium salt in the non-aqueous electrolyte is, for example, 0.5 mol/L or more and 2 mol/L or less.
  • a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester, a chain carboxylic ester, etc. are used.
  • the cyclic carbonate include propylene carbonate and ethylene carbonate.
  • a small amount of a cyclic carbonate having an unsaturated bond such as vinylene carbonate, a cyclic carbonate having a fluorine atom such as fluoroethylene carbonate, etc. may be included in the nonaqueous electrolyte.
  • chain carbonate esters include diethyl carbonate, ethylmethyl carbonate, dimethyl carbonate, and the like.
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Examples of the chain carboxylic acid ester include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and the like.
  • the non-aqueous solvents may be used alone or in combination of two or more.
  • lithium salts examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl , LiBr, LiI, borates, imide salts, and the like.
  • bis(1,2-benzenediolate (2-)-O,O') lithium borate bis(2,3-naphthalenediolate (2-)-O,O') boric acid Lithium, bis(2,2'-biphenyldiolate(2-)-O,O') lithium borate, bis(5-fluoro-2-oleate-1-benzenesulfonic acid-O,O') lithium borate etc.
  • imide salts examples include lithium bisfluorosulfonylimide (LiN(FSO 2 ) 2 ), lithium bistrifluoromethanesulfonate imide (LiN(CF 3 SO 2 ) 2 ), lithium trifluoromethanesulfonate nonafluorobutanesulfonate imide (LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 )), lithium bispentafluoroethanesulfonic acid imide (LiN(C 2 F 5 SO 2 ) 2 ), and the like.
  • One type of lithium salt may be used alone, or two or more types may be used in combination.
  • Separatator usually, it is desirable to interpose a separator between the positive electrode and the negative electrode.
  • the separator has high ion permeability, appropriate mechanical strength, and insulation properties.
  • a microporous thin film, woven fabric, nonwoven fabric, etc. can be used.
  • polyolefins such as polypropylene and polyethylene are preferred.
  • the secondary battery may include, for example, a wound-type electrode group configured by winding a positive electrode and a negative electrode with a separator in between, or a stacked electrode group configured by laminating a positive electrode and a negative electrode with a separator in between.
  • a type of electrode group may be provided.
  • the secondary battery may have any form, such as a cylindrical shape, a square shape, a coin shape, a button shape, a laminate shape, etc., for example.
  • FIG. 5 is a partially cutaway schematic perspective view of a secondary battery according to an embodiment of the present disclosure.
  • the battery includes a rectangular battery case 4 with a bottom, an electrode group 1 housed in the battery case 4, and a non-aqueous electrolyte (not shown).
  • the electrode group 1 includes a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed between them to prevent direct contact.
  • the electrode group 1 is formed by winding a negative electrode, a positive electrode, and a separator around a flat core, and then removing the core.
  • One end of the negative electrode lead 3 is attached to the negative electrode current collector by welding or the like.
  • the other end of the negative electrode lead 3 is electrically connected to a negative electrode terminal 6 provided on the sealing plate 5 via a resin insulating plate (not shown).
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7.
  • One end of a positive electrode lead 2 is attached to the positive electrode current collector by welding or the like.
  • the other end of the positive electrode lead 2 is connected to the back surface of the sealing plate 5 via an insulating plate. That is, the positive electrode lead 2 is electrically connected to the battery case 4 which also serves as a positive electrode terminal.
  • the insulating plate isolates the electrode group 1 and the sealing plate 5 as well as the negative electrode lead 3 and the battery case 4.
  • the peripheral edge of the sealing plate 5 fits into the open end of the battery case 4, and the fitting portion is laser welded. In this way, the opening of the battery case 4 is sealed with the sealing plate 5.
  • a non-aqueous electrolyte injection hole provided in the sealing plate 5 is closed with a sealing plug 8 .
  • the following techniques are disclosed by the description of the above embodiments.
  • (Technology 1) comprising a negative electrode mixture layer containing a negative electrode active material and a negative electrode current collector supporting the negative electrode mixture layer,
  • the negative electrode active material includes graphite particles,
  • the graphite particles include graphite particles A having an internal porosity of more than 5% and graphite particles B having an internal porosity of 5% or less
  • the negative electrode mixture layer includes, in order from the negative electrode current collector side, a first layer, a second layer, and a third layer
  • the second layer includes a 2a layer and a 2b layer arranged in a first region and a second region of the first layer, respectively,
  • the proportion (mass%) of the graphite particles B in the total of the graphite particles A and the graphite particles B in the first layer, the second a layer, the second b layer, and the third layer is MB 1 , MB 2a , MB 2b , and MB 3 , The
  • the thickness of the second layer is 0.1T or more and 0.5T or less, The negative electrode for a secondary battery according to technology 1 or 2, wherein the third layer has a thickness of 0.1T or more and 0.3T or less.
  • the MB 2a is 0% by mass or more and 40% by mass or less, The negative electrode for a secondary battery according to any one of Techniques 1 to 3, wherein the MB 2b is 60% by mass or more and 100% by mass or less.
  • one of the second a layer and the second b layer is a secondary layer according to any one of techniques 1 to 7, wherein one of the second a layer and the second b layer is arranged in an island-like manner dispersed in the other sea.
  • Negative electrode for batteries (Technology 9) Comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, A secondary battery, wherein the negative electrode is a negative electrode for a secondary battery according to any one of Techniques 1 to 8.
  • the second slurry includes a second a slurry and a second b slurry, In the step of forming the second layer, the second a slurry and the second b slurry are respectively applied to a first region and a second region of the application region of the first slurry, and the second layer is formed as the second layer.
  • the graphite particles include graphite particles A having an internal porosity of more than 5% and graphite particles B having an internal porosity of 5% or less,
  • the proportion (mass%) of the graphite particles B in the total of the graphite particles A and the graphite particles B in the first slurry, the second a slurry, the second b slurry, and the third slurry is MB 1 , MB 2a , MB 2b , and MB 3
  • the MB 1 , the MB 2a , the MB 2b , and the MB 3 are: 0 ⁇ MB 1 ⁇ MB 2a ⁇ 50 ⁇ MB 2b ⁇ MB 3 ⁇ 100 satisfies the relationship of
  • T A method for manufacturing a negative electrode for a secondary battery, wherein the thickness of the third layer is greater than 0.05T.
  • the thickness of the second layer is 0.1T or more and 0.5T or less, The method for manufacturing a negative electrode for a secondary battery according to technology 10 or 11, wherein the third layer has a thickness of 0.1 T or more and 0.3 T or less.
  • the MB 2a is 0% by mass or more and 40% by mass or less, The method for producing a negative electrode for a secondary battery according to any one of Techniques 10 to 12, wherein the MB 2b is 60% by mass or more and 100% by mass or less.
  • Coke (precursor) serving as the main raw material was pulverized to obtain a pulverized product with an average particle size (D50) of 12 ⁇ m.
  • Pitch was added to the pulverized material as a binder to agglomerate the pulverized material to obtain an agglomerate having an average particle size (D50) of 18 ⁇ m.
  • the aggregate was calcined at a temperature of 2800°C to graphitize it.
  • the obtained graphitized product was sieved to obtain graphite particles B having an average particle diameter (D50) of 23 ⁇ m.
  • the internal porosity of graphite particles A determined by the method described above was within the range of 8% to 20%, and the average value of the internal porosity was 15%.
  • the internal porosity of graphite particles B determined by the method described above was within the range of 1% to 5%, and the average value of the internal porosity was 3%.
  • the internal porosity of graphite particles A and B was adjusted by adjusting the amount of pitch added during the production process of graphite particles A and B. Note that the larger the pitch amount, the larger the internal porosity.
  • the negative electrode mixture used was a mixture of a negative electrode active material, styrene-butadiene copolymer rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener.
  • SBR styrene-butadiene copolymer rubber
  • CMC carboxymethyl cellulose
  • a mixture of graphite particles and Si-based material was used as the negative electrode active material.
  • the mass ratio of graphite particles to Si-based material was 95:5.
  • the mass ratio of the negative electrode active material, SBR, and CMC was 100:1:1.
  • SiO x particles (0.8 ⁇ x ⁇ 1.6, average particle diameter (D50) 5 ⁇ m) whose surface was coated with a conductive layer containing conductive carbon were used as a composite material.
  • the coating amount of the conductive layer was 5 parts by mass per 100 parts by mass of the SiO x particles and the conductive layer.
  • a first slurry, a second slurry, and a third slurry were prepared as negative electrode slurries.
  • As the second slurry a 2nd a slurry and a 2nd b slurry were prepared.
  • the mixing ratio of graphite particles A and graphite particles B was adjusted appropriately, and the proportion (mass%) of graphite particles B in the graphite particles (total of graphite particles A and graphite particles B) contained in each slurry was determined as shown in Table 1. The values shown are as follows.
  • a copper foil (thickness: 10 ⁇ m) was prepared as a negative electrode current collector. Apply the first slurry, second slurry, and third slurry to both sides of the negative electrode current collector in this order, and dry to form the first layer, second layer, and third layer in this order from the negative electrode current collector side. did. In this way, a negative electrode mixture layer consisting of the first to third layers was formed. A 2nd a slurry and a 2nd b slurry were used as the second slurry.
  • a 2a slurry and a 2b slurry were applied to the first and second areas of the first slurry application area, respectively, to form a 2a layer and a 2b layer as the second layer.
  • Each slurry was applied by a die coating method.
  • the second a layer and the second b layer were arranged in stripes in the pattern shown in FIG.
  • the widths of the 2nd a layer and the 2nd layer were substantially the same.
  • the coating amount of each slurry was adjusted as appropriate, and the thicknesses (T 1 to T 3 ) of the first to third layers were set to the values shown in Table 1, respectively.
  • the thickness T of the negative electrode mixture layer per side was 80 ⁇ m.
  • a laminate of a negative electrode current collector and negative electrode mixture layers formed on both sides of the negative electrode current collector was rolled. In this way, a negative electrode was obtained.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture used was a mixture of a lithium-containing composite oxide as a positive electrode active material, graphite as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder. LiNi 0.88 Co 0.09 Al 0.03 O 2 was used as the lithium-containing composite oxide.
  • the mass ratio of the lithium-containing composite oxide, graphite, and PVDF was 100:1:0.9.
  • a positive electrode slurry was applied to both sides of an aluminum foil (thickness: 15 ⁇ m) serving as a positive electrode current collector, and the coating was dried and rolled to form a positive electrode mixture layer to obtain a positive electrode.
  • a doctor blade method was used to apply the positive electrode slurry.
  • VC vinylene carbonate
  • DMC dimethyl carbonate
  • An aluminum positive electrode lead was attached to the exposed portion of the positive electrode current collector of the positive electrode, and a nickel negative electrode lead was attached to the exposed portion of the negative electrode current collector of the negative electrode. Thereafter, the positive electrode and the negative electrode were wound together with a separator interposed therebetween to produce a wound electrode group.
  • a microporous polyethylene membrane was used as the separator.
  • the electrode group was housed inside the battery case. At this time, an upper insulating plate and a lower insulating plate made of resin were placed above and below the electrode group, respectively.
  • the negative electrode lead was welded to the inner bottom of the battery case.
  • the positive electrode lead was welded to a metal sealing body that also served as a positive electrode terminal.
  • E1 to E6 are the batteries of Examples 1 to 6
  • R3 to R4 and R6 to R7 are the batteries of Comparative Examples 3 to 4 and 6 to 7.
  • the negative electrode material mixture layer was composed of the first layer and the third layer.
  • the proportion MB 1 of graphite particles B in the graphite particles in the first slurry and the proportion MB 3 of graphite particles B in the graphite particles in the third slurry were set to the values shown in Table 1.
  • the thickness T 1 of the first layer and the thickness T 3 of the third layer were set to the values shown in Table 1.
  • a battery R1 was produced in the same manner as the battery E1 of Example 1 except for the above.
  • the negative electrode mixture layer was composed of the first layer and the second layer (the 2nd a layer and the 2nd b layer).
  • the proportion of graphite particles B in the graphite particles in the first slurry MB 1 , the proportion of graphite particles B in the graphite particles in the second slurry MB 2a , and the proportion of graphite particles B in the graphite particles in the second slurry MB 2b was set to the value shown in Table 1.
  • the thickness T 1 of the first layer and the thickness T 2 of the second layer were set to the values shown in Table 1.
  • a battery R2 was produced in the same manner as the battery E1 of Example 1 except for the above.
  • the negative electrode mixture layer was composed of the second layer (2a layer and 2b layer) and the third layer.
  • the thickness T 2 of the second layer and the thickness T 3 of the third layer were set to the values shown in Table 1.
  • a battery R5 was produced in the same manner as the battery E1 of Example 1 except for the above.
  • Electrolyte permeability of negative electrode 3 ⁇ l of propylene carbonate was dropped as a solvent onto one surface of the negative electrode (negative electrode mixture layer), and the time from when the solvent was dropped until all of the solvent permeated into the negative electrode mixture layer was measured.
  • the numerical value of electrolyte permeability in Table 1 indicates the time (seconds) measured above, and when the numerical value is small, the rapid charging characteristics are good.
  • batteries E1 to E6 the electrolyte permeability values were small and excellent rapid charging characteristics were obtained. In addition, batteries E1 to E6 had high capacity retention rates and excellent cycle characteristics.
  • the negative electrode mixture layer was formed only with the first layer and the third layer, and the second layer was not formed, so the electrolyte permeability value was large and the capacity retention rate was reduced.
  • the electrolyte permeability value increased significantly because the third layer was not formed.
  • the second layer was composed of one layer in which the ratio of graphite particles B to the graphite particles was 50% by mass, the electrolyte permeability value increased and the capacity retention rate decreased.
  • the negative electrode for secondary batteries according to the present disclosure is suitably used in secondary batteries that require excellent rapid charging characteristics and cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This secondary battery negative electrode comprises a negative electrode mixture layer of thickness T that is supported on a negative electrode current collector. A negative electrode active material in the negative electrode mixture layer contains graphite particles. The graphite particles contain graphite particles A having an internal porosity greater than 5%, and graphite particles B having internal porosity of 5% or less. The negative electrode mixture layer has a first layer, a second layer, and a third layer in order from the negative electrode current collector side. The second layer includes a 2a-th layer and a 2b-th layer disposed respectively in a first region and a second region of the first layer. The proportions (mass%) of the graphite particles B in the total of the graphite particles A and the graphite particles B in the first layer, 2a-th layer, 2b-th layer, and third layer are MB1, MB2a, MB2b, and MB3, respectively, where MB1, MB2a, MB2b, and MB3 are such that 0 ≤ MB1 ≤ MB2a < 50 < MB2b ≤ MB3 ≤ 100. The thickness of the third layer is greater than 0.05T.

Description

二次電池用負極、二次電池、および二次電池用負極の製造方法Secondary battery negative electrode, secondary battery, and manufacturing method of secondary battery negative electrode
 本開示は、二次電池用負極、二次電池、および二次電池用負極の製造方法に関する。 The present disclosure relates to a negative electrode for a secondary battery, a secondary battery, and a method for manufacturing a negative electrode for a secondary battery.
 非水電解質二次電池、特にリチウムイオン二次電池は、高電圧かつ高エネルギー密度を有し、携帯機器等の小型電子機器の電源等に広く用いられている。 Nonaqueous electrolyte secondary batteries, especially lithium ion secondary batteries, have high voltage and high energy density, and are widely used as power sources for small electronic devices such as mobile devices.
 特許文献1では、集電体上に形成された非水電解質二次電池用の電極活物質層であって、前記集電体側から表面側に向けて厚み方向に、空隙率が段階的または連続的に大きくなるように変化しており、空隙率の厚み方向の傾斜度合が3.5~4.0%/10μmである、非水電解質二次電池用の電極活物質層が提案されている。 Patent Document 1 discloses an electrode active material layer for a non-aqueous electrolyte secondary battery formed on a current collector, in which the porosity is graded or continuous in the thickness direction from the current collector side to the surface side. An electrode active material layer for nonaqueous electrolyte secondary batteries has been proposed in which the degree of porosity gradient in the thickness direction is 3.5 to 4.0%/10 μm. .
特開2015-037008号公報Japanese Patent Application Publication No. 2015-037008
 二次電池について、急速充電特性およびサイクル特性の向上が求められている。 There is a need for improved rapid charging characteristics and cycle characteristics for secondary batteries.
 以上に鑑み、本開示の一側面は、負極活物質を含む負極合剤層と、前記負極合剤層を担持する負極集電体と、を備え、前記負極活物質は、黒鉛粒子を含み、前記黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含み、前記負極合剤層は、前記負極集電体の側より順に、第1層と、第2層と、第3層と、を含み、前記第2層は、前記第1層の第1領域および第2領域にそれぞれ配置される第2a層および第2b層を含み、前記第1層、前記第2a層、前記第2b層、および前記第3層における前記黒鉛粒子Aと前記黒鉛粒子Bとの合計に占める前記黒鉛粒子Bの割合(質量%)を、それぞれ、MB、MB2a、MB2b、およびMBとするとき、前記MBと、前記MB2aと、前記MB2bと、前記MBとは、0≦MB≦MB2a<50<MB2b≦MB≦100の関係を満たし、前記負極合剤層の厚みをTとするとき、前記第3層の厚みは0.05Tよりも大きい、二次電池用負極に関する。 In view of the above, one aspect of the present disclosure includes a negative electrode mixture layer containing a negative electrode active material, and a negative electrode current collector supporting the negative electrode mixture layer, the negative electrode active material containing graphite particles, The graphite particles include graphite particles A having an internal porosity of more than 5% and graphite particles B having an internal porosity of 5% or less, and the negative electrode mixture layer is arranged on the side of the negative electrode current collector. The second layer includes a second layer, a second layer, and a second layer, which are arranged in the first region and the second region of the first layer, respectively, in this order. The ratio (mass%) of the graphite particles B to the total of the graphite particles A and the graphite particles B in the first layer, the second a layer, the second b layer, and the third layer. , respectively, where MB 1 , MB 2a , MB 2b , and MB 3 are 0≦MB 1 ≦MB 2a < 50 < The present invention relates to a negative electrode for a secondary battery that satisfies the relationship MB 2b ≦MB 3 ≦100, and where the thickness of the negative electrode mixture layer is T, the thickness of the third layer is greater than 0.05T.
 本開示の別の側面は、正極と、負極と、非水電解質と、を備え、前記負極は、上記の二次電池用負極である、二次電池に関する。 Another aspect of the present disclosure relates to a secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, where the negative electrode is the negative electrode for a secondary battery described above.
 本開示の更に別の側面は、黒鉛粒子を含む負極スラリーを調製する第1工程と、負極集電体の表面に前記負極スラリーを塗布し、乾燥し、負極合剤層を形成する第2工程と、前記負極合剤層および前記負極集電体の積層体を圧縮する第3工程と、を含み、前記第1工程では、前記負極スラリーとして、第1負極スラリー、第2負極スラリー、および第3負極スラリーを調製し、前記第2工程では、前記負極集電体の表面に、前記第1負極スラリー、前記第2負極スラリー、および前記第3負極スラリーの順に塗布し、前記負極集電体の側より順に第1層、第2層、および第3層で構成される前記負極合剤層を形成し、前記第2負極スラリーは、第2a負極スラリーおよび第2b負極スラリーを含み、前記第2層の形成工程は、前記第1負極スラリーの塗布領域の第1領域および第2領域に、それぞれ第2a負極スラリーおよび第2b負極スラリーを塗布し、前記第2層として第2a層および第2b層を形成する工程を含み、前記黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含み、前記第1負極スラリー、前記第2a負極スラリー、前記第2b負極スラリー、および前記第3負極スラリーにおける前記黒鉛粒子Aと前記黒鉛粒子Bとの合計に占める前記黒鉛粒子Bの割合(質量%)を、それぞれ、MB、MB2a、MB2b、およびMBとするとき、前記MBと、前記MB2aと、前記MB2bと、前記MBとは、0≦MB≦MB2a<50<MB2b≦MB≦100の関係を満たし、前記負極合剤層の厚みをTとするとき、前記第3層の厚みは0.05Tよりも大きい、二次電池用負極の製造方法に関する。 Yet another aspect of the present disclosure includes a first step of preparing a negative electrode slurry containing graphite particles, and a second step of applying the negative electrode slurry to the surface of a negative electrode current collector and drying it to form a negative electrode mixture layer. and a third step of compressing the laminate of the negative electrode mixture layer and the negative electrode current collector, and in the first step, as the negative electrode slurry, a first negative electrode slurry, a second negative electrode slurry, and a third negative electrode slurry are compressed. 3 negative electrode slurry is prepared, and in the second step, the first negative electrode slurry, the second negative electrode slurry, and the third negative electrode slurry are applied to the surface of the negative electrode current collector in this order, and the negative electrode slurry is applied to the surface of the negative electrode current collector. The negative electrode mixture layer is formed of a first layer, a second layer, and a third layer in this order from the side, and the second negative electrode slurry includes a 2a negative electrode slurry and a 2b negative electrode slurry, and the In the step of forming two layers, a 2a negative electrode slurry and a 2b negative electrode slurry are applied to a first region and a second region of the first negative electrode slurry application region, respectively, and a 2a layer and a 2b negative electrode slurry are formed as the second layer. the first negative electrode slurry; The proportion (mass %) of the graphite particles B in the total of the graphite particles A and the graphite particles B in the second a negative electrode slurry, the second b negative electrode slurry, and the third negative electrode slurry is MB 1 , When MB 2a , MB 2b , and MB 3 are MB 1 , MB 2a , MB 2b , and MB 3 , 0≦MB 1 ≦MB 2a <50<MB 2b ≦MB 3 ≦ The present invention relates to a method for manufacturing a negative electrode for a secondary battery, in which the third layer has a thickness greater than 0.05T, where the relationship of 100 is satisfied and the thickness of the negative electrode mixture layer is T.
 本開示によれば、二次電池の急速充電特性およびサイクル特性を向上させることができる。 According to the present disclosure, the rapid charging characteristics and cycle characteristics of a secondary battery can be improved.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention is further understood by the following detailed description, taken together with the drawings, both as to structure and content, as well as other objects and features of the invention. It will be well understood.
本開示の一実施形態に係る二次電池用負極の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a negative electrode for a secondary battery according to an embodiment of the present disclosure. 第2a層および第2b層の配置パターンの一例を示す図である。It is a figure which shows an example of the arrangement pattern of the 2nd a layer and the 2nd b layer. 第2a層および第2b層の配置パターンの変形例を示す図である。It is a figure which shows the modification of the arrangement pattern of the 2nd a layer and the 2nd b layer. 第2a層および第2b層の配置パターンの別の変形例を示す図である。It is a figure which shows another modification of the arrangement pattern of the 2nd a layer and the 2nd b layer. 第2a層および第2b層の配置パターンの更に別の変形例を示す図である。It is a figure which shows yet another modification of the arrangement pattern of the 2nd a layer and the 2nd b layer. 負極活物質である黒鉛粒子を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing graphite particles that are a negative electrode active material. 本開示の一実施形態に係る二次電池の一部を切欠いた概略斜視図である。FIG. 1 is a partially cutaway schematic perspective view of a secondary battery according to an embodiment of the present disclosure.
 以下では、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などの数値に関して下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかとを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Hereinafter, embodiments of the present disclosure will be described using examples, but the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be illustrated, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained. In this specification, the expression "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as "more than or equal to numerical value A and less than or equal to numerical value B." In the following explanation, when lower limits and upper limits are given as examples for numerical values such as specific physical properties or conditions, any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined, as long as the lower limit is not greater than the upper limit. . When a plurality of materials are exemplified, one type may be selected from them and used alone, or two or more types may be used in combination.
 また、本開示は、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項の組み合わせを包含する。つまり、技術的な矛盾が生じない限り、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項を組み合わせることができる。 Furthermore, the present disclosure includes combinations of matters recited in two or more claims arbitrarily selected from a plurality of claims recited in the appended claims. In other words, unless a technical contradiction occurs, matters described in two or more claims arbitrarily selected from the plurality of claims described in the appended claims can be combined.
(二次電池用負極)
 本開示の実施形態に係る二次電池用負極は、負極活物質を含む負極合剤層と、負極合剤層を担持する負極集電体と、を備える。負極活物質は黒鉛粒子を含み、黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含む。負極合剤層は、負極集電体の側より順に、第1層と、第2層と、第3層と、を含む。第2層は、第1層の第1領域および第2領域にそれぞれ配置される第2a層および第2b層を含む。第1領域および第2領域は、互いに重複しない。第1層、第2a層、第2b層、および第3層における黒鉛粒子(黒鉛粒子Aと黒鉛粒子Bとの合計)に占める黒鉛粒子Bの割合(質量%)を、それぞれ、MB、MB2a、MB2b、およびMBとする。このとき、MBと、MB2aと、MB2bと、MBとは、0≦MB≦MB2a<50<MB2b≦MB≦100の関係を満たす。負極合剤層の厚みをTとするとき、第3層の厚みは0.05Tよりも大きい。
(Negative electrode for secondary batteries)
A negative electrode for a secondary battery according to an embodiment of the present disclosure includes a negative electrode mixture layer containing a negative electrode active material and a negative electrode current collector supporting the negative electrode mixture layer. The negative electrode active material includes graphite particles, and the graphite particles include graphite particles A whose internal porosity is greater than 5% and graphite particles B whose internal porosity is 5% or less. The negative electrode mixture layer includes, in order from the negative electrode current collector side, a first layer, a second layer, and a third layer. The second layer includes a 2a layer and a 2b layer arranged in the first region and the second region of the first layer, respectively. The first region and the second region do not overlap with each other. The proportion (mass%) of graphite particles B in the graphite particles (total of graphite particles A and graphite particles B) in the first layer, the second a layer, the second b layer, and the third layer is MB 1 and MB, respectively. 2a , MB 2b , and MB 3 . At this time, MB 1 , MB 2a , MB 2b , and MB 3 satisfy the relationship 0≦MB 1 ≦MB 2a <50<MB 2b ≦MB 3 ≦100. When the thickness of the negative electrode mixture layer is T, the thickness of the third layer is greater than 0.05T.
 上記構成を満たす二次電池用負極を用いることにより、二次電池のサイクル特性および急速充電特性を高めることができる。 By using a negative electrode for a secondary battery that satisfies the above configuration, the cycle characteristics and rapid charging characteristics of the secondary battery can be improved.
 第1層と第3層との間に第2層として第2a層および第2b層がそれぞれ形成されている。第2a層(第1層の第1領域)は複数に分割して配置されていてもよい。第2b層(第1層の第2領域)は複数に分割して配置されていてもよい。第2a層(第1層の第1領域)および第2b層(第1層の第2領域)が交互に繰り返されるパターンで配置されていてもよい。第2a層および第2b層(第1層の第1領域および第2領域)の一方は、他方の海に島状に分散して配置されていてもよい。第2層を負極集電体の主面の法線方向から見たとき、第2a層の総面積と第2b層の総面積との合計に占める第2b層の総面積の割合は、例えば、10%以上、75%以下であってもよく、40%以上、55%以下であってもよく、50%程度であってもよい。 A layer 2a and a layer 2b are respectively formed as second layers between the first layer and the third layer. The second a layer (the first region of the first layer) may be divided into a plurality of parts and arranged. The 2b layer (the second region of the first layer) may be divided into a plurality of parts and arranged. The second a layer (the first region of the first layer) and the second b layer (the second region of the first layer) may be arranged in an alternating pattern. One of the 2A layer and the 2B layer (the first region and the second region of the first layer) may be dispersed and arranged in the form of islands in the other sea. When the second layer is viewed from the normal direction of the main surface of the negative electrode current collector, the ratio of the total area of the 2b layer to the total area of the 2a layer and the 2b layer is, for example, It may be 10% or more and 75% or less, 40% or more and 55% or less, or about 50%.
 第1層は負極合剤層の中で最も負極集電体側に配置される層である。第3層は負極合剤層の中で最も負極の表面側に配置される層である。第2層は、第1層と第3層との間に配置される層である。負極合剤層は、第1層~第3層による効果を損なわない範囲で第1層~第3層以外の別の層(第4層)を更に含んでもよい。第4層は、例えば、第1層と第2層との間に配置されていてもよい。このような第4層としては、例えば、第2層とは異なり1つの層で構成され、かつ、第1層とは異なり黒鉛粒子に占める黒鉛粒子Bの割合が50質量%超である層が挙げられる。負極合剤層の厚みTとは、第1層と第2層と第3層との合計厚みであり、負極合剤層が第4層を含む場合は第4層を除く負極合剤層の厚みを意味する。 The first layer is the layer disposed closest to the negative electrode current collector among the negative electrode mixture layers. The third layer is a layer disposed closest to the surface of the negative electrode among the negative electrode mixture layers. The second layer is a layer placed between the first layer and the third layer. The negative electrode mixture layer may further include another layer (fourth layer) other than the first to third layers as long as the effects of the first to third layers are not impaired. The fourth layer may be arranged between the first layer and the second layer, for example. Such a fourth layer may be, for example, a layer that is composed of one layer, unlike the second layer, and, unlike the first layer, the ratio of graphite particles B to the graphite particles is more than 50% by mass. Can be mentioned. The thickness T of the negative electrode mixture layer is the total thickness of the first layer, the second layer, and the third layer, and when the negative electrode mixture layer includes the fourth layer, the thickness T of the negative electrode mixture layer excluding the fourth layer. It means thickness.
 0≦MB≦MB2a<50を満たし、第1層および第2a層は、黒鉛粒子に占める黒鉛粒子Aの割合が大きい層である。50<MB2b≦MB≦100を満たし、第3層および第2b層は、黒鉛粒子に占める黒鉛粒子Bの割合が大きい層である。 0≦MB 1 ≦MB 2a <50, and the first layer and the second a layer are layers in which the ratio of graphite particles A to graphite particles is large. 50<MB 2b ≦MB 3 ≦100, and the third layer and the second b layer are layers in which the ratio of graphite particles B to graphite particles is large.
 黒鉛粒子Aは負極の圧縮時に変形し易く、黒鉛粒子Aを多く含む第1層では粒子間の空隙が小さくなっている。このような第1層を負極集電体側に配置することで、負極合剤層と負極集電体との密着性が向上し、サイクル特性が向上する。
 更に第2層の一部が第2a層で構成されている。第2a層では、黒鉛粒子Bと比べて柔軟であり、変形し易い黒鉛粒子Aを多く含む。このような第2a層を負極合剤層の内部に配置することにより、充放電時の負極活物質の膨張収縮により負極合剤層に生じる応力が緩和され、サイクル特性が向上する。
Graphite particles A are easily deformed when the negative electrode is compressed, and in the first layer containing a large amount of graphite particles A, the voids between the particles are small. By arranging such a first layer on the negative electrode current collector side, the adhesion between the negative electrode mixture layer and the negative electrode current collector is improved, and the cycle characteristics are improved.
Furthermore, a part of the second layer is constituted by the second a layer. The 2nd a layer contains many graphite particles A, which are more flexible and easily deformed than graphite particles B. By arranging such a second a layer inside the negative electrode mixture layer, the stress generated in the negative electrode mixture layer due to expansion and contraction of the negative electrode active material during charging and discharging is alleviated, and the cycle characteristics are improved.
 黒鉛粒子Bは、硬質であり、負極の圧縮時に変形しにくく、黒鉛粒子Bを多く含む第3層では粒子間の空隙が大きくなっており、電解質の拡散経路が形成され易い。このような第3層を負極(負極合剤層)の表面側に配置することで、電解質が負極合剤層に浸透し易い。
 更に第2層の一部が第2b層で構成されている。第2b層は黒鉛粒子Bを多く含み、粒子間の空隙が大きくなっている。このような第2b層を負極合剤層の内部に配置することにより、負極合剤層の表面より内部へ電解質が拡散し易く、負極(負極合剤層)全体の電解質浸透性が大幅に向上し、急速充電特性が向上する。
Graphite particles B are hard and are not easily deformed when the negative electrode is compressed, and in the third layer containing a large amount of graphite particles B, the voids between the particles are large, making it easy to form a diffusion path for the electrolyte. By arranging such a third layer on the surface side of the negative electrode (negative electrode mixture layer), the electrolyte can easily penetrate into the negative electrode mixture layer.
Furthermore, a part of the second layer is constituted by the second b layer. The 2nd b layer contains many graphite particles B, and the voids between the particles are large. By arranging such a second b layer inside the negative electrode mixture layer, the electrolyte can easily diffuse into the interior from the surface of the negative electrode mixture layer, and the electrolyte permeability of the entire negative electrode (negative electrode mixture layer) is greatly improved. This improves quick charging characteristics.
 0≦MB≦MB2a<50を満たす場合、第1層および第2a層の配置による上記の効果が効率的に得られる。50<MB2b≦MB≦100を満たす場合、第2b層および第3層の配置による上記の効果が効率的に得られる。
 ただし、第3層の厚みが0.05T以下である場合、第3層の形成による効果が不十分となり、急速充電特性が低下することがある。
When 0≦MB 1 ≦MB 2a <50, the above-mentioned effects due to the arrangement of the first layer and the second a layer can be efficiently obtained. When 50<MB 2b ≦MB 3 ≦100 is satisfied, the above effects due to the arrangement of the second b layer and the third layer can be efficiently obtained.
However, if the thickness of the third layer is 0.05T or less, the effect of forming the third layer may be insufficient and the rapid charging characteristics may deteriorate.
 サイクル特性の向上の観点から、MB2aは、0質量%以上、50質量%未満であり、0質量%以上、40質量%以下が好ましい。急速充電特性の向上の観点から、MB2bは、50質量%超、100質量%以下であり、60質量%以上、100質量%以下が好ましい。サイクル特性および急速充電特性の向上の観点から、MB2a/MB2bは、0以上、2/3以下が好ましく、0以上、1/4以下がより好ましい。 From the viewpoint of improving cycle characteristics, MB 2a is 0% by mass or more and less than 50% by mass, preferably 0% by mass or more and 40% by mass or less. From the viewpoint of improving rapid charging characteristics, MB 2b is more than 50% by mass and less than 100% by mass, preferably more than 60% by mass and less than 100% by mass. From the viewpoint of improving cycle characteristics and rapid charging characteristics, MB 2a /MB 2b is preferably 0 or more and 2/3 or less, more preferably 0 or more and 1/4 or less.
 第1層(もしくは第1層および第2a層)には黒鉛粒子として黒鉛粒子Aのみを含ませてもよい。第3層(もしくは第3層および第2b層)には黒鉛粒子として黒鉛粒子Bのみを含ませてもよい。 The first layer (or the first layer and the second a layer) may contain only graphite particles A as graphite particles. The third layer (or the third layer and the second b layer) may contain only graphite particles B as graphite particles.
 図1は、本開示の実施形態に係る二次電池用負極の一例を模式的に示す断面図である。図2は、第2a層および第2b層の配置パターンの一例を示す図である。図2は、第2層を負極集電体の主面の法線方向から見たときの図である。図2中の斜線部分が第2b層である。 FIG. 1 is a cross-sectional view schematically showing an example of a negative electrode for a secondary battery according to an embodiment of the present disclosure. FIG. 2 is a diagram showing an example of the arrangement pattern of the second a layer and the second b layer. FIG. 2 is a diagram of the second layer viewed from the normal direction of the main surface of the negative electrode current collector. The shaded area in FIG. 2 is the second b layer.
 負極30は、シート状(箔状)の負極集電体31と、負極集電体31の一方の表面に担持された負極合剤層32と、負極集電体31の他方の表面に担持された負極合剤層33と、を備える。負極合剤層32および負極合剤層33は、互いに同じ構成である。以下、負極合剤層32について詳述する。 The negative electrode 30 includes a sheet-like (foil-like) negative electrode current collector 31, a negative electrode mixture layer 32 supported on one surface of the negative electrode current collector 31, and a negative electrode mixture layer 32 supported on the other surface of the negative electrode current collector 31. and a negative electrode mixture layer 33. The negative electrode mixture layer 32 and the negative electrode mixture layer 33 have the same configuration. The negative electrode mixture layer 32 will be described in detail below.
 負極合剤層32は、負極活物質として黒鉛粒子を含む。黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含む。負極合剤層32は、負極集電体31の側から順に、第1層41と、第2層42と、第3層43と、を備える。第2層42は、第1層41の第1領域に配置される第2a層42aと、第1層41の第2領域に配置される第2b層42bと、を含む。 The negative electrode mixture layer 32 contains graphite particles as a negative electrode active material. The graphite particles include graphite particles A whose internal porosity is greater than 5% and graphite particles B whose internal porosity is 5% or less. The negative electrode mixture layer 32 includes, in order from the negative electrode current collector 31 side, a first layer 41 , a second layer 42 , and a third layer 43 . The second layer 42 includes a second a layer 42 a disposed in the first region of the first layer 41 and a second b layer 42 b disposed in the second region of the first layer 41 .
 第1層41中の黒鉛粒子に占める黒鉛粒子Bの割合MB(質量%)と、第2a層42a中の黒鉛粒子に占める黒鉛粒子Bの割合MB2a(質量%)と、第2b層42b中の黒鉛粒子に占める黒鉛粒子Bの割合MB2b(質量%)と、第3層43中の黒鉛粒子に占める黒鉛粒子Bの割合MB(質量%)とは、0≦MB≦MB2a<50<MB2b≦MB≦100の関係を満たす。 The ratio MB 1 (mass %) of graphite particles B to the graphite particles in the first layer 41, the ratio MB 2a (mass %) of graphite particles B to the graphite particles in the second a layer 42a, and the second b layer 42b The ratio MB 2b (mass %) of the graphite particles B to the graphite particles in the third layer 43 and the ratio MB 3 (mass %) of the graphite particles B to the graphite particles in the third layer 43 are 0≦MB 1 ≦MB 2a The following relationship is satisfied: <50<MB 2b ≦MB 3 ≦100.
 負極合剤層32は、厚みTを有する。厚みTは、第1層41の厚みTと、第2層42の厚みTと、第3層43の厚みTとの合計厚みである。負極合剤層32の厚みTは、例えば、50μm以上、300μm以下である。第3層43の厚みTは、0.05Tよりも大きい。第3層43に対する第2層42の厚み比:T/Tは、例えば、1/3以上、5以下である。第1層~第3層をバランス良く配置し易い観点から、第2層42の厚みTは、0.1T以上(もしくは0.2T以上)、0.5T以下であることが好ましい。同様に、第3層43の厚みTは、0.1T以上、0.3T以下であることが好ましい。同様に、第1層41の厚みTは、例えば、0.25T以上、0.75T以下である。 The negative electrode mixture layer 32 has a thickness T. The thickness T is the total thickness of the thickness T 1 of the first layer 41 , the thickness T 2 of the second layer 42 , and the thickness T 3 of the third layer 43 . The thickness T of the negative electrode mixture layer 32 is, for example, 50 μm or more and 300 μm or less. The thickness T 3 of the third layer 43 is greater than 0.05T. The thickness ratio of the second layer 42 to the third layer 43: T 2 /T 3 is, for example, 1/3 or more and 5 or less. From the viewpoint of easy arrangement of the first to third layers in a well-balanced manner, the thickness T 2 of the second layer 42 is preferably 0.1T or more (or 0.2T or more) and 0.5T or less. Similarly, the thickness T 3 of the third layer 43 is preferably 0.1T or more and 0.3T or less. Similarly, the thickness T1 of the first layer 41 is, for example, 0.25T or more and 0.75T or less.
 第2a層42aおよび第2b層42bは、交互に繰り返されるパターンで配置されている。第2a層42aおよび第2b層42bは、負極集電体の幅方向(Y方向)にストライプ状に配置されており、第2a層42aおよび第2b層42bは、互いにほぼ同じ幅を有している。複数の第2a層42aおよび第2b層42bは、それぞれ、ほぼ同じ幅を有し、一定の間隔で配置されている。第2層では、図2および後述の図3A~図3Cに示すように、規則的に繰り返されるパターンが形成されていることが好ましい。この場合、第2a層および第2b層による効果が負極全体において安定して得られる。 The second a layer 42a and the second b layer 42b are arranged in an alternating pattern. The 2nd a layer 42a and the 2nd b layer 42b are arranged in a stripe shape in the width direction (Y direction) of the negative electrode current collector, and the 2nd a layer 42a and the 2nd b layer 42b have approximately the same width. There is. The plurality of second a layers 42a and second b layers 42b each have approximately the same width and are arranged at regular intervals. The second layer preferably has a regularly repeated pattern, as shown in FIG. 2 and FIGS. 3A to 3C, which will be described later. In this case, the effects of the second a layer and the second b layer can be stably obtained throughout the negative electrode.
 第2a層および第2b層の配置パターンは、図2に示す配置パターンに限定されない。第2a層および第2b層は、負極集電体の長さ方向(X方向)にストライプ状に配置されていてもよく、互いに異なる幅を有していてもよい。 The arrangement pattern of the second a layer and the second b layer is not limited to the arrangement pattern shown in FIG. The second a layer and the second b layer may be arranged in stripes in the length direction (X direction) of the negative electrode current collector, and may have different widths from each other.
 第2a層および第2b層の配置パターンは、図3Aに示す市松状の配置パターンであってもよい。図3Aでは、四角形の第2a層42aおよび第2b層42b(図3A中の斜線部分)が、負極集電体の長さ方向(X方向)および幅方向(Y方向)に交互に繰り返されるパターンで配置されている。 The arrangement pattern of the second a layer and the second b layer may be a checkerboard arrangement pattern shown in FIG. 3A. In FIG. 3A, the rectangular second a layer 42a and second b layer 42b (shaded areas in FIG. 3A) are arranged in a pattern that is alternately repeated in the length direction (X direction) and width direction (Y direction) of the negative electrode current collector. It is located in
 第2a層および第2b層の配置パターンは、図3Bに示すハニカム状の配置パターンであってもよい。図3Bでは、六角形の第2a層42aが負極集電体の幅方向(Y方向)に一列に並ぶ部分と、六角形の第2b層42bが負極集電体の幅方向(Y方向)に一列に並ぶ部分(図3B中の斜線部分)とが、交互に繰り返されるパターンで配置されている。 The arrangement pattern of the second a layer and the second b layer may be a honeycomb arrangement pattern shown in FIG. 3B. In FIG. 3B, the hexagonal second a layer 42a is lined up in a row in the width direction (Y direction) of the negative electrode current collector, and the hexagonal second b layer 42b is aligned in the width direction (Y direction) of the negative electrode current collector. The portions lined up in a row (hatched portions in FIG. 3B) are arranged in an alternating pattern.
 また、第2a層(もしくは第2b層)の海に第2b層(もしくは第2a層)が島状に分散して配置されていてもよい。島の形状は特に限定されず、円形状でもよく、四角形等の多角形状でもよい。複数の島が、互いにほぼ同じ形状およびサイズを有し、一定の間隔で規則的に配置されていることが好ましい。この場合、第2a層および第2b層による効果が負極全体において安定して得られる。 Furthermore, the 2B layer (or 2A layer) may be dispersed and arranged in the form of islands in the sea of the 2A layer (or 2B layer). The shape of the island is not particularly limited, and may be circular or polygonal such as a quadrangle. Preferably, the plurality of islands have substantially the same shape and size and are regularly arranged at regular intervals. In this case, the effects of the second a layer and the second b layer can be stably obtained throughout the negative electrode.
 例えば、図3Cに示すように、第2a層42aの海部分に第2b層42bの円形状の島部分(図3C中の斜線部分)が分散して配置されていてもよい。複数の第2b層42bの島部分は、ほぼ同じサイズであり、一定の間隔で規則的に配置されている。海部分および島部分が、それぞれ第2b層および第2a層であってもよい。 For example, as shown in FIG. 3C, circular island portions (hatched portions in FIG. 3C) of the second b layer 42b may be dispersed and arranged in the sea portion of the second a layer 42a. The island portions of the plurality of second b layers 42b have approximately the same size and are regularly arranged at regular intervals. The sea portion and the island portion may be the 2b layer and the 2a layer, respectively.
(黒鉛粒子)
 負極合剤層は、負極活物質として黒鉛粒子を含む。黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含む。黒鉛粒子Aの内部空隙率は、8%以上、20%以下が好ましく、12%以上、18%以下がより好ましい。黒鉛粒子Bの内部空隙率は、1%以上(もしくは2%以上)、5%以下が好ましい。黒鉛粒子Aおよび黒鉛粒子Bの内部空隙率が上記範囲である場合、サイクル特性および急速充電特性が向上し易く、高容量化にも有利である。後述の作製法により、黒鉛粒子Aおよび黒鉛粒子Bの内部空隙率は上記範囲内に制御可能である。
(graphite particles)
The negative electrode mixture layer contains graphite particles as a negative electrode active material. The graphite particles include graphite particles A whose internal porosity is greater than 5% and graphite particles B whose internal porosity is 5% or less. The internal porosity of graphite particles A is preferably 8% or more and 20% or less, more preferably 12% or more and 18% or less. The internal porosity of graphite particles B is preferably 1% or more (or 2% or more) and 5% or less. When the internal porosity of graphite particles A and graphite particles B is within the above range, cycle characteristics and rapid charging characteristics are likely to be improved, and it is also advantageous for increasing capacity. The internal porosity of graphite particles A and graphite particles B can be controlled within the above range by the production method described below.
 ここで、図4は、黒鉛粒子の断面を模式的に示す図である。
 黒鉛粒子20は、黒鉛粒子20の内部に閉じられた内部空隙21と、黒鉛粒子20の外部の空間と繋がっている外部空隙22と、を有する。外部空隙22は、負極合剤層内において負極活物質粒子間の空隙に含まれる。黒鉛粒子Aは、黒鉛粒子Bよりも内部空隙21および外部空隙22が多い。
Here, FIG. 4 is a diagram schematically showing a cross section of a graphite particle.
The graphite particles 20 have an internal void 21 closed inside the graphite particle 20 and an external void 22 connected to a space outside the graphite particle 20 . The external voids 22 are included in the voids between the negative electrode active material particles in the negative electrode mixture layer. Graphite particles A have more internal voids 21 and more external voids 22 than graphite particles B.
 ここで、黒鉛粒子20の内部空隙率とは、黒鉛粒子20の断面における、黒鉛粒子20の面積S1に対する内部空隙21の面積S2の比率を意味し、(S2/S1)×100により求められる。黒鉛粒子20の面積S1とは、黒鉛粒子20の外周で囲まれる領域の面積であり、図2の斜線部分と内部空隙21とを合わせた面積を意味する。内部空隙21が複数存在する場合、内部空隙21の面積S2とは、複数の内部空隙21を合計した面積を意味する。 Here, the internal porosity of the graphite particle 20 means the ratio of the area S2 of the internal void 21 to the area S1 of the graphite particle 20 in the cross section of the graphite particle 20, and is determined by (S2/S1)×100. The area S1 of the graphite particle 20 is the area of the region surrounded by the outer periphery of the graphite particle 20, and means the combined area of the hatched portion in FIG. 2 and the internal void 21. When there are multiple internal voids 21, the area S2 of the internal voids 21 means the total area of the multiple internal voids 21.
 黒鉛粒子の内部空隙率は、以下の方法により求めることができる。
 初期の電池(未使用の電池または充放電を数回行った電池)を分解し、負極を取り出し、負極の一部をサンプリングし、イオンミリング装置等を用いて負極合剤層の試料断面を得る。イオンミリング装置には、例えば、日立ハイテク社製の装置名「IM4000PLUS」を用いることができる。二次電池用負極の作製で用いる負極スラリーに含ませる黒鉛粒子を試料として得てもよい。黒鉛粒子の試料をエポキシ樹脂等に埋め込み、研磨して複数の黒鉛粒子の断面を得、これを試料断面としてもよい。走査型電子顕微鏡(SEM)を用いて試料断面の反射電子像(倍率:3千倍~5千倍)を撮影し、試料の断面画像を得る。上記で得られた試料の断面画像をコンピュータに取り込み、二値化処理を行う。断面画像の二値化処理には、例えば、アメリカ国立衛生研究所製の画像解析ソフトウェア「ImageJ」を用いることができる。二値化処理では、断面画像において、負極活物質粒子(粒子内部の空隙を含む。)を黒色で表し、粒子間の空隙を白色で表す。
The internal porosity of graphite particles can be determined by the following method.
Disassemble the initial battery (unused battery or battery that has been charged and discharged several times), take out the negative electrode, sample a part of the negative electrode, and use an ion milling device etc. to obtain a sample cross section of the negative electrode mixture layer. . As the ion milling device, for example, a device name “IM4000PLUS” manufactured by Hitachi High-Tech Corporation can be used. Graphite particles to be included in a negative electrode slurry used in producing a negative electrode for a secondary battery may be obtained as a sample. A sample of graphite particles may be embedded in an epoxy resin or the like and polished to obtain cross sections of a plurality of graphite particles, which may be used as sample cross sections. A backscattered electron image (magnification: 3,000 to 5,000 times) of the cross section of the sample is taken using a scanning electron microscope (SEM) to obtain a cross-sectional image of the sample. The cross-sectional image of the sample obtained above is imported into a computer and subjected to binarization processing. For the binarization process of the cross-sectional image, for example, image analysis software "ImageJ" manufactured by the National Institutes of Health can be used. In the binarization process, in the cross-sectional image, negative electrode active material particles (including voids inside the particles) are represented in black, and voids between particles are represented in white.
 二値化処理した断面画像を用いて最大径が5μm以上、50μm以下の黒鉛粒子を任意に選び出す。黒鉛粒子の面積S1および黒鉛粒子の内部空隙の面積S2を算出する。なお、最大径が3μm以下の微小な空隙は、画像解析上、内部空隙または外部空隙のいずれかを判別しにくい場合がある。このため、最大径が3μm以下の空隙は内部空隙とみなす。また、負極活物質が黒鉛粒子およびSi系材料を含む場合、上記で得られる試料断面のSEM画像(反射電子像)を用いて黒鉛粒子とSi系材料の粒子を判別することができる。試料断面のSEM画像では、黒鉛粒子は黒色を呈しており、Si系材料の粒子(SiOx粒子等)は灰色を呈している。 Graphite particles with a maximum diameter of 5 μm or more and 50 μm or less are arbitrarily selected using the binarized cross-sectional image. The area S1 of the graphite particles and the area S2 of internal voids of the graphite particles are calculated. It should be noted that it may be difficult to distinguish between minute voids having a maximum diameter of 3 μm or less as either internal voids or external voids in image analysis. Therefore, voids with a maximum diameter of 3 μm or less are considered internal voids. Further, when the negative electrode active material contains graphite particles and Si-based material, the graphite particles and the particles of the Si-based material can be distinguished using the SEM image (backscattered electron image) of the cross section of the sample obtained above. In the SEM image of the cross section of the sample, graphite particles appear black, and Si-based material particles (SiOx particles, etc.) appear gray.
 上記で得られた黒鉛粒子の面積S1および内部空隙の面積S2を用いて、下記式より黒鉛粒子の内部空隙率(%)を算出する。
 黒鉛粒子の内部空隙率=(S2/S1)×100
 内部空隙率が5%よりも大きい黒鉛粒子を黒鉛粒子Aとし、内部空隙率が5%以下である黒鉛粒子を黒鉛粒子Bとする。10個の黒鉛粒子Aの内部空隙率の平均値を求める。10個の黒鉛粒子Bの内部空隙率の平均値を求める。
Using the area S1 of the graphite particles and the area S2 of the internal voids obtained above, the internal porosity (%) of the graphite particles is calculated from the following formula.
Internal porosity of graphite particles = (S2/S1) x 100
Graphite particles having an internal porosity of more than 5% are referred to as graphite particles A, and graphite particles having an internal porosity of 5% or less are referred to as graphite particles B. The average value of internal porosity of 10 graphite particles A is determined. The average value of internal porosity of 10 graphite particles B is determined.
 黒鉛粒子Aは、例えば、以下の方法により作製することができる。
 主原料であるコークス(前駆体)を粉砕し、粉砕物に結着剤を添加し、粉砕物を凝集させる。得られた凝集物を加圧成形し、ブロック状の成形体を得、焼成し、黒鉛化させる。焼成温度は、例えば2600℃以上であり、2600℃以上、3000℃以下であってもよい。成形体の密度は、例えば、1.6g/cm以上、1.9g/cm以下である。得られたブロック状の黒鉛化物を粉砕し、篩い分けし、所望のサイズの黒鉛粒子Aを得る。
Graphite particles A can be produced, for example, by the following method.
The main raw material, coke (precursor), is pulverized, a binder is added to the pulverized material, and the pulverized material is agglomerated. The obtained aggregate is pressure-molded to obtain a block-shaped compact, which is then fired and graphitized. The firing temperature is, for example, 2600°C or higher, and may be 2600°C or higher and 3000°C or lower. The density of the molded body is, for example, 1.6 g/cm 3 or more and 1.9 g/cm 3 or less. The obtained block-shaped graphitized material is crushed and sieved to obtain graphite particles A of a desired size.
 コークスの粉砕物の平均粒径(D50)は、例えば、12μm以上、20μm以下である。なお、本明細書中、平均粒径(D50)とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、堀場製作所社製の「LA-750」を用いることができる。 The average particle diameter (D50) of the crushed coke is, for example, 12 μm or more and 20 μm or less. In addition, in this specification, the average particle diameter (D50) means the particle diameter (volume average particle diameter) at which the volume integrated value is 50% in the particle size distribution measured by laser diffraction scattering method. As the measuring device, for example, "LA-750" manufactured by Horiba, Ltd. can be used.
 黒鉛粒子Aの内部空隙率は、コークスの粉砕物や凝集物の粒径等により制御してもよい。焼成時にブロック状の成形体に揮発成分を添加する場合、黒鉛粒子Aの内部空隙率は、ブロック状の成形体への揮発成分の添加量により制御してもよい。コークスの粉砕物に添加する結着剤の一部が焼成時に揮発する場合、結着剤は成形体に添加する揮発成分を兼ねてもよい。この場合、結着剤の添加量により内部空隙率を制御してもよい。そのような結着剤としてピッチが例示される。例えば、黒鉛粒子Bを作製する過程で粉砕物に添加するピッチ量よりも黒鉛粒子Aを作製する過程で粉砕物に添加するピッチ量を多くすることにより、黒鉛粒子Bよりも内部空隙率が大きい黒鉛粒子Aを作製してもよい。 The internal porosity of graphite particles A may be controlled by the particle size of crushed coke or aggregates, etc. When a volatile component is added to the block-shaped molded body during firing, the internal porosity of the graphite particles A may be controlled by the amount of the volatile component added to the block-shaped molded body. When part of the binder added to the crushed coke is volatilized during firing, the binder may also serve as a volatile component added to the molded body. In this case, the internal porosity may be controlled by the amount of binder added. Pitch is exemplified as such a binder. For example, by increasing the amount of pitch added to the pulverized material in the process of producing graphite particles A than the amount of pitch added to the pulverized product in the process of producing graphite particles B, the internal porosity is larger than that of graphite particles B. Graphite particles A may also be produced.
 黒鉛粒子Bは、例えば、以下の方法により作製することができる。
 主原料であるコークス(前駆体)を粉砕し、粉砕物に結着剤を添加し、粉砕物を凝集させる。コークスの粉砕物の平均粒径(D50)は、例えば、12μm以上、20μm以下である。得られた凝集物を焼成し、黒鉛化させ、篩い分けし、所望のサイズの黒鉛粒子Bを得る。焼成温度は、例えば2600℃以上であり、2600℃以上、3000℃以下であってもよい。
Graphite particles B can be produced, for example, by the following method.
The main raw material, coke (precursor), is pulverized, a binder is added to the pulverized material, and the pulverized material is agglomerated. The average particle diameter (D50) of the crushed coke is, for example, 12 μm or more and 20 μm or less. The obtained aggregate is fired, graphitized, and sieved to obtain graphite particles B of a desired size. The firing temperature is, for example, 2600°C or higher, and may be 2600°C or higher and 3000°C or lower.
 黒鉛粒子Bの内部空隙率は、例えば、コークスの粉砕物や凝集物の粒径等により制御することができる。例えば、内部空隙率を小さくする場合、コークスの粉砕物や凝集物の粒径を大きくすればよい。また、凝集物に含まれる結着剤の一部が焼成時に揮発する場合、内部空隙率は、結着剤の添加量により制御してもよい。そのような結着剤としてピッチが例示される。 The internal porosity of graphite particles B can be controlled by, for example, the particle size of crushed coke or aggregates. For example, in order to reduce the internal porosity, the particle size of crushed coke or aggregates may be increased. Furthermore, if part of the binder contained in the aggregate evaporates during firing, the internal porosity may be controlled by the amount of binder added. Pitch is exemplified as such a binder.
(二次電池用負極の製造方法)
 本開示の実施形態に係る二次電池用負極の製造方法は、第1工程~第3工程を含む。第1工程では、黒鉛粒子を含む負極スラリーを調製する。第2工程では、負極集電体の表面に負極スラリーを塗布し、乾燥し、負極合剤層を形成する。負極合剤層は、負極集電体の一方の表面に形成してもよく、負極集電体の両方の表面に形成してもよい。第3工程では、負極合剤層および負極集電体の積層体を圧縮する。
(Method for manufacturing negative electrode for secondary battery)
A method for manufacturing a negative electrode for a secondary battery according to an embodiment of the present disclosure includes first to third steps. In the first step, a negative electrode slurry containing graphite particles is prepared. In the second step, a negative electrode slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode mixture layer. The negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces of the negative electrode current collector. In the third step, the laminate of the negative electrode mixture layer and the negative electrode current collector is compressed.
 第1工程では、例えば、負極合剤を分散媒に分散させて負極スラリーを調製する。負極合剤は、必須成分として負極活物質である黒鉛粒子を含み、任意成分として、結着剤、導電剤、増粘剤等を含んでもよい。結着剤等には、後述で例示するものを用いることができる。第2工程では、シート(箔)状の負極集電体の一方の表面に負極スラリーを塗布してもよく、当該負極集電体の両方の表面に負極スラリーを形成してもよい。第3工程では、例えば、長尺の積層体をロールプレスする。 In the first step, for example, a negative electrode mixture is dispersed in a dispersion medium to prepare a negative electrode slurry. The negative electrode mixture contains graphite particles, which are negative electrode active materials, as an essential component, and may also contain a binder, a conductive agent, a thickener, etc. as optional components. As the binder and the like, those exemplified below can be used. In the second step, a negative electrode slurry may be applied to one surface of a sheet (foil)-shaped negative electrode current collector, or a negative electrode slurry may be formed on both surfaces of the negative electrode current collector. In the third step, for example, the long laminate is roll pressed.
 第1工程では、負極スラリーとして、第1スラリー、第2スラリー、および第3スラリーを調製する。第2工程では、負極集電体の表面に、第1スラリー、第2スラリー、および第3スラリーの順に塗布し、負極集電体の側より順に第1層、第2層、および第3層で構成される負極合剤層を形成する。第2工程の乾燥は、第1スラリー~第3スラリーを塗布する毎に行ってもよく、第1スラリー~第3スラリーを順に塗布してから行ってもよい。 In the first step, a first slurry, a second slurry, and a third slurry are prepared as negative electrode slurries. In the second step, the surface of the negative electrode current collector is coated with a first slurry, a second slurry, and a third slurry in order, and the first layer, second layer, and third layer are applied in order from the negative electrode current collector side. Form a negative electrode mixture layer consisting of: Drying in the second step may be performed each time the first slurry to third slurry are applied, or may be performed after sequentially applying the first slurry to third slurry.
 第2スラリーは、第2aスラリーおよび第2bスラリーを含む。第2層の形成工程は、第1スラリーの塗布領域の第1領域および第2領域に、それぞれ第2aスラリーおよび第2bスラリーを塗布し、第2層として第2a層および第2b層を形成する工程を含む。 The second slurry includes a second a slurry and a second b slurry. The second layer forming step includes applying a 2a slurry and a 2b slurry to the first and second areas of the first slurry application area, respectively, to form a 2a layer and a 2b layer as the second layer. Including process.
 黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含む。第1スラリー、第2aスラリー、第2bスラリー、および第3スラリーにおける黒鉛粒子(黒鉛粒子Aと黒鉛粒子Bとの合計)に占める黒鉛粒子Bの割合(質量%)を、それぞれ、MB、MB2a、MB2b、およびMBとする。このとき、MBと、MB2aと、MB2bと、MBとは、0≦MB≦MB2a<50<MB2b≦MB≦100の関係を満たす。負極合剤層の厚みをTとするとき、第3層の厚みは0.05Tよりも大きい。 The graphite particles include graphite particles A whose internal porosity is greater than 5% and graphite particles B whose internal porosity is 5% or less. The proportion (mass%) of graphite particles B in the graphite particles (total of graphite particles A and graphite particles B) in the first slurry, second a slurry, second b slurry, and third slurry is MB 1 and MB 1 , respectively. 2a , MB 2b , and MB 3 . At this time, MB 1 , MB 2a , MB 2b , and MB 3 satisfy the relationship 0≦MB 1 ≦MB 2a <50<MB 2b ≦MB 3 ≦100. When the thickness of the negative electrode mixture layer is T, the thickness of the third layer is greater than 0.05T.
 上記の黒鉛粒子に占める黒鉛粒子Bの割合は、黒鉛粒子Aおよび黒鉛粒子Bをそれぞれ作製し、所定の質量比でスラリー中に含ませることにより調整すればよい。各層の厚みは、各スラリーの塗布量により調整すればよい。 The proportion of graphite particles B in the above graphite particles may be adjusted by separately producing graphite particles A and graphite particles B and including them in a slurry at a predetermined mass ratio. The thickness of each layer may be adjusted by the amount of each slurry applied.
 第2工程の塗布方法としては、例えば、ダイコート法、インクジェット印刷法、リバースコート法(転写法)等が挙げられる。第2aスラリーおよび第2bスラリーの一方を塗布してから、第2aスラリーおよび第2bスラリーの他方を塗布してもよい。第2aスラリーおよび第2bスラリーの塗布を同時に行ってもよい。第2工程で形成される第2a層および第2b層が二次電池用負極で例示する配置パターン(図2、図3A~図3Cに示す配置パターン)となるように第2aスラリーおよび第2bスラリーをパターン塗布してもよい。 Examples of the coating method in the second step include a die coating method, an inkjet printing method, a reverse coating method (transfer method), and the like. After applying one of the 2A slurry and the 2B slurry, the other of the 2A slurry and the 2B slurry may be applied. The application of the second a slurry and the second b slurry may be performed simultaneously. The 2a slurry and the 2b slurry are mixed so that the 2a layer and the 2b layer formed in the second step have the arrangement pattern exemplified in the negative electrode for a secondary battery (the arrangement pattern shown in FIGS. 2 and 3A to 3C). may be applied in a pattern.
(二次電池)
 本開示の実施形態に係る二次電池は、正極と、負極と、非水電解質と、を備える。この負極は、上記の二次電池用負極である。以下、二次電池について詳述する。
(Secondary battery)
A secondary battery according to an embodiment of the present disclosure includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. This negative electrode is the negative electrode for secondary batteries described above. The secondary battery will be explained in detail below.
[負極]
 負極は、負極集電体と、負極集電体の表面に担持された負極合剤層と、を具備する。負極合剤層は、必須成分として負極活物質を含み、任意成分として、結着剤、導電剤、増粘剤等を含んでもよい。
[Negative electrode]
The negative electrode includes a negative electrode current collector and a negative electrode mixture layer supported on the surface of the negative electrode current collector. The negative electrode mixture layer contains a negative electrode active material as an essential component, and may also contain a binder, a conductive agent, a thickener, etc. as optional components.
 負極活物質は、少なくとも黒鉛粒子を含む。黒鉛粒子としては、天然黒鉛、人造黒鉛等の粒子を用いることができる。内部空隙率を制御し易い観点から、人造黒鉛の粒子が好ましい。天然黒鉛の粒子は黒鉛粒子Aとして用いることができる。黒鉛粒子は、部分的に、非晶質炭素、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)を含んでもよい。黒鉛粒子の平均粒径(D50)は、例えば、1μm以上、30μm以下である。 The negative electrode active material contains at least graphite particles. As the graphite particles, particles of natural graphite, artificial graphite, etc. can be used. Artificial graphite particles are preferred from the viewpoint of easy control of internal porosity. Particles of natural graphite can be used as graphite particles A. The graphite particles may partially contain amorphous carbon, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon). The average particle diameter (D50) of the graphite particles is, for example, 1 μm or more and 30 μm or less.
 黒鉛とは、黒鉛型結晶構造が発達した炭素材料である。X線回折法により測定される黒鉛粒子の(002)面の面間隔d002は、例えば、0.340nm以下であってもよく、0.3354nm以上、0.340nm以下であってもよい。また、X線回折法により測定される黒鉛粒子の結晶子サイズLc(002)は、例えば、5nm以上であってもよく、5nm以上、300nm以下であってもよく、5nm以上(もしくは10nm以上)、200nm以下であってもよい。結晶子サイズLc(002)は、例えばシェラー(Scherrer)法により測定される。黒鉛粒子の(002)面の面間隔d002および結晶子サイズLc(002)が上記範囲内である場合、高容量が得られ易い。 Graphite is a carbon material with a developed graphite-type crystal structure. The interplanar spacing d002 of the (002) planes of graphite particles measured by X-ray diffraction may be, for example, 0.340 nm or less, or 0.3354 nm or more and 0.340 nm or less. Further, the crystallite size Lc (002) of the graphite particles measured by X-ray diffraction may be, for example, 5 nm or more, 5 nm or more and 300 nm or less, or 5 nm or more (or 10 nm or more). , 200 nm or less. The crystallite size Lc (002) is measured, for example, by the Scherrer method. When the interplanar spacing d002 of the (002) planes of the graphite particles and the crystallite size Lc (002) are within the above ranges, high capacity can be easily obtained.
 高容量化の観点から、負極活物質はSi系材料を含んでもよい。Si系材料の粒子の平均粒径(D50)は、例えば、1μm以上、25μm以下である。Si系材料としては、ケイ素単体、ケイ素を含む合金、ケイ素を含む複合材料等が挙げられる。ケイ素を含む合金は、例えば、ケイ素(Si)と、スズ(Sn)、ニッケル(Ni)、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)およびアルミニウム(Al)からなる群より選択される少なくとも1種の元素と、を含む。 From the viewpoint of increasing capacity, the negative electrode active material may include a Si-based material. The average particle size (D50) of the particles of the Si-based material is, for example, 1 μm or more and 25 μm or less. Examples of Si-based materials include simple silicon, alloys containing silicon, and composite materials containing silicon. Alloys containing silicon include, for example, silicon (Si), tin (Sn), nickel (Ni), iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), and aluminum (Al). and at least one element selected from the group.
 ケイ素を含む複合材料は、イオン伝導相(マトリックス相)と、その相内に分散しているシリコン相(粒子状のSi相)とを備えてもよい。イオン伝導相としては、酸化シリコン相、シリケート相(例えばリチウムシリケート相)、炭素相等が挙げられる。 A composite material containing silicon may include an ion-conducting phase (matrix phase) and a silicon phase (particulate Si phase) dispersed within the phase. Examples of the ion conductive phase include a silicon oxide phase, a silicate phase (for example, a lithium silicate phase), a carbon phase, and the like.
 酸化シリコン相は、例えば、二酸化ケイ素を95質量%以上含むSiO相である。SiO相内にシリコン相が分散した複合材料の粒子はSiOで表され、xは、例えば0.8≦x≦1.6である。リチウムシリケート相は、例えば、式:Li2zSiO2+z(0<z<2)で表される組成を有し得る。zは1/2であってもよく、1であってもよい。シリケート相内にシリコン相が分散した複合材料の粒子は、例えば、シリケートと原料シリコンの混合物をボールミル等で撹拌しながら粉砕し、微粒子化した後、混合物を不活性雰囲気中で熱処理して得ることができる。炭素相は、例えば、結晶性の低い無定形炭素(アモルファス炭素)を含む。 The silicon oxide phase is, for example, a SiO 2 phase containing 95% by mass or more of silicon dioxide. Particles of a composite material in which a silicon phase is dispersed within a SiO 2 phase are represented by SiO x , where x satisfies, for example, 0.8≦x≦1.6. The lithium silicate phase may have, for example, a composition represented by the formula: Li 2z SiO 2+z (0<z<2). z may be 1/2 or 1. Particles of a composite material in which a silicon phase is dispersed within a silicate phase can be obtained, for example, by grinding a mixture of silicate and raw silicon with stirring in a ball mill or the like to form fine particles, and then heat-treating the mixture in an inert atmosphere. Can be done. The carbon phase includes, for example, amorphous carbon with low crystallinity.
 導電性向上の観点から、複合材料の粒子の表面の少なくとも一部は、導電層で被覆されていてもよい。導電層は、導電性炭素等の導電性材料を含む。導電層の被覆量は、例えば、複合材料の粒子と導電層の合計100質量部あたり1質量部以上、10質量部以下である。表面に導電層を有する複合粒子は、例えば、石炭ピッチ等を複合材料の粒子と混合し、不活性雰囲気中で熱処理することにより得られる。 From the viewpoint of improving conductivity, at least a portion of the surface of the particles of the composite material may be coated with a conductive layer. The conductive layer includes a conductive material such as conductive carbon. The coating amount of the conductive layer is, for example, 1 part by mass or more and 10 parts by mass or less per 100 parts by mass of the composite material particles and the conductive layer. Composite particles having a conductive layer on the surface can be obtained, for example, by mixing coal pitch or the like with particles of a composite material and heat-treating the mixture in an inert atmosphere.
 Si系材料は、黒鉛粒子と比べて容量密度が大きい。黒鉛粒子は、Si系材料と比べて充放電時の膨張収縮の度合いが小さい。黒鉛粒子とSi系材料を併用する場合、負極活物質(黒鉛粒子とSi系材料の合計)に占めるSi系材料の割合は、1質量%以上、10質量%以下が好ましく、3質量%以上、7質量%以下がより好ましい。この場合、サイクル特性の向上および高容量化を同時に実現し易い。 Si-based materials have a larger capacity density than graphite particles. Graphite particles have a smaller degree of expansion and contraction during charging and discharging than Si-based materials. When graphite particles and Si-based material are used together, the proportion of Si-based material in the negative electrode active material (total of graphite particles and Si-based material) is preferably 1% by mass or more and 10% by mass or less, 3% by mass or more, More preferably, it is 7% by mass or less. In this case, it is easy to simultaneously improve cycle characteristics and increase capacity.
 結着剤としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;アラミド樹脂等のポリアミド樹脂;ポリイミド、ポリアミドイミド等のポリイミド樹脂;ポリアクリル酸、ポリアクリル酸メチル、エチレン-アクリル酸共重合体等のアクリル樹脂;ポリアクリロニトリル、ポリ酢酸ビニル等のビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)等のゴム状材料等が例示できる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the binder, resin materials such as fluororesins such as polytetrafluoroethylene and polyvinylidene fluoride (PVDF); polyolefin resins such as polyethylene and polypropylene; polyamide resins such as aramid resins; polyimide resins such as polyimide and polyamideimide; ; Acrylic resins such as polyacrylic acid, polymethyl acrylate, and ethylene-acrylic acid copolymers; Vinyl resins such as polyacrylonitrile and polyvinyl acetate; Polyvinylpyrrolidone; Polyethersulfone; Styrene-butadiene copolymer rubber (SBR) Examples include rubber-like materials such as. One type of binder may be used alone, or two or more types may be used in combination.
 導電剤としては、例えば、アセチレンブラック等のカーボン類;炭素繊維や金属繊維等の導電性繊維類;アルミニウム等の金属粉末類等が例示できる。導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the conductive agent include carbon such as acetylene black; conductive fibers such as carbon fiber and metal fiber; and metal powder such as aluminum. One type of conductive agent may be used alone, or two or more types may be used in combination.
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩等の塩も含む)、メチルセルロース等のセルロース誘導体(セルロースエーテル等);ポリビニルアルコール等の酢酸ビニルユニットを有するポリマーのケン化物等が挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of thickeners include carboxymethylcellulose (CMC) and its modified products (including salts such as Na salt), cellulose derivatives such as methylcellulose (cellulose ethers, etc.); Examples include chemical substances. One type of thickener may be used alone, or two or more types may be used in combination.
 分散媒としては、特に制限されないが、例えば、水、エタノール等のアルコール、テトラヒドロフラン等のエーテル、ジメチルホルムアミド等のアミド、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒等が用いられる。 The dispersion medium is not particularly limited, but for example, water, alcohol such as ethanol, ether such as tetrahydrofuran, amide such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), or a mixed solvent thereof may be used. .
 負極集電体としては、無孔の導電性基板(金属箔等)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシート等)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金等が例示できる。負極集電体の厚さは、特に限定されないが、1~50μmが好ましく、5~20μmがより望ましい。 As the negative electrode current collector, a non-porous conductive substrate (metal foil, etc.) or a porous conductive substrate (mesh body, net body, punched sheet, etc.) is used. Examples of the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy. The thickness of the negative electrode current collector is not particularly limited, but is preferably 1 to 50 μm, more preferably 5 to 20 μm.
[正極]
 正極は、例えば、正極集電体と、正極集電体の表面に担持された正極合剤層と、を具備する。正極合剤層は、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、シート状の正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。正極合剤は、必須成分として正極活物質を含み、任意成分として、結着剤、導電剤等を含んでもよい。正極スラリーの分散媒としては、NMP等が用いられる。
[Positive electrode]
The positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer supported on the surface of the positive electrode current collector. The positive electrode mixture layer can be formed by applying a positive electrode slurry in which the positive electrode mixture is dispersed in a dispersion medium onto the surface of the positive electrode current collector and drying the slurry. The dried coating film may be rolled if necessary. The positive electrode mixture layer may be formed on one surface or both surfaces of the sheet-like positive electrode current collector. The positive electrode mixture includes a positive electrode active material as an essential component, and may also include a binder, a conductive agent, etc. as optional components. NMP or the like is used as a dispersion medium for the positive electrode slurry.
 正極活物質としては、例えば、リチウムと、Ni、Co、Mn等の遷移金属と、を含む複合酸化物を用いることができる。例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-b、LiCoMe1-b、LiNi1-bMe、LiMn、LiMn2-bMe、LiMePO、LiMePOF(Meは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、およびBからなる群より選択される少なくとも1種である。)が挙げられる。ここで、0<a≦1.2、0<b≦0.9、2.0≦c≦2.3である。なお、リチウムのモル比を示すa値は、充放電により増減する。 As the positive electrode active material, for example, a composite oxide containing lithium and a transition metal such as Ni, Co, or Mn can be used. For example, Li a CoO 2 , Li a NiO 2 , Li a MnO 2 , Li a Co b Ni 1-b O 2 , Li a Co b Me 1-b O c , Li a Ni 1-b Me b O c , Li a Mn 2 O 4 , Li a Mn 2-b Me b O 4 , LiMePO 4 , Li 2 MePO 4 F (Me is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, at least one selected from the group consisting of Al, Cr, Pb, Sb, and B). Here, 0<a≦1.2, 0<b≦0.9, and 2.0≦c≦2.3. Note that the a value indicating the molar ratio of lithium increases or decreases due to charging and discharging.
 中でも、LiNi1-b(Mは、Mn、CoおよびAlからなる群より選択される少なくとも1種であり、0<a≦1.2であり、0.3≦b≦1である。)で表されるリチウムニッケル複合酸化物が好ましい。高容量化の観点から、0.85≦b≦1を満たすことがより好ましい。結晶構造の安定性の観点からは、MとしてCoおよびAlを含むLiNiCoAl(0<a≦1.2、0.85≦b<1、0<c<0.15、0<d≦0.1、b+c+d=1)が更に好ましい。 Among them, Li a Ni b M 1-b O 2 (M is at least one selected from the group consisting of Mn, Co and Al, 0<a≦1.2, 0.3≦b≦ 1) is preferred. From the viewpoint of increasing capacity, it is more preferable to satisfy 0.85≦b≦1. From the viewpoint of crystal structure stability, Li a Ni b Co c Al d O 2 (0<a≦1.2, 0.85≦b<1, 0<c<0. 15, 0<d≦0.1, b+c+d=1) is more preferable.
 結着剤および導電剤としては、負極について例示したものと同様のものが使用できる。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛を用いてもよい。 As the binder and conductive agent, those similar to those exemplified for the negative electrode can be used. As the conductive agent, graphite such as natural graphite or artificial graphite may be used.
 正極集電体の形状および厚みは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタン等が例示できる。 The shape and thickness of the positive electrode current collector can be selected from a shape and range similar to those of the negative electrode current collector. Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, titanium, and the like.
[非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含む。非水電解質中のリチウム塩の濃度は、例えば、0.5mol/L以上、2mol/L以下である。
[Nonaqueous electrolyte]
The non-aqueous electrolyte includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent. The concentration of lithium salt in the non-aqueous electrolyte is, for example, 0.5 mol/L or more and 2 mol/L or less.
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステル等が用いられる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート等が挙げられる。ビニレンカーボネート等の不飽和結合を有する環状炭酸エステル、フルオロエチレンカーボネート等のフッ素原子を有する環状炭酸エステル等を、非水電解質に少量含ませてもよい。鎖状炭酸エステルとしては、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the non-aqueous solvent, for example, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester, a chain carboxylic ester, etc. are used. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate. A small amount of a cyclic carbonate having an unsaturated bond such as vinylene carbonate, a cyclic carbonate having a fluorine atom such as fluoroethylene carbonate, etc. may be included in the nonaqueous electrolyte. Examples of chain carbonate esters include diethyl carbonate, ethylmethyl carbonate, dimethyl carbonate, and the like. Examples of the cyclic carboxylic acid ester include γ-butyrolactone and γ-valerolactone. Examples of the chain carboxylic acid ester include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and the like. The non-aqueous solvents may be used alone or in combination of two or more.
 リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、ホウ酸塩類、イミド塩類等が挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。イミド塩類としては、ビスフルオロスルホニルイミドリチウム(LiN(FSO)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CFSO)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CFSO)(CSO))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(CSO)等が挙げられる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl , LiBr, LiI, borates, imide salts, and the like. As borates, bis(1,2-benzenediolate (2-)-O,O') lithium borate, bis(2,3-naphthalenediolate (2-)-O,O') boric acid Lithium, bis(2,2'-biphenyldiolate(2-)-O,O') lithium borate, bis(5-fluoro-2-oleate-1-benzenesulfonic acid-O,O') lithium borate etc. Examples of imide salts include lithium bisfluorosulfonylimide (LiN(FSO 2 ) 2 ), lithium bistrifluoromethanesulfonate imide (LiN(CF 3 SO 2 ) 2 ), lithium trifluoromethanesulfonate nonafluorobutanesulfonate imide (LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 )), lithium bispentafluoroethanesulfonic acid imide (LiN(C 2 F 5 SO 2 ) 2 ), and the like. One type of lithium salt may be used alone, or two or more types may be used in combination.
[セパレータ]
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布等を用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレン等のポリオレフィンが好ましい。
[Separator]
Usually, it is desirable to interpose a separator between the positive electrode and the negative electrode. The separator has high ion permeability, appropriate mechanical strength, and insulation properties. As the separator, a microporous thin film, woven fabric, nonwoven fabric, etc. can be used. As the material of the separator, polyolefins such as polypropylene and polyethylene are preferred.
 二次電池は、例えば、正極および負極を、セパレータを介して巻回して構成される巻回型の電極群を備えてもよく、正極および負極を、セパレータを介して積層して構成される積層型の電極群を備えてもよい。二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型等、いずれの形態であってもよい。 The secondary battery may include, for example, a wound-type electrode group configured by winding a positive electrode and a negative electrode with a separator in between, or a stacked electrode group configured by laminating a positive electrode and a negative electrode with a separator in between. A type of electrode group may be provided. The secondary battery may have any form, such as a cylindrical shape, a square shape, a coin shape, a button shape, a laminate shape, etc., for example.
 以下、本開示に係る二次電池の一例として角形の二次電池の構造を、図5を参照しながら説明する。図5は、本開示の一実施形態に係る二次電池の一部を切欠いた概略斜視図である。 Hereinafter, the structure of a square secondary battery will be described as an example of a secondary battery according to the present disclosure with reference to FIG. 5. FIG. 5 is a partially cutaway schematic perspective view of a secondary battery according to an embodiment of the present disclosure.
 電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質(図示せず)とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群1は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることにより形成される。 The battery includes a rectangular battery case 4 with a bottom, an electrode group 1 housed in the battery case 4, and a non-aqueous electrolyte (not shown). The electrode group 1 includes a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed between them to prevent direct contact. The electrode group 1 is formed by winding a negative electrode, a positive electrode, and a separator around a flat core, and then removing the core.
 負極集電体には、負極リード3の一端が溶接等により取り付けられている。負極リード3の他端は、樹脂製の絶縁板(図示せず)を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製のガスケット7により、封口板5から絶縁されている。正極集電体には、正極リード2の一端が溶接等により取り付けられている。正極リード2の他端は、絶縁板を介して、封口板5の裏面に接続されている。すなわち、正極リード2は、正極端子を兼ねる電池ケース4に電気的に接続されている。絶縁板は、電極群1と封口板5とを隔離するとともに負極リード3と電池ケース4とを隔離している。封口板5の周縁は、電池ケース4の開口端部に嵌合しており、嵌合部はレーザー溶接されている。このようにして、電池ケース4の開口部は、封口板5で封口される。封口板5に設けられている非水電解質の注入孔は、封栓8により塞がれている。 One end of the negative electrode lead 3 is attached to the negative electrode current collector by welding or the like. The other end of the negative electrode lead 3 is electrically connected to a negative electrode terminal 6 provided on the sealing plate 5 via a resin insulating plate (not shown). The negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7. One end of a positive electrode lead 2 is attached to the positive electrode current collector by welding or the like. The other end of the positive electrode lead 2 is connected to the back surface of the sealing plate 5 via an insulating plate. That is, the positive electrode lead 2 is electrically connected to the battery case 4 which also serves as a positive electrode terminal. The insulating plate isolates the electrode group 1 and the sealing plate 5 as well as the negative electrode lead 3 and the battery case 4. The peripheral edge of the sealing plate 5 fits into the open end of the battery case 4, and the fitting portion is laser welded. In this way, the opening of the battery case 4 is sealed with the sealing plate 5. A non-aqueous electrolyte injection hole provided in the sealing plate 5 is closed with a sealing plug 8 .
《付記》
 以上の実施形態の記載により、以下の技術が開示される。
(技術1)
 負極活物質を含む負極合剤層と、前記負極合剤層を担持する負極集電体と、を備え、
 前記負極活物質は、黒鉛粒子を含み、
 前記黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含み、
 前記負極合剤層は、前記負極集電体の側より順に、第1層と、第2層と、第3層と、を含み、
 前記第2層は、前記第1層の第1領域および第2領域にそれぞれ配置される第2a層および第2b層を含み、
 前記第1層、前記第2a層、前記第2b層、および前記第3層における前記黒鉛粒子Aと前記黒鉛粒子Bとの合計に占める前記黒鉛粒子Bの割合(質量%)を、それぞれ、MB、MB2a、MB2b、およびMBとするとき、
 前記MBと、前記MB2aと、前記MB2bと、前記MBとは、
 0≦MB≦MB2a<50<MB2b≦MB≦100
の関係を満たし、
 前記負極合剤層の厚みをTとするとき、
 前記第3層の厚みは0.05Tよりも大きい、二次電池用負極。
(技術2)
 前記黒鉛粒子Aの内部空隙率が、8%以上、20%以下である、技術1に記載の二次電池用負極。
(技術3)
 前記第2層の厚みは、0.1T以上、0.5T以下であり、
 前記第3層の厚みは、0.1T以上、0.3T以下である、技術1または2に記載の二次電池用負極。
(技術4)
 前記MB2aは、0質量%以上、40質量%以下であり、
 前記MB2bは、60質量%以上、100質量%以下である、技術1~3のいずれか1つに記載の二次電池用負極。
(技術5)
 前記負極活物質は、Si系材料を含む、技術1~4のいずれか1つに記載の二次電池用負極。
(技術6)
 前記第1層の上において、前記第2a層および前記第2b層は、交互に繰り返されるパターンで配置されている、技術1~5のいずれか1つに記載の二次電池用負極。
(技術7)
 前記第1層の上において、前記第2a層および前記第2b層は、ストライプ状、市松状、またはハニカム状に配置されている、技術6に記載の二次電池用負極。
(技術8)
 前記第1層の上において、前記第2a層および前記第2b層の一方は、他方の海に島状に分散して配置されている、技術1~7のいずれか1つに記載の二次電池用負極。
(技術9)
 正極と、負極と、非水電解質と、を備え、
 前記負極は、技術1~8のいずれか1つに記載の二次電池用負極である、二次電池。
(技術10)
 黒鉛粒子を含む負極スラリーを調製する第1工程と、
 負極集電体の表面に前記負極スラリーを塗布し、乾燥し、負極合剤層を形成する第2工程と、
 前記負極合剤層および前記負極集電体の積層体を圧縮する第3工程と、
を含み、
 前記第1工程では、前記負極スラリーとして、第1スラリー、第2スラリー、および第3スラリーを調製し、
 前記第2工程では、前記負極集電体の表面に、前記第1スラリー、前記第2スラリー、および前記第3スラリーの順に塗布し、前記負極集電体の側より順に第1層、第2層、および第3層で構成される前記負極合剤層を形成し、
 前記第2スラリーは、第2aスラリーおよび第2bスラリーを含み、
 前記第2層の形成工程は、前記第1スラリーの塗布領域の第1領域および第2領域に、それぞれ前記第2aスラリーおよび前記第2bスラリーを塗布し、前記第2層として第2a層および第2b層を形成する工程を含み、
 前記黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含み、
 前記第1スラリー、前記第2aスラリー、前記第2bスラリー、および前記第3スラリーにおける前記黒鉛粒子Aと前記黒鉛粒子Bとの合計に占める前記黒鉛粒子Bの割合(質量%)を、それぞれ、MB、MB2a、MB2b、およびMBとするとき、
 前記MBと、前記MB2aと、前記MB2bと、前記MBとは、
 0≦MB≦MB2a<50<MB2b≦MB≦100
の関係を満たし、
 前記負極合剤層の厚みをTとするとき、
 前記第3層の厚みは0.05Tよりも大きい、二次電池用負極の製造方法。
(技術11)
 前記黒鉛粒子Aの内部空隙率が、8%以上、20%以下である、技術10に記載の二次電池用負極の製造方法。
(技術12)
 前記第2層の厚みは、0.1T以上、0.5T以下であり、
 前記第3層の厚みは、0.1T以上、0.3T以下である、技術10または11に記載の二次電池用負極の製造方法。
(技術13)
 前記MB2aは、0質量%以上、40質量%以下であり、
 前記MB2bは、60質量%以上、100質量%以下である、技術10~12のいずれか1つに記載の二次電池用負極の製造方法。
《Additional notes》
The following techniques are disclosed by the description of the above embodiments.
(Technology 1)
comprising a negative electrode mixture layer containing a negative electrode active material and a negative electrode current collector supporting the negative electrode mixture layer,
The negative electrode active material includes graphite particles,
The graphite particles include graphite particles A having an internal porosity of more than 5% and graphite particles B having an internal porosity of 5% or less,
The negative electrode mixture layer includes, in order from the negative electrode current collector side, a first layer, a second layer, and a third layer,
The second layer includes a 2a layer and a 2b layer arranged in a first region and a second region of the first layer, respectively,
The proportion (mass%) of the graphite particles B in the total of the graphite particles A and the graphite particles B in the first layer, the second a layer, the second b layer, and the third layer is MB 1 , MB 2a , MB 2b , and MB 3 ,
The MB 1 , the MB 2a , the MB 2b , and the MB 3 are:
0≦MB 1 ≦MB 2a <50<MB 2b ≦MB 3 ≦100
satisfies the relationship of
When the thickness of the negative electrode mixture layer is T,
In the negative electrode for a secondary battery, the thickness of the third layer is greater than 0.05T.
(Technology 2)
The negative electrode for a secondary battery according to technique 1, wherein the graphite particles A have an internal porosity of 8% or more and 20% or less.
(Technology 3)
The thickness of the second layer is 0.1T or more and 0.5T or less,
The negative electrode for a secondary battery according to technology 1 or 2, wherein the third layer has a thickness of 0.1T or more and 0.3T or less.
(Technique 4)
The MB 2a is 0% by mass or more and 40% by mass or less,
The negative electrode for a secondary battery according to any one of Techniques 1 to 3, wherein the MB 2b is 60% by mass or more and 100% by mass or less.
(Technology 5)
The negative electrode for a secondary battery according to any one of Techniques 1 to 4, wherein the negative electrode active material includes a Si-based material.
(Technology 6)
The negative electrode for a secondary battery according to any one of techniques 1 to 5, wherein the second a layer and the second b layer are arranged in an alternating pattern on the first layer.
(Technology 7)
The negative electrode for a secondary battery according to technique 6, wherein the second a layer and the second b layer are arranged in a stripe shape, a checkerboard shape, or a honeycomb shape on the first layer.
(Technology 8)
On the first layer, one of the second a layer and the second b layer is a secondary layer according to any one of techniques 1 to 7, wherein one of the second a layer and the second b layer is arranged in an island-like manner dispersed in the other sea. Negative electrode for batteries.
(Technology 9)
Comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte,
A secondary battery, wherein the negative electrode is a negative electrode for a secondary battery according to any one of Techniques 1 to 8.
(Technology 10)
A first step of preparing a negative electrode slurry containing graphite particles;
a second step of applying the negative electrode slurry on the surface of the negative electrode current collector and drying it to form a negative electrode mixture layer;
a third step of compressing the laminate of the negative electrode mixture layer and the negative electrode current collector;
including;
In the first step, a first slurry, a second slurry, and a third slurry are prepared as the negative electrode slurry,
In the second step, the first slurry, the second slurry, and the third slurry are applied to the surface of the negative electrode current collector in this order, and the first layer, the second slurry are applied in this order from the negative electrode current collector side. forming the negative electrode mixture layer composed of a layer and a third layer,
The second slurry includes a second a slurry and a second b slurry,
In the step of forming the second layer, the second a slurry and the second b slurry are respectively applied to a first region and a second region of the application region of the first slurry, and the second layer is formed as the second layer. 2b layer forming step,
The graphite particles include graphite particles A having an internal porosity of more than 5% and graphite particles B having an internal porosity of 5% or less,
The proportion (mass%) of the graphite particles B in the total of the graphite particles A and the graphite particles B in the first slurry, the second a slurry, the second b slurry, and the third slurry is MB 1 , MB 2a , MB 2b , and MB 3 ,
The MB 1 , the MB 2a , the MB 2b , and the MB 3 are:
0≦MB 1 ≦MB 2a <50<MB 2b ≦MB 3 ≦100
satisfies the relationship of
When the thickness of the negative electrode mixture layer is T,
A method for manufacturing a negative electrode for a secondary battery, wherein the thickness of the third layer is greater than 0.05T.
(Technology 11)
The method for producing a negative electrode for a secondary battery according to technique 10, wherein the graphite particles A have an internal porosity of 8% or more and 20% or less.
(Technology 12)
The thickness of the second layer is 0.1T or more and 0.5T or less,
The method for manufacturing a negative electrode for a secondary battery according to technology 10 or 11, wherein the third layer has a thickness of 0.1 T or more and 0.3 T or less.
(Technology 13)
The MB 2a is 0% by mass or more and 40% by mass or less,
The method for producing a negative electrode for a secondary battery according to any one of Techniques 10 to 12, wherein the MB 2b is 60% by mass or more and 100% by mass or less.
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be specifically described based on Examples and Comparative Examples, but the present disclosure is not limited to the following Examples.
《実施例1~6および比較例3~4、6~7》
(黒鉛粒子Aの作製)
 主原料となるコークス(前駆体)を粉砕し、平均粒径(D50)が15μmの粉砕物を得た。粉砕物に結着剤としてピッチを添加して粉砕物を凝集させ、得られた凝集物を加圧成形し、密度が1.6g/cm~1.9g/cmであるブロック状の成形体を得た。得られたブロック状の成形体を2800℃の温度で焼成し、黒鉛化させた。得られたブロック状の黒鉛化物を粉砕し、篩い分けし、平均粒径(D50)が23μmの黒鉛粒子Aを得た。
《Examples 1 to 6 and Comparative Examples 3 to 4, 6 to 7》
(Preparation of graphite particles A)
Coke (precursor) serving as the main raw material was pulverized to obtain a pulverized product with an average particle size (D50) of 15 μm. Pitch is added to the pulverized material as a binder to agglomerate the pulverized material, and the resulting agglomerate is pressure-molded to form a block having a density of 1.6 g/cm 3 to 1.9 g/cm 3 I got a body. The obtained block-shaped molded body was fired at a temperature of 2800°C to graphitize it. The obtained block-shaped graphitized material was crushed and sieved to obtain graphite particles A having an average particle diameter (D50) of 23 μm.
(黒鉛粒子Bの作製)
 主原料となるコークス(前駆体)を粉砕し、平均粒径(D50)が12μmの粉砕物を得た。粉砕物に結着剤としてピッチを添加して粉砕物を凝集させ、平均粒径(D50)が18μmの凝集物を得た。凝集物を2800℃の温度で焼成し、黒鉛化させた。得られた黒鉛化物を、篩い分けし、平均粒径(D50)が23μmの黒鉛粒子Bを得た。
(Preparation of graphite particles B)
Coke (precursor) serving as the main raw material was pulverized to obtain a pulverized product with an average particle size (D50) of 12 μm. Pitch was added to the pulverized material as a binder to agglomerate the pulverized material to obtain an agglomerate having an average particle size (D50) of 18 μm. The aggregate was calcined at a temperature of 2800°C to graphitize it. The obtained graphitized product was sieved to obtain graphite particles B having an average particle diameter (D50) of 23 μm.
 既述の方法により求められる黒鉛粒子Aの内部空隙率は8%~20%の範囲内であり、内部空隙率の平均値は15%であった。既述の方法により求められる黒鉛粒子Bの内部空隙率は1%~5%の範囲内であり、内部空隙率の平均値は3%であった。
 黒鉛粒子Aおよび黒鉛粒子Bの内部空隙率の調節は、黒鉛粒子Aおよび黒鉛粒子Bの作製過程で添加するピッチ量により行った。なお、ピッチ量が多いほど、内部空隙率は大きくなる。
The internal porosity of graphite particles A determined by the method described above was within the range of 8% to 20%, and the average value of the internal porosity was 15%. The internal porosity of graphite particles B determined by the method described above was within the range of 1% to 5%, and the average value of the internal porosity was 3%.
The internal porosity of graphite particles A and B was adjusted by adjusting the amount of pitch added during the production process of graphite particles A and B. Note that the larger the pitch amount, the larger the internal porosity.
(負極スラリーの調製)
 負極合剤に水を適量加え、負極スラリーを得た。負極合剤には、負極活物質と、結着剤であるスチレン-ブタジエン共重合体ゴム(SBR)と、増粘剤であるカルボキシメチルセルロース(CMC)との混合物を用いた。負極活物質には、黒鉛粒子とSi系材料の混合物を用いた。負極活物質において、黒鉛粒子とSi系材料との質量比は、95:5とした。負極活物質とSBRとCMCとの質量比は、100:1:1とした。Si系材料には、複合材料として、表面が導電性炭素を含む導電層で被覆されたSiO粒子(0.8≦x≦1.6、平均粒径(D50)5μm)を用いた。導電層の被覆量は、SiO粒子と導電層の合計100質量部あたり5質量部とした。
(Preparation of negative electrode slurry)
An appropriate amount of water was added to the negative electrode mixture to obtain a negative electrode slurry. The negative electrode mixture used was a mixture of a negative electrode active material, styrene-butadiene copolymer rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener. A mixture of graphite particles and Si-based material was used as the negative electrode active material. In the negative electrode active material, the mass ratio of graphite particles to Si-based material was 95:5. The mass ratio of the negative electrode active material, SBR, and CMC was 100:1:1. As the Si-based material, SiO x particles (0.8≦x≦1.6, average particle diameter (D50) 5 μm) whose surface was coated with a conductive layer containing conductive carbon were used as a composite material. The coating amount of the conductive layer was 5 parts by mass per 100 parts by mass of the SiO x particles and the conductive layer.
 負極スラリーとして、第1スラリー、第2スラリー、および第3スラリーを調製した。第2スラリーとして、第2aスラリーおよび第2bスラリーを調製した。黒鉛粒子Aと黒鉛粒子Bとの混合比を適宜調整し、各スラリーに含まれる黒鉛粒子(黒鉛粒子Aと黒鉛粒子Bとの合計)に占める黒鉛粒子Bの割合(質量%)は、表1に示す値とした。 A first slurry, a second slurry, and a third slurry were prepared as negative electrode slurries. As the second slurry, a 2nd a slurry and a 2nd b slurry were prepared. The mixing ratio of graphite particles A and graphite particles B was adjusted appropriately, and the proportion (mass%) of graphite particles B in the graphite particles (total of graphite particles A and graphite particles B) contained in each slurry was determined as shown in Table 1. The values shown are as follows.
(負極の作製)
 負極集電体として銅箔(厚み10μm)を準備した。負極集電体の両面に、第1スラリー、第2スラリー、および第3スラリーの順に塗布し、乾燥し、負極集電体の側より順に第1層、第2層、および第3層を形成した。このようにして第1層~第3層で構成される負極合剤層を形成した。第2スラリーとして第2aスラリーおよび第2bスラリーを用いた。第2層の形成工程では、第1スラリーの塗布領域の第1領域および第2領域に、それぞれ第2aスラリーおよび第2bスラリーを塗布し、第2層として第2a層および第2b層を形成した。各スラリーの塗布は、ダイコート法により行った。第2a層および第2b層は、図2に示すパターンでストライプ状に配置した。第2a層および第2層の幅(図2中のX方向の幅寸法)は、互いにほぼ同じとした。各スラリーの塗布量を適宜調整し、第1層~第3層の厚み(T~T)を、それぞれ表1に示す値とした。負極合剤層の片面当たりの厚みTは、80μmとした。
(Preparation of negative electrode)
A copper foil (thickness: 10 μm) was prepared as a negative electrode current collector. Apply the first slurry, second slurry, and third slurry to both sides of the negative electrode current collector in this order, and dry to form the first layer, second layer, and third layer in this order from the negative electrode current collector side. did. In this way, a negative electrode mixture layer consisting of the first to third layers was formed. A 2nd a slurry and a 2nd b slurry were used as the second slurry. In the second layer forming step, a 2a slurry and a 2b slurry were applied to the first and second areas of the first slurry application area, respectively, to form a 2a layer and a 2b layer as the second layer. . Each slurry was applied by a die coating method. The second a layer and the second b layer were arranged in stripes in the pattern shown in FIG. The widths of the 2nd a layer and the 2nd layer (the width dimension in the X direction in FIG. 2) were substantially the same. The coating amount of each slurry was adjusted as appropriate, and the thicknesses (T 1 to T 3 ) of the first to third layers were set to the values shown in Table 1, respectively. The thickness T of the negative electrode mixture layer per side was 80 μm.
 負極集電体と当該負極集電体の両面に形成された負極合剤層との積層体を圧延した。このようにして、負極を得た。 A laminate of a negative electrode current collector and negative electrode mixture layers formed on both sides of the negative electrode current collector was rolled. In this way, a negative electrode was obtained.
(正極の作製)
 正極合剤にN-メチル-2-ピロリドン(NMP)を適量加え、正極スラリーを得た。
 正極合剤には、正極活物質であるリチウム含有複合酸化物と、導電剤である黒鉛と、結着剤であるポリフッ化ビニリデン(PVDF)との混合物を用いた。リチウム含有複合酸化物には、LiNi0.88Co0.09Al0.03を用いた。正極合剤において、リチウム含有複合酸化物と黒鉛とPVDFとの質量比は、100:1:0.9とした。
(Preparation of positive electrode)
An appropriate amount of N-methyl-2-pyrrolidone (NMP) was added to the positive electrode mixture to obtain a positive electrode slurry.
The positive electrode mixture used was a mixture of a lithium-containing composite oxide as a positive electrode active material, graphite as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder. LiNi 0.88 Co 0.09 Al 0.03 O 2 was used as the lithium-containing composite oxide. In the positive electrode mixture, the mass ratio of the lithium-containing composite oxide, graphite, and PVDF was 100:1:0.9.
 正極集電体であるアルミニウム箔(厚さ15μm)の両面に正極スラリーを塗布し、塗膜を乾燥し、圧延して、正極合剤層を形成し、正極を得た。正極スラリーの塗布には、ドクターブレード法を用いた。 A positive electrode slurry was applied to both sides of an aluminum foil (thickness: 15 μm) serving as a positive electrode current collector, and the coating was dried and rolled to form a positive electrode mixture layer to obtain a positive electrode. A doctor blade method was used to apply the positive electrode slurry.
(非水電解質の調製)
 エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)とを、1:3の体積比で混合した非水溶媒に、ビニレンカーボネート(VC)を添加し、LiPFを溶解させて、非水電解質を調製した。非水電解質中のVCの含有量は、非水電解質の全体に対して5質量%とした。非水電解質中のLiPFの濃度は、1.5mol/Lとした。
(Preparation of non-aqueous electrolyte)
Add vinylene carbonate (VC) to a nonaqueous solvent that is a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 1:3, and dissolve LiPF 6 to prepare a nonaqueous electrolyte. did. The content of VC in the non-aqueous electrolyte was 5% by mass based on the entire non-aqueous electrolyte. The concentration of LiPF 6 in the non-aqueous electrolyte was 1.5 mol/L.
(二次電池の作製)
 正極の正極集電体の露出部にアルミニウム製の正極リードを取り付け、負極の負極集電体の露出部にニッケル製の負極リードを取り付けた。その後、正極と負極とを、セパレータを介して巻回し、巻回型の電極群を作製した。セパレータには、ポリエチレン製の微多孔膜を用いた。電池ケース内に電極群を収容した。このとき、電極群の上下には、それぞれ樹脂製の上部絶縁板および下部絶縁板を配置した。負極リードを電池ケースの内底面に溶接した。正極リードを、正極端子を兼ねる金属製の封口体に溶接した。その後、電池ケース内に非水電解質を注入し、封口体を用いて電池ケースの開口部を閉じた。このとき、電池ケースの開口端部と封口体との間に樹脂製のガスケットを介在させた。このようにして、円筒形の二次電池(公称容量4600mAh)を得た。
 表1中、E1~E6は実施例1~6の電池であり、R3~R4、R6~R7は、比較例3~4、6~7の電池である。
(Preparation of secondary battery)
An aluminum positive electrode lead was attached to the exposed portion of the positive electrode current collector of the positive electrode, and a nickel negative electrode lead was attached to the exposed portion of the negative electrode current collector of the negative electrode. Thereafter, the positive electrode and the negative electrode were wound together with a separator interposed therebetween to produce a wound electrode group. A microporous polyethylene membrane was used as the separator. The electrode group was housed inside the battery case. At this time, an upper insulating plate and a lower insulating plate made of resin were placed above and below the electrode group, respectively. The negative electrode lead was welded to the inner bottom of the battery case. The positive electrode lead was welded to a metal sealing body that also served as a positive electrode terminal. Thereafter, a nonaqueous electrolyte was injected into the battery case, and the opening of the battery case was closed using a sealing member. At this time, a resin gasket was interposed between the open end of the battery case and the sealing body. In this way, a cylindrical secondary battery (nominal capacity 4600 mAh) was obtained.
In Table 1, E1 to E6 are the batteries of Examples 1 to 6, and R3 to R4 and R6 to R7 are the batteries of Comparative Examples 3 to 4 and 6 to 7.
《比較例1》
 第1スラリーおよび第3スラリーを用い、負極合剤層を第1層および第3層で構成した。第1スラリーでの黒鉛粒子に占める黒鉛粒子Bの割合MB、および、第3スラリーでの黒鉛粒子に占める黒鉛粒子Bの割合MBは、表1に示す値とした。第1層の厚みTおよび第3層の厚みTは、表1に示す値とした。上記以外、実施例1の電池E1と同様にして、電池R1を作製した。
《Comparative example 1》
Using the first slurry and the third slurry, the negative electrode material mixture layer was composed of the first layer and the third layer. The proportion MB 1 of graphite particles B in the graphite particles in the first slurry and the proportion MB 3 of graphite particles B in the graphite particles in the third slurry were set to the values shown in Table 1. The thickness T 1 of the first layer and the thickness T 3 of the third layer were set to the values shown in Table 1. A battery R1 was produced in the same manner as the battery E1 of Example 1 except for the above.
《比較例2》
 第1スラリーと第2スラリー(第2aスラリーおよび第2bスラリー)とを用い、負極合剤層を第1層と第2層(第2a層および第2b層)とで構成した。第1スラリーでの黒鉛粒子に占める黒鉛粒子Bの割合MB、第2aスラリーでの黒鉛粒子に占める黒鉛粒子Bの割合MB2a、および第2bスラリーでの黒鉛粒子に占める黒鉛粒子Bの割合MB2bは、表1に示す値とした。第1層の厚みTおよび第2層の厚みTは、表1に示す値とした。上記以外、実施例1の電池E1と同様にして、電池R2を作製した。
《Comparative example 2》
Using the first slurry and the second slurry (the 2nd a slurry and the 2nd b slurry), the negative electrode mixture layer was composed of the first layer and the second layer (the 2nd a layer and the 2nd b layer). The proportion of graphite particles B in the graphite particles in the first slurry MB 1 , the proportion of graphite particles B in the graphite particles in the second slurry MB 2a , and the proportion of graphite particles B in the graphite particles in the second slurry MB 2b was set to the value shown in Table 1. The thickness T 1 of the first layer and the thickness T 2 of the second layer were set to the values shown in Table 1. A battery R2 was produced in the same manner as the battery E1 of Example 1 except for the above.
《比較例5》
 第2スラリー(第2aスラリーおよび第2bスラリー)と第3スラリーとを用い、負極合剤層を第2層(第2a層および第2b層)と第3層とで構成した。第2層の厚みTおよび第3層の厚みTは、表1に示す値とした。上記以外、実施例1の電池E1と同様にして、電池R5を作製した。
《Comparative Example 5》
Using the second slurry (2a slurry and 2b slurry) and the third slurry, the negative electrode mixture layer was composed of the second layer (2a layer and 2b layer) and the third layer. The thickness T 2 of the second layer and the thickness T 3 of the third layer were set to the values shown in Table 1. A battery R5 was produced in the same manner as the battery E1 of Example 1 except for the above.
 上記で作製した各電池について、以下の評価を行った。 The following evaluations were performed for each battery produced above.
[評価1:サイクル容量維持率]
 25℃の環境下、電圧が4.2Vになるまで0.3C(1380mA)の電流で定電流充電を行った後、電流が0.02Cになるまで4.2Vの電圧で定電圧充電を行った。10分間の休止後、電圧が2.5Vになるまで0.5Cの電流で定電流放電を行った。この充放電を1サイクルとして300サイクル行い、1サイクル目の放電容量に対する300サイクル目の放電容量の割合(百分率)を、300サイクル目の容量維持率として求めた。
[Evaluation 1: Cycle capacity maintenance rate]
In a 25°C environment, perform constant current charging with a current of 0.3C (1380mA) until the voltage reaches 4.2V, then perform constant voltage charging with a voltage of 4.2V until the current reaches 0.02C. Ta. After resting for 10 minutes, constant current discharge was performed at a current of 0.5C until the voltage reached 2.5V. This charging and discharging was performed for 300 cycles, and the ratio (percentage) of the discharge capacity at the 300th cycle to the discharge capacity at the 1st cycle was determined as the capacity retention rate at the 300th cycle.
[評価2:負極の電解質浸透性]
 負極(負極合剤層)の一方の表面に溶媒としてプロピレンカーボネートを3μl滴下し、溶媒を滴下してから溶媒の全てが負極合剤層内に浸透するまでの時間を計測した。表1中の電解質浸透性の数値は、上記で計測した時間(秒)を示しており、当該数値が小さい場合、急速充電特性が良好である。
[Evaluation 2: Electrolyte permeability of negative electrode]
3 μl of propylene carbonate was dropped as a solvent onto one surface of the negative electrode (negative electrode mixture layer), and the time from when the solvent was dropped until all of the solvent permeated into the negative electrode mixture layer was measured. The numerical value of electrolyte permeability in Table 1 indicates the time (seconds) measured above, and when the numerical value is small, the rapid charging characteristics are good.
 評価結果を表1に示す。 The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 電池E1~E6では、電解質浸透性の数値が小さく、優れた急速充電特性が得られた。また、電池E1~E6では、容量維持率が高く、優れたサイクル特性が得られた。 In batteries E1 to E6, the electrolyte permeability values were small and excellent rapid charging characteristics were obtained. In addition, batteries E1 to E6 had high capacity retention rates and excellent cycle characteristics.
 電池R1では、第1層および第3層のみで負極合剤層を形成し、第2層を形成しなかったため、電解質浸透性の数値が大きく、容量維持率が低下した。電池R2では、第3層を形成しなかったため、電解質浸透性の数値が大幅に増加した。電池R3では、黒鉛粒子に占める黒鉛粒子Bの割合が50質量%である1つの層で第2層を構成したため、電解質浸透性の数値が増大し、容量維持率が低下した。 In battery R1, the negative electrode mixture layer was formed only with the first layer and the third layer, and the second layer was not formed, so the electrolyte permeability value was large and the capacity retention rate was reduced. In battery R2, the electrolyte permeability value increased significantly because the third layer was not formed. In battery R3, since the second layer was composed of one layer in which the ratio of graphite particles B to the graphite particles was 50% by mass, the electrolyte permeability value increased and the capacity retention rate decreased.
 第3層の厚みが0.05Tである電池R4では、第3層による効果が不十分となり、電解質浸透性の数値が増大した。電池R5では、第1層を形成しなかったため、負極合剤層と負極集電体との密着性が低下し、容量維持率が低下した。電池R6では、黒鉛粒子Aを含まない第1層を形成したため、負極合剤層と負極集電体との密着性が低下し、容量維持率が低下した。電池R7では、黒鉛粒子Bを含まない第3層を形成したため、電解質浸透性の数値が増大した。 In battery R4 in which the thickness of the third layer was 0.05T, the effect of the third layer was insufficient, and the electrolyte permeability value increased. In battery R5, since the first layer was not formed, the adhesion between the negative electrode mixture layer and the negative electrode current collector decreased, and the capacity retention rate decreased. In battery R6, since the first layer not containing graphite particles A was formed, the adhesion between the negative electrode mixture layer and the negative electrode current collector decreased, and the capacity retention rate decreased. In battery R7, since the third layer not containing graphite particles B was formed, the electrolyte permeability value increased.
 本開示に係る二次電池用負極は、優れた急速充電特性およびサイクル特性が要求される二次電池に好適に用いられる。 The negative electrode for secondary batteries according to the present disclosure is suitably used in secondary batteries that require excellent rapid charging characteristics and cycle characteristics.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the invention has been described in terms of presently preferred embodiments, such disclosure should not be construed as limiting. Various modifications and alterations will no doubt become apparent to those skilled in the art to which this invention pertains after reading the above disclosure. It is, therefore, intended that the appended claims be construed as covering all changes and modifications without departing from the true spirit and scope of the invention.
 1:電極群、2:正極リード、3:負極リード、4:電池ケース、5:封口板、6:負極端子、7:ガスケット、8:封栓、20:黒鉛粒子、21:内部空隙、22:外部空隙、30:負極、31:負極集電体、32,33:負極合剤層、41:第1層、42:第2層、42a:第2a層、42b:第2b層、43:第3層 1: electrode group, 2: positive electrode lead, 3: negative electrode lead, 4: battery case, 5: sealing plate, 6: negative electrode terminal, 7: gasket, 8: sealing plug, 20: graphite particle, 21: internal void, 22 : external void, 30: negative electrode, 31: negative electrode current collector, 32, 33: negative electrode mixture layer, 41: first layer, 42: second layer, 42a: second a layer, 42b: second b layer, 43: 3rd layer

Claims (13)

  1.  負極活物質を含む負極合剤層と、前記負極合剤層を担持する負極集電体と、を備え、
     前記負極活物質は、黒鉛粒子を含み、
     前記黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含み、
     前記負極合剤層は、前記負極集電体の側より順に、第1層と、第2層と、第3層と、を含み、
     前記第2層は、前記第1層の第1領域および第2領域にそれぞれ配置される第2a層および第2b層を含み、
     前記第1層、前記第2a層、前記第2b層、および前記第3層における前記黒鉛粒子Aと前記黒鉛粒子Bとの合計に占める前記黒鉛粒子Bの割合(質量%)を、それぞれ、MB、MB2a、MB2b、およびMBとするとき、
     前記MBと、前記MB2aと、前記MB2bと、前記MBとは、
     0≦MB≦MB2a<50<MB2b≦MB≦100
    の関係を満たし、
     前記負極合剤層の厚みをTとするとき、
     前記第3層の厚みは0.05Tよりも大きい、二次電池用負極。
    comprising a negative electrode mixture layer containing a negative electrode active material and a negative electrode current collector supporting the negative electrode mixture layer,
    The negative electrode active material includes graphite particles,
    The graphite particles include graphite particles A having an internal porosity of more than 5% and graphite particles B having an internal porosity of 5% or less,
    The negative electrode mixture layer includes, in order from the negative electrode current collector side, a first layer, a second layer, and a third layer,
    The second layer includes a 2a layer and a 2b layer arranged in a first region and a second region of the first layer, respectively,
    The proportion (mass%) of the graphite particles B in the total of the graphite particles A and the graphite particles B in the first layer, the second a layer, the second b layer, and the third layer is MB 1 , MB 2a , MB 2b , and MB 3 ,
    The MB 1 , the MB 2a , the MB 2b , and the MB 3 are:
    0≦MB 1 ≦MB 2a <50<MB 2b ≦MB 3 ≦100
    satisfies the relationship of
    When the thickness of the negative electrode mixture layer is T,
    In the negative electrode for a secondary battery, the thickness of the third layer is greater than 0.05T.
  2.  前記黒鉛粒子Aの内部空隙率が、8%以上、20%以下である、請求項1に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1, wherein the graphite particles A have an internal porosity of 8% or more and 20% or less.
  3.  前記第2層の厚みは、0.1T以上、0.5T以下であり、
     前記第3層の厚みは、0.1T以上、0.3T以下である、請求項1に記載の二次電池用負極。
    The thickness of the second layer is 0.1T or more and 0.5T or less,
    The negative electrode for a secondary battery according to claim 1, wherein the third layer has a thickness of 0.1 T or more and 0.3 T or less.
  4.  前記MB2aは、0質量%以上、40質量%以下であり、
     前記MB2bは、60質量%以上、100質量%以下である、請求項1に記載の二次電池用負極。
    The MB 2a is 0% by mass or more and 40% by mass or less,
    The negative electrode for a secondary battery according to claim 1, wherein the MB 2b is 60% by mass or more and 100% by mass or less.
  5.  前記負極活物質は、Si系材料を含む、請求項1に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1, wherein the negative electrode active material includes a Si-based material.
  6.  前記第1層の上において、前記第2a層および前記第2b層は、交互に繰り返されるパターンで配置されている、請求項1に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1, wherein the second a layer and the second b layer are arranged in an alternating pattern on the first layer.
  7.  前記第1層の上において、前記第2a層および前記第2b層は、ストライプ状、市松状、またはハニカム状に配置されている、請求項6に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 6, wherein the second a layer and the second b layer are arranged in a stripe shape, a checkerboard shape, or a honeycomb shape on the first layer.
  8.  前記第1層の上において、前記第2a層および前記第2b層の一方は、他方の海に島状に分散して配置されている、請求項1に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1, wherein on the first layer, one of the second a layer and the second b layer is arranged in an island-like manner dispersed in the other sea.
  9.  正極と、負極と、非水電解質と、を備え、
     前記負極は、請求項1に記載の二次電池用負極である、二次電池。
    Comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte,
    A secondary battery, wherein the negative electrode is the negative electrode for a secondary battery according to claim 1.
  10.  黒鉛粒子を含む負極スラリーを調製する第1工程と、
     負極集電体の表面に前記負極スラリーを塗布し、乾燥し、負極合剤層を形成する第2工程と、
     前記負極合剤層および前記負極集電体の積層体を圧縮する第3工程と、
    を含み、
     前記第1工程では、前記負極スラリーとして、第1スラリー、第2スラリー、および第3スラリーを調製し、
     前記第2工程では、前記負極集電体の表面に、前記第1スラリー、前記第2スラリー、および前記第3スラリーの順に塗布し、前記負極集電体の側より順に第1層、第2層、および第3層で構成される前記負極合剤層を形成し、
     前記第2スラリーは、第2aスラリーおよび第2bスラリーを含み、
     前記第2層の形成工程は、前記第1スラリーの塗布領域の第1領域および第2領域に、それぞれ前記第2aスラリーおよび前記第2bスラリーを塗布し、前記第2層として第2a層および第2b層を形成する工程を含み、
     前記黒鉛粒子は、内部空隙率が5%よりも大きい黒鉛粒子Aと、内部空隙率が5%以下である黒鉛粒子Bと、を含み、
     前記第1スラリー、前記第2aスラリー、前記第2bスラリー、および前記第3スラリーにおける前記黒鉛粒子Aと前記黒鉛粒子Bとの合計に占める前記黒鉛粒子Bの割合(質量%)を、それぞれ、MB、MB2a、MB2b、およびMBとするとき、
     前記MBと、前記MB2aと、前記MB2bと、前記MBとは、
     0≦MB≦MB2a<50<MB2b≦MB≦100
    の関係を満たし、
     前記負極合剤層の厚みをTとするとき、
     前記第3層の厚みは0.05Tよりも大きい、二次電池用負極の製造方法。
    A first step of preparing a negative electrode slurry containing graphite particles;
    a second step of applying the negative electrode slurry on the surface of the negative electrode current collector and drying it to form a negative electrode mixture layer;
    a third step of compressing the laminate of the negative electrode mixture layer and the negative electrode current collector;
    including;
    In the first step, a first slurry, a second slurry, and a third slurry are prepared as the negative electrode slurry,
    In the second step, the first slurry, the second slurry, and the third slurry are applied to the surface of the negative electrode current collector in this order, and the first layer, the second slurry are applied in this order from the negative electrode current collector side. forming the negative electrode mixture layer composed of a layer and a third layer,
    The second slurry includes a second a slurry and a second b slurry,
    In the step of forming the second layer, the second a slurry and the second b slurry are respectively applied to a first region and a second region of the application region of the first slurry, and the second layer is formed as the second layer. 2b layer forming step,
    The graphite particles include graphite particles A having an internal porosity of more than 5% and graphite particles B having an internal porosity of 5% or less,
    The proportion (mass%) of the graphite particles B in the total of the graphite particles A and the graphite particles B in the first slurry, the second a slurry, the second b slurry, and the third slurry is MB 1 , MB 2a , MB 2b , and MB 3 ,
    The MB 1 , the MB 2a , the MB 2b , and the MB 3 are:
    0≦MB 1 ≦MB 2a <50<MB 2b ≦MB 3 ≦100
    satisfies the relationship of
    When the thickness of the negative electrode mixture layer is T,
    A method for manufacturing a negative electrode for a secondary battery, wherein the thickness of the third layer is greater than 0.05T.
  11.  前記黒鉛粒子Aの内部空隙率が、8%以上、20%以下である、請求項10に記載の二次電池用負極の製造方法。 The method for manufacturing a negative electrode for a secondary battery according to claim 10, wherein the graphite particles A have an internal porosity of 8% or more and 20% or less.
  12.  前記第2層の厚みは、0.1T以上、0.5T以下であり、
     前記第3層の厚みは、0.1T以上、0.3T以下である、請求項10に記載の二次電池用負極の製造方法。
    The thickness of the second layer is 0.1T or more and 0.5T or less,
    The method for manufacturing a negative electrode for a secondary battery according to claim 10, wherein the third layer has a thickness of 0.1T or more and 0.3T or less.
  13.  前記MB2aは、0質量%以上、40質量%以下であり、
     前記MB2bは、60質量%以上、100質量%以下である、請求項10に記載の二次電池用負極の製造方法。
     
     
     
    The MB 2a is 0% by mass or more and 40% by mass or less,
    The method for manufacturing a negative electrode for a secondary battery according to claim 10, wherein the MB 2b is 60% by mass or more and 100% by mass or less.


PCT/JP2023/031854 2022-08-31 2023-08-31 Secondary battery negative electrode, secondary battery, and method for manufacturing secondary battery negative electrode WO2024048732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138633 2022-08-31
JP2022138633 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048732A1 true WO2024048732A1 (en) 2024-03-07

Family

ID=90099844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031854 WO2024048732A1 (en) 2022-08-31 2023-08-31 Secondary battery negative electrode, secondary battery, and method for manufacturing secondary battery negative electrode

Country Status (1)

Country Link
WO (1) WO2024048732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117976818A (en) * 2024-03-28 2024-05-03 宁德时代新能源科技股份有限公司 Battery cell, battery and electricity utilization device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029075A (en) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
WO2015045385A1 (en) * 2013-09-26 2015-04-02 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
JP2016081931A (en) * 2014-10-16 2016-05-16 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrode integrating super capacitor and battery, and method of manufacturing the same
WO2019239652A1 (en) * 2018-06-15 2019-12-19 三洋電機株式会社 Non-aqueous electrolyte secondary cell
WO2021059706A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2022181489A1 (en) * 2021-02-25 2022-09-01 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029075A (en) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
WO2015045385A1 (en) * 2013-09-26 2015-04-02 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
JP2016081931A (en) * 2014-10-16 2016-05-16 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrode integrating super capacitor and battery, and method of manufacturing the same
WO2019239652A1 (en) * 2018-06-15 2019-12-19 三洋電機株式会社 Non-aqueous electrolyte secondary cell
WO2021059706A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2022181489A1 (en) * 2021-02-25 2022-09-01 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117976818A (en) * 2024-03-28 2024-05-03 宁德时代新能源科技股份有限公司 Battery cell, battery and electricity utilization device

Similar Documents

Publication Publication Date Title
US10601044B2 (en) Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR102591512B1 (en) Negative active material, lithium secondary battery including the material, and method for manufacturing the material
KR102165885B1 (en) Negative electrode active material, negative electrode and lithium secondary battery comprising the same
KR100442178B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
KR102171094B1 (en) Negative electrode active material and lithium secondary battery comprising the same
KR101878129B1 (en) Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102183996B1 (en) Positive active material and manufacturing method thereof, positive electrode and lithium battery containing the material
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
KR102065256B1 (en) Silicone based negative active material, preparing method of the same and lithium ion secondary battery including the same
KR102242486B1 (en) Positive electrode active material and lithium secondary battery comprising the same
KR20210048434A (en) Manufacturing method of positive electrode active material precursor, and positive electrode active material precursor
WO2018179934A1 (en) Negative electrode material and nonaqueous electrolyte secondary battery
WO2024048732A1 (en) Secondary battery negative electrode, secondary battery, and method for manufacturing secondary battery negative electrode
WO2024048733A1 (en) Secondary battery negative electrode, secondary battery, and production method for secondary battery negative electrode
CN112136232B (en) Nonaqueous electrolyte secondary battery
JP7432882B2 (en) Nonaqueous electrolyte secondary battery
WO2019026265A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20200084591A (en) Negative electrode active material for secondary battery, negative electrode including same and manufacturing method thereof
EP4099428A1 (en) Nonaqueous-electrolyte secondary battery negative electrode and nonaqueous-electrolyte secondary battery
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
WO2023181949A1 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2023054308A1 (en) Non-aqueous electrolyte secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
KR20230040922A (en) Electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860494

Country of ref document: EP

Kind code of ref document: A1