WO2024048710A1 - Crystal film, and method for producing crystal film - Google Patents

Crystal film, and method for producing crystal film Download PDF

Info

Publication number
WO2024048710A1
WO2024048710A1 PCT/JP2023/031776 JP2023031776W WO2024048710A1 WO 2024048710 A1 WO2024048710 A1 WO 2024048710A1 JP 2023031776 W JP2023031776 W JP 2023031776W WO 2024048710 A1 WO2024048710 A1 WO 2024048710A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
crystal layer
film
thickness direction
grown
Prior art date
Application number
PCT/JP2023/031776
Other languages
French (fr)
Japanese (ja)
Inventor
耕史 雨堤
満 沖川
裕之 安藤
勇次 加藤
悟 大田
Original Assignee
株式会社Flosfia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Flosfia filed Critical 株式会社Flosfia
Publication of WO2024048710A1 publication Critical patent/WO2024048710A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Definitions

  • the present disclosure relates to a crystal film and a method for manufacturing the crystal film.
  • Patent Document 1 an uneven part consisting of a recess or a convex part is formed directly or through another layer on the crystal growth surface of a crystal substrate, and an epitaxial layer is formed on the uneven part.
  • a crystalline stacked structure in which the epitaxial layer contains a crystalline semiconductor having a corundum structure as a main component is disclosed.
  • Patent Document 2 discloses that ELO film formation is performed using an m-plane sapphire substrate in which striped ELO masks extending in the a-axis direction are arranged on the substrate surface, with the supply rate being controlled.
  • Patent No. 6945119 International Publication No. 2020-004250
  • the ELO mask when used, the ELO mask is embedded in the obtained film and needs to be removed together with a part of the lower end of the obtained film.
  • An object of the present disclosure is to provide a crystal film in which dislocations extending along the thickness direction are reduced, and a method for manufacturing such a crystal film with a relatively high yield.
  • the crystal film has a corundum structure and includes a crystalline oxide containing gallium, and a cross section cut in the thickness direction is formed along the thickness direction. a linear first crystal defect extending in the direction of the thickness; and a linear second crystal defect including an inclined part inclined from the thickness direction, and an upper end of the first crystal defect is connected to the inclined part. Or it is located below the inclined part.
  • a method for manufacturing a crystal film includes a method for manufacturing a crystal film in which stripe-like irregularities are formed on the main surface of a first crystal layer that has a corundum structure and includes a crystalline oxide containing gallium.
  • a second crystal layer having a corundum structure and containing a crystalline oxide containing gallium is grown in the recessed portion of the uneven portion, and at this time, in a cross section cut in the thickness direction, A linear crystal defect having an inclined portion is formed.
  • FIG. 1 is a schematic perspective view illustrating a crystal film according to a first embodiment.
  • FIG. 1 is a schematic cross-sectional view illustrating a crystal film according to a first embodiment.
  • 1 is a flowchart schematically showing a method for manufacturing a crystal film according to a first embodiment.
  • 1 is a diagram schematically showing a method for manufacturing a crystal film according to a first embodiment;
  • FIG. 1 is a diagram schematically showing a method for manufacturing a crystal film according to a first embodiment;
  • FIG. 1 is a diagram schematically showing a method for manufacturing a crystal film according to a first embodiment;
  • FIG. 1 is a diagram schematically showing a method for manufacturing a crystal film according to a first embodiment;
  • FIG. 3 is a schematic perspective view illustrating a crystal film according to a second embodiment.
  • FIG. 7 is a schematic perspective view illustrating a crystal film according to a third embodiment.
  • FIG. 7 is a schematic cross-sectional view illustrating a crystal film according to a third embodiment.
  • 7 is a flowchart schematically showing a method for manufacturing a crystal film according to a third embodiment.
  • FIG. 7 is a diagram schematically showing a method for manufacturing a crystal film according to a third embodiment.
  • FIG. 7 is a diagram schematically showing a method for manufacturing a crystal film according to a third embodiment.
  • 3 is a schematic cross-sectional view illustrating a crystal film according to Modification Example 1.
  • FIG. 7 is a schematic cross-sectional view illustrating a crystal film according to Modification Example 2.
  • FIG. FIG. 7 is a schematic cross-sectional view illustrating a crystal film according to Modification Example 4;
  • 1 is a schematic cross-sectional view showing an example of a Schottky barrier diode (SBD) according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view showing an example of a high electron mobility transistor (HEMT) according to an embodiment of the present disclosure.
  • HEMT high electron mobility transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • JFET junction field effect transistor
  • 1 is a schematic cross-sectional view showing an example of an insulated gate bipolar transistor (IGBT) according to an embodiment of the present disclosure.
  • IGBT insulated gate bipolar transistor
  • 1 is a schematic cross-sectional view showing an example of a light emitting diode (LED) according to an embodiment of the present disclosure.
  • LED light emitting diode
  • 1 is a schematic cross-sectional view showing an example of a light emitting diode (LED) according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view showing an example of a junction barrier Schottky diode (JBS) according to an embodiment of the present disclosure.
  • JBS junction barrier Schottky diode
  • 1 is a schematic cross-sectional view showing an example of a junction barrier Schottky diode (JBS) according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view showing an example of a metal oxide semiconductor field effect transistor (MOSFET) according to an embodiment of the present disclosure.
  • FIG. 1 is a block configuration diagram illustrating an example of a control system that employs a semiconductor device according to an embodiment of the present disclosure.
  • 1 is a circuit diagram illustrating an example of a control system that employs a semiconductor device according to an embodiment of the present disclosure.
  • FIG. 1 is a block configuration diagram illustrating an example of a control system that employs a semiconductor device according to an embodiment of the present disclosure.
  • 1 is a circuit diagram illustrating an example of a control system that employs a semiconductor device according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram showing an example of observation of a cross section of a crystal film according to a second embodiment.
  • FIG. 7 is a partially enlarged view of a diagram showing an observation example of a cross section of a crystal film according to a second embodiment.
  • FIG. 7 is a diagram showing an example of observation of a cross section of a crystal film according to a second embodiment.
  • FIG. 7 is a partially enlarged view of a diagram showing an observation example of a cross section of a crystal film according to a second embodiment.
  • FIG. 7 is a diagram showing an example of observation of a cross section of a crystal film according to an example of Modification Example 7
  • 12 is a partially enlarged view of a diagram showing an example
  • first, second, etc. are used to describe various elements used herein, the elements are not limited by these terms.
  • the terms first, second, etc. are only used to distinguish one element from another.
  • a first element can be referred to as a second element
  • a second element can be referred to as a first element, without departing from the scope of this disclosure.
  • the term “and/or” encompasses any or all combinations of one or more of the listed items.
  • one side in a direction parallel to the thickness direction Z (see FIG. 1) of the crystal film is referred to as "upper” and the other side is referred to as “lower.”
  • “upper” and “lower” are defined as the upper side of the crystal layer 12 of the crystal film 10 in FIG. 1 when viewed from the crystal layer 11, and the lower side when viewed from the crystal layer 12.
  • the surface located above will be described as an upper surface, and the surface located below will be described as a lower surface.
  • the direction in which the uneven portion extends which is perpendicular to the thickness direction Z of the crystal film, will be described as the front-rear direction Y.
  • a direction perpendicular to the thickness direction Z and the front-back direction Y will be described as a left-right direction X. Note that although this specification will be described using the term “top view,” it may be translated as "planar view.”
  • FIG. 1 is a schematic perspective view illustrating a crystal film 10 according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating the crystal film 10 according to the first embodiment, and is a cross-sectional view taken along the line II-II in FIG.
  • the crystal film 10 according to the first embodiment is used, for example, as a semiconductor film of a semiconductor device or the like.
  • the crystal film 10 includes a crystal layer 11 and a crystal layer 12 located on the crystal layer 11.
  • the crystal film 10 shown in FIG. 1 may be, for example, a part of a disc-shaped crystal film.
  • the crystal layer 11 is an example of a first crystal layer
  • the crystal layer 12 is an example of a second crystal layer.
  • the crystal layer 11 is, for example, an n-type semiconductor layer.
  • the crystal layer 11 is, for example, an epitaxial growth film that is heteroepitaxially grown on a sapphire substrate.
  • the crystal layer 11 contains a crystalline oxide semiconductor as a main component. Note that the crystalline oxide semiconductor is an example of a crystalline oxide.
  • the crystal layer 11 may be a film grown on a sapphire substrate via another layer such as a buffer layer.
  • the crystalline oxide semiconductor included in the crystal layer 11 has a corundum structure.
  • the a-axis direction of the crystalline oxide semiconductor is along the left-right direction X.
  • the c-axis direction of the crystalline oxide semiconductor is along the front-back direction Y.
  • the m-axis direction of the crystalline oxide semiconductor is along the thickness direction Z. That is, the plane orientation of the main surface of the crystal layer 11 is the m-plane in a region where the normal line is along the thickness direction Z.
  • the left-right direction X is sometimes referred to as the a-axis direction
  • the front-rear direction Y is sometimes referred to as the c-axis direction
  • the thickness direction is sometimes referred to as the m-axis direction.
  • the crystalline oxide semiconductor included in the crystal layer 11 includes gallium.
  • the crystalline oxide semiconductor is a metal oxide containing, in addition to gallium, one or more metals selected from, for example, aluminum, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, and iridium. There may be.
  • the crystalline oxide semiconductor further contains at least one metal selected from aluminum and indium in addition to gallium, and ⁇ -Ga 2 O 3 or a mixture thereof. Most preferably, it is crystalline. According to the present disclosure, a multilayer film with reduced dislocations can be obtained even when using ⁇ -Ga 2 O 3 or its mixed crystal, which is a thermally metastable phase, for example.
  • the "main component” means, for example, when the crystalline oxide semiconductor is Ga 2 O 3 , the atomic ratio of gallium among all the metal elements in the crystal layer 11 is 0.5 or more. This means that the layer 11 contains Ga 2 O 3 . In the present disclosure, the atomic ratio of gallium among all metal elements in the crystal layer 11 is preferably 0.7 or more, and more preferably 0.9 or more. Although the crystal layer 11 is single crystal in this embodiment, it may be polycrystalline.
  • the carrier density of the crystal layer 11 can be appropriately set by adjusting the doping amount.
  • the crystal layer 11 contains a dopant.
  • the dopant may be a known dopant.
  • the dopant when the crystal layer 11 is mainly composed of a crystalline oxide semiconductor containing gallium, preferable examples of the dopant include tin, germanium, silicon, titanium, zirconium, vanadium, or Examples include n-type dopants such as niobium.
  • the n-type dopant is preferably Sn, Ge, or Si.
  • the content of the dopant in the composition of the crystal layer 11 is preferably 0.00001 atomic% or more, more preferably 0.00001 atomic% to 20 atomic%, and 0.00001 atomic% to 10 atomic%. Most preferably. More specifically, the concentration of the dopant may typically be about 1 ⁇ 10 16 /cm 3 to 1 ⁇ 10 22 /cm 3 , and the concentration of the dopant may be, for example, about 1 ⁇ 10 17 /cm 3 . The concentration may be as low as 3 or less.
  • the crystal layer 11 has, on the upper surface 21 (see FIG. 2), uneven portions 22 arranged, for example, in the a-axis direction.
  • the uneven portion 22 has a stripe shape and extends along the c-axis direction (front-back direction Y).
  • the uneven portion 22 has a concave portion 23 and a convex portion 24 .
  • the concave portion 23 and the convex portion 24 are adjacent to each other. Adjacent recesses 23 and protrusions 24 are continuous at equal intervals along the a-axis direction (left-right direction X).
  • the upper surface 21 refers to the upper surface of the main surface of the crystal layer 11.
  • the recess 23 is formed, for example, on the upper surface 21 by etching or the like.
  • the uneven portion 22 does not include other materials such as a mask, but constitutes a part of the crystal layer 11 (constituted of substantially the same material as the crystal layer 11).
  • the recess 23 has a plurality of growth surfaces on which the crystal layer 12 grows.
  • the recess 23 has, for example, side surfaces 23a, 23b and a bottom surface 23c as the growth surfaces.
  • the side surfaces 23a and 23b are crystal growth surfaces for lateral growth
  • the bottom surface 23c is a crystal growth surface for vertical growth.
  • the side surfaces 23a and 23b are planes extending in the front-rear direction Y and the thickness direction Z.
  • the side surfaces 23a and 23b are, for example, a-planes.
  • the bottom surface 23c is a plane that extends in the front-rear direction Y and the left-right direction X.
  • the bottom surface 23c is, for example, an m-plane.
  • the bottom surface 23c is located between the side surface 23a and the side surface 23b.
  • the side surface 23a is located on the left side of the bottom surface 23c, and the side surface 23b is located on the right side of the bottom surface 23c.
  • the side surfaces 23a, 23b and the bottom surface 23c are part of the top surface 21.
  • the portion where the bottom surface 23c and the side surface 23a or the side surface 23b are connected is shown as a corner, but may have other shapes such as a circular arc.
  • the side surface 23a may have an angle ⁇ 1 of 60 degrees or more with the upper surface 25 of the convex portion 24.
  • the angle ⁇ 1 between the side surface 23a and the top surface 25 is, for example, 90 degrees.
  • the side surface 23b only needs to have an angle ⁇ 2 of 60 degrees or more with the top surface 25.
  • the angle ⁇ 2 between the side surface 23b and the top surface 25 is, for example, 90 degrees.
  • the top surface 21 and the bottom surface 23c are parallel.
  • the angle between the side surfaces 23a, 23b and the bottom surface 23c is 90 degrees.
  • the ratio of the depth d1 of the recess 23 to the width w1 of the recess 23 is preferably within a range such that the upper end of the vertically grown film growing in the thickness direction Z from the bottom surface 23c is located below the upper surface of the crystal layer 12. , more preferably within the range located within the recess 23.
  • the ratio of the depth d1 to the width w1 is preferably 0.125 or more and less than 2.0, more preferably 0.57 or more and less than 2.0. In the embodiment, for example, the ratio of the depth d1 to the width w1 is greater than or equal to any value within the range of 0.57 or more and 0.69 or less, and is a value within the range of 0.57 or more and 0.69 or less. Even more preferably.
  • the depth d1 of the recess 23 is preferably 0.5 ⁇ m or more.
  • the depth d1 is, for example, 1.51 ⁇ m.
  • the depth d1 refers to the length from the upper end to the lower end of the recess 23 in the thickness direction Z. In this embodiment, the depth d1 is equal to the height of the convex portion 24.
  • the width w1 of the recess 23 may be determined as appropriate depending on the ratio to the depth d1.
  • the width w1 is, for example, 2.5 ⁇ m.
  • the width w1 refers to the length along the left-right direction X from the left end to the right end of the recessed portion 23.
  • the width w1 is equal to the distance in the left-right direction X between the convex portions 24 adjacent to each other. In this embodiment, the value obtained by dividing half the length of the width w1 by the depth d1 is smaller than 4.
  • the ratio of the width w1 of the recesses 23 to the distance w2 in the left-right direction X between mutually adjacent recesses 23 is preferably 1 or more, and more preferably 2 or more.
  • the ratio of the width w1 to the distance w2 is 10.
  • the distance w2 is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 24. The shorter the distance w2, the better.
  • the convex portion 24 refers to, for example, the upper end portion of the crystal layer 11 where the concave portion 23 is not formed.
  • the side surfaces of the convex portion 24 are common to the side surfaces 23a and 23b of the recessed portion 23. That is, the side surfaces 23a and 23b may be defined as the side surfaces of the convex portion 24.
  • the upper surface 21 includes the upper surface 25 of the convex portion 24 .
  • the crystal layer 11 When the crystal layer 11 is an epitaxially grown film grown by heteroepitaxial growth, it may include dislocations along the thickness direction Z.
  • the dislocations can be observed as dislocation lines 26 in a cross section of the crystal film 10 taken in the thickness direction Z, as shown in FIG.
  • the cross section of the crystal layer 11 includes a plurality of dislocation lines 26.
  • Each dislocation line 26 may be continuous, for example, from the lower surface 27 of the crystal layer 11 to the upper surface 25 of the convex portion 24 or the bottom surface 23c of the concave portion 23.
  • the dislocation line 26 is schematically shown as a straight line in FIG. 2, it is sufficient that it is generally along the thickness direction Z, and at least a portion thereof may be inclined, or at least a portion may be a curved line.
  • each dislocation line, each grain boundary, boundary between crystal layers, boundary between films, etc. can be observed by a known method such as a cross-sectional TEM (transmission electron microscope) image or a cross-sectional SEM (scanning electron microscope) image.
  • each dislocation line, each grain boundary, each crystal layer boundary, each film boundary, etc. may be observed as linear crystal defects.
  • the thickness of the crystal layer 11 may be 1 ⁇ m or less or 1 ⁇ m or more. In the embodiment of the present disclosure, the thickness of the crystal layer 11 is preferably 1 ⁇ m or more, and preferably 3 ⁇ m or more. The thickness of the crystal layer 11 is greater than the depth d1 of the recess 23, and in this embodiment is thicker than 1.51 ⁇ m. Note that the thickness of the crystal layer 11 refers to the length along the thickness direction Z from the lower surface 27 to the upper surface 25 of the crystal layer 11 in the embodiment of the present disclosure.
  • the crystal layer 12 is, for example, an n-type semiconductor layer. Crystal layer 12 is placed directly on crystal layer 11 . The crystal layer 12 is in contact with the uneven portions 22 of the crystal layer 11 . Crystal layer 12 has the same conductivity type as crystal layer 11.
  • the crystal layer 12 is, for example, an epitaxially grown film that is homoepitaxially grown on the crystal layer 11 .
  • the crystal layer 12 contains a crystalline oxide semiconductor as a main component. Note that the crystalline oxide semiconductor is an example of a crystalline oxide.
  • the crystalline oxide semiconductor included in the crystal layer 12 has a corundum structure.
  • the crystalline oxide semiconductor has the same structure as the crystalline oxide semiconductor included in the crystal layer 11.
  • the a-axis direction of the crystalline oxide semiconductor included in the crystal layer 12 is along the left-right direction X.
  • the c-axis direction of the crystalline oxide semiconductor is along the front-back direction Y.
  • the m-axis direction of the crystalline oxide semiconductor is along the thickness direction Z. That is, the plane orientation of the main surface of the crystal layer 12 is the m-plane in a region where the normal line is along the thickness direction Z.
  • the crystalline oxide semiconductor included in the crystal layer 12 includes gallium.
  • the crystalline oxide semiconductor is a metal oxide containing, in addition to gallium, one or more metals selected from, for example, aluminum, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, and iridium. There may be.
  • the crystalline oxide semiconductor is preferably the same metal oxide as the crystalline oxide semiconductor contained in the crystal layer 11.
  • it is preferable that the crystalline oxide semiconductor contained in the crystal layer 12 further contains at least one metal selected from aluminum and indium in addition to gallium. 2 O 3 or a mixed crystal thereof is most preferred. According to the present disclosure, a multilayer film with reduced dislocations can be obtained even when using ⁇ -Ga 2 O 3 or its mixed crystal, which is a thermally metastable phase, for example.
  • the "main component” means, for example, when the crystalline oxide semiconductor is Ga 2 O 3 , the atomic ratio of gallium among all the metal elements in the crystal layer 12 is 0.5 or more. This means that the layer 12 contains Ga 2 O 3 . In the present disclosure, the atomic ratio of gallium among all metal elements in the crystal layer 12 is preferably 0.7 or more, and more preferably 0.9 or more. Although the crystal layer 12 is single crystal in this embodiment, it may be polycrystalline.
  • the carrier density of the crystal layer 12 can be appropriately set by adjusting the doping amount. Although the carrier density of the crystal layer 12 may be different from the carrier density of the crystal layer 11, it is preferable that the carrier density is about the same.
  • the crystal layer 12 contains a dopant.
  • the dopant may be a known dopant.
  • the dopant may be different from the dopant contained in the crystal layer 11, but is preferably the same.
  • the crystal layer 12 is mainly composed of a crystalline oxide semiconductor containing gallium
  • preferable examples of the dopant include tin, germanium, silicon, titanium, zirconium, vanadium, or Examples include n-type dopants such as niobium.
  • the n-type dopant is preferably Sn, Ge, or Si.
  • the content of the dopant in the composition of the crystal layer 11 is preferably 0.00001 atomic% or more, more preferably 0.00001 atomic% to 20 atomic%, and 0.00001 atomic% to 10 atomic%. Most preferably. More specifically, the concentration of the dopant may typically be about 1 ⁇ 10 16 /cm 3 to 1 ⁇ 10 22 /cm 3 , and the concentration of the dopant may be, for example, about 1 ⁇ 10 17 /cm 3 . The concentration may be as low as 3 or less.
  • the lower surface 31 of the crystal layer 12 is joined to the upper surface 21 of the crystal layer 11.
  • the lower surface 31 and the upper surface 21 are also interfaces between the crystal layers 12 and 11.
  • the crystal layer 12 has, on the lower surface 31, an uneven portion 32 having a shape corresponding to the uneven portion 22 on the upper surface 21. That is, the uneven portions 32 are striped and arranged in the a-axis direction.
  • the uneven portion 32 is in contact with the uneven portion 22.
  • the uneven portion 32 has a concave portion 33 and a convex portion 34 .
  • the crystal layer 12 includes a region 43 directly above the convex portion 24 of the crystal layer 11 and a region 44 directly above the convex portion 34 .
  • the lower surface 31 refers to the lower surface of the main surface of the crystal layer 12.
  • the recess 33 is formed, for example, as a result of the formation of the protrusion 34.
  • the inner space of the recess 33 is filled with the protrusion 24 .
  • the crystal layer 12 located on the concave portion 33 is, for example, an epitaxial growth film grown on the upper surface 25 of the convex portion 24 .
  • the convex portion 34 is formed in the internal space of the concave portion 23.
  • the convex portion 34 is, for example, an epitaxially grown film grown from the growth surface of the concave portion 23 .
  • the convex portion 34 includes horizontally grown films 34a and 34b and a vertically grown film 34c.
  • the laterally grown film 34a is a film grown laterally (in the a-axis direction) from the side surface 23a of the recess 23.
  • the laterally grown film 34b is a film grown laterally (in the a-axis direction) from the side surface 23b of the recess 23.
  • the direction of growth of the laterally grown film 34a is opposite to the direction of growth of the laterally grown film 34b.
  • the vertically grown film 34c is a film grown in the thickness direction Z (vertical direction) from the bottom surface 23c, and the growth direction is upward.
  • the convex portion 34 includes a grain boundary 37 within the concave portion 23, which is an interface between the laterally grown film 34a and the laterally grown film 34b.
  • the grain boundaries 37 may appear as dislocations 38 in the crystal layer 12 above the recesses 23 .
  • a line indicating the grain boundary 37 and a line indicating the dislocation 38 are shown continuously.
  • the boundary between the grain boundary 37 and the dislocation 38 does not have to be clear, in this embodiment, for convenience, the position in the thickness direction Z is assumed to be the same as the upper surface 25 of the convex portion 24 .
  • the grain boundaries 37 and dislocations 38 do not need to be continuous, and the boundaries may be near the top surface of the crystal layer 12. Furthermore, there may be no dislocations 38, and the grain boundaries 37 may reach the upper surface of the crystal layer 12. Furthermore, the dislocations 38 may be continuous or intermittent in the front-rear direction Y. Note that although the grain boundaries 37 and dislocations 38 are schematically represented as straight lines in FIG. The portion may be a curved line. The grain boundary 37 is an example of a third crystal defect.
  • the grain boundary 37 may be located within the recess 23 in the left-right direction X.
  • the position of the grain boundary 37 in the left-right direction X depends on the growth rate of the laterally grown film 34a and the laterally grown film 34b. If the growth rate of the laterally grown film 34a is faster than the growth rate of the laterally grown film 34b, the grain boundary 37 is located closer to the side surface 23b than the center of the recess 23 in the left-right direction X. If the growth rate of the laterally grown film 34a is slower than the growth rate of the laterally grown film 34b, the grain boundary 37 is located closer to the side surface 23a than the center of the recess 23 in the left-right direction X. If the growth rate of the laterally grown film 34a is comparable to that of the laterally grown film 34b, the grain boundary 37 will be located near the center of the recess 23 in the left-right direction X.
  • the convex portion 34 includes a grain boundary 39 within the concave portion 23, which is an interface between the horizontally grown films 34a, 34b and the vertically grown film 34c.
  • the grain boundary 39 has an inclined portion inclined from the thickness direction Z.
  • the grain boundaries 39 include a grain boundary 39a that is an interface between the horizontally grown film 34a and the vertically grown film 34c, and a grain boundary 39b that is the interface between the horizontally grown film 34b and the vertically grown film 34c. has. Note that the grain boundaries 39, 39a, and 39b are each an example of a second crystal defect.
  • a plurality of grain boundaries 39 are arranged along the left-right direction X (lateral direction), for example, depending on the number of recesses 23.
  • the grain boundaries 39 have a triangular shape in the cross section shown in FIG.
  • the grain boundary 39 is connected to the lower end of the grain boundary 37.
  • the ratio of the dimension of the grain boundary 39 along the thickness direction Z to the dimension along the left-right direction X is within a range of 0.57 or more and 0.69 or less, for example.
  • the grain boundary 39 is an example of a convex portion in which the inner side is located higher than both outer sides in the lateral direction (horizontal direction X).
  • the grain boundary 37 is an example of a portion extending along the thickness direction Z above the inclined portion.
  • the ratio of the dimension of the grain boundaries 39 along the left-right direction X to the distance between mutually adjacent grain boundaries 39 among the grain boundaries 39 arranged in the left-right direction X is preferably 1 or more.
  • the larger the ratio the better.
  • the larger the ratio the more the number of dislocation lines 26 located between grain boundaries 39 can be reduced.
  • the distance between the grain boundaries 39 is equal to the distance w2 of the recess 23, but may be larger than the distance w2.
  • the grain boundaries 39a and 39b appear linearly in a cross section cut in the thickness direction Z.
  • the left end or lower end of the grain boundary 39a is located at the lower end of the side surface 23a or the left end of the bottom surface 23c.
  • the right end or the upper end of the grain boundary 39a is located directly above the center of the bottom surface 23c in the left-right direction X.
  • the right end or lower end of the grain boundary 39b is located at the lower end of the side surface 23b or the right end of the bottom surface 23c.
  • the left end or the upper end of the grain boundary 39b is located directly above the center of the bottom surface 23c in the left-right direction X.
  • the right end or upper end of the grain boundary 39a is connected to the left end or upper end of the grain boundary 39b.
  • the grain boundaries 39 are schematically shown as straight lines in FIG. 2, at least a portion thereof may be curved lines. Since the grain boundaries 39a and 39b have opposite inclinations in the left-right direction X, the grain boundaries 39 have a triangular shape.
  • the grain boundaries 39a are inclined with respect to the thickness direction Z and the left-right direction X so that the farther to the right from the side surface 23a, the higher the grain boundaries are located.
  • the grain boundaries 39b are inclined with respect to the thickness direction Z and the left-right direction X so that they are located higher as they leave the side surface 23b to the left.
  • the entire grain boundaries 39a, 39b are sloped portions, but a portion of the grain boundaries 39a, 39b may be sloped portions. That is, a portion of the grain boundaries 39a, 39b may extend along the thickness direction Z or the left-right direction X.
  • the inclined portion is inclined from the a-axis direction.
  • the grain boundary 39 includes a plurality of inclined parts. In this embodiment, the grain boundary 39 includes two inclined parts.
  • the grain boundaries 39a have an inclination angle ⁇ 3 from the thickness direction Z.
  • the inclination angle ⁇ 3 correlates, for example, with the ratio of the growth rate of the horizontally grown film 34a to the growth rate of the vertically grown film 34c. For example, when the growth rate of the horizontally grown film 34a is faster than the growth rate of the vertically grown film 34c, the inclination angle ⁇ 3 becomes greater than 45 degrees. When the growth rate of the horizontally grown film 34a is slower than the growth rate of the vertically grown film 34c, the inclination angle ⁇ 3 becomes smaller than 45 degrees. When the growth rate of the horizontally grown film 34a is the same as the growth rate of the vertically grown film 34c, the inclination angle ⁇ 3 is about 45 degrees. In this embodiment, the inclination angle ⁇ 3 is about 36 degrees to 42 degrees.
  • the grain boundaries 39b have an inclination angle ⁇ 4 from the thickness direction Z.
  • the inclination angle ⁇ 4 correlates, for example, with the ratio of the growth rate of the horizontally grown film 34b and the growth rate of the vertically grown film 34c. For example, when the growth rate of the horizontally grown film 34b is faster than the growth rate of the vertically grown film 34c, the inclination angle ⁇ 4 is greater than 45 degrees. When the growth rate of the horizontally grown film 34b is slower than the growth rate of the vertically grown film 34c, the inclination angle ⁇ 4 is smaller than 45 degrees. When the growth rate of the horizontally grown film 34b is the same as the growth rate of the vertically grown film 34c, the inclination angle ⁇ 4 is about 45 degrees. In this embodiment, the tilt angle ⁇ 4 is about 36 degrees to 42 degrees.
  • the vertically grown film 34c may include dislocations along the thickness direction Z.
  • the dislocations are, for example, inherited dislocations along the thickness direction Z of the crystal layer 11 (dislocation lines 26 in FIG. 2).
  • dislocations in the vertically grown film 34c can be observed as dislocation lines 41 in a cross section of the crystal film 10 taken in the thickness direction Z.
  • the cross section of the vertically grown film 34c includes dislocation lines 41.
  • a plurality of dislocation lines 41 are located within the recess 23 .
  • the vertically grown film 34c has a triangular shape in the cross section shown in FIG. Note that the dislocation line 41 is an example of a first crystal defect.
  • the lower end of the dislocation line 41 is located at the lower end of the convex portion 34.
  • the upper end of the dislocation line 41 is connected to the grain boundary 39, for example.
  • the upper end of the dislocation line 41 may not be connected to the grain boundary 39 and may be located below the grain boundary 39.
  • the region 43 directly above the convex portion 24 is, for example, an epitaxially grown film grown from the upper surface 25 of the convex portion 24.
  • the length of the region 43 along the left-right direction X from the left end to the right end is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 24 .
  • Region 43 is a vertically grown film.
  • the region 43 may include dislocations along the thickness direction Z.
  • the dislocations are, for example, inherited dislocations along the thickness direction Z of the crystal layer 11 (dislocation lines 26 in FIG. 2).
  • the dislocations in the region 43 can be observed as dislocation lines 42 in a cross section of the crystal film 10 taken in the thickness direction Z.
  • only one dislocation line 42 is shown in the cross section of the region 43 in FIG. 2, it may include a plurality of dislocation lines 42.
  • dislocation lines 41 and 42 may or may not be continuous with the dislocation line 26. Although the dislocation lines 41 and 42 are schematically shown as straight lines in FIG. 2, they only need to be approximately along the thickness direction Z, and may be at least partly inclined, or at least partly curved. There may be.
  • the region 44 directly above the convex portion 34 is, for example, an epitaxially grown film grown from the upper surface 21 of the crystal layer 11.
  • the length of the region 44 from the left end to the right end along the left-right direction X is equal to the width w1 of the recess 23.
  • the thickness of the crystal layer 12 may be 1 ⁇ m or less, or 1 ⁇ m or more. In the embodiment of the present disclosure, the thickness of the crystal layer 12 is preferably 1 ⁇ m or more, and preferably 3 ⁇ m or more. The thickness of the crystal layer 12 is preferably larger than the depth of the recess 33, that is, the depth d1 of the recess 23, and in this embodiment, it is thicker than 1.51 ⁇ m. Note that the thickness of the crystal layer 12 refers to the length along the thickness direction Z from the lower end of the convex portion 34 to the upper surface of the crystal layer 12 in the embodiment of the present disclosure.
  • the laterally grown film 34a and the laterally grown film 34b may be combined. Since the laterally grown film 34a and the laterally grown film 34b can meet within the recess 23, the possibility that the laterally grown film 34a and the laterally grown film 34b will not come together within the crystal layer 12 is suppressed. Furthermore, the volume of the vertically grown film 34c can be reduced. The vertically grown film 34c can be a homoepitaxially grown film.
  • the grain boundary 39a which is the interface between the horizontally grown film 34a and the vertically grown film 34c
  • the grain boundary 39b which is the interface between the horizontally grown film 34b and the vertically grown film 34c
  • the grain boundaries 39 may be formed to cover the entire vertically grown film 34c. Even if the dislocation lines 26 of the crystal layer 11 cause the dislocation lines 41 of the vertically grown film 34c, dislocation lines extending along the thickness direction Z are suppressed from being caused in the horizontally grown films 34a, 34b. be able to. Furthermore, it is possible to suppress the occurrence of dislocations extending along the thickness direction Z in the region 44 directly above the convex portion 34 .
  • the number of convex portions 24 of the crystal layer 11 can be made relatively small, and the region 43 of the crystal layer 12 can be reduced.
  • the width of the convex portion 24 can be narrowed.
  • the number of dislocation lines 42 that may occur in the crystal layer 12 can be reduced.
  • the upper ends of the dislocation lines 26 and 41 that vertically overlap the recesses 23 can be located below the upper surface 25 of the protrusion 24 that is the upper end of the crystal layer 11.
  • the crystal film 10 can be used in semiconductor devices and the like as a semiconductor layer that does not include a mask such as SiO2. Further, the device characteristics of a semiconductor device using the crystal film 10 can be improved.
  • FIG. 3 is a diagram illustrating an outline of a method for manufacturing the crystal film 10.
  • the method for manufacturing the crystal film 10 includes, for example, a step S1 of forming the crystal layer 11 on the substrate 13, a step S2 of forming the uneven portion 22 on the upper surface 21 of the crystal layer 11, and a step S2 of forming the uneven portion 22 on the upper surface 21 of the crystal layer 11.
  • the method includes a step S3 of forming the crystal layer 12 on the upper surface 21 of the layer 11, and a step S4 of removing the substrate 13.
  • the crystal layer 11 is laminated on the substrate 13 by, for example, a mist CVD method.
  • the crystal layer 11 may be laminated on the substrate 13 by a known method.
  • methods for forming the crystal layer 11 include, in addition to the mist CVD method, a CVD method, MOCVD method, MOVPE method, mist epitaxy method, MBE method, HVPE method, pulse growth method, or ALD method.
  • the method for forming the crystal layer 11 is a mist CVD method or a mist epitaxy method.
  • a raw material solution is atomized (atomization step), droplets are suspended, and after atomization, the resulting atomized droplets are transported onto the substrate using a carrier gas.
  • Transportation step Next, by thermally reacting the atomized droplets near the substrate, a semiconductor film having a corundum structure and containing a crystalline oxide semiconductor containing gallium as a main component is laminated on the substrate 13.
  • Finm forming process A crystal layer 11 is formed by this.
  • the substrate 13 is, for example, a plate-shaped sapphire substrate.
  • the substrate 13 may be any substrate as long as it can support the semiconductor film.
  • the substrate 13 may be an insulating substrate, a semiconductor substrate, a metal substrate, or a conductive substrate, it is preferable that the substrate 13 is an insulating substrate. It is also preferable that the substrate has a metal film on its surface.
  • the substrate 13 may be, for example, a base substrate containing a substrate material having a corundum structure as a main component, a base substrate containing a substrate material having a ⁇ -gallium structure as a main component, or a base substrate containing a substrate material having a hexagonal structure as a main component. Examples include a base substrate.
  • main component means that the substrate material having the specific crystal structure preferably accounts for 50% or more, more preferably 70% or more, and still more preferably 90% of the total components of the substrate material in terms of atomic ratio. % or more, and may be 100%.
  • the substrate material may be any known material.
  • the substrate material having the corundum structure for example, ⁇ -Al 2 O 3 (sapphire substrate) or ⁇ -Ga 2 O 3 is preferably mentioned, and a-plane sapphire substrate, m-plane sapphire substrate, r-plane sapphire substrate More preferable examples include a c-plane sapphire substrate, an ⁇ -type gallium oxide substrate (a-plane, m-plane, or r-plane).
  • a base substrate mainly composed of a substrate material having a ⁇ -Galia structure for example, a ⁇ -Ga 2 O 3 substrate, or a substrate containing Ga 2 O 3 and Al 2 O 3 and containing more than 0 wt% of Al 2 O 3 and Examples include a mixed crystal substrate having a content of 60 wt% or less.
  • examples of the base substrate mainly composed of a substrate material having a hexagonal crystal structure include a SiC substrate, a ZnO substrate, and a GaN substrate.
  • the substrate 13 has a diameter of 2 inches or more, or 4 inches or more.
  • the area of the substrate 13 is about 15.9 cm 2 or more or about 31.9 cm 2 or more.
  • the uneven portion 22 is formed, for example, on the upper surface 21 of the crystal layer 11 stacked on the substrate 13 by etching or the like.
  • etching for example, using a known photolithography technique, patterning is performed so as to have a striped uneven shape arranged in the a-axis direction, and then etching is performed. Examples of etching include dry etching and wet etching.
  • the uneven portion 22 may be formed by other known means, such as known patterning means such as electron beam lithography, laser patterning, and subsequent etching (for example, dry etching or wet etching). There may be.
  • Step S2 is an example of arranging striped depressions and depressions in the a-axis direction on the main surface of the first crystal layer that has a corundum structure and includes a crystalline oxide containing gallium.
  • the recess 23 is formed such that, for example, the ratio of the depth d1 to the width w1 is within the range of 0.57 or more and 0.69 or less.
  • the crystal layer 12 is laminated on the crystal layer 11 on which the uneven portions 22 are formed, for example, by a mist CVD method.
  • Crystal layer 12 can be stacked in the same way as crystal layer 11. Note that, like the crystal layer 11, the crystal layer 12 may be laminated on the crystal layer 11 by the known forming means.
  • the crystal layer 12 is formed of the same material and composition as the crystal layer 11, for example.
  • the crystal layer 12 has the same conductivity type as the crystal layer 11, for example, and is formed to be n-type.
  • step S3 a convex portion 34 is formed as the crystal layer 12 in the internal space of the concave portion 23 of the crystal layer 11.
  • uneven portions 32 are formed on the lower surface 31 of the crystal layer 12 in accordance with the shape of the uneven portions 22 of the crystal layer 11 .
  • the lateral growth film 34a of the convex portion 34 moves from the side surface 23a of the concave portion 23 to the right, and the lateral growth film 34b of the convex portion 34 moves from the side surface 23b of the concave portion 23 to the left,
  • the directional growth films 34c grow upward from the bottom surface 23c of the recess 23, respectively.
  • the upper end of the dislocation line 41 should be connected to the grain boundary 39 or located below the grain boundary 39. be able to.
  • the inclination angle ⁇ 3 of the grain boundary 39a correlates with the ratio of the growth rate of the horizontally grown film 34a to the growth rate of the vertically grown film 34c.
  • the inclination angle ⁇ 3 is larger than 45 degrees.
  • the inclination angle ⁇ 4 of the grain boundary 39b is larger than 45 degrees because the growth rate of the horizontally grown film 34b is faster than the growth rate of the vertically grown film 34c.
  • the grain boundaries 39 are convex portions in which the inner side is located higher than both the outer sides in the lateral direction (horizontal direction X). Since the grain boundaries 39a and 39b have opposite inclinations in the left-right direction X, the grain boundaries 39 have a triangular shape.
  • the lateral growth film 34a and the lateral growth film 34b grow along the left-right direction X at the same time.
  • the width of growth of the laterally grown film 34a along the left-right direction X correlates with the ratio of the growth rate of the laterally grown film 34a to the growth rate of the laterally grown film 34b.
  • the width of the growth of the laterally grown film 34a in the left-right direction The width is about the same as the growth width of the groove 34b in the left-right direction X, and about half the width w1 of the recess 23. At this time, the laterally grown film 34a and the laterally grown film 34b meet within the internal space of the recess 23.
  • step S4 the substrate 13 is removed, resulting in the crystal film 10 shown in FIG. 2.
  • the substrate 13 is removed by known means such as polishing.
  • the above-described crystal film 10 can be manufactured. Since a mask such as SiO2 is not used when forming the crystal layer 12, there is no need to remove the mask inside the crystal film. Since there is no partial loss of each crystal layer due to the removal of the mask, the yield is superior compared to the case where the mask is used.
  • laterally grown film 34a and the laterally grown film 34b which grow along the a-axis direction at a certain growth rate, can come together.
  • the width along the left-right direction X directly above the convex portion 24 can be narrowed, the width of the convex portion 24 along the left-right direction X can be shortened. Thereby, when the crystal layer 12 is formed, it is possible to reduce the number of dislocation lines 42 that appear due to the dislocation lines 26 in the convex portions 24.
  • the position in the thickness direction Z of the top end of the crystal layer 12 on the convex portion 24 and the bottom end of the top surface of the crystal layer 12 on the concave portion 23 are also determined. It is possible to suppress the difference from the position in the thickness direction Z from increasing.
  • the number of dislocation lines 41 in the vertically grown film 34c can be suppressed.
  • the a-axis direction of the crystalline oxide semiconductor included in the crystal layer 11 is along the left-right direction X, but in the second embodiment, the a-axis direction of the crystalline oxide semiconductor included in the crystal layer 11 is An example of a crystal film 110 whose c-axis direction is along the left-right direction X will be described. Note that the description of the crystal film 110 having the same structure as the crystal film 10 of the first embodiment may be omitted.
  • the a-axis direction of the crystalline oxide semiconductor included in the crystal layer 11 is along the front-back direction Y.
  • the m-axis direction of the crystalline oxide semiconductor is along the thickness direction Z.
  • the left-right direction X may be referred to as the c-axis direction
  • the front-rear direction Y may be referred to as the a-axis direction
  • the thickness direction Z may be referred to as the m-axis direction.
  • FIG. 7 is a schematic perspective view illustrating the crystal film 110 according to the second embodiment.
  • FIG. 8 is a schematic cross-sectional view illustrating the crystal film 110 according to the second embodiment, and is a cross-sectional view taken along the line XIII-XIII in FIG.
  • the crystal layer 11 has uneven portions 122 arranged in the c-axis direction, for example, on the upper surface 21, which is one of the main surfaces.
  • the uneven portion 122 has a stripe shape and extends along the a-axis direction.
  • the uneven portion 122 has a concave portion 123 and a convex portion 124.
  • the concave portion 123 and the convex portion 124 are adjacent to each other. Adjacent concave portions 123 and convex portions 124 are continuous at equal intervals along the c-axis direction.
  • the recess 123 has, for example, side surfaces 123a, 123b and a bottom surface 123c as growth surfaces on which the crystal layer 12 grows.
  • the side surfaces 123a and 123b are crystal growth surfaces for lateral growth
  • the bottom surface 123c is a crystal growth surface for vertical growth.
  • the side surfaces 123a and 123b are planes extending in the front-rear direction Y and the thickness direction Z.
  • the side surfaces 123a and 123b are, for example, c-planes.
  • the bottom surface 123c is a plane that extends in the front-rear direction Y and the left-right direction X.
  • the bottom surface 123c is, for example, an m-plane.
  • the bottom surface 123c is located between the side surfaces 123a and 123b.
  • the side surface 123a is located on the left side of the bottom surface 123c, and the side surface 123b is located on the right side of the bottom surface 123c.
  • the ratio of the depth d2 of the recess 123 to the width w3 of the recess 123 is preferably such that the upper end of the film grown in the thickness direction Z from the bottom surface 123c is located below the upper surface of the crystal layer 12. It is more preferable that the range is within the range.
  • the ratio of the depth d2 to the width w3 is preferably 0.12 or more and less than 2.0, more preferably 0.17 or more and less than 2.0. In this embodiment, for example, the ratio of the depth d2 to the width w3 is greater than or equal to any value within the range of 0.17 or more and 0.26 or less, and is a value within the range of 0.17 or more and 0.26 or less. Even more preferably.
  • the depth d2 of the recess 123 is preferably 0.5 ⁇ m or more.
  • the depth d2 is, for example, 1.53 ⁇ m.
  • the depth d2 refers to the length from the upper end to the lower end of the recess 123 in the thickness direction Z. In this embodiment, the depth d2 is equal to the height of the convex portion 124.
  • the width w3 of the recess 123 may be determined as appropriate depending on the ratio to the depth d2.
  • the width w3 is, for example, 4.5 ⁇ m.
  • the width w3 is equal to the distance in the left-right direction X between the convex portions 124 adjacent to each other. In this embodiment, the value obtained by dividing half the length of the width w3 by the depth d2 is smaller than 4.
  • the convex portion 124 refers to, for example, the upper end portion of the crystal layer 11 where the concave portion 123 is not formed.
  • the side surfaces of the convex portion 124 are common to the side surfaces 123a and 123b of the recessed portion 123. That is, the side surfaces 123a and 123b may be defined as the side surfaces of the convex portion 124.
  • the thickness of the crystal layer 11 is greater than or equal to the depth d2 of the recess 123.
  • the crystal layer 12 is in contact with the uneven portion 122 of the crystal layer 11.
  • the c-axis direction of the crystalline oxide semiconductor included in the crystal layer 12 is along the left-right direction X.
  • the a-axis direction of the crystalline oxide semiconductor is along the front-back direction Y.
  • the m-axis direction of the crystalline oxide semiconductor is along the thickness direction Z. That is, the plane orientation of the main surface of the crystal layer 12 is the m-plane in a region where the normal line is along the thickness direction Z.
  • the convex portion 134 of the crystal layer 12 formed in the internal space of the concave portion 123 of the crystal layer 11 is an epitaxially grown film grown from the growth surface of the concave portion 123.
  • the convex portion 134 includes horizontally grown films 134a and 134b and a vertically grown film 134c.
  • the laterally grown film 134a is a film grown laterally (c-axis direction) from the side surface 123a of the recess 123.
  • the laterally grown film 134b is a film grown laterally (c-axis direction) from the side surface 123b of the recess 123.
  • the direction of growth of the laterally grown film 134a is opposite to the direction of growth of the laterally grown film 134b.
  • the vertically grown film 134c is a film grown in the thickness direction Z (vertical direction) from the bottom surface 123c, and the growth direction is upward.
  • the vertically grown film 134c has a triangular shape in the cross
  • the inclined portion is inclined from the c-axis direction.
  • the inclination angle ⁇ 3 of the grain boundary 39a and the inclination angle ⁇ 4 of the grain boundary 39b are approximately 63 degrees to 71 degrees.
  • the ratio of the dimension of the grain boundary 39 along the thickness direction Z to the dimension along the left-right direction X (lateral direction) is within the range of 0.17 or more and 0.26 or less.
  • FIG. 31 shows an example of the crystal film 110 according to the second embodiment, in which ⁇ -Ga 2 O 3 is used as the first crystal layer (crystal layer 11) and the second crystal layer (crystal layer 12).
  • This is a TEM (transmission electron microscope) image of a portion of a longitudinal section.
  • FIG. 32 is a partially enlarged view of FIG. 31. Note that, like the cross section in FIG. 7, FIG. 31 shows a cross section extending along the left-right direction X and the thickness direction Z.
  • the side surfaces 123a and 123b of the recess 123 in FIG. 31 are c-planes, and the bottom surface 123c is m-plane.
  • the depth d2 of the recess 123 is approximately 1.53 ⁇ m
  • the width w3 is approximately 4.55 ⁇ m
  • the distance w2 is approximately 0.25 ⁇ m.
  • the ratio of the depth d2 to the width w3 is about 0.34
  • the ratio of the width w3 to the distance w2 is about 18.
  • the inclination angle ⁇ 3 is approximately 71 degrees and the inclination angle ⁇ 4 is approximately 70 degrees.
  • FIG. 31 shows an example in which a structure in which the unevenness is arranged in the c-axis direction is actually manufactured, a structure in which the unevenness is arranged in the a-axis direction (first embodiment) is also shown in FIG. 31.
  • An excellent crystalline film can be obtained in the same manner as in the case of this method. In this way, by establishing a specific relationship between the first crystal defect and the second crystal defect, a crystal film with reduced dislocations can be obtained.
  • the crystal film 110 can be manufactured through the same steps S1 to S4 as the crystal film 10.
  • description of the same points as in the method for manufacturing the crystal film 10 of the first embodiment may be omitted.
  • step S2 the uneven portion 122 is formed, for example, on the upper surface 21 of the crystal layer 11 stacked on the substrate 13 by etching or the like.
  • Step S2 is an example of arranging stripe-like unevenness in the c-axis direction on the main surface of the first crystal layer containing a crystalline oxide containing gallium and having a corundum structure.
  • the recess 123 is formed such that, for example, the ratio of the depth d2 to the width w3 is within a range of 0.17 or more and 0.26 or less.
  • step S3 the crystal layer 12 is laminated on the crystal layer 11 on which the uneven portions 122 are formed.
  • Crystal layer 12 can be stacked in the same way as crystal layer 11.
  • step S3 a convex portion 134 is formed as the crystal layer 12 in the internal space of the concave portion 123 of the crystal layer 11.
  • uneven portions 132 are formed on the lower surface 31 of the crystal layer 12 in accordance with the shape of the uneven portions 122 of the crystal layer 11 .
  • the lateral growth film 134a of the convex portion 134 moves from the side surface 123a of the concave portion 123 to the right, and the lateral growth film 134b of the convex portion 134 moves from the side surface 123b of the concave portion 123 to the left,
  • the directional growth films 134c grow upward from the bottom surface 123c of the recess 123, respectively.
  • the upper ends of the dislocation lines 41 either appear connected to the grain boundaries 39 or are located below the grain boundaries 39. It will appear as if it were located at .
  • the length of the vertically grown film 134c along the thickness direction Z increases as it moves away from the side surfaces 123a and 123b, that is, the thickness increases, so that inclined portions are formed at the grain boundaries 39a and 39b, respectively.
  • dislocation lines 41 may be formed due to the dislocation lines 26 of the crystal layer 11.
  • the above-described crystal film 110 can be manufactured. Since the width along the left-right direction X directly above the convex portion 124 can be narrowed, the width of the convex portion 124 along the left-right direction X can be shortened. Thereby, when the crystal layer 12 is formed, the number of dislocation lines 42 caused by the dislocation lines 26 in the convex portions 124 can be reduced. Further, the laterally grown film 34a and the laterally grown film 34b, which grow along the c-axis direction at a certain growth rate, can join together.
  • the crystal layer 212 is an example of a second crystal layer, and the crystal layer 213 is an example of a third crystal layer.
  • the composition of the crystal layer 211 may be the same as the composition of the crystal layer 11, and the composition of the crystal layer 212 may be the same as the composition of the crystal layer 12.
  • FIG. 9 is a schematic perspective view illustrating a crystal film 210 according to the third embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating a crystal film 210 according to the third embodiment.
  • the crystal film 210 according to the third embodiment is used, for example, as a semiconductor film of a semiconductor device or the like.
  • the crystal film 210 includes a crystal layer 211, a crystal layer 212 located on the crystal layer 211, and a crystal layer 213 located on the crystal layer 212.
  • the crystal film 210 shown in FIG. 9 may be, for example, a part of a disk-shaped crystal film.
  • the crystal layer 211 is, for example, an n-type semiconductor layer.
  • the crystal layer 211 is, for example, an epitaxial growth film that is heteroepitaxially grown on a sapphire substrate.
  • the crystal layer 211 contains a crystalline oxide semiconductor as a main component. Note that the crystalline oxide semiconductor is an example of a crystalline oxide.
  • the crystal layer 211 may be a film grown on a sapphire substrate via another layer such as a buffer layer.
  • the crystalline oxide semiconductor included in the crystal layer 211 has a corundum structure.
  • the plane orientation of the crystalline oxide semiconductor is arbitrary.
  • the crystalline oxide semiconductor included in the crystal layer 211 includes gallium.
  • the crystalline oxide semiconductor may be a metal oxide similar to the crystalline oxide semiconductor of the crystal layer 11.
  • the "main component” means, for example, when the crystalline oxide semiconductor is Ga 2 O 3 , the atomic ratio of gallium among all the metal elements in the crystal layer 211 is 0.5 or more. This means that the layer 211 contains Ga 2 O 3 . In the present disclosure, the atomic ratio of gallium among all metal elements in the crystal layer 211 is preferably 0.7 or more, and more preferably 0.9 or more. Although the crystal layer 211 is single crystal in this embodiment, it may be polycrystalline.
  • the crystal layer 211 has stripe-shaped uneven portions 222 on the upper surface 221 (see FIG. 10).
  • the uneven portion 222 extends, for example, along the front-rear direction Y.
  • the uneven portion 222 has a recessed portion 223 and a convex portion 224.
  • the concave portion 223 and the convex portion 224 are adjacent to each other.
  • Adjacent recesses 223 and protrusions 224 are continuous along the left-right direction X at equal intervals.
  • the upper surface 221 refers to the upper surface of the main surface of the crystal layer 211.
  • the recess 223 is formed, for example, on the upper surface 221 by etching or the like.
  • the recess 223 has a plurality of growth surfaces on which the crystal layer 212 grows.
  • the recess 223 has, for example, side surfaces 223a, 223b and a bottom surface 223c as the growth surfaces.
  • the side surfaces 223a and 223b are crystal growth surfaces for lateral growth
  • the bottom surface 223c is a crystal growth surface for vertical growth.
  • the side surfaces 223a and 223b are planes extending in the front-rear direction Y and the thickness direction Z.
  • the bottom surface 223c is a plane that extends in the front-rear direction Y and the left-right direction X.
  • the bottom surface 223c is located between the side surface 223a and the side surface 223b.
  • the side surface 223a is located on the left side of the bottom surface 223c, and the side surface 223b is located on the right side of the bottom surface 223c. Note that the side surfaces 223a, 223b and the bottom surface 223c are part of the top surface 221.
  • the side surface 223a may have an angle ⁇ 5 of 60 degrees or more with the upper surface 225 of the convex portion 224.
  • the angle ⁇ 5 between the side surface 223a and the top surface 225 is, for example, 90 degrees.
  • the side surface 223b only needs to have an angle ⁇ 6 of 60 degrees or more with the top surface 225.
  • the angle ⁇ 6 between the side surface 223b and the top surface 225 is, for example, 90 degrees.
  • the top surface 221 and the bottom surface 223c are parallel.
  • the angle between the side surfaces 223a, 223b and the bottom surface 223c is 90 degrees.
  • the ratio of the depth d3 of the recess 223 to the width w5 of the recess 223 is preferably such that the upper end of the film grown in the thickness direction Z from the bottom surface 223c is located below the upper surface of the crystal layer 212. It is more preferable that the range is within the range. It is more preferable that the ratio of the depth d3 to the width w5 is within a range of 0.125 or more and less than 2.0.
  • the depth d3 of the recess 223 refers to the length from the upper end to the lower end of the recess 223 in the thickness direction Z. In this embodiment, the depth d3 is equal to the height of the convex portion 224.
  • the width w5 of the recess 223 refers to the length along the left-right direction X from the left end to the right end of the recess 223. The width w5 is equal to the distance in the left-right direction X between the convex portions 224 adjacent to each other. In this embodiment, the value obtained by dividing half the length of the width w5 by the depth d3 is smaller than 4.
  • the ratio of the width w5 of the recess 223 to the distance w6 between the adjacent recesses 223 is 1 or more. It is more preferable that the width w5 has a ratio of 1 to the distance w6. In this embodiment, the distance w6 is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 224.
  • the convex portion 224 refers to, for example, the upper end portion of the crystal layer 211 where the concave portion 223 is not formed.
  • the side surfaces of the convex portion 224 are common to the side surfaces 223a and 223b of the recessed portion 223. That is, the side surfaces 223a and 223b may be defined as the side surfaces of the convex portion 224.
  • the upper surface 21 includes an upper surface 225 of the convex portion 224.
  • the crystal layer 211 When the crystal layer 211 is an epitaxially grown film grown by heteroepitaxial growth, it may include dislocations along the thickness direction Z.
  • the dislocations can be observed as dislocation lines 26 in a cross section of the crystal film 210 taken in the thickness direction Z, as shown in FIG.
  • the cross section of the crystal layer 211 includes a plurality of dislocation lines 26.
  • Each dislocation line 26 may be continuous, for example, from the lower surface 227 of the crystal layer 211 to the upper surface 225 of the convex portion 224 or the bottom surface 223c of the recessed portion 223.
  • the crystal layer 212 is, for example, an n-type semiconductor layer. Crystal layer 212 is placed directly on crystal layer 211. The crystal layer 212 is in contact with the uneven portion 222 of the crystal layer 211 . Crystal layer 212 has the same conductivity type as crystal layer 211. The crystal layer 212 is, for example, an epitaxially grown film that is homoepitaxially grown on the crystal layer 211. The crystal layer 212 contains a crystalline oxide semiconductor as a main component. Note that the crystalline oxide semiconductor is an example of a crystalline oxide.
  • the crystalline oxide semiconductor included in the crystal layer 212 has a corundum structure. In this embodiment, the plane orientation of the crystalline oxide semiconductor is arbitrary.
  • the crystalline oxide semiconductor included in the crystal layer 212 includes gallium.
  • the crystalline oxide semiconductor may be a metal oxide similar to the crystalline oxide semiconductor of the crystal layer 12.
  • the "main component” means, for example, when the crystalline oxide semiconductor is Ga 2 O 3 , the atomic ratio of gallium among all the metal elements in the crystal layer 212 is 0.5 or more. This means that the layer 212 contains Ga 2 O 3 . In the present disclosure, the atomic ratio of gallium among all metal elements in the crystal layer 212 is preferably 0.7 or more, and more preferably 0.9 or more. Although the crystal layer 212 is single crystal in this embodiment, it may be polycrystalline.
  • the lower surface 231 of the crystal layer 212 is joined to the upper surface 221 of the crystal layer 211.
  • the lower surface 231 and the upper surface 221 are also the interface between the crystal layer 212 and the crystal layer 211.
  • the crystal layer 212 has, on the lower surface 231, an uneven portion 232 having a shape corresponding to the uneven portion 222 on the upper surface 221. That is, the uneven portion 232 has a stripe shape.
  • the uneven portion 232 is in contact with the uneven portion 222.
  • the uneven portion 232 has a concave portion 233 and a convex portion 234.
  • the crystal layer 212 includes a region 243 directly above the convex portion 224 of the crystal layer 211 and a region 244 directly above the convex portion 234 .
  • the lower surface 231 refers to the lower surface of the main surface of the crystal layer 212.
  • the recess 233 is formed, for example, as a result of the formation of the protrusion 234.
  • the inner space of the recess 233 is filled with the protrusion 224 .
  • the crystal layer 212 located on the concave portion 233 is, for example, an epitaxial growth film grown on the upper surface 225 of the convex portion 224.
  • the convex portion 234 is formed in the internal space of the concave portion 223.
  • the convex portion 234 is, for example, an epitaxially grown film grown from the growth surface of the concave portion 223.
  • the convex portion 234 includes horizontally grown films 234a and 234b and a vertically grown film 234c.
  • the laterally grown film 234a is a film grown laterally (left-right direction X) from the side surface 223a of the recess 223.
  • the laterally grown film 234b is a film grown laterally (left-right direction X) from the side surface 223b of the recess 223.
  • the direction of growth of the laterally grown film 234a is opposite to the direction of growth of the laterally grown film 234b.
  • the vertically grown film 234c is a film grown in the vertical direction (thickness direction Z) from the bottom surface 223c, and the growth direction is upward.
  • the vertically grown film 234c has a triangular
  • the convex portion 234 includes a grain boundary 37 within the concave portion 223, which is an interface between the laterally grown film 234a and the laterally grown film 234b.
  • the grain boundaries 37 may appear as dislocations 38 in the crystal layer 212 above the recesses 223.
  • a line indicating the grain boundary 37 and a line indicating the dislocation 38 are shown continuous with the line indicating the grain boundary 37.
  • the grain boundary 37 is located within the recess 223 in the left-right direction X.
  • the position of the grain boundary 37 in the left-right direction X depends on the growth rate of the laterally grown film 234a and the laterally grown film 234b.
  • the convex portion 234 includes a grain boundary 39 in the concave portion 223, which is an interface between the horizontally grown films 234a, 234b and the vertically grown film 234c.
  • the grain boundaries 39 include a grain boundary 39a that is an interface between the horizontally grown film 234a and the vertically grown film 234c, and a grain boundary 39b that is the interface between the horizontally grown film 234b and the vertically grown film 234c. has. As shown in FIG. 10, the grain boundaries 39a and 39b appear linear in a cross section cut in the thickness direction Z.
  • a plurality of grain boundaries 39 are arranged along the left-right direction X (horizontal direction), for example, depending on the number of recesses 223.
  • the grain boundaries 39 have a triangular shape in the cross section shown in FIG.
  • the ratio of the dimension of the grain boundary 39 along the left-right direction X to the distance between adjacent grain boundaries 39 among the grain boundaries 39 arranged in the left-right direction X is 1 or more is preferred. It is more preferable that the size of the grain boundaries 39 along the left-right direction X has a ratio of 1 to the distance between adjacent grain boundaries 39 among the grain boundaries 39 arranged in the left-right direction X.
  • the distance between the grain boundaries 39 is equal to the distance w6 of the recess 223, but may be larger than the distance w6.
  • the vertically grown film 234c may include dislocations along the thickness direction Z.
  • the dislocations are, for example, inherited dislocations along the thickness direction Z of the crystal layer 211 (dislocation lines 26 in FIG. 10).
  • dislocations in the vertically grown film 234c can be observed as dislocation lines 41 in a cross section of the crystal film 210 taken in the thickness direction Z.
  • the cross section of the vertically grown film 234c includes a plurality of dislocation lines 41. In this embodiment, the dislocation line 41 is located within the recess 223.
  • the region 244 directly above the convex portion 234 is, for example, an epitaxially grown film grown from the upper surface 221 of the crystal layer 211.
  • the length of the region 244 from the left end to the right end along the left-right direction X is equal to the width w3 of the recess 223.
  • the crystal layer 212 has stripe-shaped uneven portions 252 on the upper surface 251.
  • the uneven portion 252 may extend in a direction different from that of the uneven portion 222, it extends, for example, along the front-rear direction Y, and preferably extends along the same direction as the uneven portion 222.
  • the uneven portion 252 has a recessed portion 253 and a convex portion 254.
  • the concave portion 253 and the convex portion 254 are adjacent to each other.
  • the adjacent concave portions 253 and convex portions 254 are continuous along the left-right direction X at equal intervals.
  • the upper surface 251 refers to the upper surface of the main surface of the crystal layer 212.
  • the recess 253 is formed, for example, on the upper surface 251 by etching or the like.
  • the recess 253 is located, for example, directly above the protrusion 224 of the crystal layer 211.
  • the recess 253 only needs to vertically overlap at least a portion of the protrusion 224 , and it is preferable that the recess 253 be located so as to cover the entire protrusion 224 . It is preferable that the positions of the concave portion 253 and the convex portion 224 in the left-right direction X are the same.
  • the recess 253 has a plurality of growth surfaces on which the crystal layer 213 grows.
  • the recess 253 has, for example, side surfaces 253a, 253b and a bottom surface 253c as the growth surfaces.
  • the side surfaces 253a and 253b are crystal growth surfaces for lateral growth
  • the bottom surface 253c is a crystal growth surface for vertical growth.
  • the side surfaces 253a and 253b are planes that extend in the front-rear direction Y and the thickness direction Z and are parallel to the side surfaces 223a and 223b of the crystal layer 211.
  • the bottom surface 253c is a plane that extends in the front-rear direction Y and the left-right direction X.
  • the bottom surface 253c is located between the side surfaces 253a and 253b.
  • the bottom surface 253c is located directly above the top surface 225 of the convex portion 224 of the crystal layer 211. Note that the side surfaces 253a, 253b and the bottom surface 253c are part of the top surface 251.
  • the angle ⁇ 9 of the side surface 253a with the upper surface 255 of the convex portion 254 may be 60° C. or more.
  • the angle ⁇ 9 between the side surface 253a and the top surface 255 is, for example, 90 degrees.
  • the side surface 253b only needs to have an angle ⁇ 10 of 60 degrees or more with the top surface 255.
  • the angle ⁇ 10 between the side surface 253b and the top surface 255 is, for example, 90 degrees.
  • the top surface 255 and the bottom surface 253c are parallel.
  • the angle between the side surfaces 253a, 253b and the bottom surface 253c is 90 degrees.
  • the ratio of the depth d4 of the recess 253 to the width w7 of the recess 253 is preferably such that the upper end of the film grown in the thickness direction Z from the bottom surface 253c is located below the upper surface of the crystal layer 213. It is more preferable that the range is within the range. It is more preferable that the ratio of the depth d4 to the width w7 is within a range of 0.125 or more and less than 2.0.
  • the ratio between the depth d4 and the width w7 is, for example, the same as the ratio between the depth d3 and the width w5 of the recess 223, but may be different or may be a reciprocal.
  • the width w7 is preferably the same as or larger than the width of the convex portion 224.
  • the depth d4 of the recess 253 refers to the length from the upper end to the lower end of the recess 253 in the thickness direction Z. In this embodiment, the depth d4 is equal to the height of the convex portion 254.
  • the width w7 of the recess 253 refers to the length along the left-right direction X from the left end to the right end of the recess 253. The width w7 is equal to the distance in the left-right direction X between the convex portions 254 adjacent to each other. In this embodiment, the value obtained by dividing half the length of the width w7 by the depth d4 is smaller than 4.
  • the ratio of the width w7 of the recess 253 to the distance w8 between the adjacent recesses 223 is 1 or more. It is more preferable that the width w7 has a ratio of 1 to the distance w8. The ratio is, for example, the same as the ratio between the width w5 of the recess 223 and the distance w6. The distance w8 is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 254.
  • the convex portion 254 refers to, for example, the upper end portion of the crystal layer 212 where the concave portion 253 is not formed.
  • the side surfaces of the convex portion 254 are common to the side surfaces 253a and 253b of the concave portion 253. That is, the side surfaces 253a and 253b may be defined as the side surfaces of the convex portion 254.
  • Convex portion 254 may include dislocations 38 .
  • the upper surface 251 includes an upper surface 255 of the convex portion 254.
  • the region 243 directly above the convex portion 224 is, for example, an epitaxial growth film grown from the upper surface 225 of the convex portion 224.
  • the length of the region 243 along the left-right direction X from the left end to the right end is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 224 .
  • Region 243 is a vertically grown film.
  • Region 243 may include dislocations along the thickness direction Z. The dislocations can be observed as dislocation lines 42, as shown in FIG. The number of dislocation lines 42 may increase as the width of the convex portion 224 increases.
  • the crystal layer 213 is, for example, an n-type semiconductor layer. Crystal layer 213 is placed directly on crystal layer 212. The crystal layer 213 is in contact with the uneven portion 252 of the crystal layer 212. Crystal layer 213 has the same conductivity type as crystal layers 211 and 212. The crystal layer 213 is, for example, an epitaxially grown film that is homoepitaxially grown on the crystal layer 212. The crystal layer 213 contains a crystalline oxide semiconductor as a main component.
  • the crystalline oxide semiconductor included in the crystal layer 213 has a corundum structure.
  • the crystalline oxide semiconductor has the same structure as the crystalline oxide semiconductor included in the crystal layers 211 and 212.
  • the plane orientation of the crystalline oxide semiconductor included in the crystal layer 213 is arbitrary.
  • the composition of the crystalline oxide semiconductor included in the crystal layer 213 may be the same as that of the crystal layers 211 and 212.
  • the lower surface 261 of the crystal layer 213 is joined to the upper surface 251 of the crystal layer 212.
  • the lower surface 261 and the upper surface 251 are also the interface between the crystal layer 213 and the crystal layer 212.
  • the crystal layer 213 has an uneven portion 262 on the lower surface 261, which has a shape corresponding to the uneven portion 252 on the upper surface 251. That is, the uneven portion 262 has a stripe shape.
  • the uneven portions 262 may be arranged in a different direction from the uneven portions 222 of the crystal layer 211, but preferably they are arranged in the same direction.
  • the uneven portion 262 is positioned offset from the uneven portion 222 by a half pitch in the left-right direction X.
  • the uneven portion 262 is in contact with the uneven portion 252.
  • the uneven portion 262 has a recessed portion 263 and a convex portion 264.
  • the crystal layer 213 includes a region 273 directly above the convex portion 254 of the crystal layer 212 and a region 274 directly above the convex portion 264 .
  • the lower surface 261 refers to the lower surface of the main surface of the crystal layer 213.
  • the recess 263 is formed, for example, as a result of the formation of the protrusion 264.
  • the inner space of the recess 263 is filled with the protrusion 254 .
  • the crystal layer 213 located on the concave portion 263 is, for example, an epitaxial growth film grown on the upper surface 255 of the convex portion 254.
  • the recess 263 is placed in a position that vertically overlaps the recess 223 of the crystal layer 211 .
  • the convex portion 264 is formed in the internal space of the concave portion 253.
  • the convex portion 264 is located at a position in the left-right direction X that vertically overlaps at least a portion of the convex portion 224 of the crystal layer 211 .
  • the position of the convex portion 264 is such that it vertically overlaps all of the convex portions 224.
  • the width of the protrusion 264 is preferably the same as or greater than the width of the protrusion 224.
  • the convex portion 264 is, for example, an epitaxially grown film grown from the growth surface of the concave portion 253.
  • the convex portion 264 includes horizontally grown films 264a and 264b and a vertically grown film 264c.
  • the laterally grown films 264a and 264b are located vertically overlapping the convex portion 224 of the crystal layer 211.
  • the laterally grown film 264a is a film grown laterally (left-right direction X) from the side surface 253a of the recess 253.
  • the laterally grown film 264b is a film grown laterally (left-right direction X) from the side surface 253b of the recess 253.
  • the growth direction of the laterally grown film 264a is opposite to the growth direction of the laterally grown film 264b.
  • the vertically grown film 264c is a film grown in the vertical direction (thickness direction Z) from the bottom surface 253c, and the growth direction is upward.
  • the convex portion 264 includes a grain boundary 237 within the concave portion 253, which is an interface between the laterally grown film 264a and the laterally grown film 264b.
  • the grain boundaries 237 may appear as dislocations 238 in the crystal layer 213 above the recesses 253.
  • a line indicating the grain boundary 237 and a line indicating the dislocation 238 are shown continuous with the line indicating the grain boundary 237.
  • the boundary between the grain boundary 237 and the dislocation 238 does not have to be clear, in the present disclosure, for convenience, it is assumed to be at the same position in the thickness direction Z as the upper surface 255 of the convex portion 254. Note that the grain boundaries 237 and dislocations 238 do not need to be continuous.
  • dislocation 238 may be continuous or intermittent in the front-rear direction Y.
  • the grain boundaries 237 and dislocations 238 are schematically represented as straight lines in FIG. The portion may be a curved line.
  • the grain boundary 237 is an example of a third crystal defect.
  • the grain boundary 237 may be located within the recess 253 in the left-right direction X.
  • the position of the grain boundary 237 in the left-right direction X depends on the growth rate of the laterally grown film 264a and the laterally grown film 264b.
  • the position of the grain boundary 237 has the same relationship with the film growth rate as the position of the grain boundary 37 in the left-right direction X.
  • the convex portion 264 includes a grain boundary 269 in the concave portion 253, which is an interface between the horizontally grown films 264a, 264b and the vertically grown film 264c.
  • the grain boundaries 269 are located vertically overlapping the convex portions 224 of the crystal layer 211.
  • the grain boundaries 269 include a grain boundary 269a that is an interface between the horizontally grown film 264a and the vertically grown film 264c, and a grain boundary 269b that is the interface between the horizontally grown film 264b and the vertically grown film 264c. has. Note that the grain boundaries 269 and 269b are each an example of a second crystal defect.
  • a plurality of grain boundaries 269 are arranged along the left-right direction X (horizontal direction), for example, depending on the number of recesses 253.
  • the grain boundaries 269 have a triangular shape in the cross section shown in FIG. Note that the grain boundary 269 is an example of a convex portion in which the inner side is located higher than both the outer sides in the lateral direction (left-right direction X).
  • the ratio of the dimension of the grain boundary 269 along the left-right direction X to the distance between mutually adjacent grain boundaries 269 among the grain boundaries 269 arranged in the left-right direction is preferred. It is more preferable that the size of the grain boundaries 269 along the left-right direction X has a ratio of 1 to the distance between adjacent grain boundaries 269 among the grain boundaries 269 arranged in the left-right direction X. Further, the distance between the grain boundaries 269 is equal to the distance w8 of the recess 253, but may be larger than the distance w8.
  • the grain boundary 269 is located above the grain boundary 39. That is, the plurality of grain boundaries 39 lined up in the left-right direction X and the plurality of grain boundaries 269 lined up in the left-right direction X are located in two levels, upper and lower. The grain boundaries 269 and the grain boundaries 39 are alternately located in the left-right direction X. It is preferable that the grain boundaries 269 and the grain boundaries 39 overlap in the left-right direction X when viewed from above, or are continuous without gaps.
  • the grain boundaries 269a and 269b appear linearly in a cross section taken in the thickness direction Z.
  • the left end or lower end of the grain boundary 269a is located at the lower end of the side surface 253a or the left end of the bottom surface 253c.
  • the right end or the upper end of the grain boundary 269a is located directly above the center of the bottom surface 253c in the left-right direction X.
  • the right end or lower end of the grain boundary 269b is located at the lower end of the side surface 253b or the right end of the bottom surface 253c.
  • the left end or the upper end of the grain boundary 269b is located directly above the center of the bottom surface 253c in the left-right direction X.
  • the right end or upper end of the grain boundary 269a is connected to the left end or upper end of the grain boundary 269b.
  • the grain boundaries 269 are schematically represented as straight lines in FIG. 10, at least a portion thereof may be curved lines. Since the grain boundary 269a and the grain boundary 269b have opposite inclinations in the left-right direction X, the grain boundary 269 has a triangular shape.
  • the grain boundaries 269a are inclined with respect to the thickness direction Z and the left-right direction X so that the farther to the right from the side surface 253a, the higher the grain boundaries are located.
  • the grain boundaries 269b are inclined with respect to the thickness direction Z and the left-right direction X so that the farther left from the side surface 253b, the higher the grain boundaries are located.
  • the entire grain boundaries 269a and 269b may be sloped portions, or a portion thereof may be sloped portions. Note that the grain boundary 269 includes a plurality of inclined parts. In this embodiment, grain boundary 269 includes two slopes.
  • the grain boundary 269a has an inclination angle ⁇ 7 from the thickness direction Z.
  • the inclination angle ⁇ 7 correlates with, for example, the ratio of the growth rate of the horizontally grown film 264a to the growth rate of the vertically grown film 264c.
  • the inclination angle ⁇ 7 may be the same as the inclination angle ⁇ 3 of the grain boundary 39a.
  • the grain boundary 269b has an inclination angle ⁇ 8 from the thickness direction Z.
  • the inclination angle ⁇ 8 correlates with, for example, the ratio of the growth rate of the horizontally grown film 264b to the growth rate of the vertically grown film 264c.
  • the inclination angle ⁇ 8 may be the same as the inclination angle ⁇ 4 of the grain boundary 39b.
  • the vertically grown film 264c may include dislocations along the thickness direction Z.
  • the dislocations are, for example, inherited dislocations along the thickness direction Z of the crystal layer 212 (dislocation lines 42 in FIG. 10).
  • dislocations in the vertically grown film 264c can be observed as dislocation lines 271 in a cross section of the crystal film 210 taken in the thickness direction Z.
  • the cross section of the vertically grown film 264c includes a plurality of dislocation lines 271.
  • the dislocation line 271 is located within the recess 253.
  • the lower end of the dislocation line 271 is located at the lower end of the convex portion 264 .
  • the upper end of the dislocation line 271 is connected to, for example, a grain boundary 269.
  • the upper end of the dislocation line 271 may not be connected to the grain boundary 269 and may be located below the grain boundary 269.
  • the vertically grown film 34c has a triangular shape in the cross section shown in FIG.
  • the region 274 directly above the convex portion 264 is, for example, an epitaxially grown film grown from the upper surface 251 of the crystal layer 212.
  • the length of the region 274 from the left end to the right end along the left-right direction X is equal to the width w7 of the recess 253.
  • the thickness of the crystal layer 213 may be 1 ⁇ m or less, or 1 ⁇ m or more. In the embodiment of the present disclosure, the thickness of the crystal layer 213 is preferably 1 ⁇ m or more, and preferably 3 ⁇ m or more. The thickness of the crystal layer 213 is greater than or equal to the depth d4 of the recess 253. Note that the thickness of the crystal layer 213 refers to the length along the thickness direction Z from the lower end of the convex portion 264 to the upper surface 265 of the crystal layer 213 in the embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating an overview of a method for manufacturing the crystal film 210.
  • the method for manufacturing the crystal film 210 includes, for example, a step S11 of forming a crystal layer 211 on a substrate 13, a step S12 of forming an uneven portion 222 on an upper surface 221 of the crystal layer 211, and a step S12 of forming a crystal layer 211 on a substrate 13.
  • Step S13 of forming the crystal layer 212 on the upper surface 221 of the layer 211 Step S14 of forming the uneven portion 252 on the upper surface 251 of the crystal layer 212, and Step S15 of forming the crystal layer 213 on the upper surface 251 of the crystal layer 212.
  • steps S11 to S13 are the same as steps S1 to S3, and step S16 is the same as step S4, so a description thereof will be omitted.
  • the uneven portion 252 is formed, for example, on the upper surface 251 of the crystal layer 212 stacked on the crystal layer 211 by etching or the like.
  • the method for forming the uneven portion 252 may be the same as the method for forming the uneven portion 22.
  • the uneven portion 252 is located at a position where the recessed portion 253 vertically overlaps with the convex portion 224 of the crystal layer 211, and the convex portion 254 is located at a position where the recessed portion 223 of the crystal layer 211 vertically overlaps.
  • the uneven portion 252 is formed to be shifted by a half pitch from the uneven portion 222.
  • the crystal layer 213 is laminated on the crystal layer 212 on which the uneven portions 252 are formed, for example, by a mist CVD method.
  • Crystal layer 213 can be stacked in the same manner as crystal layers 211 and 212.
  • the crystal layer 213 may be laminated on the crystal layer 212 by the known forming means.
  • the crystal layer 213 is formed of the same material and the same composition as the crystal layer 212.
  • the crystal layer 213 has the same conductivity type as the crystal layers 211 and 212, and is formed to be n-type.
  • the lateral growth film 264a of the convex portion 264 of the crystal layer 213 moves to the right from the side surface 253a of the concave portion 253 of the crystal layer 212, and the lateral growth film 264b of the convex portion 264 moves to the left from the side surface 253b of the concave portion 253 of the crystal layer 212.
  • the vertically grown film 264c of the convex portion 264 grows upward from the bottom surface 253c of the concave portion 253, respectively.
  • the grain boundary 269a is formed between the laterally grown film 264a and the vertically grown film 264c
  • the grain boundary 269b is formed between the laterally grown film 264a and the vertically grown film 264c. These are generated between the horizontally grown film 264b and the vertically grown film 264c, respectively.
  • the upper ends of the dislocation lines 271 either appear connected to the grain boundaries 269 or are located below the grain boundaries 269. It will appear as if it were located at .
  • the inclination angle ⁇ 7 of the grain boundary 269a correlates with the ratio of the growth rate of the horizontally grown film 264a to the growth rate of the vertically grown film 264c.
  • the inclination angle ⁇ 8 of the grain boundary 269b correlates with the ratio of the growth rate of the horizontally grown film 264b to the vertically grown film 264c.
  • the grain boundary 269 becomes a convex portion in which the inner side is located higher than both the outer sides in the lateral direction (horizontal direction X). Since the grain boundary 269a and the grain boundary 269b have opposite inclinations in the left-right direction X, the grain boundary 269 has a triangular shape.
  • the length of the vertically grown film 264c along the thickness direction Z increases as the distance from the side surfaces 253a and 253b increases. That is, since the thickness increases, inclined portions are formed at each of the grain boundaries 269a and 269b.
  • dislocation lines 271 may be formed due to the dislocation lines 42 of the crystal layer 212.
  • the lateral growth film 264a and the lateral growth film 264b grow along the left-right direction X at the same time.
  • the width of growth of the laterally grown film 264a along the left-right direction X correlates with the ratio of the growth rate of the laterally grown film 264a to the growth rate of the laterally grown film 264b.
  • the laterally grown film 264a and the laterally grown film 264b meet within the internal space of the recess 253.
  • the above-described crystal film 210 can be manufactured. Since a mask such as SiO 2 is not used when forming the crystal layers 212 and 213, there is no need to remove the mask inside the crystal film. Since there is no loss of a portion of each crystal layer due to removal of the mask, the yield is superior to the case where the mask is used. Even if the crystal layer 212 has dislocations caused by dislocations within the crystal layer 211, the dislocations in the crystal layer 213 caused by the dislocations can be reduced.
  • the angle ⁇ 1 between the side surface 23a and the upper surface 25 of the convex portion 24 was 90 degrees, but as shown in FIG. 14, the angle ⁇ 1 may be smaller than 90 degrees, for example, It may be 60 degrees.
  • the angle ⁇ 2 between the side surface 23b and the top surface 25 was 90 degrees, but as shown in FIG. 14, the angle ⁇ 2 may be smaller than 90 degrees, for example, 60 degrees. It may be degree.
  • the bottom surface 23c is a plane extending along the left-right direction X and the front-back direction Y, but as shown in FIG. It's okay. Note that in FIG. 15, the internal structure of the crystal layer 12 is omitted.
  • the substrate 13 is removed to form the crystal films 10, 110, 210, but the crystal films 10, 110, 210 may also include the substrate 13, for example, as shown in FIG.
  • the crystal films 10, 110, and 210 may include the substrate 13.
  • the crystal films 10, 110, and 210 including the substrate 13 are an example of a multilayer structure.
  • the crystal layer 213 is stacked on the crystal layer 212 with the uneven portion 252 formed on the upper surface 251, but the crystal layer 213 is stacked on the crystal layer 212 without the uneven portion 252 formed. It may be laminated.
  • a portion of the crystal layer 213 that is at the same position as the convex portion 224 of the crystal layer 211 in the left-right direction X and the front-back direction Y is a laterally grown film 364a, 364b and a vertically grown film 364c.
  • the method for manufacturing a crystal film of Modification Example 4 does not include the step S14 of forming the uneven portions 262 on the upper surface 251 of the crystal layer 212, and after forming the crystal layer 213 (after step S15), forming the uneven portions 262 directly above the projecting portions 224 is not included.
  • This step includes a step of removing a portion of the crystal layer 213 located therein by etching or the like, and a step of epitaxially growing laterally grown films 364a, 364b and a vertically grown film 364c between the remaining crystal layers 213.
  • the removing step may be performed by a known method similarly to step S12 and step S14.
  • the lateral growth film 364a grows rightward from the side surface 353a of the crystal layer 213 left in the removal step.
  • the side surface 353a is a plane that extends along the front-rear direction Y and the thickness direction Z and faces rightward.
  • the lateral growth film 364b grows leftward from the side surface 353b of the crystal layer 213 left in the removal process.
  • the side surface 353b is a plane that extends along the front-rear direction Y and the thickness direction Z and faces leftward.
  • the vertically grown film 364c grows upward from the upper surface 353c of the crystal layer 212 exposed in the removal process.
  • the method of forming the horizontally grown films 364a, 364b and the vertically grown film 364c is the same as that of the horizontally grown films 264a, 264b and the vertically grown film 264c of the third embodiment.
  • the grain boundary 369a is formed between the laterally grown film 364a and the vertically grown film 364c
  • the grain boundary 369b is formed between the laterally grown film 364a and the vertically grown film 364c.
  • the horizontally grown films 364a and 364b do not grow from the vertically grown film 364c, so even if the vertically grown film 364c contains a dislocation line caused by the dislocation line 42 of the crystal layer 212, the upper end of the dislocation line is , appear connected to the grain boundary 369 (369a, 369b), or appear located below the grain boundary 369.
  • Modification 5 In the embodiments described above, the vertically grown films 34c, 134c, and 234c were included in the crystal films 10, 110, and 210; 134c and 234c may be removed to form the crystal films 10, 110, and 210 that do not include the portions. Note that, in the crystal films 10, 110, 210, a portion of the vertically grown films 34c, 134c, 234c is removed, or a portion upward from the lower surface 27 of the crystal layer 11, 211 is removed so as to leave the entire film. It's okay. The removal in Modification 5 may be performed together with the substrate 13 or after the substrate 13 is removed.
  • the upper ends of the vertically grown films 34c, 134c, 234c, and 264c are located within the recesses 23, 123, 223, and 253; It may be located above the top surfaces 25, 225, 255 of 224, 254 and below the top surfaces of the crystal layers 12, 212, 213. Even with such a configuration, dislocations extending along the thickness direction Z are reduced.
  • FIG. 33 shows an example of the crystal film according to Modification Example 6, and is a TEM (transmission electron microscope) image of a part of the longitudinal section.
  • FIG. 34 is a partially enlarged view of FIG. 33.
  • the example in FIG. 33 is one of the modifications of the first embodiment. Note that, like the cross section in FIG. 2, FIG. 33 shows a cross section extending along the left-right direction X and the thickness direction Z. In FIG. 33, explanation will be made based on the configuration described in the first embodiment for convenience.
  • the side surfaces 23a and 23b of the recess 23 in FIG. 33 are the a-plane, and the bottom surface 23c is the m-plane, as in the first embodiment.
  • the depth d1 of the recess 23 is about 1.51 ⁇ m
  • the width w1 is about 2.55 ⁇ m
  • the distance w2 is about 0.6 ⁇ m.
  • the ratio of depth d1 to width w1 is about 0.59
  • the ratio of width w1 to distance w2 is about 4.3.
  • the tilt angle ⁇ 3 is approximately 37 degrees
  • the tilt angle ⁇ 4 is approximately 36 degrees.
  • the crystalline film is useful for semiconductor devices, especially power devices.
  • Semiconductor devices formed using the crystal film include transistors such as MISFETs and HEMTs, TFTs, Schottky barrier diodes using semiconductor-metal junctions, JBSs, PN or PIN diodes combined with other P layers, and receivers. Examples include light emitting elements.
  • the crystal film can be peeled off from the crystal substrate, if desired, and used in a semiconductor device.
  • the semiconductor device may be either a horizontal element in which an electrode is formed on one side of a semiconductor layer (horizontal device) or a vertical element in which electrodes are formed on both the front and back sides of the semiconductor layer (vertical device). However, in the embodiment of the present disclosure, it is particularly preferable to use it for a vertical device.
  • Suitable examples of the semiconductor device include, for example, a Schottky barrier diode (SBD), a junction barrier Schottky diode (JBS), a metal semiconductor field effect transistor (MESFET), a high electron mobility transistor (HEMT), and a metal oxide film. Examples include semiconductor field effect transistors (MOSFETs), static induction transistors (SITs), junction field effect transistors (JFETs), insulated gate bipolar transistors (IGBTs), and light emitting diodes (LEDs).
  • SBD Schottky barrier diode
  • JBS junction barrier Schottky diode
  • MESFET metal semiconductor field effect transistor
  • HEMT high electron mobility transistor
  • the semiconductor device according to the example may include, for example, a structure in which the crystal film of the present disclosure is an n+ type semiconductor layer and an n- type semiconductor layer is formed on the crystal film. Further, for example, at least a portion of the second crystal layer of the crystal film of the present disclosure may be used as an n-type semiconductor layer. With such a configuration, a semiconductor device with higher reliability can be obtained.
  • FIG. 17 shows an example of a Schottky barrier diode (SBD) according to an embodiment of the present disclosure.
  • the SBD in FIG. 17 includes an n-type semiconductor layer 401a, an n+-type semiconductor layer 401b, a Schottky electrode 405a, and an ohmic electrode 405b.
  • the material of the Schottky electrode and the ohmic electrode may be a known electrode material, and examples of the electrode material include Al, Mo, Co, Zr, Sn, Nb, Fe, Cr, Ta, Ti, Au, Metals such as Pt, V, Mn, Ni, Cu, Hf, W, Ir, Zn, In, Pd, Nd or Ag, or alloys thereof, tin oxide, zinc oxide, rhenium oxide, indium oxide, indium tin oxide (ITO) ), metal oxide conductive films such as indium zinc oxide (IZO), organic conductive compounds such as polyaniline, polythiophene or polypyrrole, mixtures thereof, and laminates.
  • the electrode material include Al, Mo, Co, Zr, Sn, Nb, Fe, Cr, Ta, Ti, Au, Metals such as Pt, V, Mn, Ni, Cu, Hf, W, Ir, Zn, In, Pd, Nd or Ag, or alloys thereof, tin oxide, zinc oxide,
  • the Schottky electrode and the ohmic electrode can be formed by, for example, a known method such as a vacuum evaporation method or a sputtering method. More specifically, for example, when forming a Schottky electrode using two types of metals, a first metal and a second metal, a layer made of the first metal and a layer made of the second metal are formed. This can be done by laminating the layers and subjecting the layer made of the first metal and the layer made of the second metal to patterning using a photolithography technique.
  • the SBD using the semiconductor structure is excellent in high voltage and large current applications, has a fast switching speed, and is excellent in voltage resistance and reliability.
  • FIG. 18 illustrates an example of a high electron mobility transistor (HEMT) according to an embodiment of the present disclosure.
  • the HEMT in FIG. 18 includes a wide bandgap n-type semiconductor layer 421a, a narrow bandgap n-type semiconductor layer 421b, an n+ type semiconductor layer 421c, a semi-insulator layer 424, a buffer layer 428, a gate electrode 425a, a source electrode 425b, and A drain electrode 425c is provided.
  • FIG. 19 shows an example in which the semiconductor device of the present disclosure is a MOSFET.
  • the MOSFET in FIG. 19 is a trench type MOSFET, which includes an n-type semiconductor layer 431a, n+-type semiconductor layers 431b and 431c, a p-type semiconductor layer 432, a gate insulating film 434, a gate electrode 435a, a source electrode 435b, and a drain electrode 435c. It is equipped with
  • FIG. 20 shows a junction field effect transistor (JFET) comprising an n-type semiconductor layer 441a, a first n+-type semiconductor layer 441b, a second n+-type semiconductor layer 441c, a gate electrode 445a, a source electrode 445b, and a drain electrode 445c. ) is shown below.
  • JFET junction field effect transistor
  • FIG. 21 shows an insulator including an n-type semiconductor layer 451, an n-type semiconductor layer 451a, an n+-type semiconductor layer 451b, a p-type semiconductor layer 452, a gate insulating film 454, a gate electrode 455a, an emitter electrode 455b, and a collector electrode 455c.
  • a gated bipolar transistor IGBT
  • FIG. 22 shows an example in which the semiconductor device of the present disclosure is a light emitting diode (LED).
  • the semiconductor light emitting device of FIG. 22 includes an n-type semiconductor layer 461 on a second electrode 465b, and a light-emitting layer 463 is stacked on the n-type semiconductor layer 461.
  • a p-type semiconductor layer 462 is stacked on the light emitting layer 463.
  • a light-transmitting electrode 467 that transmits light generated by the light-emitting layer 463 is provided on the p-type semiconductor layer 462, and a first electrode 465a is laminated on the light-transmitting electrode 467.
  • the semiconductor light emitting device shown in FIG. 22 may be covered with a protective layer except for the electrode portion.
  • Examples of the material for the transparent electrode include conductive oxide materials containing indium (In) or titanium (Ti). More specifically, examples thereof include In 2 O 3 , ZnO, SnO 2 , Ga 2 O 3 , TiO 2 , CeO 2 , a mixed crystal of two or more of these, or a doped material thereof. By providing these materials by known means such as sputtering, a transparent electrode can be formed. Further, after forming the light-transmitting electrode, thermal annealing may be performed for the purpose of making the light-transmitting electrode transparent.
  • the first electrode 465a is used as a positive electrode
  • the second electrode 465b is used as a negative electrode
  • a current is passed through the p-type semiconductor layer 462, the light-emitting layer 463, and the n-type semiconductor layer 461 through them. This causes the light emitting layer 463 to emit light.
  • Examples of the materials for the first electrode 465a and the second electrode 465b include Al, Mo, Co, Zr, Sn, Nb, Fe, Cr, Ta, Ti, Au, Pt, V, Mn, Ni, Cu, Metals such as Hf, W, Ir, Zn, In, Pd, Nd or Ag, or alloys thereof, tin oxide, zinc oxide, rhenium oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc.
  • Examples include a metal oxide conductive film, an organic conductive compound such as polyaniline, polythiophene, or polypyrrole, or a mixture thereof.
  • the electrode film forming method is not particularly limited, and may include wet methods such as printing, spraying, and coating, physical methods such as vacuum evaporation, sputtering, and ion plating, CVD, and plasma CVD. It can be formed on the substrate according to a method appropriately selected from chemical methods such as methods, etc., taking into consideration compatibility with the material.
  • FIG. 23 an n-type semiconductor layer 461 is stacked on a substrate 469, and the n-type semiconductor layer 462, the light-emitting layer 463, and the n-type semiconductor layer 461 are exposed by cutting out parts of the layer 462, the light emitting layer 463, and the n-type semiconductor layer 461.
  • a second electrode 465b is laminated on a portion of the exposed semiconductor layer surface of the layer 461.
  • FIG. 24 shows a junction barrier Schottky diode (JBS), which is one of the preferred embodiments of the present disclosure.
  • the JBS in FIG. 24 includes an n-type semiconductor layer 401a, an n+-type semiconductor layer 401b, a p-type semiconductor layer 402, a Schottky electrode 405a, and an ohmic electrode 405b.
  • the p-type semiconductor layers 402 are preferably provided at regular intervals, and the p-type semiconductor layers 402 are preferably provided between both ends of the Schottky electrode 405a and the n-type semiconductor layer 401a. It is more preferable that 402 is provided respectively.
  • the JBS is configured to have better thermal stability and adhesion, further reduce leakage current, and further have better semiconductor properties such as withstand voltage.
  • each layer of the semiconductor device in FIG. 24 is not particularly limited as long as it does not impede the purpose of the present disclosure, and may be any known means. For example, after forming a film by a vacuum evaporation method, a CVD method, a sputtering method, various coating techniques, etc., patterning is performed by a photolithography method, or a method is directly patterned by using a printing technique.
  • FIG. 25 shows a junction barrier Schottky diode (JBS), which is one of the preferred embodiments of the present disclosure.
  • the semiconductor device of FIG. 25 differs from the semiconductor device of FIG. 24 in that a guard ring in which a large number of p-type semiconductor layers 423 are arranged is provided at the outer periphery of the barrier electrode. With this configuration, it is possible to obtain a semiconductor device with more excellent semiconductor characteristics such as withstand voltage.
  • a material with a high barrier height may be used for the guard ring.
  • the material used for the guard ring include a conductive material having a barrier height of 1 eV or more, and may be the same as the electrode material.
  • the shape of the guard ring is not particularly limited, and examples thereof include a square shape, a circle shape, a U shape, an L shape, a band shape, and the like.
  • the number of guard rings is also not particularly limited, but is preferably 3 or more, more preferably 6 or more.
  • FIG. 26 shows an n-type semiconductor layer 431a, a first n+-type semiconductor layer 431b, a second n+-type semiconductor layer 431c, a p-type semiconductor layer 432, a p+-type semiconductor layer 432a, a gate insulating film 434, a gate electrode 435a,
  • MOSFET metal oxide semiconductor field effect transistor
  • the p + -type semiconductor layer 432a may be a p-type semiconductor layer, or may be the same as the p-type semiconductor layer 432.
  • the p-type semiconductor may be the same material as the n-type semiconductor and may contain a p-type dopant, or may be a different p-type semiconductor.
  • FIG. 13 is a block configuration diagram showing an example of a control system using a semiconductor device according to an embodiment of the present disclosure
  • FIG. 14 is a circuit diagram of the control system, which is particularly suitable for installation in an electric vehicle. It is a control system with
  • the control system 500 includes a battery (power source) 501, a step-up converter 502, a step-down converter 503, an inverter 504, a motor (driven object) 505, and a drive control section 506, which are installed in an electric vehicle. It becomes.
  • the battery 501 is composed of a storage battery such as a nickel metal hydride battery or a lithium ion battery, and stores electric power through charging at a power supply station or regenerated energy during deceleration, and is necessary for the operation of the electric vehicle's running system and electrical system. Can output DC voltage.
  • the boost converter 502 is a voltage conversion device equipped with, for example, a chopper circuit, and boosts the DC voltage of, for example, 200 V supplied from the battery 501 to, for example, 650 V by the switching operation of the chopper circuit, and outputs it to a driving system such as a motor. be able to.
  • the step-down converter 503 is also a voltage conversion device equipped with a chopper circuit, but by stepping down the DC voltage of, for example, 200V supplied from the battery 501 to, for example, about 12V, it can be used for power windows, power steering, or in-vehicle electrical equipment. It can be output to the electrical system including the following.
  • the inverter 504 converts the DC voltage supplied from the boost converter 502 into a three-phase AC voltage by a switching operation, and outputs it to the motor 505.
  • the motor 505 is a three-phase AC motor that constitutes the running system of the electric vehicle, and is rotationally driven by three-phase AC voltage output from the inverter 504, and the rotational driving force is applied to the wheels of the electric vehicle via a transmission (not shown) or the like. to communicate.
  • the drive control unit 506 has the function of a controller including a calculation unit such as a CPU (Central Processing Unit) and a data storage unit such as a memory, and generates a control signal using the input measurement signal and sends it to the inverter 504. By outputting it as a feedback signal, the switching operation by the switching element is controlled.
  • a controller including a calculation unit such as a CPU (Central Processing Unit) and a data storage unit such as a memory, and generates a control signal using the input measurement signal and sends it to the inverter 504.
  • the alternating current voltage applied by the inverter 504 to the motor 505 is instantaneously corrected, so that driving control of the electric vehicle can be executed accurately, and safe and comfortable operation of the electric vehicle can be realized.
  • FIG. 28 shows a circuit configuration excluding the step-down converter 503 in FIG. 27, that is, only the configuration for driving the motor 505.
  • the semiconductor device of the present disclosure is used, for example, as a Schottky barrier diode in a boost converter 502 and an inverter 504 to perform switching control.
  • the boost converter 502 is incorporated into a chopper circuit to perform chopper control
  • the inverter 504 is incorporated into a switching circuit including an IGBT to perform switching control.
  • the current is stabilized by intervening an inductor (such as a coil) in the output of the battery 501, and by interposing a capacitor (such as an electrolytic capacitor) between the battery 501, boost converter 502, and inverter 504. Efforts are being made to stabilize the voltage.
  • the drive control section 506 is provided with a calculation section 507 consisting of a CPU (Central Processing Unit) and a storage section 508 consisting of a nonvolatile memory.
  • the signal input to the drive control section 506 is given to the calculation section 507, which performs necessary calculations to generate a feedback signal for each semiconductor element.
  • the storage unit 508 temporarily holds the calculation results by the calculation unit 507, stores physical constants, functions, etc. necessary for drive control in the form of a table, and outputs the table to the calculation unit 507 as appropriate.
  • the arithmetic unit 507 and the storage unit 508 can have a known configuration, and their processing capacity can be arbitrarily selected.
  • diodes and switching elements such as thyristors, power transistors, IGBTs, MOSFETs, etc. are used for switching operations of the boost converter 502, buck converter 503, and inverter 504.
  • gallium oxide (Ga 2 O 3 ), particularly corundum-type gallium oxide ( ⁇ -Ga 2 O 3 ) as a material for these semiconductor elements, the switching characteristics are significantly improved. Furthermore, by applying the semiconductor device or the like according to the present disclosure, extremely good switching characteristics can be expected, and further miniaturization and cost reduction of the control system 500 can be realized.
  • each of the boost converter 502, the buck converter 503, and the inverter 504 can be expected to benefit from the effects of the present disclosure, and any one of these, a combination of two or more, or a configuration including the drive control unit 506 can also be used.
  • the effects of the present disclosure can be expected in any of the above.
  • control system 500 is applicable not only to the control system of an electric vehicle, but also to a control system for all kinds of purposes, such as boosting and buckling power from a DC power supply, and converting power from DC to AC. It is possible to apply it to It is also possible to use a power source such as a solar cell as the battery.
  • FIG. 29 is a block configuration diagram showing another example of a control system that employs the semiconductor device according to the embodiment of the present disclosure
  • FIG. 30 is a circuit diagram of the control system, which is infrastructure equipment that operates with power from an AC power source. This is a control system suitable for installation in home appliances and home appliances.
  • the control system 600 receives power supplied from an external, for example, three-phase AC power source (power source) 601, and includes an AC/DC converter 602, an inverter 604, a motor (to be driven) 605, It has a drive control unit 606, which can be installed in various devices (described later).
  • the three-phase AC power supply 601 is, for example, a power generation facility of a power company (a thermal power plant, a hydroelectric power plant, a geothermal power plant, a nuclear power plant, etc.), and its output is supplied as an AC voltage while being stepped down through a substation. Ru.
  • the power may be installed in a building or a nearby facility in the form of a private generator, for example, and supplied via a power cable.
  • the AC/DC converter 602 is a voltage converter that converts an alternating current voltage to a direct current voltage, and converts the alternating current voltage of 100 V or 200 V supplied from the three-phase alternating current power supply 601 into a predetermined direct current voltage. Specifically, the voltage is converted to a commonly used desired DC voltage such as 3.3V, 5V, or 12V. When the driven object is a motor, conversion to 12V is performed. Note that it is also possible to use a single-phase AC power source instead of the three-phase AC power source, and in that case, the same system configuration can be achieved by using a single-phase input AC/DC converter.
  • the inverter 604 converts the DC voltage supplied from the AC/DC converter 602 into a three-phase AC voltage by a switching operation, and outputs it to the motor 605.
  • the motor 605 has different forms depending on the object to be controlled, but it is used to drive wheels when the object to be controlled is a train, a pump or various power sources in the case of factory equipment, and a compressor etc. in the case of home appliances. It is a three-phase AC motor, and is rotationally driven by three-phase AC voltage output from the inverter 604, and transmits its rotational driving force to a drive target (not shown).
  • the control system 600 does not require an inverter 604, and as shown in FIG. 29, DC voltage is supplied from the AC/DC converter 602 to the driven object.
  • a 3.3V DC voltage is supplied to a personal computer, and a 5V DC voltage is supplied to an LED lighting device.
  • FIG. 30 shows an example of the circuit configuration of FIG. 29.
  • the semiconductor device of the present disclosure is used, for example, as a Schottky barrier diode in an AC/DC converter 602 and an inverter 604 to perform switching control.
  • the AC/DC converter 602 uses, for example, a Schottky barrier diode circuit configured in a bridge shape, and performs DC conversion by converting and rectifying the negative voltage portion of the input voltage into a positive voltage.
  • the inverter 604 is incorporated into the switching circuit of the IGBT to perform switching control.
  • an inductor (such as a coil) is interposed between the three-phase AC power supply 601 and the AC/DC converter 602 to stabilize the current, and a capacitor (electrolytic capacitor) is inserted between the AC/DC converter 602 and the inverter 604. etc.) to stabilize the voltage.
  • a capacitor electrolytic capacitor
  • the drive control section 606 is provided with a calculation section 607 consisting of a CPU and a storage section 608 consisting of a nonvolatile memory.
  • the signal input to the drive control unit 606 is given to the calculation unit 607, which performs necessary calculations to generate feedback signals for each semiconductor element.
  • the storage unit 608 temporarily holds the calculation results by the calculation unit 607, stores physical constants, functions, etc. necessary for drive control in the form of a table, and outputs the table to the calculation unit 607 as appropriate.
  • the arithmetic unit 607 and the storage unit 608 can have a known configuration, and their processing capacity can be arbitrarily selected.
  • control system 600 similarly to the control system 500 shown in FIGS. 27 and 28, diodes, switching elements such as thyristors, and power transistors are used for the rectification and switching operations of the AC/DC converter 602 and the inverter 604. , IGBT, MOSFET, etc. are used.
  • gallium oxide (Ga 2 O 3 ) particularly corundum-type gallium oxide ( ⁇ -Ga 2 O 3 ) as a material for these semiconductor elements, switching characteristics are improved.
  • semiconductor film and semiconductor device according to the present disclosure extremely good switching characteristics can be expected, and further miniaturization and cost reduction of the control system 600 can be realized.
  • the effects of the present disclosure can be expected for each of the AC/DC converter 602 and the inverter 604, and the effects of the present disclosure can be achieved with either one or a combination of these, or with the drive control unit 606 as well. can be expected.
  • the motor 605 is illustrated as an object to be driven, but the object to be driven is not necessarily limited to something that operates mechanically, and can be many devices that require AC voltage.
  • the control system 600 can be applied as long as it inputs power from an AC power source to drive a driven object, and can be applied to infrastructure equipment (for example, power equipment in buildings and factories, communication equipment, traffic control equipment, water and sewage treatment equipment, etc.). It can be installed for drive control of devices such as equipment, system equipment, labor-saving equipment, trains, etc.) and home appliances (e.g., refrigerators, washing machines, computers, LED lighting equipment, video equipment, audio equipment, etc.) can.
  • infrastructure equipment for example, power equipment in buildings and factories, communication equipment, traffic control equipment, water and sewage treatment equipment, etc.
  • home appliances e.g., refrigerators, washing machines, computers, LED lighting equipment, video equipment, audio equipment, etc.
  • the width w1 and the distance w2 of the recess 23 are the same in each recess 23, but may be different for each recess 23.
  • Each of the main surfaces and each growth surface may have an off-angle.
  • the crystal layers 11 and 211 are formed on the substrate 13, but a buffer layer or other layer may be provided between the substrate 13 and the crystal layers 11 and 211.
  • the conductivity type of each of the crystal layers 11, 12, 211, 212, and 213 may be n+ type or n- type.
  • the bottom surfaces 23c and 123c are m-planes, but may be c-planes or a-planes.
  • the ratio of the depth d1 to the width w1 is greater than or equal to any value within the range of 1.0 or more and less than 2.0, The value is preferably in the range of 1.0 or more and less than 2.0.
  • the ratio of the depth d2 to the width w3 is greater than or equal to any value within the range of 0.1 or more and 0.5 or less, The value is preferably within the range of 0.1 or more and 0.5 or less.
  • the value obtained by dividing the half length of the widths w1 and w3 by the depths d1 and d2 is smaller than 4.
  • the inclination angles ⁇ 3 and ⁇ 4 were within the range of approximately 36 degrees to 42 degrees or approximately 63 degrees to 71 degrees, but the inclination angles ⁇ 3 and ⁇ 4 were approximately 14 degrees to 76 degrees. degree, and may be about 14 degrees to 24 degrees and/or about 65 degrees to 76 degrees.
  • each axial direction of each crystalline oxide semiconductor may be within a range of ⁇ 10° from any one of the left-right direction X, the front-back direction Y, and the thickness direction Z described in the above embodiments. However, it is not limited to this.
  • the crystal planes such as the a-plane, c-plane, and m-plane may have an off-angle or may have no off-angle. If an off-angle is present, the off-angle is, for example, within a range of 0.1° to 10°.
  • Test examples 1 to 12 In Test Examples 1 to 12, an ⁇ -Ga 2 O 3 semiconductor film was epitaxially grown as an example of ⁇ -Ga 2 O 3 or its mixed crystal, and each combination of growth planes of the a-plane, c-plane, or m-plane was grown. Next, the ratio of growth rates between the horizontally grown film and the vertically grown film was calculated and evaluated. Film formation was performed using a mist CVD method. In Test Examples 1 to 6, the temperature during film formation was 550°C. In Test Examples 7 to 12, the temperature during film formation was 450°C.
  • the lateral growth film and the lateral growth film can be formed in the internal space of the recess regardless of the orientation of the growth surface.
  • the ratio of the depth d1 of the unevenness to the width w1 is preferably 0.125 or more and less than 2.0, and 0.57 or more and less than 2.0. It can be seen that a value less than 0 is preferable from the viewpoint of reducing dislocations. Further, in the first embodiment, the ratio of the dimension of the convex portion along the thickness direction to the dimension of the second crystal defect along the lateral direction of the convex portion is 0.57 or more and 0.69. It can be seen that the following is preferable from the viewpoint of reducing dislocations.
  • the ratio of the depth d2 of the unevenness to the width w3 is preferably 0.12 or more and less than 2.0, and 0.17 It can be seen that a value of less than 2.0 is preferable from the viewpoint of reducing dislocations.
  • the dimension of the second crystal defect along the thickness direction of the convex portion has a ratio of 0.17 or more to the dimension along the lateral direction of the convex portion of 0.17 or more and 0.26. It can be seen that the following is preferable from the viewpoint of reducing dislocations.
  • the depth of the recess having the growth surface relative to the width of the recess is preferably a value of 0.17 or more and 0.69 or less.
  • the ratio of the dimension of the convex portion along the thickness direction to the dimension of the second crystal defect along the lateral direction of the convex portion is 0.17 or more and 0.69 or less. It turns out that this is preferable.
  • the value obtained by dividing half the width of the recess by the depth of the recess is within the range of 2.3 to 4, within the range of 2.0 to 2.9, or within the range of 1.2 to 1.4.
  • examples include values below any value within the range of 0.8 to 0.9, within the range of 0.3 to 0.6, or within the range of 0.3 to 0.5.
  • the second crystal defect has a convex portion in which the inner side is located higher than both outer sides in the lateral direction,
  • the crystal film has a plurality of the convex portions arranged in the lateral direction, 5.
  • the cross section has a third crystal defect extending along the thickness direction, 8.
  • a plurality of the second crystal defects are arranged in a horizontal direction and are located in upper and lower two stages, 14.
  • the crystal film is a first crystal layer having stripe-like unevenness on its main surface; a second crystal layer located on the first crystal layer and in contact with the unevenness, 16.
  • the crystal film according to any one of Supplementary Notes 1 to 15, wherein the inclined portion is included in the second crystal layer located within the recess of the first crystal layer.

Abstract

Provided are: a crystal film which is reduced in dislocation extending along the thickness direction; and a method for producing the crystal film with excellent relative yield. The crystal film has a corundum structure and contains a crystalline oxide containing gallium, and a cross-section of the crystal film which is cut in the thickness direction has a linear first crystal defect extending along the thickness direction and a linear second crystal defect including an inclining part that inclines from the thickness direction, in which an upper end of the first crystal defect is connected to the inclining part or is positioned below the inclining part.

Description

結晶膜および結晶膜の製造方法Crystal film and crystal film manufacturing method
 本開示は、結晶膜および結晶膜の製造方法に関する。 The present disclosure relates to a crystal film and a method for manufacturing the crystal film.
 特許文献1には、結晶基板の結晶成長面上に、直接または他の層を介して、凹部または凸部からなる凹凸部が形成されており、前記凹凸部上に、エピタキシャル層が形成されている結晶性積層構造体であって、前記エピタキシャル層が、コランダム構造を有する結晶性半導体を主成分として含む結晶性積層構造体が開示されている。 In Patent Document 1, an uneven part consisting of a recess or a convex part is formed directly or through another layer on the crystal growth surface of a crystal substrate, and an epitaxial layer is formed on the uneven part. A crystalline stacked structure in which the epitaxial layer contains a crystalline semiconductor having a corundum structure as a main component is disclosed.
 特許文献2には、a軸方向に伸びているストライプ状のELOマスクを基板表面に配列したm面サファイア基板を用いて、供給律速にしてELO成膜をすることが開示されている。 Patent Document 2 discloses that ELO film formation is performed using an m-plane sapphire substrate in which striped ELO masks extending in the a-axis direction are arranged on the substrate surface, with the supply rate being controlled.
特許第6945119号Patent No. 6945119 国際公開第2020-004250号公報International Publication No. 2020-004250
 コランダム構造を有し、ガリウムを含む結晶性酸化物を基板上にヘテロエピタキシャル成長させると、得られた膜中に、厚さ方向に沿って延びる転位が複数生じるおそれがあった。このような転位を有する膜の上に、ホモエピタキシャル成長させて結晶膜とすると、当該膜中にも厚さ方向に沿って延びる転位が複数生じるおそれがあった。 When a crystalline oxide having a corundum structure and containing gallium is heteroepitaxially grown on a substrate, there is a risk that a plurality of dislocations extending along the thickness direction will occur in the resulting film. If a crystalline film is formed by homoepitaxial growth on a film having such dislocations, there is a risk that a plurality of dislocations extending along the thickness direction will occur in the film as well.
 一方、ELOマスクを用いた場合、当該ELOマスクが得られた膜に埋め込まれている状態となり、得られた膜の下端の一部と共に除去する必要があった。 On the other hand, when an ELO mask is used, the ELO mask is embedded in the obtained film and needs to be removed together with a part of the lower end of the obtained film.
 本開示は、厚さ方向に沿って延びる転位が低減された結晶膜およびこのような結晶膜の比較的歩留まりに優れた製造方法を提供することを課題とする。 An object of the present disclosure is to provide a crystal film in which dislocations extending along the thickness direction are reduced, and a method for manufacturing such a crystal film with a relatively high yield.
  上記課題を解決するために、本開示の一態様においては、結晶膜は、コランダム構造を有し、ガリウムを含む結晶性酸化物を含み、厚さ方向に切断した断面は、厚さ方向に沿って延びる線状の第1結晶欠陥と、厚さ方向から傾斜する傾斜部を含む線状の第2結晶欠陥と、を有し、前記第1結晶欠陥の上端は、前記傾斜部と繋がっているまたは前記傾斜部の下方に位置する。 In order to solve the above problems, in one aspect of the present disclosure, the crystal film has a corundum structure and includes a crystalline oxide containing gallium, and a cross section cut in the thickness direction is formed along the thickness direction. a linear first crystal defect extending in the direction of the thickness; and a linear second crystal defect including an inclined part inclined from the thickness direction, and an upper end of the first crystal defect is connected to the inclined part. Or it is located below the inclined part.
 上記課題を解決するために、本開示の一態様においては、結晶膜の製造方法は、コランダム構造を有し、ガリウムを含む結晶性酸化物を含む第1結晶層の主面にストライプ状の凹凸部を設け、コランダム構造を有し、ガリウムを含む結晶性酸化物を含む第2結晶層を前記凹凸部の凹部内に成長させ、このとき、厚さ方向に切断した断面において、厚さ方向から傾斜する傾斜部を有する線状の結晶欠陥を形成する。 In order to solve the above problems, in one aspect of the present disclosure, a method for manufacturing a crystal film includes a method for manufacturing a crystal film in which stripe-like irregularities are formed on the main surface of a first crystal layer that has a corundum structure and includes a crystalline oxide containing gallium. A second crystal layer having a corundum structure and containing a crystalline oxide containing gallium is grown in the recessed portion of the uneven portion, and at this time, in a cross section cut in the thickness direction, A linear crystal defect having an inclined portion is formed.
 本開示によれば、厚さ方向に沿って延びる転位が低減された結晶膜およびこのような結晶膜の比較的歩留まりに優れた製造方法を提供することができる。 According to the present disclosure, it is possible to provide a crystal film in which dislocations extending along the thickness direction are reduced, and a method for manufacturing such a crystal film with a relatively high yield.
第1実施形態にかかる結晶膜を例示する模式斜視図である。FIG. 1 is a schematic perspective view illustrating a crystal film according to a first embodiment. 第1実施形態にかかる結晶膜を例示する模式断面図である。FIG. 1 is a schematic cross-sectional view illustrating a crystal film according to a first embodiment. 第1実施形態にかかる結晶膜の製造方法を模式的に示すフローチャートである。1 is a flowchart schematically showing a method for manufacturing a crystal film according to a first embodiment. 第1実施形態にかかる結晶膜の製造方法を模式的に示す図である。1 is a diagram schematically showing a method for manufacturing a crystal film according to a first embodiment; FIG. 第1実施形態にかかる結晶膜の製造方法を模式的に示す図である。1 is a diagram schematically showing a method for manufacturing a crystal film according to a first embodiment; FIG. 第1実施形態にかかる結晶膜の製造方法を模式的に示す図である。1 is a diagram schematically showing a method for manufacturing a crystal film according to a first embodiment; FIG. 第2実施形態にかかる結晶膜を例示する模式斜視図である。FIG. 3 is a schematic perspective view illustrating a crystal film according to a second embodiment. 第2実施形態にかかる結晶膜を例示する模式断面図である。FIG. 3 is a schematic cross-sectional view illustrating a crystal film according to a second embodiment. 第3実施形態にかかる結晶膜を例示する模式斜視図である。FIG. 7 is a schematic perspective view illustrating a crystal film according to a third embodiment. 第3実施形態にかかる結晶膜を例示する模式断面図である。FIG. 7 is a schematic cross-sectional view illustrating a crystal film according to a third embodiment. 第3実施形態にかかる結晶膜の製造方法を模式的に示すフローチャートである。7 is a flowchart schematically showing a method for manufacturing a crystal film according to a third embodiment. 第3実施形態にかかる結晶膜の製造方法を模式的に示す図である。FIG. 7 is a diagram schematically showing a method for manufacturing a crystal film according to a third embodiment. 第3実施形態にかかる結晶膜の製造方法を模式的に示す図である。FIG. 7 is a diagram schematically showing a method for manufacturing a crystal film according to a third embodiment. 変形例1にかかる結晶膜を例示する模式断面図である。3 is a schematic cross-sectional view illustrating a crystal film according to Modification Example 1. FIG. 変形例2にかかる結晶膜を例示する模式断面図である。FIG. 7 is a schematic cross-sectional view illustrating a crystal film according to Modification Example 2. FIG. 変形例4にかかる結晶膜を例示する模式断面図である。FIG. 7 is a schematic cross-sectional view illustrating a crystal film according to Modification Example 4; 本開示の実施形態にかかるショットキーバリアダイオード(SBD)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a Schottky barrier diode (SBD) according to an embodiment of the present disclosure. 本開示の実施形態にかかる高電子移動度トランジスタ(HEMT)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a high electron mobility transistor (HEMT) according to an embodiment of the present disclosure. 本開示の実施形態にかかる金属酸化膜半導体電界効果トランジスタ(MOSFET)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a metal oxide semiconductor field effect transistor (MOSFET) according to an embodiment of the present disclosure. 本開示の実施形態にかかる接合電界効果トランジスタ(JFET)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a junction field effect transistor (JFET) according to an embodiment of the present disclosure. 本開示の実施形態にかかる絶縁ゲート型バイポーラトランジスタ(IGBT)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of an insulated gate bipolar transistor (IGBT) according to an embodiment of the present disclosure. 本開示の実施形態にかかる発光ダイオード(LED)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a light emitting diode (LED) according to an embodiment of the present disclosure. 本開示の実施形態にかかる発光ダイオード(LED)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a light emitting diode (LED) according to an embodiment of the present disclosure. 本開示の実施形態にかかるジャンクションバリアショットキーダイオード(JBS)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a junction barrier Schottky diode (JBS) according to an embodiment of the present disclosure. 本開示の実施形態にかかるジャンクションバリアショットキーダイオード(JBS)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a junction barrier Schottky diode (JBS) according to an embodiment of the present disclosure. 本開示の実施形態にかかる金属酸化膜半導体電界効果トランジスタ(MOSFET)の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a metal oxide semiconductor field effect transistor (MOSFET) according to an embodiment of the present disclosure. 本開示の実施形態にかかる半導体装置を採用した制御システムの一例を示すブロック構成図である。FIG. 1 is a block configuration diagram illustrating an example of a control system that employs a semiconductor device according to an embodiment of the present disclosure. 本開示の実施形態にかかる半導体装置を採用した制御システムの一例を示す回路図である。1 is a circuit diagram illustrating an example of a control system that employs a semiconductor device according to an embodiment of the present disclosure. 本開示の実施形態にかかる半導体装置を採用した制御システムの一例を示すブロック構成図である。FIG. 1 is a block configuration diagram illustrating an example of a control system that employs a semiconductor device according to an embodiment of the present disclosure. 本開示の実施形態にかかる半導体装置を採用した制御システムの一例を示す回路図である。1 is a circuit diagram illustrating an example of a control system that employs a semiconductor device according to an embodiment of the present disclosure. 第2実施形態にかかる結晶膜の断面の観察例を示す図である。FIG. 7 is a diagram showing an example of observation of a cross section of a crystal film according to a second embodiment. 第2実施形態にかかる結晶膜の断面の観察例を示す図の部分拡大図である。FIG. 7 is a partially enlarged view of a diagram showing an observation example of a cross section of a crystal film according to a second embodiment. 変形例7の一例にかかる結晶膜の断面の観察例を示す図である。FIG. 7 is a diagram showing an example of observation of a cross section of a crystal film according to an example of Modification Example 7; 変形例7の一例にかかる結晶膜の断面の観察例を示す図の部分拡大図である。12 is a partially enlarged view of a diagram showing an example of observation of a cross section of a crystal film according to an example of Modification 7. FIG.
 以下、本開示の実施形態について図面を用いて説明するが、特許請求の範囲にかかる発明は、これら実施形態に限定されるものではない。また、実施形態の中で説明される構成の組み合わせの全てが課題の解決手段に必須であるとして限定するものでもない。また、本開示の各構成は、本開示の課題の解決を妨げない範囲で説明されている。なお、同一構成要素には同一符号を付すことで、重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described using drawings, but the claimed invention is not limited to these embodiments. Further, not all of the combinations of configurations described in the embodiments are essential to solving the problem and are not limited to them. Further, each configuration of the present disclosure is described within a range that does not hinder solving the problems of the present disclosure. Note that the same components are given the same reference numerals to omit redundant explanations.
 また、当業者にとって明らかなように、本明細書において述べられていなくとも、図面中において示される特徴は必ずしも一定の縮尺で描かれているわけではない。また、1つの形態における1つの特徴は別の形態においても用いられ得ることに留意されたい。周知の要素および加工技術についての記載は、本開示の形態を必要に不明確にすることのないように省略され得る。本明細書において用いられる例は、単に本開示の理解を助けること、またさらに当業者が本開示の形態を実施できるようにすることを目的としている。したがって、本明細書における形態および例は本開示の範囲に限定されて解釈されるものではなく、特許請求の範囲および適用可能な法律によってのみ定められる。 Additionally, as will be apparent to those skilled in the art, features not described herein or illustrated in the drawings are not necessarily drawn to scale. Note also that one feature in one form may be used in another form. Descriptions of well-known elements and processing techniques may be omitted so as not to unnecessarily obscure the present disclosure. The examples used herein are merely to aid in understanding the disclosure and to further enable one skilled in the art to practice forms of the disclosure. Therefore, the forms and examples herein should not be construed as limiting the scope of this disclosure, which is defined only by the claims and applicable law.
 「第1」、「第2」等の用語は、本明細書において用いられる様々な要素を記述するために用いられるが、要素は、これらの用語によって限定されるものではない。第1、第2等の用語は、1つの要素を別の要素から区別するためにのみ用いられる。例えば、本開示の範囲から逸脱することなく、第1の要素は第2の要素と称することができ、また、第2の要素は第1の要素と称することができる。本明細書において用いられるように、用語「および/または」は、挙げられた項目のうち1つまたは複数のいくつかまたは全ての組み合わせを包含する。 Although terms such as "first", "second", etc. are used to describe various elements used herein, the elements are not limited by these terms. The terms first, second, etc. are only used to distinguish one element from another. For example, a first element can be referred to as a second element, and a second element can be referred to as a first element, without departing from the scope of this disclosure. As used herein, the term "and/or" encompasses any or all combinations of one or more of the listed items.
 本開示においては、結晶膜の厚さ方向Z(図1参照)と平行な方向における一方の側を「上」、他方の側を「下」として説明する。特に、図1における結晶膜10の結晶層11からみて結晶層12側を上方、結晶層12からみて結晶層11側を下方として「上」と「下」が定義される。層、基板またはその他の部材の2つの主面のうち、上方に位置する面を上面、下方に位置する面を下面として説明する。これら「上」および「下」の方向は、重力方向や半導体装置の実装時における基板等への取り付け方向に限定するものではない。また、本開示においては、結晶膜の厚さ方向Zと直交し、凹凸部が延びる方向を前後方向Yとして説明する。また、本開示においては、厚さ方向Zおよび前後方向Yと直交する方向を左右方向Xとして説明する。なお、本明細書は、上面視という文言を用いて説明するが、平面視と言い換えられてもよい。 In the present disclosure, one side in a direction parallel to the thickness direction Z (see FIG. 1) of the crystal film is referred to as "upper" and the other side is referred to as "lower." In particular, "upper" and "lower" are defined as the upper side of the crystal layer 12 of the crystal film 10 in FIG. 1 when viewed from the crystal layer 11, and the lower side when viewed from the crystal layer 12. Of the two main surfaces of a layer, substrate, or other member, the surface located above will be described as an upper surface, and the surface located below will be described as a lower surface. These "up" and "down" directions are not limited to the direction of gravity or the direction of attachment to a substrate or the like during mounting of the semiconductor device. Further, in the present disclosure, the direction in which the uneven portion extends, which is perpendicular to the thickness direction Z of the crystal film, will be described as the front-rear direction Y. In addition, in the present disclosure, a direction perpendicular to the thickness direction Z and the front-back direction Y will be described as a left-right direction X. Note that although this specification will be described using the term "top view," it may be translated as "planar view."
 層、領域、または基板等の要素が別の要素の「上に」存在するといった表現が用いられる場合には、別の要素の上に直接存在するか、または介在する要素が存在してもよいことを理解されたい。要素が別の要素に「接続される」または「結合される」という表現が用いられる場合には、別の要素に直接接続または結合されることができ、または介在する要素が存在してもよいことを理解されたい。 When an element, such as a layer, region, or substrate, is referred to as being "on" another element, it may be directly on top of the other element, or there may be intervening elements. I hope you understand that. When an element is referred to as being "connected" or "coupled" to another element, it may be directly connected or coupled to another element, or there may be intervening elements. I hope you understand that.
 本明細書において用いられる用語は、特定の形態のみを記述することを目的としており、本開示を限定することを意図していない。本明細書において用いられる「備える」「含む」は、記載された要素の存在を表すものであり、1つまたは複数の他の要素の存在を排除するものではない。 The terminology used herein is for the purpose of describing particular forms only and is not intended to limit the disclosure. As used herein, the terms "comprising" and "comprising" refer to the presence of the listed element and do not exclude the presence of one or more other elements.
 別途定義されない限り、本明細書において用いられる全ての用語(技術用語および科学用語を含む)は、本開示が属する技術分野の当業者によって一般的に理解されるものと同じ意味を持つ。本明細書において用いられる用語は本明細書の文脈および関連技術におけるいみと矛盾しない意味を有するように解釈される。また、本明細書において定義されない限り、本明細書において用いられる用語は、理想化された、または過度に形式的な意味で解釈されるべきでないことを理解されたい。 Unless defined otherwise, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terms used herein are to be interpreted to have meanings consistent with the context of this specification and the relevant art. It is also understood that, unless otherwise defined herein, terms used herein are not to be construed in an idealized or overly formal sense.
(第1実施形態)
 図1は、第1実施形態にかかる結晶膜10を例示する模式斜視図である。図2は、第1実施形態にかかる結晶膜10を例示する模式断面図であり、図1におけるII-II線断面図である。第1実施形態にかかる結晶膜10は、例えば、半導体装置等の半導体膜等として用いられる。図1および図2に示されるように、結晶膜10は、結晶層11と、結晶層11上に位置する結晶層12と、を備える。なお、図1に示される結晶膜10は、例えば、円盤状の結晶膜の一部であってもよい。結晶層11は、第1結晶層、結晶層12は、第2結晶層の一例である。
(First embodiment)
FIG. 1 is a schematic perspective view illustrating a crystal film 10 according to the first embodiment. FIG. 2 is a schematic cross-sectional view illustrating the crystal film 10 according to the first embodiment, and is a cross-sectional view taken along the line II-II in FIG. The crystal film 10 according to the first embodiment is used, for example, as a semiconductor film of a semiconductor device or the like. As shown in FIGS. 1 and 2, the crystal film 10 includes a crystal layer 11 and a crystal layer 12 located on the crystal layer 11. Note that the crystal film 10 shown in FIG. 1 may be, for example, a part of a disc-shaped crystal film. The crystal layer 11 is an example of a first crystal layer, and the crystal layer 12 is an example of a second crystal layer.
(結晶層11)
 結晶層11は、例えば、n型の半導体層である。結晶層11は、例えば、サファイア基板上でヘテロエピタキシャル成長したエピタキシャル成長膜である。結晶層11は、結晶性酸化物半導体を主成分として含む。なお、結晶性酸化物半導体は、結晶性酸化物の一例である。結晶層11は、サファイア基板上に設けられたバッファ層等の他の層を介して成長した膜であってもよい。
(Crystal layer 11)
The crystal layer 11 is, for example, an n-type semiconductor layer. The crystal layer 11 is, for example, an epitaxial growth film that is heteroepitaxially grown on a sapphire substrate. The crystal layer 11 contains a crystalline oxide semiconductor as a main component. Note that the crystalline oxide semiconductor is an example of a crystalline oxide. The crystal layer 11 may be a film grown on a sapphire substrate via another layer such as a buffer layer.
 結晶層11に含まれる結晶性酸化物半導体は、コランダム構造を有する。本実施形態では、前記結晶性酸化物半導体のa軸方向は、左右方向Xに沿っている。前記結晶性酸化物半導体のc軸方向は、前後方向Yに沿っている。前記結晶性酸化物半導体のm軸方向は、厚さ方向Zに沿っている。すなわち、結晶層11の主面の面方位は、法線が厚さ方向Zに沿う領域において、m面となる。なお、第1実施形態においては、左右方向Xをa軸方向、前後方向Yをc軸方向、厚さ方向をm軸方向ということがある。 The crystalline oxide semiconductor included in the crystal layer 11 has a corundum structure. In this embodiment, the a-axis direction of the crystalline oxide semiconductor is along the left-right direction X. The c-axis direction of the crystalline oxide semiconductor is along the front-back direction Y. The m-axis direction of the crystalline oxide semiconductor is along the thickness direction Z. That is, the plane orientation of the main surface of the crystal layer 11 is the m-plane in a region where the normal line is along the thickness direction Z. In the first embodiment, the left-right direction X is sometimes referred to as the a-axis direction, the front-rear direction Y is sometimes referred to as the c-axis direction, and the thickness direction is sometimes referred to as the m-axis direction.
 結晶層11に含まれる前記結晶性酸化物半導体は、ガリウムを含む。前記結晶性酸化物半導体は、ガリウムの他、例えば、アルミニウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウムから選ばれる1種または2種以上の金属を含む金属酸化物であってもよい。本開示の実施形態においては、前記結晶性酸化物半導体が、ガリウムの他に、さらに、アルミニウムおよびインジウムから選ばれる少なくとも1種の金属を含有するのも好ましく、α-Gaまたはその混晶であるのが最も好ましい。本開示によれば、例えば熱的に準安定相であるα-Gaまたはその混晶を用いた場合であっても、転位が低減された多層膜を得ることができる。 The crystalline oxide semiconductor included in the crystal layer 11 includes gallium. The crystalline oxide semiconductor is a metal oxide containing, in addition to gallium, one or more metals selected from, for example, aluminum, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, and iridium. There may be. In an embodiment of the present disclosure, it is also preferable that the crystalline oxide semiconductor further contains at least one metal selected from aluminum and indium in addition to gallium, and α-Ga 2 O 3 or a mixture thereof. Most preferably, it is crystalline. According to the present disclosure, a multilayer film with reduced dislocations can be obtained even when using α-Ga 2 O 3 or its mixed crystal, which is a thermally metastable phase, for example.
 なお、「主成分」とは、例えば、前記結晶性酸化物半導体がGaである場合、結晶層11中の全ての金属元素中におけるガリウムの原子比が0.5以上の割合で結晶層11中にGaが含まれることを意味する。本開示においては、結晶層11中の全ての金属元素中におけるガリウムの原子比が0.7以上であるのが好ましく、0.9以上であるのがより好ましい。結晶層11は、本実施形態では、単結晶であるが、多結晶であってもよい。 Note that the "main component" means, for example, when the crystalline oxide semiconductor is Ga 2 O 3 , the atomic ratio of gallium among all the metal elements in the crystal layer 11 is 0.5 or more. This means that the layer 11 contains Ga 2 O 3 . In the present disclosure, the atomic ratio of gallium among all metal elements in the crystal layer 11 is preferably 0.7 or more, and more preferably 0.9 or more. Although the crystal layer 11 is single crystal in this embodiment, it may be polycrystalline.
 結晶層11のキャリア密度は、ドーピング量を調節することにより、適宜設定することができる。結晶層11には、ドーパントが含まれているのが好ましい。前記ドーパントは、公知のものであってよい。本開示の実施形態においては、結晶層11がガリウムを含む結晶性酸化物半導体を主成分とする場合、前記ドーパントの好適な例としては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパントが挙げられる。本開示の実施形態においては、前記n型ドーパントが、Sn、GeまたはSiであるのが好ましい。ドーパントの含有量は、結晶層11の組成中、0.00001原子%以上であるのが好ましく、0.00001原子%~20原子%であるのがより好ましく、0.00001原子%~10原子%であるのが最も好ましい。より具体的には、ドーパントの濃度は、通常、約1×1016/cm~1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよい。 The carrier density of the crystal layer 11 can be appropriately set by adjusting the doping amount. Preferably, the crystal layer 11 contains a dopant. The dopant may be a known dopant. In the embodiment of the present disclosure, when the crystal layer 11 is mainly composed of a crystalline oxide semiconductor containing gallium, preferable examples of the dopant include tin, germanium, silicon, titanium, zirconium, vanadium, or Examples include n-type dopants such as niobium. In embodiments of the present disclosure, the n-type dopant is preferably Sn, Ge, or Si. The content of the dopant in the composition of the crystal layer 11 is preferably 0.00001 atomic% or more, more preferably 0.00001 atomic% to 20 atomic%, and 0.00001 atomic% to 10 atomic%. Most preferably. More specifically, the concentration of the dopant may typically be about 1×10 16 /cm 3 to 1×10 22 /cm 3 , and the concentration of the dopant may be, for example, about 1×10 17 /cm 3 . The concentration may be as low as 3 or less.
 結晶層11は、上面21(図2ご参照)に、例えば、a軸方向に配列されている凹凸部22を有する。凹凸部22は、ストライプ状であり、c軸方向(前後方向Y)に沿って延びる。凹凸部22は、凹部23と、凸部24と、を有する。凹部23と凸部24とは、相互に隣接している。隣接する凹部23および凸部24は、a軸方向(左右方向X)に沿って等間隔で連続している。なお、上面21は、結晶層11の主面のうち、上方の面を指す。 The crystal layer 11 has, on the upper surface 21 (see FIG. 2), uneven portions 22 arranged, for example, in the a-axis direction. The uneven portion 22 has a stripe shape and extends along the c-axis direction (front-back direction Y). The uneven portion 22 has a concave portion 23 and a convex portion 24 . The concave portion 23 and the convex portion 24 are adjacent to each other. Adjacent recesses 23 and protrusions 24 are continuous at equal intervals along the a-axis direction (left-right direction X). Note that the upper surface 21 refers to the upper surface of the main surface of the crystal layer 11.
 凹部23は、例えば、上面21にエッチング等によって形成される。この場合、前記凹凸部22は、マスクなどの他の材料を含むものではなく、結晶層11の一部を構成している(結晶層11と実質的に同じ材料で構成されている)。凹部23は、結晶層12が成長する複数の成長面を有する。凹部23は、当該成長面として、例えば、側面23a、23bおよび底面23cを有する。本実施形態では、側面23a、23bは、横方向成長の結晶成長面であり、底面23cは、縦方向成長の結晶成長面である。 The recess 23 is formed, for example, on the upper surface 21 by etching or the like. In this case, the uneven portion 22 does not include other materials such as a mask, but constitutes a part of the crystal layer 11 (constituted of substantially the same material as the crystal layer 11). The recess 23 has a plurality of growth surfaces on which the crystal layer 12 grows. The recess 23 has, for example, side surfaces 23a, 23b and a bottom surface 23c as the growth surfaces. In this embodiment, the side surfaces 23a and 23b are crystal growth surfaces for lateral growth, and the bottom surface 23c is a crystal growth surface for vertical growth.
 側面23a、23bは、前後方向Yおよび厚さ方向Zに拡がる平面である。側面23a、23bは、例えば、a面である。底面23cは、前後方向Yおよび左右方向Xに拡がる平面である。底面23cは、例えば、m面である。底面23cは、側面23aと、側面23bとの間に位置する。側面23aは、底面23cの左側に位置し、側面23bは、底面23cの右側に位置する。なお、本開示においては、側面23a、23bおよび底面23cは、上面21の一部である。図2では、底面23cと側面23aまたは側面23bとが繋がっている箇所は、角として示されているが、円弧等その他の形状であってもよい。 The side surfaces 23a and 23b are planes extending in the front-rear direction Y and the thickness direction Z. The side surfaces 23a and 23b are, for example, a-planes. The bottom surface 23c is a plane that extends in the front-rear direction Y and the left-right direction X. The bottom surface 23c is, for example, an m-plane. The bottom surface 23c is located between the side surface 23a and the side surface 23b. The side surface 23a is located on the left side of the bottom surface 23c, and the side surface 23b is located on the right side of the bottom surface 23c. Note that in the present disclosure, the side surfaces 23a, 23b and the bottom surface 23c are part of the top surface 21. In FIG. 2, the portion where the bottom surface 23c and the side surface 23a or the side surface 23b are connected is shown as a corner, but may have other shapes such as a circular arc.
 側面23aは、凸部24の上面25との角度θ1が60度以上であればよい。側面23aと上面25との角度θ1は、例えば、90度である。側面23bは、上面25との角度θ2が60度以上であればよい。側面23bと上面25との角度θ2は、例えば、90度である。なお、本実施形態では、上面21と底面23cとは、平行である。側面23a、23bと底面23cとの角度は、90度である。 The side surface 23a may have an angle θ1 of 60 degrees or more with the upper surface 25 of the convex portion 24. The angle θ1 between the side surface 23a and the top surface 25 is, for example, 90 degrees. The side surface 23b only needs to have an angle θ2 of 60 degrees or more with the top surface 25. The angle θ2 between the side surface 23b and the top surface 25 is, for example, 90 degrees. Note that in this embodiment, the top surface 21 and the bottom surface 23c are parallel. The angle between the side surfaces 23a, 23b and the bottom surface 23c is 90 degrees.
 凹部23の深さd1と凹部23の幅w1の比は、底面23cから厚さ方向Zに成長する縦方向成長膜の上端が結晶層12の上面より下方に位置する範囲内であることが好ましく、凹部23内に位置する範囲内であることがより好ましい。深さd1は、幅w1に対する比が0.125以上2.0未満となる値であることが好ましく、0.57以上2.0未満となる値であることがより好ましい。実施形態では、例えば、深さd1の幅w1に対する比は、0.57以上0.69以下の範囲内のいずれかの値以上であり、0.57以上0.69以下の範囲内の値であることがさらにより好ましい。 The ratio of the depth d1 of the recess 23 to the width w1 of the recess 23 is preferably within a range such that the upper end of the vertically grown film growing in the thickness direction Z from the bottom surface 23c is located below the upper surface of the crystal layer 12. , more preferably within the range located within the recess 23. The ratio of the depth d1 to the width w1 is preferably 0.125 or more and less than 2.0, more preferably 0.57 or more and less than 2.0. In the embodiment, for example, the ratio of the depth d1 to the width w1 is greater than or equal to any value within the range of 0.57 or more and 0.69 or less, and is a value within the range of 0.57 or more and 0.69 or less. Even more preferably.
 凹部23の深さd1は、0.5μm以上であることが好ましい。深さd1は、例えば、1.51μmである。深さd1は、厚さ方向Zにおける凹部23の上端から下端までの長さを指す。深さd1は、本実施形態においては、凸部24の高さに等しい。凹部23の幅w1は、深さd1との比に応じて適宜決められてよい。幅w1は、例えば、2.5μmである。幅w1は、凹部23の左端から右端までの左右方向Xに沿った長さを指す。幅w1は、相互に隣り合う凸部24の間の左右方向Xにおける距離に等しい。本実施形態では、幅w1の半分の長さを深さd1で割った値は、4より小さい。 The depth d1 of the recess 23 is preferably 0.5 μm or more. The depth d1 is, for example, 1.51 μm. The depth d1 refers to the length from the upper end to the lower end of the recess 23 in the thickness direction Z. In this embodiment, the depth d1 is equal to the height of the convex portion 24. The width w1 of the recess 23 may be determined as appropriate depending on the ratio to the depth d1. The width w1 is, for example, 2.5 μm. The width w1 refers to the length along the left-right direction X from the left end to the right end of the recessed portion 23. The width w1 is equal to the distance in the left-right direction X between the convex portions 24 adjacent to each other. In this embodiment, the value obtained by dividing half the length of the width w1 by the depth d1 is smaller than 4.
 凹部23の幅w1は、相互に隣り合う凹部23の間の左右方向Xにおける距離w2に対する比が1以上であることが好ましく、2以上であることがより好ましい。幅w1の距離w2に対する比は大きければ大きいほど好ましい。幅w1の値が大きければ大きい程、凹部23の数を減らすことができる。距離w2が短ければ短い程、凸部24の上に積層される結晶層12の量を減らすことができる。本実施形態では、例えば、幅w1の距離w2に対する比は10である。距離w2は、本実施形態では、凸部24の上面の左端から右端までの左右方向Xに沿った長さに等しい。距離w2は、短ければ短い程好ましい。 The ratio of the width w1 of the recesses 23 to the distance w2 in the left-right direction X between mutually adjacent recesses 23 is preferably 1 or more, and more preferably 2 or more. The larger the ratio of the width w1 to the distance w2, the better. The larger the value of the width w1, the more the number of recesses 23 can be reduced. The shorter the distance w2, the more the amount of crystal layer 12 stacked on the convex portion 24 can be reduced. In this embodiment, for example, the ratio of the width w1 to the distance w2 is 10. In this embodiment, the distance w2 is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 24. The shorter the distance w2, the better.
 凸部24は、例えば、凹部23が形成されなかった結晶層11の上端部分を指す。凸部24の側面は、凹部23の側面23a、23bと共通している。すなわち、側面23a、23bは、凸部24の側面として定義されてもよい。なお、上面21は、凸部24の上面25を含む。 The convex portion 24 refers to, for example, the upper end portion of the crystal layer 11 where the concave portion 23 is not formed. The side surfaces of the convex portion 24 are common to the side surfaces 23a and 23b of the recessed portion 23. That is, the side surfaces 23a and 23b may be defined as the side surfaces of the convex portion 24. Note that the upper surface 21 includes the upper surface 25 of the convex portion 24 .
 結晶層11は、ヘテロエピタキシャル成長したエピタキシャル成長膜である場合、厚さ方向Zに沿った転位を含み得る。当該転位は、図2に示されるように、結晶膜10を厚さ方向Zに切断した断面において、転位線26として観察され得る。結晶層11の断面は、複数の転位線26を含む。各転位線26は、例えば、結晶層11の下面27から凸部24の上面25や凹部23の底面23cまで連続し得る。なお、転位線26は、図2において模式的に直線で表されているが、概ね厚さ方向Zに沿っていればよく、少なくとも一部が傾斜していてもよく、少なくとも一部が曲線であってもよい。本開示では、各転位線、各結晶粒界、結晶層の境界および膜の境界等は、断面TEM(透過電子顕微鏡)像または断面SEM(走査電子顕微鏡)像等の公知の方法によって観察され得る。また、各転位線、各結晶粒界、結晶層の境界および膜の境界等は、線状の結晶欠陥として観察されてもよい。 When the crystal layer 11 is an epitaxially grown film grown by heteroepitaxial growth, it may include dislocations along the thickness direction Z. The dislocations can be observed as dislocation lines 26 in a cross section of the crystal film 10 taken in the thickness direction Z, as shown in FIG. The cross section of the crystal layer 11 includes a plurality of dislocation lines 26. Each dislocation line 26 may be continuous, for example, from the lower surface 27 of the crystal layer 11 to the upper surface 25 of the convex portion 24 or the bottom surface 23c of the concave portion 23. Although the dislocation line 26 is schematically shown as a straight line in FIG. 2, it is sufficient that it is generally along the thickness direction Z, and at least a portion thereof may be inclined, or at least a portion may be a curved line. There may be. In the present disclosure, each dislocation line, each grain boundary, boundary between crystal layers, boundary between films, etc. can be observed by a known method such as a cross-sectional TEM (transmission electron microscope) image or a cross-sectional SEM (scanning electron microscope) image. . Furthermore, each dislocation line, each grain boundary, each crystal layer boundary, each film boundary, etc. may be observed as linear crystal defects.
 結晶層11の厚さは、1μm以下であってもよいし、1μm以上であってもよい。本開示の実施形態においては、結晶層11の厚さが、1μm以上であるのが好ましく、3μm以上であるのが好ましい。結晶層11の厚さは、凹部23の深さd1より大きく、本実施形態では、1.51μmより厚い。なお、結晶層11の厚さは、本開示の実施形態において、結晶層11の下面27から上面25までの厚さ方向Zに沿った長さを指す。 The thickness of the crystal layer 11 may be 1 μm or less or 1 μm or more. In the embodiment of the present disclosure, the thickness of the crystal layer 11 is preferably 1 μm or more, and preferably 3 μm or more. The thickness of the crystal layer 11 is greater than the depth d1 of the recess 23, and in this embodiment is thicker than 1.51 μm. Note that the thickness of the crystal layer 11 refers to the length along the thickness direction Z from the lower surface 27 to the upper surface 25 of the crystal layer 11 in the embodiment of the present disclosure.
(結晶層12)
 結晶層12は、例えば、n型の半導体層である。結晶層12は、結晶層11の上に直接配されている。結晶層12は、結晶層11の凹凸部22と接する。結晶層12は、結晶層11と同じ導電型である。結晶層12は、例えば、結晶層11上でホモエピタキシャル成長膜したエピタキシャル成長膜である。結晶層12は、結晶性酸化物半導体を主成分として含む。なお、結晶性酸化物半導体は、結晶性酸化物の一例である。
(Crystal layer 12)
The crystal layer 12 is, for example, an n-type semiconductor layer. Crystal layer 12 is placed directly on crystal layer 11 . The crystal layer 12 is in contact with the uneven portions 22 of the crystal layer 11 . Crystal layer 12 has the same conductivity type as crystal layer 11. The crystal layer 12 is, for example, an epitaxially grown film that is homoepitaxially grown on the crystal layer 11 . The crystal layer 12 contains a crystalline oxide semiconductor as a main component. Note that the crystalline oxide semiconductor is an example of a crystalline oxide.
 結晶層12に含まれる結晶性酸化物半導体は、コランダム構造を有する。前記結晶性酸化物半導体は、結晶層11に含まれる結晶性酸化物半導体と同じ構造を有している。本実施形態では、結晶層12に含まれる前記結晶性酸化物半導体のa軸方向は、左右方向Xに沿っている。前記結晶性酸化物半導体のc軸方向は、前後方向Yに沿っている。前記結晶性酸化物半導体のm軸方向は、厚さ方向Zに沿っている。すなわち、結晶層12の主面の面方位は、法線が厚さ方向Zに沿う領域において、m面となる。 The crystalline oxide semiconductor included in the crystal layer 12 has a corundum structure. The crystalline oxide semiconductor has the same structure as the crystalline oxide semiconductor included in the crystal layer 11. In this embodiment, the a-axis direction of the crystalline oxide semiconductor included in the crystal layer 12 is along the left-right direction X. The c-axis direction of the crystalline oxide semiconductor is along the front-back direction Y. The m-axis direction of the crystalline oxide semiconductor is along the thickness direction Z. That is, the plane orientation of the main surface of the crystal layer 12 is the m-plane in a region where the normal line is along the thickness direction Z.
 結晶層12に含まれる前記結晶性酸化物半導体は、ガリウムを含む。前記結晶性酸化物半導体は、ガリウムの他、例えば、アルミニウム、インジウム、鉄、クロム、バナジウム、チタン、ロジウム、ニッケル、コバルトおよびイリジウムから選ばれる1種または2種以上の金属を含む金属酸化物であってもよい。前記結晶性酸化物半導体は、結晶層11に含まれる結晶性酸化物半導体と同じ金属酸化物であることが好ましい。本開示の実施形態においては、結晶層12に含まれる前記結晶性酸化物半導体が、ガリウムの他に、さらに、アルミニウムおよびインジウムから選ばれる少なくとも1種の金属を含有するのも好ましく、α-Gaまたはその混晶であるのが最も好ましい。本開示によれば、例えば熱的に準安定相であるα-Gaまたはその混晶を用いた場合であっても、転位が低減された多層膜を得ることができる。 The crystalline oxide semiconductor included in the crystal layer 12 includes gallium. The crystalline oxide semiconductor is a metal oxide containing, in addition to gallium, one or more metals selected from, for example, aluminum, indium, iron, chromium, vanadium, titanium, rhodium, nickel, cobalt, and iridium. There may be. The crystalline oxide semiconductor is preferably the same metal oxide as the crystalline oxide semiconductor contained in the crystal layer 11. In the embodiment of the present disclosure, it is preferable that the crystalline oxide semiconductor contained in the crystal layer 12 further contains at least one metal selected from aluminum and indium in addition to gallium. 2 O 3 or a mixed crystal thereof is most preferred. According to the present disclosure, a multilayer film with reduced dislocations can be obtained even when using α-Ga 2 O 3 or its mixed crystal, which is a thermally metastable phase, for example.
 なお、「主成分」とは、例えば、前記結晶性酸化物半導体がGaである場合、結晶層12中の全ての金属元素中におけるガリウムの原子比が0.5以上の割合で結晶層12中にGaが含まれることを意味する。本開示においては、結晶層12中の全ての金属元素中におけるガリウムの原子比が0.7以上であるのが好ましく、0.9以上であるのがより好ましい。結晶層12は、本実施形態では、単結晶であるが、多結晶であってもよい。 Note that the "main component" means, for example, when the crystalline oxide semiconductor is Ga 2 O 3 , the atomic ratio of gallium among all the metal elements in the crystal layer 12 is 0.5 or more. This means that the layer 12 contains Ga 2 O 3 . In the present disclosure, the atomic ratio of gallium among all metal elements in the crystal layer 12 is preferably 0.7 or more, and more preferably 0.9 or more. Although the crystal layer 12 is single crystal in this embodiment, it may be polycrystalline.
 結晶層12のキャリア密度は、ドーピング量を調節することにより、適宜設定することができる。結晶層12のキャリア密度は、結晶層11のキャリア密度と異なっていてもよいが、同程度であることが好ましい。結晶層12には、ドーパントが含まれているのが好ましい。前記ドーパントは、公知のものであってよい。前記ドーパントは、結晶層11に含まれるドーパントと異なっていてもよいが、同じであることが好ましい。本開示の実施形態においては、結晶層12がガリウムを含む結晶性酸化物半導体を主成分とする場合、前記ドーパントの好適な例としては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパントが挙げられる。本開示の実施形態においては、前記n型ドーパントが、Sn、GeまたはSiであるのが好ましい。ドーパントの含有量は、結晶層11の組成中、0.00001原子%以上であるのが好ましく、0.00001原子%~20原子%であるのがより好ましく、0.00001原子%~10原子%であるのが最も好ましい。より具体的には、ドーパントの濃度は、通常、約1×1016/cm~1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよい。 The carrier density of the crystal layer 12 can be appropriately set by adjusting the doping amount. Although the carrier density of the crystal layer 12 may be different from the carrier density of the crystal layer 11, it is preferable that the carrier density is about the same. Preferably, the crystal layer 12 contains a dopant. The dopant may be a known dopant. The dopant may be different from the dopant contained in the crystal layer 11, but is preferably the same. In the embodiment of the present disclosure, when the crystal layer 12 is mainly composed of a crystalline oxide semiconductor containing gallium, preferable examples of the dopant include tin, germanium, silicon, titanium, zirconium, vanadium, or Examples include n-type dopants such as niobium. In embodiments of the present disclosure, the n-type dopant is preferably Sn, Ge, or Si. The content of the dopant in the composition of the crystal layer 11 is preferably 0.00001 atomic% or more, more preferably 0.00001 atomic% to 20 atomic%, and 0.00001 atomic% to 10 atomic%. Most preferably. More specifically, the concentration of the dopant may typically be about 1×10 16 /cm 3 to 1×10 22 /cm 3 , and the concentration of the dopant may be, for example, about 1×10 17 /cm 3 . The concentration may be as low as 3 or less.
 図2に示されるように、結晶層12は、下面31が結晶層11の上面21と接合している。下面31および上面21は、結晶層12と結晶層11との界面でもある。結晶層12は、下面31に、上面21の凹凸部22に対応した形状である凹凸部32を有する。すなわち、凹凸部32は、ストライプ状であって、a軸方向に配列されている。凹凸部32は、凹凸部22と接している。凹凸部32は、凹部33と、凸部34と、を有する。結晶層12は、凹凸部32の他、結晶層11の凸部24の直上の領域43と、凸部34の直上の領域44と、を有する。なお、下面31は、結晶層12の主面のうち、下方の面を指す。 As shown in FIG. 2, the lower surface 31 of the crystal layer 12 is joined to the upper surface 21 of the crystal layer 11. The lower surface 31 and the upper surface 21 are also interfaces between the crystal layers 12 and 11. The crystal layer 12 has, on the lower surface 31, an uneven portion 32 having a shape corresponding to the uneven portion 22 on the upper surface 21. That is, the uneven portions 32 are striped and arranged in the a-axis direction. The uneven portion 32 is in contact with the uneven portion 22. The uneven portion 32 has a concave portion 33 and a convex portion 34 . In addition to the uneven portions 32 , the crystal layer 12 includes a region 43 directly above the convex portion 24 of the crystal layer 11 and a region 44 directly above the convex portion 34 . Note that the lower surface 31 refers to the lower surface of the main surface of the crystal layer 12.
 凹部33は、例えば、凸部34が形成される結果として形成される。凹部33の内部空間は、凸部24で埋まっている。凹部33の上に位置する結晶層12は、例えば、凸部24の上面25上で成長したエピタキシャル成長膜である。 The recess 33 is formed, for example, as a result of the formation of the protrusion 34. The inner space of the recess 33 is filled with the protrusion 24 . The crystal layer 12 located on the concave portion 33 is, for example, an epitaxial growth film grown on the upper surface 25 of the convex portion 24 .
 凸部34は、凹部23の内部空間に形成される。凸部34は、例えば、凹部23の成長面から成長したエピタキシャル成長膜である。このとき、凸部34は、横方向成長膜34a、34bと、縦方向成長膜34cと、を含む。横方向成長膜34aは、凹部23の側面23aから横方向(a軸方向)に成長した膜である。横方向成長膜34bは、凹部23の側面23bから横方向(a軸方向)に成長した膜である。横方向成長膜34aの成長の向きは、横方向成長膜34bの成長の向きと反対である。縦方向成長膜34cは、底面23cから厚さ方向Z(縦方向)に成長した膜であり、成長の向きは上向きである。 The convex portion 34 is formed in the internal space of the concave portion 23. The convex portion 34 is, for example, an epitaxially grown film grown from the growth surface of the concave portion 23 . At this time, the convex portion 34 includes horizontally grown films 34a and 34b and a vertically grown film 34c. The laterally grown film 34a is a film grown laterally (in the a-axis direction) from the side surface 23a of the recess 23. The laterally grown film 34b is a film grown laterally (in the a-axis direction) from the side surface 23b of the recess 23. The direction of growth of the laterally grown film 34a is opposite to the direction of growth of the laterally grown film 34b. The vertically grown film 34c is a film grown in the thickness direction Z (vertical direction) from the bottom surface 23c, and the growth direction is upward.
 凸部34は、凹部23内に横方向成長膜34aと横方向成長膜34bとの界面である結晶粒界37を含む。結晶粒界37は、凹部23より上方の結晶層12内において、転位38として現れることがある。図2には、結晶粒界37を示す線と連続して転位38を示す線が表されている。結晶粒界37と転位38の境界は、明確でなくともよいが、本実施形態では、便宜的に、厚さ方向Zにおける位置が凸部24の上面25と同じとする。 The convex portion 34 includes a grain boundary 37 within the concave portion 23, which is an interface between the laterally grown film 34a and the laterally grown film 34b. The grain boundaries 37 may appear as dislocations 38 in the crystal layer 12 above the recesses 23 . In FIG. 2, a line indicating the grain boundary 37 and a line indicating the dislocation 38 are shown continuously. Although the boundary between the grain boundary 37 and the dislocation 38 does not have to be clear, in this embodiment, for convenience, the position in the thickness direction Z is assumed to be the same as the upper surface 25 of the convex portion 24 .
 なお、結晶粒界37と転位38は、連続しておらずともよく、境界が結晶層12の上面近傍であってもよい。また、転位38がなくともよく、結晶粒界37が結晶層12の上面まで到達してもよい。また、転位38は、前後方向Yにおいて、連続していても、断続的であってもよい。なお、結晶粒界37および転位38は、図2において模式的に直線で表されているが、概ね厚さ方向Zに沿っていればよく、少なくとも一部が傾斜していてもよく、少なくとも一部が曲線であってもよい。結晶粒界37は、第3結晶欠陥の一例である。 Note that the grain boundaries 37 and dislocations 38 do not need to be continuous, and the boundaries may be near the top surface of the crystal layer 12. Furthermore, there may be no dislocations 38, and the grain boundaries 37 may reach the upper surface of the crystal layer 12. Furthermore, the dislocations 38 may be continuous or intermittent in the front-rear direction Y. Note that although the grain boundaries 37 and dislocations 38 are schematically represented as straight lines in FIG. The portion may be a curved line. The grain boundary 37 is an example of a third crystal defect.
 結晶粒界37は、左右方向Xにおける位置が凹部23内であればよい。結晶粒界37の左右方向Xおける位置は、横方向成長膜34aと横方向成長膜34bの成長速度に依存する。横方向成長膜34aの成長速度が横方向成長膜34bの成長速度より速ければ、結晶粒界37は、左右方向Xにおける凹部23の中央より側面23b側に位置する。横方向成長膜34aの成長速度が横方向成長膜34bの成長速度より遅ければ、結晶粒界37は、左右方向Xにおける凹部23の中央より側面23a側に位置する。横方向成長膜34aの成長速度が横方向成長膜34bと同程度であれば、結晶粒界37は、左右方向Xにおける凹部23の中央付近に位置する。 The grain boundary 37 may be located within the recess 23 in the left-right direction X. The position of the grain boundary 37 in the left-right direction X depends on the growth rate of the laterally grown film 34a and the laterally grown film 34b. If the growth rate of the laterally grown film 34a is faster than the growth rate of the laterally grown film 34b, the grain boundary 37 is located closer to the side surface 23b than the center of the recess 23 in the left-right direction X. If the growth rate of the laterally grown film 34a is slower than the growth rate of the laterally grown film 34b, the grain boundary 37 is located closer to the side surface 23a than the center of the recess 23 in the left-right direction X. If the growth rate of the laterally grown film 34a is comparable to that of the laterally grown film 34b, the grain boundary 37 will be located near the center of the recess 23 in the left-right direction X.
 凸部34は、凹部23内に横方向成長膜34a、34bと縦方向成長膜34cとの界面である結晶粒界39を含む。結晶粒界39は、厚さ方向Zから傾斜する傾斜部を有する。結晶粒界39は、横方向成長膜34aと縦方向成長膜34cとの界面である結晶粒界39aと、横方向成長膜34bと縦方向成長膜34cとの界面である結晶粒界39bと、を有する。なお、結晶粒界39、39a、39bは、それぞれ第2結晶欠陥の一例である。 The convex portion 34 includes a grain boundary 39 within the concave portion 23, which is an interface between the horizontally grown films 34a, 34b and the vertically grown film 34c. The grain boundary 39 has an inclined portion inclined from the thickness direction Z. The grain boundaries 39 include a grain boundary 39a that is an interface between the horizontally grown film 34a and the vertically grown film 34c, and a grain boundary 39b that is the interface between the horizontally grown film 34b and the vertically grown film 34c. has. Note that the grain boundaries 39, 39a, and 39b are each an example of a second crystal defect.
 結晶粒界39は、例えば凹部23の数に応じて、複数が左右方向X(横方向)に沿って並ぶ。結晶粒界39は、図2に示される断面において、三角形状である。結晶粒界39は、結晶粒界37の下端と繋がっている。本実施形態では、結晶粒界39の厚さ方向Zに沿った寸法は、例えば、左右方向Xに沿った寸法に対する比が0.57以上0.69以下の範囲内である。なお、結晶粒界39は、横方向(左右方向X)における両外側より内側が上方に位置する凸状部の一例である。結晶粒界37は、傾斜部より上方において、厚さ方向Zに沿って延びる部分の一例である。 A plurality of grain boundaries 39 are arranged along the left-right direction X (lateral direction), for example, depending on the number of recesses 23. The grain boundaries 39 have a triangular shape in the cross section shown in FIG. The grain boundary 39 is connected to the lower end of the grain boundary 37. In this embodiment, the ratio of the dimension of the grain boundary 39 along the thickness direction Z to the dimension along the left-right direction X is within a range of 0.57 or more and 0.69 or less, for example. Note that the grain boundary 39 is an example of a convex portion in which the inner side is located higher than both outer sides in the lateral direction (horizontal direction X). The grain boundary 37 is an example of a portion extending along the thickness direction Z above the inclined portion.
 結晶粒界39の左右方向Xに沿った寸法は、左右方向Xに並ぶ結晶粒界39のうち相互に隣り合う結晶粒界39の間の距離に対する比が1以上であることが好ましい。当該比は大きければ大きいほど好ましい。当該比が大きければ大きいほど、結晶粒界39の間に位置する転位線26の数を減らすことができる。本実施形態では、結晶粒界39の間の距離は、凹部23の距離w2と等しいが、距離w2より大きくてもよい。 The ratio of the dimension of the grain boundaries 39 along the left-right direction X to the distance between mutually adjacent grain boundaries 39 among the grain boundaries 39 arranged in the left-right direction X is preferably 1 or more. The larger the ratio, the better. The larger the ratio, the more the number of dislocation lines 26 located between grain boundaries 39 can be reduced. In this embodiment, the distance between the grain boundaries 39 is equal to the distance w2 of the recess 23, but may be larger than the distance w2.
 結晶粒界39a、39bは、図2に示されるように、厚さ方向Zに切断した断面において、線状に現れる。結晶粒界39aは、例えば、左端または下端が側面23aの下端または底面23cの左端に位置する。結晶粒界39aは、例えば、右端または上端が底面23cの左右方向Xにおける中央の直上に位置する。結晶粒界39bは、例えば、右端または下端が側面23bの下端または底面23cの右端に位置する。結晶粒界39bは、例えば、左端または上端が底面23cの左右方向Xにおける中央の直上に位置する。結晶粒界39aの右端または上端は、結晶粒界39bの左端または上端と繋がっている。なお、結晶粒界39は、図2において模式的に直線で表されているが、少なくとも一部が曲線であってもよい。結晶粒界39aと結晶粒界39bは、左右方向Xにおける傾きの向きが反対であるため、結晶粒界39は、三角形状となる。 As shown in FIG. 2, the grain boundaries 39a and 39b appear linearly in a cross section cut in the thickness direction Z. For example, the left end or lower end of the grain boundary 39a is located at the lower end of the side surface 23a or the left end of the bottom surface 23c. For example, the right end or the upper end of the grain boundary 39a is located directly above the center of the bottom surface 23c in the left-right direction X. For example, the right end or lower end of the grain boundary 39b is located at the lower end of the side surface 23b or the right end of the bottom surface 23c. For example, the left end or the upper end of the grain boundary 39b is located directly above the center of the bottom surface 23c in the left-right direction X. The right end or upper end of the grain boundary 39a is connected to the left end or upper end of the grain boundary 39b. Although the grain boundaries 39 are schematically shown as straight lines in FIG. 2, at least a portion thereof may be curved lines. Since the grain boundaries 39a and 39b have opposite inclinations in the left-right direction X, the grain boundaries 39 have a triangular shape.
 結晶粒界39aは、側面23aから右方に離れるほど上方に位置するように厚さ方向Zおよび左右方向Xに対して傾斜する。結晶粒界39bは、側面23bから左方に離れるほど上方に位置するように厚さ方向Zおよび左右方向Xに対して傾斜する。本実施形態では、結晶粒界39a、39b全体が傾斜部であるが、結晶粒界39a、39bの一部が傾斜部であってもよい。すなわち、結晶粒界39a、39bの一部は、厚さ方向Zまたは左右方向Xに沿って延びてもよい。本実施形態では、傾斜部は、a軸方向から傾斜している。なお、結晶粒界39は、複数の傾斜部を含む。本実施形態では、結晶粒界39は、2つの傾斜部を含む。 The grain boundaries 39a are inclined with respect to the thickness direction Z and the left-right direction X so that the farther to the right from the side surface 23a, the higher the grain boundaries are located. The grain boundaries 39b are inclined with respect to the thickness direction Z and the left-right direction X so that they are located higher as they leave the side surface 23b to the left. In this embodiment, the entire grain boundaries 39a, 39b are sloped portions, but a portion of the grain boundaries 39a, 39b may be sloped portions. That is, a portion of the grain boundaries 39a, 39b may extend along the thickness direction Z or the left-right direction X. In this embodiment, the inclined portion is inclined from the a-axis direction. Note that the grain boundary 39 includes a plurality of inclined parts. In this embodiment, the grain boundary 39 includes two inclined parts.
 結晶粒界39aは、厚さ方向Zからの傾斜角θ3を有する。傾斜角θ3は、例えば、横方向成長膜34aの成長速度と縦方向成長膜34cの成長速度との比と相関する。例えば、横方向成長膜34aの成長速度が縦方向成長膜34cの成長速度より速いとき、傾斜角θ3は45度より大きくなる。横方向成長膜34aの成長速度が縦方向成長膜34cの成長速度より遅いとき、傾斜角θ3は45度より小さくなる。横方向成長膜34aの成長速度が縦方向成長膜34cの成長速度と同じとき、傾斜角θ3は約45度となる。本実施形態では、傾斜角θ3は、約36度~42度である。 The grain boundaries 39a have an inclination angle θ3 from the thickness direction Z. The inclination angle θ3 correlates, for example, with the ratio of the growth rate of the horizontally grown film 34a to the growth rate of the vertically grown film 34c. For example, when the growth rate of the horizontally grown film 34a is faster than the growth rate of the vertically grown film 34c, the inclination angle θ3 becomes greater than 45 degrees. When the growth rate of the horizontally grown film 34a is slower than the growth rate of the vertically grown film 34c, the inclination angle θ3 becomes smaller than 45 degrees. When the growth rate of the horizontally grown film 34a is the same as the growth rate of the vertically grown film 34c, the inclination angle θ3 is about 45 degrees. In this embodiment, the inclination angle θ3 is about 36 degrees to 42 degrees.
 結晶粒界39bは、厚さ方向Zからの傾斜角θ4を有する。傾斜角θ4は、例えば、横方向成長膜34bの成長速度と縦方向成長膜34cの成長速度との比と相関する。例えば、横方向成長膜34bの成長速度が縦方向成長膜34cの成長速度より速いとき、傾斜角θ4は45度より大きくなる。横方向成長膜34bの成長速度が縦方向成長膜34cの成長速度より遅いとき、傾斜角θ4は45度より小さくなる。横方向成長膜34bの成長速度が縦方向成長膜34cの成長速度と同じとき、傾斜角θ4は約45度となる。本実施形態では、傾斜角θ4は、約36度~42度である。 The grain boundaries 39b have an inclination angle θ4 from the thickness direction Z. The inclination angle θ4 correlates, for example, with the ratio of the growth rate of the horizontally grown film 34b and the growth rate of the vertically grown film 34c. For example, when the growth rate of the horizontally grown film 34b is faster than the growth rate of the vertically grown film 34c, the inclination angle θ4 is greater than 45 degrees. When the growth rate of the horizontally grown film 34b is slower than the growth rate of the vertically grown film 34c, the inclination angle θ4 is smaller than 45 degrees. When the growth rate of the horizontally grown film 34b is the same as the growth rate of the vertically grown film 34c, the inclination angle θ4 is about 45 degrees. In this embodiment, the tilt angle θ4 is about 36 degrees to 42 degrees.
 縦方向成長膜34cは、厚さ方向Zに沿った転位を含み得る。当該転位は、例えば、結晶層11の厚さ方向Zに沿った転位(図2の転位線26)を引き継いだものである。図2に示されるように、縦方向成長膜34cの転位は、結晶膜10を厚さ方向Zに切断した断面において、転位線41として観察され得る。縦方向成長膜34cの断面は、転位線41を含む。本実施形態では、転位線41は、複数が凹部23内に位置する。縦方向成長膜34cは、図2に示される断面において、三角形状である。なお、転位線41は、第1結晶欠陥の一例である。 The vertically grown film 34c may include dislocations along the thickness direction Z. The dislocations are, for example, inherited dislocations along the thickness direction Z of the crystal layer 11 (dislocation lines 26 in FIG. 2). As shown in FIG. 2, dislocations in the vertically grown film 34c can be observed as dislocation lines 41 in a cross section of the crystal film 10 taken in the thickness direction Z. The cross section of the vertically grown film 34c includes dislocation lines 41. In this embodiment, a plurality of dislocation lines 41 are located within the recess 23 . The vertically grown film 34c has a triangular shape in the cross section shown in FIG. Note that the dislocation line 41 is an example of a first crystal defect.
 転位線41は、下端が凸部34の下端に位置する。転位線41の上端は、例えば、結晶粒界39と繋がっている。転位線41の上端は、結晶粒界39と繋がっておらずともよく、結晶粒界39より下方に位置してもよい。 The lower end of the dislocation line 41 is located at the lower end of the convex portion 34. The upper end of the dislocation line 41 is connected to the grain boundary 39, for example. The upper end of the dislocation line 41 may not be connected to the grain boundary 39 and may be located below the grain boundary 39.
 凸部24の直上の領域43は、例えば、凸部24の上面25から成長したエピタキシャル成長膜である。領域43の左端から右端までの左右方向Xに沿った長さは、凸部24の上面の左端から右端までの左右方向Xに沿った長さに等しい。領域43は、縦方向に成長した膜である。領域43は、厚さ方向Zに沿った転位を含み得る。当該転位は、例えば、結晶層11の厚さ方向Zに沿った転位(図2の転位線26)を引き継いだものである。図2に示されるように、領域43の転位は、結晶膜10を厚さ方向Zに切断した断面において、転位線42として観察され得る。領域43の断面は、図2において、転位線42が1本のみ表されているが、複数の転位線42を含んでいてもよい。 The region 43 directly above the convex portion 24 is, for example, an epitaxially grown film grown from the upper surface 25 of the convex portion 24. The length of the region 43 along the left-right direction X from the left end to the right end is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 24 . Region 43 is a vertically grown film. The region 43 may include dislocations along the thickness direction Z. The dislocations are, for example, inherited dislocations along the thickness direction Z of the crystal layer 11 (dislocation lines 26 in FIG. 2). As shown in FIG. 2, the dislocations in the region 43 can be observed as dislocation lines 42 in a cross section of the crystal film 10 taken in the thickness direction Z. Although only one dislocation line 42 is shown in the cross section of the region 43 in FIG. 2, it may include a plurality of dislocation lines 42.
 なお、転位線41、42は、転位線26と連続していてもしておらずともよい。転位線41、42は、図2において模式的に直線で表されているが、概ね厚さ方向Zに沿っていればよく、少なくとも一部が傾斜していてもよく、少なくとも一部が曲線であってもよい。 Note that the dislocation lines 41 and 42 may or may not be continuous with the dislocation line 26. Although the dislocation lines 41 and 42 are schematically shown as straight lines in FIG. 2, they only need to be approximately along the thickness direction Z, and may be at least partly inclined, or at least partly curved. There may be.
 凸部34の直上の領域44は、例えば、結晶層11の上面21から成長したエピタキシャル成長膜である。領域44の左端から右端までの左右方向Xに沿った長さは、凹部23の幅w1に等しい。 The region 44 directly above the convex portion 34 is, for example, an epitaxially grown film grown from the upper surface 21 of the crystal layer 11. The length of the region 44 from the left end to the right end along the left-right direction X is equal to the width w1 of the recess 23.
 結晶層12の厚さは、1μm以下であってもよいし、1μm以上であってもよい。本開示の実施形態においては、結晶層12の厚さが、1μm以上であるのが好ましく、3μm以上であるのが好ましい。結晶層12の厚さは、凹部33の深さ、すなわち凹部23の深さd1より大きい方が好ましく、本実施形態では、1.51μmより厚い。なお、結晶層12の厚さは、本開示の実施形態において、凸部34の下端から結晶層12の上面までの厚さ方向Zに沿った長さを指す。 The thickness of the crystal layer 12 may be 1 μm or less, or 1 μm or more. In the embodiment of the present disclosure, the thickness of the crystal layer 12 is preferably 1 μm or more, and preferably 3 μm or more. The thickness of the crystal layer 12 is preferably larger than the depth of the recess 33, that is, the depth d1 of the recess 23, and in this embodiment, it is thicker than 1.51 μm. Note that the thickness of the crystal layer 12 refers to the length along the thickness direction Z from the lower end of the convex portion 34 to the upper surface of the crystal layer 12 in the embodiment of the present disclosure.
 このような構成によれば、厚さ方向Zに沿って延びる転位が低減された結晶膜とすることができる。横方向成長膜34aと横方向成長膜34bとが会合することができる。横方向成長膜34aと横方向成長膜34bとが凹部23内で会合することができるため、横方向成長膜34aと横方向成長膜34bとが結晶層12内で会合しないおそれが抑制される。また、縦方向成長膜34cの体積を減らすことができる。縦方向成長膜34cをホモエピタキシャル成長膜とすることができる。 According to such a configuration, it is possible to obtain a crystal film in which dislocations extending along the thickness direction Z are reduced. The laterally grown film 34a and the laterally grown film 34b may be combined. Since the laterally grown film 34a and the laterally grown film 34b can meet within the recess 23, the possibility that the laterally grown film 34a and the laterally grown film 34b will not come together within the crystal layer 12 is suppressed. Furthermore, the volume of the vertically grown film 34c can be reduced. The vertically grown film 34c can be a homoepitaxially grown film.
 横方向成長膜34aと縦方向成長膜34cとの界面である結晶粒界39aおよび横方向成長膜34bと縦方向成長膜34cとの界面である結晶粒界39bが連続し得る。結晶粒界39は、縦方向成長膜34cの全体を覆うように形成されることができる。結晶層11の転位線26が、縦方向成長膜34cの転位線41を引き起こしたとしても、厚さ方向Zに沿って延びる転位線が横方向成長膜34a、34b内に引き起こされることを抑制することができる。また、厚さ方向Zに沿って延びる転位が凸部34の直上の領域44に発生することを抑制することができる。 The grain boundary 39a, which is the interface between the horizontally grown film 34a and the vertically grown film 34c, and the grain boundary 39b, which is the interface between the horizontally grown film 34b and the vertically grown film 34c, can be continuous. The grain boundaries 39 may be formed to cover the entire vertically grown film 34c. Even if the dislocation lines 26 of the crystal layer 11 cause the dislocation lines 41 of the vertically grown film 34c, dislocation lines extending along the thickness direction Z are suppressed from being caused in the horizontally grown films 34a, 34b. be able to. Furthermore, it is possible to suppress the occurrence of dislocations extending along the thickness direction Z in the region 44 directly above the convex portion 34 .
 このような構成によれば、結晶層11の凸部24の数を比較的少ないものとすることができ、結晶層12の領域43を減らすことができる。凸部24の幅を狭くすることで、領域43の幅を狭くすることができる。結晶層12に発生し得る転位線42の数を減らすことができる。 According to such a configuration, the number of convex portions 24 of the crystal layer 11 can be made relatively small, and the region 43 of the crystal layer 12 can be reduced. By narrowing the width of the convex portion 24, the width of the region 43 can be narrowed. The number of dislocation lines 42 that may occur in the crystal layer 12 can be reduced.
 このような構成によれば、凹部23と上下に重なる位置の転位線26および転位線41の上端を、結晶層11の上端である凸部24の上面25より下方に位置させることができる。 According to such a configuration, the upper ends of the dislocation lines 26 and 41 that vertically overlap the recesses 23 can be located below the upper surface 25 of the protrusion 24 that is the upper end of the crystal layer 11.
 このような構成によれば、結晶膜10がSiO2等のマスクを含まない半導体層として、半導体装置等に利用されることができる。また、結晶膜10が利用された半導体装置のデバイス特性を優れたものとすることができる。 According to such a configuration, the crystal film 10 can be used in semiconductor devices and the like as a semiconductor layer that does not include a mask such as SiO2. Further, the device characteristics of a semiconductor device using the crystal film 10 can be improved.
(結晶膜10の製造方法)
 以下、図3~図6を参照して、結晶膜10の製造方法の一例を説明する。図3は、結晶膜10の製造方法の概要を例示する図である。
(Method for manufacturing crystal film 10)
An example of a method for manufacturing the crystal film 10 will be described below with reference to FIGS. 3 to 6. FIG. 3 is a diagram illustrating an outline of a method for manufacturing the crystal film 10.
 図3に示されるように、結晶膜10の製造方法は、例えば、基板13上に結晶層11を形成する工程S1と、結晶層11の上面21に凹凸部22を形成する工程S2と、結晶層11の上面21上に結晶層12を形成する工程S3と、基板13を除去する工程S4と、を含む。 As shown in FIG. 3, the method for manufacturing the crystal film 10 includes, for example, a step S1 of forming the crystal layer 11 on the substrate 13, a step S2 of forming the uneven portion 22 on the upper surface 21 of the crystal layer 11, and a step S2 of forming the uneven portion 22 on the upper surface 21 of the crystal layer 11. The method includes a step S3 of forming the crystal layer 12 on the upper surface 21 of the layer 11, and a step S4 of removing the substrate 13.
 図4に示されるように、工程S1において、結晶層11は、例えば、ミストCVD法によって基板13に積層される。なお、結晶層11は、公知の方法によって基板13に積層されてもよい。結晶層11の形成手段としては、ミストCVD法の他、例えば、CVD法、MOCVD法、MOVPE法、ミスト・エピタキシー法、MBE法、HVPE法、パルス成長法またはALD法などが挙げられる。本開示の実施形態においては、結晶層11の形成手段が、ミストCVD法またはミスト・エピタキシー法であるのが好ましい。ミストCVD法またはミスト・エピタキシー法では、例えば、原料溶液を霧化し(霧化工程)、液滴を浮遊させ、霧化後、得られた霧化液滴をキャリアガスでもって基体上まで搬送し(搬送工程)、ついで、前記基体近傍で前記霧化液滴を熱反応させることによって、コランダム構造を有し、ガリウムを含む結晶性酸化物半導体を主成分として含む半導体膜を基板13に積層する(成膜工程)ことにより結晶層11を形成する。 As shown in FIG. 4, in step S1, the crystal layer 11 is laminated on the substrate 13 by, for example, a mist CVD method. Note that the crystal layer 11 may be laminated on the substrate 13 by a known method. Examples of methods for forming the crystal layer 11 include, in addition to the mist CVD method, a CVD method, MOCVD method, MOVPE method, mist epitaxy method, MBE method, HVPE method, pulse growth method, or ALD method. In the embodiment of the present disclosure, it is preferable that the method for forming the crystal layer 11 is a mist CVD method or a mist epitaxy method. In the mist CVD method or the mist epitaxy method, for example, a raw material solution is atomized (atomization step), droplets are suspended, and after atomization, the resulting atomized droplets are transported onto the substrate using a carrier gas. (Transportation step) Next, by thermally reacting the atomized droplets near the substrate, a semiconductor film having a corundum structure and containing a crystalline oxide semiconductor containing gallium as a main component is laminated on the substrate 13. (Film forming process) A crystal layer 11 is formed by this.
 基板13は、例えば、板状のサファイア基板である。基板13は、半導体膜を支持できるものであればよい。基板13は、絶縁体基板であってもよいし、半導体基板であってもよいし、金属基板や導電性基板であってもよいが、基板13が、絶縁体基板であるのが好ましく、また、表面に金属膜を有する基板であるのも好ましい。基板13としては、例えば、コランダム構造を有する基板材料を主成分として含む下地基板、またはβ-ガリア構造を有する基板材料を主成分として含む下地基板、六方晶構造を有する基板材料を主成分として含む下地基板などが挙げられる。ここで、「主成分」とは、前記特定の結晶構造を有する基板材料が、原子比で、基板材料の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよい。 The substrate 13 is, for example, a plate-shaped sapphire substrate. The substrate 13 may be any substrate as long as it can support the semiconductor film. Although the substrate 13 may be an insulating substrate, a semiconductor substrate, a metal substrate, or a conductive substrate, it is preferable that the substrate 13 is an insulating substrate. It is also preferable that the substrate has a metal film on its surface. The substrate 13 may be, for example, a base substrate containing a substrate material having a corundum structure as a main component, a base substrate containing a substrate material having a β-gallium structure as a main component, or a base substrate containing a substrate material having a hexagonal structure as a main component. Examples include a base substrate. Here, the term "main component" means that the substrate material having the specific crystal structure preferably accounts for 50% or more, more preferably 70% or more, and still more preferably 90% of the total components of the substrate material in terms of atomic ratio. % or more, and may be 100%.
 基板材料は、公知のものであってよい。前記のコランダム構造を有する基板材料としては、例えば、α-Al(サファイア基板)またはα-Gaが好適に挙げられ、a面サファイア基板、m面サファイア基板、r面サファイア基板、c面サファイア基板や、α型酸化ガリウム基板(a面、m面またはr面)などがより好適な例として挙げられる。β-ガリア構造を有する基板材料を主成分とする下地基板としては、例えばβ-Ga基板、又はGaとAlとを含みAlが0wt%より多くかつ60wt%以下である混晶体基板などが挙げられる。また、六方晶構造を有する基板材料を主成分とする下地基板としては、例えば、SiC基板、ZnO基板、GaN基板などが挙げられる。 The substrate material may be any known material. As the substrate material having the corundum structure, for example, α-Al 2 O 3 (sapphire substrate) or α-Ga 2 O 3 is preferably mentioned, and a-plane sapphire substrate, m-plane sapphire substrate, r-plane sapphire substrate More preferable examples include a c-plane sapphire substrate, an α-type gallium oxide substrate (a-plane, m-plane, or r-plane). As a base substrate mainly composed of a substrate material having a β-Galia structure, for example, a β-Ga 2 O 3 substrate, or a substrate containing Ga 2 O 3 and Al 2 O 3 and containing more than 0 wt% of Al 2 O 3 and Examples include a mixed crystal substrate having a content of 60 wt% or less. Further, examples of the base substrate mainly composed of a substrate material having a hexagonal crystal structure include a SiC substrate, a ZnO substrate, and a GaN substrate.
 基板13は、直径が2インチ以上または4インチ以上であることが好ましい。基板13の面積は、約15.9cm以上または約31.9cmcm以上であることが好ましい。 Preferably, the substrate 13 has a diameter of 2 inches or more, or 4 inches or more. Preferably, the area of the substrate 13 is about 15.9 cm 2 or more or about 31.9 cm 2 or more.
 図5に示されるように、工程S2において、凹凸部22は、例えば、基板13に積層された結晶層11の上面21にエッチング等により形成される。凹凸部22の形成方法としては、例えば、公知のフォトリソグラフィ技術を用いて、ストライプ状でありa軸方向に配列した凹凸形状となるようにパターン化し、エッチングすることが挙げられる。エッチングとしては、ドライエッチングやウェットエッチング等が挙げられる。なお、凹凸部22の形成方法は、その他の公知の手段であってもよく、例えば、電子ビームリソグラフィー、レーザーパターニング、その後のエッチング(例えばドライエッチングまたはウェットエッチング等)などの公知のパターニング加工手段であってもよい。また、結晶層11の材料と同じ材料で凸部24を形成して凹凸部22を形成してもよいが、凹部23を形成することによって、凹凸部22を形成することが好ましい。工程S2は、コランダム構造を有し、ガリウムを含む結晶性酸化物を含む第1結晶層の主面にストライプ状の凹凸をa軸方向に配列することの一例である。 As shown in FIG. 5, in step S2, the uneven portion 22 is formed, for example, on the upper surface 21 of the crystal layer 11 stacked on the substrate 13 by etching or the like. As a method for forming the uneven portion 22, for example, using a known photolithography technique, patterning is performed so as to have a striped uneven shape arranged in the a-axis direction, and then etching is performed. Examples of etching include dry etching and wet etching. Note that the uneven portion 22 may be formed by other known means, such as known patterning means such as electron beam lithography, laser patterning, and subsequent etching (for example, dry etching or wet etching). There may be. Further, although the convex portions 24 may be formed of the same material as the crystal layer 11 to form the concave and convex portions 22, it is preferable to form the concave and convex portions 22 by forming the concave portions 23. Step S2 is an example of arranging striped depressions and depressions in the a-axis direction on the main surface of the first crystal layer that has a corundum structure and includes a crystalline oxide containing gallium.
 本実施形態では、例えば、深さd1の幅w1に対する比が0.57以上0.69以下の範囲内となるように、凹部23が形成される。 In this embodiment, the recess 23 is formed such that, for example, the ratio of the depth d1 to the width w1 is within the range of 0.57 or more and 0.69 or less.
 図6に示されるように、工程S3において、結晶層12は、例えばミストCVD法によって、凹凸部22が形成された結晶層11に積層される。結晶層12は、結晶層11と同じ方法で積層されることができる。なお、結晶層12は、結晶層11と同様に公知の前記形成手段によって結晶層11に積層されてもよい。結晶層12は、例えば、結晶層11と同じ材料で同じ組成に形成される。結晶層12は、例えば、結晶層11と同じ導電型であり、n型に形成される。 As shown in FIG. 6, in step S3, the crystal layer 12 is laminated on the crystal layer 11 on which the uneven portions 22 are formed, for example, by a mist CVD method. Crystal layer 12 can be stacked in the same way as crystal layer 11. Note that, like the crystal layer 11, the crystal layer 12 may be laminated on the crystal layer 11 by the known forming means. The crystal layer 12 is formed of the same material and composition as the crystal layer 11, for example. The crystal layer 12 has the same conductivity type as the crystal layer 11, for example, and is formed to be n-type.
 工程S3において、結晶層11の凹部23の内部空間に凸部34が結晶層12として形成される。これにより、結晶層12の下面31に凹凸部32が、結晶層11の凹凸部22の形状に応じて形成される。 In step S3, a convex portion 34 is formed as the crystal layer 12 in the internal space of the concave portion 23 of the crystal layer 11. As a result, uneven portions 32 are formed on the lower surface 31 of the crystal layer 12 in accordance with the shape of the uneven portions 22 of the crystal layer 11 .
 このとき、凸部34の横方向成長膜34aは、凹部23の側面23aから右方へ、凸部34の横方向成長膜34bは、凹部23の側面23bから左方へ、凸部34の縦方向成長膜34cは凹部23の底面23cから上方へ、それぞれ成長する。横方向成長膜34a、34bおよび縦方向成長膜34cが異なる成長面から同時に成長することによって、結晶粒界39aが横方向成長膜34aと縦方向成長膜34cとの間に、結晶粒界39bが横方向成長膜34bと縦方向成長膜34cとの間にそれぞれ生じる。 At this time, the lateral growth film 34a of the convex portion 34 moves from the side surface 23a of the concave portion 23 to the right, and the lateral growth film 34b of the convex portion 34 moves from the side surface 23b of the concave portion 23 to the left, The directional growth films 34c grow upward from the bottom surface 23c of the recess 23, respectively. By simultaneously growing the laterally grown films 34a, 34b and the vertically grown film 34c from different growth surfaces, the grain boundary 39a is formed between the laterally grown film 34a and the vertically grown film 34c, and the grain boundary 39b is formed between the laterally grown film 34a and the vertically grown film 34c. These are generated between the horizontally grown film 34b and the vertically grown film 34c.
 横方向成長膜34a、34bは、縦方向成長膜34cから成長しないので、転位線41(図2ご参照)の上端が結晶粒界39と繋がるまたは結晶粒界39の下方に位置するようにすることができる。 Since the horizontally grown films 34a and 34b do not grow from the vertically grown film 34c, the upper end of the dislocation line 41 (see FIG. 2) should be connected to the grain boundary 39 or located below the grain boundary 39. be able to.
 前述のとおり、結晶粒界39aの傾斜角θ3は、横方向成長膜34aの成長速度と縦方向成長膜34cの成長速度との比と相関する。本実施形態では、縦方向成長膜34cの成長速度より横方向成長膜34aの成長速度の方が速いため、傾斜角θ3は、45度より大きくなる。結晶粒界39bの傾斜角θ4は、傾斜角θ3と同様に、縦方向成長膜34cの成長速度より横方向成長膜34bの成長速度の方が速いため、傾斜角θ4は、45度より大きくなる。結晶粒界39は、横方向(左右方向X)における両外側より内側が上方に位置する凸状部となる。結晶粒界39aと結晶粒界39bは、左右方向Xにおける傾きの向きが反対であるため、結晶粒界39は、三角形状となる。 As described above, the inclination angle θ3 of the grain boundary 39a correlates with the ratio of the growth rate of the horizontally grown film 34a to the growth rate of the vertically grown film 34c. In this embodiment, since the growth rate of the horizontally grown film 34a is faster than the growth rate of the vertically grown film 34c, the inclination angle θ3 is larger than 45 degrees. Similar to the inclination angle θ3, the inclination angle θ4 of the grain boundary 39b is larger than 45 degrees because the growth rate of the horizontally grown film 34b is faster than the growth rate of the vertically grown film 34c. . The grain boundaries 39 are convex portions in which the inner side is located higher than both the outer sides in the lateral direction (horizontal direction X). Since the grain boundaries 39a and 39b have opposite inclinations in the left-right direction X, the grain boundaries 39 have a triangular shape.
 縦方向成長膜34cは、側面23a、23bから離れる程、厚さ方向Zに沿った長さが大きくなる、すなわち厚さが増すため、結晶粒界39a、39bにそれぞれ傾斜部が形成される。縦方向成長膜34cは、底面23cから成長する際、結晶層11の転位線26に起因して転位線41が形成されることがある。 Since the length of the vertically grown film 34c along the thickness direction Z increases, that is, the thickness increases as the distance from the side surfaces 23a and 23b increases, inclined portions are formed at the grain boundaries 39a and 39b, respectively. When the vertically grown film 34c grows from the bottom surface 23c, dislocation lines 41 may be formed due to the dislocation lines 26 of the crystal layer 11.
 横方向成長膜34aと横方向成長膜34bとは、同時に左右方向Xに沿って成長する。横方向成長膜34aの左右方向Xに沿った成長の幅は、横方向成長膜34aの成長速度と横方向成長膜34bの成長速度との比と相関する。本実施形態では、横方向成長膜34aの成長速度と横方向成長膜34bの成長速度が同程度であるため、横方向成長膜34aの左右方向Xに沿った成長の幅は、横方向成長膜34bの左右方向Xに沿った成長の幅と同程度となり、凹部23の幅w1の半分程度となる。横方向成長膜34aと横方向成長膜34bとは、このとき、凹部23の内部空間内で会合する。 The lateral growth film 34a and the lateral growth film 34b grow along the left-right direction X at the same time. The width of growth of the laterally grown film 34a along the left-right direction X correlates with the ratio of the growth rate of the laterally grown film 34a to the growth rate of the laterally grown film 34b. In this embodiment, since the growth rate of the laterally grown film 34a and the growth rate of the laterally grown film 34b are approximately the same, the width of the growth of the laterally grown film 34a in the left-right direction The width is about the same as the growth width of the groove 34b in the left-right direction X, and about half the width w1 of the recess 23. At this time, the laterally grown film 34a and the laterally grown film 34b meet within the internal space of the recess 23.
 なお、結晶層12が形成された後、結晶層12の上面が平らとなるように研磨等の公知の手段が用いられてもよい。 Note that after the crystal layer 12 is formed, known means such as polishing may be used to make the upper surface of the crystal layer 12 flat.
 工程S4において、基板13が除去され、図2に示される結晶膜10となる。基板13の除去は、研磨等の公知の手段が用いられる。 In step S4, the substrate 13 is removed, resulting in the crystal film 10 shown in FIG. 2. The substrate 13 is removed by known means such as polishing.
 このような製造方法によれば、上述の結晶膜10を製造することができる。結晶層12の形成の際、SiO2等のマスクを用いないので、結晶膜内のマスクを除去する必要がない。前記マスクを除去に伴う各結晶層の一部損失がないので、当該マスクが用いられる場合と比較して歩留まりに優れる。 According to such a manufacturing method, the above-described crystal film 10 can be manufactured. Since a mask such as SiO2 is not used when forming the crystal layer 12, there is no need to remove the mask inside the crystal film. Since there is no partial loss of each crystal layer due to the removal of the mask, the yield is superior compared to the case where the mask is used.
 また、ある成長速度でa軸方向に沿って成長する横方向成長膜34aと横方向成長膜34bとが会合することができる。 Furthermore, the laterally grown film 34a and the laterally grown film 34b, which grow along the a-axis direction at a certain growth rate, can come together.
 凸部24の直上の左右方向Xに沿った幅を狭くすることができるので、凸部24の左右方向Xに沿った幅を短くすることができる。これにより、結晶層12が形成される際、凸部24内の転位線26に起因する転位線42の出現数を減らすことができる。また、形成後であって上面が平らにされる前の結晶層12において、凸部24上の結晶層12の上端の厚さ方向Zにおける位置と凹部23上の結晶層12の上面の下端の厚さ方向Zにおける位置との差が大きくなることを抑制することができる。 Since the width along the left-right direction X directly above the convex portion 24 can be narrowed, the width of the convex portion 24 along the left-right direction X can be shortened. Thereby, when the crystal layer 12 is formed, it is possible to reduce the number of dislocation lines 42 that appear due to the dislocation lines 26 in the convex portions 24. In addition, in the crystal layer 12 after formation and before the top surface is flattened, the position in the thickness direction Z of the top end of the crystal layer 12 on the convex portion 24 and the bottom end of the top surface of the crystal layer 12 on the concave portion 23 are also determined. It is possible to suppress the difference from the position in the thickness direction Z from increasing.
 このような製造方法によれば、縦方向成長膜34c内の転位線41の数を抑制することができる。 According to such a manufacturing method, the number of dislocation lines 41 in the vertically grown film 34c can be suppressed.
(第2実施形態)
 上記第1実施形態では、結晶層11に含まれる結晶性酸化物半導体のa軸方向は、左右方向Xに沿っていたが、第2実施形態では、結晶層11に含まれる結晶性酸化物半導体のc軸方向が左右方向Xに沿っている結晶膜110の例について説明する。なお、結晶膜110において、第1実施形態の結晶膜10と同じ構成のものは説明が省略されることがある。
(Second embodiment)
In the first embodiment, the a-axis direction of the crystalline oxide semiconductor included in the crystal layer 11 is along the left-right direction X, but in the second embodiment, the a-axis direction of the crystalline oxide semiconductor included in the crystal layer 11 is An example of a crystal film 110 whose c-axis direction is along the left-right direction X will be described. Note that the description of the crystal film 110 having the same structure as the crystal film 10 of the first embodiment may be omitted.
 本実施形態では、結晶層11に含まれる結晶性酸化物半導体のa軸方向は、前後方向Yに沿っている。前記結晶性酸化物半導体のm軸方向は、厚さ方向Zに沿っている。なお、第2実施形態では、左右方向Xをc軸方向、前後方向Yをa軸方向、厚さ方向Zをm軸方向ということがある。 In this embodiment, the a-axis direction of the crystalline oxide semiconductor included in the crystal layer 11 is along the front-back direction Y. The m-axis direction of the crystalline oxide semiconductor is along the thickness direction Z. In the second embodiment, the left-right direction X may be referred to as the c-axis direction, the front-rear direction Y may be referred to as the a-axis direction, and the thickness direction Z may be referred to as the m-axis direction.
 図7は、第2実施形態にかかる結晶膜110を例示する模式斜視図である。図8は、第2実施形態にかかる結晶膜110を例示する模式断面図であり、図7におけるXIII-XIII線断面図である。図7および図8に示されるように、結晶層11は、主面の一方である上面21に、例えば、c軸方向に配列されている凹凸部122を有する。凹凸部122は、ストライプ状であって、a軸方向に沿って延びる。凹凸部122は、凹部123と、凸部124と、を有する。凹部123と凸部124とは、相互に隣接している。隣接する凹部123および凸部124は、c軸方向に沿って等間隔で連続している。 FIG. 7 is a schematic perspective view illustrating the crystal film 110 according to the second embodiment. FIG. 8 is a schematic cross-sectional view illustrating the crystal film 110 according to the second embodiment, and is a cross-sectional view taken along the line XIII-XIII in FIG. As shown in FIGS. 7 and 8, the crystal layer 11 has uneven portions 122 arranged in the c-axis direction, for example, on the upper surface 21, which is one of the main surfaces. The uneven portion 122 has a stripe shape and extends along the a-axis direction. The uneven portion 122 has a concave portion 123 and a convex portion 124. The concave portion 123 and the convex portion 124 are adjacent to each other. Adjacent concave portions 123 and convex portions 124 are continuous at equal intervals along the c-axis direction.
 凹部123は、結晶層12が成長する成長面として、例えば、側面123a、123bおよび底面123cを有する。側面123a、123bは、横方向成長の結晶成長面であり、底面123cは、縦方向成長の結晶成長面である。 The recess 123 has, for example, side surfaces 123a, 123b and a bottom surface 123c as growth surfaces on which the crystal layer 12 grows. The side surfaces 123a and 123b are crystal growth surfaces for lateral growth, and the bottom surface 123c is a crystal growth surface for vertical growth.
 側面123a、123bは、前後方向Yおよび厚さ方向Zに拡がる平面である。側面123a、123bは、例えば、c面である。底面123cは、前後方向Yおよび左右方向Xに拡がる平面である。底面123cは、例えば、m面である。底面123cは、側面123aと側面123bとの間に位置する。側面123aは、底面123cの左側に位置し、側面123bは、底面123cの右側に位置する。 The side surfaces 123a and 123b are planes extending in the front-rear direction Y and the thickness direction Z. The side surfaces 123a and 123b are, for example, c-planes. The bottom surface 123c is a plane that extends in the front-rear direction Y and the left-right direction X. The bottom surface 123c is, for example, an m-plane. The bottom surface 123c is located between the side surfaces 123a and 123b. The side surface 123a is located on the left side of the bottom surface 123c, and the side surface 123b is located on the right side of the bottom surface 123c.
 凹部123の深さd2と凹部123の幅w3の比は、底面123cから厚さ方向Zに成長する膜の上端が結晶層12の上面より下方に位置する範囲内であることが好ましく、凹部123内に位置する範囲内であることがより好ましい。深さd2は、幅w3に対する比が0.12以上2.0未満となる値であることが好ましく、0.17以上2.0未満となる値であることがより好ましい。本実施形態では、例えば、深さd2の幅w3に対する比は、0.17以上0.26以下の範囲内のいずれかの値以上であり、0.17以上0.26以下の範囲内の値であることがさらにより好ましい。 The ratio of the depth d2 of the recess 123 to the width w3 of the recess 123 is preferably such that the upper end of the film grown in the thickness direction Z from the bottom surface 123c is located below the upper surface of the crystal layer 12. It is more preferable that the range is within the range. The ratio of the depth d2 to the width w3 is preferably 0.12 or more and less than 2.0, more preferably 0.17 or more and less than 2.0. In this embodiment, for example, the ratio of the depth d2 to the width w3 is greater than or equal to any value within the range of 0.17 or more and 0.26 or less, and is a value within the range of 0.17 or more and 0.26 or less. Even more preferably.
 凹部123の深さd2は、0.5μm以上であることが好ましい。深さd2は、例えば、1.53μmである。深さd2は、厚さ方向Zにおける凹部123の上端から下端までの長さを指す。深さd2は、本実施形態においては、凸部124の高さに等しい。凹部123の幅w3は、深さd2との比に応じて適宜決められてよい。幅w3は、例えば、4.5μmである。幅w3は、相互に隣り合う凸部124の間の左右方向Xにおける距離に等しい。本実施形態では、幅w3の半分の長さを深さd2で割った値は、4より小さい。 The depth d2 of the recess 123 is preferably 0.5 μm or more. The depth d2 is, for example, 1.53 μm. The depth d2 refers to the length from the upper end to the lower end of the recess 123 in the thickness direction Z. In this embodiment, the depth d2 is equal to the height of the convex portion 124. The width w3 of the recess 123 may be determined as appropriate depending on the ratio to the depth d2. The width w3 is, for example, 4.5 μm. The width w3 is equal to the distance in the left-right direction X between the convex portions 124 adjacent to each other. In this embodiment, the value obtained by dividing half the length of the width w3 by the depth d2 is smaller than 4.
 凸部124は、例えば、凹部123が形成されなかった結晶層11の上端部分を指す。凸部124の側面は、凹部123の側面123a、123bと共通している。すなわち、側面123a、123bは、凸部124の側面として定義されてもよい。 The convex portion 124 refers to, for example, the upper end portion of the crystal layer 11 where the concave portion 123 is not formed. The side surfaces of the convex portion 124 are common to the side surfaces 123a and 123b of the recessed portion 123. That is, the side surfaces 123a and 123b may be defined as the side surfaces of the convex portion 124.
 結晶層11の厚さは、凹部123の深さd2以上である。 The thickness of the crystal layer 11 is greater than or equal to the depth d2 of the recess 123.
 本実施形態では、結晶層12は、結晶層11の凹凸部122と接する。結晶層12に含まれる結晶性酸化物半導体のc軸方向は、左右方向Xに沿っている。前記結晶性酸化物半導体のa軸方向は、前後方向Yに沿っている。前記結晶性酸化物半導体のm軸方向は、厚さ方向Zに沿っている。すなわち、結晶層12の主面の面方位は、法線が厚さ方向Zに沿う領域において、m面となる。  In this embodiment, the crystal layer 12 is in contact with the uneven portion 122 of the crystal layer 11. The c-axis direction of the crystalline oxide semiconductor included in the crystal layer 12 is along the left-right direction X. The a-axis direction of the crystalline oxide semiconductor is along the front-back direction Y. The m-axis direction of the crystalline oxide semiconductor is along the thickness direction Z. That is, the plane orientation of the main surface of the crystal layer 12 is the m-plane in a region where the normal line is along the thickness direction Z.​
 結晶層11の凹部123の内部空間に形成される結晶層12の凸部134は、凹部123の成長面から成長したエピタキシャル成長膜である。このとき、凸部134は、横方向成長膜134a、134bと、縦方向成長膜134cと、を含む。横方向成長膜134aは、凹部123の側面123aから横方向(c軸方向)に成長した膜である。横方向成長膜134bは、凹部123の側面123bから横方向(c軸方向)に成長した膜である。横方向成長膜134aの成長の向きは、横方向成長膜134bの成長の向きと反対である。縦方向成長膜134cは、底面123cから厚さ方向Z(縦方向)に成長した膜であり、成長の向きは上向きである。縦方向成長膜134cは、図7に示される断面において、三角形状である。 The convex portion 134 of the crystal layer 12 formed in the internal space of the concave portion 123 of the crystal layer 11 is an epitaxially grown film grown from the growth surface of the concave portion 123. At this time, the convex portion 134 includes horizontally grown films 134a and 134b and a vertically grown film 134c. The laterally grown film 134a is a film grown laterally (c-axis direction) from the side surface 123a of the recess 123. The laterally grown film 134b is a film grown laterally (c-axis direction) from the side surface 123b of the recess 123. The direction of growth of the laterally grown film 134a is opposite to the direction of growth of the laterally grown film 134b. The vertically grown film 134c is a film grown in the thickness direction Z (vertical direction) from the bottom surface 123c, and the growth direction is upward. The vertically grown film 134c has a triangular shape in the cross section shown in FIG.
 本実施形態では、傾斜部は、c軸方向から傾斜している。本実施形態では、結晶粒界39aの傾斜角θ3および結晶粒界39bの傾斜角θ4は、約63度~71度である。 In this embodiment, the inclined portion is inclined from the c-axis direction. In this embodiment, the inclination angle θ3 of the grain boundary 39a and the inclination angle θ4 of the grain boundary 39b are approximately 63 degrees to 71 degrees.
 本実施形態では、結晶粒界39の厚さ方向Zに沿った寸法は、左右方向X(横方向)に沿った寸法に対する比が0.17以上0.26以下の範囲内である。 In this embodiment, the ratio of the dimension of the grain boundary 39 along the thickness direction Z to the dimension along the left-right direction X (lateral direction) is within the range of 0.17 or more and 0.26 or less.
 図31は、第2実施形態にかかる結晶膜110の一例であって、第1結晶層(結晶層11)および第2結晶層(結晶層12)としてα-Gaを用いた場合の縦断面の一部のTEM(透過電子顕微鏡)像を観察したものである。図32は、図31の部分拡大図である。な、図31では、図7の断面と同様に、左右方向Xおよび厚さ方向Zに沿って拡がる断面を示す。 FIG. 31 shows an example of the crystal film 110 according to the second embodiment, in which α-Ga 2 O 3 is used as the first crystal layer (crystal layer 11) and the second crystal layer (crystal layer 12). This is a TEM (transmission electron microscope) image of a portion of a longitudinal section. FIG. 32 is a partially enlarged view of FIG. 31. Note that, like the cross section in FIG. 7, FIG. 31 shows a cross section extending along the left-right direction X and the thickness direction Z.
 図31の凹部123の側面123a、123bは、c面であり、底面123cは、m面である。当該例では、凹部123の深さd2が約1.53μm、幅w3が約4.55μm、距離w2が約0.25μmである。当該例では、深さd2の幅w3に対する比が約0.34、幅w3の距離w2に対する比が約18である。当該例では、傾斜角θ3が約71度、傾斜角θ4が約70度である。 The side surfaces 123a and 123b of the recess 123 in FIG. 31 are c-planes, and the bottom surface 123c is m-plane. In this example, the depth d2 of the recess 123 is approximately 1.53 μm, the width w3 is approximately 4.55 μm, and the distance w2 is approximately 0.25 μm. In this example, the ratio of the depth d2 to the width w3 is about 0.34, and the ratio of the width w3 to the distance w2 is about 18. In this example, the inclination angle θ3 is approximately 71 degrees and the inclination angle θ4 is approximately 70 degrees.
 このような構成であっても、前述の第1実施形態と同様に優れた結晶膜とすることができ、厚さ方向Zに沿って延びる転位が低減された結晶膜とすることができる。なお、図31では、凹凸がc軸方向に配列された構成を実際に作製した例を示すが、凹凸がa軸方向に配列された構成(第1実施形態)の場合も、図31に示す場合と同様に優れた結晶膜を得ることができる。このように、第1の結晶欠陥と第2の結晶欠陥とを特定の関係性とすることで、転位が低減された結晶膜を得ることができる。 Even with such a configuration, it is possible to obtain an excellent crystal film as in the first embodiment described above, and a crystal film in which dislocations extending along the thickness direction Z are reduced. Although FIG. 31 shows an example in which a structure in which the unevenness is arranged in the c-axis direction is actually manufactured, a structure in which the unevenness is arranged in the a-axis direction (first embodiment) is also shown in FIG. 31. An excellent crystalline film can be obtained in the same manner as in the case of this method. In this way, by establishing a specific relationship between the first crystal defect and the second crystal defect, a crystal film with reduced dislocations can be obtained.
(結晶膜110の製造方法)
 結晶膜110は、結晶膜10と同じ工程S1~S4で製造されることができる。結晶膜110において、第1実施形態の結晶膜10の製造方法と同じ点は説明が省略されることがある。
(Method for manufacturing crystal film 110)
The crystal film 110 can be manufactured through the same steps S1 to S4 as the crystal film 10. In the crystal film 110, description of the same points as in the method for manufacturing the crystal film 10 of the first embodiment may be omitted.
 工程S2において、凹凸部122は、例えば、基板13に積層された結晶層11の上面21にエッチング等により形成される。工程S2は、コランダム構造を有し、ガリウムを含む結晶性酸化物を含む第1結晶層の主面にストライプ状の凹凸をc軸方向に配列することの一例である。本実施形態では、例えば、深さd2の幅w3に対する比が0.17以上0.26以下の範囲内となるように、凹部123が形成される。 In step S2, the uneven portion 122 is formed, for example, on the upper surface 21 of the crystal layer 11 stacked on the substrate 13 by etching or the like. Step S2 is an example of arranging stripe-like unevenness in the c-axis direction on the main surface of the first crystal layer containing a crystalline oxide containing gallium and having a corundum structure. In this embodiment, the recess 123 is formed such that, for example, the ratio of the depth d2 to the width w3 is within a range of 0.17 or more and 0.26 or less.
 工程S3において、結晶層12は、凹凸部122が形成された結晶層11に積層される。結晶層12は、結晶層11と同じ方法で積層されることができる。 In step S3, the crystal layer 12 is laminated on the crystal layer 11 on which the uneven portions 122 are formed. Crystal layer 12 can be stacked in the same way as crystal layer 11.
 工程S3において、結晶層11の凹部123の内部空間に凸部134が結晶層12として形成される。これにより、結晶層12の下面31に凹凸部132が、結晶層11の凹凸部122の形状に応じて形成される。 In step S3, a convex portion 134 is formed as the crystal layer 12 in the internal space of the concave portion 123 of the crystal layer 11. As a result, uneven portions 132 are formed on the lower surface 31 of the crystal layer 12 in accordance with the shape of the uneven portions 122 of the crystal layer 11 .
 このとき、凸部134の横方向成長膜134aは、凹部123の側面123aから右方へ、凸部134の横方向成長膜134bは、凹部123の側面123bから左方へ、凸部134の縦方向成長膜134cは凹部123の底面123cから上方へ、それぞれ成長する。横方向成長膜134a、134bおよび縦方向成長膜134cが異なる成長面から同時に成長することによって、結晶粒界39aが横方向成長膜134aと縦方向成長膜134cとの間に、結晶粒界39bが横方向成長膜134bと縦方向成長膜134cとの間にそれぞれ生じる。 At this time, the lateral growth film 134a of the convex portion 134 moves from the side surface 123a of the concave portion 123 to the right, and the lateral growth film 134b of the convex portion 134 moves from the side surface 123b of the concave portion 123 to the left, The directional growth films 134c grow upward from the bottom surface 123c of the recess 123, respectively. By simultaneously growing the laterally grown films 134a, 134b and the vertically grown film 134c from different growth surfaces, the grain boundary 39a is formed between the laterally grown film 134a and the vertically grown film 134c, and the grain boundary 39b is formed between the laterally grown film 134a and the vertically grown film 134c. These are generated between the horizontally grown film 134b and the vertically grown film 134c, respectively.
 横方向成長膜134a、134bは、縦方向成長膜134cから成長しないので、転位線41(図7ご参照)の上端は、結晶粒界39と繋がるようにして現れるか、結晶粒界39の下方に位置するように現れることとなる。 Since the laterally grown films 134a and 134b do not grow from the vertically grown film 134c, the upper ends of the dislocation lines 41 (see FIG. 7) either appear connected to the grain boundaries 39 or are located below the grain boundaries 39. It will appear as if it were located at .
 縦方向成長膜134cは、側面123a、123bから離れる程、厚さ方向Zに沿った長さが大きくなる、すなわち厚さが増すため、結晶粒界39a、39bにそれぞれ傾斜部が形成される。縦方向成長膜134cは、底面123cから成長する際、結晶層11の転位線26に起因して転位線41が形成されることがある。 The length of the vertically grown film 134c along the thickness direction Z increases as it moves away from the side surfaces 123a and 123b, that is, the thickness increases, so that inclined portions are formed at the grain boundaries 39a and 39b, respectively. When the vertically grown film 134c grows from the bottom surface 123c, dislocation lines 41 may be formed due to the dislocation lines 26 of the crystal layer 11.
 このような製造方法によれば、上述の結晶膜110を製造することができる。凸部124の直上の左右方向Xに沿った幅を狭くすることができるので、凸部124の左右方向Xに沿った幅を短くすることができる。これにより、結晶層12が形成される際、凸部124内の転位線26に起因する転位線42の出現数を減らすことができる。また、ある成長速度でc軸方向に沿って成長する横方向成長膜34aと横方向成長膜34bとが会合することができる。 According to such a manufacturing method, the above-described crystal film 110 can be manufactured. Since the width along the left-right direction X directly above the convex portion 124 can be narrowed, the width of the convex portion 124 along the left-right direction X can be shortened. Thereby, when the crystal layer 12 is formed, the number of dislocation lines 42 caused by the dislocation lines 26 in the convex portions 124 can be reduced. Further, the laterally grown film 34a and the laterally grown film 34b, which grow along the c-axis direction at a certain growth rate, can join together.
(第3実施形態)
 上記実施形態では、結晶層11と、結晶層12と、を備える例について説明されたが、第3実施形態では、結晶層11に代えて結晶層211が用いられ、結晶層12に代えて結晶層212が用いられ、結晶層212上に結晶層213を備える結晶膜210の例について説明する。結晶層213は、結晶層211の主面の凹凸と半ピッチほど左右方向Xにずれた凹凸を主面に有する。なお、結晶膜210において、第1実施形態の結晶膜10または第2実施形態の結晶膜110と同じ構成のものは説明が省略されることがある。結晶層212は、第2結晶層の一例であり、結晶層213は、第3結晶層の一例である。結晶層211の組成は結晶層11の組成と同じであってよく、結晶層212の組成は結晶層12の組成と同じであってよい。
(Third embodiment)
In the above embodiment, an example including the crystal layer 11 and the crystal layer 12 has been described, but in the third embodiment, the crystal layer 211 is used instead of the crystal layer 11, and the crystal layer 12 is replaced with a crystal layer 211. An example of a crystalline film 210 in which a layer 212 is used and a crystalline layer 213 is provided on the crystalline layer 212 will be described. The crystal layer 213 has unevenness on its main surface that is shifted in the left-right direction X by about half a pitch from the unevenness on the main surface of the crystal layer 211 . Note that the description of the crystal film 210 having the same structure as the crystal film 10 of the first embodiment or the crystal film 110 of the second embodiment may be omitted. The crystal layer 212 is an example of a second crystal layer, and the crystal layer 213 is an example of a third crystal layer. The composition of the crystal layer 211 may be the same as the composition of the crystal layer 11, and the composition of the crystal layer 212 may be the same as the composition of the crystal layer 12.
 図9は、第3実施形態にかかる結晶膜210を例示する模式斜視図である。図10は、第3実施形態にかかる結晶膜210を例示する模式断面図である。第3実施形態にかかる結晶膜210は、例えば、半導体装置等の半導体膜等として用いられる。図9および図10に示されるように、結晶膜210は、結晶層211と、結晶層211上に位置する結晶層212と、結晶層212上に位置する結晶層213と、を備える。なお、図9に示される結晶膜210は、例えば、円盤状の結晶膜の一部であってもよい。 FIG. 9 is a schematic perspective view illustrating a crystal film 210 according to the third embodiment. FIG. 10 is a schematic cross-sectional view illustrating a crystal film 210 according to the third embodiment. The crystal film 210 according to the third embodiment is used, for example, as a semiconductor film of a semiconductor device or the like. As shown in FIGS. 9 and 10, the crystal film 210 includes a crystal layer 211, a crystal layer 212 located on the crystal layer 211, and a crystal layer 213 located on the crystal layer 212. Note that the crystal film 210 shown in FIG. 9 may be, for example, a part of a disk-shaped crystal film.
(結晶層211)
 結晶層211は、例えば、n型の半導体層である。結晶層211は、例えば、サファイア基板上でヘテロエピタキシャル成長したエピタキシャル成長膜である。結晶層211は、結晶性酸化物半導体を主成分として含む。なお、結晶性酸化物半導体は、結晶性酸化物の一例である。結晶層211は、サファイア基板上に設けられたバッファ層等の他の層を介して成長した膜であってもよい。
(Crystal layer 211)
The crystal layer 211 is, for example, an n-type semiconductor layer. The crystal layer 211 is, for example, an epitaxial growth film that is heteroepitaxially grown on a sapphire substrate. The crystal layer 211 contains a crystalline oxide semiconductor as a main component. Note that the crystalline oxide semiconductor is an example of a crystalline oxide. The crystal layer 211 may be a film grown on a sapphire substrate via another layer such as a buffer layer.
 結晶層211に含まれる結晶性酸化物半導体は、コランダム構造を有する。本実施形態では、前記結晶性酸化物半導体の面方位は、任意とされる。結晶層211に含まれる前記結晶性酸化物半導体は、ガリウムを含む。前記結晶性酸化物半導体は、結晶層11の結晶性酸化物半導体と同様の金属酸化物であってもよい。 The crystalline oxide semiconductor included in the crystal layer 211 has a corundum structure. In this embodiment, the plane orientation of the crystalline oxide semiconductor is arbitrary. The crystalline oxide semiconductor included in the crystal layer 211 includes gallium. The crystalline oxide semiconductor may be a metal oxide similar to the crystalline oxide semiconductor of the crystal layer 11.
 なお、「主成分」とは、例えば、前記結晶性酸化物半導体がGaである場合、結晶層211中の全ての金属元素中におけるガリウムの原子比が0.5以上の割合で結晶層211中にGaが含まれることを意味する。本開示においては、結晶層211中の全ての金属元素中におけるガリウムの原子比が0.7以上であるのが好ましく、0.9以上であるのがより好ましい。結晶層211は、本実施形態では、単結晶であるが、多結晶であってもよい。 Note that the "main component" means, for example, when the crystalline oxide semiconductor is Ga 2 O 3 , the atomic ratio of gallium among all the metal elements in the crystal layer 211 is 0.5 or more. This means that the layer 211 contains Ga 2 O 3 . In the present disclosure, the atomic ratio of gallium among all metal elements in the crystal layer 211 is preferably 0.7 or more, and more preferably 0.9 or more. Although the crystal layer 211 is single crystal in this embodiment, it may be polycrystalline.
 結晶層211は、上面221(図10ご参照)に、ストライプ状の凹凸部222を有する。凹凸部222は、例えば、前後方向Yに沿って延びる。凹凸部222は、凹部223と、凸部224と、を有する。凹部223と凸部224とは、相互に隣接している。隣接する凹部223および凸部224は、左右方向Xに沿って等間隔で連続している。なお、上面221は、結晶層211の主面のうち、上方の面を指す。 The crystal layer 211 has stripe-shaped uneven portions 222 on the upper surface 221 (see FIG. 10). The uneven portion 222 extends, for example, along the front-rear direction Y. The uneven portion 222 has a recessed portion 223 and a convex portion 224. The concave portion 223 and the convex portion 224 are adjacent to each other. Adjacent recesses 223 and protrusions 224 are continuous along the left-right direction X at equal intervals. Note that the upper surface 221 refers to the upper surface of the main surface of the crystal layer 211.
 凹部223は、例えば、上面221にエッチング等によって形成される。凹部223は、結晶層212が成長する複数の成長面を有する。凹部223は、当該成長面として、例えば、側面223a、223bおよび底面223cを有する。本実施形態では、側面223a、223bは、横方向成長の結晶成長面であり、底面223cは、縦方向成長の結晶成長面である。 The recess 223 is formed, for example, on the upper surface 221 by etching or the like. The recess 223 has a plurality of growth surfaces on which the crystal layer 212 grows. The recess 223 has, for example, side surfaces 223a, 223b and a bottom surface 223c as the growth surfaces. In this embodiment, the side surfaces 223a and 223b are crystal growth surfaces for lateral growth, and the bottom surface 223c is a crystal growth surface for vertical growth.
 側面223a、223bは、前後方向Yおよび厚さ方向Zに拡がる平面である。底面223cは、前後方向Yおよび左右方向Xに拡がる平面である。底面223cは、側面223aと、側面223bとの間に位置する。側面223aは、底面223cの左側に位置し、側面223bは、底面223cの右側に位置する。なお、側面223a、223bおよび底面223cは、上面221の一部である。 The side surfaces 223a and 223b are planes extending in the front-rear direction Y and the thickness direction Z. The bottom surface 223c is a plane that extends in the front-rear direction Y and the left-right direction X. The bottom surface 223c is located between the side surface 223a and the side surface 223b. The side surface 223a is located on the left side of the bottom surface 223c, and the side surface 223b is located on the right side of the bottom surface 223c. Note that the side surfaces 223a, 223b and the bottom surface 223c are part of the top surface 221.
 側面223aは、凸部224の上面225との角度θ5が60度以上であればよい。側面223aと上面225との角度θ5は、例えば、90度である。側面223bは、上面225との角度θ6が60度以上であればよい。側面223bと上面225との角度θ6は、例えば、90度である。なお、本実施形態では、上面221と底面223cとは、平行である。側面223a、223bと底面223cとの角度は、90度である。 The side surface 223a may have an angle θ5 of 60 degrees or more with the upper surface 225 of the convex portion 224. The angle θ5 between the side surface 223a and the top surface 225 is, for example, 90 degrees. The side surface 223b only needs to have an angle θ6 of 60 degrees or more with the top surface 225. The angle θ6 between the side surface 223b and the top surface 225 is, for example, 90 degrees. Note that in this embodiment, the top surface 221 and the bottom surface 223c are parallel. The angle between the side surfaces 223a, 223b and the bottom surface 223c is 90 degrees.
 凹部223の深さd3と凹部223の幅w5の比は、底面223cから厚さ方向Zに成長する膜の上端が結晶層212の上面より下方に位置する範囲内であることが好ましく、凹部223内に位置する範囲内であることがより好ましい。深さd3は、幅w5に対する比が0.125以上2.0未満の範囲内であればより好ましい。 The ratio of the depth d3 of the recess 223 to the width w5 of the recess 223 is preferably such that the upper end of the film grown in the thickness direction Z from the bottom surface 223c is located below the upper surface of the crystal layer 212. It is more preferable that the range is within the range. It is more preferable that the ratio of the depth d3 to the width w5 is within a range of 0.125 or more and less than 2.0.
 凹部223の深さd3は、厚さ方向Zにおける凹部223の上端から下端までの長さを指す。深さd3は、本実施形態においては、凸部224の高さに等しい。凹部223の幅w5は、凹部223の左端から右端までの左右方向Xに沿った長さを指す。幅w5は、相互に隣り合う凸部224の間の左右方向Xにおける距離に等しい。本実施形態では、幅w5の半分の長さを深さd3で割った値は、4より小さい。 The depth d3 of the recess 223 refers to the length from the upper end to the lower end of the recess 223 in the thickness direction Z. In this embodiment, the depth d3 is equal to the height of the convex portion 224. The width w5 of the recess 223 refers to the length along the left-right direction X from the left end to the right end of the recess 223. The width w5 is equal to the distance in the left-right direction X between the convex portions 224 adjacent to each other. In this embodiment, the value obtained by dividing half the length of the width w5 by the depth d3 is smaller than 4.
 凹部223の幅w5は、相互に隣り合う凹部223の間の距離w6に対する比が1以上であることが好ましい。幅w5は、距離w6に対する比が1であればより好ましい。本実施形態では、距離w6は、凸部224の上面の左端から右端までの左右方向Xに沿った長さに等しい。 It is preferable that the ratio of the width w5 of the recess 223 to the distance w6 between the adjacent recesses 223 is 1 or more. It is more preferable that the width w5 has a ratio of 1 to the distance w6. In this embodiment, the distance w6 is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 224.
 凸部224は、例えば、凹部223が形成されなかった結晶層211の上端部分を指す。凸部224の側面は、凹部223の側面223a、223bと共通している。すなわち、側面223a、223bは、凸部224の側面として定義されてもよい。なお、上面21は、凸部224の上面225を含む。 The convex portion 224 refers to, for example, the upper end portion of the crystal layer 211 where the concave portion 223 is not formed. The side surfaces of the convex portion 224 are common to the side surfaces 223a and 223b of the recessed portion 223. That is, the side surfaces 223a and 223b may be defined as the side surfaces of the convex portion 224. Note that the upper surface 21 includes an upper surface 225 of the convex portion 224.
 結晶層211は、ヘテロエピタキシャル成長したエピタキシャル成長膜である場合、厚さ方向Zに沿った転位を含み得る。当該転位は、図10に示されるように、結晶膜210を厚さ方向Zに切断した断面において、転位線26として観察され得る。結晶層211の断面は、複数の転位線26を含む。各転位線26は、例えば、結晶層211の下面227から凸部224の上面225や凹部223の底面223cまで連続し得る。 When the crystal layer 211 is an epitaxially grown film grown by heteroepitaxial growth, it may include dislocations along the thickness direction Z. The dislocations can be observed as dislocation lines 26 in a cross section of the crystal film 210 taken in the thickness direction Z, as shown in FIG. The cross section of the crystal layer 211 includes a plurality of dislocation lines 26. Each dislocation line 26 may be continuous, for example, from the lower surface 227 of the crystal layer 211 to the upper surface 225 of the convex portion 224 or the bottom surface 223c of the recessed portion 223.
(結晶層212)
 結晶層212は、例えば、n型の半導体層である。結晶層212は、結晶層211の上に直接配されている。結晶層212は、結晶層211の凹凸部222と接する。結晶層212は、結晶層211と同じ導電型である。結晶層212は、例えば、結晶層211上でホモエピタキシャル成長膜したエピタキシャル成長膜である。結晶層212は、結晶性酸化物半導体を主成分として含む。なお、結晶性酸化物半導体は、結晶性酸化物の一例である。
(Crystal layer 212)
The crystal layer 212 is, for example, an n-type semiconductor layer. Crystal layer 212 is placed directly on crystal layer 211. The crystal layer 212 is in contact with the uneven portion 222 of the crystal layer 211 . Crystal layer 212 has the same conductivity type as crystal layer 211. The crystal layer 212 is, for example, an epitaxially grown film that is homoepitaxially grown on the crystal layer 211. The crystal layer 212 contains a crystalline oxide semiconductor as a main component. Note that the crystalline oxide semiconductor is an example of a crystalline oxide.
 結晶層212に含まれる前記結晶性酸化物半導体は、コランダム構造を有する。本実施形態では、前記結晶性酸化物半導体の面方位は、任意とされる。結晶層212に含まれる前記結晶性酸化物半導体は、ガリウムを含む。前記結晶性酸化物半導体は、結晶層12の結晶性酸化物半導体と同様の金属酸化物であってもよい。 The crystalline oxide semiconductor included in the crystal layer 212 has a corundum structure. In this embodiment, the plane orientation of the crystalline oxide semiconductor is arbitrary. The crystalline oxide semiconductor included in the crystal layer 212 includes gallium. The crystalline oxide semiconductor may be a metal oxide similar to the crystalline oxide semiconductor of the crystal layer 12.
 なお、「主成分」とは、例えば、前記結晶性酸化物半導体がGaである場合、結晶層212中の全ての金属元素中におけるガリウムの原子比が0.5以上の割合で結晶層212中にGaが含まれることを意味する。本開示においては、結晶層212中の全ての金属元素中におけるガリウムの原子比が0.7以上であるのが好ましく、0.9以上であるのがより好ましい。結晶層212は、本実施形態では、単結晶であるが、多結晶であってもよい。 Note that the "main component" means, for example, when the crystalline oxide semiconductor is Ga 2 O 3 , the atomic ratio of gallium among all the metal elements in the crystal layer 212 is 0.5 or more. This means that the layer 212 contains Ga 2 O 3 . In the present disclosure, the atomic ratio of gallium among all metal elements in the crystal layer 212 is preferably 0.7 or more, and more preferably 0.9 or more. Although the crystal layer 212 is single crystal in this embodiment, it may be polycrystalline.
 図10に示されるように、結晶層212は、下面231が結晶層211の上面221と接合している。下面231および上面221は、結晶層212と結晶層211との界面でもある。結晶層212は、下面231に、上面221の凹凸部222に対応した形状である凹凸部232を有する。すなわち、凹凸部232は、ストライプ状である。凹凸部232は、凹凸部222と接している。凹凸部232は、凹部233と、凸部234と、を有する。結晶層212は、凹凸部232の他、結晶層211の凸部224の直上の領域243と、凸部234の直上の領域244と、を有する。なお、下面231は、結晶層212の主面のうち、下方の面を指す。 As shown in FIG. 10, the lower surface 231 of the crystal layer 212 is joined to the upper surface 221 of the crystal layer 211. The lower surface 231 and the upper surface 221 are also the interface between the crystal layer 212 and the crystal layer 211. The crystal layer 212 has, on the lower surface 231, an uneven portion 232 having a shape corresponding to the uneven portion 222 on the upper surface 221. That is, the uneven portion 232 has a stripe shape. The uneven portion 232 is in contact with the uneven portion 222. The uneven portion 232 has a concave portion 233 and a convex portion 234. In addition to the uneven portions 232 , the crystal layer 212 includes a region 243 directly above the convex portion 224 of the crystal layer 211 and a region 244 directly above the convex portion 234 . Note that the lower surface 231 refers to the lower surface of the main surface of the crystal layer 212.
 凹部233は、例えば、凸部234が形成される結果として形成される。凹部233の内部空間は、凸部224で埋まっている。凹部233の上に位置する結晶層212は、例えば、凸部224の上面225上で成長したエピタキシャル成長膜である。 The recess 233 is formed, for example, as a result of the formation of the protrusion 234. The inner space of the recess 233 is filled with the protrusion 224 . The crystal layer 212 located on the concave portion 233 is, for example, an epitaxial growth film grown on the upper surface 225 of the convex portion 224.
 凸部234は、凹部223の内部空間に形成される。凸部234は、例えば、凹部223の成長面から成長したエピタキシャル成長膜である。このとき、凸部234は、横方向成長膜234a、234bと、縦方向成長膜234cと、を含む。横方向成長膜234aは、凹部223の側面223aから横方向(左右方向X)に成長した膜である。横方向成長膜234bは、凹部223の側面223bから横方向(左右方向X)に成長した膜である。横方向成長膜234aの成長の向きは、横方向成長膜234bの成長の向きと反対である。縦方向成長膜234cは、底面223cから縦方向(厚さ方向Z)に成長した膜であり、成長の向きは上向きである。縦方向成長膜234cは、図10に示される断面において、三角形状である。 The convex portion 234 is formed in the internal space of the concave portion 223. The convex portion 234 is, for example, an epitaxially grown film grown from the growth surface of the concave portion 223. At this time, the convex portion 234 includes horizontally grown films 234a and 234b and a vertically grown film 234c. The laterally grown film 234a is a film grown laterally (left-right direction X) from the side surface 223a of the recess 223. The laterally grown film 234b is a film grown laterally (left-right direction X) from the side surface 223b of the recess 223. The direction of growth of the laterally grown film 234a is opposite to the direction of growth of the laterally grown film 234b. The vertically grown film 234c is a film grown in the vertical direction (thickness direction Z) from the bottom surface 223c, and the growth direction is upward. The vertically grown film 234c has a triangular shape in the cross section shown in FIG.
 凸部234は、凹部223内に横方向成長膜234aと横方向成長膜234bとの界面である結晶粒界37を含む。結晶粒界37は、凹部223より上方の結晶層212内において、転位38として現れることがある。図10には、結晶粒界37を示す線と連続して転位38を示す線が表されている。 The convex portion 234 includes a grain boundary 37 within the concave portion 223, which is an interface between the laterally grown film 234a and the laterally grown film 234b. The grain boundaries 37 may appear as dislocations 38 in the crystal layer 212 above the recesses 223. In FIG. 10, a line indicating the grain boundary 37 and a line indicating the dislocation 38 are shown continuous with the line indicating the grain boundary 37.
 結晶粒界37は、左右方向Xにおける位置が凹部223内であることが好ましい。結晶粒界37の左右方向Xおける位置は、横方向成長膜234aと横方向成長膜234bの成長速度に依存する。 It is preferable that the grain boundary 37 is located within the recess 223 in the left-right direction X. The position of the grain boundary 37 in the left-right direction X depends on the growth rate of the laterally grown film 234a and the laterally grown film 234b.
 凸部234は、凹部223内に横方向成長膜234a、234bと縦方向成長膜234cとの界面である結晶粒界39を含む。結晶粒界39は、横方向成長膜234aと縦方向成長膜234cとの界面である結晶粒界39aと、横方向成長膜234bと縦方向成長膜234cとの界面である結晶粒界39bと、を有する。結晶粒界39a、39bは、図10に示されるように、厚さ方向Zに切断した断面において、線状に現れる。 The convex portion 234 includes a grain boundary 39 in the concave portion 223, which is an interface between the horizontally grown films 234a, 234b and the vertically grown film 234c. The grain boundaries 39 include a grain boundary 39a that is an interface between the horizontally grown film 234a and the vertically grown film 234c, and a grain boundary 39b that is the interface between the horizontally grown film 234b and the vertically grown film 234c. has. As shown in FIG. 10, the grain boundaries 39a and 39b appear linear in a cross section cut in the thickness direction Z.
 結晶粒界39は、例えば凹部223の数に応じて、複数が左右方向X(横方向)に沿って並ぶ。結晶粒界39は、図10に示される断面において、三角形状である。本実施形態では、結晶粒界39の左右方向Xに沿った寸法は、左右方向Xに並ぶ結晶粒界39のうち相互に隣り合う結晶粒界39の間の距離に対する比が1以上であることが好ましい。結晶粒界39の左右方向Xに沿った寸法は、左右方向Xに並ぶ結晶粒界39のうち相互に隣り合う結晶粒界39の間の距離に対する比が1であればより好ましい。また、結晶粒界39の間の距離は、凹部223の距離w6と等しいが、距離w6より大きくてもよい。 A plurality of grain boundaries 39 are arranged along the left-right direction X (horizontal direction), for example, depending on the number of recesses 223. The grain boundaries 39 have a triangular shape in the cross section shown in FIG. In this embodiment, the ratio of the dimension of the grain boundary 39 along the left-right direction X to the distance between adjacent grain boundaries 39 among the grain boundaries 39 arranged in the left-right direction X is 1 or more is preferred. It is more preferable that the size of the grain boundaries 39 along the left-right direction X has a ratio of 1 to the distance between adjacent grain boundaries 39 among the grain boundaries 39 arranged in the left-right direction X. Further, the distance between the grain boundaries 39 is equal to the distance w6 of the recess 223, but may be larger than the distance w6.
 縦方向成長膜234cは、厚さ方向Zに沿った転位を含み得る。当該転位は、例えば、結晶層211の厚さ方向Zに沿った転位(図10の転位線26)を引き継いだものである。図10に示されるように、縦方向成長膜234cの転位は、結晶膜210を厚さ方向Zに切断した断面において、転位線41として観察され得る。縦方向成長膜234cの断面は、複数の転位線41を含む。本実施形態では、転位線41は、凹部223内に位置する。 The vertically grown film 234c may include dislocations along the thickness direction Z. The dislocations are, for example, inherited dislocations along the thickness direction Z of the crystal layer 211 (dislocation lines 26 in FIG. 10). As shown in FIG. 10, dislocations in the vertically grown film 234c can be observed as dislocation lines 41 in a cross section of the crystal film 210 taken in the thickness direction Z. The cross section of the vertically grown film 234c includes a plurality of dislocation lines 41. In this embodiment, the dislocation line 41 is located within the recess 223.
 凸部234の直上の領域244は、例えば、結晶層211の上面221から成長したエピタキシャル成長膜である。領域244の左端から右端までの左右方向Xに沿った長さは、凹部223の幅w3に等しい。 The region 244 directly above the convex portion 234 is, for example, an epitaxially grown film grown from the upper surface 221 of the crystal layer 211. The length of the region 244 from the left end to the right end along the left-right direction X is equal to the width w3 of the recess 223.
 結晶層212は、上面251に、ストライプ状の凹凸部252を有する。凹凸部252は、凹凸部222と異なる方向に沿って延びてもよいが、例えば前後方向Yに沿って延び、好ましくは凹凸部222と同じ方向に沿って延びる。凹凸部252は、凹部253と、凸部254と、を有する。凹部253と凸部254とは、相互に隣接している。隣接する凹部253と凸部254は、左右方向Xに沿って等間隔で連続している。なお、上面251は、結晶層212の主面のうち、上方の面を指す。 The crystal layer 212 has stripe-shaped uneven portions 252 on the upper surface 251. Although the uneven portion 252 may extend in a direction different from that of the uneven portion 222, it extends, for example, along the front-rear direction Y, and preferably extends along the same direction as the uneven portion 222. The uneven portion 252 has a recessed portion 253 and a convex portion 254. The concave portion 253 and the convex portion 254 are adjacent to each other. The adjacent concave portions 253 and convex portions 254 are continuous along the left-right direction X at equal intervals. Note that the upper surface 251 refers to the upper surface of the main surface of the crystal layer 212.
 凹部253は、例えば、上面251にエッチング等によって形成される。凹部253は、例えば、結晶層211の凸部224の直上に位置する。凹部253は、凸部224の少なくとも一部と上下に重なればよく、凹部253が凸部224の全体を覆うように位置することが好ましい。凹部253と凸部224の左右方向Xにおける位置は同じであることが好ましい。凹部253は、結晶層213が成長する複数の成長面を有する。凹部253は、当該成長面として、例えば、側面253a、253bおよび底面253cを有する。本実施形態では、側面253a、253bは、横方向成長の結晶成長面であり、底面253cは、縦方向成長膜の結晶成長面である。 The recess 253 is formed, for example, on the upper surface 251 by etching or the like. The recess 253 is located, for example, directly above the protrusion 224 of the crystal layer 211. The recess 253 only needs to vertically overlap at least a portion of the protrusion 224 , and it is preferable that the recess 253 be located so as to cover the entire protrusion 224 . It is preferable that the positions of the concave portion 253 and the convex portion 224 in the left-right direction X are the same. The recess 253 has a plurality of growth surfaces on which the crystal layer 213 grows. The recess 253 has, for example, side surfaces 253a, 253b and a bottom surface 253c as the growth surfaces. In this embodiment, the side surfaces 253a and 253b are crystal growth surfaces for lateral growth, and the bottom surface 253c is a crystal growth surface for vertical growth.
 側面253a、253bは、前後方向Yおよび厚さ方向Zに拡がり、結晶層211の側面223a、223bと平行な平面である。底面253cは、前後方向Yおよび左右方向Xに拡がる平面である。底面253cは、側面253aと側面253bとの間に位置する。底面253cは、結晶層211の凸部224の上面225の直上に位置する。なお、側面253a、253bおよび底面253cは、上面251の一部である。 The side surfaces 253a and 253b are planes that extend in the front-rear direction Y and the thickness direction Z and are parallel to the side surfaces 223a and 223b of the crystal layer 211. The bottom surface 253c is a plane that extends in the front-rear direction Y and the left-right direction X. The bottom surface 253c is located between the side surfaces 253a and 253b. The bottom surface 253c is located directly above the top surface 225 of the convex portion 224 of the crystal layer 211. Note that the side surfaces 253a, 253b and the bottom surface 253c are part of the top surface 251.
 側面253aは、凸部254の上面255との角度θ9が60℃以上であればよい。側面253aと上面255との角度θ9は、例えば、90度である。側面253bは、上面255との角度θ10が60度以上であればよい。側面253bと上面255との角度θ10は、例えば、90度である。なお、本実施形態では、上面255と底面253cとは平行である。側面253a、253bと底面253cとの角度は、90度である。 The angle θ9 of the side surface 253a with the upper surface 255 of the convex portion 254 may be 60° C. or more. The angle θ9 between the side surface 253a and the top surface 255 is, for example, 90 degrees. The side surface 253b only needs to have an angle θ10 of 60 degrees or more with the top surface 255. The angle θ10 between the side surface 253b and the top surface 255 is, for example, 90 degrees. Note that in this embodiment, the top surface 255 and the bottom surface 253c are parallel. The angle between the side surfaces 253a, 253b and the bottom surface 253c is 90 degrees.
 凹部253の深さd4と凹部253の幅w7の比は、底面253cから厚さ方向Zに成長する膜の上端が結晶層213の上面より下方に位置する範囲内であることが好ましく、凹部253内に位置する範囲内であることがより好ましい。深さd4は、幅w7に対する比が0.125以上2.0未満の範囲内であればより好ましい。深さd4と幅w7の比は、例えば、凹部223の深さd3と幅w5の比と同じであるが、異なっていてもよく、逆数であってもよい。幅w7は、凸部224の幅と同じか、より大きいことが好ましい。 The ratio of the depth d4 of the recess 253 to the width w7 of the recess 253 is preferably such that the upper end of the film grown in the thickness direction Z from the bottom surface 253c is located below the upper surface of the crystal layer 213. It is more preferable that the range is within the range. It is more preferable that the ratio of the depth d4 to the width w7 is within a range of 0.125 or more and less than 2.0. The ratio between the depth d4 and the width w7 is, for example, the same as the ratio between the depth d3 and the width w5 of the recess 223, but may be different or may be a reciprocal. The width w7 is preferably the same as or larger than the width of the convex portion 224.
 凹部253の深さd4は、厚さ方向Zにおける凹部253の上端から下端までの長さを指す。深さd4は、本実施形態においては、凸部254の高さに等しい。凹部253の幅w7は、凹部253の左端から右端までの左右方向Xに沿った長さを指す。幅w7は、相互に隣り合う凸部254の間の左右方向Xにおける距離に等しい。本実施形態では、幅w7の半分の長さを深さd4で割った値は、4より小さい。 The depth d4 of the recess 253 refers to the length from the upper end to the lower end of the recess 253 in the thickness direction Z. In this embodiment, the depth d4 is equal to the height of the convex portion 254. The width w7 of the recess 253 refers to the length along the left-right direction X from the left end to the right end of the recess 253. The width w7 is equal to the distance in the left-right direction X between the convex portions 254 adjacent to each other. In this embodiment, the value obtained by dividing half the length of the width w7 by the depth d4 is smaller than 4.
 凹部253の幅w7は、相互に隣り合う凹部223の間の距離w8に対する比が1以上であることが好ましい。幅w7は、距離w8に対する比が1であればより好ましい。当該比は、例えば、凹部223の幅w5と距離w6の比と同じである。距離w8は、凸部254の上面の左端から右端までの左右方向Xに沿った長さに等しい。 It is preferable that the ratio of the width w7 of the recess 253 to the distance w8 between the adjacent recesses 223 is 1 or more. It is more preferable that the width w7 has a ratio of 1 to the distance w8. The ratio is, for example, the same as the ratio between the width w5 of the recess 223 and the distance w6. The distance w8 is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 254.
 凸部254は、例えば、凹部253が形成されなかった結晶層212の上端部分を指す。凸部254の側面は、凹部253の側面253a、253bと共通している。すなわち、側面253a、253bは、と凸部254の側面として定義されてもよい。凸部254は、転位38を含み得る。なお、上面251は、凸部254の上面255を含む。 The convex portion 254 refers to, for example, the upper end portion of the crystal layer 212 where the concave portion 253 is not formed. The side surfaces of the convex portion 254 are common to the side surfaces 253a and 253b of the concave portion 253. That is, the side surfaces 253a and 253b may be defined as the side surfaces of the convex portion 254. Convex portion 254 may include dislocations 38 . Note that the upper surface 251 includes an upper surface 255 of the convex portion 254.
 凸部224の直上の領域243は、例えば、凸部224の上面225から成長したエピタキシャル成長膜である。領域243の左端から右端までの左右方向Xに沿った長さは、凸部224の上面の左端から右端までの左右方向Xに沿った長さに等しい。領域243は、縦方向に成長した膜である。領域243は、厚さ方向Zに沿った転位を含み得る。当該転位は、図10に示されるように、転位線42として観察され得る。転位線42の数は、凸部224の幅が大きくなればなるほど多くなるおそれがある。 The region 243 directly above the convex portion 224 is, for example, an epitaxial growth film grown from the upper surface 225 of the convex portion 224. The length of the region 243 along the left-right direction X from the left end to the right end is equal to the length along the left-right direction X from the left end to the right end of the upper surface of the convex portion 224 . Region 243 is a vertically grown film. Region 243 may include dislocations along the thickness direction Z. The dislocations can be observed as dislocation lines 42, as shown in FIG. The number of dislocation lines 42 may increase as the width of the convex portion 224 increases.
(結晶層213)
 結晶層213は、例えば、n型の半導体層である。結晶層213は、結晶層212の上に直接配されている。結晶層213は、結晶層212の凹凸部252と接する。結晶層213は、結晶層211、212と同じ導電型である。結晶層213は、例えば、結晶層212上でホモエピタキシャル成長膜したエピタキシャル成長膜である。結晶層213は、結晶性酸化物半導体を主成分として含む。
(Crystal layer 213)
The crystal layer 213 is, for example, an n-type semiconductor layer. Crystal layer 213 is placed directly on crystal layer 212. The crystal layer 213 is in contact with the uneven portion 252 of the crystal layer 212. Crystal layer 213 has the same conductivity type as crystal layers 211 and 212. The crystal layer 213 is, for example, an epitaxially grown film that is homoepitaxially grown on the crystal layer 212. The crystal layer 213 contains a crystalline oxide semiconductor as a main component.
 結晶層213に含まれる結晶性酸化物半導体は、コランダム構造を有する。前記結晶性酸化物半導体は、結晶層211,212に含まれる結晶性酸化物半導体と同じ構造を有している。本実施形態では、結晶層213に含まれる前記結晶性酸化物半導体の面方位は、任意とされる。結晶層213に含まれる前記結晶性酸化物半導体の組成は、結晶層211,212と同じであってよい。 The crystalline oxide semiconductor included in the crystal layer 213 has a corundum structure. The crystalline oxide semiconductor has the same structure as the crystalline oxide semiconductor included in the crystal layers 211 and 212. In this embodiment, the plane orientation of the crystalline oxide semiconductor included in the crystal layer 213 is arbitrary. The composition of the crystalline oxide semiconductor included in the crystal layer 213 may be the same as that of the crystal layers 211 and 212.
 図10に示されるように、結晶層213は、下面261が結晶層212の上面251と接合している。下面261および上面251は、結晶層213と結晶層212との界面でもある。結晶層213は、下面261に、上面251の凹凸部252に対応した形状である凹凸部262を有する。すなわち、凹凸部262は、ストライプ状である。凹凸部262は、結晶層211の凹凸部222と異なる方向に配列されてよいが、好ましくは同じ方向に配列されている。凹凸部262は、凹凸部222に対して半ピッチ分だけ左右方向Xにずれた位置とされている。 As shown in FIG. 10, the lower surface 261 of the crystal layer 213 is joined to the upper surface 251 of the crystal layer 212. The lower surface 261 and the upper surface 251 are also the interface between the crystal layer 213 and the crystal layer 212. The crystal layer 213 has an uneven portion 262 on the lower surface 261, which has a shape corresponding to the uneven portion 252 on the upper surface 251. That is, the uneven portion 262 has a stripe shape. The uneven portions 262 may be arranged in a different direction from the uneven portions 222 of the crystal layer 211, but preferably they are arranged in the same direction. The uneven portion 262 is positioned offset from the uneven portion 222 by a half pitch in the left-right direction X.
 凹凸部262は、凹凸部252と接している。凹凸部262は、凹部263と、凸部264と、を有する。結晶層213は、凹凸部262の他、結晶層212の凸部254の直上の領域273と、凸部264の直上の領域274と、を有する。なお、下面261は、結晶層213の主面のうち、下方の面を指す。 The uneven portion 262 is in contact with the uneven portion 252. The uneven portion 262 has a recessed portion 263 and a convex portion 264. In addition to the uneven portion 262 , the crystal layer 213 includes a region 273 directly above the convex portion 254 of the crystal layer 212 and a region 274 directly above the convex portion 264 . Note that the lower surface 261 refers to the lower surface of the main surface of the crystal layer 213.
 凹部263は、例えば、凸部264が形成される結果として形成される。凹部263の内部空間は、凸部254で埋まっている。凹部263の上に位置する結晶層213は、例えば、凸部254の上面255上で成長したエピタキシャル成長膜である。凹部263は、結晶層211の凹部223と上下に重なる位置に配されている。 The recess 263 is formed, for example, as a result of the formation of the protrusion 264. The inner space of the recess 263 is filled with the protrusion 254 . The crystal layer 213 located on the concave portion 263 is, for example, an epitaxial growth film grown on the upper surface 255 of the convex portion 254. The recess 263 is placed in a position that vertically overlaps the recess 223 of the crystal layer 211 .
 凸部264は、凹部253の内部空間に形成される。凸部264は、左右方向Xにおける位置が結晶層211の凸部224と少なくとも一部と上下に重なる位置とされる。本実施形態では、例えば、凸部264の前記位置が凸部224の全部と上下に重なる位置とされている。凸部264の幅は、凸部224の幅と同じかそれ以上であることが好ましい。 The convex portion 264 is formed in the internal space of the concave portion 253. The convex portion 264 is located at a position in the left-right direction X that vertically overlaps at least a portion of the convex portion 224 of the crystal layer 211 . In this embodiment, for example, the position of the convex portion 264 is such that it vertically overlaps all of the convex portions 224. The width of the protrusion 264 is preferably the same as or greater than the width of the protrusion 224.
 凸部264は、例えば、凹部253の成長面から成長したエピタキシャル成長膜である。このとき、凸部264は、横方向成長膜264a、264bと、縦方向成長膜264cと、を含む。横方向成長膜264a、264bは、結晶層211の凸部224と上下に重なって位置する。横方向成長膜264aは、凹部253の側面253aから横方向(左右方向X)に成長した膜である。横方向成長膜264bは、凹部253の側面253bから横方向(左右方向X)に成長した膜である。横方向成長膜264aの成長の向きは、横方向成長膜264bの成長の向きと反対である。縦方向成長膜264cは、底面253cから縦方向(厚さ方向Z)に成長した膜であり、成長の向きは上向きである。 The convex portion 264 is, for example, an epitaxially grown film grown from the growth surface of the concave portion 253. At this time, the convex portion 264 includes horizontally grown films 264a and 264b and a vertically grown film 264c. The laterally grown films 264a and 264b are located vertically overlapping the convex portion 224 of the crystal layer 211. The laterally grown film 264a is a film grown laterally (left-right direction X) from the side surface 253a of the recess 253. The laterally grown film 264b is a film grown laterally (left-right direction X) from the side surface 253b of the recess 253. The growth direction of the laterally grown film 264a is opposite to the growth direction of the laterally grown film 264b. The vertically grown film 264c is a film grown in the vertical direction (thickness direction Z) from the bottom surface 253c, and the growth direction is upward.
 凸部264は、凹部253内に横方向成長膜264aと横方向成長膜264bとの界面である結晶粒界237を含む。結晶粒界237は、凹部253より上方の結晶層213内において、転位238として現れることがある。図10には、結晶粒界237を示す線と連続して転位238を示す線が表されている。結晶粒界237と転位238の境界は、明確でなくともよいが、本開示では、便宜的に凸部254の上面255と同じ厚さ方向Zにおける位置とする。なお、結晶粒界237と転位238は、連続しておらずともよい。また、転位238は、前後方向Yにおいて、連続していても、断続的であってもよい。なお、結晶粒界237および転位238は、図10において模式的に直線で表されているが、概ね厚さ方向Zに沿っていればよく、少なくとも一部が傾斜していてもよく、少なくとも一部が曲線であってもよい。なお、結晶粒界237は、第3結晶欠陥の一例である。 The convex portion 264 includes a grain boundary 237 within the concave portion 253, which is an interface between the laterally grown film 264a and the laterally grown film 264b. The grain boundaries 237 may appear as dislocations 238 in the crystal layer 213 above the recesses 253. In FIG. 10, a line indicating the grain boundary 237 and a line indicating the dislocation 238 are shown continuous with the line indicating the grain boundary 237. Although the boundary between the grain boundary 237 and the dislocation 238 does not have to be clear, in the present disclosure, for convenience, it is assumed to be at the same position in the thickness direction Z as the upper surface 255 of the convex portion 254. Note that the grain boundaries 237 and dislocations 238 do not need to be continuous. Further, the dislocation 238 may be continuous or intermittent in the front-rear direction Y. Note that although the grain boundaries 237 and dislocations 238 are schematically represented as straight lines in FIG. The portion may be a curved line. Note that the grain boundary 237 is an example of a third crystal defect.
 結晶粒界237は、左右方向Xにおける位置が凹部253内であればよい。結晶粒界237の左右方向Xおける位置は、横方向成長膜264aと横方向成長膜264bの成長速度に依存する。結晶粒界237の前記位置は、膜の成長速度との関係が結晶粒界37の左右方向Xにおける位置と同様である。 The grain boundary 237 may be located within the recess 253 in the left-right direction X. The position of the grain boundary 237 in the left-right direction X depends on the growth rate of the laterally grown film 264a and the laterally grown film 264b. The position of the grain boundary 237 has the same relationship with the film growth rate as the position of the grain boundary 37 in the left-right direction X.
 凸部264は、凹部253内に横方向成長膜264a、264bと縦方向成長膜264cとの界面である結晶粒界269を含む。結晶粒界269は、結晶層211の凸部224と上下に重なって位置する。結晶粒界269は、横方向成長膜264aと縦方向成長膜264cとの界面である結晶粒界269aと、横方向成長膜264bと縦方向成長膜264cとの界面である結晶粒界269bと、を有する。なお、結晶粒界269、269bは、それぞれ第2結晶欠陥の一例である。 The convex portion 264 includes a grain boundary 269 in the concave portion 253, which is an interface between the horizontally grown films 264a, 264b and the vertically grown film 264c. The grain boundaries 269 are located vertically overlapping the convex portions 224 of the crystal layer 211. The grain boundaries 269 include a grain boundary 269a that is an interface between the horizontally grown film 264a and the vertically grown film 264c, and a grain boundary 269b that is the interface between the horizontally grown film 264b and the vertically grown film 264c. has. Note that the grain boundaries 269 and 269b are each an example of a second crystal defect.
 結晶粒界269は、例えば凹部253の数に応じて、複数が左右方向X(横方向)に沿って並ぶ。結晶粒界269は、図10に示される断面において、三角形状である。なお、結晶粒界269は、横方向(左右方向X)における両外側より内側が上方に位置する凸状部の一例である。 A plurality of grain boundaries 269 are arranged along the left-right direction X (horizontal direction), for example, depending on the number of recesses 253. The grain boundaries 269 have a triangular shape in the cross section shown in FIG. Note that the grain boundary 269 is an example of a convex portion in which the inner side is located higher than both the outer sides in the lateral direction (left-right direction X).
 本実施形態では、結晶粒界269の左右方向Xに沿った寸法は、左右方向Xに並ぶ結晶粒界269のうち相互に隣り合う結晶粒界269の間の距離に対する比が1以上であることが好ましい。結晶粒界269の左右方向Xに沿った寸法は、左右方向Xに並ぶ結晶粒界269のうち相互に隣り合う結晶粒界269の間の距離に対する比が1であればより好ましい。また、結晶粒界269の間の距離は、凹部253の距離w8と等しいが、距離w8より大きくてもよい。 In this embodiment, the ratio of the dimension of the grain boundary 269 along the left-right direction X to the distance between mutually adjacent grain boundaries 269 among the grain boundaries 269 arranged in the left-right direction is preferred. It is more preferable that the size of the grain boundaries 269 along the left-right direction X has a ratio of 1 to the distance between adjacent grain boundaries 269 among the grain boundaries 269 arranged in the left-right direction X. Further, the distance between the grain boundaries 269 is equal to the distance w8 of the recess 253, but may be larger than the distance w8.
 本実施形態では、結晶粒界269は、結晶粒界39に対して上段に位置している。すなわち、左右方向Xに並ぶ複数の結晶粒界39と左右方向Xに並ぶ複数の結晶粒界269は、上下二段に位置する。結晶粒界269と結晶粒界39とは、左右方向Xにおいて交互に位置する。結晶粒界269と結晶粒界39は、上面視において、左右方向Xにおいて重なっている、または隙間なく連続している状態であることが好ましい。 In this embodiment, the grain boundary 269 is located above the grain boundary 39. That is, the plurality of grain boundaries 39 lined up in the left-right direction X and the plurality of grain boundaries 269 lined up in the left-right direction X are located in two levels, upper and lower. The grain boundaries 269 and the grain boundaries 39 are alternately located in the left-right direction X. It is preferable that the grain boundaries 269 and the grain boundaries 39 overlap in the left-right direction X when viewed from above, or are continuous without gaps.
 結晶粒界269a、269bは、図10に示されるように、厚さ方向Zに切断した断面において、線状に現れる。結晶粒界269aは、例えば、左端又は下端が側面253aの下端または底面253cの左端に位置する。結晶粒界269aは、例えば、右端または上端が底面253cの左右方向Xにおける中央の直上に位置する。結晶粒界269bは、例えば、右端または下端が側面253bの下端または底面253cの右端に位置する。結晶粒界269bは、例えば、左端または上端が底面253cの左右方向Xにおける中央の直上に位置する。結晶粒界269aの右端または上端は、結晶粒界269bの左端または上端と繋がっている。なお、結晶粒界269は、図10において模式的に直線で表されているが、少なくとも一部が曲線であってもよい。結晶粒界269aと結晶粒界269bは、左右方向Xにおける傾きの向きが反対であるため、結晶粒界269は、三角形状となる。 As shown in FIG. 10, the grain boundaries 269a and 269b appear linearly in a cross section taken in the thickness direction Z. For example, the left end or lower end of the grain boundary 269a is located at the lower end of the side surface 253a or the left end of the bottom surface 253c. For example, the right end or the upper end of the grain boundary 269a is located directly above the center of the bottom surface 253c in the left-right direction X. For example, the right end or lower end of the grain boundary 269b is located at the lower end of the side surface 253b or the right end of the bottom surface 253c. For example, the left end or the upper end of the grain boundary 269b is located directly above the center of the bottom surface 253c in the left-right direction X. The right end or upper end of the grain boundary 269a is connected to the left end or upper end of the grain boundary 269b. Note that although the grain boundaries 269 are schematically represented as straight lines in FIG. 10, at least a portion thereof may be curved lines. Since the grain boundary 269a and the grain boundary 269b have opposite inclinations in the left-right direction X, the grain boundary 269 has a triangular shape.
 結晶粒界269aは、側面253aから右方に離れるほど上方に位置するように厚さ方向Zおよび左右方向Xに対して傾斜する。結晶粒界269bは、側面253bから左方に離れるほど上方に位置するように厚さ方向Zおよび左右方向Xに対して傾斜する。結晶粒界269a、269b全体が傾斜部であってもよく、一部が傾斜部であってもよい。なお、結晶粒界269は、複数の傾斜部を含む。本実施形態では、結晶粒界269は、2つの傾斜部を含む。 The grain boundaries 269a are inclined with respect to the thickness direction Z and the left-right direction X so that the farther to the right from the side surface 253a, the higher the grain boundaries are located. The grain boundaries 269b are inclined with respect to the thickness direction Z and the left-right direction X so that the farther left from the side surface 253b, the higher the grain boundaries are located. The entire grain boundaries 269a and 269b may be sloped portions, or a portion thereof may be sloped portions. Note that the grain boundary 269 includes a plurality of inclined parts. In this embodiment, grain boundary 269 includes two slopes.
 結晶粒界269aは、厚さ方向Zからの傾斜角θ7を有する。傾斜角θ7は、例えば、横方向成長膜264aの成長速度と縦方向成長膜264cの成長速度との比と相関する。傾斜角θ7は、結晶粒界39aの傾斜角θ3と同様であってもよい。結晶粒界269bは、厚さ方向Zからの傾斜角θ8を有する。傾斜角θ8は、例えば、横方向成長膜264bの成長速度と縦方向成長膜264cの成長速度との比と相関する。傾斜角θ8は、結晶粒界39bの傾斜角θ4と同様であってもよい。 The grain boundary 269a has an inclination angle θ7 from the thickness direction Z. The inclination angle θ7 correlates with, for example, the ratio of the growth rate of the horizontally grown film 264a to the growth rate of the vertically grown film 264c. The inclination angle θ7 may be the same as the inclination angle θ3 of the grain boundary 39a. The grain boundary 269b has an inclination angle θ8 from the thickness direction Z. The inclination angle θ8 correlates with, for example, the ratio of the growth rate of the horizontally grown film 264b to the growth rate of the vertically grown film 264c. The inclination angle θ8 may be the same as the inclination angle θ4 of the grain boundary 39b.
 縦方向成長膜264cは、厚さ方向Zに沿った転位を含み得る。当該転位は、例えば、結晶層212の厚さ方向Zに沿った転位(図10の転位線42)を引き継いだものである。図10に示されるように、縦方向成長膜264cの転位は、結晶膜210を厚さ方向Zに切断した断面において、転位線271として観察され得る。縦方向成長膜264cの断面は、複数の転位線271を含む。本実施形態では、転位線271は、凹部253内に位置する。転位線271は、下端が凸部264の下端に位置する。転位線271の上端は、例えば、結晶粒界269と繋がっている。転位線271の上端は、結晶粒界269と繋がっておらずともよく、結晶粒界269より下方に位置してもよい。縦方向成長膜34cは、図9に示される断面において、三角形状である。 The vertically grown film 264c may include dislocations along the thickness direction Z. The dislocations are, for example, inherited dislocations along the thickness direction Z of the crystal layer 212 (dislocation lines 42 in FIG. 10). As shown in FIG. 10, dislocations in the vertically grown film 264c can be observed as dislocation lines 271 in a cross section of the crystal film 210 taken in the thickness direction Z. The cross section of the vertically grown film 264c includes a plurality of dislocation lines 271. In this embodiment, the dislocation line 271 is located within the recess 253. The lower end of the dislocation line 271 is located at the lower end of the convex portion 264 . The upper end of the dislocation line 271 is connected to, for example, a grain boundary 269. The upper end of the dislocation line 271 may not be connected to the grain boundary 269 and may be located below the grain boundary 269. The vertically grown film 34c has a triangular shape in the cross section shown in FIG.
 凸部264の直上の領域274は、例えば、結晶層212の上面251から成長したエピタキシャル成長膜である。領域274の左端から右端までの左右方向Xに沿った長さは、凹部253の幅w7に等しい。 The region 274 directly above the convex portion 264 is, for example, an epitaxially grown film grown from the upper surface 251 of the crystal layer 212. The length of the region 274 from the left end to the right end along the left-right direction X is equal to the width w7 of the recess 253.
 結晶層213の厚さは、1μm以下であってもよいし、1μm以上であってもよい。本開示の実施形態においては、結晶層213の厚さが、1μm以上であるのが好ましく、3μm以上であるのが好ましい。結晶層213の厚さは、凹部253の深さd4以上である。なお、結晶層213の厚さは、本開示の実施形態において、凸部264の下端から結晶層213の上面265までの厚さ方向Zに沿った長さを指す。 The thickness of the crystal layer 213 may be 1 μm or less, or 1 μm or more. In the embodiment of the present disclosure, the thickness of the crystal layer 213 is preferably 1 μm or more, and preferably 3 μm or more. The thickness of the crystal layer 213 is greater than or equal to the depth d4 of the recess 253. Note that the thickness of the crystal layer 213 refers to the length along the thickness direction Z from the lower end of the convex portion 264 to the upper surface 265 of the crystal layer 213 in the embodiment of the present disclosure.
 このような構成であっても、厚さ方向Zに沿って延びる転位が低減された結晶膜とすることができる。特に結晶層213の領域273では、厚さ方向Zに沿って延びる転位をより一層低減させることができる。 Even with such a configuration, it is possible to obtain a crystal film in which dislocations extending along the thickness direction Z are reduced. In particular, in the region 273 of the crystal layer 213, dislocations extending along the thickness direction Z can be further reduced.
(結晶膜210の製造方法)
 以下、図10~図13を参照して、結晶膜210の製造方法の一例を説明する。図11は、結晶膜210の製造方法の概要を例示する図である。
(Method for manufacturing crystal film 210)
An example of a method for manufacturing the crystal film 210 will be described below with reference to FIGS. 10 to 13. FIG. 11 is a diagram illustrating an overview of a method for manufacturing the crystal film 210.
 図11に示されるように、結晶膜210の製造方法は、例えば、基板13上に結晶層211を形成する工程S11と、結晶層211の上面221に凹凸部222を形成する工程S12と、結晶層211の上面221上に結晶層212を形成する工程S13と、結晶層212の上面251に凹凸部252を形成する工程S14と、結晶層212の上面251上に結晶層213を形成する工程S15と、基板13を除去する工程S16と、を含む。なお、工程S11~S13は、工程S1~S3と同様であり、工程S16は、工程S4と同様であるため、説明が省略される。 As shown in FIG. 11, the method for manufacturing the crystal film 210 includes, for example, a step S11 of forming a crystal layer 211 on a substrate 13, a step S12 of forming an uneven portion 222 on an upper surface 221 of the crystal layer 211, and a step S12 of forming a crystal layer 211 on a substrate 13. Step S13 of forming the crystal layer 212 on the upper surface 221 of the layer 211, Step S14 of forming the uneven portion 252 on the upper surface 251 of the crystal layer 212, and Step S15 of forming the crystal layer 213 on the upper surface 251 of the crystal layer 212. and step S16 of removing the substrate 13. Note that steps S11 to S13 are the same as steps S1 to S3, and step S16 is the same as step S4, so a description thereof will be omitted.
 図12に示されるように、工程S14において、凹凸部252は、例えば、結晶層211に積層された結晶層212の上面251にエッチング等により形成される。凹凸部252の形成方法は、凹凸部22の形成方法と同じであってよい。凹凸部252は、凹部253が結晶層211の凸部224と上下に重なる位置とされ、凸部254が結晶層211の凹部223と上下に重なる位置とされる。凹凸部252は、凹凸部222と半ピッチずらされて形成される。 As shown in FIG. 12, in step S14, the uneven portion 252 is formed, for example, on the upper surface 251 of the crystal layer 212 stacked on the crystal layer 211 by etching or the like. The method for forming the uneven portion 252 may be the same as the method for forming the uneven portion 22. The uneven portion 252 is located at a position where the recessed portion 253 vertically overlaps with the convex portion 224 of the crystal layer 211, and the convex portion 254 is located at a position where the recessed portion 223 of the crystal layer 211 vertically overlaps. The uneven portion 252 is formed to be shifted by a half pitch from the uneven portion 222.
 図13に示されるように、工程S15において、結晶層213は、例えばミストCVD法によって、凹凸部252が形成された結晶層212に積層される。結晶層213は、結晶層211、212と同じ方法で積層されることができる。なお、結晶層213は、結晶層211、212と同様に公知の前記形成手段によって結晶層212に積層されてもよい。結晶層213は、例えば、結晶層212と同じ材料で同じ組成に形成される。結晶層213は、例えば、結晶層211、212と同じ導電型であり、n型に形成される。 As shown in FIG. 13, in step S15, the crystal layer 213 is laminated on the crystal layer 212 on which the uneven portions 252 are formed, for example, by a mist CVD method. Crystal layer 213 can be stacked in the same manner as crystal layers 211 and 212. Note that, like the crystal layers 211 and 212, the crystal layer 213 may be laminated on the crystal layer 212 by the known forming means. For example, the crystal layer 213 is formed of the same material and the same composition as the crystal layer 212. For example, the crystal layer 213 has the same conductivity type as the crystal layers 211 and 212, and is formed to be n-type.
 このとき、結晶層213の凸部264の横方向成長膜264aは、結晶層212の凹部253の側面253aから右方へ、凸部264の横方向成長膜264bは、凹部253の側面253bから左方へ、凸部264の縦方向成長膜264cは凹部253の底面253cから上方へ、それぞれ成長する。横方向成長膜264a、264bおよび縦方向成長膜264cが異なる成長面から同時に成長することによって、結晶粒界269aが横方向成長膜264aと縦方向成長膜264cとの間に、結晶粒界269bが横方向成長膜264bと縦方向成長膜264cとの間にそれぞれ生じる。 At this time, the lateral growth film 264a of the convex portion 264 of the crystal layer 213 moves to the right from the side surface 253a of the concave portion 253 of the crystal layer 212, and the lateral growth film 264b of the convex portion 264 moves to the left from the side surface 253b of the concave portion 253 of the crystal layer 212. In this direction, the vertically grown film 264c of the convex portion 264 grows upward from the bottom surface 253c of the concave portion 253, respectively. By simultaneously growing the laterally grown films 264a, 264b and the vertically grown film 264c from different growth surfaces, the grain boundary 269a is formed between the laterally grown film 264a and the vertically grown film 264c, and the grain boundary 269b is formed between the laterally grown film 264a and the vertically grown film 264c. These are generated between the horizontally grown film 264b and the vertically grown film 264c, respectively.
 横方向成長膜264a、264bは、縦方向成長膜264cから成長しないので、転位線271(図10ご参照)の上端は、結晶粒界269と繋がるようにして現れるか、結晶粒界269の下方に位置するにように現れることとなる。 Since the laterally grown films 264a and 264b do not grow from the vertically grown film 264c, the upper ends of the dislocation lines 271 (see FIG. 10) either appear connected to the grain boundaries 269 or are located below the grain boundaries 269. It will appear as if it were located at .
 前述のとおり、結晶粒界269aの傾斜角θ7は、横方向成長膜264aの成長速度と縦方向成長膜264cの成長速度との比と相関する。結晶粒界269bの傾斜角θ8は、横方向成長膜264bの成長速度と縦方向成長膜264cとの比と相関する。結晶粒界269は、横方向(左右方向X)における両外側より内側が上方に位置する凸状部となる。結晶粒界269aと結晶粒界269bは、左右方向Xにおける傾きの向きが反対であるため、結晶粒界269は、三角形状となる。 As described above, the inclination angle θ7 of the grain boundary 269a correlates with the ratio of the growth rate of the horizontally grown film 264a to the growth rate of the vertically grown film 264c. The inclination angle θ8 of the grain boundary 269b correlates with the ratio of the growth rate of the horizontally grown film 264b to the vertically grown film 264c. The grain boundary 269 becomes a convex portion in which the inner side is located higher than both the outer sides in the lateral direction (horizontal direction X). Since the grain boundary 269a and the grain boundary 269b have opposite inclinations in the left-right direction X, the grain boundary 269 has a triangular shape.
 縦方向成長膜264cは、側面253a、253bから離れる程、厚さ方向Zに沿った長さが大きくなる。すなわち厚さが増すため、結晶粒界269a、269bにそれぞれ傾斜部が形成される。縦方向成長膜264cは、底面253cから成長する際、結晶層212の転位線42に起因して転位線271が形成されることがある。 The length of the vertically grown film 264c along the thickness direction Z increases as the distance from the side surfaces 253a and 253b increases. That is, since the thickness increases, inclined portions are formed at each of the grain boundaries 269a and 269b. When the vertically grown film 264c grows from the bottom surface 253c, dislocation lines 271 may be formed due to the dislocation lines 42 of the crystal layer 212.
 横方向成長膜264aと横方向成長膜264bとは、同時に左右方向Xに沿って成長する。横方向成長膜264aの左右方向Xに沿った成長の幅は、横方向成長膜264aの成長速度と横方向成長膜264bの成長速度との比と相関する。横方向成長膜264aと横方向成長膜264bとは、このとき、凹部253の内部空間内で会合する。 The lateral growth film 264a and the lateral growth film 264b grow along the left-right direction X at the same time. The width of growth of the laterally grown film 264a along the left-right direction X correlates with the ratio of the growth rate of the laterally grown film 264a to the growth rate of the laterally grown film 264b. At this time, the laterally grown film 264a and the laterally grown film 264b meet within the internal space of the recess 253.
 なお、結晶層213が形成された後、結晶層213の上面265が平らとなるように研磨等の公知の手段が用いられてもよい。 Note that after the crystal layer 213 is formed, known means such as polishing may be used so that the upper surface 265 of the crystal layer 213 becomes flat.
 このような製造方法によれば、上述の結晶膜210を製造することができる。結晶層212、213の形成の際、SiO等のマスクを用いないので、結晶膜内のマスクを除去する必要がない。前記マスクを除去に伴う各結晶層の一部損失がないので、当該マスクが用いられる場合と比較して歩留まりに優れる。結晶層212が結晶層211内の転位に起因する転位を有していたとしても、当該転位に起因する結晶層213の転位を減らすことができる。 According to such a manufacturing method, the above-described crystal film 210 can be manufactured. Since a mask such as SiO 2 is not used when forming the crystal layers 212 and 213, there is no need to remove the mask inside the crystal film. Since there is no loss of a portion of each crystal layer due to removal of the mask, the yield is superior to the case where the mask is used. Even if the crystal layer 212 has dislocations caused by dislocations within the crystal layer 211, the dislocations in the crystal layer 213 caused by the dislocations can be reduced.
(変形例1)
 上記第1実施形態では、側面23aと凸部24の上面25との角度θ1は90度であったが、図14に示されるように、角度θ1は、90度より小さくてもよく、例えば、60度であってもよい。同様に、上記第1実施形態では、側面23bと上面25との角度θ2は90度であったが、図14に示されるように、角度θ2は、90度より小さくてもよく、例えば、60度であってもよい。
(Modification 1)
In the first embodiment, the angle θ1 between the side surface 23a and the upper surface 25 of the convex portion 24 was 90 degrees, but as shown in FIG. 14, the angle θ1 may be smaller than 90 degrees, for example, It may be 60 degrees. Similarly, in the first embodiment, the angle θ2 between the side surface 23b and the top surface 25 was 90 degrees, but as shown in FIG. 14, the angle θ2 may be smaller than 90 degrees, for example, 60 degrees. It may be degree.
(変形例2)
 上記第1実施形態では、底面23cは、左右方向Xおよび前後方向Yに沿って拡がる平面であったが、図15に示されるように、底面23cは、下方に湾曲するアーチ状の面であってもよい。なお、図15では、結晶層12の内部構造が省略されている。
(Modification 2)
In the first embodiment, the bottom surface 23c is a plane extending along the left-right direction X and the front-back direction Y, but as shown in FIG. It's okay. Note that in FIG. 15, the internal structure of the crystal layer 12 is omitted.
(変形例3)
 上記実施形態では、基板13が除去されて結晶膜10、110、210とされたが、結晶膜10、110、210は、基板13を含んでいてもよく、例えば、図6に示されるような基板13を含んだ状態で結晶膜10、110、210とされてもよい。基板13を含む結晶膜10、110、210は、多層構造体の一例である。
(Modification 3)
In the above embodiment, the substrate 13 is removed to form the crystal films 10, 110, 210, but the crystal films 10, 110, 210 may also include the substrate 13, for example, as shown in FIG. The crystal films 10, 110, and 210 may include the substrate 13. The crystal films 10, 110, and 210 including the substrate 13 are an example of a multilayer structure.
(変形例4)
 上記第3実施形態では、上面251に凹凸部252が形成された結晶層212の上に結晶層213が積層されたが、凹凸部252が形成されずに結晶層213が結晶層212の上に積層されてもよい。図16に示されるように、変形例4の結晶膜では、結晶層211の凸部224と左右方向Xおよび前後方向Yにおける位置が同じである結晶層213の一部が横方向成長膜364a、364bおよび縦方向成長膜364cに置換されている。
(Modification 4)
In the third embodiment, the crystal layer 213 is stacked on the crystal layer 212 with the uneven portion 252 formed on the upper surface 251, but the crystal layer 213 is stacked on the crystal layer 212 without the uneven portion 252 formed. It may be laminated. As shown in FIG. 16, in the crystal film of Modification Example 4, a portion of the crystal layer 213 that is at the same position as the convex portion 224 of the crystal layer 211 in the left-right direction X and the front-back direction Y is a laterally grown film 364a, 364b and a vertically grown film 364c.
 変形例4の結晶膜の製造方法は、結晶層212の上面251に凹凸部262を形成する工程S14を含まず、結晶層213を形成した後(工程S15の後)、凸部224の直上に位置する結晶層213の一部をエッチング等によって除去する工程と、残された結晶層213の間に横方向成長膜364a、364bおよび縦方向成長膜364cがエピタキシャル成長させる工程と、を含む。当該除去する工程は、工程S12や工程S14と同様に公知の方法によって行われてよい。 The method for manufacturing a crystal film of Modification Example 4 does not include the step S14 of forming the uneven portions 262 on the upper surface 251 of the crystal layer 212, and after forming the crystal layer 213 (after step S15), forming the uneven portions 262 directly above the projecting portions 224 is not included. This step includes a step of removing a portion of the crystal layer 213 located therein by etching or the like, and a step of epitaxially growing laterally grown films 364a, 364b and a vertically grown film 364c between the remaining crystal layers 213. The removing step may be performed by a known method similarly to step S12 and step S14.
 横方向成長膜364aは、前記除去する工程で残された結晶層213の側面353aから右方へ成長する。側面353aは、前後方向Yおよび厚さ方向Zに沿って拡がり、右方へ向く平面である。横方向成長膜364bは、前記除去する工程で残された結晶層213の側面353bから左方へ成長する。側面353bは、前後方向Yおよび厚さ方向Zに沿って拡がり、左方へ向く平面である。縦方向成長膜364cは、前記除去する工程で露出した結晶層212の上面353cから上方へ成長する。 The lateral growth film 364a grows rightward from the side surface 353a of the crystal layer 213 left in the removal step. The side surface 353a is a plane that extends along the front-rear direction Y and the thickness direction Z and faces rightward. The lateral growth film 364b grows leftward from the side surface 353b of the crystal layer 213 left in the removal process. The side surface 353b is a plane that extends along the front-rear direction Y and the thickness direction Z and faces leftward. The vertically grown film 364c grows upward from the upper surface 353c of the crystal layer 212 exposed in the removal process.
 横方向成長膜364a、364bおよび縦方向成長膜364cの成膜方法は、第3実施形態の横方向成長膜264a、264bおよび縦方向成長膜264cと同様である。横方向成長膜364a、364bおよび縦方向成長膜364cが異なる成長面から同時に成長することによって、結晶粒界369aが横方向成長膜364aと縦方向成長膜364cとの間に、結晶粒界369bが横方向成長膜364bと縦方向成長膜364cとの間にそれぞれ生じる。 The method of forming the horizontally grown films 364a, 364b and the vertically grown film 364c is the same as that of the horizontally grown films 264a, 264b and the vertically grown film 264c of the third embodiment. By simultaneously growing the laterally grown films 364a, 364b and the vertically grown film 364c from different growth surfaces, the grain boundary 369a is formed between the laterally grown film 364a and the vertically grown film 364c, and the grain boundary 369b is formed between the laterally grown film 364a and the vertically grown film 364c. These are generated between the horizontally grown film 364b and the vertically grown film 364c, respectively.
 横方向成長膜364a、364bは、縦方向成長膜364cから成長しないので、縦方向成長膜364cに結晶層212の転位線42に起因する転位線が含まれたとしても、当該転位線の上端は、結晶粒界369(369a、369b)と繋がるようにして現れるか、結晶粒界369の下方に位置するように現れることとなる。 The horizontally grown films 364a and 364b do not grow from the vertically grown film 364c, so even if the vertically grown film 364c contains a dislocation line caused by the dislocation line 42 of the crystal layer 212, the upper end of the dislocation line is , appear connected to the grain boundary 369 (369a, 369b), or appear located below the grain boundary 369.
(変形例5)
 上記実施形態では、縦方向成長膜34c、134c、234cが結晶膜10、110、210内に含まれたが、結晶層11、211の下面27から上方にかけた一部および縦方向成長膜34c、134c、234cが除去されて、当該部分を含まない結晶膜10、110、210とされてもよい。なお、結晶膜10、110、210は、縦方向成長膜34c、134c、234cの一部を除去、または全体を残すようにして結晶層11、211の下面27から上方にかけた一部が除去されてもよい。変形例5における除去は、基板13とともに、または基板13の除去後に行われてもよい。
(Modification 5)
In the embodiments described above, the vertically grown films 34c, 134c, and 234c were included in the crystal films 10, 110, and 210; 134c and 234c may be removed to form the crystal films 10, 110, and 210 that do not include the portions. Note that, in the crystal films 10, 110, 210, a portion of the vertically grown films 34c, 134c, 234c is removed, or a portion upward from the lower surface 27 of the crystal layer 11, 211 is removed so as to leave the entire film. It's okay. The removal in Modification 5 may be performed together with the substrate 13 or after the substrate 13 is removed.
(変形例6)
 上記実施形態では、縦方向成長膜34c、134c、234c、264cの上端が凹部23、123、223、253内に位置したが、凹部23、123、223、253外、すなわち凸部24、124、224、254の上面25、225、255より上方であって、結晶層12、212、213の上面より下方に位置してもよい。このような構成であっても、厚さ方向Zに沿って延びる転位が低減される。
(Modification 6)
In the embodiments described above, the upper ends of the vertically grown films 34c, 134c, 234c, and 264c are located within the recesses 23, 123, 223, and 253; It may be located above the top surfaces 25, 225, 255 of 224, 254 and below the top surfaces of the crystal layers 12, 212, 213. Even with such a configuration, dislocations extending along the thickness direction Z are reduced.
 図33は、変形例6にかかる結晶膜の一例であって、縦断面の一部のTEM(透過電子顕微鏡)像を観察したものである。図34は、図33の部分拡大図である。図33の例は、第1実施形態の変形例の一つである。なお、図33では、図2の断面と同様に、左右方向Xおよび厚さ方向Zに沿って拡がる断面を示す。図33では、便宜的に第1実施形態で説明された構成に基づいて説明される。 FIG. 33 shows an example of the crystal film according to Modification Example 6, and is a TEM (transmission electron microscope) image of a part of the longitudinal section. FIG. 34 is a partially enlarged view of FIG. 33. The example in FIG. 33 is one of the modifications of the first embodiment. Note that, like the cross section in FIG. 2, FIG. 33 shows a cross section extending along the left-right direction X and the thickness direction Z. In FIG. 33, explanation will be made based on the configuration described in the first embodiment for convenience.
 図33の凹部23の側面23a、23bは、第1実施形態と同様に、a面であり、底面23cは、m面である。当該例では、凹部23の深さd1が約1.51μm、幅w1が約2.55μm、距離w2が約0.6μmである。当該例では、深さd1の幅w1に対する比が約0.59、幅w1の距離w2に対する比が約4.3である。当該例では、傾斜角θ3が約37度、傾斜角θ4が約36度である。 The side surfaces 23a and 23b of the recess 23 in FIG. 33 are the a-plane, and the bottom surface 23c is the m-plane, as in the first embodiment. In this example, the depth d1 of the recess 23 is about 1.51 μm, the width w1 is about 2.55 μm, and the distance w2 is about 0.6 μm. In this example, the ratio of depth d1 to width w1 is about 0.59, and the ratio of width w1 to distance w2 is about 4.3. In this example, the tilt angle θ3 is approximately 37 degrees, and the tilt angle θ4 is approximately 36 degrees.
(結晶膜10、110、210の適用例)
 前記結晶膜は半導体装置、特にパワーデバイスに有用である。前記結晶膜を用いて形成される半導体装置としては、MISFETやHEMT等のトランジスタやTFT、半導体‐金属接合を利用したショットキーバリアダイオード、JBS、他のP層と組み合わせたPN又はPINダイオード、受発光素子などが挙げられる。本開示の実施態様においては、前記結晶膜を、所望により前記結晶基板と剥離等して、半導体装置に用いることができる。
(Application examples of crystal films 10, 110, 210)
The crystalline film is useful for semiconductor devices, especially power devices. Semiconductor devices formed using the crystal film include transistors such as MISFETs and HEMTs, TFTs, Schottky barrier diodes using semiconductor-metal junctions, JBSs, PN or PIN diodes combined with other P layers, and receivers. Examples include light emitting elements. In embodiments of the present disclosure, the crystal film can be peeled off from the crystal substrate, if desired, and used in a semiconductor device.
 また、前記半導体装置は、電極が半導体層の片面側に形成された横型の素子(横型デバイス)と、半導体層の表裏両面側にそれぞれ電極を有する縦型の素子(縦型デバイス)のいずれにも好適に用いられるが、本開示の実施態様においては、中でも、縦型デバイスに用いることが好ましい。前記半導体装置の好適な例としては、例えば、ショットキーバリアダイオード(SBD)、ジャンクションバリアショットキーダイオード(JBS)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)または発光ダイオード(LED)などが挙げられる。 The semiconductor device may be either a horizontal element in which an electrode is formed on one side of a semiconductor layer (horizontal device) or a vertical element in which electrodes are formed on both the front and back sides of the semiconductor layer (vertical device). However, in the embodiment of the present disclosure, it is particularly preferable to use it for a vertical device. Suitable examples of the semiconductor device include, for example, a Schottky barrier diode (SBD), a junction barrier Schottky diode (JBS), a metal semiconductor field effect transistor (MESFET), a high electron mobility transistor (HEMT), and a metal oxide film. Examples include semiconductor field effect transistors (MOSFETs), static induction transistors (SITs), junction field effect transistors (JFETs), insulated gate bipolar transistors (IGBTs), and light emitting diodes (LEDs).
 以下、本開示の結晶膜をn型半導体層(n+型半導体層やn-型半導体層等)に適用した場合の前記半導体装置の好適な例を、図面を用いて説明するが、本開示は、これらの例に限定されるものではない。また、当該例にかかる半導体装置は、例えば、本開示の結晶膜をn+型半導体層とし、当該結晶膜上にn-型半導体層を形成した構成を含むものであってもよい。また、例えば、本開示の結晶膜の第2結晶層の少なくとも一部をn-型半導体層として用いてもよい。このような構成とすることにより、より信頼性に優れた半導体装置を得ることができる。 Hereinafter, a preferred example of the semiconductor device in which the crystal film of the present disclosure is applied to an n-type semiconductor layer (an n + type semiconductor layer, an n- type semiconductor layer, etc.) will be described using drawings. , but are not limited to these examples. Further, the semiconductor device according to the example may include, for example, a structure in which the crystal film of the present disclosure is an n+ type semiconductor layer and an n- type semiconductor layer is formed on the crystal film. Further, for example, at least a portion of the second crystal layer of the crystal film of the present disclosure may be used as an n-type semiconductor layer. With such a configuration, a semiconductor device with higher reliability can be obtained.
 図17は、本開示の実施態様に係るショットキーバリアダイオード(SBD)の一例を示している。図17のSBDは、n-型半導体層401a、n+型半導体層401b、ショットキー電極405aおよびオーミック電極405bを備えている。 FIG. 17 shows an example of a Schottky barrier diode (SBD) according to an embodiment of the present disclosure. The SBD in FIG. 17 includes an n-type semiconductor layer 401a, an n+-type semiconductor layer 401b, a Schottky electrode 405a, and an ohmic electrode 405b.
 ショットキー電極およびオーミック電極の材料は、公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化レニウム、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物並びに積層体などが挙げられる。 The material of the Schottky electrode and the ohmic electrode may be a known electrode material, and examples of the electrode material include Al, Mo, Co, Zr, Sn, Nb, Fe, Cr, Ta, Ti, Au, Metals such as Pt, V, Mn, Ni, Cu, Hf, W, Ir, Zn, In, Pd, Nd or Ag, or alloys thereof, tin oxide, zinc oxide, rhenium oxide, indium oxide, indium tin oxide (ITO) ), metal oxide conductive films such as indium zinc oxide (IZO), organic conductive compounds such as polyaniline, polythiophene or polypyrrole, mixtures thereof, and laminates.
 ショットキー電極およびオーミック電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。より具体的に例えば、前記金属のうち2種類の第1の金属と第2の金属とを用いてショットキー電極を形成する場合、第1の金属からなる層と第2の金属からなる層を積層させ、第1の金属からなる層および第2の金属からなる層に対して、フォトリソグラフィの手法を利用したパターニングを施すことにより行うことができる。 The Schottky electrode and the ohmic electrode can be formed by, for example, a known method such as a vacuum evaporation method or a sputtering method. More specifically, for example, when forming a Schottky electrode using two types of metals, a first metal and a second metal, a layer made of the first metal and a layer made of the second metal are formed. This can be done by laminating the layers and subjecting the layer made of the first metal and the layer made of the second metal to patterning using a photolithography technique.
 図17のSBDに逆バイアスが印加された場合には、空乏層(図示せず)がn型半導体層401aの中に広がるため、高耐圧のSBDとなる。また、順バイアスが印加された場合には、オーミック電極405bからショットキー電極405aへ電流が流れる。このようにして前記半導体構造を用いたSBDは、高耐圧・大電流用に優れており、スイッチング速度も速く、耐圧性・信頼性にも優れている。 When a reverse bias is applied to the SBD in FIG. 17, a depletion layer (not shown) spreads into the n-type semiconductor layer 401a, resulting in a high breakdown voltage SBD. Further, when a forward bias is applied, a current flows from the ohmic electrode 405b to the Schottky electrode 405a. In this way, the SBD using the semiconductor structure is excellent in high voltage and large current applications, has a fast switching speed, and is excellent in voltage resistance and reliability.
(HEMT)
 図18は、本開示の実施態様に係る高電子移動度トランジスタ(HEMT)の一例を示している。図18のHEMTは、バンドギャップの広いn型半導体層421a、バンドギャップの狭いn型半導体層421b、n+型半導体層421c、半絶縁体層424、緩衝層428、ゲート電極425a、ソース電極425bおよびドレイン電極425cを備えている。
(HEMT)
FIG. 18 illustrates an example of a high electron mobility transistor (HEMT) according to an embodiment of the present disclosure. The HEMT in FIG. 18 includes a wide bandgap n-type semiconductor layer 421a, a narrow bandgap n-type semiconductor layer 421b, an n+ type semiconductor layer 421c, a semi-insulator layer 424, a buffer layer 428, a gate electrode 425a, a source electrode 425b, and A drain electrode 425c is provided.
(MOSFET)
 本開示の半導体装置がMOSFETである場合の一例を図19に示す。図19のMOSFETは、トレンチ型のMOSFETであり、n-型半導体層431a、n+型半導体層431b及び431c、p型半導体層432、ゲート絶縁膜434、ゲート電極435a、ソース電極435bおよびドレイン電極435cを備えている。
(MOSFET)
FIG. 19 shows an example in which the semiconductor device of the present disclosure is a MOSFET. The MOSFET in FIG. 19 is a trench type MOSFET, which includes an n-type semiconductor layer 431a, n+-type semiconductor layers 431b and 431c, a p-type semiconductor layer 432, a gate insulating film 434, a gate electrode 435a, a source electrode 435b, and a drain electrode 435c. It is equipped with
(JFET)
 図20は、n-型半導体層441a、第1のn+型半導体層441b、第2のn+型半導体層441c、ゲート電極445a、ソース電極445bおよびドレイン電極445cを備えている接合電界効果トランジスタ(JFET)の好適な一例を示す。
(JFET)
FIG. 20 shows a junction field effect transistor (JFET) comprising an n-type semiconductor layer 441a, a first n+-type semiconductor layer 441b, a second n+-type semiconductor layer 441c, a gate electrode 445a, a source electrode 445b, and a drain electrode 445c. ) is shown below.
(IGBT)
 図21は、n型半導体層451、n-型半導体層451a、n+型半導体層451b、p型半導体層452、ゲート絶縁膜454、ゲート電極455a、エミッタ電極455bおよびコレクタ電極455cを備えている絶縁ゲート型バイポーラトランジスタ(IGBT)の好適な一例を示す。
(IGBT)
FIG. 21 shows an insulator including an n-type semiconductor layer 451, an n-type semiconductor layer 451a, an n+-type semiconductor layer 451b, a p-type semiconductor layer 452, a gate insulating film 454, a gate electrode 455a, an emitter electrode 455b, and a collector electrode 455c. A suitable example of a gated bipolar transistor (IGBT) is shown.
(LED)
 本開示の半導体装置が発光ダイオード(LED)である場合の一例を図22に示す。図22の半導体発光素子は、第2の電極465b上にn型半導体層461を備えており、n型半導体層461上には、発光層463が積層されている。そして、発光層463上には、p型半導体層462が積層されている。p型半導体層462上には、発光層463が発生する光を透過する透光性電極467を備えており、透光性電極467上には、第1の電極465aが積層されている。なお、図22の半導体発光素子は、電極部分を除いて保護層で覆われていてもよい。
(LED)
FIG. 22 shows an example in which the semiconductor device of the present disclosure is a light emitting diode (LED). The semiconductor light emitting device of FIG. 22 includes an n-type semiconductor layer 461 on a second electrode 465b, and a light-emitting layer 463 is stacked on the n-type semiconductor layer 461. A p-type semiconductor layer 462 is stacked on the light emitting layer 463. A light-transmitting electrode 467 that transmits light generated by the light-emitting layer 463 is provided on the p-type semiconductor layer 462, and a first electrode 465a is laminated on the light-transmitting electrode 467. Note that the semiconductor light emitting device shown in FIG. 22 may be covered with a protective layer except for the electrode portion.
 透光性電極の材料としては、インジウム(In)またはチタン(Ti)を含む酸化物の導電性材料などが挙げられる。より具体的には、例えば、In、ZnO、SnO、Ga、TiO、CeOまたはこれらの2以上の混晶またはこれらにドーピングされたものなどが挙げられる。これらの材料を、スパッタリング等の公知の手段で設けることによって、透光性電極を形成できる。また、透光性電極を形成した後に、透光性電極の透明化を目的とした熱アニールを施してもよい。 Examples of the material for the transparent electrode include conductive oxide materials containing indium (In) or titanium (Ti). More specifically, examples thereof include In 2 O 3 , ZnO, SnO 2 , Ga 2 O 3 , TiO 2 , CeO 2 , a mixed crystal of two or more of these, or a doped material thereof. By providing these materials by known means such as sputtering, a transparent electrode can be formed. Further, after forming the light-transmitting electrode, thermal annealing may be performed for the purpose of making the light-transmitting electrode transparent.
 図22の半導体発光素子によれば、第1の電極465aを正極、第2の電極465bを負極とし、両者を介してp型半導体層462、発光層463およびn型半導体層461に電流を流すことで、発光層463が発光するようになっている。 According to the semiconductor light emitting device of FIG. 22, the first electrode 465a is used as a positive electrode, the second electrode 465b is used as a negative electrode, and a current is passed through the p-type semiconductor layer 462, the light-emitting layer 463, and the n-type semiconductor layer 461 through them. This causes the light emitting layer 463 to emit light.
 第1の電極465a及び第2の電極465bの材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化レニウム、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。電極の製膜法は特に限定されることはなく、印刷方式、スプレー法、コ-ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ-ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から前記材料との適性を考慮して適宜選択した方法に従って前記基板上に形成することができる。 Examples of the materials for the first electrode 465a and the second electrode 465b include Al, Mo, Co, Zr, Sn, Nb, Fe, Cr, Ta, Ti, Au, Pt, V, Mn, Ni, Cu, Metals such as Hf, W, Ir, Zn, In, Pd, Nd or Ag, or alloys thereof, tin oxide, zinc oxide, rhenium oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc. Examples include a metal oxide conductive film, an organic conductive compound such as polyaniline, polythiophene, or polypyrrole, or a mixture thereof. The electrode film forming method is not particularly limited, and may include wet methods such as printing, spraying, and coating, physical methods such as vacuum evaporation, sputtering, and ion plating, CVD, and plasma CVD. It can be formed on the substrate according to a method appropriately selected from chemical methods such as methods, etc., taking into consideration compatibility with the material.
 なお、発光素子の別の態様を図23に示す。図23の発光素子では、基板469上にn型半導体層461が積層されており、p型半導体層462、発光層463およびn型半導体層461の一部を切り欠くことによって露出したn型半導体層461の半導体層露出面上の一部に第2の電極465bが積層されている。 Note that another embodiment of the light emitting element is shown in FIG. In the light-emitting element of FIG. 23, an n-type semiconductor layer 461 is stacked on a substrate 469, and the n-type semiconductor layer 462, the light-emitting layer 463, and the n-type semiconductor layer 461 are exposed by cutting out parts of the layer 462, the light emitting layer 463, and the n-type semiconductor layer 461. A second electrode 465b is laminated on a portion of the exposed semiconductor layer surface of the layer 461.
 図24は、本開示の好適な実施態様の一つであるジャンクションバリアショットキーダイオード(JBS)を示す。図24のJBSは、n-型半導体層401a、n+型半導体層401b、p型半導体層402、ショットキー電極405aおよびオーミック電極405bを備えている。本開示の実施態様においては、p型半導体層402が一定間隔ごとに設けられているのが好ましく、前記ショットキー電極405aの両端とn-型半導体層401aとの間に、前記p型半導体層402がそれぞれ設けられているのがより好ましい。このような好ましい態様により、熱安定性および密着性により優れ、リーク電流がより軽減され、さらに、より耐圧等の半導体特性に優れるようにJBSが構成されている。 FIG. 24 shows a junction barrier Schottky diode (JBS), which is one of the preferred embodiments of the present disclosure. The JBS in FIG. 24 includes an n-type semiconductor layer 401a, an n+-type semiconductor layer 401b, a p-type semiconductor layer 402, a Schottky electrode 405a, and an ohmic electrode 405b. In the embodiment of the present disclosure, the p-type semiconductor layers 402 are preferably provided at regular intervals, and the p-type semiconductor layers 402 are preferably provided between both ends of the Schottky electrode 405a and the n-type semiconductor layer 401a. It is more preferable that 402 is provided respectively. With such preferred embodiments, the JBS is configured to have better thermal stability and adhesion, further reduce leakage current, and further have better semiconductor properties such as withstand voltage.
 図24の半導体装置の各層の形成手段は、本開示の目的を阻害しない限り特に限定されず、公知の手段であってよい。例えば、真空蒸着法やCVD法、スパッタ法、各種コーティング技術等により成膜した後、フォトリソグラフィー法によりパターニングする手段、または印刷技術などを用いて直接パターニングを行う手段などが挙げられる。 The means for forming each layer of the semiconductor device in FIG. 24 is not particularly limited as long as it does not impede the purpose of the present disclosure, and may be any known means. For example, after forming a film by a vacuum evaporation method, a CVD method, a sputtering method, various coating techniques, etc., patterning is performed by a photolithography method, or a method is directly patterned by using a printing technique.
 図25は、本開示の好適な実施態様の一つであるジャンクションバリアショットキーダイオード(JBS)を示す。図25の半導体装置は、図24の半導体装置とは、バリア電極の外周辺部にp型半導体層423が多数配置されたガードリングが設けられている点において異なる。このように構成することによって、より耐圧等の半導体特性に優れた半導体装置を得ることができる。 FIG. 25 shows a junction barrier Schottky diode (JBS), which is one of the preferred embodiments of the present disclosure. The semiconductor device of FIG. 25 differs from the semiconductor device of FIG. 24 in that a guard ring in which a large number of p-type semiconductor layers 423 are arranged is provided at the outer periphery of the barrier electrode. With this configuration, it is possible to obtain a semiconductor device with more excellent semiconductor characteristics such as withstand voltage.
 前記ガードリングには、バリアハイトの高い材料が用いられても良い。前記ガードリングに用いられる材料としては、例えば、バリアハイトが1eV以上の導電性材料などが挙げられ、前記電極材料と同じものであってもよい。また、ガードリングの形状としては、特に限定されず、例えば、ロの字形状、円状、コ字形状、L字形状または帯状などが挙げられる。ガードリングの本数も特に限定されないが、好ましくは3本以上、より好ましくは6本以上である。 A material with a high barrier height may be used for the guard ring. Examples of the material used for the guard ring include a conductive material having a barrier height of 1 eV or more, and may be the same as the electrode material. Further, the shape of the guard ring is not particularly limited, and examples thereof include a square shape, a circle shape, a U shape, an L shape, a band shape, and the like. The number of guard rings is also not particularly limited, but is preferably 3 or more, more preferably 6 or more.
(MOSFET)
 図26は、n-型半導体層431a、第1のn+型半導体層431b、第2のn+型半導体層431c、p型半導体層432、p+型半導体層432a、ゲート絶縁膜434、ゲート電極435a、ソース電極435bおよびドレイン電極435cを備えている金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を示す。なお、p+型半導体層432aは、p型半導体層であってもよく、p型半導体層432と同じであってもよい。なお、p型半導体は、n型半導体と同じ材料であって、p型ドーパントを含むものであってもよいし、異なるp型半導体であってもよい。
(MOSFET)
FIG. 26 shows an n-type semiconductor layer 431a, a first n+-type semiconductor layer 431b, a second n+-type semiconductor layer 431c, a p-type semiconductor layer 432, a p+-type semiconductor layer 432a, a gate insulating film 434, a gate electrode 435a, A suitable example of a metal oxide semiconductor field effect transistor (MOSFET) including a source electrode 435b and a drain electrode 435c is shown. Note that the p + -type semiconductor layer 432a may be a p-type semiconductor layer, or may be the same as the p-type semiconductor layer 432. Note that the p-type semiconductor may be the same material as the n-type semiconductor and may contain a p-type dopant, or may be a different p-type semiconductor.
 上述した本開示の結晶膜もしくは半導体装置は、上記した機能を発揮させるべく、インバータやコンバータなどの電力変換装置に適用することができる。より具体的には、インバータやコンバータに内蔵されるダイオードや、スイッチング素子であるサイリスタ、パワートランジスタ、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等として適用することができる。図13は、本開示の実施態様に係る半導体装置を用いた制御システムの一例を示すブロック構成図、図14は同制御システムの回路図であり、特に電気自動車(Electric Vehicle)への搭載に適した制御システムである。 The above-described crystal film or semiconductor device of the present disclosure can be applied to power conversion devices such as inverters and converters in order to exhibit the above-described functions. More specifically, diodes built into inverters and converters, thyristors that are switching elements, power transistors, IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal-Oxide-Semiconductor Field Effects) ect Transistor) etc. can. FIG. 13 is a block configuration diagram showing an example of a control system using a semiconductor device according to an embodiment of the present disclosure, and FIG. 14 is a circuit diagram of the control system, which is particularly suitable for installation in an electric vehicle. It is a control system with
 図27に示すように、制御システム500はバッテリー(電源)501、昇圧コンバータ502、降圧コンバータ503、インバータ504、モータ(駆動対象)505、駆動制御部506を有し、これらは電気自動車に搭載されてなる。バッテリー501は例えばニッケル水素電池やリチウムイオン電池などの蓄電池からなり、給電ステーションでの充電あるいは減速時の回生エネルギーなどにより電力を貯蔵するとともに、電気自動車の走行系や電装系の動作に必要となる直流電圧を出力することができる。昇圧コンバータ502は例えばチョッパ回路を搭載した電圧変換装置であり、バッテリー501から供給される例えば200Vの直流電圧を、チョッパ回路のスイッチング動作により例えば650Vに昇圧して、モータなどの走行系に出力することができる。降圧コンバータ503も同様にチョッパ回路を搭載した電圧変換装置であるが、バッテリー501から供給される例えば200Vの直流電圧を、例えば12V程度に降圧することで、パワーウインドーやパワーステアリング、あるいは車載の電気機器などを含む電装系に出力することができる。 As shown in FIG. 27, the control system 500 includes a battery (power source) 501, a step-up converter 502, a step-down converter 503, an inverter 504, a motor (driven object) 505, and a drive control section 506, which are installed in an electric vehicle. It becomes. The battery 501 is composed of a storage battery such as a nickel metal hydride battery or a lithium ion battery, and stores electric power through charging at a power supply station or regenerated energy during deceleration, and is necessary for the operation of the electric vehicle's running system and electrical system. Can output DC voltage. The boost converter 502 is a voltage conversion device equipped with, for example, a chopper circuit, and boosts the DC voltage of, for example, 200 V supplied from the battery 501 to, for example, 650 V by the switching operation of the chopper circuit, and outputs it to a driving system such as a motor. be able to. The step-down converter 503 is also a voltage conversion device equipped with a chopper circuit, but by stepping down the DC voltage of, for example, 200V supplied from the battery 501 to, for example, about 12V, it can be used for power windows, power steering, or in-vehicle electrical equipment. It can be output to the electrical system including the following.
 インバータ504は、昇圧コンバータ502から供給される直流電圧をスイッチング動作により三相の交流電圧に変換してモータ505に出力する。モータ505は電気自動車の走行系を構成する三相交流モータであり、インバータ504から出力される三相の交流電圧によって回転駆動され、その回転駆動力を図示しないトランスミッション等を介して電気自動車の車輪に伝達する。 The inverter 504 converts the DC voltage supplied from the boost converter 502 into a three-phase AC voltage by a switching operation, and outputs it to the motor 505. The motor 505 is a three-phase AC motor that constitutes the running system of the electric vehicle, and is rotationally driven by three-phase AC voltage output from the inverter 504, and the rotational driving force is applied to the wheels of the electric vehicle via a transmission (not shown) or the like. to communicate.
 一方、図示しない各種センサを用いて、走行中の電気自動車から車輪の回転数やトルク、アクセルペダルの踏み込み量(アクセル量)などの実測値が計測され、これらの計測信号が駆動制御部506に入力される。また同時に、インバータ504の出力電圧値も駆動制御部506に入力される。駆動制御部506はCPU(Central Processing Unit)などの演算部やメモリなどのデータ保存部を備えたコントローラの機能を有するもので、入力された計測信号を用いて制御信号を生成してインバータ504にフィードバック信号として出力することで、スイッチング素子によるスイッチング動作を制御する。これによって、インバータ504がモータ505に与える交流電圧が瞬時に補正されることで、電気自動車の運転制御を正確に実行させることができ、電気自動車の安全・快適な動作が実現する。なお、駆動制御部506からのフィードバック信号を昇圧コンバータ502に与えることで、インバータ504への出力電圧を制御することも可能である。 On the other hand, using various sensors (not shown), actual values such as wheel rotation speed, torque, and accelerator pedal depression amount (accelerator amount) are measured from the running electric vehicle, and these measurement signals are sent to the drive control unit 506. is input. At the same time, the output voltage value of the inverter 504 is also input to the drive control section 506. The drive control unit 506 has the function of a controller including a calculation unit such as a CPU (Central Processing Unit) and a data storage unit such as a memory, and generates a control signal using the input measurement signal and sends it to the inverter 504. By outputting it as a feedback signal, the switching operation by the switching element is controlled. As a result, the alternating current voltage applied by the inverter 504 to the motor 505 is instantaneously corrected, so that driving control of the electric vehicle can be executed accurately, and safe and comfortable operation of the electric vehicle can be realized. Note that it is also possible to control the output voltage to the inverter 504 by providing a feedback signal from the drive control unit 506 to the boost converter 502.
 図28は、図27における降圧コンバータ503を除いた回路構成、すなわちモータ505を駆動するための構成のみを示した回路構成である。同図に示されるように、本開示の半導体装置は、例えばショットキーバリアダイオードとして昇圧コンバータ502およびインバータ504に採用されることでスイッチング制御に供される。昇圧コンバータ502においてはチョッパ回路に組み込まれてチョッパ制御を行い、またインバータ504においてはIGBTを含むスイッチング回路に組み込まれてスイッチング制御を行う。なお、バッテリー501の出力にインダクタ(コイルなど)を介在させることで電流の安定化を図り、またバッテリー501、昇圧コンバータ502、インバータ504のそれぞれの間にキャパシタ(電解コンデンサなど)を介在させることで電圧の安定化を図っている。 FIG. 28 shows a circuit configuration excluding the step-down converter 503 in FIG. 27, that is, only the configuration for driving the motor 505. As shown in the figure, the semiconductor device of the present disclosure is used, for example, as a Schottky barrier diode in a boost converter 502 and an inverter 504 to perform switching control. The boost converter 502 is incorporated into a chopper circuit to perform chopper control, and the inverter 504 is incorporated into a switching circuit including an IGBT to perform switching control. Note that the current is stabilized by intervening an inductor (such as a coil) in the output of the battery 501, and by interposing a capacitor (such as an electrolytic capacitor) between the battery 501, boost converter 502, and inverter 504. Efforts are being made to stabilize the voltage.
 また、図28中に点線で示すように、駆動制御部506内にはCPU(Central Processing Unit)からなる演算部507と不揮発性メモリからなる記憶部508が設けられている。駆動制御部506に入力された信号は演算部507に与えられ、必要な演算を行うことで各半導体素子に対するフィードバック信号を生成する。また記憶部508は、演算部507による演算結果を一時的に保持したり、駆動制御に必要な物理定数や関数などをテーブルの形で蓄積して演算部507に適宜出力する。演算部507や記憶部508は公知の構成を採用することができ、その処理能力等も任意に選定できる。 Furthermore, as shown by the dotted line in FIG. 28, the drive control section 506 is provided with a calculation section 507 consisting of a CPU (Central Processing Unit) and a storage section 508 consisting of a nonvolatile memory. The signal input to the drive control section 506 is given to the calculation section 507, which performs necessary calculations to generate a feedback signal for each semiconductor element. Further, the storage unit 508 temporarily holds the calculation results by the calculation unit 507, stores physical constants, functions, etc. necessary for drive control in the form of a table, and outputs the table to the calculation unit 507 as appropriate. The arithmetic unit 507 and the storage unit 508 can have a known configuration, and their processing capacity can be arbitrarily selected.
 図27や図28に示されるように、制御システム500においては、昇圧コンバータ502、降圧コンバータ503、インバータ504のスイッチング動作にはダイオードやスイッチング素子であるサイリスタ、パワートランジスタ、IGBT、MOSFET等が用いられる。これらの半導体素子に酸化ガリウム(Ga)、特にコランダム型酸化ガリウム(α-Ga)をその材料として用いることでスイッチング特性が大幅に向上する。さらに、本開示に係る半導体装置等を適用することで、極めて良好なスイッチング特性が期待できるとともに、制御システム500の一層の小型化やコスト低減が実現可能となる。すなわち、昇圧コンバータ502、降圧コンバータ503、インバータ504のそれぞれが本開示による効果を期待できるものとなり、これらのいずれか一つ、もしくは任意の二つ以上の組合せ、あるいは駆動制御部506も含めた形態のいずれにおいても本開示の効果を期待することができる。 As shown in FIGS. 27 and 28, in the control system 500, diodes and switching elements such as thyristors, power transistors, IGBTs, MOSFETs, etc. are used for switching operations of the boost converter 502, buck converter 503, and inverter 504. . By using gallium oxide (Ga 2 O 3 ), particularly corundum-type gallium oxide (α-Ga 2 O 3 ) as a material for these semiconductor elements, the switching characteristics are significantly improved. Furthermore, by applying the semiconductor device or the like according to the present disclosure, extremely good switching characteristics can be expected, and further miniaturization and cost reduction of the control system 500 can be realized. In other words, each of the boost converter 502, the buck converter 503, and the inverter 504 can be expected to benefit from the effects of the present disclosure, and any one of these, a combination of two or more, or a configuration including the drive control unit 506 can also be used. The effects of the present disclosure can be expected in any of the above.
 なお、上述の制御システム500は本開示の半導体装置を電気自動車の制御システムに適用できるだけではなく、直流電源からの電力を昇圧・降圧したり、直流から交流へ電力変換するといったあらゆる用途の制御システムに適用することが可能である。また、バッテリーとして太陽電池などの電源を用いることも可能である。 Note that the above-mentioned control system 500 is applicable not only to the control system of an electric vehicle, but also to a control system for all kinds of purposes, such as boosting and buckling power from a DC power supply, and converting power from DC to AC. It is possible to apply it to It is also possible to use a power source such as a solar cell as the battery.
図29は、本開示の実施態様に係る半導体装置を採用した制御システムの他の例を示すブロック構成図、図30は同制御システムの回路図であり、交流電源からの電力で動作するインフラ機器や家電機器等への搭載に適した制御システムである。 FIG. 29 is a block configuration diagram showing another example of a control system that employs the semiconductor device according to the embodiment of the present disclosure, and FIG. 30 is a circuit diagram of the control system, which is infrastructure equipment that operates with power from an AC power source. This is a control system suitable for installation in home appliances and home appliances.
 図29に示すように、制御システム600は、外部の例えば三相交流電源(電源)601から供給される電力を入力するもので、AC/DCコンバータ602、インバータ604、モータ(駆動対象)605、駆動制御部606を有し、これらは様々な機器(後述する)に搭載することができる。三相交流電源601は、例えば電力会社の発電施設(火力発電所、水力発電所、地熱発電所、原子力発電所など)であり、その出力は変電所を介して降圧されながら交流電圧として供給される。また、例えば自家発電機等の形態でビル内や近隣施設内に設置されて電力ケーブルで供給される。AC/DCコンバータ602は交流電圧を直流電圧に変換する電圧変換装置であり、三相交流電源601から供給される100Vや200Vの交流電圧を所定の直流電圧に変換する。具体的には、電圧変換により3.3Vや5V、あるいは12Vといった、一般的に用いられる所望の直流電圧に変換される。駆動対象がモータである場合には12Vへの変換が行われる。なお、三相交流電源に代えて単相交流電源を採用することも可能であり、その場合にはAC/DCコンバータを単相入力のものとすれば同様のシステム構成とすることができる。 As shown in FIG. 29, the control system 600 receives power supplied from an external, for example, three-phase AC power source (power source) 601, and includes an AC/DC converter 602, an inverter 604, a motor (to be driven) 605, It has a drive control unit 606, which can be installed in various devices (described later). The three-phase AC power supply 601 is, for example, a power generation facility of a power company (a thermal power plant, a hydroelectric power plant, a geothermal power plant, a nuclear power plant, etc.), and its output is supplied as an AC voltage while being stepped down through a substation. Ru. Alternatively, the power may be installed in a building or a nearby facility in the form of a private generator, for example, and supplied via a power cable. The AC/DC converter 602 is a voltage converter that converts an alternating current voltage to a direct current voltage, and converts the alternating current voltage of 100 V or 200 V supplied from the three-phase alternating current power supply 601 into a predetermined direct current voltage. Specifically, the voltage is converted to a commonly used desired DC voltage such as 3.3V, 5V, or 12V. When the driven object is a motor, conversion to 12V is performed. Note that it is also possible to use a single-phase AC power source instead of the three-phase AC power source, and in that case, the same system configuration can be achieved by using a single-phase input AC/DC converter.
 インバータ604は、AC/DCコンバータ602から供給される直流電圧をスイッチング動作により三相の交流電圧に変換してモータ605に出力する。モータ605は、制御対象によりその形態が異なるが、制御対象が電車の場合には車輪を、工場設備の場合にはポンプや各種動力源を、家電機器の場合にはコンプレッサなどを駆動するための三相交流モータであり、インバータ604から出力される三相の交流電圧によって回転駆動され、その回転駆動力を図示しない駆動対象に伝達する。 The inverter 604 converts the DC voltage supplied from the AC/DC converter 602 into a three-phase AC voltage by a switching operation, and outputs it to the motor 605. The motor 605 has different forms depending on the object to be controlled, but it is used to drive wheels when the object to be controlled is a train, a pump or various power sources in the case of factory equipment, and a compressor etc. in the case of home appliances. It is a three-phase AC motor, and is rotationally driven by three-phase AC voltage output from the inverter 604, and transmits its rotational driving force to a drive target (not shown).
 なお、例えば家電機器においてはAC/DCコンバータ602から出力される直流電圧をそのまま供給することが可能な駆動対象も多く(例えばパソコン、LED照明機器、映像機器、音響機器など)、その場合には制御システム600にインバータ604は不要となり、図29中に示すように、AC/DCコンバータ602から駆動対象に直流電圧を供給する。この場合、例えばパソコンなどには3.3Vの直流電圧が、LED照明機器などには5Vの直流電圧が供給される。 Note that, for example, in home appliances, there are many drive targets to which the DC voltage output from the AC/DC converter 602 can be directly supplied (for example, personal computers, LED lighting equipment, video equipment, audio equipment, etc.), and in such cases, The control system 600 does not require an inverter 604, and as shown in FIG. 29, DC voltage is supplied from the AC/DC converter 602 to the driven object. In this case, for example, a 3.3V DC voltage is supplied to a personal computer, and a 5V DC voltage is supplied to an LED lighting device.
 一方、図示しない各種センサを用いて、駆動対象の回転数やトルク、あるいは駆動対象の周辺環境の温度や流量などといった実測値が計測され、これらの計測信号が駆動制御部606に入力される。また同時に、インバータ604の出力電圧値も駆動制御部606に入力される。これらの計測信号をもとに、駆動制御部606はインバータ604にフィードバック信号を与え、スイッチング素子によるスイッチング動作を制御する。これによって、インバータ604がモータ605に与える交流電圧が瞬時に補正されることで、駆動対象の運転制御を正確に実行させることができ、駆動対象の安定した動作が実現する。また、上述のように、駆動対象が直流電圧で駆動可能な場合には、インバータへのフィードバックに代えてAC/DCコンバータ602をフィードバック制御することも可能である。 On the other hand, actual measured values such as the rotational speed and torque of the driven object, or the temperature and flow rate of the surrounding environment of the driven object are measured using various sensors (not shown), and these measurement signals are input to the drive control unit 606. At the same time, the output voltage value of the inverter 604 is also input to the drive control section 606. Based on these measurement signals, the drive control unit 606 provides a feedback signal to the inverter 604 to control the switching operation of the switching element. As a result, the alternating current voltage applied by the inverter 604 to the motor 605 is instantaneously corrected, thereby making it possible to accurately control the operation of the driven object and realizing stable operation of the driven object. Further, as described above, when the drive target can be driven with a DC voltage, it is also possible to perform feedback control of the AC/DC converter 602 instead of feedback to the inverter.
 図30は、図29の回路構成の例を示したものである。同図に示されるように、本開示の半導体装置は、例えばショットキーバリアダイオードとしてAC/DCコンバータ602およびインバータ604に採用されることでスイッチング制御に供される。AC/DCコンバータ602は、例えばショットキーバリアダイオードをブリッジ状に回路構成したものが用いられ、入力電圧の負電圧分を正電圧に変換整流することで直流変換を行う。またインバータ604においてはIGBTにおけるスイッチング回路に組み込まれてスイッチング制御を行う。なお、三相交流電源601とAC/DCコンバータ602との間にインダクタ(コイルなど)を介在させることで電流の安定化を図り、またAC/DCコンバータ602とインバータ604の間にキャパシタ(電解コンデンサなど)を介在させることで電圧の安定化を図っている。 FIG. 30 shows an example of the circuit configuration of FIG. 29. As shown in the figure, the semiconductor device of the present disclosure is used, for example, as a Schottky barrier diode in an AC/DC converter 602 and an inverter 604 to perform switching control. The AC/DC converter 602 uses, for example, a Schottky barrier diode circuit configured in a bridge shape, and performs DC conversion by converting and rectifying the negative voltage portion of the input voltage into a positive voltage. Further, the inverter 604 is incorporated into the switching circuit of the IGBT to perform switching control. Note that an inductor (such as a coil) is interposed between the three-phase AC power supply 601 and the AC/DC converter 602 to stabilize the current, and a capacitor (electrolytic capacitor) is inserted between the AC/DC converter 602 and the inverter 604. etc.) to stabilize the voltage.
 また、図30中に点線で示すように、駆動制御部606内にはCPUからなる演算部607と不揮発性メモリからなる記憶部608が設けられている。駆動制御部606に入力された信号は演算部607に与えられ、必要な演算を行うことで各半導体素子に対するフィードバック信号を生成する。また記憶部608は、演算部607による演算結果を一時的に保持したり、駆動制御に必要な物理定数や関数などをテーブルの形で蓄積して演算部607に適宜出力する。演算部607や記憶部608は公知の構成を採用することができ、その処理能力等も任意に選定できる。 Further, as shown by the dotted line in FIG. 30, the drive control section 606 is provided with a calculation section 607 consisting of a CPU and a storage section 608 consisting of a nonvolatile memory. The signal input to the drive control unit 606 is given to the calculation unit 607, which performs necessary calculations to generate feedback signals for each semiconductor element. Furthermore, the storage unit 608 temporarily holds the calculation results by the calculation unit 607, stores physical constants, functions, etc. necessary for drive control in the form of a table, and outputs the table to the calculation unit 607 as appropriate. The arithmetic unit 607 and the storage unit 608 can have a known configuration, and their processing capacity can be arbitrarily selected.
 このような制御システム600においても、図27や図28に示した制御システム500と同様に、AC/DCコンバータ602やインバータ604の整流動作やスイッチング動作にはダイオードやスイッチング素子であるサイリスタ、パワートランジスタ、IGBT、MOSFET等が用いられる。これら半導体素子に酸化ガリウム(Ga)、特にコランダム型酸化ガリウム(α-Ga)をその材料として用いることでスイッチング特性が向上する。さらに、本開示に係る半導体膜や半導体装置を適用することで、極めて良好なスイッチング特性が期待できるとともに、制御システム600の一層の小型化やコスト低減が実現可能となる。すなわち、AC/DCコンバータ602、インバータ604のそれぞれが本開示による効果を期待できるものとなり、これらのいずれか一つ、もしくは組合せ、あるいは駆動制御部606も含めた形態のいずれにおいても本開示の効果を期待することができる。 In such a control system 600, similarly to the control system 500 shown in FIGS. 27 and 28, diodes, switching elements such as thyristors, and power transistors are used for the rectification and switching operations of the AC/DC converter 602 and the inverter 604. , IGBT, MOSFET, etc. are used. By using gallium oxide (Ga 2 O 3 ), particularly corundum-type gallium oxide (α-Ga 2 O 3 ) as a material for these semiconductor elements, switching characteristics are improved. Furthermore, by applying the semiconductor film and semiconductor device according to the present disclosure, extremely good switching characteristics can be expected, and further miniaturization and cost reduction of the control system 600 can be realized. In other words, the effects of the present disclosure can be expected for each of the AC/DC converter 602 and the inverter 604, and the effects of the present disclosure can be achieved with either one or a combination of these, or with the drive control unit 606 as well. can be expected.
 なお、図29および図30では駆動対象としてモータ605を例示したが、駆動対象は必ずしも機械的に動作するものに限られず、交流電圧を必要とする多くの機器を対象とすることができる。制御システム600においては、交流電源から電力を入力して駆動対象を駆動する限りにおいては適用が可能であり、インフラ機器(例えばビルや工場等の電力設備、通信設備、交通管制機器、上下水処理設備、システム機器、省力機器、電車など)や家電機器(例えば、冷蔵庫、洗濯機、パソコン、LED照明機器、映像機器、音響機器など)といった機器を対象とした駆動制御のために搭載することができる。 Note that in FIGS. 29 and 30, the motor 605 is illustrated as an object to be driven, but the object to be driven is not necessarily limited to something that operates mechanically, and can be many devices that require AC voltage. The control system 600 can be applied as long as it inputs power from an AC power source to drive a driven object, and can be applied to infrastructure equipment (for example, power equipment in buildings and factories, communication equipment, traffic control equipment, water and sewage treatment equipment, etc.). It can be installed for drive control of devices such as equipment, system equipment, labor-saving equipment, trains, etc.) and home appliances (e.g., refrigerators, washing machines, computers, LED lighting equipment, video equipment, audio equipment, etc.) can.
(その他の変形例)
 上記実施形態では、凹部23の幅w1および距離w2は、各凹部23において同じとされていたが、凹部23ごとに異なっていてもよい。
(Other variations)
In the above embodiment, the width w1 and the distance w2 of the recess 23 are the same in each recess 23, but may be different for each recess 23.
 上記各主面および各成長面は、オフ角を有していてもよい。 Each of the main surfaces and each growth surface may have an off-angle.
 上記実施形態では、基板13上に結晶層11、211が形成されたが、基板13と結晶層11、211との間にバッファ層やその他の層が設けられてもよい。 In the above embodiment, the crystal layers 11 and 211 are formed on the substrate 13, but a buffer layer or other layer may be provided between the substrate 13 and the crystal layers 11 and 211.
 上記各結晶層11、12、211、212、213は、導電型がn+型であっても、n-型であってもよい。 The conductivity type of each of the crystal layers 11, 12, 211, 212, and 213 may be n+ type or n- type.
 上記実施形態では、底面23c、123cは、m面であったが、c面やa面であってもよい。結晶膜10、110の例では、底面23c、123cがc面であるとき、深さd1の幅w1に対する比は、1.0以上2.0未満の範囲内のいずれかの値以上であり、1.0以上2.0未満の範囲内の値であることが好ましい。結晶膜10、110の例では、底面23c、123cがa面であるとき、深さd2の幅w3に対する比は、0.1以上0.5以下の範囲内のいずれかの値以上であり、0.1以上0.5以下の範囲内の値であることが好ましい。幅w1、w3の半分の長さを深さd1、d2で割った値は、4より小さい。 In the above embodiment, the bottom surfaces 23c and 123c are m-planes, but may be c-planes or a-planes. In the example of the crystal films 10 and 110, when the bottom surfaces 23c and 123c are c-planes, the ratio of the depth d1 to the width w1 is greater than or equal to any value within the range of 1.0 or more and less than 2.0, The value is preferably in the range of 1.0 or more and less than 2.0. In the example of the crystal films 10 and 110, when the bottom surfaces 23c and 123c are a-planes, the ratio of the depth d2 to the width w3 is greater than or equal to any value within the range of 0.1 or more and 0.5 or less, The value is preferably within the range of 0.1 or more and 0.5 or less. The value obtained by dividing the half length of the widths w1 and w3 by the depths d1 and d2 is smaller than 4.
 第1実施形態または第2実施形態では、傾斜角θ3、θ4が約36度~42度または約63度~71度の範囲内であったが、傾斜角θ3、θ4は、約14度~76度であってもよく、約14度~24度および/または約65度~76度であってもよい。 In the first embodiment or the second embodiment, the inclination angles θ3 and θ4 were within the range of approximately 36 degrees to 42 degrees or approximately 63 degrees to 71 degrees, but the inclination angles θ3 and θ4 were approximately 14 degrees to 76 degrees. degree, and may be about 14 degrees to 24 degrees and/or about 65 degrees to 76 degrees.
 上記実施形態では、結晶層11および結晶層12に含まれる各結晶性酸化物半導体の各軸方向は、同じ方向(左右方向X、前後方向Y、厚さ方向Z)に沿っていたが、異なっていてもよい。また、各結晶性酸化物半導体の各軸方向は、上記実施形態で説明された左右方向X、前後方向Y、厚さ方向Zのいずれかの方向から±10°の範囲内であってもよいが、これに限定されるものではない。また、上記実施形態では、a面、c面、m面等の結晶面は、オフ角を有する面であってよいし、オフ角を有さない面であってもよい。オフ角を有する場合のオフ角は、例えば、0.1°~10°の範囲内である。 In the above embodiment, the axial directions of the crystalline oxide semiconductors included in the crystal layer 11 and the crystal layer 12 are along the same direction (left-right direction X, front-back direction Y, and thickness direction Z), but they are different. You can leave it there. Further, each axial direction of each crystalline oxide semiconductor may be within a range of ±10° from any one of the left-right direction X, the front-back direction Y, and the thickness direction Z described in the above embodiments. However, it is not limited to this. Further, in the above embodiments, the crystal planes such as the a-plane, c-plane, and m-plane may have an off-angle or may have no off-angle. If an off-angle is present, the off-angle is, for example, within a range of 0.1° to 10°.
(試験例1~12) 
 試験例1~12では、α-Ga又はその混晶の一例として、α-Ga半導体膜をそれぞれエピタキシャル成長させて、a面、c面またはm面である成長面の組み合わせごとに、横方向成長膜と縦方向成長膜との成長速度の比を算出し、評価した。成膜は、ミストCVD法を用いて行った。試験例1~6では、成膜時の温度を550℃とした。試験例7~12では、成膜時の温度を450℃とした。各試験例では、横方向成長膜の成長面の面方位、縦方向成長膜の成長面の面方位および得られた横方向成長膜の縦方向成長膜に対する成長速度の比が表1に示されるとおりであった。なお、表1の各値は、小数点第4位を四捨五入したものである。
(Test examples 1 to 12)
In Test Examples 1 to 12, an α-Ga 2 O 3 semiconductor film was epitaxially grown as an example of α-Ga 2 O 3 or its mixed crystal, and each combination of growth planes of the a-plane, c-plane, or m-plane was grown. Next, the ratio of growth rates between the horizontally grown film and the vertically grown film was calculated and evaluated. Film formation was performed using a mist CVD method. In Test Examples 1 to 6, the temperature during film formation was 550°C. In Test Examples 7 to 12, the temperature during film formation was 450°C. In each test example, the plane orientation of the growth plane of the horizontally grown film, the plane orientation of the growth plane of the vertically grown film, and the ratio of the growth rate of the obtained horizontally grown film to the vertically grown film are shown in Table 1. That's right. Note that each value in Table 1 is rounded to the fourth decimal place.
 試験例1~12の結果より、成長面を有する凹部の深さおよび幅が特定の範囲内であるとき、凹部の両側面から互いに反対向きに成長する横方向成長膜と横方向成長膜とが凹部の内部空間で会合できることが分かった。すなわち、横方向成長膜と縦方向成長膜の各成長面における成長速度の各比から、前記凹部の深さおよび幅が特定の範囲内であれば、縦方向成長膜の厚みが前記凹部の深さと同等となる前に、横方向成長膜の左右方向Xに沿った幅が前記凹部の幅の半分の長さと同等となることが分かった。特に、前記凹部の幅の半分の長さを前記凹部の深さで割った値が4より小さければ、成長面の面方位にかかわらず横方向成長膜と横方向成長膜とが凹部の内部空間で会合できることが分かった。 From the results of Test Examples 1 to 12, when the depth and width of the recess with the growth surface are within a specific range, the lateral growth film and the lateral growth film grow in opposite directions from both sides of the recess. It was found that they could meet in the internal space of the recess. That is, from the ratio of the growth rates on each growth surface of the horizontally grown film and the vertically grown film, if the depth and width of the recess are within a specific range, the thickness of the vertically grown film will be the same as the depth of the recess. It was found that the width of the laterally grown film along the left-right direction X becomes equal to half the width of the recess before it becomes equal to the width of the recess. In particular, if the value obtained by dividing the length of half the width of the recess by the depth of the recess is smaller than 4, the lateral growth film and the lateral growth film can be formed in the internal space of the recess regardless of the orientation of the growth surface. I found out that we can meet at
 また、試験例1~12の結果より、第1の実施形態においては、凹凸の深さd1の幅w1に対する比が0.125以上2.0未満であることが好ましく、0.57以上2.0未満となる値であることが、転位低減の観点で好ましいことが分かる。また、第1の実施形態においては、前記凸状部の厚さ方向に沿った寸法は、前記第2結晶欠陥の凸状部の横方向に沿った寸法に対する比が0.57以上0.69以下とするのが、転位低減の観点で好ましいことが分かる。さらに、試験例1~12の結果より、第2の実施形態においては、凹凸の深さd2の幅w3に対する比が0.12以上2.0未満となる値であることが好ましく、0.17以上2.0未満となる値であることが、転位低減の観点で好ましいことが分かる。また、第2の実施形態においては、前記第2結晶欠陥の凸状部の厚さ方向に沿った寸法は、前記凸状部の横方向に沿った寸法に対する比が0.17以上0.26以下であるのが、転位低減の観点で好ましいことが分かる。これら好ましい範囲は、実際にエピタキシャル成長を行って分かった新知見である。 Further, from the results of Test Examples 1 to 12, in the first embodiment, the ratio of the depth d1 of the unevenness to the width w1 is preferably 0.125 or more and less than 2.0, and 0.57 or more and less than 2.0. It can be seen that a value less than 0 is preferable from the viewpoint of reducing dislocations. Further, in the first embodiment, the ratio of the dimension of the convex portion along the thickness direction to the dimension of the second crystal defect along the lateral direction of the convex portion is 0.57 or more and 0.69. It can be seen that the following is preferable from the viewpoint of reducing dislocations. Further, from the results of Test Examples 1 to 12, in the second embodiment, the ratio of the depth d2 of the unevenness to the width w3 is preferably 0.12 or more and less than 2.0, and 0.17 It can be seen that a value of less than 2.0 is preferable from the viewpoint of reducing dislocations. Further, in the second embodiment, the dimension of the second crystal defect along the thickness direction of the convex portion has a ratio of 0.17 or more to the dimension along the lateral direction of the convex portion of 0.17 or more and 0.26. It can be seen that the following is preferable from the viewpoint of reducing dislocations. These preferable ranges are new findings obtained through actual epitaxial growth.
 また、縦方向成長膜の成長面がm面であるとき、成長面を有する凹部の深さの前記凹部の幅に対するが0.17以上0.69以下となる値であることが好ましいことが分かる。前記凸状部の厚さ方向に沿った寸法は、前記第2結晶欠陥の凸状部の横方向に沿った寸法に対する比が0.17以上0.69以下とするのが、転位低減の観点で好ましいことが分かる。 Further, it can be seen that when the growth plane of the vertically grown film is the m-plane, the depth of the recess having the growth surface relative to the width of the recess is preferably a value of 0.17 or more and 0.69 or less. . From the viewpoint of dislocation reduction, the ratio of the dimension of the convex portion along the thickness direction to the dimension of the second crystal defect along the lateral direction of the convex portion is 0.17 or more and 0.69 or less. It turns out that this is preferable.
 前記凹部の幅の半分の長さを前記凹部の深さで割った値が、2.3~4の範囲内、2.0~2.9の範囲内、1.2~1.4の範囲内、0.8~0.9の範囲内、0.3~0.6の範囲内または0.3~0.5の範囲内のいずれかの値以下であることが挙げられる。 The value obtained by dividing half the width of the recess by the depth of the recess is within the range of 2.3 to 4, within the range of 2.0 to 2.9, or within the range of 1.2 to 1.4. Among these, examples include values below any value within the range of 0.8 to 0.9, within the range of 0.3 to 0.6, or within the range of 0.3 to 0.5.
 以下、上述した実施形態について付記する。 Hereinafter, additional notes will be made regarding the above-mentioned embodiments.
 (付記1)
 コランダム構造を有し、ガリウムを含む結晶性酸化物を含み、
 厚さ方向に切断した断面は、厚さ方向に沿って延びる線状の第1結晶欠陥と、厚さ方向から傾斜する傾斜部を含む線状の第2結晶欠陥と、を有し、
 前記第1結晶欠陥の上端は、前記傾斜部と繋がっているまたは前記傾斜部の下方に位置する結晶膜。
(Additional note 1)
It has a corundum structure and contains a crystalline oxide containing gallium,
The cross section cut in the thickness direction has a linear first crystal defect extending along the thickness direction, and a linear second crystal defect including an inclined part inclined from the thickness direction,
The upper end of the first crystal defect is a crystal film that is connected to the sloped portion or located below the sloped portion.
 (付記2)
 前記第2結晶欠陥は、横方向における両外側より内側が上方に位置する凸状部を有し、
 前記凸状部は、複数の前記傾斜部を含む付記1に記載の結晶膜。
(Additional note 2)
The second crystal defect has a convex portion in which the inner side is located higher than both outer sides in the lateral direction,
The crystal film according to supplementary note 1, wherein the convex portion includes a plurality of the inclined portions.
 (付記3)
 前記凸状部は、三角形状である付記2に記載の結晶膜。
(Appendix 3)
The crystal film according to appendix 2, wherein the convex portion has a triangular shape.
 (付記4)
 前記凸状部の厚さ方向に沿った寸法は、前記凸状部の横方向に沿った寸法に対する比が0.57以上0.69以下または0.17以上0.26以下である付記2または3に記載の結晶膜。
(Additional note 4)
Supplementary Note 2 or 3. The crystal film according to 3.
 (付記5)
 結晶膜は、横方向に沿って並ぶ複数の前記凸状部を有し、
 前記凸状部の横方向に沿った寸法は、相互に隣り合う前記凸状部の間の距離に対する比が1以上である付記2から4のいずれかに記載の結晶膜。
(Appendix 5)
The crystal film has a plurality of the convex portions arranged in the lateral direction,
5. The crystal film according to any one of Supplementary Notes 2 to 4, wherein a dimension of the convex portions in the lateral direction has a ratio of 1 or more to a distance between the adjacent convex portions.
 (付記6)
 前記結晶性酸化物のa軸方向またはc軸方向は、前記厚さ方向と直交し、
 前記傾斜部は、前記a軸方向または前記c軸方向から傾斜する付記1から5のいずれかに記載の結晶膜。
(Appendix 6)
The a-axis direction or c-axis direction of the crystalline oxide is perpendicular to the thickness direction,
The crystal film according to any one of Supplementary Notes 1 to 5, wherein the inclined portion is inclined from the a-axis direction or the c-axis direction.
 (付記7)
 前記結晶性酸化物のm軸方向は、厚さ方向に沿っている付記1から6のいずれかに記載の結晶膜。
(Appendix 7)
7. The crystalline film according to any one of Supplementary Notes 1 to 6, wherein the m-axis direction of the crystalline oxide is along the thickness direction.
 (付記8)
 前記断面は、厚さ方向に沿って延びる第3結晶欠陥を有し、
 前記第2結晶欠陥は、前記凸状部の上端において、前記第3結晶欠陥と繋がっている付記2から7のいずれかに記載の結晶膜。
(Appendix 8)
The cross section has a third crystal defect extending along the thickness direction,
8. The crystal film according to any one of Supplementary Notes 2 to 7, wherein the second crystal defect is connected to the third crystal defect at an upper end of the convex portion.
 (付記9)
 前記厚さ方向に沿って延びる部分は、横方向成長膜と横方向成長膜との境界である付記8に記載の結晶膜。
(Appendix 9)
The crystalline film according to appendix 8, wherein the portion extending along the thickness direction is a boundary between laterally grown films.
 (付記10)
 前記傾斜部は、横方向成長膜と縦方向成長膜との境界である付記1から9のいずれかに記載の結晶膜。 
(Appendix 10)
The crystal film according to any one of Supplementary Notes 1 to 9, wherein the inclined portion is a boundary between a horizontally grown film and a vertically grown film.
 (付記11)
 前記傾斜部の厚さ方向に対する傾斜角は、36度以上42度以下または63度以上71度以下である付記1から10のいずれかに記載の結晶膜。
(Appendix 11)
11. The crystal film according to any one of Supplementary Notes 1 to 10, wherein the slope angle of the slope with respect to the thickness direction is 36 degrees or more and 42 degrees or less, or 63 degrees or more and 71 degrees or less.
 (付記12)
 エピタキシャル成長膜である付記1から11のいずれかに記載の結晶膜。
(Appendix 12)
The crystal film according to any one of Supplementary Notes 1 to 11, which is an epitaxially grown film.
 (付記13)
 前記エピタキシャル成長膜は、前記第2結晶欠陥の上方に横方向成長膜を有する付記1から12のいずれかに記載の結晶膜。
(Appendix 13)
13. The crystal film according to any one of Supplementary Notes 1 to 12, wherein the epitaxially grown film has a laterally grown film above the second crystal defect.
 (付記14)
 前記第2結晶欠陥は、横方向に並ぶ複数が上下二段に位置し、
 上段と下段の前記結晶粒界は、横方向において交互に位置する付記1から13のいずれかに記載の結晶膜。
(Appendix 14)
A plurality of the second crystal defects are arranged in a horizontal direction and are located in upper and lower two stages,
14. The crystal film according to any one of Supplementary Notes 1 to 13, wherein the crystal grain boundaries in the upper and lower stages are located alternately in the lateral direction.
 (付記15)
 前記第1結晶欠陥は、転位であり、前記第2結晶欠陥は、結晶粒界である付記1から14のいずれかに記載の結晶膜。
(Appendix 15)
15. The crystal film according to any one of appendices 1 to 14, wherein the first crystal defect is a dislocation, and the second crystal defect is a grain boundary.
 (付記16)
 結晶膜は、
 主面にストライプ状の凹凸を有する第1結晶層と、
 前記第1結晶層上に位置し、前記凹凸と接する第2結晶層と、を備え、
 前記傾斜部は、前記第1結晶層の凹部内に位置する前記第2結晶層に含まれる付記1から15のいずれかに記載の結晶膜。
(Appendix 16)
The crystal film is
a first crystal layer having stripe-like unevenness on its main surface;
a second crystal layer located on the first crystal layer and in contact with the unevenness,
16. The crystal film according to any one of Supplementary Notes 1 to 15, wherein the inclined portion is included in the second crystal layer located within the recess of the first crystal layer.
 (付記17)
 n型半導体である付記1から16のいずれかに記載の結晶膜。
(Appendix 17)
17. The crystal film according to any one of Supplementary Notes 1 to 16, which is an n-type semiconductor.
 (付記18)
 主面がm面である付記1から17のいずれかに記載の結晶膜。
(Appendix 18)
18. The crystal film according to any one of Supplementary Notes 1 to 17, wherein the main surface is an m-plane.
 (付記19)
 サファイア基板と、
 付記1から18のいずれかに記載の結晶膜と、を備える多層構造体。
(Appendix 19)
a sapphire substrate,
A multilayer structure comprising the crystal film according to any one of Supplementary Notes 1 to 18.
 (付記20)
 コランダム構造を有し、ガリウムを含む結晶性酸化物を含む第1結晶層の主面にストライプ状の凹凸部を設け、
 コランダム構造を有し、ガリウムを含む結晶性酸化物を含む第2結晶層を前記凹凸部の凹部内に成長させ、このとき、厚さ方向に切断した断面において、厚さ方向から傾斜する傾斜部を有する線状の結晶欠陥を形成する結晶膜の製造方法。
(Additional note 20)
providing a striped uneven portion on the main surface of a first crystal layer having a corundum structure and containing a crystalline oxide containing gallium;
A second crystal layer having a corundum structure and containing a crystalline oxide containing gallium is grown in the concave portion of the uneven portion, and at this time, in a cross section cut in the thickness direction, an inclined portion is inclined from the thickness direction. A method for manufacturing a crystal film that forms linear crystal defects.
10,110,210   結晶膜
11,211   結晶層(第1結晶層の一例)
12,212   結晶層(第2結晶層の一例)
13   基板
21,221   上面(主面の一例)
22,122,222,252   凹凸部
23,123,223,253   凹部
23a,23b,123a,123b,223a,223b,253a,253b,353a,353b   側面
23c,123c,223c,253c,353c  底面
24,124,224,254   凸部
25,225,255   上面
26   転位線
27,227   下面
31,231,261   下面
32,132,232,262   凹凸部
33,233,263   凹部
34,134,234,264   凸部
34a,34b,134a,134b,234a,234b,264a,264b,364a,364b   横方向成長膜
34c,134c,234c,264c,364c  縦方向成長膜
37   結晶粒界(第3結晶欠陥の一例)
38   転位
39,39a,39b,269,269a,269b,369,369a,369b   結晶粒界(第2結晶欠陥の一例)
41,271   転位線
42   転位線
43,44,243,244,273,274   領域
213  結晶層(第3結晶層の一例)
251  上面
265  上面
401a n-型半導体層
401b n+型半導体層
402  p型半導体層
405a ショットキー電極
405b オーミック電極
421a バンドギャップの広いn型半導体層
421b バンドギャップの狭いn型半導体層
421c n+型半導体層
423  p型半導体層
424  半絶縁体層
425a ゲート電極
425b ソース電極
425c ドレイン電極
428  緩衝層
431a n-型半導体層
431b 第1のn+型半導体層
431c 第2のn+型半導体層
432  p型半導体層
432a p+型半導体層
434  ゲート絶縁膜
435a ゲート電極
435b ソース電極
435c ドレイン電極
441a n-型半導体層
441b 第1のn+型半導体層
441c 第2のn+型半導体層
445a ゲート電極
445b ソース電極
445c ドレイン電極
451  n型半導体層
451a n-型半導体層
451b n+型半導体層
452  p型半導体層
454  ゲート絶縁膜
455a ゲート電極
455b エミッタ電極
455c コレクタ電極
461  n型半導体層
462  p型半導体層
463  発光層
465a 第1の電極
465b 第2の電極
467  透光性電極
469  基板
500  制御システム
501  バッテリー(電源)
502  昇圧コンバータ
503  降圧コンバータ
504  インバータ
505  モータ(駆動対象)
506  駆動制御部
507  演算部
508  記憶部
600  制御システム
601  三相交流電源(電源)
602  AC/DCコンバータ
604  インバータ
605  モータ(駆動対象)
606  駆動制御部
607  演算部
608  記憶部
d1,d2,d3,d4   深さ
w1,w3,w5,w7   幅
w2,w6,w8   距離
θ1,θ2,θ5,θ6,θ9,θ10   角度
θ3,θ4,θ7,θ8   傾斜角
10, 110, 210 Crystal film 11, 211 Crystal layer (an example of the first crystal layer)
12,212 Crystal layer (an example of the second crystal layer)
13 Substrate 21, 221 Top surface (an example of the main surface)
22, 122, 222, 252 Uneven portions 23, 123, 223, 253 Recesses 23a, 23b, 123a, 123b, 223a, 223b, 253a, 253b, 353a, 353b Side surfaces 23c, 123c, 223c, 253c, 353c Bottom surface 24, 124 , 224, 254 Convex portion 25, 225, 255 Upper surface 26 Dislocation line 27, 227 Lower surface 31, 231, 261 Lower surface 32, 132, 232, 262 Concave and convex portion 33, 233, 263 Concave portion 34, 134, 234, 264 Convex portion 34a , 34b, 134a, 134b, 234a, 234b, 264a, 264b, 364a, 364b Laterally grown film 34c, 134c, 234c, 264c, 364c Vertically grown film 37 Grain boundary (an example of third crystal defect)
38 Dislocation 39, 39a, 39b, 269, 269a, 269b, 369, 369a, 369b Grain boundary (an example of second crystal defect)
41,271 Dislocation line 42 Dislocation line 43, 44, 243, 244, 273, 274 Region 213 Crystal layer (an example of the third crystal layer)
251 Upper surface 265 Upper surface 401a N- type semiconductor layer 401b N+-type semiconductor layer 402 P-type semiconductor layer 405a Schottky electrode 405b Ohmic electrode 421a N-type semiconductor layer with wide band gap 421b N-type semiconductor layer with narrow band gap 421c N+-type semiconductor layer 423 p-type semiconductor layer 424 semi-insulator layer 425a gate electrode 425b source electrode 425c drain electrode 428 buffer layer 431a n-type semiconductor layer 431b first n+-type semiconductor layer 431c second n+-type semiconductor layer 432 p-type semiconductor layer 432a P+ type semiconductor layer 434 Gate insulating film 435a Gate electrode 435b Source electrode 435c Drain electrode 441a N- type semiconductor layer 441b First n+ type semiconductor layer 441c Second N+ type semiconductor layer 445a Gate electrode 445b Source electrode 445c Drain electrode 451 n N-type semiconductor layer 451a N-type semiconductor layer 451b N+-type semiconductor layer 452 P-type semiconductor layer 454 Gate insulating film 455a Gate electrode 455b Emitter electrode 455c Collector electrode 461 N-type semiconductor layer 462 P-type semiconductor layer 463 Light-emitting layer 465a First electrode 465b Second electrode 467 Transparent electrode 469 Substrate 500 Control system 501 Battery (power source)
502 Boost converter 503 Buck converter 504 Inverter 505 Motor (driving target)
506 Drive control section 507 Arithmetic section 508 Storage section 600 Control system 601 Three-phase AC power supply (power supply)
602 AC/DC converter 604 Inverter 605 Motor (driving target)
606 Drive control unit 607 Calculation unit 608 Storage unit d1, d2, d3, d4 Depth w1, w3, w5, w7 Width w2, w6, w8 Distance θ1, θ2, θ5, θ6, θ9, θ10 Angle θ3, θ4, θ7 ,θ8 Tilt angle

Claims (20)

  1.  コランダム構造を有し、ガリウムを含む結晶性酸化物を含み、
     厚さ方向に切断した断面は、厚さ方向に沿って延びる線状の第1結晶欠陥と、厚さ方向から傾斜する傾斜部を含む線状の第2結晶欠陥と、を有し、
     前記第1結晶欠陥の上端は、前記傾斜部と繋がっているまたは前記傾斜部の下方に位置する結晶膜。
    It has a corundum structure and contains a crystalline oxide containing gallium,
    The cross section cut in the thickness direction has a linear first crystal defect extending along the thickness direction, and a linear second crystal defect including an inclined part inclined from the thickness direction,
    The upper end of the first crystal defect is a crystal film that is connected to the sloped portion or located below the sloped portion.
  2.  前記第2結晶欠陥は、横方向における両外側より内側が上方に位置する凸状部を有し、
     前記凸状部は、複数の前記傾斜部を含む請求項1に記載の結晶膜。
    The second crystal defect has a convex portion in which the inner side is located higher than both outer sides in the lateral direction,
    The crystal film according to claim 1, wherein the convex portion includes a plurality of the inclined portions.
  3.  前記凸状部は、三角形状である請求項2に記載の結晶膜。 The crystal film according to claim 2, wherein the convex portion has a triangular shape.
  4.  前記凸状部の厚さ方向に沿った寸法は、前記凸状部の横方向に沿った寸法に対する比が0.57以上0.69以下または0.17以上0.26以下である請求項3に記載の結晶膜。 3. The ratio of the dimension along the thickness direction of the convex portion to the dimension along the lateral direction of the convex portion is 0.57 or more and 0.69 or less, or 0.17 or more and 0.26 or less. The crystalline film described in .
  5.  結晶膜は、横方向に沿って並ぶ複数の前記凸状部を有し、
     前記凸状部の横方向に沿った寸法は、相互に隣り合う前記凸状部の間の距離に対する比が1以上である請求項3に記載の結晶膜。
    The crystal film has a plurality of the convex portions arranged in the lateral direction,
    4. The crystal film according to claim 3, wherein the ratio of the dimension of the convex portions in the lateral direction to the distance between the adjacent convex portions is 1 or more.
  6.  前記結晶性酸化物のa軸方向またはc軸方向は、前記厚さ方向と直交し、
     前記傾斜部は、前記a軸方向または前記c軸方向から傾斜する請求項1に記載の結晶膜。
    The a-axis direction or c-axis direction of the crystalline oxide is perpendicular to the thickness direction,
    The crystal film according to claim 1, wherein the inclined portion is inclined from the a-axis direction or the c-axis direction.
  7.  前記結晶性酸化物のm軸方向は、厚さ方向に沿っている請求項1から5のいずれかに記載の結晶膜。 The crystalline film according to any one of claims 1 to 5, wherein the m-axis direction of the crystalline oxide is along the thickness direction.
  8.  前記断面は、厚さ方向に沿って延びる第3結晶欠陥を有し、
     前記第2結晶欠陥は、前記凸状部の上端において、前記第3結晶欠陥と繋がっている請求項2から5のいずれかに記載の結晶膜。
    The cross section has a third crystal defect extending along the thickness direction,
    6. The crystal film according to claim 2, wherein the second crystal defect is connected to the third crystal defect at an upper end of the convex portion.
  9.  前記厚さ方向に沿って延びる部分は、横方向成長膜と横方向成長膜との境界である請求項8に記載の結晶膜。 The crystal film according to claim 8, wherein the portion extending along the thickness direction is a boundary between laterally grown films.
  10.  前記傾斜部は、横方向成長膜と縦方向成長膜との境界である請求項1から5のいずれかに記載の結晶膜。  The crystal film according to any one of claims 1 to 5, wherein the inclined portion is a boundary between a horizontally grown film and a vertically grown film. 
  11.  前記傾斜部の厚さ方向に対する傾斜角は、36度以上42度以下または63度以上71度以下である請求項1から5のいずれかに記載の結晶膜。 The crystal film according to any one of claims 1 to 5, wherein the angle of inclination of the inclined portion with respect to the thickness direction is 36 degrees or more and 42 degrees or less, or 63 degrees or more and 71 degrees or less.
  12.  エピタキシャル成長膜である請求項1から5のいずれかに記載の結晶膜。 The crystal film according to any one of claims 1 to 5, which is an epitaxially grown film.
  13.  前記エピタキシャル成長膜は、前記第2結晶欠陥の上方に横方向成長膜を有する請求項1から5のいずれかに記載の結晶膜。 6. The crystal film according to claim 1, wherein the epitaxially grown film has a laterally grown film above the second crystal defect.
  14.  前記第2結晶欠陥は、横方向に並ぶ複数が上下二段に位置し、
     上段と下段の前記結晶粒界は、横方向において交互に位置する請求項1から5のいずれかに記載の結晶膜。
    A plurality of the second crystal defects are arranged in a horizontal direction and are located in upper and lower two stages,
    6. The crystal film according to claim 1, wherein the upper and lower crystal grain boundaries are alternately located in the lateral direction.
  15.  前記第1結晶欠陥は、転位であり、前記第2結晶欠陥は、結晶粒界である請求項1から5のいずれかに記載の結晶膜。 6. The crystal film according to claim 1, wherein the first crystal defect is a dislocation, and the second crystal defect is a grain boundary.
  16.  結晶膜は、
     主面にストライプ状の凹凸を有する第1結晶層と、
     前記第1結晶層上に位置し、前記凹凸と接する第2結晶層と、を備え、
     前記傾斜部は、前記第1結晶層の凹部内に位置する前記第2結晶層に含まれる請求項1から5のいずれかに記載の結晶膜。
    The crystal film is
    a first crystal layer having stripe-like unevenness on its main surface;
    a second crystal layer located on the first crystal layer and in contact with the unevenness,
    6. The crystal film according to claim 1, wherein the inclined portion is included in the second crystal layer located within the recess of the first crystal layer.
  17.  n型半導体である請求項1から5のいずれかに記載の結晶膜。 The crystal film according to any one of claims 1 to 5, which is an n-type semiconductor.
  18.  主面がm面である請求項1から5のいずれかに記載の結晶膜。 The crystal film according to any one of claims 1 to 5, wherein the main surface is an m-plane.
  19.  サファイア基板と、
     請求項1から5のいずれかに記載の結晶膜と、を備える多層構造体。
    a sapphire substrate,
    A multilayer structure comprising the crystal film according to any one of claims 1 to 5.
  20.  コランダム構造を有し、ガリウムを含む結晶性酸化物を含む第1結晶層の主面にストライプ状の凹凸部を設け、
     コランダム構造を有し、ガリウムを含む結晶性酸化物を含む第2結晶層を前記凹凸部の凹部内に成長させ、このとき、厚さ方向に切断した断面において、厚さ方向から傾斜する傾斜部を有する線状の結晶欠陥を形成する結晶膜の製造方法。
     
     
     
    providing a striped uneven portion on the main surface of a first crystal layer having a corundum structure and containing a crystalline oxide containing gallium;
    A second crystal layer having a corundum structure and containing a crystalline oxide containing gallium is grown in the concave portion of the uneven portion, and at this time, in a cross section cut in the thickness direction, an inclined portion is inclined from the thickness direction. A method for manufacturing a crystal film that forms linear crystal defects.


PCT/JP2023/031776 2022-08-31 2023-08-31 Crystal film, and method for producing crystal film WO2024048710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022138867 2022-08-31
JP2022-138867 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048710A1 true WO2024048710A1 (en) 2024-03-07

Family

ID=90099806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031776 WO2024048710A1 (en) 2022-08-31 2023-08-31 Crystal film, and method for producing crystal film

Country Status (1)

Country Link
WO (1) WO2024048710A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015214448A (en) * 2014-05-09 2015-12-03 株式会社タムラ製作所 Semiconductor substrate, epitaxial wafer and method for manufacturing epitaxial wafer
WO2021153609A1 (en) * 2020-01-27 2021-08-05 株式会社Flosfia Semiconductor device and method for producing semiconductor device
WO2021166917A1 (en) * 2020-02-18 2021-08-26 株式会社Flosfia Semiconductor device and crystal growth method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015214448A (en) * 2014-05-09 2015-12-03 株式会社タムラ製作所 Semiconductor substrate, epitaxial wafer and method for manufacturing epitaxial wafer
WO2021153609A1 (en) * 2020-01-27 2021-08-05 株式会社Flosfia Semiconductor device and method for producing semiconductor device
WO2021166917A1 (en) * 2020-02-18 2021-08-26 株式会社Flosfia Semiconductor device and crystal growth method

Similar Documents

Publication Publication Date Title
US20220149158A1 (en) Schottky barrier diode
SE527922C2 (en) Silicon carbide semiconductor device
US11855135B2 (en) Semiconductor device
WO2024048710A1 (en) Crystal film, and method for producing crystal film
US11233126B2 (en) SiC epitaxial wafer, semiconductor device, and power converter
JP2024034556A (en) Multilayer film and multilayer film manufacturing method
JP2024034557A (en) Crystal film and crystal film manufacturing method
TW202139461A (en) Semiconductor device and crystal growth method
WO2023136309A1 (en) Semiconductor apparatus
US20230290888A1 (en) Semiconductor element and semiconductor device
JP2024005112A (en) crystal film
WO2022230831A1 (en) Semiconductor device
WO2022210615A1 (en) Semiconductor device
TW202230810A (en) semiconductor device
WO2023145912A1 (en) Multilayer structure, semiconductor element and semiconductor device
WO2022230830A1 (en) Semiconductor apparatus
TW202315140A (en) Semiconductor device
WO2023145911A1 (en) Layered structure, semiconductor element, and semiconductor device
US20230369412A1 (en) Semiconductor substrate and fabrication method of the semiconductor substrate
WO2024005153A1 (en) Semiconductor device and method for producing semiconductor device
WO2023145910A1 (en) Laminated structure, semiconductor element and semiconductor device
US20220393015A1 (en) Semiconductor device
WO2022030650A1 (en) Semiconductor element and semiconductor device
US20230317450A1 (en) Semiconductor substrate and fabrication method of the semiconductor substrate
TW202249277A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860472

Country of ref document: EP

Kind code of ref document: A1