WO2024048506A1 - Block copolymer composition, resin composition containing block copolymer composition, heat-shrinkable film - Google Patents

Block copolymer composition, resin composition containing block copolymer composition, heat-shrinkable film Download PDF

Info

Publication number
WO2024048506A1
WO2024048506A1 PCT/JP2023/030927 JP2023030927W WO2024048506A1 WO 2024048506 A1 WO2024048506 A1 WO 2024048506A1 JP 2023030927 W JP2023030927 W JP 2023030927W WO 2024048506 A1 WO2024048506 A1 WO 2024048506A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
block copolymer
copolymer composition
heat
vinyl aromatic
Prior art date
Application number
PCT/JP2023/030927
Other languages
French (fr)
Japanese (ja)
Inventor
友哉 中村
正 澤里
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024048506A1 publication Critical patent/WO2024048506A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a block copolymer composition, a resin composition containing the block copolymer composition, and a heat-shrinkable film including a layer composed of the resin composition.
  • Heat-shrinkable films using block copolymers made by polymerizing vinyl aromatic compounds and conjugated diene compounds have excellent heat-shrinkability and finish after shrinkage, and are suitable for various shapes and attachment methods of packaged objects. Because of its adaptability, it is widely used for shrink packaging such as labels for PET bottled beverages.
  • Patent Document 1 discloses a method in which a heat-shrinkable film is made into a foamed film to make the specific gravity smaller than that of water, thereby making it possible to easily separate PET bottles by a specific gravity separation method.
  • the foamed film since the foamed film has air bubbles inside the film, it may have poor surface smoothness and transparency, which may cause problems with printing characteristics and appearance when used as a label.
  • the present invention provides a heat-shrinkable film that allows specific gravity separation with water when a heat-shrinkable film is obtained from a resin composition containing a block copolymer composition, even if the heat-shrinkable film is non-foamed.
  • An object of the present invention is to provide a block copolymer composition from which a transparent film can be obtained.
  • a block copolymer composition containing one or more types of block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit contains 52% by mass of the vinyl aromatic monomer unit when the total mass of the vinyl aromatic monomer unit and the conjugated diene monomer unit is 100% by mass.
  • the block copolymer composition has a flexural modulus of 1000 MPa or more as measured in accordance with ISO 178, and the block copolymer composition has a heating rate of 4° C. in accordance with ISO 6721-1.
  • the loss tangent value (tan ⁇ ) when performing dynamic viscoelasticity measurement in a fixed three-point bending mode is at least in the range of 80°C or more and 110°C or less.
  • a block copolymer composition containing one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit contains 52% of the vinyl aromatic monomer units when the total mass of the vinyl aromatic monomer units and the conjugated diene monomer units is 100% by mass.
  • the block copolymer composition has a flexural modulus of 1000 MPa or more as measured according to ISO178, The block copolymer composition was subjected to dynamic viscoelasticity measurement in a fixed three-point bending mode under the conditions of a heating rate of 4°C/min, a frequency of 1Hz, and a strain of 0.02% in accordance with ISO6721-1.
  • the loss tangent value (tan ⁇ ) has at least one peak in the range of 80 ° C. or more and 110 ° C. or less, Block copolymer composition.
  • At least one of the one or more block copolymers contained in the block copolymer composition has a structure represented by any one of the following formulas (i) to (iv). , (i) (S1) n - (B) m (ii) (S1) n - (B) m - (S2) (iii) (S1) n - (B) m -X (iv) (S1) n - (B) m - (S2) -X [In the formula, each of (S1) and (S2) is a polymer block with a vinyl aromatic monomer unit content of 85% by mass or more and 100% by mass or less, and (B) is a conjugated diene monomer unit.
  • Each of the block copolymers having structures represented by formulas (i) to (iv) above contains 40% by mass as the total mass of (S1) 1 to (S1) n in 100% by mass of the block copolymer. Contains not less than 70% by mass,
  • Each of the block copolymers having structures represented by formulas (i) to (iv) above contains 30% by mass as the total mass of (B) 1 to (B) m in 100% by mass of the block copolymer.
  • Each of the block copolymers having structures represented by formulas (i) to (iv) above contains 0% by mass or more and 12% by mass or less as the mass of (S2) in 100% by mass of the block copolymer. , 60% by mass or more as the total mass of block copolymers having a structure represented by any one of formulas (i) to (iv) in 100% by mass of the one or more block copolymers. Contains less than % by mass, The block copolymer composition according to [1] or [2].
  • (S1) is a homoblock composed of vinyl aromatic monomer units, or a random copolymer composed of vinyl aromatic monomer units and conjugated diene monomer units block
  • (B) is a homoblock composed of conjugated diene monomer units
  • (S2) is a homoblock composed of vinyl aromatic monomer units
  • [5] Any one of [1] to [4], wherein the vinyl aromatic monomer unit is a styrene monomer unit, and the conjugated diene monomer unit is a butadiene monomer unit.
  • a heat-shrinkable film comprising a layer made of the resin composition according to [6].
  • the heat-shrinkable film obtained from the resin composition containing the block copolymer composition of the present invention can be separated by specific gravity with water even if it is not foamed.
  • the block copolymer composition according to one embodiment of the present invention contains one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit. In one embodiment, the block copolymer composition contains only a block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit. Furthermore, the block copolymer composition may contain various additives within the range that does not impede the effects of the present invention.
  • a block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit according to an embodiment of the present invention is obtained by block copolymerizing a vinyl aromatic monomer and a conjugated diene monomer. It is a block copolymer synthesized by The block copolymer is a block copolymer having one or more types of block chains composed of vinyl aromatic monomer units and/or conjugated diene monomer units.
  • the vinyl aromatic monomer unit is a constituent unit of a block copolymer derived from a vinyl aromatic monomer used in copolymerization of the block copolymer.
  • vinyl aromatic monomers include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, and ⁇ -methylstyrene.
  • examples include styrenic monomers such as, vinylnaphthalene, vinylanthracene, etc.
  • the vinyl aromatic monomer is preferably styrene. These monomers may be used alone or in combination of two or more.
  • the conjugated diene monomer unit is a constituent unit of a block copolymer derived from a conjugated diene monomer used in copolymerization of the block copolymer.
  • the conjugated diene monomer include butadiene monomers such as 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), and 2,3-dimethyl-1,3-butadiene; Examples include 1,3-pentadiene and 1,3-hexadiene.
  • the conjugated diene monomer is preferably 1,3-butadiene or isoprene. These monomers may be used alone or in combination of two or more.
  • the content of vinyl aromatic monomer units and conjugated diene monomer units in the block copolymer according to one embodiment of the present invention is not particularly limited, but the content of the block copolymer is 100% by mass.
  • the vinyl aromatic monomer unit is 50 to 80% by mass
  • the conjugated diene monomer unit is 20 to 50% by mass
  • the vinyl aromatic monomer unit is 52% by mass. It is more preferable that the amount of conjugated diene monomer units is 31 to 48% by weight.
  • the preferred content of vinyl aromatic monomer units in the block copolymer is, for example, 50, 55, 60, 65, 70, 75, or 80% by mass when the block copolymer is 100% by mass. %, and may be within a range between any two of the numerical values exemplified here.
  • the preferable content of the conjugated diene monomer unit in the block copolymer is, for example, 20, 25, 30, 35, 40, 45, or 50% by mass when the block copolymer is 100% by mass. and may be within the range between any two of the numerical values exemplified here.
  • the block copolymer is more likely to be uniformly compatible with each other, making it difficult for gel formation and reduction in transparency to occur.
  • the content of the vinyl aromatic monomer unit means the total content of the vinyl aromatic monomer units used together.
  • the content of the conjugated diene monomer units means the total content of the conjugated diene monomer units used together.
  • the weight average molecular weight of the block copolymer is preferably 40,000 to 500,000, more preferably 60,000 to 300,000, and even more preferably 70,000 to 200,000.
  • a value of 40,000 or more provides the block copolymer composition with sufficient rigidity and impact resistance, and a value of 500,000 or less provides a block copolymer composition with good processability, which is preferable.
  • the weight average molecular weight of the block copolymer can be measured using gel permeation chromatography (hereinafter abbreviated as GPC).
  • At least one block copolymer containing one or more vinyl aromatic monomer units and a conjugated diene monomer unit contained in the block copolymer composition according to an embodiment of the present invention preferably has a structure represented by any one of the following formulas (i) to (iv).
  • each of (S1) and (S2) is a polymer block with a vinyl aromatic monomer unit content of 85% by mass or more and 100% by mass or less, and (B) is a conjugated diene monomer unit.
  • each of the block copolymers having structures represented by formulas (i) to (iv) above contains 40% by mass as the total mass of (S1) 1 to (S1) n in 100% by mass of the block copolymer.
  • Each of the block copolymers containing at least 70% by mass and having a structure represented by the formulas (i) to (iv) contains (B) 1 to (B) in 100% by mass of the block copolymer. ) Contains 30% by mass or more and 48% by mass or less as the total mass of m .
  • each of the block copolymers having structures represented by formulas (i) to (iv) above contains (S2) in 0% by mass or more and 12% by mass or less in 100% by mass of the block copolymer.
  • S2 0% by mass or more and 12% by mass or less in 100% by mass of the block copolymer.
  • Each of the polymer blocks (S1) and (S2) has a content of vinyl aromatic monomer units of 85% by mass or more and 100% by mass or less, and a content of conjugated diene monomer units of 0% by mass or more and 15% by mass or less.
  • the polymer block preferably has a content of vinyl aromatic monomer units of 90% by mass or more and 100% by mass or less, and a content of conjugated diene monomer units of 0% by mass.
  • the content of the polymer block is 10% by mass or less.
  • the polymerized block (B) is a polymerized block in which the content of conjugated diene monomer units is 60% by mass or more and 100% by mass or less, and the content of vinyl aromatic monomer units is 0% by mass or more and 40% by mass or less. It is preferable that the content of conjugated diene monomer units is 70% by mass or more and 100% by mass or less, and the content of vinyl aromatic monomer units is 0% by mass or more and 30% by mass or less. It is a polymer block.
  • Each of the block copolymers having structures represented by formulas (i) to (iv) contains 40% by mass or more as the total mass of (S1) 1 to (S1) n in 100% by mass of the block copolymer.
  • the content is 45% by mass or more and 66% by mass or less, more preferably 45% by mass or more and 60% by mass or less.
  • Each of the block copolymers having structures represented by formulas (i) to (iv) contains 30% by mass or more as the total mass of (B) 1 to (B) m in 100% by mass of the block copolymer.
  • the content is 32% by mass or more and 48% by mass or less, preferably 32% by mass or more and 48% by mass or less.
  • Each of the block copolymers having structures represented by formulas (i) to (iv) contains (S2) in 100% by mass of 0% by mass or more and 12% by mass or less, preferably 0% by mass or less. Contains from 10% by mass to 10% by mass.
  • the block copolymer having the structure represented by formula (iii) or (iv) is a polymer block of (S1) n - (B) m or a polymer block of (S1) n - (B) m - (S2). It can be obtained by polymerizing and then coupling with a coupling agent.
  • Coupling agents include dimethyldichlorosilane, silicon tetrachloride, chlorosilane compounds such as 1,2-bis(methyldichlorosilyl)ethane, methyltrichlorosilane, and tetrachlorosilane; dimethyldimethoxysilane, tetramethoxysilane, tetraphenoxysilane, Examples include alkoxysilane compounds such as methyltrimethoxysilane and tetraphenoxysilane; tin tetrachloride; polyhalogenated hydrocarbons; carboxylic acid esters; polyvinyl compounds; epoxidized oils and fats such as epoxidized soybean oil and epoxidized linseed oil. . Furthermore, two or more types of coupling agents may be used in combination. A particularly preferred polyfunctional coupling agent is epoxidized soybean oil.
  • ⁇ Content ratio of block copolymer having a structure represented by any one of formulas (i) to (iv)> Preferably, a total of 100 block copolymers containing one or more types of vinyl aromatic monomer units and conjugated diene monomer units contained in the block copolymer composition according to one embodiment of the present invention
  • the total mass of the block copolymer having a structure represented by any one of formulas (i) to (iv) in the mass% is 60% by mass or more and 100% by mass or less, more preferably 70% by mass or less. It contains at least 100% by mass.
  • the total mass of block copolymers having a structure represented by any one of formulas (i) to (iv) is contained in 60% by mass or more and 100% by mass or less in a total of 100% by mass of block copolymers.
  • the polymer block (S1) is preferably a homoblock composed of vinyl aromatic monomer units, or a random block composed of vinyl aromatic monomer units and conjugated diene monomer units.
  • the polymer block (B) is preferably a homoblock composed of conjugated diene monomer units, and the polymer block (S2) is preferably composed of vinyl aromatic monomer units. It is a homoblock composed of
  • (S1) may be a random copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit.
  • (S1) as a random copolymer block, it is possible to control the Tg of the block copolymer composition, that is, the peak temperature of the loss tangent value (tan ⁇ ) in dynamic viscoelasticity measurement, and it is possible to control the peak temperature of the loss tangent value (tan ⁇ ) in the dynamic viscoelasticity measurement.
  • Good shrinkage characteristics can be easily obtained when
  • the random copolymer block can be obtained, for example, by adding and polymerizing a vinyl aromatic monomer and a conjugated diene monomer at a constant flow rate ratio.
  • (S1) is a polystyrene block or a random copolymer block composed of styrene monomer and butadiene monomer
  • (B) is a polybutadiene block
  • (S2) may be a polystyrene block.
  • Method for producing a block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit is not particularly limited, for example, the above-mentioned vinyl aromatic monomer and conjugated diene monomer are used in an organic solvent using an organolithium compound as an initiator. Examples include a method of polymerizing.
  • organic solvents examples include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, octane, and isooctane; alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; Examples include aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene.
  • aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, octane, and isooctane
  • alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane
  • An organolithium compound is a compound in which one or more lithium atoms are bonded in the molecule.
  • the organic lithium compound include monofunctional organic lithium compounds such as ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, and tert-butyllithium, hexamethylene dilithium, and butadienyl.
  • Examples include polyfunctional organic lithium compounds such as dilithium and isoprenyl dilithium.
  • a randomizing agent may be added to control the polymerization state.
  • Tetrahydrofuran THF is mainly used as the randomizing agent, but other ethers, amines, thioethers, phosphoramides, alkylbenzene sulfonates, potassium or sodium alkoxides, etc. can also be used.
  • Suitable ethers include, in addition to THF, dimethyl ether, diethyl ether, diphenyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, and the like.
  • amines such as trimethylamine, triethylamine, tetramethylethylenediamine, and cyclic amines can also be used.
  • triphenylphosphine, hexamethylphosphoramide, potassium or sodium alkylbenzenesulfonate, potassium or sodium butoxide, and the like can also be used as randomizing agents.
  • the amount of the randomizing agent added for example, 0.001 to 10 parts by mass can be added to 100 parts by mass of the total monomers charged.
  • the timing of addition is preferably before the start of the polymerization reaction. Additionally, it can be added as necessary.
  • the block copolymer thus obtained is inactivated by adding a polymerization terminator such as water, alcohol, carbon dioxide, etc. in an amount sufficient to inactivate the active ends.
  • a polymerization terminator such as water, alcohol, carbon dioxide, etc.
  • Methods for recovering the copolymer from the obtained block copolymer solution include (1) a method of precipitating with a poor solvent such as methanol, and (2) a method of precipitating by evaporating the solvent with a heated roll etc. (drum dryer). method), (3) method of concentrating the solution using a concentrator and then removing the solvent using a vented extruder, (4) recovering the copolymer by dispersing the solution in water and removing the solvent by heating by blowing in steam. Any method can be used, such as a steam stripping method.
  • the block copolymer composition according to one embodiment of the present invention may contain additives within a range that does not impede the effects of the present invention.
  • additives include various stabilizers, lubricants, processing aids, antiblocking agents, antistatic agents, antifogging agents, light resistance improvers, softeners, plasticizers, pigments, etc. can be mentioned.
  • Each additive may be added to the block copolymer solution, or may be blended and melt-mixed with the recovered block copolymer.
  • the stabilizer examples include 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenylacrylate, 2-[1-(2-hydroxy-3, 5-di-tert-pentylphenyl)ethyl]-4,6-di-tert-pentylphenyl acrylate, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate and 2,6- Examples include phenolic antioxidants such as di-tert-butyl-4-methylphenol, phosphorus antioxidants such as trisnonylphenyl phosphite, and the like.
  • antiblocking agent examples include high impact polystyrene, organic fillers such as crosslinked beads of vinyl aromatic hydrocarbon copolymer, silica beads, quartz beads, and the like.
  • additives include fatty acid amide, ethylene bisstearamide, sorbitan monostearate, saturated fatty acid ester of aliphatic alcohol, and pentaerythritol fatty acid ester. These additives are preferably used in an amount of 5% by mass or less based on 100% by mass of the block copolymer composition.
  • the vinyl aromatic monomer unit and the conjugated diene monomer unit have a total mass of 100% by mass. It contains 52% by mass or more and 69% by mass or less of mer units, more preferably 55% by mass or more and 66% by mass or less, and even more preferably 57% by mass or more and 64% by mass or less.
  • the preferable content of the vinyl aromatic monomer unit in 100% by mass of the vinyl aromatic monomer unit and the conjugated diene monomer unit is 52, 53, 55, 60 , 65, 68, or 69% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the content of vinyl aromatic monomer units is the total content of vinyl aromatic monomer units contained in the block copolymers used together. means.
  • the rigidity of the heat-shrinkable film obtained from the resin composition containing the block copolymer composition is reduced to a level suitable for the heat-shrinkable film. If the amount is 69% by mass or less, the specific gravity separability with water of the heat-shrinkable film obtained from the resin composition containing the block copolymer composition can be further improved.
  • the content of the vinyl aromatic monomer unit in the total 100% by mass of the vinyl aromatic monomer unit and the conjugated diene monomer unit can be measured by a halogen addition method.
  • the block copolymer composition according to one embodiment of the present invention has a flexural modulus of elasticity measured according to ISO 178 of 1000 MPa or more, preferably 1050 MPa or more, and more preferably 1100 MPa or more.
  • the preferable flexural modulus of the block copolymer composition is 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, or 1800 MPa, and is between any two of the numerical values exemplified here. may be within the range of
  • the rigidity of the heat-shrinkable film obtained from the resin composition containing the block copolymer composition can be made suitable for a heat-shrinkable film.
  • the flexural modulus can be controlled, for example, by adjusting the structure of the block copolymer; for example, a block copolymer having a structure represented by any one of formulas (i) to (iv) By adopting , the bending modulus of elasticity can be increased. Also, increasing the amount of vinyl aromatic monomer units contained in 100% by mass of the total mass of vinyl aromatic monomer units and conjugated diene monomer units of the block copolymer composition.
  • the flexural modulus can also be increased by
  • Flexural modulus is measured according to ISO178.
  • the block copolymer composition according to an embodiment of the present invention is dynamically processed in a fixed three-point bending mode under the conditions of a heating rate of 4° C./min, a frequency of 1 Hz, and a strain of 0.02% in accordance with ISO 6721-1.
  • the loss tangent value (tan ⁇ ) when performing viscoelasticity measurement has at least one peak in the range of 80°C or higher and 110°C or lower, preferably at least one peak in the range of 82°C or higher and 108°C or lower.
  • the loss tangent value has at least one peak at 80, 85, 90, 95, 100, 105, or 110°C, and has a range between any two of the numerical values exemplified here. may have one or more peaks within it.
  • the heat-shrinkable film obtained from the resin composition containing the block copolymer composition is suitable as a heat-shrinkable film. It is thought that it may have a shrinkage characteristic.
  • the temperature at which the peak of the loss tangent value (tan ⁇ ) appears is determined, for example, when a random copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit is present in the block copolymer. can be controlled by adjusting the content ratio of vinyl aromatic monomer units and conjugated diene monomer units in the random copolymer block.
  • the loss tangent value (tan ⁇ ) is determined in accordance with ISO6721-1 using, for example, a dynamic viscoelasticity measurement device RSA-III (manufactured by TA Instruments) at a heating rate of 4°C/min, a frequency of 1 Hz, and a strain of 0.02%. It is measured by dynamic viscoelasticity measurement in a fixed three-point bending mode.
  • RSA-III manufactured by TA Instruments
  • the specific gravity at 23°C of the block copolymer composition according to one embodiment of the present invention is preferably 0.950 or more and less than 1.000, more preferably 0.950 or more and 0.999 or less, More preferably, it is 0.960 or more and 0.997 or less.
  • the specific gravity of the block copolymer composition is 0.950, 0.960, 0.970, 0.980, 0.990, 0.991, 0.992, 0.993, 0.994 , 0.995, 0.996, 0.997, 0.998, or 0.999, and may be within a range between any two of the numerical values exemplified here.
  • the heat-shrinkable film obtained from the resin composition containing the block copolymer composition can have excellent specific gravity separability with water.
  • the specific gravity of the block copolymer composition is, for example, the vinyl aromatic monomer unit and the conjugated diene monomer unit when the total mass of the vinyl aromatic monomer unit and the conjugated diene monomer unit in the block copolymer composition is 100% by mass. It can be controlled by adjusting the content of monomer units in the system.
  • the specific gravity of the block copolymer composition at 23°C can be measured by the procedure described in JIS Z8807:2012.
  • the block copolymer composition according to one embodiment of the present invention includes one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit, and various additives as necessary. obtained by mixing. Any known method can be used for mixing these block copolymers and additives. For example, dry blending may be carried out using a Henschel mixer, ribbon blender, super mixer, V-blender, etc., and furthermore, it may be melted and pelletized using an extruder. In one embodiment, melt mixing is preferred. Alternatively, a method of removing the solvent after mixing the polymer solutions can also be used.
  • a resin composition according to an embodiment of the present invention contains one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit according to an embodiment of the present invention. Contains a block copolymer composition.
  • the resin composition according to an embodiment of the present invention contains the block copolymer composition in 100% by mass of the resin composition at 80% by mass or more and 100% by mass or less, preferably 85% by mass or more and 100% by mass or less. However, the content is more preferably 90% by mass or more and 100% by mass or less. Specifically, the content of the block copolymer composition in 100% by mass of the resin composition is 80, 82, 85, 90, 95, 98, or 100% by mass, and any of the values exemplified here or within a range between the two. In one embodiment, the resin composition may consist essentially only of the block copolymer composition.
  • the heat-shrinkable film obtained from the resin composition containing the block copolymer composition has good specific gravity separation properties with water, and heat shrinkage is improved.
  • the rigidity can be made suitable for a flexible film.
  • the resin composition according to one embodiment of the present invention may contain other materials other than a block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit, within a range that does not impair the effects of the present invention. May include polymers. Such other polymers are, in other words, polymers that do not contain block copolymers containing vinyl aromatic monomer units and conjugated diene monomer units. Specific examples include styrene polymers such as general-purpose polystyrene, high-impact polystyrene, and styrene-(meth)acrylate copolymer resins.
  • the resin composition according to one embodiment of the present invention can be obtained by mixing the block copolymer composition according to one embodiment of the present invention, and optionally additives and other polymers described above.
  • the resin composition may be obtained by mixing one or more block copolymers, and optionally additives and other polymers, without passing through the block copolymer composition.
  • a method for mixing these block copolymer compositions, additives, and other polymers, or a known method for mixing the block copolymer composition, additives, and other polymers can be adopted.
  • dry blending may be carried out using a Henschel mixer, ribbon blender, super mixer, V-blender, etc., and furthermore, it may be melted and pelletized using an extruder. In one embodiment, melt mixing is preferred.
  • a method of removing the solvent after mixing the polymer solutions can also be used.
  • a heat-shrinkable film according to an embodiment of the present invention contains a block copolymer composition containing one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit.
  • This is a heat-shrinkable film including a layer made of a resin composition.
  • the heat-shrinkable film is stretched in at least one of the MD direction and the TD direction of the heat-shrinkable film.
  • the MD direction of the heat-shrinkable film in the present invention means the feeding direction (Machine Direction) of the film in the line that produces the heat-shrinkable film
  • the TD direction of the heat-shrinkable film means the direction in the MD direction of the heat-shrinkable film.
  • the direction in which the heat-shrinkable film is stretched to a greater extent may be referred to as the main stretching direction.
  • the heat-shrinkable film may be a single-layer film in which only a layer containing the resin composition is used, or may be a heat-shrinkable multilayer film in which another resin layer is laminated on at least one surface thereof.
  • another resin layer may be laminated on the stretched heat-shrinkable film, or another resin layer may be laminated on an unstretched film obtained by forming the resin composition into a film.
  • a multilayer film obtained by laminating the resin composition and another resin by multilayer extrusion molding may be drawn.
  • the resin used for the other resin layer styrene resin is preferable.
  • the heat-shrinkable film is preferably non-foamed.
  • all layers must be formed using the commonly used method for foaming, i.e., when the resin and chemical foaming agent are melted and kneaded, the chemical foaming agent is thermally decomposed and generated.
  • the molding may be performed without using a chemical foaming method in which the resin is foamed with gas, a physical foaming method in which gas is injected into the melted resin in an extruder, and the resin is foamed.
  • Non-foaming can be considered as non-foaming if, for example, when a cross section of a heat-shrinkable film is observed using a laser microscope, the area ratio of air bubbles to the cross-sectional area is 1% or less. Since the heat-shrinkable film is non-foamed, the heat-shrinkable film has good transparency and surface smoothness.
  • a heat-shrinkable film according to an embodiment of the present invention is a film including a layer made of a resin composition according to an embodiment of the present invention.
  • the heat-shrinkable film is obtained by stretching a sheet including a layer made of a resin composition according to an embodiment of the present invention.
  • the method of manufacturing the sheet is not particularly limited, but for example, a method of forming the sheet by extrusion using a resin composition can be used. Further, during extrusion, the sheet may be extruded together with a resin composition to form a sheet composed of a plurality of layers including a layer composed of the resin composition.
  • sheet and “film” are not used to distinguish between different thicknesses, but when the thickness changes (thinners) due to an operation such as stretching, the term “sheet” refers to the film before it becomes thinner. ” is sometimes called.
  • the stretching may be uniaxially, biaxially, or multiaxially.
  • uniaxial stretching include stretching an extruded sheet in a direction perpendicular to the extrusion direction (TD direction) using a tenter, stretching an extruded tubular film in the circumferential direction (TD direction), and stretching an extruded sheet in a direction perpendicular to the extrusion direction (TD direction).
  • MD direction stretching an extrusion direction
  • biaxial stretching examples include a method in which an extruded sheet is stretched in the extrusion direction (MD direction) with a roll, and then stretched in a direction perpendicular to the extrusion direction (TD direction) with a tenter, etc., and an extruded tubular film
  • MD direction extrusion direction
  • TD direction direction perpendicular to the extrusion direction
  • the stretching temperature is preferably, for example, 60 to 120°C.
  • a temperature of 60° C. or higher makes it difficult for the film to break during stretching, and a temperature of 120° C. or lower provides a film with good shrinkage characteristics, which is preferable.
  • Particularly preferred is a range of Tg+5°C to Tg+20°C with respect to the glass transition temperature (Tg) of the composition constituting the film.
  • Tg glass transition temperature
  • Tg glass transition temperature
  • the glass transition temperature (Tg) can be determined, for example, from the temperature at the peak of the loss modulus.
  • the stretching ratio in the main stretching direction which is stretched more greatly, is not particularly limited, but is preferably 1.5 to 8.0 times.
  • a stretching ratio of 1.5 times or more in the main stretching direction allows a film with good shrinkage characteristics to be obtained, and a stretching ratio of 8.0 times or less makes it possible to easily produce a stretched film, which is preferable. .
  • the heat-shrinkable film according to one embodiment of the present invention has excellent specific gravity separation properties with water. Excellent specific gravity separation with water can be achieved, for example, by setting the specific gravity of the heat-shrinkable film to less than 1.000.
  • the heat-shrinkable film according to an embodiment of the present invention preferably has a specific gravity at 23° C. of, for example, 0.950 or more and less than 1.000. If the specific gravity of the heat-shrinkable film is less than 1.000, it is preferable because it floats on water and can be separated by water from those having a specific gravity of 1.000 or more.
  • the specific gravity of the heat-shrinkable film can be controlled by making the heat-shrinkable film contain a layer made of the resin composition according to one embodiment of the present invention, or by adjusting the specific gravity of other layers. Specific gravity is measured at 23° C., for example, according to JIS Z8807:2012.
  • a heat-shrinkable film according to an embodiment of the present invention may have shrinkage characteristics suitable for a heat-shrinkable film.
  • the shrinkage characteristic here means, for example, the balance between thermal shrinkage rate and natural shrinkage rate. Thermal shrinkage rate and natural shrinkage rate are generally in a trade-off relationship, but it is desirable to strike a balance between them depending on the application.
  • the heat-shrinkable film according to one embodiment of the present invention may have a heat-shrinkage rate suitable for a heat-shrinkable film.
  • the heat shrinkage rate in at least one direction is preferably 60% or more at 100° C. for 10 seconds, and preferably 40% or more at 80° C. for 10 seconds. With such a heat shrinkage rate, the temperature does not need to be high at the time of shrinkage, so that the effect on the article to be coated can be suppressed.
  • the heat shrinkage rate of the heat-shrinkable film according to an embodiment of the present invention is determined in the TD direction of the heat-shrinkable film when the main stretching direction (the direction in which it is stretched more greatly) of the heat-shrinkable film is the TD direction. means a measured value.
  • the main stretching direction of the heat-shrinkable film is the MD direction, it means the value measured in the MD direction of the heat-shrinkable film.
  • the heat shrinkage rate is calculated, for example, by immersing a heat-shrinkable film in hot water for a certain period of time and calculating the difference in length before and after shrinkage.
  • the heat-shrinkable film according to one embodiment of the present invention may have a natural shrinkage rate suitable for a heat-shrinkable film. Specifically, for example, it is preferably 4% or less at 40° C. for 7 days. If the natural shrinkage rate is 4% or less, shrinkage of the heat-shrinkable film during storage can be reduced, resulting in excellent storage properties.
  • the natural shrinkage rate is calculated, for example, by leaving the heat-shrinkable film in an atmosphere at 40° C. for 7 days and calculating the difference in length before and after shrinkage.
  • the heat-shrinkable film according to one embodiment of the present invention may have a rigidity suitable for a heat-shrinkable film. Therefore, the heat-shrinkable film has a suitable stiffness, and the work and processing when attaching the heat-shrinkable film to a container can be performed without any problem.
  • the stiffness can be expressed by the Young's modulus of the heat-shrinkable film in the MD direction. Specifically, for example, if the Young's modulus in the MD direction at 23° C. is 500 MPa or more, it can be said that the film has a rigidity suitable for a heat-shrinkable film. Young's modulus can be measured at a tensile rate of 200 mm/min at 23° C. in an environment with a humidity of 50 ⁇ 5%.
  • the thickness of the heat-shrinkable film according to one embodiment of the present invention is preferably 20 to 100 ⁇ m, more preferably 50 to 95 ⁇ m.
  • the heat-shrinkable film according to an embodiment of the present invention can be attached to a container by taking advantage of its heat-shrinkability, as a non-printed film, as a label with a product name printed thereon, or as a cap seal or other packaging material.
  • a container by taking advantage of its heat-shrinkability, as a non-printed film, as a label with a product name printed thereon, or as a cap seal or other packaging material. can do.
  • a polymer solution containing a block copolymer having polystyrene blocks was obtained.
  • This polymerization solution was preliminarily concentrated and further devolatilized and extruded using a twin-screw extruder equipped with a vacuum vent to obtain the desired pelletized block copolymer (P-4).
  • the internal temperature of the reaction system is raised to 80°C, and while maintaining the internal temperature, 40 kg of styrene and 60 kg of 1,3-butadiene are added at 40.0 kg/h and 60 kg/h, respectively. They were added simultaneously at a constant addition rate of .0 kg/h.
  • the internal temperature of the reaction system was lowered to 60°C, 50 kg of styrene was added, and styrene was anionically polymerized. The internal temperature rose to 87°C.
  • Block structure of block copolymer The block structures of the obtained block copolymers (P-1) to (P-8) are shown in Tables 1 and 2.
  • the block structure of the block copolymer can be determined by the procedure for adding each monomer. Furthermore, the content of each block structure contained in the block copolymer and the content of monomer units contained in each block structure can be calculated from the amount of monomers used as raw materials.
  • Block copolymer composition > [Raw materials used] ⁇ Block copolymer: (P-1) to (P-8) obtained by the above polymerization ⁇ Anti-blocking agent: E640N (high impact polystyrene, manufactured by Toyo Styrene Co., Ltd.)
  • Example 1> After dry-blending 1.3% by mass of E640N to 100% by mass of block copolymer (P-1), a block copolymer composition (RA-1) was obtained by melting and pelletizing in an extruder. Ta.
  • (A2) The content of butadiene (rubber content) was calculated based on the amount of double bonds obtained by the method of (A1). Regarding the styrene content, the value obtained by subtracting the butadiene content from the entire sample was calculated as the styrene content.
  • Resin composition The above block copolymer compositions (RA-1) to (RA-4) and (RB-1) to (RB-3) were used as resin compositions as they were.
  • Heat shrinkage rate (%) (L1-L2)/L1 ⁇ 100
  • Natural shrinkage rate (%) (L1-L2)/L1 x 100
  • L1 Length before contraction
  • L2 Length after contraction
  • Young's modulus was measured at 23° C. in the TD direction and MD direction of the heat-shrinkable film at a tensile rate of 200 mm/min in an environment with humidity of 50 ⁇ 5%.
  • the heat-shrinkable film molded using the block copolymer composition and resin composition according to the examples of the present invention had a specific gravity of less than 1.000 at 23°C. Therefore, it has excellent specific gravity separation with water.
  • the heat-shrinkable film molded using the block copolymer composition and resin composition according to the examples of the present invention has a Young's modulus in the MD direction of 500 MPa or more, and has a rigidity suitable for a heat-shrinkable film. It was confirmed that Therefore, the heat-shrinkable film has a suitable stiffness, and the work and processing when attaching the heat-shrinkable film to a container can be performed without any problem.
  • the heat-shrinkable film formed using the block copolymer composition and resin composition according to the examples of the present invention had shrinkage characteristics suitable for a heat-shrinkable film. . Since the temperature does not need to be high during shrinkage, the effect on the article to be coated can be suppressed. Furthermore, since shrinkage of the heat-shrinkable film during storage can be reduced, storage properties are excellent.
  • the heat-shrinkable film molded using the block copolymer composition and resin composition according to the examples of the present invention has excellent properties as described above even when molded without foaming. It was confirmed that it was possible to obtain a heat-shrinkable film having specific gravity separability with water.
  • block copolymer compositions and resin compositions with a flexural modulus of less than 1000 MPa when block copolymer compositions and resin compositions with a flexural modulus of less than 1000 MPa are used, some of them become soft and difficult to form into a film (poor rigidity).
  • the content of vinyl aromatic monomer units is 69% by mass when the total mass of vinyl aromatic monomer units and conjugated diene monomer units in the block copolymer is 100% by mass.
  • % of the block copolymer composition and the resin composition had a specific gravity of 1.000 or more at 23°C.
  • the peak of the loss tangent value does not have a peak in the range of 80 ° C. or higher and 110 ° C. or lower.
  • the block copolymer composition according to the present invention is characterized in that when a heat-shrinkable film is obtained from a resin composition containing the block copolymer composition, even if the heat-shrinkable film is non-foamed, A heat-shrinkable film that can be separated by specific gravity can be obtained.
  • the resin composition containing the block copolymer composition according to the present invention can provide a heat-shrinkable film with excellent specific gravity separation properties with water, and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a block copolymer composition that makes it possible to obtain a heat-shrinkable film that can be separated by specific gravity using water even if the heat-shrinkable film is not foamed when obtaining a heat-shrinkable film from a resin composition containing the block copolymer composition. Provided is a block copolymer composition containing one or more block copolymers that include a vinyl aromatic monomer unit and a conjugated diene monomer unit. When the total mass of the vinyl aromatic monomer units and the conjugated diene monomer units is taken to be 100 mass%, the block copolymer composition contains from 52 mass% to 69 mass% of the vinyl aromatic monomer units. The block copolymer composition has a flexural modulus measured according to ISO 178 of 1000 MPa or more, and the block copolymer composition has at least one peak in the loss tangent (tan δ) range of from 80°C to 110°C when dynamic viscoelasticity measurement is performed by a fixed three-point bending mode at a heating rate of 4°C/min, a frequency of 1 Hz, and a bend of 0.02% according to ISO 6721-1.

Description

ブロック共重合体組成物、ブロック共重合体組成物を含有する樹脂組成物、熱収縮性フィルムBlock copolymer composition, resin composition containing block copolymer composition, heat-shrinkable film
 本発明は、ブロック共重合体組成物、ブロック共重合体組成物を含有する樹脂組成物、樹脂組成物から構成される層を含む熱収縮性フィルムに関する。 The present invention relates to a block copolymer composition, a resin composition containing the block copolymer composition, and a heat-shrinkable film including a layer composed of the resin composition.
 ビニル芳香族系化合物と共役ジエン系化合物を重合してなるブロック共重合体を用いた熱収縮性フィルムは、熱収縮性や収縮後の仕上がりに優れ、被包装体の様々な形状および装着方式に対応できることから、PETボトル飲料のラベル等の収縮包装用として広く用いられている。 Heat-shrinkable films using block copolymers made by polymerizing vinyl aromatic compounds and conjugated diene compounds have excellent heat-shrinkability and finish after shrinkage, and are suitable for various shapes and attachment methods of packaged objects. Because of its adaptability, it is widely used for shrink packaging such as labels for PET bottled beverages.
 近年、マイクロプラスチックや海洋ごみ、石油由来の原料の使用による地球温暖化といった、使い捨てプラスチックによる環境問題が課題となっており、収縮包装分野においても環境に対する負荷の低減が求められている。例えば、飲料等に使用されるPETボトルの多くは回収されリサイクルされているが、回収したPETボトルにラベルが混入すると利用可能な範囲が限定されてしまい、リサイクル率が低下する。よって、PETボトルと容易に分離可能なラベルとすることで、PETボトルのリサイクル率が向上し、石油由来の原料の使用量が削減され、環境負荷の低減効果が期待される。 In recent years, environmental problems caused by single-use plastics, such as microplastics, marine debris, and global warming due to the use of petroleum-derived raw materials, have become an issue, and there is a need to reduce the burden on the environment in the shrink packaging field as well. For example, many PET bottles used for beverages and the like are collected and recycled, but if labels are mixed into the collected PET bottles, the usable range is limited and the recycling rate is reduced. Therefore, by creating a label that can be easily separated from the PET bottle, it is expected that the recycling rate of the PET bottle will increase, the amount of petroleum-derived raw materials used will be reduced, and the environmental impact will be reduced.
異なる材料を分離する手法の中で、材料と水の比重差を利用した比重分離法は、特に分離精度が良好な手法として知られている。一般的な熱収縮性フィルムに使用されるビニル芳香族系化合物と共役ジエン系化合物を重合してなるブロック共重合体は、PETボトルと同じく水より比重が高いため、両者を比重分離法で分離することは難しい。その中で、熱収縮性フィルムを発泡フィルムとすることで水よりも比重を小さくし、PETボトルを比重分離法により容易に分離可能とする手法が特許文献1に開示されている。 Among methods for separating different materials, a specific gravity separation method that utilizes the difference in specific gravity between materials and water is known as a method with particularly good separation accuracy. The block copolymer made by polymerizing a vinyl aromatic compound and a conjugated diene compound, which is used in general heat-shrinkable films, has a higher specific gravity than water, just like PET bottles, so the two are separated using a specific gravity separation method. It's difficult to do. Among them, Patent Document 1 discloses a method in which a heat-shrinkable film is made into a foamed film to make the specific gravity smaller than that of water, thereby making it possible to easily separate PET bottles by a specific gravity separation method.
国際公開第2005/005527号International Publication No. 2005/005527
 しかしながら、発泡フィルムはフィルム内部に気泡を有するため、表面平滑性や透明性に劣る場合があり、ラベルとして使用する際の印刷特性や、外観が問題となることがあった。 However, since the foamed film has air bubbles inside the film, it may have poor surface smoothness and transparency, which may cause problems with printing characteristics and appearance when used as a label.
 本発明は、ブロック共重合体組成物を含有する樹脂組成物から熱収縮性フィルムを得た際に、当該熱収縮性フィルムが非発泡であっても、水による比重分離が可能である熱収縮性フィルムを得ることができる、ブロック共重合体組成物を提供することを課題とする。 The present invention provides a heat-shrinkable film that allows specific gravity separation with water when a heat-shrinkable film is obtained from a resin composition containing a block copolymer composition, even if the heat-shrinkable film is non-foamed. An object of the present invention is to provide a block copolymer composition from which a transparent film can be obtained.
 本発明者が鋭意検討を行ったところ、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体を1種以上含有するブロック共重合体組成物であり、前記ブロック共重合体組成物は、前記ビニル芳香族系単量体単位と前記共役ジエン系単量体単位の合計質量を100質量%とした場合に、前記ビニル芳香族系単量体単位を52質量%以上69質量%以下含有し、前記ブロック共重合体組成物は、ISO178に従い測定される曲げ弾性率が1000MPa以上であり、前記ブロック共重合体組成物は、ISO6721-1に従い、昇温速度4℃/min、周波数1Hz、歪み0.02%の条件で、固定式3点曲げモードにより動的粘弾性測定を行った場合の損失正接値(tanδ)が、80℃以上110℃以下の範囲に少なくとも1つのピークを有する、ブロック共重合体組成物とすることによって、ブロック共重合体組成物を含有する樹脂組成物から熱収縮性フィルムを得た際に、当該熱収縮性フィルムが非発泡であっても、水による比重分離が可能である熱収縮性フィルムを得ることができる、ブロック共重合体組成物が得られることを見出し、本発明の完成に到った。 As a result of intensive studies by the present inventors, it was found that a block copolymer composition containing one or more types of block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit, The copolymer composition contains 52% by mass of the vinyl aromatic monomer unit when the total mass of the vinyl aromatic monomer unit and the conjugated diene monomer unit is 100% by mass. The block copolymer composition has a flexural modulus of 1000 MPa or more as measured in accordance with ISO 178, and the block copolymer composition has a heating rate of 4° C. in accordance with ISO 6721-1. /min, frequency of 1 Hz, and strain of 0.02%, the loss tangent value (tan δ) when performing dynamic viscoelasticity measurement in a fixed three-point bending mode is at least in the range of 80°C or more and 110°C or less. By forming a block copolymer composition having one peak, when a heat-shrinkable film is obtained from a resin composition containing the block copolymer composition, the heat-shrinkable film is not foamed. The present inventors have discovered that a block copolymer composition can be obtained that allows a heat-shrinkable film that can be separated by specific gravity with water, even if the composition of the block copolymer composition is different, and the present invention has been completed.
 即ち、本発明は、以下:
[1] ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体を1種以上含有するブロック共重合体組成物であり、
 前記ブロック共重合体組成物は、前記ビニル芳香族系単量体単位と前記共役ジエン系単量体単位の合計質量を100質量%とした場合に、前記ビニル芳香族系単量体単位を52質量%以上69質量%以下含有し、
 前記ブロック共重合体組成物は、ISO178に従い測定される曲げ弾性率が1000MPa以上であり、
 前記ブロック共重合体組成物は、ISO6721-1に従い、昇温速度4℃/min、周波数1Hz、歪み0.02%の条件で、固定式3点曲げモードにより動的粘弾性測定を行った場合の損失正接値(tanδ)が、80℃以上110℃以下の範囲に少なくとも1つのピークを有する、
ブロック共重合体組成物。
[2] 前記ブロック共重合体組成物は、23℃で測定される比重が、0.950以上1.000未満である、[1]に記載のブロック共重合体組成物。
[3] 前記ブロック共重合体組成物に含有される、1種以上のブロック共重合体の少なくとも1種は、下記式(i)~(iv)のいずれか一つで示される構造を有し、
(i)        (S1)-(B)
(ii)    (S1)-(B)-(S2)
(iii)    (S1)-(B)-X
(iv)    (S1)-(B)-(S2)-X
[式中、(S1)および(S2)のそれぞれは、ビニル芳香族系単量体単位の含有率が85質量%以上100質量%以下の重合ブロックであり、(B)は、共役ジエン系単量体単位の含有率が60質量%以上100質量%以下の重合ブロックであり、Xは、カップリング中心であり、nおよびmのそれぞれは、1以上の整数である]
 前記式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、当該ブロック共重合体100質量%中に、(S1)~(S1)の合計質量として40質量%以上70質量%以下含有し、
 前記式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、当該ブロック共重合体100質量%中に、(B)~(B)の合計質量として30質量%以上48質量%以下含有し、
 前記式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、当該ブロック共重合体100質量%中に、(S2)の質量として0質量%以上12質量%以下含有し、
 前記1種以上のブロック共重合体の合計100質量%中に、前記式(i)~(iv)のいずれか一つで示される構造を有するブロック共重合体の合計質量として60質量%以上100質量%以下含有する、
[1]又は[2]に記載のブロック共重合体組成物。
[4] (S1)が、ビニル芳香族系単量体単位から構成されるホモブロックであるか、またはビニル芳香族系単量体単位と共役ジエン系単量体単位から構成されるランダム共重合ブロックであり、
 (B)が、共役ジエン系単量体単位から構成されるホモブロックであり、
 (S2)が、ビニル芳香族系単量体単位から構成されるホモブロックである、
[3]に記載のブロック共重合体組成物。
[5] 前記ビニル芳香族系単量体単位が、スチレン単量体単位であり、前記共役ジエン系単量体単位がブタジエン単量体単位である、[1]~[4]のいずれか一つに記載のブロック共重合体組成物。
[6] [1]~[5]のいずれか一つに記載のブロック共重合体組成物を含有する樹脂組成物であって、
 前記樹脂組成物100質量%中に前記ブロック共重合体組成物を80質量%以上100質量%以下含有する、
樹脂組成物。
[7] [6]に記載の樹脂組成物によって構成された層を含む、熱収縮性フィルム。
[8] [7]に記載の熱収縮性フィルムを用いたラベル。
[9] [7]に記載の熱収縮性フィルムを装着した容器。
[10] [8]に記載のラベルを装着した容器。
に関する。
That is, the present invention provides the following:
[1] A block copolymer composition containing one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit,
The block copolymer composition contains 52% of the vinyl aromatic monomer units when the total mass of the vinyl aromatic monomer units and the conjugated diene monomer units is 100% by mass. Contains not less than 69% by mass and not more than 69% by mass,
The block copolymer composition has a flexural modulus of 1000 MPa or more as measured according to ISO178,
The block copolymer composition was subjected to dynamic viscoelasticity measurement in a fixed three-point bending mode under the conditions of a heating rate of 4°C/min, a frequency of 1Hz, and a strain of 0.02% in accordance with ISO6721-1. The loss tangent value (tan δ) has at least one peak in the range of 80 ° C. or more and 110 ° C. or less,
Block copolymer composition.
[2] The block copolymer composition according to [1], wherein the block copolymer composition has a specific gravity measured at 23° C. of 0.950 or more and less than 1.000.
[3] At least one of the one or more block copolymers contained in the block copolymer composition has a structure represented by any one of the following formulas (i) to (iv). ,
(i) (S1) n - (B) m
(ii) (S1) n - (B) m - (S2)
(iii) (S1) n - (B) m -X
(iv) (S1) n - (B) m - (S2) -X
[In the formula, each of (S1) and (S2) is a polymer block with a vinyl aromatic monomer unit content of 85% by mass or more and 100% by mass or less, and (B) is a conjugated diene monomer unit. A polymer block with a mer unit content of 60% by mass or more and 100% by mass or less, X is a coupling center, and each of n and m is an integer of 1 or more.]
Each of the block copolymers having structures represented by formulas (i) to (iv) above contains 40% by mass as the total mass of (S1) 1 to (S1) n in 100% by mass of the block copolymer. Contains not less than 70% by mass,
Each of the block copolymers having structures represented by formulas (i) to (iv) above contains 30% by mass as the total mass of (B) 1 to (B) m in 100% by mass of the block copolymer. Contains not less than 48% by mass,
Each of the block copolymers having structures represented by formulas (i) to (iv) above contains 0% by mass or more and 12% by mass or less as the mass of (S2) in 100% by mass of the block copolymer. ,
60% by mass or more as the total mass of block copolymers having a structure represented by any one of formulas (i) to (iv) in 100% by mass of the one or more block copolymers. Contains less than % by mass,
The block copolymer composition according to [1] or [2].
[4] (S1) is a homoblock composed of vinyl aromatic monomer units, or a random copolymer composed of vinyl aromatic monomer units and conjugated diene monomer units block,
(B) is a homoblock composed of conjugated diene monomer units,
(S2) is a homoblock composed of vinyl aromatic monomer units,
The block copolymer composition according to [3].
[5] Any one of [1] to [4], wherein the vinyl aromatic monomer unit is a styrene monomer unit, and the conjugated diene monomer unit is a butadiene monomer unit. The block copolymer composition described in .
[6] A resin composition containing the block copolymer composition according to any one of [1] to [5],
The block copolymer composition is contained in 100% by mass of the resin composition from 80% by mass to 100% by mass,
Resin composition.
[7] A heat-shrinkable film comprising a layer made of the resin composition according to [6].
[8] A label using the heat-shrinkable film according to [7].
[9] A container equipped with the heat-shrinkable film according to [7].
[10] A container equipped with the label described in [8].
Regarding.
 本発明のブロック共重合体組成物を含有する樹脂組成物により得られる熱収縮性フィルムは、非発泡であっても、水による比重分離が可能とすることができる。 The heat-shrinkable film obtained from the resin composition containing the block copolymer composition of the present invention can be separated by specific gravity with water even if it is not foamed.
<用語の説明>
 本願明細書において、例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
<Explanation of terms>
In the present specification, for example, the description "A to B" means greater than or equal to A and less than or equal to B.
 以下、本発明の実施形態について、詳細に説明する。本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。以下に示す実施形態中で示した各種特徴事項は互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。
 本明細書において、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体を単に「ブロック共重合体」と称することがある。また、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体ではない他の重合体を単に「他の重合体」と称することがある。
Embodiments of the present invention will be described in detail below. The present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Various features shown in the embodiments described below can be combined with each other. Further, the invention is established independently for each characteristic matter.
In this specification, a block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit may be simply referred to as a "block copolymer." Further, other polymers that are not block copolymers containing vinyl aromatic monomer units and conjugated diene monomer units may be simply referred to as "other polymers."
<ブロック共重合体組成物>
 本発明の一実施形態にかかるブロック共重合体組成物は、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体を1種以上含有する。一実施形態において、ブロック共重合体組成物に含有される重合体は、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体のみである。また、ブロック共重合体組成物は、本発明の効果を阻害しない範囲内で、各種添加剤を含んでもよい。
<Block copolymer composition>
The block copolymer composition according to one embodiment of the present invention contains one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit. In one embodiment, the block copolymer composition contains only a block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit. Furthermore, the block copolymer composition may contain various additives within the range that does not impede the effects of the present invention.
<ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体>
 本発明の一実施形態にかかるビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体は、ビニル芳香族系単量体及び共役ジエン系単量体をブロック共重合させることにより合成されるブロック共重合体である。ブロック共重合体は、ビニル芳香族系単量体単位及び/又は共役ジエン系単量体単位によって構成されるブロック鎖を1種または2種以上有するブロック共重合体である。
<Block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit>
A block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit according to an embodiment of the present invention is obtained by block copolymerizing a vinyl aromatic monomer and a conjugated diene monomer. It is a block copolymer synthesized by The block copolymer is a block copolymer having one or more types of block chains composed of vinyl aromatic monomer units and/or conjugated diene monomer units.
<ビニル芳香族系単量体単位>
 ビニル芳香族系単量体単位は、ブロック共重合体の共重合に用いられるビニル芳香族系単量体に由来するブロック共重合体の構成単位である。ビニル芳香族系単量体としては、例えば、スチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、2、4-ジメチルスチレン、2、5-ジメチルスチレン、及びα-メチルスチレン等のスチレン系単量体、ビニルナフタレン、ビニルアントラセン等が挙げられる。一態様においては、ビニル芳香族系単量体は、好ましくはスチレンである。これらの単量体は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
<Vinyl aromatic monomer unit>
The vinyl aromatic monomer unit is a constituent unit of a block copolymer derived from a vinyl aromatic monomer used in copolymerization of the block copolymer. Examples of vinyl aromatic monomers include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, and α-methylstyrene. Examples include styrenic monomers such as, vinylnaphthalene, vinylanthracene, etc. In one embodiment, the vinyl aromatic monomer is preferably styrene. These monomers may be used alone or in combination of two or more.
<共役ジエン系単量体単位>
 共役ジエン系単量体単位は、ブロック共重合体の共重合に用いられる共役ジエン系単量体に由来するブロック共重合体の構成単位である。共役ジエン系単量体としては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、及び2、3-ジメチル-1,3-ブタジエン等のブタジエン系単量体、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。一態様においては、共役ジエン系単量体は、好ましくは1,3-ブタジエン又はイソプレンである。これらの単量体は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
<Conjugated diene monomer unit>
The conjugated diene monomer unit is a constituent unit of a block copolymer derived from a conjugated diene monomer used in copolymerization of the block copolymer. Examples of the conjugated diene monomer include butadiene monomers such as 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), and 2,3-dimethyl-1,3-butadiene; Examples include 1,3-pentadiene and 1,3-hexadiene. In one embodiment, the conjugated diene monomer is preferably 1,3-butadiene or isoprene. These monomers may be used alone or in combination of two or more.
<ブロック共重合体中のビニル芳香族系単量体単位及び共役ジエン系単量体単位の含有量>
 本発明の一実施形態に係るブロック共重合体中の、ビニル芳香族系単量体単位及び共役ジエン系単量体単位の含有量は、特に限定されないが、ブロック共重合体を100質量%とした場合に、ビニル芳香族系単量体単位が50~80質量%、共役ジエン系単量体単位が20~50質量%質量%であることが好ましく、ビニル芳香族系単量体単位が52~69質量%、共役ジエン系単量体単位が31~48質量%であることがさらに好ましい。
 ブロック共重合体中の、ビニル芳香族系単量体単位の好ましい含有量は、例えば、ブロック共重合体を100質量%とした場合に50、55、60、65、70、75、又は80質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 ブロック共重合体中の、共役ジエン系単量体単位の好ましい含有量は、例えば、ブロック共重合体を100質量%とした場合に20、25、30、35、40、45、又は50質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ブロック共重合体中の共役ジエン系単量体単位の含有量が上記の範囲内であることにより、ブロック共重合体が均一に相溶しやすくなり、ゲルの発生や透明性の低下が起きにくくなる。
 なお、ビニル芳香族系単量体単位を併用する場合には、ビニル芳香族系単量体単位の含有量は併用するビニル芳香族系単量体単位の合計含有量を意味する。また、共役ジエン系単量体単位を併用する場合には、共役ジエン系単量体単位の含有量は併用する共役ジエン系単量体単位の合計含有量を意味する。
<Content of vinyl aromatic monomer units and conjugated diene monomer units in the block copolymer>
The content of vinyl aromatic monomer units and conjugated diene monomer units in the block copolymer according to one embodiment of the present invention is not particularly limited, but the content of the block copolymer is 100% by mass. In this case, it is preferable that the vinyl aromatic monomer unit is 50 to 80% by mass, the conjugated diene monomer unit is 20 to 50% by mass, and the vinyl aromatic monomer unit is 52% by mass. It is more preferable that the amount of conjugated diene monomer units is 31 to 48% by weight.
The preferred content of vinyl aromatic monomer units in the block copolymer is, for example, 50, 55, 60, 65, 70, 75, or 80% by mass when the block copolymer is 100% by mass. %, and may be within a range between any two of the numerical values exemplified here.
The preferable content of the conjugated diene monomer unit in the block copolymer is, for example, 20, 25, 30, 35, 40, 45, or 50% by mass when the block copolymer is 100% by mass. and may be within the range between any two of the numerical values exemplified here. By having the content of the conjugated diene monomer unit in the block copolymer within the above range, the block copolymer is more likely to be uniformly compatible with each other, making it difficult for gel formation and reduction in transparency to occur. Become.
In addition, when a vinyl aromatic monomer unit is used together, the content of the vinyl aromatic monomer unit means the total content of the vinyl aromatic monomer units used together. Furthermore, when conjugated diene monomer units are used together, the content of the conjugated diene monomer units means the total content of the conjugated diene monomer units used together.
<ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体の重量平均分子量>
 ブロック共重合体の重量平均分子量は、好ましくは40,000~500,000であり、より好ましくは60,000~300,000であり、さらに好ましくは70,000~200,000である。40,000以上とすることで、ブロック共重合体組成物の十分な剛性と耐衝撃性が得られ、500,000以下とすることで加工性が良いブロック共重合体組成物となるため好ましい。なお、ブロック共重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフ(以下GPCと略す)を用いて測定することができる。
<Weight average molecular weight of block copolymer containing vinyl aromatic monomer unit and conjugated diene monomer unit>
The weight average molecular weight of the block copolymer is preferably 40,000 to 500,000, more preferably 60,000 to 300,000, and even more preferably 70,000 to 200,000. A value of 40,000 or more provides the block copolymer composition with sufficient rigidity and impact resistance, and a value of 500,000 or less provides a block copolymer composition with good processability, which is preferable. Note that the weight average molecular weight of the block copolymer can be measured using gel permeation chromatography (hereinafter abbreviated as GPC).
<ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体の構造>
 本発明の一実施形態にかかるブロック共重合体組成物に含有される1種以上のビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体のうち、少なくとも1種は、下記式(i)~(iv)のいずれか一つで示される構造を有することが好ましい。
(i)        (S1)-(B)
(ii)    (S1)-(B)-(S2)
(iii)    (S1)-(B)-X
(iv)    (S1)-(B)-(S2)-X
[式中、(S1)および(S2)のそれぞれは、ビニル芳香族系単量体単位の含有率が85質量%以上100質量%以下の重合ブロックであり、(B)は、共役ジエン系単量体単位の含有率が60質量%以上100質量%以下の重合ブロックであり、Xは、カップリング中心であり、nおよびmのそれぞれは、1以上の整数である]
 ここで、前記式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、ブロック共重合体100質量%中に、(S1)~(S1)の合計質量として40質量%以上70質量%以下含有し、前記式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、ブロック共重合体100質量%中に、(B)~(B)の合計質量として30質量%以上48質量%以下含有している。また、前記式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、ブロック共重合体100質量%中に、(S2)を0質量%以上12質量%以下含有している。
 ブロック共重合体組成物に、式(i)~(iv)のいずれか一つで示される構造を有するブロック共重合体を含有させることにより、ブロック共重合体組成物を含有する樹脂組成物から得られる熱収縮性フィルムの剛性を向上させることができる。
<Structure of block copolymer containing vinyl aromatic monomer unit and conjugated diene monomer unit>
At least one block copolymer containing one or more vinyl aromatic monomer units and a conjugated diene monomer unit contained in the block copolymer composition according to an embodiment of the present invention. preferably has a structure represented by any one of the following formulas (i) to (iv).
(i) (S1) n - (B) m
(ii) (S1) n - (B) m - (S2)
(iii) (S1) n - (B) m -X
(iv) (S1) n - (B) m - (S2) -X
[In the formula, each of (S1) and (S2) is a polymer block with a vinyl aromatic monomer unit content of 85% by mass or more and 100% by mass or less, and (B) is a conjugated diene monomer unit. A polymer block with a mer unit content of 60% by mass or more and 100% by mass or less, X is a coupling center, and each of n and m is an integer of 1 or more.]
Here, each of the block copolymers having structures represented by formulas (i) to (iv) above contains 40% by mass as the total mass of (S1) 1 to (S1) n in 100% by mass of the block copolymer. Each of the block copolymers containing at least 70% by mass and having a structure represented by the formulas (i) to (iv) contains (B) 1 to (B) in 100% by mass of the block copolymer. ) Contains 30% by mass or more and 48% by mass or less as the total mass of m . Furthermore, each of the block copolymers having structures represented by formulas (i) to (iv) above contains (S2) in 0% by mass or more and 12% by mass or less in 100% by mass of the block copolymer. There is.
By incorporating a block copolymer having a structure represented by any one of formulas (i) to (iv) into the block copolymer composition, a resin composition containing the block copolymer composition can be obtained. The rigidity of the resulting heat-shrinkable film can be improved.
 重合ブロック(S1)および(S2)のそれぞれは、ビニル芳香族系単量体単位の含有率が85質量%以上100質量%以下、共役ジエン系単量体単位の含有率が0質量%以上15質量%以下の重合ブロックであることが好ましく、より好ましくはビニル芳香族系単量体単位の含有率が90質量%以上100質量%以下、共役ジエン系単量体単位の含有率が0質量%以上10質量%以下の重合ブロックである。 Each of the polymer blocks (S1) and (S2) has a content of vinyl aromatic monomer units of 85% by mass or more and 100% by mass or less, and a content of conjugated diene monomer units of 0% by mass or more and 15% by mass or less. The polymer block preferably has a content of vinyl aromatic monomer units of 90% by mass or more and 100% by mass or less, and a content of conjugated diene monomer units of 0% by mass. The content of the polymer block is 10% by mass or less.
 重合ブロック(B)は、共役ジエン系単量体単位の含有率が60質量%以上100質量%以下、ビニル芳香族系単量体単位の含有率が0質量%以上40質量%以下の重合ブロックであることが好ましく、より好ましくは共役ジエン系単量体単位の含有率が70質量%以上100質量%以下、ビニル芳香族系単量体単位の含有率が0質量%以上30質量%以下の重合ブロックである。 The polymerized block (B) is a polymerized block in which the content of conjugated diene monomer units is 60% by mass or more and 100% by mass or less, and the content of vinyl aromatic monomer units is 0% by mass or more and 40% by mass or less. It is preferable that the content of conjugated diene monomer units is 70% by mass or more and 100% by mass or less, and the content of vinyl aromatic monomer units is 0% by mass or more and 30% by mass or less. It is a polymer block.
 式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、ブロック共重合体100質量%中に、(S1)~(S1)の合計質量として40質量%以上70質量%以下含有し、好ましくは45質量%以上66質量%以下含有し、さらに好ましくは45質量%以上60質量%以下含有する。 Each of the block copolymers having structures represented by formulas (i) to (iv) contains 40% by mass or more as the total mass of (S1) 1 to (S1) n in 100% by mass of the block copolymer. The content is 45% by mass or more and 66% by mass or less, more preferably 45% by mass or more and 60% by mass or less.
 式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、ブロック共重合体100質量%中に、(B)~(B)の合計質量として30質量%以上48質量%以下含有し、好ましくは32質量%以上48質量%以下を含有する。 Each of the block copolymers having structures represented by formulas (i) to (iv) contains 30% by mass or more as the total mass of (B) 1 to (B) m in 100% by mass of the block copolymer. The content is 32% by mass or more and 48% by mass or less, preferably 32% by mass or more and 48% by mass or less.
 式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、ブロック共重合体100質量%中に、(S2)を0質量%以上12質量%以下含有し、好ましくは0質量%以上10質量%以下含有する。 Each of the block copolymers having structures represented by formulas (i) to (iv) contains (S2) in 100% by mass of 0% by mass or more and 12% by mass or less, preferably 0% by mass or less. Contains from 10% by mass to 10% by mass.
 式(iii)、(iv)で示される構造を有するブロック共重合体は、(S1)-(B)の重合ブロック、あるいは(S1)-(B)-(S2)の重合ブロックを重合させたのちにカップリング剤でカップリングすることにより得られる。カップリング剤としては、ジメチルジクロロシラン、四塩化ケイ素や1,2-ビス(メチルジクロロシリル)エタン、メチルトリクロロシラン、テトラクロロシラン等のクロロシラン系化合物;ジメチルジメトキシシラン、テトラメトキシシラン、テトラフェノキシシラン、メチルトリメトキシシラン、テトラフェノキシシラン等のアルコキシシラン系化合物;四塩化スズ;ポリハロゲン化炭化水素;カルボン酸エステル;ポリビニル化合物;エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ化油脂などが挙げられる。また、2種以上のカップリング剤を併用してもよい。特に好ましい多官能性カップリング剤はエポキシ化大豆油である。 The block copolymer having the structure represented by formula (iii) or (iv) is a polymer block of (S1) n - (B) m or a polymer block of (S1) n - (B) m - (S2). It can be obtained by polymerizing and then coupling with a coupling agent. Coupling agents include dimethyldichlorosilane, silicon tetrachloride, chlorosilane compounds such as 1,2-bis(methyldichlorosilyl)ethane, methyltrichlorosilane, and tetrachlorosilane; dimethyldimethoxysilane, tetramethoxysilane, tetraphenoxysilane, Examples include alkoxysilane compounds such as methyltrimethoxysilane and tetraphenoxysilane; tin tetrachloride; polyhalogenated hydrocarbons; carboxylic acid esters; polyvinyl compounds; epoxidized oils and fats such as epoxidized soybean oil and epoxidized linseed oil. . Furthermore, two or more types of coupling agents may be used in combination. A particularly preferred polyfunctional coupling agent is epoxidized soybean oil.
<式(i)~(iv)のいずれか一つで示される構造を有するブロック共重合体の含有割合>
 好ましくは、本発明の一実施形態にかかるブロック共重合体組成物に含有される1種以上のビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体の合計100質量%中に、前記式(i)~(iv)のいずれか一つで示される構造を有するブロック共重合体の合計質量として60質量%以上100質量%以下を含有し、より好ましくは、70質量%以上100質量%以下を含有する。
 ブロック共重合体の合計100質量%中に、前記式(i)~(iv)のいずれか一つで示される構造を有するブロック共重合体の合計質量として60質量%以上100質量%以下含有させることにより、ブロック共重合体組成物を含有する樹脂組成物から得られる熱収縮性フィルムの剛性を向上させることができる。
<Content ratio of block copolymer having a structure represented by any one of formulas (i) to (iv)>
Preferably, a total of 100 block copolymers containing one or more types of vinyl aromatic monomer units and conjugated diene monomer units contained in the block copolymer composition according to one embodiment of the present invention The total mass of the block copolymer having a structure represented by any one of formulas (i) to (iv) in the mass% is 60% by mass or more and 100% by mass or less, more preferably 70% by mass or less. It contains at least 100% by mass.
The total mass of block copolymers having a structure represented by any one of formulas (i) to (iv) is contained in 60% by mass or more and 100% by mass or less in a total of 100% by mass of block copolymers. By this, the rigidity of the heat-shrinkable film obtained from the resin composition containing the block copolymer composition can be improved.
<(S1)、(S2)、(B)の構造>
 重合ブロック(S1)は、好ましくはビニル芳香族系単量体単位から構成されるホモブロックであるか、またはビニル芳香族系単量体単位と共役ジエン系単量体単位から構成されるランダム共重合ブロックであり、重合体ブロック(B)は、好ましくは共役ジエン系単量体単位から構成されるホモブロックであり、重合体ブロック(S2)は、好ましくはビニル芳香族系単量体単位から構成されるホモブロックである。
<Structures of (S1), (S2), and (B)>
The polymer block (S1) is preferably a homoblock composed of vinyl aromatic monomer units, or a random block composed of vinyl aromatic monomer units and conjugated diene monomer units. The polymer block (B) is preferably a homoblock composed of conjugated diene monomer units, and the polymer block (S2) is preferably composed of vinyl aromatic monomer units. It is a homoblock composed of
 (S1)は、ビニル芳香族系単量体単位と共役ジエン系単量体単位とから構成されるランダム共重合ブロックであってもよい。(S1)をランダム共重合ブロックとすることによって、ブロック共重合体組成物のTg、すなわち動的粘弾性測定における損失正接値(tanδ)のピーク温度を制御することができ、熱収縮性フィルムとした際に良好な収縮特性が得られやすくなる。 (S1) may be a random copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit. By using (S1) as a random copolymer block, it is possible to control the Tg of the block copolymer composition, that is, the peak temperature of the loss tangent value (tan δ) in dynamic viscoelasticity measurement, and it is possible to control the peak temperature of the loss tangent value (tan δ) in the dynamic viscoelasticity measurement. Good shrinkage characteristics can be easily obtained when
 ランダム共重合ブロックは、例えば、ビニル芳香族系単量体と共役ジエン系単量体とを一定の流量比で添加して重合することにより得ることができる。 The random copolymer block can be obtained, for example, by adding and polymerizing a vinyl aromatic monomer and a conjugated diene monomer at a constant flow rate ratio.
 本発明の一実施形態においては、(S1)が、ポリスチレンブロックであるか、またはスチレン単量体とブタジエン単量体から構成されるランダム共重合ブロックであり、(B)が、ポリブタジエンブロックであり、(S2)が、ポリスチレンブロックであってもよい。このような構成を採用することにより、ブロック共重合体組成物を含有する樹脂組成物から得られる熱収縮性フィルムの剛性及び収縮特性をより向上させることができる。 In one embodiment of the present invention, (S1) is a polystyrene block or a random copolymer block composed of styrene monomer and butadiene monomer, and (B) is a polybutadiene block. , (S2) may be a polystyrene block. By employing such a configuration, the rigidity and shrinkage characteristics of a heat-shrinkable film obtained from a resin composition containing a block copolymer composition can be further improved.
<ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体の製造方法>
 本発明の一実施形態に係るブロック共重合体の製造方法は、特に制限されないが、例えば、有機溶媒中、有機リチウム化合物を開始剤として上記ビニル芳香族系単量体及び共役ジエン系単量体を重合する方法が挙げられる。
<Method for producing a block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit>
Although the method for producing the block copolymer according to one embodiment of the present invention is not particularly limited, for example, the above-mentioned vinyl aromatic monomer and conjugated diene monomer are used in an organic solvent using an organolithium compound as an initiator. Examples include a method of polymerizing.
 有機溶媒としては、例えば、ブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン、イソオクタン等の脂肪族炭化水素、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、あるいはベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素等が挙げられる。 Examples of organic solvents include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, octane, and isooctane; alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; Examples include aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene.
 有機リチウム化合物は、分子中に1個以上のリチウム原子が結合した化合物である。有機リチウム化合物としては、例えば、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウムのような単官能有機リチウム化合物、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウムのような多官能有機リチウム化合物等が挙げられる。 An organolithium compound is a compound in which one or more lithium atoms are bonded in the molecule. Examples of the organic lithium compound include monofunctional organic lithium compounds such as ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, and tert-butyllithium, hexamethylene dilithium, and butadienyl. Examples include polyfunctional organic lithium compounds such as dilithium and isoprenyl dilithium.
 有機リチウム化合物を開始剤とする所謂リビングアニオン重合では、重合反応に供したビニル芳香族炭化水素及び共役ジエンはほぼ全量が重合体に転化し得る。 In so-called living anionic polymerization using an organolithium compound as an initiator, almost all of the vinyl aromatic hydrocarbon and conjugated diene subjected to the polymerization reaction can be converted into a polymer.
 また、重合状態の制御のためにランダム化剤を添加してもよい。ランダム化剤としては主としてテトラヒドロフラン(THF)が用いられるが、その他のエーテル類やアミン類、チオエーテル類、ホスホルアミド、アルキルベンゼンスルホン酸塩、カリウム又はナトリウムのアルコキシド等も使用できる。適当なエーテル類としてはTHFの他にジメチルエーテル、ジエチルエーテル、ジフェニルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等が挙げられる。アミン類としては第三級アミン、例えば、トリメチルアミン、トリエチルアミン、テトラメチルエチレンジアミンの他、環状アミン等も使用できる。その他にトリフェニルホスフィン、ヘキサメチルホスホルアミド、アルキルベンゼンスルホン酸カリウム又はナトリウム、カリウム又はナトリウムブトキシド等もランダム化剤として用いることができる。 Additionally, a randomizing agent may be added to control the polymerization state. Tetrahydrofuran (THF) is mainly used as the randomizing agent, but other ethers, amines, thioethers, phosphoramides, alkylbenzene sulfonates, potassium or sodium alkoxides, etc. can also be used. Suitable ethers include, in addition to THF, dimethyl ether, diethyl ether, diphenyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, and the like. As the amines, tertiary amines such as trimethylamine, triethylamine, tetramethylethylenediamine, and cyclic amines can also be used. In addition, triphenylphosphine, hexamethylphosphoramide, potassium or sodium alkylbenzenesulfonate, potassium or sodium butoxide, and the like can also be used as randomizing agents.
 ランダム化剤の添加量としては、例えば、全仕込み単量体100質量部に対し、0.001~10質量部添加することができる。添加時期は重合反応の開始前が望ましい。また必要に応じ追加添加することもできる。 As for the amount of the randomizing agent added, for example, 0.001 to 10 parts by mass can be added to 100 parts by mass of the total monomers charged. The timing of addition is preferably before the start of the polymerization reaction. Additionally, it can be added as necessary.
 このようにして得られたブロック共重合体は、水、アルコール、二酸化炭素等の重合停止剤を、活性末端を不活性化させるのに充分な量を添加することにより、不活性化される。得られたブロック共重合体溶液より共重合体を回収する方法としては、(1)メタノール等の貧溶媒により析出させる方法、(2)加熱ロール等により溶媒を蒸発させて析出させる方法(ドラムドライヤー法)、(3)濃縮器により溶液を濃縮した後にベント式押出機で溶媒を除去する方法、(4)溶液を水に分散させ、水蒸気を吹き込んで溶媒を加熱除去して共重合体を回収する方法(スチームストリッピング法)等、任意の方法が採用できる。 The block copolymer thus obtained is inactivated by adding a polymerization terminator such as water, alcohol, carbon dioxide, etc. in an amount sufficient to inactivate the active ends. Methods for recovering the copolymer from the obtained block copolymer solution include (1) a method of precipitating with a poor solvent such as methanol, and (2) a method of precipitating by evaporating the solvent with a heated roll etc. (drum dryer). method), (3) method of concentrating the solution using a concentrator and then removing the solvent using a vented extruder, (4) recovering the copolymer by dispersing the solution in water and removing the solvent by heating by blowing in steam. Any method can be used, such as a steam stripping method.
<添加剤>
 本発明の一実施形態にかかるブロック共重合体組成物は、本発明の効果を阻害しない範囲内において、添加剤を含有してもよい。このような添加剤としては、例えば、各種安定剤、滑剤、加工助剤、ブロッキング防止剤(アンチブロッキング剤)、帯電防止剤、防曇剤、耐光性向上剤、軟化剤、可塑剤、顔料等が挙げられる。各添加剤はブロック共重合体溶液に添加しても良いし、回収したブロック共重合体とブレンドし、溶融混合しても良い。
<Additives>
The block copolymer composition according to one embodiment of the present invention may contain additives within a range that does not impede the effects of the present invention. Examples of such additives include various stabilizers, lubricants, processing aids, antiblocking agents, antistatic agents, antifogging agents, light resistance improvers, softeners, plasticizers, pigments, etc. can be mentioned. Each additive may be added to the block copolymer solution, or may be blended and melt-mixed with the recovered block copolymer.
 安定剤としては、例えば、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートや2,6-ジ-tert-ブチル-4-メチルフェノール等のフェノール系酸化防止剤、トリスノニルフェニルフォスファイト等の燐系酸化防止剤等が挙げられる。ブロッキング防止剤としては、例えば、ハイインパクトポリスチレン、ビニル芳香族炭化水素共重合体の架橋ビーズ等の有機系充填剤、シリカビーズ、石英ビーズ等が挙げられる。その他の添加剤としては、例えば、脂肪酸アマイド、エチレンビスステアロアマイド、ソルビタンモノステアレート、脂肪族アルコールの飽和脂肪酸エステル、ペンタエリスリトール脂肪酸エステル等が挙げられる。
 これらの添加剤は、ブロック共重合体組成物100質量%に対して5質量%以下の範囲で使用することが好ましい。
Examples of the stabilizer include 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenylacrylate, 2-[1-(2-hydroxy-3, 5-di-tert-pentylphenyl)ethyl]-4,6-di-tert-pentylphenyl acrylate, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate and 2,6- Examples include phenolic antioxidants such as di-tert-butyl-4-methylphenol, phosphorus antioxidants such as trisnonylphenyl phosphite, and the like. Examples of the antiblocking agent include high impact polystyrene, organic fillers such as crosslinked beads of vinyl aromatic hydrocarbon copolymer, silica beads, quartz beads, and the like. Examples of other additives include fatty acid amide, ethylene bisstearamide, sorbitan monostearate, saturated fatty acid ester of aliphatic alcohol, and pentaerythritol fatty acid ester.
These additives are preferably used in an amount of 5% by mass or less based on 100% by mass of the block copolymer composition.
<ブロック共重合体組成物中のビニル芳香族系単量体単位>
 本発明の一実施形態にかかるブロック共重合体組成物は、ビニル芳香族系単量体単位と共役ジエン系単量体単位の合計質量を100質量%とした場合に、前記ビニル芳香族系単量体単位を52質量%以上69質量%以下含有し、より好ましくは55質量%以上66質量%以下含有し、さらに好ましくは57質量%以上64質量%以下含有する。ビニル芳香族系単量体単位と前記共役ジエン系単量体単位の合計100質量%中のビニル芳香族系単量体単位の好ましい含有量は、具体的には、52、53、55、60、65、68、又は69質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 なお、ブロック共重合体を2種以上併用する場合には、ビニル芳香族系単量体単位の含有量は併用するブロック共重合体に含有されるビニル芳香族系単量体単位の合計含有量を意味する。
<Vinyl aromatic monomer unit in block copolymer composition>
In the block copolymer composition according to one embodiment of the present invention, the vinyl aromatic monomer unit and the conjugated diene monomer unit have a total mass of 100% by mass. It contains 52% by mass or more and 69% by mass or less of mer units, more preferably 55% by mass or more and 66% by mass or less, and even more preferably 57% by mass or more and 64% by mass or less. Specifically, the preferable content of the vinyl aromatic monomer unit in 100% by mass of the vinyl aromatic monomer unit and the conjugated diene monomer unit is 52, 53, 55, 60 , 65, 68, or 69% by mass, and may be within a range between any two of the numerical values exemplified here.
In addition, when using two or more types of block copolymers together, the content of vinyl aromatic monomer units is the total content of vinyl aromatic monomer units contained in the block copolymers used together. means.
 ビニル芳香族系単量体単位の含有量が52質量%以上であると、ブロック共重合体組成物を含有する樹脂組成物から得られる熱収縮性フィルムの剛性を、熱収縮性フィルムに適したものとすることができ、69質量%以下であれば、ブロック共重合体組成物を含有する樹脂組成物から得られる熱収縮性フィルムの水による比重分離性をより向上させることができる。 When the content of the vinyl aromatic monomer unit is 52% by mass or more, the rigidity of the heat-shrinkable film obtained from the resin composition containing the block copolymer composition is reduced to a level suitable for the heat-shrinkable film. If the amount is 69% by mass or less, the specific gravity separability with water of the heat-shrinkable film obtained from the resin composition containing the block copolymer composition can be further improved.
 ビニル芳香族系単量体単位と前記共役ジエン系単量体単位の合計100質量%中のビニル芳香族系単量体単位の含有量は、ハロゲン付加法により測定することができる。 The content of the vinyl aromatic monomer unit in the total 100% by mass of the vinyl aromatic monomer unit and the conjugated diene monomer unit can be measured by a halogen addition method.
<ブロック共重合体組成物の曲げ弾性率>
 本発明の一実施形態にかかるブロック共重合体組成物は、ISO178に従い測定される曲げ弾性率が1000MPa以上であり、好ましくは1050MPa以上であり、さらに好ましくは1100MPa以上である。ブロック共重合体組成物の好ましい曲げ弾性率は、具体的には、1000、1100、1200、1300、1400、1500、1600、1700、又は1800MPaであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<Flexural modulus of block copolymer composition>
The block copolymer composition according to one embodiment of the present invention has a flexural modulus of elasticity measured according to ISO 178 of 1000 MPa or more, preferably 1050 MPa or more, and more preferably 1100 MPa or more. Specifically, the preferable flexural modulus of the block copolymer composition is 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, or 1800 MPa, and is between any two of the numerical values exemplified here. may be within the range of
 曲げ弾性率が1000MPaであると、ブロック共重合体組成物を含有する樹脂組成物から得られる熱収縮性フィルムの剛性を、熱収縮性フィルムに適したものとすることができる。
 曲げ弾性率は、例えば、ブロック共重合体の構造を調整することにより制御することができ、一例として、式(i)~(iv)のいずれか一つで示される構造を有するブロック共重合体を採用することで曲げ弾性率を大きくすることが挙げられる。また、ブロック共重合体組成物のビニル芳香族系単量体単位と共役ジエン系単量体単位の合計質量100質量%中に含有されるビニル芳香族系単量体単位の量を多くすることによっても曲げ弾性率を大きくすることができる。
When the flexural modulus is 1000 MPa, the rigidity of the heat-shrinkable film obtained from the resin composition containing the block copolymer composition can be made suitable for a heat-shrinkable film.
The flexural modulus can be controlled, for example, by adjusting the structure of the block copolymer; for example, a block copolymer having a structure represented by any one of formulas (i) to (iv) By adopting , the bending modulus of elasticity can be increased. Also, increasing the amount of vinyl aromatic monomer units contained in 100% by mass of the total mass of vinyl aromatic monomer units and conjugated diene monomer units of the block copolymer composition. The flexural modulus can also be increased by
 曲げ弾性率は、ISO178に従って測定される。 Flexural modulus is measured according to ISO178.
<ブロック共重合体組成物の動的粘弾性測定を行った場合の損失正接値(tanδ)のピーク>
 本発明の一実施形態にかかるブロック共重合体組成物は、ISO6721-1に従い、昇温速度4℃/min、周波数1Hz、歪み0.02%の条件で、固定式3点曲げモードにより動的粘弾性測定を行った場合の損失正接値(tanδ)が、80℃以上110℃以下の範囲に少なくとも1つのピークを有し、好ましくは82℃以上108℃以下の範囲に少なくとも1つのピークを有し、さらに好ましくは84℃以上106℃以下の範囲に少なくとも1つのピークを有する。損失正接値(tanδ)は、具体的には、80、85、90、95、100、105、又は110℃に少なくとも1つのピークを有し、ここで例示した数値の何れか2つの間の範囲内に1つ以上のピークを有してもよい。
<Peak of loss tangent value (tan δ) when performing dynamic viscoelasticity measurement of block copolymer composition>
The block copolymer composition according to an embodiment of the present invention is dynamically processed in a fixed three-point bending mode under the conditions of a heating rate of 4° C./min, a frequency of 1 Hz, and a strain of 0.02% in accordance with ISO 6721-1. The loss tangent value (tan δ) when performing viscoelasticity measurement has at least one peak in the range of 80°C or higher and 110°C or lower, preferably at least one peak in the range of 82°C or higher and 108°C or lower. More preferably, it has at least one peak in the range of 84°C or higher and 106°C or lower. Specifically, the loss tangent value (tan δ) has at least one peak at 80, 85, 90, 95, 100, 105, or 110°C, and has a range between any two of the numerical values exemplified here. may have one or more peaks within it.
 損失正接値(tanδ)のピークが80℃以上110℃以下に1つ以上存在すれば、ブロック共重合体組成物を含有する樹脂組成物から得られる熱収縮性フィルムは、熱収縮性フィルムに適した収縮特性を有し得ると考えられる。
 損失正接値(tanδ)のピークが出現する温度は、例えば、ブロック共重合体中にビニル芳香族系単量体単位と共役ジエン系単量体単位とから構成されるランダム共重合ブロックを存在させ、当該ランダム共重合ブロック中のビニル芳香族系単量体単位と共役ジエン系単量体単位の含有比率を調整することにより制御可能である。
If one or more loss tangent value (tan δ) peaks exist between 80°C and above and 110°C and below, the heat-shrinkable film obtained from the resin composition containing the block copolymer composition is suitable as a heat-shrinkable film. It is thought that it may have a shrinkage characteristic.
The temperature at which the peak of the loss tangent value (tan δ) appears is determined, for example, when a random copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit is present in the block copolymer. can be controlled by adjusting the content ratio of vinyl aromatic monomer units and conjugated diene monomer units in the random copolymer block.
 損失正接値(tanδ)は、ISO6721-1に従い、例えば動的粘弾性測定装置RSA-III(TA Insturments社製)を用いて昇温速度4℃/min、周波数1Hz、歪み0.02%の条件で、固定式3点曲げモードにより動的粘弾性測定を行うことで測定される。 The loss tangent value (tan δ) is determined in accordance with ISO6721-1 using, for example, a dynamic viscoelasticity measurement device RSA-III (manufactured by TA Instruments) at a heating rate of 4°C/min, a frequency of 1 Hz, and a strain of 0.02%. It is measured by dynamic viscoelasticity measurement in a fixed three-point bending mode.
<ブロック共重合体組成物の比重>
 本発明の一実施形態にかかるブロック共重合体組成物の、23℃における比重は、0.950以上1.000未満であることが好ましく、より好ましくは0.950以上0.999以下であり、さらに好ましくは0.960以上0.997以下である。ブロック共重合体組成物の比重は、具体的には、0.950、0.960、0.970、0.980、0.990、0.991、0.992、0.993、0.994、0.995、0.996、0.997、0.998、又は0.999であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<Specific gravity of block copolymer composition>
The specific gravity at 23°C of the block copolymer composition according to one embodiment of the present invention is preferably 0.950 or more and less than 1.000, more preferably 0.950 or more and 0.999 or less, More preferably, it is 0.960 or more and 0.997 or less. Specifically, the specific gravity of the block copolymer composition is 0.950, 0.960, 0.970, 0.980, 0.990, 0.991, 0.992, 0.993, 0.994 , 0.995, 0.996, 0.997, 0.998, or 0.999, and may be within a range between any two of the numerical values exemplified here.
 ブロック共重合体組成物の比重が1.000未満であると、ブロック共重合体組成物を含有する樹脂組成物から得られる熱収縮性フィルムの水による比重分離性が優れるようにできる。なお、ブロック共重合体組成物の比重が低いほど熱収縮性フィルムの水による比重分離性がより優れたものとなるが、熱収縮性フィルムの剛性等、他の特性との兼ね合いにより、0.950以上とすることが現実的である。
 ブロック共重合体組成物の比重は、例えば、ブロック共重合体組成物におけるビニル芳香族系単量体単位と共役ジエン系単量体単位の合計質量を100質量%とした場合の、ビニル芳香族系単量体単位の含有量を調整することにより制御可能である。
When the specific gravity of the block copolymer composition is less than 1.000, the heat-shrinkable film obtained from the resin composition containing the block copolymer composition can have excellent specific gravity separability with water. Note that the lower the specific gravity of the block copolymer composition, the better the specific gravity separability of the heat-shrinkable film with water, but depending on the balance with other properties such as the rigidity of the heat-shrinkable film, It is realistic to set it to 950 or more.
The specific gravity of the block copolymer composition is, for example, the vinyl aromatic monomer unit and the conjugated diene monomer unit when the total mass of the vinyl aromatic monomer unit and the conjugated diene monomer unit in the block copolymer composition is 100% by mass. It can be controlled by adjusting the content of monomer units in the system.
 ブロック共重合体組成物の、23℃における比重は、JIS Z8807:2012に記載の手順により測定可能である。 The specific gravity of the block copolymer composition at 23°C can be measured by the procedure described in JIS Z8807:2012.
<ブロック共重合体組成物の製造方法>
 本発明の一実施形態にかかるブロック共重合体組成物は、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体1種以上と、必要に応じて各種添加剤を混合することにより得られる。
 これらのブロック共重合体と添加剤の混合方法としては公知の方法を採用することができる。例えば、ヘンシェルミキサー、リボンブレンダー、スーパーミキサー及びVブレンダー等でドライブレンドしても良く、更に押出機で溶融してペレット化しても良い。一態様においては、溶融混合が好ましい。また、重合体溶液同士を混合した後、溶剤を除去する方法も用いることができる。
<Method for producing block copolymer composition>
The block copolymer composition according to one embodiment of the present invention includes one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit, and various additives as necessary. obtained by mixing.
Any known method can be used for mixing these block copolymers and additives. For example, dry blending may be carried out using a Henschel mixer, ribbon blender, super mixer, V-blender, etc., and furthermore, it may be melted and pelletized using an extruder. In one embodiment, melt mixing is preferred. Alternatively, a method of removing the solvent after mixing the polymer solutions can also be used.
<樹脂組成物>
 本発明の一実施形態にかかる樹脂組成物は、本発明の一実施形態にかかる、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体を1種以上含有するブロック共重合体組成物を含有する。
<Resin composition>
A resin composition according to an embodiment of the present invention contains one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit according to an embodiment of the present invention. Contains a block copolymer composition.
 本発明の一実施形態にかかる樹脂組成物は、樹脂組成物100質量%中にブロック共重合体組成物を80質量%以上100質量%以下含有し、好ましくは85質量%以上100質量%以下含有し、さらに好ましくは90質量%以上100質量%以下含有する。樹脂組成物100質量%中のブロック共重合体組成物の含有量は、具体的には、80、82、85、90、95、98、又は100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。一実施形態においては、樹脂組成物は、実質的にブロック共重合体組成物のみからなるものであってもよい。ブロック共重合体組成物の含有量を80質量%以上とすることで、ブロック共重合体組成物を含有する樹脂組成物から得られる熱収縮性フィルムの水による比重分離性が良好となり、熱収縮性フィルムに適した剛性とすることができる。 The resin composition according to an embodiment of the present invention contains the block copolymer composition in 100% by mass of the resin composition at 80% by mass or more and 100% by mass or less, preferably 85% by mass or more and 100% by mass or less. However, the content is more preferably 90% by mass or more and 100% by mass or less. Specifically, the content of the block copolymer composition in 100% by mass of the resin composition is 80, 82, 85, 90, 95, 98, or 100% by mass, and any of the values exemplified here or within a range between the two. In one embodiment, the resin composition may consist essentially only of the block copolymer composition. By setting the content of the block copolymer composition to 80% by mass or more, the heat-shrinkable film obtained from the resin composition containing the block copolymer composition has good specific gravity separation properties with water, and heat shrinkage is improved. The rigidity can be made suitable for a flexible film.
<樹脂組成物に含有される他の重合体>
 本発明の一実施形態にかかる樹脂組成物は、本発明の効果を阻害しない範囲内において、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体ではない他の重合体を含み得る。このような他の重合体とは、すなわち、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体を含まない重合体である。具体的には、例えば、汎用ポリスチレンのようなスチレン重合体、ハイインパクトポリスチレン、スチレン-(メタ)アクリル酸エステル系共重合樹脂などが挙げられる。
<Other polymers contained in the resin composition>
The resin composition according to one embodiment of the present invention may contain other materials other than a block copolymer containing a vinyl aromatic monomer unit and a conjugated diene monomer unit, within a range that does not impair the effects of the present invention. May include polymers. Such other polymers are, in other words, polymers that do not contain block copolymers containing vinyl aromatic monomer units and conjugated diene monomer units. Specific examples include styrene polymers such as general-purpose polystyrene, high-impact polystyrene, and styrene-(meth)acrylate copolymer resins.
<樹脂組成物の製造方法>
 本発明の一実施形態にかかる樹脂組成物は、本発明の一実施形態にかかるブロック共重合体組成物と、必要に応じて添加剤及び上述の他の重合体を混合することにより得られる。樹脂組成物は、ブロック共重合体組成物を経ずに、ブロック共重合体1種以上と、必要に応じて添加剤と他の重合体を混合して得ても良い。
 これらのブロック共重合体組成物、添加剤、他の重合体の混合方法、あるいはブロック共重合体、添加剤、他の重合体としては公知の方法を採用することができる。例えば、ヘンシェルミキサー、リボンブレンダー、スーパーミキサー及びVブレンダー等でドライブレンドしても良く、更に押出機で溶融してペレット化しても良い。一態様においては、溶融混合が好ましい。また、重合体溶液同士を混合した後、溶剤を除去する方法も用いることができる。
<Method for manufacturing resin composition>
The resin composition according to one embodiment of the present invention can be obtained by mixing the block copolymer composition according to one embodiment of the present invention, and optionally additives and other polymers described above. The resin composition may be obtained by mixing one or more block copolymers, and optionally additives and other polymers, without passing through the block copolymer composition.
A method for mixing these block copolymer compositions, additives, and other polymers, or a known method for mixing the block copolymer composition, additives, and other polymers can be adopted. For example, dry blending may be carried out using a Henschel mixer, ribbon blender, super mixer, V-blender, etc., and furthermore, it may be melted and pelletized using an extruder. In one embodiment, melt mixing is preferred. Alternatively, a method of removing the solvent after mixing the polymer solutions can also be used.
<熱収縮性フィルム>
 本発明の一実施形態に係る熱収縮性フィルムは、ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体を1種以上含有するブロック共重合体組成物を含有する樹脂組成物から構成された層を含む熱収縮性フィルムである。ここで、当該熱収縮性フィルムは、熱収縮性フィルムのMD方向及びTD方向の少なくとも一方向に延伸されている。
 なお、本発明における熱収縮性フィルムのMD方向とは、当該熱収縮性フィルムを生産するラインにおけるフィルムの送り出し方向(Machine Direction)を意味し、熱収縮性フィルムのTD方向とは、MD方向に直交する方向(Transverse Direction)を意味する。また、熱収縮性フィルムが延伸されるMD方向及びTD方向のうち、より大きく延伸される方向を主延伸方向と称することもある。
<Heat shrinkable film>
A heat-shrinkable film according to an embodiment of the present invention contains a block copolymer composition containing one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit. This is a heat-shrinkable film including a layer made of a resin composition. Here, the heat-shrinkable film is stretched in at least one of the MD direction and the TD direction of the heat-shrinkable film.
In addition, the MD direction of the heat-shrinkable film in the present invention means the feeding direction (Machine Direction) of the film in the line that produces the heat-shrinkable film, and the TD direction of the heat-shrinkable film means the direction in the MD direction of the heat-shrinkable film. Means orthogonal direction (Transverse Direction). Further, of the MD direction and the TD direction in which the heat-shrinkable film is stretched, the direction in which the heat-shrinkable film is stretched to a greater extent may be referred to as the main stretching direction.
<熱収縮性フィルムの構造>
 熱収縮性フィルムは、樹脂組成物を含む層単独で用いた単層フィルムであっても良く、その少なくとも一方の面に他の樹脂層を積層させた熱収縮性多層フィルムであっても良い。熱収縮性多層フィルムを得るには、延伸後の熱収縮性フィルムに他の樹脂層を積層させてもよく、前記樹脂組成物を製膜して得た未延伸フィルムに他の樹脂層を積層させて延伸してもよく、前記樹脂組成物と他の樹脂を多層押出成形により積層させた多層フィルムを延伸してもよい。他の樹脂層に用いる樹脂としては、スチレン系樹脂が好ましい。
 一実施形態において、熱収縮性フィルムは、非発泡であることことが好ましい。非発泡のフィルムとするには、全ての層において、発泡させるために一般的に用いられている方法、すなわち、樹脂と化学発泡剤を溶融混練する際に化学発泡剤が熱分解して発生するガスで樹脂を発泡させる化学発泡法、及び押出機中で溶融した樹脂にガスを注入して発泡させる物理発泡法等を用いずに成形すればよい。非発泡であることは、例えば熱収縮性フィルムの断面をレーザー顕微鏡により観察した場合に、断面積に占める気泡の面積割合が1%以下であれば非発泡であると見做すことができる。熱収縮性フィルムが非発泡であることにより、熱収縮性フィルムの透明性や表面平滑性が良好となる。
<Structure of heat-shrinkable film>
The heat-shrinkable film may be a single-layer film in which only a layer containing the resin composition is used, or may be a heat-shrinkable multilayer film in which another resin layer is laminated on at least one surface thereof. To obtain a heat-shrinkable multilayer film, another resin layer may be laminated on the stretched heat-shrinkable film, or another resin layer may be laminated on an unstretched film obtained by forming the resin composition into a film. Alternatively, a multilayer film obtained by laminating the resin composition and another resin by multilayer extrusion molding may be drawn. As the resin used for the other resin layer, styrene resin is preferable.
In one embodiment, the heat-shrinkable film is preferably non-foamed. To create a non-foamed film, all layers must be formed using the commonly used method for foaming, i.e., when the resin and chemical foaming agent are melted and kneaded, the chemical foaming agent is thermally decomposed and generated. The molding may be performed without using a chemical foaming method in which the resin is foamed with gas, a physical foaming method in which gas is injected into the melted resin in an extruder, and the resin is foamed. Non-foaming can be considered as non-foaming if, for example, when a cross section of a heat-shrinkable film is observed using a laser microscope, the area ratio of air bubbles to the cross-sectional area is 1% or less. Since the heat-shrinkable film is non-foamed, the heat-shrinkable film has good transparency and surface smoothness.
<熱収縮性フィルムの製造方法>
 本発明の一実施形態に係る熱収縮性フィルムは、本発明の一実施形態に係る樹脂組成物から構成された層を含むフィルムである。熱収縮性フィルムは、本発明の一実施形態に係る樹脂組成物から構成された層を含むシートを延伸して得られる。
 シートの製造方法は、特に限定されないが、例えば、樹脂組成物を用いて、押出することにより形成する方法を用いることができる。また、押出の際に、樹脂組成物と共に押出して、樹脂組成物から構成された層を含む、複数の層から構成されるシートとしてもよい。
 なお本明細書では、厚みの違いにおいて「シート」と「フィルム」の語を区別して用いるものでないが、延伸等の操作により厚みが変化する(薄くなる)場合、薄くなる前のものを「シート」と称することがある。
<Method for manufacturing heat-shrinkable film>
A heat-shrinkable film according to an embodiment of the present invention is a film including a layer made of a resin composition according to an embodiment of the present invention. The heat-shrinkable film is obtained by stretching a sheet including a layer made of a resin composition according to an embodiment of the present invention.
The method of manufacturing the sheet is not particularly limited, but for example, a method of forming the sheet by extrusion using a resin composition can be used. Further, during extrusion, the sheet may be extruded together with a resin composition to form a sheet composed of a plurality of layers including a layer composed of the resin composition.
Note that in this specification, the terms "sheet" and "film" are not used to distinguish between different thicknesses, but when the thickness changes (thinners) due to an operation such as stretching, the term "sheet" refers to the film before it becomes thinner. ” is sometimes called.
 延伸は、一軸、二軸又は多軸に延伸されてもよい。一軸延伸の例としては、押出されたシートをテンターで押出方向と直交する方向(TD方向)に延伸する方法、押出されたチューブ状フィルムを円周方向(TD方向)に延伸する方法、押出されたシートをロールで押出し方向(MD方向)に延伸する方法等が挙げられる。二軸延伸の例としては、押出されたシートをロールで押出し方向(MD方向)に延伸した後、テンター等で押出し方向と直交する方向(TD方向)に延伸する方法、押出されたチューブ状フィルムを押出し方向(MD方向)及び円周方向(TD方向)に同時又は別々に延伸する方法等が挙げられる。 The stretching may be uniaxially, biaxially, or multiaxially. Examples of uniaxial stretching include stretching an extruded sheet in a direction perpendicular to the extrusion direction (TD direction) using a tenter, stretching an extruded tubular film in the circumferential direction (TD direction), and stretching an extruded sheet in a direction perpendicular to the extrusion direction (TD direction). Examples include a method in which a sheet is stretched in the extrusion direction (MD direction) using rolls. Examples of biaxial stretching include a method in which an extruded sheet is stretched in the extrusion direction (MD direction) with a roll, and then stretched in a direction perpendicular to the extrusion direction (TD direction) with a tenter, etc., and an extruded tubular film Examples include a method of simultaneously or separately stretching in the extrusion direction (MD direction) and the circumferential direction (TD direction).
 延伸温度は、例えば、60~120℃が好ましい。60℃以上とすることで、延伸時のフィルムが破断しにくくなり、120℃以下とすることで良好な収縮特性を有するフィルムが得られるため、好ましい。特に好ましいのは、フィルムを構成する組成物のガラス転移温度(Tg)に対して、Tg+5℃~Tg+20℃の範囲である。多層フィルムの場合は、Tgが最も低い層の重合体組成物のTgに対して、Tg+5℃~Tg+20℃の範囲が特に好ましい。なお、ガラス転移温度(Tg)は、例えば、損失弾性率のピークの温度から求めることができる。 The stretching temperature is preferably, for example, 60 to 120°C. A temperature of 60° C. or higher makes it difficult for the film to break during stretching, and a temperature of 120° C. or lower provides a film with good shrinkage characteristics, which is preferable. Particularly preferred is a range of Tg+5°C to Tg+20°C with respect to the glass transition temperature (Tg) of the composition constituting the film. In the case of multilayer films, a range of Tg+5°C to Tg+20°C is particularly preferred relative to the Tg of the polymer composition of the layer with the lowest Tg. Note that the glass transition temperature (Tg) can be determined, for example, from the temperature at the peak of the loss modulus.
 延伸する方向のうち、より大きく延伸される主延伸方向における延伸倍率は、特に制限はないが、1.5~8.0倍が好ましい。主延伸方向における延伸倍率を1.5倍以上とすることで、良好な収縮特性を有するフィルムが得られ、8.0倍以下とすることで容易に延伸フィルムを製造することができるため、好ましい。 Of the stretching directions, the stretching ratio in the main stretching direction, which is stretched more greatly, is not particularly limited, but is preferably 1.5 to 8.0 times. A stretching ratio of 1.5 times or more in the main stretching direction allows a film with good shrinkage characteristics to be obtained, and a stretching ratio of 8.0 times or less makes it possible to easily produce a stretched film, which is preferable. .
<熱収縮性フィルムの水による比重分離性>
 本発明の一実施形態にかかる熱収縮性フィルムは、水による比重分離性に優れている。優れた水による比重分離性は、例えば、熱収縮性フィルムの比重を1.000未満とすることにより達成できる。
 本発明の一実施形態にかかる熱収縮性フィルムの23℃における比重は、例えば、0.950以上1.000未満であることが好ましい。熱収縮性フィルムの比重が1.000未満であれば、水に浮くため、比重が1.000以上のものと、水による比重分離が可能になるため好ましい。熱収縮性フィルムの比重は、熱収縮性フィルムに本発明の一実施形態に係る樹脂組成物から構成される層を含有させることや、他の層の比重を調製することにより制御できる。
 比重は、例えば、JIS Z8807:2012に従って23℃において測定されるものである。
<Specific gravity separability of heat-shrinkable film with water>
The heat-shrinkable film according to one embodiment of the present invention has excellent specific gravity separation properties with water. Excellent specific gravity separation with water can be achieved, for example, by setting the specific gravity of the heat-shrinkable film to less than 1.000.
The heat-shrinkable film according to an embodiment of the present invention preferably has a specific gravity at 23° C. of, for example, 0.950 or more and less than 1.000. If the specific gravity of the heat-shrinkable film is less than 1.000, it is preferable because it floats on water and can be separated by water from those having a specific gravity of 1.000 or more. The specific gravity of the heat-shrinkable film can be controlled by making the heat-shrinkable film contain a layer made of the resin composition according to one embodiment of the present invention, or by adjusting the specific gravity of other layers.
Specific gravity is measured at 23° C., for example, according to JIS Z8807:2012.
<熱収縮性フィルムの収縮特性>
 本発明の一実施形態にかかる熱収縮性フィルムは、熱収縮性フィルムに適した収縮特性を有し得る。ここでいう収縮特性とは、例えば、熱収縮率や自然収縮率のバランスを意味する。熱収縮率と自然収縮率は一般にトレードオフの関係にあるが、用途に応じてこれらのバランスをとることが望ましい。
<Shrinkage characteristics of heat-shrinkable film>
A heat-shrinkable film according to an embodiment of the present invention may have shrinkage characteristics suitable for a heat-shrinkable film. The shrinkage characteristic here means, for example, the balance between thermal shrinkage rate and natural shrinkage rate. Thermal shrinkage rate and natural shrinkage rate are generally in a trade-off relationship, but it is desirable to strike a balance between them depending on the application.
<熱収縮性フィルムの熱収縮率>
 本発明の一実施形態にかかる熱収縮性フィルムは、熱収縮性フィルムに適した熱収縮率を有し得る。具体的には、例えば、少なくとも一方向の熱収縮率が100℃、10秒間で60%以上であり、80℃、10秒間で40%以上であることが好ましい。このような熱収縮率であれば、収縮時に高温でなくても良いため、被覆される物品への影響を抑えることができる。以下、熱収縮性フィルムの主延伸方向(より大きく延伸されている方向)において当該熱収縮率の規定が満たされる場合について説明するが、これに限定されない。
 本発明の一実施形態にかかる熱収縮性フィルムの熱収縮率は、熱収縮性フィルムの主延伸方向(より大きく延伸されている方向)がTD方向である場合、熱収縮性フィルムのTD方向で測定された値を意味する。他方、熱収縮性フィルムの主延伸方向がMD方向である場合、熱収縮性フィルムのMD方向で測定された値を意味する。
 熱収縮率は、例えば、熱収縮性フィルムを温水中に一定時間浸漬し、収縮前後の長さの差より算出されるものである。
<Heat shrinkage rate of heat-shrinkable film>
The heat-shrinkable film according to one embodiment of the present invention may have a heat-shrinkage rate suitable for a heat-shrinkable film. Specifically, for example, the heat shrinkage rate in at least one direction is preferably 60% or more at 100° C. for 10 seconds, and preferably 40% or more at 80° C. for 10 seconds. With such a heat shrinkage rate, the temperature does not need to be high at the time of shrinkage, so that the effect on the article to be coated can be suppressed. Hereinafter, a case will be described in which the heat shrinkage rate specification is satisfied in the main stretching direction (the direction in which the film is stretched more greatly) of the heat-shrinkable film, but the invention is not limited thereto.
The heat shrinkage rate of the heat-shrinkable film according to an embodiment of the present invention is determined in the TD direction of the heat-shrinkable film when the main stretching direction (the direction in which it is stretched more greatly) of the heat-shrinkable film is the TD direction. means a measured value. On the other hand, when the main stretching direction of the heat-shrinkable film is the MD direction, it means the value measured in the MD direction of the heat-shrinkable film.
The heat shrinkage rate is calculated, for example, by immersing a heat-shrinkable film in hot water for a certain period of time and calculating the difference in length before and after shrinkage.
<熱収縮性フィルムの自然収縮率>
 本発明の一実施形態にかかる熱収縮性フィルムは、熱収縮性フィルムに適した自然収縮率を有し得る。具体的には、例えば、40℃、7日間で4%以下であることが好ましい。自然収縮率が4%以下であれば、熱収縮性フィルムの保管時に熱収縮性フィルムが収縮することが低減できるため、保管性に優れる。
 自然収縮率は、例えば、熱収縮性フィルムを40℃の雰囲気下に7日間静置し、収縮前後の長さの差より算出されるものである。
<Natural shrinkage rate of heat-shrinkable film>
The heat-shrinkable film according to one embodiment of the present invention may have a natural shrinkage rate suitable for a heat-shrinkable film. Specifically, for example, it is preferably 4% or less at 40° C. for 7 days. If the natural shrinkage rate is 4% or less, shrinkage of the heat-shrinkable film during storage can be reduced, resulting in excellent storage properties.
The natural shrinkage rate is calculated, for example, by leaving the heat-shrinkable film in an atmosphere at 40° C. for 7 days and calculating the difference in length before and after shrinkage.
<熱収縮性フィルムの剛性>
 本発明の一実施形態にかかる熱収縮性フィルムは、熱収縮性フィルムに適した剛性を有し得る。このため、熱収縮性フィルムは適度なコシ強度を有しており、熱収縮性フィルムを容器の装着する際の作業や加工を問題なく行える。
 剛性は、例えば、熱収縮性フィルムのMD方向のヤング率を指標とすることができる。具体的には、例えば、23℃におけるMD方向のヤング率が500MPa以上であると、熱収縮性フィルムに適した剛性を有しているといえる。ヤング率は、23℃において、湿度50±5%の環境下で、引張速度200mm/minで測定できる。
<Rigidity of heat-shrinkable film>
The heat-shrinkable film according to one embodiment of the present invention may have a rigidity suitable for a heat-shrinkable film. Therefore, the heat-shrinkable film has a suitable stiffness, and the work and processing when attaching the heat-shrinkable film to a container can be performed without any problem.
For example, the stiffness can be expressed by the Young's modulus of the heat-shrinkable film in the MD direction. Specifically, for example, if the Young's modulus in the MD direction at 23° C. is 500 MPa or more, it can be said that the film has a rigidity suitable for a heat-shrinkable film. Young's modulus can be measured at a tensile rate of 200 mm/min at 23° C. in an environment with a humidity of 50±5%.
 本発明の一実施形態に係る熱収縮性フィルムの厚さは20~100μmが好適であり、さらに好ましくは50~95μmである。 The thickness of the heat-shrinkable film according to one embodiment of the present invention is preferably 20 to 100 μm, more preferably 50 to 95 μm.
 本発明の一実施形態に係る熱収縮性フィルムは、印刷を施さないフィルムとして、或いは商品名等を印刷したラベルとして、さらにはキャップシールその他包装材料等として、熱収縮性を活かして容器に装着することができる。例えば、ぶりき製、TFS製、アルミニウム製等の金属缶容器(3ピース缶及び2ピース缶、又は蓋付のボトル缶等)、ガラス製の容器又はポリエチレンテレフタレート(PETと略称される)製、ポリエチレン製等の樹脂製容器等に装着するラベルとして用いることができる。 The heat-shrinkable film according to an embodiment of the present invention can be attached to a container by taking advantage of its heat-shrinkability, as a non-printed film, as a label with a product name printed thereon, or as a cap seal or other packaging material. can do. For example, metal can containers made of tin, TFS, aluminum, etc. (3-piece cans, 2-piece cans, bottle cans with lids, etc.), glass containers or polyethylene terephthalate (abbreviated as PET), It can be used as a label attached to containers made of resin such as polyethylene.
 以下に本発明を実施例及び比較例によって詳しく説明するが、本発明はこれらに限定されるものではない。 The present invention will be explained in detail below using Examples and Comparative Examples, but the present invention is not limited thereto.
<ブロック共重合体の調製>
<ブロック共重合体の調製:(P-1)>
(1)反応容器中にシクロヘキサン467kg、テトラヒドロフラン(THF)70gを入れた。
(2)この中に重合開始剤溶液としてn-ブチルリチウムの10質量%シクロヘキサン溶液2100mLを加え、30℃に保った。
(3)スチレン8kgを加え、スチレンをアニオン重合させた。内温は32℃まで上昇した。
(4)スチレンが完全に消費された後、反応系の内温を80℃に上げ、内温を保持したまま114kgのスチレンおよび9kgの1,3-ブタジエンを、それぞれ148.2kg/hおよび11.7kg/hの一定添加速度で同時に添加した。
(5)スチレンと1,3-ブタジエンが完全に消費された後、反応系の内温を50℃に下げ、61kgの1,3-ブタジエンを添加した。内温は97℃まで上昇した。
(6)1,3-ブタジエンが完全に消費された後、反応系の内温を75℃に下げ、スチレン8kgを加え、スチレンをアニオン重合させた。内温は77℃まで上昇した。
(7)スチレンが完全に消費された後、最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック、スチレンと1,3-ブタジエンのランダムブロック、ポリ1,3-ブタジエンブロック、ポリスチレンブロックを持つブロック共重合体を含む重合液を得た。
(8)この重合液を予備濃縮し、さらに減圧ベント付き2軸押出機で脱揮押出しして、目的のペレット状ブロック共重合体(P-1)を得た。
<Preparation of block copolymer>
<Preparation of block copolymer: (P-1)>
(1) 467 kg of cyclohexane and 70 g of tetrahydrofuran (THF) were placed in a reaction vessel.
(2) 2100 mL of a 10% by mass cyclohexane solution of n-butyllithium was added as a polymerization initiator solution to this, and the temperature was maintained at 30°C.
(3) 8 kg of styrene was added to cause anionic polymerization of styrene. The internal temperature rose to 32°C.
(4) After styrene is completely consumed, the internal temperature of the reaction system is raised to 80°C, and while maintaining the internal temperature, 114 kg of styrene and 9 kg of 1,3-butadiene are added at 148.2 kg/h and 11 kg/h, respectively. They were added simultaneously at a constant addition rate of .7 kg/h.
(5) After styrene and 1,3-butadiene were completely consumed, the internal temperature of the reaction system was lowered to 50°C, and 61 kg of 1,3-butadiene was added. The internal temperature rose to 97°C.
(6) After 1,3-butadiene was completely consumed, the internal temperature of the reaction system was lowered to 75°C, 8 kg of styrene was added, and styrene was anionically polymerized. The internal temperature rose to 77°C.
(7) After styrene is completely consumed, all the polymerization active terminals are finally deactivated with water to form a polystyrene block, a random block of styrene and 1,3-butadiene, a poly1,3-butadiene block, and a polystyrene block. A polymerization solution containing a block copolymer having blocks was obtained.
(8) This polymerization solution was preconcentrated and further extruded to devolatilize using a twin-screw extruder equipped with a vacuum vent to obtain the desired pelletized block copolymer (P-1).
<ブロック共重合体の調製:(P-2)>
(1)反応容器中にシクロヘキサン467kg、テトラヒドロフラン(THF)70gを入れた。
(2)この中に重合開始剤溶液としてn-ブチルリチウムの10質量%シクロヘキサン溶液2100mLを加え、30℃に保った。
(3)スチレン50kgを加え、スチレンをアニオン重合させた。内温は56℃まで上昇した。
(4)スチレンが完全に消費された後、反応系の内温を80℃に上げ、内温を保持したまま45kgのスチレンおよび5kgの1,3-ブタジエンを、それぞれ135.0kg/hおよび15.0kg/hの一定添加速度で同時に添加した。
(5)スチレンと1,3-ブタジエンが完全に消費された後、反応系の内温を50℃に下げ、66kgの1,3-ブタジエンを添加した。内温は101℃まで上昇した。
(6)1,3-ブタジエンが完全に消費された後、反応系の内温を70℃に下げ、スチレン34kgを加え、スチレンをアニオン重合させた。内温は84℃まで上昇した。
(7)スチレンが完全に消費された後、最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック、スチレンと1,3-ブタジエンのランダムブロック、ポリ1,3-ブタジエンブロック、ポリスチレンブロックを持つブロック共重合体を含む重合液を得た。
(8)この重合液を予備濃縮し、さらに減圧ベント付き2軸押出機で脱揮押出しして、目的のペレット状ブロック共重合体(P-2)を得た。
<Preparation of block copolymer: (P-2)>
(1) 467 kg of cyclohexane and 70 g of tetrahydrofuran (THF) were placed in a reaction vessel.
(2) 2100 mL of a 10% by mass cyclohexane solution of n-butyllithium was added as a polymerization initiator solution to this, and the temperature was maintained at 30°C.
(3) 50 kg of styrene was added to cause anionic polymerization of styrene. The internal temperature rose to 56°C.
(4) After styrene is completely consumed, the internal temperature of the reaction system is raised to 80°C, and while maintaining the internal temperature, 45 kg of styrene and 5 kg of 1,3-butadiene are added at 135.0 kg/h and 15 kg/h, respectively. They were added simultaneously at a constant addition rate of .0 kg/h.
(5) After styrene and 1,3-butadiene were completely consumed, the internal temperature of the reaction system was lowered to 50°C, and 66 kg of 1,3-butadiene was added. The internal temperature rose to 101°C.
(6) After 1,3-butadiene was completely consumed, the internal temperature of the reaction system was lowered to 70°C, 34 kg of styrene was added, and styrene was anionically polymerized. The internal temperature rose to 84°C.
(7) After styrene is completely consumed, all the polymerization active terminals are finally deactivated with water to form a polystyrene block, a random block of styrene and 1,3-butadiene, a poly1,3-butadiene block, and a polystyrene block. A polymerization solution containing a block copolymer having blocks was obtained.
(8) This polymerization solution was preliminarily concentrated and then devolatilized and extruded using a twin-screw extruder equipped with a vacuum vent to obtain the desired pelletized block copolymer (P-2).
<ブロック共重合体の調製:(P-3)>
(1)反応容器中にシクロヘキサン467kg、テトラヒドロフラン(THF)70gを入れた。
(2)この中に重合開始剤溶液としてn-ブチルリチウムの10質量%シクロヘキサン溶液3300mLを加え、30℃に保った。
(3)スチレン126kgを加え、スチレンをアニオン重合させた。内温は89℃まで上昇した。
(4)スチレンが完全に消費された後、反応系の内温を45℃に下げ、66kgの1,3-ブタジエンを添加した。内温は96℃まで上昇した。
(5)1,3-ブタジエンが完全に消費された後、反応系の内温を75℃に下げ、6kgのスチレンを添加した。内温は77℃まで上昇した。
(6)スチレンが完全に消費された後、反応系の内温を75℃に下げ、カップリング剤としてのエポキシ化大豆油を377g添加し、75℃で10分間反応させた。
(7)最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック、ポリ1,3-ブタジエンブロック、ポリスチレンブロックを持つブロック鎖がカップリングされたブロック共重合体を含む重合液を得た。
(8)この重合液を予備濃縮し、さらに減圧ベント付き2軸押出機で脱揮押出しして、目的のペレット状ブロック共重合体(P-3)を得た。
<Preparation of block copolymer: (P-3)>
(1) 467 kg of cyclohexane and 70 g of tetrahydrofuran (THF) were placed in a reaction vessel.
(2) 3300 mL of a 10% by mass cyclohexane solution of n-butyllithium was added as a polymerization initiator solution to this, and the temperature was maintained at 30°C.
(3) 126 kg of styrene was added to cause anionic polymerization of styrene. The internal temperature rose to 89°C.
(4) After styrene was completely consumed, the internal temperature of the reaction system was lowered to 45°C, and 66 kg of 1,3-butadiene was added. The internal temperature rose to 96°C.
(5) After 1,3-butadiene was completely consumed, the internal temperature of the reaction system was lowered to 75°C, and 6 kg of styrene was added. The internal temperature rose to 77°C.
(6) After styrene was completely consumed, the internal temperature of the reaction system was lowered to 75°C, 377g of epoxidized soybean oil as a coupling agent was added, and the reaction was carried out at 75°C for 10 minutes.
(7) Finally, all polymerization active terminals are deactivated with water to obtain a polymerization solution containing a polystyrene block, a poly1,3-butadiene block, and a block copolymer in which block chains having polystyrene blocks are coupled. Ta.
(8) This polymerization solution was preliminarily concentrated and further devolatilized and extruded using a twin-screw extruder equipped with a vacuum vent to obtain the desired pelletized block copolymer (P-3).
<ブロック共重合体の調製:(P-4)>
(1)反応容器中にシクロヘキサン467kg、テトラヒドロフラン(THF)70gを入れた。
(2)この中に重合開始剤溶液としてn-ブチルリチウムの10質量%シクロヘキサン溶液2100mLを加え、30℃に保った。
(3)スチレン6kgを加え、スチレンをアニオン重合させた。内温は32℃まで上昇した。
(4)スチレンが完全に消費された後、反応系の内温を80℃に上げ、内温を保持したまま96kgのスチレンおよび16kgの1,3-ブタジエンを、それぞれ144.6kg/hおよび20.6kg/hの一定添加速度で同時に添加した。
(5)スチレンと1,3-ブタジエンが完全に消費された後、反応系の内温を80℃に保持したまま、14kgのスチレンおよび64kgの1,3-ブタジエンを、それぞれ14.0kg/hおよび64.0kg/hの一定添加速度で同時に添加した。
(6)スチレンと1,3-ブタジエンが完全に消費された後、反応系の内温を75℃に下げ、スチレン6kgを加え、スチレンをアニオン重合させた。内温は77℃まで上昇した。
(7)スチレンが完全に消費された後、最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック、スチレンと1,3-ブタジエンのランダムブロック、スチレンと1,3-ブタジエンのランダムブロック、ポリスチレンブロックを持つブロック共重合体を含む重合液を得た。
(8)この重合液を予備濃縮し、さらに減圧ベント付き2軸押出機で脱揮押出しして、目的のペレット状ブロック共重合体(P-4)を得た。
<Preparation of block copolymer: (P-4)>
(1) 467 kg of cyclohexane and 70 g of tetrahydrofuran (THF) were placed in a reaction vessel.
(2) 2100 mL of a 10% by mass cyclohexane solution of n-butyllithium was added as a polymerization initiator solution to this, and the temperature was maintained at 30°C.
(3) 6 kg of styrene was added to cause anionic polymerization of styrene. The internal temperature rose to 32°C.
(4) After styrene is completely consumed, the internal temperature of the reaction system is raised to 80°C, and while maintaining the internal temperature, 96 kg of styrene and 16 kg of 1,3-butadiene are added at 144.6 kg/h and 20 kg/h, respectively. They were added simultaneously at a constant addition rate of .6 kg/h.
(5) After styrene and 1,3-butadiene are completely consumed, 14 kg of styrene and 64 kg of 1,3-butadiene are each fed at 14.0 kg/h while maintaining the internal temperature of the reaction system at 80°C. and were added simultaneously at a constant addition rate of 64.0 kg/h.
(6) After styrene and 1,3-butadiene were completely consumed, the internal temperature of the reaction system was lowered to 75°C, 6 kg of styrene was added, and styrene was anionically polymerized. The internal temperature rose to 77°C.
(7) After styrene is completely consumed, all polymerization active terminals are finally deactivated with water to form a polystyrene block, a random block of styrene and 1,3-butadiene, a random block of styrene and 1,3-butadiene, and a random block of styrene and 1,3-butadiene. A polymer solution containing a block copolymer having polystyrene blocks was obtained.
(8) This polymerization solution was preliminarily concentrated and further devolatilized and extruded using a twin-screw extruder equipped with a vacuum vent to obtain the desired pelletized block copolymer (P-4).
<ブロック共重合体の調製:(P-5)>
(1)反応容器中にシクロヘキサン467kg、テトラヒドロフラン(THF)70gを入れた。
(2)この中に重合開始剤溶液としてn-ブチルリチウムの10質量%シクロヘキサン溶液2100mLを加え、30℃に保った。
(3)スチレン100kgを加え、スチレンをアニオン重合させた。内温は81℃まで上昇した。
(4)スチレンが完全に消費された後、反応系の内温を80℃に下げ、内温を保持したまま16kgのスチレンおよび78kgの1,3-ブタジエンを、それぞれ13.6kg/hおよび65.0kg/hの一定添加速度で同時に添加した。
(5)スチレンと1,3-ブタジエンが完全に消費された後、反応系の内温を75℃に下げ、スチレン6kgを加え、スチレンをアニオン重合させた。内温は77℃まで上昇した。
(6)スチレンが完全に消費された後、最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック、スチレンと1,3-ブタジエンのランダムブロック、ポリスチレンブロックを持つブロック共重合体を含む重合液を得た。
(7)この重合液を予備濃縮し、さらに減圧ベント付き2軸押出機で脱揮押出しして、目的のペレット状ブロック共重合体(P-5)を得た。
<Preparation of block copolymer: (P-5)>
(1) 467 kg of cyclohexane and 70 g of tetrahydrofuran (THF) were placed in a reaction vessel.
(2) 2100 mL of a 10% by mass cyclohexane solution of n-butyllithium was added as a polymerization initiator solution to this, and the temperature was maintained at 30°C.
(3) 100 kg of styrene was added to cause anionic polymerization of styrene. The internal temperature rose to 81°C.
(4) After styrene is completely consumed, the internal temperature of the reaction system is lowered to 80°C, and while maintaining the internal temperature, 16 kg of styrene and 78 kg of 1,3-butadiene are added at 13.6 kg/h and 65 kg/h, respectively. They were added simultaneously at a constant addition rate of .0 kg/h.
(5) After styrene and 1,3-butadiene were completely consumed, the internal temperature of the reaction system was lowered to 75°C, 6 kg of styrene was added, and styrene was anionically polymerized. The internal temperature rose to 77°C.
(6) After styrene has been completely consumed, all polymerization active terminals are finally deactivated with water to form block copolymers with polystyrene blocks, random blocks of styrene and 1,3-butadiene, and polystyrene blocks. A polymerization solution was obtained.
(7) This polymerization solution was preliminarily concentrated and further devolatilized and extruded using a twin-screw extruder equipped with a vacuum vent to obtain the desired pelletized block copolymer (P-5).
<ブロック共重合体の調製:(P-6)>
(1)反応容器中にシクロヘキサン467kg、テトラヒドロフラン(THF)70gを入れた。
(2)この中に重合開始剤溶液としてn-ブチルリチウムの10質量%シクロヘキサン溶液2100mLを加え、30℃に保った。
(3)スチレン126kgを加え、スチレンをアニオン重合させた。内温は89℃まで上昇した。
(4)スチレンが完全に消費された後、反応系の内温を45℃に下げ、66kgの1,3-ブタジエンを添加した。内温は96℃まで上昇した。
(5)1,3-ブタジエンが完全に消費された後、反応系の内温を75℃に下げ、6kgのスチレンを添加した。内温は77℃まで上昇した。
(6)スチレンが完全に消費された後、最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック、ポリ1,3-ブタジエンブロック、およびスチレンブロックを持つブロック共重合体を含む重合液を得た。
(7)この重合液を予備濃縮し、さらに減圧ベント付き2軸押出機で脱揮押出しして、目的のペレット状ブロック共重合体(P-6)を得た。
<Preparation of block copolymer: (P-6)>
(1) 467 kg of cyclohexane and 70 g of tetrahydrofuran (THF) were placed in a reaction vessel.
(2) 2100 mL of a 10% by mass cyclohexane solution of n-butyllithium was added as a polymerization initiator solution to this, and the temperature was maintained at 30°C.
(3) 126 kg of styrene was added to cause anionic polymerization of styrene. The internal temperature rose to 89°C.
(4) After styrene was completely consumed, the internal temperature of the reaction system was lowered to 45°C, and 66 kg of 1,3-butadiene was added. The internal temperature rose to 96°C.
(5) After 1,3-butadiene was completely consumed, the internal temperature of the reaction system was lowered to 75°C, and 6 kg of styrene was added. The internal temperature rose to 77°C.
(6) After styrene is completely consumed, all polymerization active terminals are finally deactivated with water to form a polymer containing a polystyrene block, a poly1,3-butadiene block, and a block copolymer with a styrene block. I got the liquid.
(7) This polymerization solution was preliminarily concentrated and further devolatilized and extruded using a twin-screw extruder equipped with a vacuum vent to obtain the desired pelletized block copolymer (P-6).
<ブロック共重合体の調製:(P-7)>
(1)反応容器中にシクロヘキサン467kg、テトラヒドロフラン(THF)70gを入れた。
(2)この中に重合開始剤溶液としてn-ブチルリチウムの10質量%シクロヘキサン溶液2100mLを加え、30℃に保った。
(3)スチレン50kgを加え、スチレンをアニオン重合させた。内温は56℃まで上昇した。
(4)スチレンが完全に消費された後、反応系の内温を80℃に上げ、内温を保持したまま40kgのスチレンおよび60kgの1,3-ブタジエンを、それぞれ40.0kg/hおよび60.0kg/hの一定添加速度で同時に添加した。
(5)スチレンと1,3-ブタジエンが完全に消費された後、反応系の内温を60℃に下げ、スチレン50kgを加え、スチレンをアニオン重合させた。内温は87℃まで上昇した。
(6)スチレンが完全に消費された後、最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック、スチレンと1,3-ブタジエンのランダムブロック、ポリスチレンブロックを持つブロック共重合体を含む重合液を得た。
(7)この重合液を予備濃縮し、さらに減圧ベント付き2軸押出機で脱揮押出しして、目的のペレット状ブロック共重合体(P-7)を得た。
<Preparation of block copolymer: (P-7)>
(1) 467 kg of cyclohexane and 70 g of tetrahydrofuran (THF) were placed in a reaction vessel.
(2) 2100 mL of a 10% by mass cyclohexane solution of n-butyllithium was added as a polymerization initiator solution to this, and the temperature was maintained at 30°C.
(3) 50 kg of styrene was added to cause anionic polymerization of styrene. The internal temperature rose to 56°C.
(4) After styrene is completely consumed, the internal temperature of the reaction system is raised to 80°C, and while maintaining the internal temperature, 40 kg of styrene and 60 kg of 1,3-butadiene are added at 40.0 kg/h and 60 kg/h, respectively. They were added simultaneously at a constant addition rate of .0 kg/h.
(5) After styrene and 1,3-butadiene were completely consumed, the internal temperature of the reaction system was lowered to 60°C, 50 kg of styrene was added, and styrene was anionically polymerized. The internal temperature rose to 87°C.
(6) After styrene has been completely consumed, all polymerization active terminals are finally deactivated with water to produce block copolymers with polystyrene blocks, random blocks of styrene and 1,3-butadiene, and polystyrene blocks. A polymerization solution was obtained.
(7) This polymerization solution was preliminarily concentrated and further devolatilized and extruded using a twin-screw extruder equipped with a vacuum vent to obtain the desired pelletized block copolymer (P-7).
<ブロック共重合体の調製:(P-8)>
(1)反応容器中にシクロヘキサン467kg、テトラヒドロフラン(THF)70gを入れた。
(2)この中に重合開始剤溶液としてn-ブチルリチウムの10質量%シクロヘキサン溶液2000mLを加え、30℃に保った。
(3)スチレン4kgを加え、スチレンをアニオン重合させた。内温は31℃まで上昇した。
(4)スチレンが完全に消費された後、反応系の内温を80℃に上げ、内温を保持したまま144kgのスチレンおよび12kgの1,3-ブタジエンを、それぞれ144.0kg/hおよび12.0kg/hの一定添加速度で同時に添加した。
(5)スチレンと1,3-ブタジエンが完全に消費された後、反応系の内温を70℃に下げ、36kgの1,3-ブタジエンを添加した。内温は83℃まで上昇した。
(6)1,3-ブタジエンが完全に消費された後、反応系の内温を75℃に下げ、スチレン4kgを加え、スチレンをアニオン重合させた。内温は76℃まで上昇した。
(7)スチレンが完全に消費された後、最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック、スチレンと1,3-ブタジエンのランダムブロック、ポリ1,3-ブタジエンブロック、ポリスチレンブロックを持つブロック共重合体を含む重合液を得た。
(8)この重合液を予備濃縮し、さらに減圧ベント付き2軸押出機で脱揮押出しして、目的のペレット状ブロック共重合体(P-8)を得た。
<Preparation of block copolymer: (P-8)>
(1) 467 kg of cyclohexane and 70 g of tetrahydrofuran (THF) were placed in a reaction vessel.
(2) 2000 mL of a 10% by mass cyclohexane solution of n-butyllithium was added to this as a polymerization initiator solution, and the temperature was maintained at 30°C.
(3) 4 kg of styrene was added to cause anionic polymerization of styrene. The internal temperature rose to 31°C.
(4) After styrene is completely consumed, the internal temperature of the reaction system is raised to 80°C, and while maintaining the internal temperature, 144 kg of styrene and 12 kg of 1,3-butadiene are added at 144.0 kg/h and 12 kg/h, respectively. They were added simultaneously at a constant addition rate of .0 kg/h.
(5) After styrene and 1,3-butadiene were completely consumed, the internal temperature of the reaction system was lowered to 70°C, and 36 kg of 1,3-butadiene was added. The internal temperature rose to 83°C.
(6) After 1,3-butadiene was completely consumed, the internal temperature of the reaction system was lowered to 75°C, 4 kg of styrene was added, and styrene was anionically polymerized. The internal temperature rose to 76°C.
(7) After styrene is completely consumed, all polymerization active terminals are finally deactivated with water to form polystyrene blocks, random blocks of styrene and 1,3-butadiene, poly 1,3-butadiene blocks, and polystyrene blocks. A polymer solution containing a block copolymer having blocks was obtained.
(8) This polymerization solution was preliminarily concentrated and further devolatilized and extruded using a twin-screw extruder equipped with a vacuum vent to obtain the desired pelletized block copolymer (P-8).
<ブロック共重合体のブロック構造>
 得られたブロック共重合体(P-1)~(P-8)のブロック構造を表1及び表2に示す。
 ブロック共重合体のブロック構造は、各単量体を添加する手順により判断可能である。また、ブロック共重合体中に含有される各ブロック構造の含有量や、各ブロック構造に含有される単量体単位の含有量は、原料となる単量体の仕込み量から算出可能である。
<Block structure of block copolymer>
The block structures of the obtained block copolymers (P-1) to (P-8) are shown in Tables 1 and 2.
The block structure of the block copolymer can be determined by the procedure for adding each monomer. Furthermore, the content of each block structure contained in the block copolymer and the content of monomer units contained in each block structure can be calculated from the amount of monomers used as raw materials.
<ブロック共重合体の物性>
 得られたブロック共重合体(P-1)~(P-8)について、以下の手順により各種物性を測定した。測定結果を表1及び表2に示す。
<Physical properties of block copolymer>
Various physical properties of the obtained block copolymers (P-1) to (P-8) were measured according to the following procedure. The measurement results are shown in Tables 1 and 2.
<重量平均分子量>
 また、重量平均分子量については、GPC測定法により以下の条件にて測定した。
装置名:HLC-8220GPC(東ソー社製)
カラム:ShodexGPCKF-404(昭和電工社製)を直列に4本接続した。
温度:40℃
検出:紫外可視分光法(254nm)
溶媒:テトラヒドロフラン
濃度:2質量%
検量線:標準ポリスチレン(VARIAN社製)を用いて作成した。
<Weight average molecular weight>
Moreover, the weight average molecular weight was measured by the GPC measurement method under the following conditions.
Equipment name: HLC-8220GPC (manufactured by Tosoh Corporation)
Column: Four Shodex GPCKF-404 (manufactured by Showa Denko) were connected in series.
Temperature: 40℃
Detection: UV-visible spectroscopy (254nm)
Solvent: Tetrahydrofuran Concentration: 2% by mass
Calibration curve: Created using standard polystyrene (manufactured by VARIAN).
<ブロック共重合体組成物の製造>
[使用原料]
・ブロック共重合体:上述の重合で得られた(P-1)~(P-8)
・ブロッキング防止剤:E640N(ハイインパクトポリスチレン、東洋スチレン株式会社製)
<Production of block copolymer composition>
[Raw materials used]
・Block copolymer: (P-1) to (P-8) obtained by the above polymerization
・Anti-blocking agent: E640N (high impact polystyrene, manufactured by Toyo Styrene Co., Ltd.)
<実施例1>
 ブロック共重合体(P-1)100質量%に対し、E640N 1.3質量%をドライブレンドした後、押出機で溶融してペレット化されたブロック共重合体組成物(RA-1)を得た。
<Example 1>
After dry-blending 1.3% by mass of E640N to 100% by mass of block copolymer (P-1), a block copolymer composition (RA-1) was obtained by melting and pelletizing in an extruder. Ta.
<実施例2~4、比較例1~3>
 表3に記載のブロック共重合体と配合割合によって計量したブロック共重合体100質量%に対し、実施例1と同様にしてペレット化されたブロック共重合体組成物(RA-2)~(RA-4)及び(RB-1)~(RB-3)を得た。
<Examples 2 to 4, Comparative Examples 1 to 3>
Block copolymer compositions (RA-2) to (RA -4) and (RB-1) to (RB-3) were obtained.
<ブロック共重合体組成物の物性>
 得られたブロック共重合体組成物(RA-1)~(RA-4)及び(RB-1)~(RB-3)について、以下の手順により各種物性を測定した。測定結果を表3に示す。
<Physical properties of block copolymer composition>
Various physical properties of the obtained block copolymer compositions (RA-1) to (RA-4) and (RB-1) to (RB-3) were measured according to the following procedure. The measurement results are shown in Table 3.
<ビニル芳香族系単量体単位と共役ジエン系単量体単位の合計質量を100質量%とした場合のビニル芳香族系単量体単位の含有量>
 スチレン単量体単位と1,3-ブタジエン単量体単位の合計質量を100質量%とした場合の、スチレン単量体単位の含有量を、下記のハロゲン付加法により測定、算出した。
(A1) 試料を完全に溶解することが可能な溶媒(四塩化炭素等)に溶解させた後、過剰量の一塩化よう素/四塩化炭素溶液を添加し十分反応させ、未反応の一塩化よう素をチオ硫酸ナトリウム/エタノール溶液で滴定し、二重結合量を算出した。
(A2) (A1)の方法により得られた二重結合量に基づき、ブタジエンの含有率(ゴム分)を算出した。
 スチレンの含有率については、試料全体からブタジエンの含有率を差し引いた値をスチレンの含有率として算出した。
<Content of vinyl aromatic monomer units when the total mass of vinyl aromatic monomer units and conjugated diene monomer units is 100% by mass>
The content of styrene monomer units, where the total mass of styrene monomer units and 1,3-butadiene monomer units is 100% by mass, was measured and calculated by the halogen addition method described below.
(A1) After dissolving the sample in a solvent that can completely dissolve it (carbon tetrachloride, etc.), add an excess amount of iodine monochloride/carbon tetrachloride solution and react thoroughly to remove unreacted monochloride. Iodine was titrated with a sodium thiosulfate/ethanol solution, and the amount of double bonds was calculated.
(A2) The content of butadiene (rubber content) was calculated based on the amount of double bonds obtained by the method of (A1).
Regarding the styrene content, the value obtained by subtracting the butadiene content from the entire sample was calculated as the styrene content.
<曲げ弾性率>
 ISO178に従い測定した。
<Bending elastic modulus>
Measured according to ISO178.
<損失正接値(tanδ)のピーク>
 ISO6721-1に従い、動的粘弾性測定装置RSA-III(TA Insturments社製)を用いて昇温速度4℃/min、周波数1Hz、歪み0.02%の条件で、固定式3点曲げモードにより動的粘弾性測定を行った。得られたグラフにおいて、80℃以上110℃以下の範囲にピークが存在している場合には、当該ピークが現れる温度を表3に示した。80℃以上110℃以下の範囲にピークが存在しない場合には、最も高いピークが現れる温度を表3に示した。
<Peak of loss tangent value (tanδ)>
In accordance with ISO6721-1, using a dynamic viscoelasticity measurement device RSA-III (manufactured by TA Instruments), the measurement was performed in a fixed three-point bending mode under the conditions of a heating rate of 4 °C/min, a frequency of 1 Hz, and a strain of 0.02%. Dynamic viscoelasticity measurements were performed. In the obtained graph, when a peak exists in the range of 80° C. or higher and 110° C. or lower, the temperature at which the peak appears is shown in Table 3. When no peak exists in the range from 80°C to 110°C, the temperature at which the highest peak appears is shown in Table 3.
<比重>
 23℃における比重を、JIS Z8807:2012に従い測定した。
<Specific gravity>
Specific gravity at 23°C was measured according to JIS Z8807:2012.
<熱収縮性フィルムの製造>
[使用原料]
 樹脂組成物:上述のブロック共重合体組成物(RA-1)~(RA-4)、(RB-1)~(RB-3)をそのまま樹脂組成物として用いた。
<Manufacture of heat-shrinkable film>
[Raw materials used]
Resin composition: The above block copolymer compositions (RA-1) to (RA-4) and (RB-1) to (RB-3) were used as resin compositions as they were.
 以下、実施例1にかかる樹脂組成物を用いた熱収縮性フィルムの製造方法について記載する。 Hereinafter, a method for producing a heat-shrinkable film using the resin composition according to Example 1 will be described.
(1)延伸前シートの押出
 シートを押出成形できる、リップ幅300μmのTダイを備えた押出機を用い、実施例1にかかる樹脂組成物を溶融してシート押出した。樹脂を溶融してTダイに供給する押出機は65mmφの短軸押出機であり、設定温度は200℃とした。また、Tダイの設定温度は180℃とした。得られたシートの厚さは0.30mmであった。
(1) Extrusion of sheet before stretching Using an extruder equipped with a T-die with a lip width of 300 μm and capable of extrusion molding a sheet, the resin composition according to Example 1 was melted and extruded into a sheet. The extruder for melting the resin and supplying it to the T-die was a short shaft extruder with a diameter of 65 mm, and the set temperature was 200°C. Further, the set temperature of the T-die was 180°C. The thickness of the obtained sheet was 0.30 mm.
(2)延伸前シートの延伸
 得られた前記延伸前シートを、回転速度の異なる2本のロールを有する縦延伸機に、80℃にて、MD方向に延伸しない(即ち延伸倍率は1.0倍)ように掛け、その後、テンター式横延伸機に掛けて90℃にてTD方向に4.5倍延伸し、最終的に70μm厚の実施例1にかかる樹脂組成物を用いた熱収縮性フィルムを得た。
(2) Stretching of the unstretched sheet The obtained unstretched sheet was placed in a longitudinal stretching machine having two rolls with different rotational speeds at 80° C. without being stretched in the MD direction (i.e., the stretching ratio was 1.0 The heat shrinkability of the resin composition according to Example 1 was stretched to 4.5 times in the TD direction at 90°C using a tenter-type transverse stretching machine, and the final thickness was 70 μm. Got the film.
 実施例2~4及び比較例1~3にかかる樹脂組成物を用い、実施例1と同様にして製膜した。 Films were formed in the same manner as in Example 1 using the resin compositions of Examples 2 to 4 and Comparative Examples 1 to 3.
<熱収縮性フィルムの評価>
 得られた熱収縮性フィルムについて、以下のように物性の評価を行った。
<Evaluation of heat-shrinkable film>
The physical properties of the obtained heat-shrinkable film were evaluated as follows.
<熱収縮率>
 70、80、90、100℃における熱収縮率は、延伸フィルムを当該温度に調整した温水中に10秒間浸漬し、次式より算出した。
 熱収縮率(%)=(L1-L2)/L1×100
L1:収縮前の長さ
L2:収縮後の長さ
<Heat shrinkage rate>
Thermal shrinkage rates at 70, 80, 90, and 100°C were calculated from the following formula by immersing the stretched film in warm water adjusted to the temperature for 10 seconds.
Heat shrinkage rate (%) = (L1-L2)/L1×100
L1: Length before contraction L2: Length after contraction
<自然収縮率>
 延伸フィルムを40℃の雰囲気下に7日間静置し、次式より算出した。
 自然収縮率(%)=(L1-L2)/L1×100
L1:収縮前の長さ
L2:収縮後の長さ
<Natural shrinkage rate>
The stretched film was left to stand in an atmosphere at 40°C for 7 days, and the value was calculated using the following formula.
Natural shrinkage rate (%) = (L1-L2)/L1 x 100
L1: Length before contraction L2: Length after contraction
<ヤング率>
 ヤング率は、23℃において、熱収縮性フィルムのTD方向及びMD方向で、湿度50±5%の環境下で、引張速度200mm/minで測定した。
<Young's modulus>
Young's modulus was measured at 23° C. in the TD direction and MD direction of the heat-shrinkable film at a tensile rate of 200 mm/min in an environment with humidity of 50±5%.
<伸び>
 伸びは、前記のヤング率と同様の条件で引張試験を行い、次式により算出した。
 伸び(%)=L2/L1×100
L1:引張前のチャック間距離
L2:破断時のチャック間距離
<Elongation>
The elongation was calculated using the following formula after performing a tensile test under the same conditions as those for Young's modulus.
Elongation (%) = L2/L1 x 100
L1: Distance between chucks before tension L2: Distance between chucks at breakage
<比重>
 23℃における比重を、JIS Z8807:2012に従い測定した。
<Specific gravity>
Specific gravity at 23°C was measured according to JIS Z8807:2012.
<Haze>
 ASTM D-1003に準じて、日本電色工業社製HAZEメーター(NDH-2000)を用いて測定した。
<Haze>
Measurement was performed according to ASTM D-1003 using a HAZE meter (NDH-2000) manufactured by Nippon Denshoku Industries.
<浮沈判定>
 上記の23℃における比重測定において、試料が水に浮いたものを(浮)、沈んだものを(沈)と判定した。
<Floating/sinking judgment>
In the above-mentioned specific gravity measurement at 23° C., samples that floated on water were judged as (floating), and those that sank on water were judged as (sinking).
<考察>
 本発明の実施例にかかるブロック共重合体組成物及び樹脂組成物を用いて成形された熱収縮性フィルムは、23℃における比重が1.000未満であった。このため、水による比重分離性に優れている。
 本発明の実施例にかかるブロック共重合体組成物及び樹脂組成物を用いて成形された熱収縮性フィルムは、MD方向のヤング率が500MPa以上であり、熱収縮性フィルムに適した剛性を有していることが確認された。このため、熱収縮性フィルムは適度なコシ強度を有しており、熱収縮性フィルムを容器の装着する際の作業や加工を問題なく行える。
 また、本発明の実施例にかかるブロック共重合体組成物及び樹脂組成物を用いて成形された熱収縮性フィルムは、熱収縮性フィルムに適した収縮特性を有していることが確認された。収縮時に高温でなくても良いため、被覆される物品への影響を抑えることができる。
 また、熱収縮性フィルムの保管時に熱収縮性フィルムが収縮することを低減できるため、保管性に優れる。
<Consideration>
The heat-shrinkable film molded using the block copolymer composition and resin composition according to the examples of the present invention had a specific gravity of less than 1.000 at 23°C. Therefore, it has excellent specific gravity separation with water.
The heat-shrinkable film molded using the block copolymer composition and resin composition according to the examples of the present invention has a Young's modulus in the MD direction of 500 MPa or more, and has a rigidity suitable for a heat-shrinkable film. It was confirmed that Therefore, the heat-shrinkable film has a suitable stiffness, and the work and processing when attaching the heat-shrinkable film to a container can be performed without any problem.
Furthermore, it was confirmed that the heat-shrinkable film formed using the block copolymer composition and resin composition according to the examples of the present invention had shrinkage characteristics suitable for a heat-shrinkable film. . Since the temperature does not need to be high during shrinkage, the effect on the article to be coated can be suppressed.
Furthermore, since shrinkage of the heat-shrinkable film during storage can be reduced, storage properties are excellent.
 特に、本発明の実施例にかかるブロック共重合体組成物及び樹脂組成物を用いて成形された熱収縮性フィルムは、発泡させずに成形された場合であっても、上記のように、優れた水による比重分離性を有する熱収縮性フィルムを得ることができることが確認された。 In particular, the heat-shrinkable film molded using the block copolymer composition and resin composition according to the examples of the present invention has excellent properties as described above even when molded without foaming. It was confirmed that it was possible to obtain a heat-shrinkable film having specific gravity separability with water.
 他方、曲げ弾性率が1000MPa未満であるブロック共重合体組成物及び樹脂組成物を用いた場合、軟質となってしまい、製膜が困難となるものがあった(剛性に劣る)。また、ブロック共重合体中のビニル芳香族系単量体単位と共役ジエン系単量体単位の合計質量を100質量%とした場合の、ビニル芳香族系単量体単位の含有量が69質量%を超えるブロック共重合体組成物及び樹脂組成物を用いて得られた熱収縮性フィルムは、23℃における比重が1.000以上であった。 On the other hand, when block copolymer compositions and resin compositions with a flexural modulus of less than 1000 MPa are used, some of them become soft and difficult to form into a film (poor rigidity). In addition, the content of vinyl aromatic monomer units is 69% by mass when the total mass of vinyl aromatic monomer units and conjugated diene monomer units in the block copolymer is 100% by mass. % of the block copolymer composition and the resin composition had a specific gravity of 1.000 or more at 23°C.
 なお、固定式3点曲げモードによりブロック共重合体組成物の動的粘弾性測定を行った場合の損失正接値(tanδ)のピークが80℃以上110℃以下の範囲にピークを有さず、110℃を超える温度範囲にのみピークを有するブロック共重合体組成物及び樹脂組成物を用いた場合、一般的な製膜温度条件では製膜が困難であった。 In addition, when the dynamic viscoelasticity measurement of the block copolymer composition is performed in a fixed three-point bending mode, the peak of the loss tangent value (tan δ) does not have a peak in the range of 80 ° C. or higher and 110 ° C. or lower, When a block copolymer composition and a resin composition having a peak only in a temperature range exceeding 110° C. were used, it was difficult to form a film under typical film forming temperature conditions.
 本発明にかかるブロック共重合体組成物は、当該ブロック共重合体組成物を含有する樹脂組成物から熱収縮性フィルムを得た際に、当該熱収縮性フィルムが非発泡であっても、水による比重分離が可能な熱収縮性フィルムを得ることができる。本発明にかかるブロック共重合体組成物を含有する樹脂組成物は、水による比重分離性に優れた熱収縮性フィルムを得ることができ、産業上の利用可能性を有する。 The block copolymer composition according to the present invention is characterized in that when a heat-shrinkable film is obtained from a resin composition containing the block copolymer composition, even if the heat-shrinkable film is non-foamed, A heat-shrinkable film that can be separated by specific gravity can be obtained. The resin composition containing the block copolymer composition according to the present invention can provide a heat-shrinkable film with excellent specific gravity separation properties with water, and has industrial applicability.

Claims (10)

  1.  ビニル芳香族系単量体単位と共役ジエン系単量体単位を含むブロック共重合体を1種以上含有するブロック共重合体組成物であり、
     前記ブロック共重合体組成物は、前記ビニル芳香族系単量体単位と前記共役ジエン系単量体単位の合計質量を100質量%とした場合に、前記ビニル芳香族系単量体単位を52質量%以上69質量%以下含有し、
     前記ブロック共重合体組成物は、ISO178に従い測定される曲げ弾性率が1000MPa以上であり、
     前記ブロック共重合体組成物は、ISO6721-1に従い、昇温速度4℃/min、周波数1Hz、歪み0.02%の条件で、固定式3点曲げモードにより動的粘弾性測定を行った場合の損失正接値(tanδ)が、80℃以上110℃以下の範囲に少なくとも1つのピークを有する、
    ブロック共重合体組成物。
    A block copolymer composition containing one or more block copolymers containing a vinyl aromatic monomer unit and a conjugated diene monomer unit,
    The block copolymer composition contains 52% of the vinyl aromatic monomer units when the total mass of the vinyl aromatic monomer units and the conjugated diene monomer units is 100% by mass. Contains not less than 69% by mass and not more than 69% by mass,
    The block copolymer composition has a flexural modulus of 1000 MPa or more as measured according to ISO178,
    The block copolymer composition was subjected to dynamic viscoelasticity measurement in a fixed three-point bending mode under the conditions of a heating rate of 4° C./min, a frequency of 1 Hz, and a strain of 0.02% in accordance with ISO6721-1. The loss tangent value (tan δ) has at least one peak in the range of 80°C or more and 110°C or less,
    Block copolymer composition.
  2.  前記ブロック共重合体組成物は、23℃で測定される比重が、0.950以上1.000未満である、請求項1に記載のブロック共重合体組成物。 The block copolymer composition according to claim 1, wherein the block copolymer composition has a specific gravity measured at 23°C of 0.950 or more and less than 1.000.
  3.  前記ブロック共重合体組成物に含有される、1種以上のブロック共重合体の少なくとも1種は、下記式(i)~(iv)のいずれか一つで示される構造を有し、
    (i)        (S1)-(B)
    (ii)    (S1)-(B)-(S2)
    (iii)    (S1)-(B)-X
    (iv)    (S1)-(B)-(S2)-X
    [式中、(S1)および(S2)のそれぞれは、ビニル芳香族系単量体単位の含有率が85質量%以上100質量%以下の重合ブロックであり、(B)は、共役ジエン系単量体単位の含有率が60質量%以上100質量%以下の重合ブロックであり、Xは、カップリング中心であり、nおよびmのそれぞれは、1以上の整数である]
     前記式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、当該ブロック共重合体100質量%中に、(S1)~(S1)の合計質量として40質量%以上70質量%以下含有し、
     前記式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、当該ブロック共重合体100質量%中に、(B)~(B)の合計質量として30質量%以上48質量%以下含有し、
     前記式(i)~(iv)で示される構造を有するブロック共重合体のそれぞれは、当該ブロック共重合体100質量%中に、(S2)を0質量%以上12質量%以下含有し、
     前記1種以上のブロック共重合体の合計100質量%中に、前記式(i)~(iv)のいずれか一つで示される構造を有するブロック共重合体の合計質量として60質量%以上100質量%以下含有する、
    請求項1又は請求項2に記載のブロック共重合体組成物。
    At least one of the one or more block copolymers contained in the block copolymer composition has a structure represented by any one of the following formulas (i) to (iv),
    (i) (S1) n - (B) m
    (ii) (S1) n - (B) m - (S2)
    (iii) (S1) n - (B) m -X
    (iv) (S1) n - (B) m - (S2) -X
    [In the formula, each of (S1) and (S2) is a polymer block with a vinyl aromatic monomer unit content of 85% by mass or more and 100% by mass or less, and (B) is a conjugated diene monomer unit. A polymer block with a mer unit content of 60% by mass or more and 100% by mass or less, X is a coupling center, and each of n and m is an integer of 1 or more.]
    Each of the block copolymers having structures represented by formulas (i) to (iv) above contains 40% by mass as the total mass of (S1) 1 to (S1) n in 100% by mass of the block copolymer. Contains not less than 70% by mass,
    Each of the block copolymers having structures represented by formulas (i) to (iv) above contains 30% by mass as the total mass of (B) 1 to (B) m in 100% by mass of the block copolymer. Contains not less than 48% by mass,
    Each of the block copolymers having a structure represented by the formulas (i) to (iv) contains (S2) in 100% by mass of 0% by mass or more and 12% by mass or less,
    60% by mass or more as the total mass of block copolymers having a structure represented by any one of formulas (i) to (iv) in 100% by mass of the one or more block copolymers. Contains less than % by mass,
    The block copolymer composition according to claim 1 or 2.
  4.  (S1)が、ビニル芳香族系単量体単位から構成されるホモブロックであるか、またはビニル芳香族系単量体単位と共役ジエン系単量体単位から構成されるランダム共重合ブロックであり、
     (B)が、共役ジエン系単量体単位から構成されるホモブロックであり、
     (S2)が、ビニル芳香族系単量体単位から構成されるホモブロックである、
    請求項3に記載のブロック共重合体組成物。
    (S1) is a homoblock composed of vinyl aromatic monomer units, or a random copolymer block composed of vinyl aromatic monomer units and conjugated diene monomer units; ,
    (B) is a homoblock composed of conjugated diene monomer units,
    (S2) is a homoblock composed of vinyl aromatic monomer units,
    The block copolymer composition according to claim 3.
  5.  前記ビニル芳香族系単量体単位が、スチレン単量体単位であり、前記共役ジエン系単量体単位がブタジエン単量体単位である、請求項1又は請求項2に記載のブロック共重合体組成物。 The block copolymer according to claim 1 or 2, wherein the vinyl aromatic monomer unit is a styrene monomer unit, and the conjugated diene monomer unit is a butadiene monomer unit. Composition.
  6.  請求項1又は請求項2に記載のブロック共重合体組成物を含有する樹脂組成物であって、
     前記樹脂組成物100質量%中に前記ブロック共重合体組成物を80質量%以上100質量%以下含有する、
    樹脂組成物。
    A resin composition containing the block copolymer composition according to claim 1 or 2,
    The block copolymer composition is contained in 100% by mass of the resin composition from 80% by mass to 100% by mass,
    Resin composition.
  7.  請求項6に記載の樹脂組成物によって構成された層を含む、熱収縮性フィルム。 A heat-shrinkable film comprising a layer made of the resin composition according to claim 6.
  8. 請求項7に記載の熱収縮性フィルムを用いたラベル。 A label using the heat-shrinkable film according to claim 7.
  9. 請求項7に記載の熱収縮性フィルムを装着した容器。 A container equipped with the heat-shrinkable film according to claim 7.
  10. 請求項8に記載のラベルを装着した容器。 A container equipped with a label according to claim 8.
PCT/JP2023/030927 2022-09-02 2023-08-28 Block copolymer composition, resin composition containing block copolymer composition, heat-shrinkable film WO2024048506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-139806 2022-09-02
JP2022139806 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048506A1 true WO2024048506A1 (en) 2024-03-07

Family

ID=90099819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030927 WO2024048506A1 (en) 2022-09-02 2023-08-28 Block copolymer composition, resin composition containing block copolymer composition, heat-shrinkable film

Country Status (1)

Country Link
WO (1) WO2024048506A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038642A1 (en) * 2000-11-10 2002-05-16 Denki Kagaku Kogyo Kabushiki Kaisha Block copolymer, composition thereof, and film made thereof
JP2004027029A (en) * 2002-06-26 2004-01-29 Denki Kagaku Kogyo Kk Heat-shrinkable film
WO2008117591A1 (en) * 2007-03-28 2008-10-02 Denki Kagaku Kogyo Kabushiki Kaisha Molding material for md shrink and md shrink film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038642A1 (en) * 2000-11-10 2002-05-16 Denki Kagaku Kogyo Kabushiki Kaisha Block copolymer, composition thereof, and film made thereof
JP2004027029A (en) * 2002-06-26 2004-01-29 Denki Kagaku Kogyo Kk Heat-shrinkable film
WO2008117591A1 (en) * 2007-03-28 2008-10-02 Denki Kagaku Kogyo Kabushiki Kaisha Molding material for md shrink and md shrink film

Similar Documents

Publication Publication Date Title
US6107411A (en) Block copolymer, block copolymer composition and heat shrinkable films made thereof
JP3766820B2 (en) Heat shrinkable film
JP6000939B2 (en) Resin composition and heat shrink film thereof
US20070026175A1 (en) Heat-shrinkable foam films
US7470747B2 (en) Block copolymer mixture and heat shrinkable film using it
JP3543917B2 (en) Block copolymer, block copolymer composition and heat-shrinkable film thereof
JP4256360B2 (en) Block copolymer, composition thereof and film comprising the same
CN111372993B (en) Resin composition, heat-shrinkable film and container
JP3659928B2 (en) Block copolymer composition and heat shrinkable film thereof
JP5739814B2 (en) Heat shrinkable laminated film
JP5897369B2 (en) Resin composition
WO2024048506A1 (en) Block copolymer composition, resin composition containing block copolymer composition, heat-shrinkable film
JP4572058B2 (en) Block copolymer and heat shrinkable film thereof
JP2004099749A (en) Block copolymer composition and heat-shrinkable film therefrom
WO2023157492A1 (en) Heat-shrinkable foamed film and label
WO2022191177A1 (en) Foamed film, heat shrinkable film, and label
JP7042388B1 (en) Block copolymer compositions, heat shrinkable films, and containers
WO2023105810A1 (en) Block copolymer, composition, heat shrinkable film, sheet and sheet molded article
WO2022208918A1 (en) Block copolymer composition, heat-shrinkable film, and container
JP6513488B2 (en) Resin composition for shrink film, container fitted with shrink film and shrink film
JP6944786B2 (en) Resin composition and low temperature molded article
WO2022208919A1 (en) Block copolymer composition, heat-shrinkable film, and container
JP2023084128A (en) Block copolymer, composition, heat shrinkable film, sheet and molding of sheet
JP2011157512A (en) Block copolymer composition and heat shrinkable film for packaging
JP2018030937A (en) Resin composition for lamination and heat-shrinkable laminate film prepared therewith, label, and container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860268

Country of ref document: EP

Kind code of ref document: A1