WO2024048422A1 - Molecular memory, method for manufacturing molecular memory, method for decoding molecular memory, and device for decoding molecular memory - Google Patents

Molecular memory, method for manufacturing molecular memory, method for decoding molecular memory, and device for decoding molecular memory Download PDF

Info

Publication number
WO2024048422A1
WO2024048422A1 PCT/JP2023/030588 JP2023030588W WO2024048422A1 WO 2024048422 A1 WO2024048422 A1 WO 2024048422A1 JP 2023030588 W JP2023030588 W JP 2023030588W WO 2024048422 A1 WO2024048422 A1 WO 2024048422A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecules
molecular memory
memory
molecular
area
Prior art date
Application number
PCT/JP2023/030588
Other languages
French (fr)
Japanese (ja)
Inventor
正輝 谷口
敬人 大城
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2024048422A1 publication Critical patent/WO2024048422A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the disclosure in this application relates to a molecular memory, a method for manufacturing a molecular memory, a method for decoding a molecular memory, and a device for decoding a molecular memory.
  • Patent Document 1 discloses that by immobilizing oligonucleotides on a substrate and labeling the oligonucleotides with labeled atoms that can be identified by imaging mass spectrometry or imaging X-ray photoelectron spectroscopy, the It is stated that sequences can be analyzed and information can be read.
  • Non-Patent Document 1 Another known method for reading DNA sequences is to measure the tunneling current when DNA passes between nanogap electrodes, and to read DNA sequences based on the differences in conductance of DNA molecules (See Non-Patent Document 1).
  • Non-Patent Document 1 The DNA reading method described in Non-Patent Document 1 is capable of identifying single molecules with different electronic states. However, the method described in Non-Patent Document 1 is related to general DNA sequence reading. A desirable arrangement of molecules when reading molecules constituting a molecular memory in units of molecules is not known.
  • the disclosure in this application has been made in order to solve the above-mentioned conventional problems.
  • the present inventor conducted intensive research and found that (1) molecules that generate a tunnel current form an address region and a memory region connected to the address region, and (2) molecules that constitute the address region and the memory region.
  • the purpose of the disclosure of the present application is to provide a molecular memory suitable for reading in units of molecules, a method for manufacturing the molecular memory, a method for decoding the molecular memory, and a device for decoding the molecular memory.
  • the disclosure of the present application relates to a molecular memory, a method for manufacturing a molecular memory, a method for decoding a molecular memory, and a device for decoding a molecular memory, as shown below.
  • a molecular memory including an address area and a memory area connected to the address area, The address area and memory area are composed of molecules that generate tunnel current,
  • the memory area is composed of molecules selected from a first molecule group of four or more types
  • the address area is composed of molecules selected from a second molecule group of four or more types
  • the molecules included in the first molecule group are:
  • the types of molecules contained in the second molecule group are all different types, or Including the same types and different types of molecules contained in the second molecule group, By that, At least some of the molecules constituting the address area and the memory area are of different types, molecular memory.
  • the molecules of the same type included in the first molecule group and the second molecule group are It is not located at the end of the address area on the memory area side and at the end of the address area side of the memory area.
  • the molecule with the smallest conductance among the molecules included in the first molecule group is not placed at the end of the memory area on the opposite side from the address area side, The molecule with the smallest conductance among the molecules included in the second molecule group is not placed at the end of the address area on the opposite side to the memory area side.
  • the types of molecules included in the first molecule group are all different from the types of molecules included in the second molecule group.
  • the types of molecules included in the first molecule group are all different from the types of molecules included in the second molecule group.
  • One of the first molecular group or the second molecular group is 4 or more molecules selected from the group consisting of The other of the first molecular group or the second molecular group is 4 or more molecules selected from the group consisting of The molecular memory described in (4) above.
  • the first conductance range is the minimum and maximum conductance range of molecules included in the first molecule group, and the first conductance range is the range between the minimum and maximum conductance of molecules included in the second molecule group. 2 conductance ranges do not overlap, The molecular memory described in (1) above.
  • the first conductance range is the minimum and maximum conductance range of molecules included in the first molecule group, and the first conductance range is the range between the minimum and maximum conductance of molecules included in the second molecule group. 2 conductance ranges do not overlap, The molecular memory described in (6) above.
  • the address area is a first address area connected to one end of the memory area; a second address area connected to the other end of the memory area; including;
  • the first address area is composed of molecules selected from four or more types of 2a molecule groups
  • the second address area is composed of molecules selected from four or more types of second b molecule groups
  • the molecules included in the first molecule group are:
  • the types of molecules contained in the 2a molecule group are all different types, or It includes the same types and different types of molecules as those included in the molecule group 2a, and is all different types from the types of molecules included in the molecule group 2b, or Including the same types and different types of molecules contained in the second b molecule group
  • Molecules included in the 2b molecule group are:
  • the types of molecules contained in the 2a molecule group are all different types, or Including the same types and different types of molecules contained in the 2a molecule group, The molecular memory described in (1) above.
  • the types of molecules included in the first molecule group, the types of molecules included in the 2a molecule group, and the molecule types included in the 2b molecule group are all different,
  • One of the 2a molecular group and the 2b molecular group, 4 or more molecules selected from the group consisting of The other of the 2a molecule group and the 2b molecule group is 4 or more molecules selected from the group consisting of The molecular memory described in (9) above.
  • a redundant area is connected between the address area and the memory area, The redundant area is Consists of redundant region molecules that generate tunnel current, The conductance of the redundant area molecules is smaller than the conductance of the molecules composing the address area and memory area.
  • a first redundant area is connected between the first address area and the memory area; a second redundant area is connected between the second address area and the memory area;
  • the first redundant area and the second redundant area are Consists of redundant region molecules that generate tunnel current,
  • the conductance of the redundant area molecules is smaller than the conductance of molecules forming the first address area, the second address area, and the memory area.
  • a device for decoding the molecular memory comprising: base material and A flow path formed in the base material, a pair of measurement electrodes for measuring tunneling current when the molecular memory passes; a control unit; including; The flow path is a molecular memory input channel; a molecular memory measurement channel in which measurement electrodes are arranged; a first tapered channel that is disposed between the molecular memory input channel and the molecular memory measurement channel, and whose channel width becomes narrower from the molecular memory input channel to the molecular memory measurement channel; a molecular memory recovery channel for recovering the molecular memory that has passed through the molecular memory measurement channel; including; The width of the connecting portion between the first taper channel and the molecular memory measurement channel is 20 nm to 200 nm, The analysis department is Identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the address area and the conductance of the molecules forming the memory
  • the molecular memory decoding method includes a molecular memory electrophoresis step, a measurement step, an analysis step, and a molecular memory passage direction identification step,
  • the molecular memory electrophoresis process is By applying a voltage to the molecular memory input channel and the molecular memory recovery channel, the molecular memory in the molecular memory input channel is electrophoresed towards the molecular memory recovery channel,
  • the measurement process is Measure the tunneling current when the molecular memory passes through the gap between a pair of measurement electrodes placed in the molecular memory measurement channel
  • the analysis process is Based on the measured tunnel current, we analyze the arrangement of the molecules that make up the molecular memory.
  • the molecular memory passing direction identification process is Identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the address area and the conductance of the molecules forming the memory area, or identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the first address area and the conductance of the molecules forming the second address area; How to decode molecular memory.
  • the molecular memory disclosed in this application can read constituent molecules in units of molecules. Therefore, by designing the types of at least some of the molecules constituting the address area and the memory area to be different, the address area and the memory area can be distinguished and the capacity can be increased.
  • FIG. 1 is a schematic diagram showing an outline of a molecular memory 100.
  • FIG. 2 is a schematic diagram showing the outline of the molecular memory 100a.
  • FIG. 3 is a schematic diagram showing the outline of the molecular memories 100', 100a'.
  • FIG. 4 is a schematic diagram showing the outline of the device 1.
  • FIG. 5A is a top view for explaining the relationship between the flow paths of the device 1.
  • FIG. 5B is a sectional view taken along the line XX in FIG. 5A.
  • FIG. 5C is a sectional view taken along the YY arrow in FIG. 5A.
  • FIG. 6 is a schematic diagram showing an example of a procedure for producing a flow path and a measurement electrode on a base material.
  • FIG. 7 is a flowchart illustrating an example of a decoding method.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ ” as lower and upper limits.
  • Numerical values, numerical ranges, and qualitative expressions are intended to indicate numerical values, numerical ranges, and properties including errors generally accepted in the technical field. shall be subject to interpretation.
  • FIGS. 1 to 3 are schematic diagrams showing the outline of a molecular memory 100.
  • the molecular memory 100 includes an address area 101 and a memory area 102 connected to the address area 101.
  • Address area 101 and memory area 102 are composed of molecules that generate tunnel current.
  • the memory area 102 is made up of molecules selected from four or more types of first molecule groups, and the molecules forming the address area 101 are made up of molecules selected from four or more types of second molecule groups.
  • the molecules included in the first molecule group may be of different types from the molecules included in the second molecule group, or may be of the same type and different types as the molecules included in the second molecule group. May include. Therefore, the molecular memory 100 according to the embodiment is configured such that at least some of the molecules forming the address area 101 and the memory area 102 are of different types.
  • the molecules constituting the molecular memory 100 can generate a tunnel current and are not particularly limited as long as the molecules can be connected to each other. Including, but not limited to, the following molecules: (1) Nucleosides: A (Adenosine), T (Thymidine), G (Guanosine), C (Cytidine), U (Uridine), modified products of the above nucleosides, and artificial nucleosides. (2) Organic semiconductor molecules: thiophene, pyridine, naphthalene, pentacene, anthracene, rubrene, phthalocyanine, perylene, Alq3, pyrrole, aniline, and derivatives of the above molecules.
  • Amino acids Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, He, Leu, Lys Met, Phe, Pro, Ser, Thr, Trp, Tyr, Va, etc., acetylated amino acids, and , methylated amino acids.
  • Sugar chains ⁇ , ⁇ glucose and its isomers, pentoses, hexoses, amino sugars, etc.
  • the molecular memory 100 can be identified in units of molecules based on the difference in conductance of the constituent molecules by a decoding method of the molecular memory 100 using a device for decoding molecular memory, which will be described later.
  • the molecular memory 100 has an elongated shape, and when it is decoded using a device to be described later, there are cases in which it is decoded from the address area 101 side of the elongated molecular memory 100 and cases where it is decoded from the memory area 102 side. do.
  • the types of molecules included in the first molecule group are all different from the types of molecules included in the second molecule group, the types of molecules making up the address area 101 will be different from the types of molecules making up the memory area 102. All different. In that case, the address area 101 and the memory area 102 can be easily identified based on the type of molecule read.
  • the molecules included in the first molecule group and the molecules included in the second molecule group include the same type and different types, and as a result, the type of molecules constituting the address area 101 is different from that of the molecules constituting the memory area 102. Cases in which the same type and different types are included will be explained.
  • the length of the address area 101 and the length of the memory area 102 can be set in advance. Therefore, when reading the molecule memory 100 in units of molecules, the position where the molecule contained only in the address area 101 and/or the molecule contained only in the memory area 102 is read, the length of the address area 101, and the memory Based on the length of the area 102, the address area 101 and the memory area 102 can be specified.
  • the end of the address area 101 on the memory area 102 side and the address area of the memory area 102 may be optionally added.
  • the end on the 101 side may be designed so that molecules of the same type are not placed. If molecules of the same type are not placed in the connection between the address area 101 and the memory area 102, the address area 101 and the memory area 102 can be easily identified.
  • the molecular memory 100 disclosed in this application is identified by conductance.
  • the present inventors have newly discovered through experiments that when measuring elongated molecules using tunneling current, the accuracy of reading is slightly lower at the end portions of the elongated molecules than at the central portion. The reason for this is thought to be that the end portions of elongated molecules are affected by thermal motion, but the central portion is less affected by thermal motion. Additionally, through experiments we discovered that the electrical noise of the device affects the accuracy of reading molecules when reading molecules using conductance.
  • the molecule with the smallest conductance among the molecules included in the first molecule group is optionally placed at the end of the memory area 102 on the opposite side from the address area 101 side.
  • the molecule having the smallest conductance among the molecules included in the second molecule group may be designed so as not to be placed at the end of the address area 101 on the opposite side to the memory area 102 side.
  • the molecule groups constituting each region it is most preferable to arrange the molecule with the highest conductance at the end of the molecular memory 100, but of course the molecule with the second highest conductance may be arranged at the end.
  • the accuracy of reading molecules can be improved compared to the case where the conductance of the molecules that make up each region is not considered at all.
  • Examples of the first molecule group constituting the memory area 102 include molecules exemplified by ⁇ Molecular Group 1> below. It should be noted that the following molecules are merely examples and are not intended to be limiting. Further, the molecules exemplified in ⁇ Molecular Group 1> below may be used as the second molecule group.
  • examples of the second molecule group constituting the address area 101 include molecules exemplified by ⁇ Molecular Group 2> and ⁇ Molecular Group 3> below. It should be noted that the following molecules are merely examples and are not intended to be limiting. Furthermore, the molecules exemplified in ⁇ Molecular Group 2> and ⁇ Molecular Group 3> below may be used as the first molecule group.
  • the conductance will also differ. Therefore, although the above-described molecular memory 100 can identify molecules based on conductance, it may optionally be designed so that the conductances of the molecules forming the address area 101 and the memory area 102 do not overlap. More specifically, the first conductance range is the range of the minimum and maximum conductance of molecules included in the first molecule group, and the range of the minimum and maximum conductance of molecules included in the second molecule group. Molecules included in each group may be selected so that the second conductance range does not overlap.
  • the design is such that the conductances of the molecules constituting the address area 101 and the memory area 102 do not overlap, it is possible to easily distinguish between the address area 101 and the memory area 102, and also to easily identify which area is being decoded. It has the effect of being able to do it.
  • the first conductance range may be greater than the second conductance range, or the first conductance range may be less than the second conductance range.
  • first conductance range and the second conductance range are an optional additional design as described above. Even if the first conductance range and the second conductance range partially overlap, the type of molecule can be identified because different types of molecules have different conductances. For example, in the example shown in Table 1, the range of conductance of the first molecule group is 25.8 (FTD) to 123.0 (guanosine). On the other hand, the conductance of the second molecule group is 108.2 (AmdU) and 110.7 (m6A) to 270.6 (TTFdU).
  • the molecules included in the second molecule group when designing the molecules included in the second molecule group, they may be designed to include AmdU and/or m6A, or may be designed not to include AmdU and/or m6A. Even if the first conductance range and the second conductance range partially overlap, the conductance distribution will be different between the region made up of molecules in the first conductance range and the region made up of molecules in the second conductance range. . Therefore, compared to a design that does not consider the conductance range, it becomes easier to distinguish between the address area 101 and the memory area 102, and to specify which area side the decoding starts from.
  • the types of molecules constituting the address area 101 and the memory area 102 may be appropriately designed depending on the intended capacity. For example, 4 types, 8 types, 16 types, etc. may be selected from a large number of molecules included in the molecule groups constituting each region. Note that general memory is limited to a power of two.
  • the molecular memory 100 disclosed in this application can read molecules composed of single molecules. Therefore, for example, you can identify the end of a region by placing a different type of molecule from the molecules in the same region only at the end of each region, or add a specific function even within the same region.
  • Various designs are possible, such as arranging molecules of a different type than those in the same region. Therefore, the number of molecules constituting each area of the molecular memory 100 disclosed in this application may be 5 to 7 types, 9 to 15 types, or 17 or more types.
  • the molecule memory 100 encodes desired information by combining constituent molecules.
  • the types of molecules included in the first molecule group constituting the memory area 102 are four types, A, B, C, and D, and the length of the memory area 102 is L.
  • the memory area 102 created by encoding information may be divided into four molecules A to D, depending on the content of the information to be encoded.
  • the length of L includes various sequences, such as when all types are included. Therefore, the types of molecules included in the first molecule group and the second molecule group and the types of molecules constituting the actually produced molecular memory do not need to completely match.
  • the lengths of the address area 101 and the memory area 102 are not particularly limited as long as they are long enough to synthesize the molecules that make up the molecular memory 100.
  • the molecular memory 100 according to the embodiment can read constituent molecules in units of molecules and can use many types of molecules, so it can store a large amount of information in a short length.
  • the address area 101 uses 16 types of molecules and has a length of 20 molecules
  • the memory area 102 uses 4 types of molecules and has a length of 100 molecules.
  • 2 10 1024 ⁇ 10 3 , 25 bytes x 2 80 ⁇ 25 bytes x 10 24 ⁇ 25 yottabytes.
  • 25 yottabytes is a memory capacity that exceeds the memory capacity that humans have ever produced.
  • the molecular memory 100 has the following effects.
  • the molecular memory 100 has an elongated shape. Therefore, the direction in which the molecular memory 100 passes through the measurement electrode of the device for decoding the molecular memory 100 is not constant.
  • the direction in which the molecular memory 100 passes through the measurement electrode can be easily identified.
  • the first conductance range and the second conductance range are designed so that they do not completely overlap or only partially overlap, the address area 101 and the memory area 102 can be distinguished when the molecular memory 100 is decoded. becomes easier. Therefore, the boundary between the address area 101 and the memory area 102 can be read with high precision, reducing storage errors.
  • the molecular memory 100 shown in FIG. 1 has one address area 101, but as shown in FIG. 2, the molecular memory 100a may include two address areas.
  • the example shown in FIG. 2 includes a first address area 101a connected to one end of the memory area 102, and a second address area 101b connected to the other end of the memory area 102.
  • the first address area 101a is made up of molecules selected from two or more types of second-a molecule groups
  • the second address area 101b is made up of molecules selected from two or more types of second-b molecule groups.
  • the relationship between the molecules forming the first address area 101a and the second address area 101b and the relationship between the molecules forming the memory area 102 are the same as the relationship between the address area 101 and the memory area 102 described above.
  • the molecules included in the first molecule group are all different types from the types of molecules included in the 2a molecule group, or the same types and different types of molecules are included in the 2a molecule group.
  • the types of molecules forming the first address area 101a and the second address area 101b and the types of molecules forming the memory area 102 need not completely match.
  • the molecules included in the 2b molecule group are all different types from the molecules included in the 2a molecule group, or include the same types and different types of molecules as the 2a molecule group. It should be designed to.
  • molecular memory 100a Even when it includes the first address area 101a and the second address area 101b, the design concept of the molecular memory 100a is the same as that of the molecular memory 100 that includes the address area 101 and the memory area 102. Therefore, what has been described for molecular memory 100 is applicable to molecular memory 100a.
  • the first molecule group includes molecules of the same type as molecules included in the 2a molecule group and the 2b molecule group, the same molecule is present in both the connected portion of the first address area 101a and the memory area 102. It is preferable not to arrange it at the end of the area and at the end of both the areas where the second address area 101b and the memory area 102 are connected.
  • the molecule included in the 2a molecule group and the 2b molecule group and having the smallest conductance is the end of the first address area 101a on the opposite side to the memory area 102 and/or the end of the second address area 101b. Preferably, it is not located at the end.
  • the range of the minimum and maximum conductance of molecules included in the 2a molecule group is defined as the 2a conductance range
  • the range of the minimum and maximum conductance of molecules included in the 2b molecule group is defined as the 2b conductance range. If ⁇ 1st conductance range>2nd a conductance range>2nd b conductance range ⁇ 1st conductance range>2nd b conductance range>2nd a conductance range ⁇ 2nd a conductance range>1st conductance range>2nd b conductance range ⁇ 2nd a conductance range > 2nd b conductance range > 1st conductance range, 2nd b conductance range > 1st conductance range > 2nd a conductance range, 2nd b conductance range > 2nd a conductance range > 1st conductance range.
  • first conductance range, the second a conductance range, and the second b conductance range may be designed so that the respective ranges do not completely overlap, or may partially overlap.
  • the accuracy of reading is slightly lower at the end portion of the elongated molecule than at the central portion.
  • the memory area 102 is more important than the first address area 101a and the second address area 101b. Therefore, when providing the first address area 101a and the second address area 101b, considering reading accuracy, - It is preferable to set it as 2nd a conductance range > 2nd b conductance range > 1st conductance range - 2nd b conductance range > 2nd a conductance range > 1st conductance range.
  • the 2-a molecular group is, for example, one of the groups exemplified by the above-mentioned ⁇ Molecular Group 2> and ⁇ Molecular Group 3>, and the 2-b Molecular Group is the other of the ⁇ Molecular Group 2> and ⁇ Molecular Group 3>. Note that the molecules are merely examples, and are not limited.
  • the total length of the molecular memory becomes a little longer, but the same capacity as the molecular memory 100 can be obtained with fewer types of molecules.
  • the first address area 101a uses four types of molecules and has a length of 20 molecules
  • the memory area 102 uses four types of molecules and has a length of 100 molecules
  • the second address area 101b uses four types of molecules and is assumed to have a length of 100 molecules. Assume that four types of molecules are used and the length is 20 molecules. In that case, the total memory capacity will be as follows.
  • the molecular memory 100a shown in FIG. 2 has a capacity of 25 yottabytes with a total of 12 types of molecules and a total length of 140 molecules.
  • the degree of freedom in selecting molecules with different conductances increases.
  • the greater the difference in conductance between molecules, the fewer errors occur when measuring tunnel current. Therefore, the molecule memory 100a shown in FIG. 2 can improve reading accuracy by selecting constituent molecules.
  • the accuracy of reading is slightly lower at the end portion of the elongated molecule than at the central portion.
  • the reading accuracy of the memory area 102 that stores information can be increased compared to the molecular memory 100.
  • the memory area 102 is sandwiched between a first address area 101a and a second address area 101b having a conductance larger than the conductance of the memory area 102, the division of the memory area 102 and the first address area 101a, Furthermore, the memory area 102 and the second address area 101b can be clearly distinguished.
  • a redundant area 103 may be connected between the address area and the memory area (molecular memory 100'). Further, in the molecular memory 100a, a first redundant area 103a is connected between the first address area 101a and the memory area 102, and a second redundant area 103b is connected between the second address area 101b and the memory area 102. (Molecular memory 100a').
  • the redundant regions 103, 103a, and 103b are composed of redundant region molecules that generate tunnel current, and the conductance of the redundant region molecules is smaller than the conductance of the molecules forming the (first and second) address region 101 and memory region 102. Design as follows.
  • the conductance of the redundant area molecules is smaller than the conductance of the molecules forming the (first and second) address areas 101 and the memory area 102, and there is no particular restriction as long as the molecules can be connected to each other. Examples include, but are not limited to, the following compounds.
  • the redundant areas 103, 103a, and 103b are provided to make it easier to distinguish between the (first and second) address area 101 and memory area 102. Therefore, the length of the redundant regions 103, 103a, and 103b may be short, for example, about 2 molecules, 3 molecules, 4 molecules, 5 molecules, 6 molecules, 7 molecules, or 8 molecules.
  • the redundant areas 103, 103a, and 103b are connected between the (first and second) address area 101 and the memory area 102.
  • the redundant area is located not only at the position shown in FIG. and/or the right end of the second address area 101b). Further, in the case of the molecular memory 100', it may be connected to the other end of the memory area 102.
  • the redundant regions 103, 103a, and 103b are provided, in addition to the effects described in (a) to (h) above provided by the molecular memories 100 and 100a, the following effects are achieved.
  • a sequence sequence that becomes duplicate information
  • the redundant area is defined as the edge of the address area (the left edge of the address area 101 in the case of the molecular memory 100', the left edge of the first address area 101a in the case of the molecular memory 100a', and/or If it is also connected to the right end of the second address area 101b, the effect described in (i) above can be obtained.
  • Embodiments of the manufacturing method include an information preparation step, a molecular sequencing step, and a synthesis step.
  • the information preparation step prepares information to be encoded. For example, obtaining information and performing preliminary conversion of analog data into digital data.
  • the molecular sequencing step converts the prepared information into molecules that constitute a molecular memory, and determines the arrangement of the molecular memory when encoding the information.
  • the digital data stored in the memory area 102 is converted using 4 types of molecules in the case of 2-bit data, and 16 types of molecules in the case of 4-bit data, and the arrangement is determined.
  • the (first and second) address areas 101 which are array tags for random access, are converted using 4 types of molecules in the case of 2-bit data and 16 types of molecules in the case of 4-bit data to create an array. decide.
  • a redundant area is provided, an arrangement including the redundant area is determined. Note that, in the following, description of redundant areas will be omitted to avoid complicating the description.
  • molecules constituting the molecular memory are synthesized based on the determined sequence.
  • a known synthesis apparatus may be used depending on the molecules constituting the molecular memories 100 and 100a.
  • a nucleic acid synthesizer may be used.
  • amino acids as molecules
  • a protein synthesis apparatus may be used.
  • a peptide nucleic acid may be used, and a protein synthesis apparatus may be used.
  • hydrogen in the base molecule of the nucleoside may be replaced with a semiconductor molecule, and the mixture may be synthesized using a nucleic acid synthesizer.
  • a base molecule and an organic semiconductor may be introduced into a peptide nucleic acid and synthesized using a protein synthesis apparatus.
  • molecules included in the first molecule group and second molecule group (2a molecule group, 2b molecule group) described in the embodiment of the molecule memories 100 and 100a are used to sequence the molecules. Determine.
  • the molecular memories 100 and 100a are synthesized using the molecules included in the first molecule group and the second molecule group (the 2a molecule group and the 2b molecule group).
  • the molecular memories 100 and 100a use molecules included in a first molecular group and a second molecular group (a second molecular group and a second molecular group), and (first and second) address areas 101 and memory areas 102. It is a novel invention that at least some of the molecules constituting the molecule are of different types. Therefore, the molecular sequencing and synthesis steps are also novel steps.
  • FIG. 4 is a schematic diagram showing the outline of the device 1.
  • 5A is a top view for explaining the relationship of flow paths
  • FIG. 5B is a sectional view taken along the line XX in FIG. 5A
  • FIG. 5C is a sectional view taken along the line YY in FIG. 5A.
  • FIG. 6 is a schematic diagram showing an example of a procedure for producing a flow path and a measurement electrode on a base material.
  • the device 1 includes a base material 2, a channel 3 formed in the base material 2, and a pair of channels for measuring tunneling current when the molecular memory passes through. It includes measurement electrodes 4 (4a and 4b) and an analysis section 9. In addition, below, the base material 2, the flow path 3, and the measurement electrode 4 part may be described as a "measuring part.” Further, in FIG. 4, optionally, power supplies for electrophoresis 6, 6a, 6b, first electrode for electrophoresis 61, second electrode for electrophoresis 62, tunnel current detection unit 7, power supply for tunnel current measurement 8, An example including a display section 10, a program memory 11, and a control section 12 is shown.
  • the molecular memory may be the embodiments indicated by reference numerals 100, 100a, 100', 100a', or other embodiments. In order to avoid complication, the reference numerals of the molecular memories will be omitted in the following description.
  • the flow path 3 includes a molecular memory input flow path 31 into which a solution containing molecular memory is input, a molecular memory measurement flow path 32 in which the measurement electrode 4 is arranged, and the molecular memory input flow path 31 and the molecular memory measurement flow path 32.
  • a first tapered channel 33 is disposed between the molecular memory input channel 31 and the channel width narrows from the molecular memory measurement channel 32, and the molecular memory that has passed through the molecular memory measurement channel 32 is recovered.
  • a molecular memory recovery channel 34 is included.
  • the width W1 of the connecting portion between the first tapered channel 33 and the molecular memory measurement channel 32 is 20 nm to 200 nm.
  • the second tapered flow path 35 is illustrated in the example shown in FIG. 5A, the second tapered flow path 35 is an optional additional configuration. If the molecular memory flowing out from the molecular memory measurement channel 32 can be recovered, the molecular memory recovery channel 34 may be directly connected to the molecular memory measurement channel 32.
  • the measurement portion can be manufactured using, for example, a nanochannel-integrated mechanically controllable break junction method. Referring to FIG. 6, an example of the manufacturing procedure is shown.
  • MBJ mechanical breaking bonding method
  • An insulating layer 2b is formed of an insulating material such as polyimide on a substrate 2a of silicon or the like.
  • a metal layer for forming the measurement electrode 4 is deposited on the insulating layer 2b by electron beam lithography.
  • (3) Form a deposited layer 2c of SiO 2 or the like by chemical vapor deposition.
  • a resist layer 2d is laminated on the deposition tank 2c by spin coating.
  • a pattern of the channel 3 including the molecular memory measurement channel 32 is formed by electron beam lithography so as to overlap the metal layer for forming the measurement electrode 4.
  • the molecular memory measurement flow path 32 is etched to the bottom of the measurement electrode 4, but the flow path below the measurement electrode 4 may not be provided. Further, in the example shown in FIG. 6, there is one measurement electrode 4, but two or more measurement electrodes 4 may be formed. Furthermore, during the electron beam lithography in (4) above, a pattern for constructing pillars (not shown in FIGS. 5A and 5C) may be formed in the channel 3 except for the molecular memory measurement channel 32. . By masking the portion forming the pillar so that it is not dry-etched, it is possible to form a pillar whose one end is connected to the bottom of the channel 3 except for the molecular memory measurement channel 32 and whose other end is open upward. (6) Attach the cover member 5 in which holes are formed as necessary for introducing solutions, inserting electrodes for electrophoresis, etc. Note that the cover member 5 only needs to be attached at the time of tunnel current measurement.
  • the substrate 2a is not particularly limited as long as it is made of a material commonly used in the field of semiconductor manufacturing technology.
  • the material of the substrate 2a include Si, SiO x , SiN x , Ge, Se, Te, GaAs, GaP, GaN, InSb, and InP.
  • a pillar is provided in the flow path 3 except for the molecular memory measurement flow path 32, the contact area with the solution flowing through the flow path 3 can be expanded.
  • pillars are also formed in the molecular memory recovery channel 34 and the second tapered channel 35. Good too.
  • the insulating layer 2b is also not particularly limited as long as it is made of a material commonly used in the field of semiconductor manufacturing technology.
  • materials for the insulating layer 2b include insulating polymers such as polyimide, polypropylene, polyvinyl chloride, polystyrene, high density polyethylene (HDPE), polyacetal (POM), and polyepoxy; insulating materials such as SiO 2 and aluminum oxide. Examples include oxidized semiconductor metal objects; and the like.
  • Materials for forming the deposited layer 2c include insulating polymers such as polyimide, polypropylene, polyvinyl chloride, polystyrene, high-density polyethylene (HDPE), polyacetal (POM), and polyepoxy; insulating materials such as SiO 2 and aluminum oxide; Examples include oxidized semiconductor metal objects; and the like.
  • the material for forming the measurement electrode 4 includes gold, platinum, silver, palladium, tungsten, and alloys of the above metals.
  • the photoresist used in electron beam lithography and the reagents used in development, etching, etc. are not particularly limited as long as they are materials commonly used in the field of microfabrication technology. Furthermore, there are no particular limitations on the equipment used for spin coaters, etching, etc. as long as they are made of materials commonly used in the field of microfabrication technology.
  • the cover member 5 is not particularly limited as long as it can be attached to the base material 2 on which the flow path 3 is formed.
  • Examples of the material for the cover member 5 include polymethyldisiloxane (PDMS).
  • PDMS polymethyldisiloxane
  • the cover member 5 and the base material 2 may be attached by, for example, ozone plasma treatment.
  • the base material refers to a material portion that becomes the basis for forming the flow path 3.
  • the base material 2 includes a substrate 2a, an insulating layer 2b, a deposited layer 2c, and a resist layer 2d.
  • FIG. 6 is only an example of the procedure for manufacturing a measurement part in which the measurement electrode 4 is arranged in the molecular memory measurement channel 32. Other steps may be added or deleted in the measurement part as long as the tunnel current when the molecular memory passes can be measured. For example, after forming the channel 3 by etching, the resist layer 2d may be removed. In that case, the base material 2 does not include the resist layer 2d. Further, the measurement portion may be produced by electron beam engraving, nanoprinting, or the like.
  • the substrate 2a the insulating layer 2b, the deposited layer 2c, and the resist layer 2d are omitted, and they are referred to as the base material 2.
  • reading of molecular memory using tunnel current is performed by identifying differences in measured current values at the picoampere level.
  • a voltage at a level capable of imparting an electrophoretic force to a molecular memory placed in a flow channel on the order of ⁇ m is applied, there is a possibility that the measurement electrode 4 may detect noise caused by the voltage for electrophoresis.
  • the measurement portion shown in FIGS. 5A to 5C can apply electrophoretic force to the molecular memory with a low voltage, and therefore can measure tunnel current with less noise caused by electrophoresis voltage.
  • the molecular memory input channel 31 needs to have a predetermined size in order to input a solution containing molecular memory. Therefore, in the measurement part, the width of the molecular memory measurement channel 32 in which the measurement electrode 4 is arranged is narrowed (reduced), and the molecular memory input channel 31 and the molecular memory measurement channel 32 are replaced by the first tapered channel 33. Adopts a connecting structure.
  • the width of the molecular memory measurement channel 32 is narrow.
  • W1 is 200 nm or less, 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, 100 nm or less, 90 nm or less, 80 nm or less , 70 nm or less, 60 nm or less, or 50 nm or less.
  • the lower limit of W1 is not particularly limited as long as it is within a manufacturable range.
  • the thickness may be, for example, 20 nm or more, 25 nm or more, or 30 nm or more.
  • the width of the molecular memory measurement channel 32 may be the same at any location, or may be different as long as it does not affect analysis of measurement results.
  • W1a when the end of the molecular memory measurement channel 32 opposite to W1 is defined as W1a, W1a may be the same as W1, or may be larger or smaller than W1. .
  • the gap between the pair of measurement electrodes 4a and 4b is not particularly limited as long as it is within a range where the tunneling current when the molecular memory passes can be measured.
  • the thickness may be, for example, 0.1 nm or more, 0.3 nm or more, 0.5 nm or more, 0.7 nm or more, or 0.9 nm or more.
  • the upper limit of the gap G is not limited, but may be, for example, 50 nm or less, 30 nm or less, 10 nm or less, 8 nm or less, 6 nm or less, 5 nm or less, 4 nm or less, 3 nm or less, 2 nm or less, 1 nm or less. good.
  • the length of the measurement electrode 4 (the length of the gap G in the same direction as L2 in FIG. 5A) is also not particularly limited as long as it is within the range in which the tunneling current when the molecular memory passes can be measured. Although not limited, it may be, for example, 1000 nm or less, 800 nm or less, 600 nm or less, 400 nm or less, 200 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less.
  • the amount of accumulation of the measurement electrode 4 (direction perpendicular to the length direction of the measurement electrode 4, or direction H in FIG. 5B; hereinafter referred to as "thickness") ) is preferably smaller. If the thickness of the measurement electrode 4 is increased, it becomes difficult to control the cutting location, and there is a possibility that the cut surface of the produced gap G may become disordered. Therefore, the thickness of the measurement electrode 4 is not limited, but may be, for example, 80 nm or less, 70 nm or less, 60 nm or less, or 50 nm or less.
  • the lower limit of the thickness of the measurement electrode 4 is not particularly limited as long as the tunnel current can be measured, and is not limited, for example, 2 nm or more, 4 nm or more, 6 nm or more, 8 nm or more, 10 nm or more, 15 nm or more, 20 nm or more. And it is sufficient.
  • the length of the measurement electrode 4 be larger than the thickness.
  • the length/thickness ratio may be 10 to 100, although it is not limited to this.
  • the length L2 of the molecular memory measurement channel 32 is not particularly limited as long as it is within a range where the tunnel current when the molecular memory passes can be measured. If it is too long, the entire flow path of the measurement portion will become long. On the other hand, if it is too short, it becomes difficult for the elongated molecular memory to maintain its extended state.
  • L2 may be 20 nm or more, 25 nm or more, 30 nm or more, 35 nm or more, 40 nm or more, 45 nm or more, or 50 nm or more.
  • L2 may be 2000 nm or less, 1500 nm or less, 1000 nm or less, 800 nm or less, 600 nm or less, 400 nm or less, 200 nm or less, 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, or 100 nm or less.
  • the length L2 needs to be longer than the length of the gap G portion of the measurement electrode 4.
  • the depth H of the channel 3 is also small.
  • the depth H of the channel 3 is not limited, but is, for example, 200 nm or less, 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 nm. The following may be used.
  • the depth H of the channel 3 may be, for example, 20 nm or more, 25 nm or more, or 30 nm or more.
  • the length of the first tapered channel 33 (L1 in FIG. 5A) and the width of the molecular memory input channel 31 (the connection part with the first tapered channel 33, Although W2) is not particularly limited, it is desirable to make the width of the flow path 3 as small as possible. Note that, in order to input a solution containing molecular memory, the molecular memory input channel 31 may have a wide portion wider than W2 as necessary.
  • the width of the connecting portion between the first taper channel 33 and the molecular memory measurement channel 32 is defined as W1
  • the width of the connecting portion between the first taper channel 33 and the molecular memory input channel 31 is defined as W2.
  • the lower limit of W2/W1 is 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more
  • the upper limit is 50 or less, 40 or less, 30 or less, 20 or less.
  • the lower limit of L1/W2 is defined as L1. It may be 0.3 or more, 0.4 or more, or 0.5 or more, and the upper limit may be 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, or 5 or less.
  • the shape of the first tapered flow path 33 is set to the above ratio, the following effects are achieved. (1) By setting the first tapered channel 33 to the above ratio, it is possible to easily linearize the molecular memory in the solution. (2) When the flow channel is filled with a solvent and a voltage is applied, an electroosmotic flow (EOF) is generated within the flow channel, but reverse flow occurs in the region along the wall.
  • EAF electroosmotic flow
  • the first taper flow path 33 is set within the above range, the generation of EOF is easily suppressed, and the shape of the first taper flow path 33 provides an acceleration effect due to electric field reinforcement. Therefore, it becomes easier to straighten the molecular memory contained in the solution and then introduce it into the molecular memory measurement channel 32.
  • the measurement part is a second tapered flow which is disposed between the molecular memory measurement channel 32 and the molecular memory recovery channel 34, and the channel width increases from the molecular memory measurement channel 32 to the molecular memory recovery channel 34.
  • a path 35 may also be included.
  • the measurement portion includes the second tapered flow path 35, this has the effect of preventing the molecular memory from stacking at the exit of the molecular memory measurement flow path 32 and promoting passage of the molecular memory.
  • the width of the connecting portion between the molecular memory measurement channel 32 and the second tapered channel 35 is defined as W1a
  • the width of the connecting portion between the second tapered channel 35 and the molecular memory recovery channel 34 is defined as W2a.
  • the analysis unit 9 identifies the direction in which the molecular memory passes through the measurement electrode 4 based on the conductance of the molecules forming the address area 101 (101a, 101b) and the conductance of the molecules forming the memory area 102. Furthermore, the analysis unit 9 identifies the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the first address area 101a and the conductance of the molecules forming the second address area 101b.
  • the molecular memory has an elongated shape and passes through the measurement electrode 4 while expanding. Therefore, the direction in which the molecular memory passes through the measurement electrode 4 is not constant. In other words, in the case of the molecular memory 100 shown in FIG.
  • the analysis unit 9 can correctly decode the information stored in the molecular memory.
  • FIG. 7 is a flowchart showing an example of the method.
  • the decoding method is performed using the above-mentioned device 1.
  • the molecular memory is the above-mentioned molecular memory 100, 100a, 100', 100a' or the scope of the technical idea disclosed in this application.
  • a molecular memory modified within can be used. Note that to avoid complication, the reference numerals of the molecular memory will be omitted in the following description.
  • the decoding method includes a molecular memory electrophoresis step (ST1), a measurement step (ST2), an analysis step (ST3), and a molecular memory passage direction identification step (ST4).
  • the molecular memory in the molecular memory input channel 31 is directed toward the molecular memory recovery channel 34 by applying a voltage to the molecular memory input channel 31 and the molecular memory recovery channel 34. and perform electrophoresis. More specifically, a solution containing molecular memory is introduced into the molecular memory input channel 31, a solvent is introduced into the molecular memory recovery channel 34, and a voltage is applied to the first electrode 61 and the second electrode 62. Implemented. The introduced molecular memory or solvent permeates into the first tapered channel 33, the molecular memory measurement channel 32, and the second tapered channel 35 formed as necessary by capillary force, thereby creating a liquid junction.
  • Examples include, but are not limited to, ultrapure water, buffer solutions, and the like.
  • Ultrapure water can be produced using, for example, Milli-Q (registered trademark) Integral 3 (device name) manufactured by EMD Millipore (Milli-Q (registered trademark) Integral 33/5/1015 (catalog number)).
  • Examples of the buffer include known electrophoresis buffers such as TE buffer and TBE buffer.
  • the concentration of the buffer is not limited, but may be adjusted as appropriate within a range that allows electrophoresis, such as 1 ⁇ M or less.
  • amphiphilic chemicals may be added to the solution containing molecular memory as necessary to reduce the effects of electroosmotic flow (EOF). It's okay.
  • the molecular memory measurement channel 32 and a pair of measurement electrodes 4a and 4b arranged in the molecular memory measurement channel 32 form a measurement section.
  • a first electrode for electrophoresis (hereinafter sometimes referred to as "first electrode") 61 is formed at a location in contact with the solution containing molecular memory in the molecular memory input channel 31, and a molecular memory recovery channel
  • a second electrode for electrophoresis (hereinafter sometimes referred to as "second electrode”) 62 is formed at a location in the channel 34 that comes into contact with the solvent.
  • FIG. 4 shows an example in which the voltage for electrophoresis is applied using two first power supplies 6, the number of first power supplies 6 may be one.
  • the first electrode 61 and the second electrode 62 can be formed of a known conductive metal such as Ag/AgCl, aluminum, copper, platinum, gold, silver, or titanium.
  • the first electrode 61 and the second electrode 62 may be formed on the base material 2 or may be made separate from the device 1 and inserted through a hole in the cover member 5.
  • the voltage applied by the first power supply 6 is too small, the movement speed of the molecular memory will be slow and measurement will take time.
  • the voltage may be, for example, 10 mV or more, 15 mV or more, 20 mV or more, 25 mV or more, or 30 mV or more.
  • the upper limit of the voltage applied by the first power source 6 may be appropriately set in consideration of the accuracy of the analysis process, the width of the flow path 3, etc., which will be described later.
  • the voltage may be, for example, 5V or less, 3V or less, 1V or less, 500mV or less, 300mV or less, 100mV or less, 90mV or less, 80mV or less, 70mV or less, 60mV or less, or 50mV or less.
  • the measurement step (ST2) a tunnel current is measured when the molecular memory passes through the gap between the pair of measurement electrodes 4a and 4b arranged in the molecular memory measurement channel 32.
  • the measurement step (ST2) involves applying a voltage to the pair of measurement electrodes 4a and 4b by a tunnel current measurement power supply (hereinafter sometimes referred to as "second power supply") 8.
  • the tunnel current detection unit 7 measures the change in tunnel current that occurs when the molecular memory passes through the gap between the pair of measurement electrodes 4a and 4b.
  • the example shown in FIG. 4 is an example of the measurement step (ST2), and is not limited thereto.
  • the tunneling current detection section 7 may use a known ammeter that can measure current at the picoampere level. Alternatively, the current may be calculated from the voltage measured with a voltmeter.
  • the tunnel current detection unit 7 may optionally include a current amplification amplifier, a noise removal device, an A/D converter, and the like. When the tunnel current detection unit 7 includes a current amplification amplifier, a noise removal device, an A/D converter, etc., data that is easy to analyze can be provided instead of raw data of the measured tunnel current value.
  • the tunnel current detection section 7 may be configured only to be able to measure changes in tunnel current, and the current amplification amplifier, noise removal device, A/D converter, etc. may be configured in the analysis section 9.
  • the second power supply 8 applies a voltage to the pair of measurement electrodes 4a and 4b.
  • the voltage applied by the second electrode 8 is not particularly limited as long as tunnel current can be measured.
  • the lower limit may be set to 20 mV or more, 50 mV or more, or 100 mV or more, and the upper limit may be set to 750 mV or less, 500 mV or less, 250 mV or less, etc.
  • the specific configuration of the second power source 8 is not particularly limited, and any known power source device may be used. In the example shown in FIG. 4, the device 1 can reduce the voltage required for electrophoresis of the molecular memory by making the width of the channel 3, particularly the molecular memory measurement channel 32, very small.
  • the tunnel current detection unit 7 can obtain a measured value of the tunnel current with a small noise component.
  • the tunnel current measurement step when the molecular memory passes through the gap between the pair of measurement electrodes 4a and 4b, the tunnel current can be measured for each molecule making up the molecular memory.
  • the analysis step (ST3) the arrangement of molecules constituting the molecular memory is analyzed from the results of the measured tunnel current.
  • the analysis step (ST3) is performed in the analysis section 9 (hereinafter, the analysis step performed in the analysis section may be simply referred to as "analysis section"). More specifically, the analysis unit 9 calculates conductance from the measured value of tunnel current. The conductance can be calculated by dividing the measured value of the tunnel current by the voltage applied to the pair of measurement electrodes 4a and 4b. The conductance calculated from the tunnel current generated when molecules pass through the pair of measurement electrodes 4a and 4b differs depending on the type of molecule.
  • the molecular memory determines the measurement electrodes 4a and 4b based on the conductance of the molecules constituting the (first and second) address areas 101 and the conductance of the molecules constituting the memory area 102. Determine the direction of passage.
  • the molecular memories 100 and 100a disclosed in this application are designed so that the types of at least some of the molecules forming the (first and second) address areas 101 and memory areas 102 are different.
  • the molecular memory 100 it is determined from which direction of the address area 101 or the memory area 102, and in the case of the molecular memory 100a, it is determined whether the decoding is from the first address area 101a or the first address area 101a. It is possible to specify from which direction of the 2-address area 101b the decoding is performed.
  • the decoding method may optionally include an information restoration step after the molecular memory passage direction identification step (ST4).
  • ST4 molecular memory passage direction identification step
  • a molecular sequence table corresponding to the ASCII code table may be prepared, and the encoded information may be restored using this molecular sequence table.
  • a display section 10 for displaying information provided in the analysis step (ST3) and the passing direction identification step (ST4), an analysis section 9 It may also include a program memory 11 storing a program for operating the display unit 10, and a control unit 12 for reading and executing the program stored in the program memory 11.
  • the program may be stored in the program memory 11 in advance, or may be recorded on a recording medium and stored in the program memory 11 using an installation means.
  • a known display device such as a liquid crystal display, a plasma display, an organic EL display, etc. may be used.
  • a large-capacity molecular memory can be provided by using the molecular memory, the method for manufacturing the molecular memory, the method for decoding the molecular memory, and the device for decoding the molecular memory disclosed in this application. Therefore, it is useful for the information industry.

Abstract

The present invention addresses the problem of providing a molecular memory suitable for reading in a unit of a single molecule, a method for manufacturing the molecular memory, a method for decoding the molecular memory, and a device for decoding the molecular memory. Said problem is solved by a molecular memory comprising: an address region; and a memory region linked to the address region. The address region and the memory region are formed of molecules that generate tunnel current. The memory region is formed of four or more types of molecules selected from a first molecule group. The address region is composed of four or more types of molecules selected from a second molecule group. The molecules included in the first molecule group are either of types totally different from the types of molecules included in the second molecule group, or include both types that are the same and different with respect to the types of molecules included in the second molecule group. As a result, the molecules forming the address region and the molecules forming the memory regions are partially of different types.

Description

分子メモリ、分子メモリの製造方法、分子メモリのデコード方法および分子メモリをデコードするためのデバイスMolecular memory, method for manufacturing molecular memory, method for decoding molecular memory, and device for decoding molecular memory
 本出願における開示は、分子メモリ、分子メモリの製造方法、分子メモリのデコード方法および分子メモリをデコードするためのデバイスに関する。 The disclosure in this application relates to a molecular memory, a method for manufacturing a molecular memory, a method for decoding a molecular memory, and a device for decoding a molecular memory.
 情報化社会とAIの急速な発展に伴い、世界で爆発的なデータが産生されている。今後、量子コンピュータが実用化されると、産生されるデータ量は、爆発的に加速される。しかしながら、大量に産生されるデータの約70~80%が、産生後、ほとんど使われないコールドデータである。コールドデータは、契約書などの文書管理に用いられているため、一定期間以上の保存が必須であるが、コールドデータの保存に大量の電力と記憶材料が用いられている。 With the rapid development of the information society and AI, an explosive amount of data is being produced around the world. In the future, when quantum computers are put into practical use, the amount of data generated will accelerate explosively. However, about 70 to 80% of the data that is produced in large quantities is cold data that is rarely used after it is produced. Since cold data is used for document management such as contracts, it is essential to store it for a certain period of time or more, but a large amount of electricity and storage materials are used to store cold data.
 上記問題点を解決するため、電力不要で長期保存可能なDNAメモリの開発が進められている。DNAメモリに格納された情報を得るためには、DNA配列を読み取る必要がある。DNA配列を読み取る方法としては、一般的にPCR法が用いられている。しかしながら、PCR法を用いたDNA配列の読み取りは、読み取りの際にPCR等の前処理工程が必要となる。またDNAを構成するA(Adenosine)、G(Guanosine)、C(Cytidine)、T(Thymidine)を用いれば1塩基当たりの記録密度は2bits/ntとなるが、実際にはPCRによる複製エラーを鑑みた情報量に制限され、1塩基当たり1.57bits/ntとなることが知られている(特許文献1参照)。そのため、特許文献1には、基板上にオリゴヌクレオチドを固定し、オリゴヌクレオチドをイメージング質量分析又はイメージングX線光電子分光分析により識別可能な標識原子により標識することで、破壊・複製・増幅することなく配列の解析、情報の読み取りができることが記載されている。 In order to solve the above problems, the development of DNA memory that does not require electricity and can be stored for a long time is underway. In order to obtain the information stored in DNA memory, it is necessary to read the DNA sequence. PCR is generally used as a method for reading DNA sequences. However, reading a DNA sequence using the PCR method requires a preprocessing step such as PCR. Furthermore, if A (adenosine), G (guanosine), C (cytidine), and T (thymidine) that make up DNA are used, the recording density per base is 2 bits/nt, but in reality, considering the replication error caused by PCR, It is known that the amount of information is limited to 1.57 bits/nt per base (see Patent Document 1). Therefore, Patent Document 1 discloses that by immobilizing oligonucleotides on a substrate and labeling the oligonucleotides with labeled atoms that can be identified by imaging mass spectrometry or imaging X-ray photoelectron spectroscopy, the It is stated that sequences can be analyzed and information can be read.
 また、DNA配列の読み取り方法として、ナノギャップ電極の間をDNAが通過した際のトンネル電流を測定し、DNA分子のコンダクタンス(Conductance)の違いに基づき、DNA配列を読み取る方法も知られている(非特許文献1参照)。 Another known method for reading DNA sequences is to measure the tunneling current when DNA passes between nanogap electrodes, and to read DNA sequences based on the differences in conductance of DNA molecules ( (See Non-Patent Document 1).
特開2019-132588号公報JP 2019-132588 Publication
 非特許文献1に記載のDNAの読み取り方法は、異なる電子状態を持つ1分子単位の識別が可能である。しかしながら、非特許文献1に記載の方法は、一般的なDNA配列の読み取りに関するものである。分子メモリを構成する分子を1分子単位で読み取る際の望ましい分子の配置は知られていない。 The DNA reading method described in Non-Patent Document 1 is capable of identifying single molecules with different electronic states. However, the method described in Non-Patent Document 1 is related to general DNA sequence reading. A desirable arrangement of molecules when reading molecules constituting a molecular memory in units of molecules is not known.
 本出願における開示は、上記従来の問題点を解決するためになされたものである。本発明者が鋭意研究を行ったところ、(1)トンネル電流を発生する分子でアドレス領域と、アドレス領域に連結するメモリ領域と、を形成し、(2)アドレス領域およびメモリ領域を構成する分子の少なくとも一部は種類が異なるようにすることで、分子メモリの容量を大きくできることを新たに見出した。 The disclosure in this application has been made in order to solve the above-mentioned conventional problems. The present inventor conducted intensive research and found that (1) molecules that generate a tunnel current form an address region and a memory region connected to the address region, and (2) molecules that constitute the address region and the memory region. We have newly discovered that the capacity of molecular memory can be increased by making at least some of the types different.
 すなわち、本出願の開示の目的は、1分子単位の読み取りに好適な分子メモリ、分子メモリの製造方法、当該分子メモリのデコード方法および分子メモリをデコードするためのデバイスを提供することである。 That is, the purpose of the disclosure of the present application is to provide a molecular memory suitable for reading in units of molecules, a method for manufacturing the molecular memory, a method for decoding the molecular memory, and a device for decoding the molecular memory.
 本出願の開示は、以下に示す、分子メモリ、分子メモリの製造方法、分子メモリのデコード方法および分子メモリをデコードするためのデバイスに関する。 The disclosure of the present application relates to a molecular memory, a method for manufacturing a molecular memory, a method for decoding a molecular memory, and a device for decoding a molecular memory, as shown below.
(1)アドレス領域と、アドレス領域に連結するメモリ領域と、を含む分子メモリであって、
 アドレス領域およびメモリ領域は、トンネル電流を発生する分子で構成され、
 メモリ領域は、4種類以上の第1分子グループから選択した分子で構成され、
 アドレス領域は、4種類以上の第2分子グループから選択した分子で構成され、
 第1分子グループに含まれる分子は、
  第2分子グループに含まれる分子の種類と全て異なる種類である、または、
  第2分子グループに含まれる分子の種類と同じ種類および異なる種類を含む、
ことで、
 アドレス領域およびメモリ領域を構成する分子の少なくとも一部は種類が異なる、
 分子メモリ。
(2)第1分子グループが、第2分子グループに含まれる分子と同じ種類の分子を含む場合、第1分子グループおよび第2分子グループに含まれる同じ種類の分子は、
  アドレス領域のメモリ領域側の末端およびメモリ領域のアドレス領域側の末端に配置されない、
 上記(1)に記載の分子メモリ。
(3)第1分子グループに含まれる分子の中でコンダクタンスが最も小さい分子は、アドレス領域側とは反対側のメモリ領域の末端には配置されず、
 第2分子グループに含まれる分子の中でコンダクタンスが最も小さい分子は、メモリ領域側とは反対側のアドレス領域の末端には配置されない、
 上記(1)に記載の分子メモリ。
(4)第1分子グループに含まれる分子の種類が、第2分子グループに含まれる分子の種類と全て異なる、
 上記(1)に記載の分子メモリ。
(5)第1分子グループに含まれる分子の種類が、第2分子グループに含まれる分子の種類と全て異なる、
 上記(3)に記載の分子メモリ。
(6)第1分子グループまたは第2分子グループの一方が、
からなる群から選択される4種以上の分子を含み、
 第1分子グループまたは第2分子グループの他方が、
からなる群から選択される4種以上の分子を含む、
 上記(4)に記載の分子メモリ。
(7)第1分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第1コンダクタンス範囲と、第2分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第2コンダクタンス範囲とが、オーバーラップしない、
 上記(1)に記載の分子メモリ。
(8)第1分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第1コンダクタンス範囲と、第2分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第2コンダクタンス範囲とが、オーバーラップしない、
 上記(6)に記載の分子メモリ。
(9)アドレス領域が、
  メモリ領域の一端に連結する第1アドレス領域と、
  メモリ領域の他端に連結する第2アドレス領域と、
を含み、
 第1アドレス領域は、4種類以上の第2a分子グループから選択した分子で構成され、
 第2アドレス領域は、4種類以上の第2b分子グループから選択した分子で構成され、
 第1分子グループに含まれる分子は、
  第2a分子グループに含まれる分子の種類と全て異なる種類である、または、
  第2a分子グループに含まれる分子の種類と同じ種類および異なる種類を含み、且つ
  第2b分子グループに含まれる分子の種類と全て異なる種類である、または、
  第2b分子グループに含まれる分子の種類と同じ種類および異なる種類を含み、
 第2b分子グループに含まれる分子は、
  第2a分子グループに含まれる分子の種類と全て異なる種類である、または、
  第2a分子グループに含まれる分子の種類と同じ種類および異なる種類を含む、
 上記(1)に記載の分子メモリ。
(10)第1分子グループに含まれる分子の種類と、第2a分子グループに含まれる分子の種類と、第2b分子グループに含まれる分子の種類が、全て異なり、
 第2a分子グループおよび第2b分子グループの一方が、
からなる群から選択される4種以上の分子を含み、
 第2a分子グループおよび第2b分子グループの他方が、
からなる群から選択される4種以上の分子を含む、
 上記(9)に記載の分子メモリ。
(11)アドレス領域とメモリ領域との間に冗長領域が連結され、
 冗長領域は、
  トンネル電流を発生する冗長領域分子で構成され、
  冗長領域分子のコンダクタンスは、アドレス領域およびメモリ領域を構成する分子のコンダクタンスより小さい、
 上記(1)に記載の分子メモリ。
(12)第1アドレス領域とメモリ領域との間に第1冗長領域が連結され、
 第2アドレス領域とメモリ領域との間に第2冗長領域が連結され、
 第1冗長領域および第2冗長領域は、
  トンネル電流を発生する冗長領域分子で構成され、
  冗長領域分子のコンダクタンスは、第1アドレス領域、第2アドレス領域およびメモリ領域を構成する分子のコンダクタンスより小さい、
 上記(9)に記載の分子メモリ。
(13)上記(1)~(12)の何れか一つに記載の分子メモリの製造方法であって、該製造方法は、
 エンコードする情報を準備する情報準備工程と、
 準備された情報を、分子メモリを構成する分子に変換し分子メモリの配列を決定する分子配列決定工程と、
 決定した配列に基づき、分子メモリを構成する分子を合成する合成工程と、
を含む、
 製造方法。
(14)上記(1)~(12)の何れか一つに記載の分子メモリをデコードするためのデバイスであって、該デバイスは、
  基材と、
  基材に形成された流路と、
  分子メモリが通過した時のトンネル電流を測定するための一対の測定用電極と、
  制御部と、
を含み、
 流路は、
  分子メモリ投入流路と、
  測定用電極が配置される分子メモリ測定流路と、
  分子メモリ投入流路と分子メモリ測定流路との間に配置され、分子メモリ投入流路から分子メモリ測定流路に向けて流路幅が狭くなる第1テーパー流路と、
  分子メモリ測定流路を通過した分子メモリを回収する分子メモリ回収流路と、
を含み、
 第1テーパー流路と分子メモリ測定流路の接続部分の幅が20nm~200nmであり、
 解析部は、
  アドレス領域を構成する分子のコンダクタンスおよびメモリ領域を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極を通過する際の方向を特定する、または、
  第1アドレス領域を構成する分子のコンダクタンスおよび第2アドレス領域を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極を通過する際の方向を特定する、
 デバイス。
(15)上記(14)に記載のデバイスを用いた上記(1)~(12)の何れか一つに記載の分子メモリのデコード方法であって、
 分子メモリのデコード方法は、分子メモリ電気泳動工程と、測定工程と、解析工程と、分子メモリ通過方向特定工程と、を含み、
 分子メモリ電気泳動工程は、
  分子メモリ投入流路および分子メモリ回収流路に電圧を印加することで、分子メモリ投入流路の分子メモリを分子メモリ回収流路に向けて電気泳動し、
 測定工程は、
  分子メモリ測定流路に配置された一対の測定用電極の隙間を分子メモリが通過する時のトンネル電流を測定し、
 解析工程は、
  測定したトンネル電流の測定結果から、分子メモリを構成する分子の配列を解析し、
 分子メモリ通過方向特定工程は、
  アドレス領域を構成する分子のコンダクタンスおよびメモリ領域を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極を通過する際の方向を特定する、または、
  第1アドレス領域を構成する分子のコンダクタンスおよび第2アドレス領域を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極を通過する際の方向を特定する、
 分子メモリのデコード方法。
(1) A molecular memory including an address area and a memory area connected to the address area,
The address area and memory area are composed of molecules that generate tunnel current,
The memory area is composed of molecules selected from a first molecule group of four or more types,
The address area is composed of molecules selected from a second molecule group of four or more types,
The molecules included in the first molecule group are:
The types of molecules contained in the second molecule group are all different types, or
Including the same types and different types of molecules contained in the second molecule group,
By that,
At least some of the molecules constituting the address area and the memory area are of different types,
molecular memory.
(2) When the first molecule group includes molecules of the same type as molecules included in the second molecule group, the molecules of the same type included in the first molecule group and the second molecule group are
It is not located at the end of the address area on the memory area side and at the end of the address area side of the memory area.
The molecular memory described in (1) above.
(3) The molecule with the smallest conductance among the molecules included in the first molecule group is not placed at the end of the memory area on the opposite side from the address area side,
The molecule with the smallest conductance among the molecules included in the second molecule group is not placed at the end of the address area on the opposite side to the memory area side.
The molecular memory described in (1) above.
(4) The types of molecules included in the first molecule group are all different from the types of molecules included in the second molecule group.
The molecular memory described in (1) above.
(5) The types of molecules included in the first molecule group are all different from the types of molecules included in the second molecule group.
The molecular memory described in (3) above.
(6) One of the first molecular group or the second molecular group is
4 or more molecules selected from the group consisting of
The other of the first molecular group or the second molecular group is
4 or more molecules selected from the group consisting of
The molecular memory described in (4) above.
(7) The first conductance range is the minimum and maximum conductance range of molecules included in the first molecule group, and the first conductance range is the range between the minimum and maximum conductance of molecules included in the second molecule group. 2 conductance ranges do not overlap,
The molecular memory described in (1) above.
(8) The first conductance range is the minimum and maximum conductance range of molecules included in the first molecule group, and the first conductance range is the range between the minimum and maximum conductance of molecules included in the second molecule group. 2 conductance ranges do not overlap,
The molecular memory described in (6) above.
(9) The address area is
a first address area connected to one end of the memory area;
a second address area connected to the other end of the memory area;
including;
The first address area is composed of molecules selected from four or more types of 2a molecule groups,
The second address area is composed of molecules selected from four or more types of second b molecule groups,
The molecules included in the first molecule group are:
The types of molecules contained in the 2a molecule group are all different types, or
It includes the same types and different types of molecules as those included in the molecule group 2a, and is all different types from the types of molecules included in the molecule group 2b, or
Including the same types and different types of molecules contained in the second b molecule group,
Molecules included in the 2b molecule group are:
The types of molecules contained in the 2a molecule group are all different types, or
Including the same types and different types of molecules contained in the 2a molecule group,
The molecular memory described in (1) above.
(10) The types of molecules included in the first molecule group, the types of molecules included in the 2a molecule group, and the molecule types included in the 2b molecule group are all different,
One of the 2a molecular group and the 2b molecular group,
4 or more molecules selected from the group consisting of
The other of the 2a molecule group and the 2b molecule group is
4 or more molecules selected from the group consisting of
The molecular memory described in (9) above.
(11) A redundant area is connected between the address area and the memory area,
The redundant area is
Consists of redundant region molecules that generate tunnel current,
The conductance of the redundant area molecules is smaller than the conductance of the molecules composing the address area and memory area.
The molecular memory described in (1) above.
(12) a first redundant area is connected between the first address area and the memory area;
a second redundant area is connected between the second address area and the memory area;
The first redundant area and the second redundant area are
Consists of redundant region molecules that generate tunnel current,
The conductance of the redundant area molecules is smaller than the conductance of molecules forming the first address area, the second address area, and the memory area.
The molecular memory described in (9) above.
(13) A method for manufacturing a molecular memory according to any one of (1) to (12) above, comprising:
an information preparation step for preparing information to be encoded;
a molecular sequencing step of converting the prepared information into molecules constituting the molecular memory and determining the arrangement of the molecular memory;
a synthesis step of synthesizing molecules constituting the molecular memory based on the determined sequence;
including,
Production method.
(14) A device for decoding the molecular memory according to any one of (1) to (12) above, the device comprising:
base material and
A flow path formed in the base material,
a pair of measurement electrodes for measuring tunneling current when the molecular memory passes;
a control unit;
including;
The flow path is
a molecular memory input channel;
a molecular memory measurement channel in which measurement electrodes are arranged;
a first tapered channel that is disposed between the molecular memory input channel and the molecular memory measurement channel, and whose channel width becomes narrower from the molecular memory input channel to the molecular memory measurement channel;
a molecular memory recovery channel for recovering the molecular memory that has passed through the molecular memory measurement channel;
including;
The width of the connecting portion between the first taper channel and the molecular memory measurement channel is 20 nm to 200 nm,
The analysis department is
Identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the address area and the conductance of the molecules forming the memory area, or
identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the first address area and the conductance of the molecules forming the second address area;
device.
(15) A method for decoding the molecular memory according to any one of (1) to (12) above using the device according to (14) above,
The molecular memory decoding method includes a molecular memory electrophoresis step, a measurement step, an analysis step, and a molecular memory passage direction identification step,
The molecular memory electrophoresis process is
By applying a voltage to the molecular memory input channel and the molecular memory recovery channel, the molecular memory in the molecular memory input channel is electrophoresed towards the molecular memory recovery channel,
The measurement process is
Measure the tunneling current when the molecular memory passes through the gap between a pair of measurement electrodes placed in the molecular memory measurement channel,
The analysis process is
Based on the measured tunnel current, we analyze the arrangement of the molecules that make up the molecular memory.
The molecular memory passing direction identification process is
Identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the address area and the conductance of the molecules forming the memory area, or
identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the first address area and the conductance of the molecules forming the second address area;
How to decode molecular memory.
 本出願で開示する分子メモリは、構成する分子を一分子単位で読み取ることができる。そのため、アドレス領域およびメモリ領域を構成する分子の少なくとも一部の種類を異なるように設計することで、アドレス領域とメモリ領域を区別できるとともに、容量を大きくできる。 The molecular memory disclosed in this application can read constituent molecules in units of molecules. Therefore, by designing the types of at least some of the molecules constituting the address area and the memory area to be different, the address area and the memory area can be distinguished and the capacity can be increased.
図1は、分子メモリ100の概略を示す概略図である。FIG. 1 is a schematic diagram showing an outline of a molecular memory 100. 図2は、分子メモリ100aの概略を示す概略図である。FIG. 2 is a schematic diagram showing the outline of the molecular memory 100a. 図3は、分子メモリ100’、100a’の概略を示す概略図である。FIG. 3 is a schematic diagram showing the outline of the molecular memories 100', 100a'. 図4は、デバイス1の概略を示す概略図である。FIG. 4 is a schematic diagram showing the outline of the device 1. 図5Aは、デバイス1の流路の関係を説明するための上面図である。FIG. 5A is a top view for explaining the relationship between the flow paths of the device 1. 図5Bは、図5AのX-X矢視断面図である。FIG. 5B is a sectional view taken along the line XX in FIG. 5A. 図5Cは、図5AのY-Y矢視断面図である。FIG. 5C is a sectional view taken along the YY arrow in FIG. 5A. 図6は、基材に流路と測定用電極を作製する手順の一例を示す概略図である。FIG. 6 is a schematic diagram showing an example of a procedure for producing a flow path and a measurement electrode on a base material. 図7は、デコード方法の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of a decoding method.
 以下に、図面を参照しながら、分子メモリ、分子メモリの製造方法、分子メモリのデコード方法および分子メモリをデコードするためのデバイスについて詳しく説明する。 Hereinafter, a molecular memory, a method for manufacturing a molecular memory, a method for decoding a molecular memory, and a device for decoding a molecular memory will be described in detail with reference to the drawings.
 本明細書において、同種の機能を有する部材には、同一または類似の符号が付されている。そして、同一または類似の符号の付された部材について、繰り返しとなる説明が省略される場合がある。 In this specification, members having the same type of function are given the same or similar symbols. Further, repeated descriptions of members labeled with the same or similar symbols may be omitted.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。数値、数値範囲および定性的な表現(例えば、「同一」、「略」等の表現)については、当該技術分野において一般的に許容される誤差を含む数値、数値範囲および性質を示していると解釈されるものとする。 In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits. Numerical values, numerical ranges, and qualitative expressions (e.g., expressions such as "same", "omitted", etc.) are intended to indicate numerical values, numerical ranges, and properties including errors generally accepted in the technical field. shall be subject to interpretation.
 また、図面において示す各構成の位置、大きさ、範囲などは、理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、本出願における開示は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。 Additionally, the position, size, range, etc. of each component shown in the drawings may not represent the actual position, size, range, etc. for ease of understanding. Therefore, the disclosure in this application is not necessarily limited to the position, size, range, etc. disclosed in the drawings.
(分子メモリの実施形態)
 図1乃至図3を参照して、分子メモリ100の実施形態について説明する。図1乃至図3は分子メモリ100の概略を示す概略図である。
(Embodiment of molecular memory)
An embodiment of the molecular memory 100 will be described with reference to FIGS. 1 to 3. 1 to 3 are schematic diagrams showing the outline of a molecular memory 100.
 分子メモリ100は、アドレス領域101と、アドレス領域101に連結するメモリ領域102と、を含む。アドレス領域101およびメモリ領域102は、トンネル電流を発生する分子で構成される。メモリ領域102は4種類以上の第1分子グループから選択した分子で構成され、アドレス領域101を構成する分子は4種類以上の第2分子グループから選択した分子で構成されている。また、第1分子グループに含まれる分子は、第2分子グループに含まれる分子の種類と全て異なる種類であってもよいし、第2分子グループに含まれる分子の種類と同じ種類および異なる種類を含んでもよい。そのため、実施形態に係る分子メモリ100は、アドレス領域101およびメモリ領域102を構成する分子の少なくとも一部は種類が異なるように構成されている。 The molecular memory 100 includes an address area 101 and a memory area 102 connected to the address area 101. Address area 101 and memory area 102 are composed of molecules that generate tunnel current. The memory area 102 is made up of molecules selected from four or more types of first molecule groups, and the molecules forming the address area 101 are made up of molecules selected from four or more types of second molecule groups. Furthermore, the molecules included in the first molecule group may be of different types from the molecules included in the second molecule group, or may be of the same type and different types as the molecules included in the second molecule group. May include. Therefore, the molecular memory 100 according to the embodiment is configured such that at least some of the molecules forming the address area 101 and the memory area 102 are of different types.
 分子メモリ100を構成する分子は、トンネル電流を発生することができ、分子同士を連結できれば特に制限はない。限定されるものではないが、以下の分子が挙げられる。
(1)ヌクレオシド:A(Adenosine)、T(Thymidine)、G(Guanosine)、C(Cytidine)、U(Uridine)、前記ヌクレオシドの修飾物、および、人工ヌクレオシド。
(2)有機半導体分子:チオフェン、ピリジン、ナフタレン、ペンタセン、アントラセン、ルブレン、フタロシアニン、ペリレン、Alq3、ピロール、アニリン、および、前記分子の誘導体。
(3)アミノ酸:Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys Met、Phe、Pro、Ser、Thr、Trp、Tyr、Va等、アセチル化アミノ酸、および、メチル化アミノ酸。
(4)糖鎖:α、βグルコースおよびその異性体、ペントース、ヘキソース、および、アミノ糖等。
The molecules constituting the molecular memory 100 can generate a tunnel current and are not particularly limited as long as the molecules can be connected to each other. Including, but not limited to, the following molecules:
(1) Nucleosides: A (Adenosine), T (Thymidine), G (Guanosine), C (Cytidine), U (Uridine), modified products of the above nucleosides, and artificial nucleosides.
(2) Organic semiconductor molecules: thiophene, pyridine, naphthalene, pentacene, anthracene, rubrene, phthalocyanine, perylene, Alq3, pyrrole, aniline, and derivatives of the above molecules.
(3) Amino acids: Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, He, Leu, Lys Met, Phe, Pro, Ser, Thr, Trp, Tyr, Va, etc., acetylated amino acids, and , methylated amino acids.
(4) Sugar chains: α, β glucose and its isomers, pentoses, hexoses, amino sugars, etc.
 実施形態に係る分子メモリ100は、後述する分子メモリをデコードするためのデバイスを用いた分子メモリ100のデコード方法により、構成する分子のコンダクタンスの違いに基づき、1分子単位で識別ができる。ところで、分子メモリ100は、細長い形状であり、後述するデバイスを用いてデコードした際に、細長い分子メモリ100のアドレス領域101側からデコードされる場合と、メモリ領域102側からデコードされる場合が混在する。しかしながら、第1分子グループに含まれる分子の種類が、第2分子グループに含まれる分子の種類と全て異なる場合、アドレス領域101を構成する分子の種類は、メモリ領域102を構成する分子の種類と全て異なる。その場合、読み取った分子の種類に基づき、アドレス領域101と、メモリ領域102を容易に特定できる。 The molecular memory 100 according to the embodiment can be identified in units of molecules based on the difference in conductance of the constituent molecules by a decoding method of the molecular memory 100 using a device for decoding molecular memory, which will be described later. By the way, the molecular memory 100 has an elongated shape, and when it is decoded using a device to be described later, there are cases in which it is decoded from the address area 101 side of the elongated molecular memory 100 and cases where it is decoded from the memory area 102 side. do. However, if the types of molecules included in the first molecule group are all different from the types of molecules included in the second molecule group, the types of molecules making up the address area 101 will be different from the types of molecules making up the memory area 102. All different. In that case, the address area 101 and the memory area 102 can be easily identified based on the type of molecule read.
 次に、第1分子グループに含まれる分子および第2分子グループに含まれる分子が同じ種類と異なる種類を含み、その結果、アドレス領域101を構成する分子の種類が、メモリ領域102を構成する分子と同じ種類および異なる種類を含む場合について説明する。分子メモリ100を設計する際に、アドレス領域101の長さと、メモリ領域102の長さは予め設定することが可能である。したがって、一分子単位で分子メモリ100を読み取った際に、アドレス領域101のみに含まれる分子、及び/又は、メモリ領域102のみに含まれる分子を読み取った位置と、アドレス領域101の長さおよびメモリ領域102の長さに基づき、アドレス領域101とメモリ領域102を特定できる。 Next, the molecules included in the first molecule group and the molecules included in the second molecule group include the same type and different types, and as a result, the type of molecules constituting the address area 101 is different from that of the molecules constituting the memory area 102. Cases in which the same type and different types are included will be explained. When designing the molecular memory 100, the length of the address area 101 and the length of the memory area 102 can be set in advance. Therefore, when reading the molecule memory 100 in units of molecules, the position where the molecule contained only in the address area 101 and/or the molecule contained only in the memory area 102 is read, the length of the address area 101, and the memory Based on the length of the area 102, the address area 101 and the memory area 102 can be specified.
 なお、第1分子グループに含まれる分子および第2分子グループに含まれる分子が同じ種類の分子を含む場合、任意付加的に、アドレス領域101のメモリ領域102側の末端およびメモリ領域102のアドレス領域101側の末端には、同じ種類の分子が配置されないように設計してもよい。アドレス領域101およびメモリ領域102の連結部分に同じ種類の分子が配置されない場合は、アドレス領域101と、メモリ領域102の特定がし易くなる。 Note that when the molecules included in the first molecule group and the molecules included in the second molecule group include molecules of the same type, the end of the address area 101 on the memory area 102 side and the address area of the memory area 102 may be optionally added. The end on the 101 side may be designed so that molecules of the same type are not placed. If molecules of the same type are not placed in the connection between the address area 101 and the memory area 102, the address area 101 and the memory area 102 can be easily identified.
 本出願で開示する分子メモリ100は、コンダクタンスにより識別する。ところで、本発明者らは、トンネル電流を用いて細長い分子を測定する際に、細長い分子の末端部分は中央部分と比較して読み取りの精度がやや劣ることを、実験を通して新たに見出している。その理由としては、細長い分子の末端部分は熱運動の影響を受けるが、中心部分は熱運動の影響が少ないためと考えられる。また、コンダクタンスにより分子を読み取る際に、デバイスの電気ノイズが分子の読み取り精度に影響を与えることも実験を通して新たに見出している。 The molecular memory 100 disclosed in this application is identified by conductance. By the way, the present inventors have newly discovered through experiments that when measuring elongated molecules using tunneling current, the accuracy of reading is slightly lower at the end portions of the elongated molecules than at the central portion. The reason for this is thought to be that the end portions of elongated molecules are affected by thermal motion, but the central portion is less affected by thermal motion. Additionally, through experiments we discovered that the electrical noise of the device affects the accuracy of reading molecules when reading molecules using conductance.
 上記実験から得られた知見に基づき、任意付加的に、第1分子グループに含まれる分子の中でコンダクタンスが最も小さい分子は、アドレス領域101側とは反対側のメモリ領域102の末端には配置されず、第2分子グループに含まれる分子の中でコンダクタンスが最も小さい分子は、メモリ領域102側とは反対側のアドレス領域101の末端には配置されないように設計してもよい。各領域を構成する分子グループの中で、コンダクタンスが最も小さい分子を分子メモリ100の末端に配置しないこと、換言すると、分子グループの中でコンダクタンスが高い分子を末端に配置することで、電気ノイズや熱運動の影響があっても分子の読み取り精度が高くなる。各領域を構成する分子グループの中で、コンダクタンスが最も高い分子を分子メモリ100の末端に配置することが最も好ましいが、勿論2番目にコンダクタンスが高い分子を末端に配置してもよい。選択できる分子の中でコンダクタンスが最も小さい分子以外を分子メモリの末端に配置することで、各領域を構成する分子のコンダクタンスを全く考慮しない場合と比較して、分子を読み取る精度を向上できる。 Based on the knowledge obtained from the above experiment, the molecule with the smallest conductance among the molecules included in the first molecule group is optionally placed at the end of the memory area 102 on the opposite side from the address area 101 side. Alternatively, the molecule having the smallest conductance among the molecules included in the second molecule group may be designed so as not to be placed at the end of the address area 101 on the opposite side to the memory area 102 side. By not placing the molecule with the lowest conductance at the end of the molecular memory 100 among the molecule groups constituting each region, in other words, by placing the molecule with the highest conductance at the end of the molecule group, electrical noise can be reduced. The accuracy of reading molecules is increased even under the influence of thermal motion. Among the molecule groups constituting each region, it is most preferable to arrange the molecule with the highest conductance at the end of the molecular memory 100, but of course the molecule with the second highest conductance may be arranged at the end. By placing molecules other than those with the smallest conductance among the selectable molecules at the end of the molecular memory, the accuracy of reading molecules can be improved compared to the case where the conductance of the molecules that make up each region is not considered at all.
 メモリ領域102を構成する第1分子グループとしては、例えば、以下の<分子グループ1>に例示される分子が挙げられる。なお、以下の分子は単なる例示であって、限定されるものではない。また、以下の<分子グループ1>に例示される分子は、第2分子グループとして用いてもよい。
Examples of the first molecule group constituting the memory area 102 include molecules exemplified by <Molecular Group 1> below. It should be noted that the following molecules are merely examples and are not intended to be limiting. Further, the molecules exemplified in <Molecular Group 1> below may be used as the second molecule group.
 また、アドレス領域101を構成する第2分子グループとして、例えば、以下の<分子グループ2>および<分子グループ3>に例示される分子が挙げられる。なお、以下の分子は単なる例示であって、限定されるものではない。また、以下の<分子グループ2>および<分子グループ3>に例示される分子は、第1分子グループとして用いてもよい。
Furthermore, examples of the second molecule group constituting the address area 101 include molecules exemplified by <Molecular Group 2> and <Molecular Group 3> below. It should be noted that the following molecules are merely examples and are not intended to be limiting. Furthermore, the molecules exemplified in <Molecular Group 2> and <Molecular Group 3> below may be used as the first molecule group.
 また、上記<分子グループ1>、<分子グループ2>および<分子グループ3>に例示した化合物のConductanceおよびRelative Gの値を以下の表1に示す。なお、表1に示すConductanceおよびRelative Gは、後述するデバイス1を用いて測定した値である。また、ConductanceおよびRelative Gの技術的意義については後述する。
Further, the values of Conductance and Relative G of the compounds exemplified in <Molecular Group 1>, <Molecular Group 2>, and <Molecular Group 3> are shown in Table 1 below. Note that Conductance and Relative G shown in Table 1 are values measured using Device 1, which will be described later. Further, the technical significance of Conductance and Relative G will be described later.
 分子の構造が異なれば、コンダクタンスも異なる。したがって、上述した分子メモリ100はコンダクタンスに基づき分子を識別できるが、任意付加的に、アドレス領域101とメモリ領域102を構成する分子のコンダクタンスがオーバーラップしないように設計してもよい。より具体的には、第1分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第1コンダクタンス範囲と、第2分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第2コンダクタンス範囲とが、オーバーラップしないように各グループに含まれる分子を選択すればよい。アドレス領域101およびメモリ領域102を構成するそれぞれの分子のコンダクタンスがオーバーラップしないように設計した場合、アドレス領域101とメモリ領域102を容易に区別できるとともに、何れの領域側からデコードしたのか容易に特定できるという効果を奏する。 If the structure of the molecule differs, the conductance will also differ. Therefore, although the above-described molecular memory 100 can identify molecules based on conductance, it may optionally be designed so that the conductances of the molecules forming the address area 101 and the memory area 102 do not overlap. More specifically, the first conductance range is the range of the minimum and maximum conductance of molecules included in the first molecule group, and the range of the minimum and maximum conductance of molecules included in the second molecule group. Molecules included in each group may be selected so that the second conductance range does not overlap. If the design is such that the conductances of the molecules constituting the address area 101 and the memory area 102 do not overlap, it is possible to easily distinguish between the address area 101 and the memory area 102, and also to easily identify which area is being decoded. It has the effect of being able to do it.
 第1コンダクタンス範囲と、第2コンダクタンス範囲とが、オーバーラップしないように設計した場合、第1コンダクタンス範囲>第2コンダクタンス範囲としてもよいし、第1コンダクタンス範囲<第2コンダクタンス範囲としてもよい。 If the first conductance range and the second conductance range are designed so as not to overlap, the first conductance range may be greater than the second conductance range, or the first conductance range may be less than the second conductance range.
 なお、第1コンダクタンス範囲と、第2コンダクタンス範囲とがオーバーラップしないようにすることは、上記のとおり任意付加的な設計である。第1コンダクタンス範囲と、第2コンダクタンス範囲の一部がオーバーラップしていても、分子の種類が異なればコンダクタンスが異なることから、分子の種類は特定できる。例えば、表1に示す例では、第1分子グループのコンダクタンスの範囲は、25.8(FTD)~123.0(guanosine)である。一方、第2分子グループのコンダクタンスは、108.2(AmdU)、110.7(m6A)~270.6(TTFdU)である。表1に示す例では、第2分子グループに含まれる分子を設計する際に、AmdU及び/又はm6Aを含むように設計してもよいし、含まないように設計してもよい。第1コンダクタンス範囲と第2コンダクタンス範囲の一部がオーバーラップしていても、第1コンダクタンス範囲の分子で構成した領域と、第2コンダクタンス範囲の分子で構成した領域とでは、コンダクタンスの分布が異なる。したがって、コンダクタンス範囲を考慮しない設計と比較して、アドレス領域101とメモリ領域102の区別、および、何れの領域側からデコードしたのかの特定は容易になる。 Note that preventing the first conductance range and the second conductance range from overlapping is an optional additional design as described above. Even if the first conductance range and the second conductance range partially overlap, the type of molecule can be identified because different types of molecules have different conductances. For example, in the example shown in Table 1, the range of conductance of the first molecule group is 25.8 (FTD) to 123.0 (guanosine). On the other hand, the conductance of the second molecule group is 108.2 (AmdU) and 110.7 (m6A) to 270.6 (TTFdU). In the example shown in Table 1, when designing the molecules included in the second molecule group, they may be designed to include AmdU and/or m6A, or may be designed not to include AmdU and/or m6A. Even if the first conductance range and the second conductance range partially overlap, the conductance distribution will be different between the region made up of molecules in the first conductance range and the region made up of molecules in the second conductance range. . Therefore, compared to a design that does not consider the conductance range, it becomes easier to distinguish between the address area 101 and the memory area 102, and to specify which area side the decoding starts from.
 アドレス領域101およびメモリ領域102を構成する分子の種類は、目的とする容量に応じて適宜設計すればよい。例えば、それぞれの領域を構成する分子グループに含まれる多数の分子の中から、4種類、8種類、16種類等を選択すればよい。なお、一般的なメモリは2の乗数に限定される。一方、本出願で開示する分子メモリ100は、一分子単位で構成する分子を読み取ることができる。そのため、例えば、それぞれの領域の末端のみに同一領域内の分子とは異なる種類の分子を配置することで領域の末端を識別したり、同一の領域内であっても特定の機能を追加する部分のみ同一領域内の分子とは異なる種類の分子を配置する等の各種設計が可能である。したがって、本出願で開示する分子メモリ100のそれぞれの領域を構成する分子は、5~7種類、9~15種類、17種類以上であってもよい。 The types of molecules constituting the address area 101 and the memory area 102 may be appropriately designed depending on the intended capacity. For example, 4 types, 8 types, 16 types, etc. may be selected from a large number of molecules included in the molecule groups constituting each region. Note that general memory is limited to a power of two. On the other hand, the molecular memory 100 disclosed in this application can read molecules composed of single molecules. Therefore, for example, you can identify the end of a region by placing a different type of molecule from the molecules in the same region only at the end of each region, or add a specific function even within the same region. Various designs are possible, such as arranging molecules of a different type than those in the same region. Therefore, the number of molecules constituting each area of the molecular memory 100 disclosed in this application may be 5 to 7 types, 9 to 15 types, or 17 or more types.
 なお、分子メモリ100は、構成する分子を組み合わせることで所望の情報をエンコードする。例えば、メモリ領域102を構成する第1分子グループに含まれる分子の種類を、A、B、C、Dの4種類とし、メモリ領域102の長さをLとする。その場合、情報をエンコードすることで作製したメモリ領域102は、エンコードする情報の中身により、長さLを構成する分子が全てAになる場合、AおよびBのみになる場合、A~Dの4種類全てを含む場合等、Lの長さの中には多様な配列が含まれる。したがって、第1分子グループおよび第2分子グループに含まれる分子の種類と、実際に作製した分子メモリを構成する分子の種類は、完全に一致しなくてもよい。 Note that the molecule memory 100 encodes desired information by combining constituent molecules. For example, assume that the types of molecules included in the first molecule group constituting the memory area 102 are four types, A, B, C, and D, and the length of the memory area 102 is L. In that case, the memory area 102 created by encoding information may be divided into four molecules A to D, depending on the content of the information to be encoded. The length of L includes various sequences, such as when all types are included. Therefore, the types of molecules included in the first molecule group and the second molecule group and the types of molecules constituting the actually produced molecular memory do not need to completely match.
 アドレス領域101とメモリ領域102の長さは、分子メモリ100を構成する分子を合成できる長さであれば特に制限はない。なお、実施形態に係る分子メモリ100は、構成する分子を1分子単位で読み取ることができ、且つ、多種類の分子を用いることができることから、短い長さで多くの情報を格納できる。 The lengths of the address area 101 and the memory area 102 are not particularly limited as long as they are long enough to synthesize the molecules that make up the molecular memory 100. Note that the molecular memory 100 according to the embodiment can read constituent molecules in units of molecules and can use many types of molecules, so it can store a large amount of information in a short length.
 例えば、アドレス領域101は16種類の分子を用いて長さが20分子と仮定し、メモリ領域102は4種類の分子を用いて長さが100分子と仮定する。その場合、全メモリ容量は以下のとおりとなる。
(1)アドレス領域101の組み合わせ数
 1620=280
(2)メモリ領域102のバイト数
 ・4種類の分子→4=2→2ビット
 ・2ビット×100=200ビット
 ・200÷8=25バイト
(3)全メモリ容量
・25バイト×280
 ここで、210=1024≒10であるから、25バイト×280→25バイト×1024→25ヨタバイト。
For example, it is assumed that the address area 101 uses 16 types of molecules and has a length of 20 molecules, and the memory area 102 uses 4 types of molecules and has a length of 100 molecules. In that case, the total memory capacity will be as follows.
(1) Number of combinations of address areas 101 16 20 = 2 80
(2) Number of bytes in memory area 102 - 4 types of molecules → 4 = 2 2 → 2 bits - 2 bits x 100 = 200 bits - 200 ÷ 8 = 25 bytes (3) Total memory capacity - 25 bytes x 2 80
Here, since 2 10 = 1024≒10 3 , 25 bytes x 2 80 → 25 bytes x 10 24 → 25 yottabytes.
 25ヨタバイトは、人類が産生してきた記憶容量を凌駕する容量である。 25 yottabytes is a memory capacity that exceeds the memory capacity that humans have ever produced.
 実施形態に係る分子メモリ100は以下の効果を奏する。
(a)従来のDNAメモリは4種類のDNAの組み合わせであるが、実施形態に係る分子メモリ100は、アドレス領域101を構成する分子と、メモリ領域102を構成する分子の種類が完全に一致しないように変えている。したがって、分子の組み合わせを増大できることから分子メモリ100が短くても大量の情報を格納できる。
(b)分子メモリ100は細長い形状である。そのため、分子メモリ100をデコードするためのデバイスの測定用電極を分子メモリ100が通過する際の方向は一定ではない。アドレス領域101を構成する分子と、メモリ領域102を構成する分子の種類が完全に一致しないように設計することで、分子メモリ100が測定用電極を通過した方向を容易に特定できる。
(c)第1コンダクタンス範囲と第2コンダクタンスが完全にオーバーラップしない、または、一部のみオーバーラップするように設計した場合、分子メモリ100をデコードした際に、アドレス領域101とメモリ領域102の区別が容易になる。したがって、アドレス領域101とメモリ領域102の境界を高精度で読み取ることができ、記憶エラーが低くなる。
The molecular memory 100 according to the embodiment has the following effects.
(a) Conventional DNA memory is a combination of four types of DNA, but in the molecular memory 100 according to the embodiment, the types of molecules forming the address area 101 and the molecules forming the memory area 102 do not completely match. I'm changing it like this. Therefore, since the number of combinations of molecules can be increased, a large amount of information can be stored even if the molecule memory 100 is short.
(b) The molecular memory 100 has an elongated shape. Therefore, the direction in which the molecular memory 100 passes through the measurement electrode of the device for decoding the molecular memory 100 is not constant. By designing so that the types of molecules forming the address area 101 and the molecules forming the memory area 102 do not completely match, the direction in which the molecular memory 100 passes through the measurement electrode can be easily identified.
(c) If the first conductance range and the second conductance range are designed so that they do not completely overlap or only partially overlap, the address area 101 and the memory area 102 can be distinguished when the molecular memory 100 is decoded. becomes easier. Therefore, the boundary between the address area 101 and the memory area 102 can be read with high precision, reducing storage errors.
 次に、分子メモリ100が採用可能な任意付加的な構成例について説明する。
(第1アドレス領域および第2アドレス領域)
 図1に示す分子メモリ100のアドレス領域101は一つであるが、図2に示すように、分子メモリ100aは、2つのアドレス領域を含んでもよい。図2に示す例では、メモリ領域102の一端に連結する第1アドレス領域101aと、メモリ領域102の他端に連結する第2アドレス領域101bと、を含んでいる。
Next, an optional additional configuration example that can be adopted by the molecular memory 100 will be described.
(First address area and second address area)
The molecular memory 100 shown in FIG. 1 has one address area 101, but as shown in FIG. 2, the molecular memory 100a may include two address areas. The example shown in FIG. 2 includes a first address area 101a connected to one end of the memory area 102, and a second address area 101b connected to the other end of the memory area 102.
 第1アドレス領域101aは、2種類以上の第2a分子グループから選択した分子で構成され、第2アドレス領域101bは、2種類以上の第2b分子グループから選択した分子で構成される。第1アドレス領域101aおよび第2アドレス領域101bを構成する分子の関係と、メモリ領域102を構成する分子の関係は、上記したアドレス領域101とメモリ領域102の関係と同じである。具体的には、第1分子グループに含まれる分子は、第2a分子グループに含まれる分子の種類と全て異なる種類である、または、第2a分子グループに含まれる分子の種類と同じ種類および異なる種類を含み、且つ、第2b分子グループに含まれる分子の種類と全て異なる種類である、または、第2b分子グループに含まれる分子の種類と同じ種類および異なる種類を含む。つまり、第1アドレス領域101aおよび第2アドレス領域101bを構成する分子の種類と、メモリ領域102を構成する分子の種類が、完全に一致しなければよい。 The first address area 101a is made up of molecules selected from two or more types of second-a molecule groups, and the second address area 101b is made up of molecules selected from two or more types of second-b molecule groups. The relationship between the molecules forming the first address area 101a and the second address area 101b and the relationship between the molecules forming the memory area 102 are the same as the relationship between the address area 101 and the memory area 102 described above. Specifically, the molecules included in the first molecule group are all different types from the types of molecules included in the 2a molecule group, or the same types and different types of molecules are included in the 2a molecule group. and are all different types from the types of molecules included in the 2b molecule group, or include the same types and different types of molecules as the molecule types included in the 2b molecule group. In other words, the types of molecules forming the first address area 101a and the second address area 101b and the types of molecules forming the memory area 102 need not completely match.
 なお、第1アドレス領域101aおよび第2アドレス領域101bを含む場合は、第1アドレス領域101aおよび第2アドレス領域101bを区別する必要がある。そのため、第2b分子グループに含まれる分子は、第2a分子グループに含まれる分子の種類と全て異なる種類である、または、第2a分子グループに含まれる分子の種類と同じ種類および異なる種類を含むように設計すればよい。 Note that when the first address area 101a and the second address area 101b are included, it is necessary to distinguish between the first address area 101a and the second address area 101b. Therefore, the molecules included in the 2b molecule group are all different types from the molecules included in the 2a molecule group, or include the same types and different types of molecules as the 2a molecule group. It should be designed to.
 第1アドレス領域101aおよび第2アドレス領域101bを含む場合も、分子メモリ100aの設計思想は、アドレス領域101とメモリ領域102を含む分子メモリ100と同じである。したがって、分子メモリ100について記載した事項は、分子メモリ100aに適用可能である。 Even when it includes the first address area 101a and the second address area 101b, the design concept of the molecular memory 100a is the same as that of the molecular memory 100 that includes the address area 101 and the memory area 102. Therefore, what has been described for molecular memory 100 is applicable to molecular memory 100a.
 例えば、第1分子グループが、第2a分子グループおよび第2b分子グループに含まれる分子と同じ種類の分子を含む場合、同じ種類の分子は、第1アドレス領域101aとメモリ領域102の連結部分の双方の領域の末端、および、第2アドレス領域101bとメモリ領域102の連結部分の双方の領域の末端に配置されないようにすることが好ましい。 For example, if the first molecule group includes molecules of the same type as molecules included in the 2a molecule group and the 2b molecule group, the same molecule is present in both the connected portion of the first address area 101a and the memory area 102. It is preferable not to arrange it at the end of the area and at the end of both the areas where the second address area 101b and the memory area 102 are connected.
 また、第2a分子グループおよび第2b分子グループに含まれ分子の中でコンダクタンスが最も小さい分子は、メモリ領域102側とは反対側の第1アドレス領域101aの末端及び/又は第2アドレス領域101bの末端には配置されないことが好ましい。 Furthermore, the molecule included in the 2a molecule group and the 2b molecule group and having the smallest conductance is the end of the first address area 101a on the opposite side to the memory area 102 and/or the end of the second address area 101b. Preferably, it is not located at the end.
 また、第2a分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲を第2aコンダクタンス範囲とし、第2b分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲を第2bコンダクタンス範囲とした場合、
・第1コンダクタンス範囲>第2aコンダクタンス範囲>第2bコンダクタンス範囲
・第1コンダクタンス範囲>第2bコンダクタンス範囲>第2aコンダクタンス範囲
・第2aコンダクタンス範囲>第1コンダクタンス範囲>第2bコンダクタンス範囲
・第2aコンダクタンス範囲>第2bコンダクタンス範囲>第1コンダクタンス範囲
・第2bコンダクタンス範囲>第1コンダクタンス範囲>第2aコンダクタンス範囲
・第2bコンダクタンス範囲>第2aコンダクタンス範囲>第1コンダクタンス範囲
の何れであってもよい。
Furthermore, the range of the minimum and maximum conductance of molecules included in the 2a molecule group is defined as the 2a conductance range, and the range of the minimum and maximum conductance of molecules included in the 2b molecule group is defined as the 2b conductance range. If
・1st conductance range>2nd a conductance range>2nd b conductance range・1st conductance range>2nd b conductance range>2nd a conductance range・2nd a conductance range>1st conductance range>2nd b conductance range・2nd a conductance range > 2nd b conductance range > 1st conductance range, 2nd b conductance range > 1st conductance range > 2nd a conductance range, 2nd b conductance range > 2nd a conductance range > 1st conductance range.
 また、第1コンダクタンス範囲、第2aコンダクタンス範囲、第2bコンダクタンス範囲は、それぞれの範囲が完全にオーバーラップしないように設計してもよいし、一部がオーバーラップしてもよい。 Furthermore, the first conductance range, the second a conductance range, and the second b conductance range may be designed so that the respective ranges do not completely overlap, or may partially overlap.
 なお、上記のとおり、トンネル電流を用いて細長い分子を測定する際に、細長い分子の末端部分は中央部分と比較して読み取りの精度がやや劣る。そして、情報を格納するという意味では、メモリ領域102の方が第1アドレス領域101aおよび第2アドレス領域101bより重要性は高い。したがって、第1アドレス領域101aと第2アドレス領域101bを設ける場合は、読み取り精度を考慮すると、
・第2aコンダクタンス範囲>第2bコンダクタンス範囲>第1コンダクタンス範囲
・第2bコンダクタンス範囲>第2aコンダクタンス範囲>第1コンダクタンス範囲
とすることが好ましい。
Note that, as described above, when measuring an elongated molecule using tunneling current, the accuracy of reading is slightly lower at the end portion of the elongated molecule than at the central portion. In terms of storing information, the memory area 102 is more important than the first address area 101a and the second address area 101b. Therefore, when providing the first address area 101a and the second address area 101b, considering reading accuracy,
- It is preferable to set it as 2nd a conductance range > 2nd b conductance range > 1st conductance range - 2nd b conductance range > 2nd a conductance range > 1st conductance range.
 第2a分子グループは、例えば、上記<分子グループ2>および<分子グループ3>に例示されるグループの一方、第2b分子グループは<分子グループ2>および<分子グループ3>の他方が挙げられる。なお、分子は単なる例示であって、限定されるものではない。 The 2-a molecular group is, for example, one of the groups exemplified by the above-mentioned <Molecular Group 2> and <Molecular Group 3>, and the 2-b Molecular Group is the other of the <Molecular Group 2> and <Molecular Group 3>. Note that the molecules are merely examples, and are not limited.
 アドレス領域を2つ設けた場合は、分子メモリ100が奏する上記(a)~(d)に記載の効果に加えて、以下の効果を奏する。
(e)アドレス領域を2つ設けると、分子メモリを構成する全長は少し長くなるが、少ない分子の種類で分子メモリ100と同様の容量を得ることができる。例えば、第1アドレス領域101aは4種類の分子を用いて長さが20分子と仮定し、メモリ領域102は4種類の分子を用いて長さが100分子と仮定し、第2アドレス領域101bは4種類の分子を用いて長さが20分子と仮定しする。その場合、全メモリ容量は以下のとおりとなる。
(1)第1アドレス領域101aの組み合わせ数
 420=240
(2)第2アドレス領域101bの組み合わせ数
 420=240
(3)メモリ領域102のバイト数
 ・4種類の分子→4=2→2ビット
 ・2ビット×100=200ビット
 ・200÷8=25バイト
(4)全メモリ容量
・25バイト×240×240=25バイト×280
 ここで、210=1024≒10であるから、25バイト×280→25バイト×1024→25ヨタバイト。
 図1に示す分子メモリ100は、合計20種類・全長120個の分子で25ヨタバイトの容量が得られる。一方、図2に示す分子メモリ100aは、合計12種類・全長140個の分子で25ヨタバイトの容量が得られる。分子の種類を少なくできることにより、コンダクタンスの差がある分子の選択の自由度が向上する。そして、分子間のコンダクタンスの差が大きくなるほど、トンネル電流を測定する際の読み間違いが少なくなる。したがって、図2に示す分子メモリ100aは、構成する分子を選択することで、読み取り精度を向上できる。
(f)上記のとおり、トンネル電流を用いて細長い分子を測定する際に、細長い分子の末端部分は中央部分と比較して読み取りの精度がやや劣る。しかしながら、情報を格納するメモリ領域102を第1アドレス領域101aおよび第2アドレス領域101bの間に配置することで、分子メモリ100と比較して、情報を格納するメモリ領域102の読み取り精度を高くできる。
(g)メモリ領域102を、メモリ領域102のコンダクタンスより大きいコンダクタンスを有する第1アドレス領域101aと第2アドレス領域101bで挟まれた構造とした場合、メモリ領域102および第1アドレス領域101aの区分、並びに、メモリ領域102および第2アドレス領域101bの区別が明確となる。
(h)また、メモリ領域102を、メモリ領域102のコンダクタンスより大きいコンダクタンスを有する第1アドレス領域101aと第2アドレス領域101bで挟まれた構造とした場合、分子メモリの両端部側にコンダクタンスが高い分子が配置されることから、熱運動等の影響による読み取り精度の低下が防止できる。
When two address areas are provided, in addition to the effects described in (a) to (d) above that the molecular memory 100 exhibits, the following effects are achieved.
(e) If two address areas are provided, the total length of the molecular memory becomes a little longer, but the same capacity as the molecular memory 100 can be obtained with fewer types of molecules. For example, it is assumed that the first address area 101a uses four types of molecules and has a length of 20 molecules, the memory area 102 uses four types of molecules and has a length of 100 molecules, and the second address area 101b uses four types of molecules and is assumed to have a length of 100 molecules. Assume that four types of molecules are used and the length is 20 molecules. In that case, the total memory capacity will be as follows.
(1) Number of combinations of first address area 101a 4 20 = 2 40
(2) Number of combinations of second address area 101b 4 20 = 2 40
(3) Number of bytes in memory area 102 - 4 types of molecules → 4 = 2 2 → 2 bits - 2 bits x 100 = 200 bits - 200 ÷ 8 = 25 bytes (4) Total memory capacity - 25 bytes x 2 40 x 2 40 = 25 bytes x 2 80
Here, since 2 10 = 10 24 ≒ 10 3 , 25 bytes x 2 80 → 25 bytes x 10 24 → 25 yottabytes.
The molecular memory 100 shown in FIG. 1 has a capacity of 25 yottabytes with a total of 20 types of molecules and a total length of 120 molecules. On the other hand, the molecular memory 100a shown in FIG. 2 has a capacity of 25 yottabytes with a total of 12 types of molecules and a total length of 140 molecules. By reducing the number of types of molecules, the degree of freedom in selecting molecules with different conductances increases. The greater the difference in conductance between molecules, the fewer errors occur when measuring tunnel current. Therefore, the molecule memory 100a shown in FIG. 2 can improve reading accuracy by selecting constituent molecules.
(f) As mentioned above, when measuring an elongated molecule using tunneling current, the accuracy of reading is slightly lower at the end portion of the elongated molecule than at the central portion. However, by arranging the memory area 102 that stores information between the first address area 101a and the second address area 101b, the reading accuracy of the memory area 102 that stores information can be increased compared to the molecular memory 100. .
(g) When the memory area 102 is sandwiched between a first address area 101a and a second address area 101b having a conductance larger than the conductance of the memory area 102, the division of the memory area 102 and the first address area 101a, Furthermore, the memory area 102 and the second address area 101b can be clearly distinguished.
(h) Furthermore, if the memory area 102 is sandwiched between the first address area 101a and the second address area 101b, which have a conductance larger than the conductance of the memory area 102, the conductance is higher at both ends of the molecular memory. Since the molecules are arranged, it is possible to prevent deterioration in reading accuracy due to the effects of thermal movement, etc.
(冗長領域)
 図3に示すように、分子メモリ100は、アドレス領域とメモリ領域との間に冗長領域103が連結されてもよい(分子メモリ100’)。また、分子メモリ100aは、第1アドレス領域101aとメモリ領域102との間に第1冗長領域103aが連結され、第2アドレス領域101bとメモリ領域102との間に第2冗長領域103bが連結されてもよい(分子メモリ100a’)。冗長領域103、103a、103bは、トンネル電流を発生する冗長領域分子で構成され、冗長領域分子のコンダクタンスは(第1、第2)アドレス領域101およびメモリ領域102を構成する分子のコンダクタンスより小さくなるように設計する。
(redundant area)
As shown in FIG. 3, in the molecular memory 100, a redundant area 103 may be connected between the address area and the memory area (molecular memory 100'). Further, in the molecular memory 100a, a first redundant area 103a is connected between the first address area 101a and the memory area 102, and a second redundant area 103b is connected between the second address area 101b and the memory area 102. (Molecular memory 100a'). The redundant regions 103, 103a, and 103b are composed of redundant region molecules that generate tunnel current, and the conductance of the redundant region molecules is smaller than the conductance of the molecules forming the (first and second) address region 101 and memory region 102. Design as follows.
 冗長領域分子は、(第1、第2)アドレス領域101およびメモリ領域102を構成する分子のコンダクタンスより小さく、分子同士を連結できれば特に制限はない。限定をされるものではないが、例えば、以下の化合物を挙げることができる。
The conductance of the redundant area molecules is smaller than the conductance of the molecules forming the (first and second) address areas 101 and the memory area 102, and there is no particular restriction as long as the molecules can be connected to each other. Examples include, but are not limited to, the following compounds.
 冗長領域103、103a、103bは、(第1、第2)アドレス領域101とメモリ領域102を区別しやすくするために設けられる。したがって、冗長領域103、103a、103bの長さは短くてよく、例えば、2分子、3分子、4分子、5分子、6分子、7分子、8分子程度あればよい。なお、図3に示す例では、冗長領域103、103a、103bは、(第1、第2)アドレス領域101とメモリ領域102の間に連結されている。図示は省略するが、冗長領域は、図3に示す位置に加え、アドレス領域の端部(分子メモリ100’の場合はアドレス領域101の左端部、分子メモリ100a’の場合は第1アドレス領域101aの左側端部、および/または、第2アドレス領域101bの右側端部)にも連結してもよい。また、分子メモリ100’の場合は、メモリ領域102のもう一方の末端に連結してもよい。 The redundant areas 103, 103a, and 103b are provided to make it easier to distinguish between the (first and second) address area 101 and memory area 102. Therefore, the length of the redundant regions 103, 103a, and 103b may be short, for example, about 2 molecules, 3 molecules, 4 molecules, 5 molecules, 6 molecules, 7 molecules, or 8 molecules. In the example shown in FIG. 3, the redundant areas 103, 103a, and 103b are connected between the (first and second) address area 101 and the memory area 102. Although not shown, the redundant area is located not only at the position shown in FIG. and/or the right end of the second address area 101b). Further, in the case of the molecular memory 100', it may be connected to the other end of the memory area 102.
 冗長領域103、103a、103bを設けた場合は、分子メモリ100、100aが奏する上記(a)~(h)に記載の効果に加えて、以下の効果を奏する。
(i)冗長領域を設けることで、(第1、第2)アドレス領域101とメモリ領域102の区別がより明確になる。
(j)冗長領域に、デコードの際に分子を飛ばして読み取っても情報を回復するための配列(重複情報となる配列)を付加できる(例えば、同じ配列を繰り返す、情報を+1とした配列を作成するなど)。当該配列を付加した場合、情報の再現性の確保ができる。
(k)情報セキュリティのため、冗長領域に暗号コードに相当する配列を挿入することもできる(例えば、解読コードにより、元の情報が再構成できるようにする)。その場合、情報漏洩防止になる。
(l)また、冗長領域を、アドレス領域の端部(分子メモリ100’の場合はアドレス領域101の左端部、分子メモリ100a’の場合は第1アドレス領域101aの左側端部、および/または、第2アドレス領域101bの右側端部にも連結した場合は、上記(i)に記載の効果が得られる。
When the redundant regions 103, 103a, and 103b are provided, in addition to the effects described in (a) to (h) above provided by the molecular memories 100 and 100a, the following effects are achieved.
(i) By providing a redundant area, the (first and second) address areas 101 and memory area 102 can be more clearly distinguished.
(j) A sequence (sequence that becomes duplicate information) can be added to the redundant region to recover information even if molecules are skipped and read during decoding (for example, repeating the same sequence or adding an sequence with information increased by 1). (e.g. create). When this sequence is added, the reproducibility of information can be ensured.
(k) For information security, a sequence corresponding to an encryption code may be inserted into the redundant area (for example, the original information can be reconstructed using a decryption code). In that case, information leakage will be prevented.
(l) Also, the redundant area is defined as the edge of the address area (the left edge of the address area 101 in the case of the molecular memory 100', the left edge of the first address area 101a in the case of the molecular memory 100a', and/or If it is also connected to the right end of the second address area 101b, the effect described in (i) above can be obtained.
 上記分子メモリの実施形態は、理解を容易にするための例示である。本出願で開示する技術思想の範囲内であれば、例示した各種設計を組み合す等の変更を行ってもよい。 The above embodiment of the molecular memory is an example for ease of understanding. As long as it is within the scope of the technical idea disclosed in this application, changes such as combinations of various exemplified designs may be made.
(分子メモリの製造方法の実施形態)
 次に、分子メモリの製造方法の実施形態について説明する。製造方法の実施形態は、情報準備工程と、分子配列決定工程と、合成工程と、を含む。
(Embodiment of method for manufacturing molecular memory)
Next, an embodiment of a method for manufacturing a molecular memory will be described. Embodiments of the manufacturing method include an information preparation step, a molecular sequencing step, and a synthesis step.
 情報準備工程は、エンコードする情報を準備する。例えば、情報を入手し、アナログデータはデジタルデータに準備変換を行う。 The information preparation step prepares information to be encoded. For example, obtaining information and performing preliminary conversion of analog data into digital data.
 分子配列決定工程は、準備された情報を分子メモリを構成する分子に変換し、情報をエンコードする際の分子メモリの配列を決定する。例えば、メモリ領域102に格納するデジタルデータを、2ビットデータの場合は4種類の分子、4ビットデータの場合は16種類の分子を用いて変換し、配列を決定する。また、ランダムアクセス用の配列タグである(第1、第2)アドレス領域101を、2ビットデータの場合は4種類の分子、4ビットデータの場合は16種類の分子を用いて変換し配列を決定する。また、冗長領域を設ける場合は、冗長領域を含めた配列を決定する。なお、以下においては、記載の煩雑化を避けるため、冗長領域の記載は省略する。 The molecular sequencing step converts the prepared information into molecules that constitute a molecular memory, and determines the arrangement of the molecular memory when encoding the information. For example, the digital data stored in the memory area 102 is converted using 4 types of molecules in the case of 2-bit data, and 16 types of molecules in the case of 4-bit data, and the arrangement is determined. In addition, the (first and second) address areas 101, which are array tags for random access, are converted using 4 types of molecules in the case of 2-bit data and 16 types of molecules in the case of 4-bit data to create an array. decide. In addition, if a redundant area is provided, an arrangement including the redundant area is determined. Note that, in the following, description of redundant areas will be omitted to avoid complicating the description.
 合成工程は、決定した配列に基づき、分子メモリを構成する分子を合成する。合成装置は、分子メモリ100、100aを構成する分子に応じて公知の合成装置を用いればよい。例えば、分子としてヌクレオシドを用いる場合は核酸合成装置を用いればよい。分子としてアミノ酸を用いる場合は、タンパク合成装置を用いればよい。また、有機半導体を鎖状に導入する場合は、ペプチド核酸を使用すればよく、タンパク質合成装置を用いればよい。また、ヌクレオシドや有機半導体を混合する場合は、ヌクレオシドの塩基分子の水素を半導体分子に置換し、核酸合成装置で合成すすればよい。また、ペプチド核酸に塩基分子と有機半導体を導入し、タンパク合成装置で合成してもよい。 In the synthesis step, molecules constituting the molecular memory are synthesized based on the determined sequence. As the synthesis apparatus, a known synthesis apparatus may be used depending on the molecules constituting the molecular memories 100 and 100a. For example, when using nucleosides as molecules, a nucleic acid synthesizer may be used. When using amino acids as molecules, a protein synthesis apparatus may be used. Furthermore, when introducing an organic semiconductor in the form of a chain, a peptide nucleic acid may be used, and a protein synthesis apparatus may be used. Furthermore, when a nucleoside and an organic semiconductor are mixed, hydrogen in the base molecule of the nucleoside may be replaced with a semiconductor molecule, and the mixture may be synthesized using a nucleic acid synthesizer. Alternatively, a base molecule and an organic semiconductor may be introduced into a peptide nucleic acid and synthesized using a protein synthesis apparatus.
 なお、分子配列決定工程の際には、分子メモリ100、100aの実施形態で説明した第1分子グループ、第2分子グループ(第2a分子グループ、第2b分子グループ)に含まれる分子を用いて配列を決定する。そして、合成工程は、第1分子グループ、第2分子グループ(第2a分子グループ、第2b分子グループ)に含まれる分子を用いて分子メモリ100、100aを合成する。分子メモリ100、100aを、第1分子グループ、第2分子グループ(第2a分子グループ、第2b分子グループ)に含まれる分子を用い、且つ、(第1、第2)アドレス領域101およびメモリ領域102を構成する分子の少なくとも一部は種類が異なるよう構成することは、新規の発明である。したがって、分子配列決定工程および合成工程も新規の工程である。 Note that during the molecule sequencing step, molecules included in the first molecule group and second molecule group (2a molecule group, 2b molecule group) described in the embodiment of the molecule memories 100 and 100a are used to sequence the molecules. Determine. In the synthesis step, the molecular memories 100 and 100a are synthesized using the molecules included in the first molecule group and the second molecule group (the 2a molecule group and the 2b molecule group). The molecular memories 100 and 100a use molecules included in a first molecular group and a second molecular group (a second molecular group and a second molecular group), and (first and second) address areas 101 and memory areas 102. It is a novel invention that at least some of the molecules constituting the molecule are of different types. Therefore, the molecular sequencing and synthesis steps are also novel steps.
(分子メモリをデコードするためのデバイスの実施形態)
 次に、図4、図5A~図5Cおよび図6を参照し、分子メモリをデコードするためのデバイス1の実施形態について説明する。図4は、デバイス1の概略を示す概略図である。図5Aは流路の関係を説明するための上面図、図5Bは図5AのX-X矢視断面図、図5Cは図5AのY-Y矢視断面図である。図6は基材に流路と測定用電極を作製する手順の一例を示す概略図である。
(Embodiment of a device for decoding molecular memory)
An embodiment of a device 1 for decoding a molecular memory will now be described with reference to FIGS. 4, 5A-5C and 6. FIG. 4 is a schematic diagram showing the outline of the device 1. 5A is a top view for explaining the relationship of flow paths, FIG. 5B is a sectional view taken along the line XX in FIG. 5A, and FIG. 5C is a sectional view taken along the line YY in FIG. 5A. FIG. 6 is a schematic diagram showing an example of a procedure for producing a flow path and a measurement electrode on a base material.
 図4および図5A~図5Cに示す例では、デバイス1は、基材2と、基材2に形成された流路3と、分子メモリが通過した時のトンネル電流を測定するための一対の測定用電極4(4aおよび4b)と、解析部9と、を含む。なお、以下において、基材2と流路3と測定用電極4部分を「測定部分」と記載することがある。また図4には、任意付加的に、電気泳動用電源6、6a、6b、電気泳動用第1電極61、電気泳動用第2電極62、トンネル電流検出部7、トンネル電流測定用電源8、表示部10、プログラムメモリ11、制御部12を含む例が示されている。任意付加的な構成は、分子メモリのデコード方法を実施する際に、必要に応じて付加すればよい。また、以下の説明において、分子メモリは、符号100、100a、100’、100a’に示す実施形態、或いは、その他の実施形態であってもよい。煩雑化を避けるため、以下の説明において分子メモリの符号の記載は省略する。 In the example shown in FIGS. 4 and 5A to 5C, the device 1 includes a base material 2, a channel 3 formed in the base material 2, and a pair of channels for measuring tunneling current when the molecular memory passes through. It includes measurement electrodes 4 (4a and 4b) and an analysis section 9. In addition, below, the base material 2, the flow path 3, and the measurement electrode 4 part may be described as a "measuring part." Further, in FIG. 4, optionally, power supplies for electrophoresis 6, 6a, 6b, first electrode for electrophoresis 61, second electrode for electrophoresis 62, tunnel current detection unit 7, power supply for tunnel current measurement 8, An example including a display section 10, a program memory 11, and a control section 12 is shown. Any additional configuration may be added as necessary when implementing the molecular memory decoding method. Furthermore, in the following description, the molecular memory may be the embodiments indicated by reference numerals 100, 100a, 100', 100a', or other embodiments. In order to avoid complication, the reference numerals of the molecular memories will be omitted in the following description.
 流路3は、分子メモリを含む溶液を投入する分子メモリ投入流路31と、測定用電極4が配置される分子メモリ測定流路32と、分子メモリ投入流路31と分子メモリ測定流路32との間に配置され分子メモリ投入流路31から分子メモリ測定流路32に向けて流路幅が狭くなる第1テーパー流路33と、分子メモリ測定流路32を通過した分子メモリを回収する分子メモリ回収流路34と、を含む。第1テーパー流路33と分子メモリ測定流路32の接続部分の幅W1は20nm~200nmである。 The flow path 3 includes a molecular memory input flow path 31 into which a solution containing molecular memory is input, a molecular memory measurement flow path 32 in which the measurement electrode 4 is arranged, and the molecular memory input flow path 31 and the molecular memory measurement flow path 32. A first tapered channel 33 is disposed between the molecular memory input channel 31 and the channel width narrows from the molecular memory measurement channel 32, and the molecular memory that has passed through the molecular memory measurement channel 32 is recovered. A molecular memory recovery channel 34 is included. The width W1 of the connecting portion between the first tapered channel 33 and the molecular memory measurement channel 32 is 20 nm to 200 nm.
 図5Aに示す例では第2テーパー流路35が図示されているが、第2テーパー流路35は任意付加的な構成である。分子メモリ測定流路32から流出した分子メモリを回収できれば、分子メモリ回収流路34を分子メモリ測定流路32に直接連結してもよい。 Although the second tapered flow path 35 is illustrated in the example shown in FIG. 5A, the second tapered flow path 35 is an optional additional configuration. If the molecular memory flowing out from the molecular memory measurement channel 32 can be recovered, the molecular memory recovery channel 34 may be directly connected to the molecular memory measurement channel 32.
 測定部分は、例えば、ナノチャネル統合機械的破断接合法(Nanochannel-Integrated Mechanically Controllable Break Junction)を用いて製造することができる。図6を参照し、製造手順の一例を示す。なお、一対の測定用電極4を作製する機械的破断接合法(MCBJ)に関しては、例えば、特表2019-525766号公報、上記特許文献1、M.Tsutsui,K.,Shoji,M.Taniguchi,T.Kawai,Nano Lett.,345(2008)、および、M.Tsutsui,M.Taniguchi,T.Kawai,Appl.Phys.Lett.93、163115(2008)等に記載されている。 The measurement portion can be manufactured using, for example, a nanochannel-integrated mechanically controllable break junction method. Referring to FIG. 6, an example of the manufacturing procedure is shown. Regarding the mechanical breaking bonding method (MCBJ) for producing the pair of measurement electrodes 4, for example, Japanese Patent Publication No. 2019-525766, Patent Document 1 mentioned above, M. Tsutsui, K. , Shoji, M. Taniguchi, T. Kawai, Nano Lett. , 345 (2008), and M. Tsutsui, M. Taniguchi, T. Kawai, Appl. Phys. Lett. 93, 163115 (2008), etc.
(1)シリコン等の基板2a上にポリイミド等の絶縁材料で絶縁層2bを形成する。
(2)絶縁層2b上に電子ビームリソグラフィー(EB lithography)により測定用電極4を形成するための金属層を堆積する。
(3)化学蒸着によってSiO2等の堆積層2cを形成する。堆積槽2cの上に、スピンコーティングにより、レジスト層2dを積層する。
(4)電子ビームリソグラフィーにより、測定用電極4を形成するための金属層に重ね合わせるように、分子メモリ測定流路32を含む流路3のパターンを形成する。
(5)ドライエッチングにより流路3を形成する。その後、MCBJにより、金属層に隙間(ナノギャップG)を形成することで測定用電極4を形成する。なお、図6に示す例では、分子メモリ測定流路32は測定用電極4の下方までエッチングされているが、測定用電極4の下方部分の流路はなくてもよい。また、図6に示す例では測定用電極4は一つであるが、測定用電極4は2以上形成してもよい。更に、上記(4)の電子ビームリソグラフィーの際に、分子メモリ測定流路32を除く流路3にピラー(図5Aおよび図5Cにおいて図示は省略)を構築するためのパターンを形成してもよい。ピラーを形成する部分がドライエッチングされないようにマスクをすることで、分子メモリ測定流路32を除く流路3の底部に一端が接続し、他端が上方に開放したピラーを形成できる。
(6)溶液の投入や、電気泳動用電極の挿入等に用いられる孔を必要に応じて形成したカバー部材5を貼り付ける。なお、カバー部材5は、トンネル電流測定時に貼り付けられていればよい。
(1) An insulating layer 2b is formed of an insulating material such as polyimide on a substrate 2a of silicon or the like.
(2) A metal layer for forming the measurement electrode 4 is deposited on the insulating layer 2b by electron beam lithography.
(3) Form a deposited layer 2c of SiO 2 or the like by chemical vapor deposition. A resist layer 2d is laminated on the deposition tank 2c by spin coating.
(4) A pattern of the channel 3 including the molecular memory measurement channel 32 is formed by electron beam lithography so as to overlap the metal layer for forming the measurement electrode 4.
(5) Form the flow path 3 by dry etching. Thereafter, a measurement electrode 4 is formed by forming a gap (nanogap G) in the metal layer by MCBJ. In the example shown in FIG. 6, the molecular memory measurement flow path 32 is etched to the bottom of the measurement electrode 4, but the flow path below the measurement electrode 4 may not be provided. Further, in the example shown in FIG. 6, there is one measurement electrode 4, but two or more measurement electrodes 4 may be formed. Furthermore, during the electron beam lithography in (4) above, a pattern for constructing pillars (not shown in FIGS. 5A and 5C) may be formed in the channel 3 except for the molecular memory measurement channel 32. . By masking the portion forming the pillar so that it is not dry-etched, it is possible to form a pillar whose one end is connected to the bottom of the channel 3 except for the molecular memory measurement channel 32 and whose other end is open upward.
(6) Attach the cover member 5 in which holes are formed as necessary for introducing solutions, inserting electrodes for electrophoresis, etc. Note that the cover member 5 only needs to be attached at the time of tunnel current measurement.
 基板2aは、半導体製造技術の分野で一般的に用いられている材料であれば特に制限は無い。基板2aの材料としては、例えば、Si、SiO、SiN、Ge、Se、Te、GaAs、GaP、GaN、InSb、InP等が挙げられる。なお、分子メモリ測定流路32を除く流路3にピラーを設けると、流路3を流れる溶液との接触面積を広げることができる。なお、後述するとおり、分子メモリ測定流路32を中心にして左右対称となるように測定部分を形成する場合は、分子メモリ回収流路34および第2テーパー流路35にもピラーを形成してもよい。 The substrate 2a is not particularly limited as long as it is made of a material commonly used in the field of semiconductor manufacturing technology. Examples of the material of the substrate 2a include Si, SiO x , SiN x , Ge, Se, Te, GaAs, GaP, GaN, InSb, and InP. Note that if a pillar is provided in the flow path 3 except for the molecular memory measurement flow path 32, the contact area with the solution flowing through the flow path 3 can be expanded. Note that, as described later, when forming the measurement portion so as to be symmetrical with respect to the molecular memory measurement channel 32, pillars are also formed in the molecular memory recovery channel 34 and the second tapered channel 35. Good too.
 絶縁層2bも半導体製造技術の分野で一般的に用いられている材料であれば特に制限は無い。絶縁層2bの材料としては、例えば、ポリイミド、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、高密度ポリエチレン(HDPE)、ポリアセタール(POM)、ポリエポキシなどの絶縁性高分子;SiO2、酸化アルミニウム等の絶縁性酸化半導体金属物;等が挙げられる。 The insulating layer 2b is also not particularly limited as long as it is made of a material commonly used in the field of semiconductor manufacturing technology. Examples of materials for the insulating layer 2b include insulating polymers such as polyimide, polypropylene, polyvinyl chloride, polystyrene, high density polyethylene (HDPE), polyacetal (POM), and polyepoxy; insulating materials such as SiO 2 and aluminum oxide. Examples include oxidized semiconductor metal objects; and the like.
 堆積層2cを形成する材料としては、ポリイミド、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、高密度ポリエチレン(HDPE)、ポリアセタール(POM)、ポリエポキシなどの絶縁性高分子;SiO2、酸化アルミニウム等の絶縁性酸化半導体金属物;等が挙げられる。 Materials for forming the deposited layer 2c include insulating polymers such as polyimide, polypropylene, polyvinyl chloride, polystyrene, high-density polyethylene (HDPE), polyacetal (POM), and polyepoxy; insulating materials such as SiO 2 and aluminum oxide; Examples include oxidized semiconductor metal objects; and the like.
 測定用電極4を形成する材料としては、トンネル電流を測定できれば特に制限はない。例えば、金、白金、銀、パラジウム、タングステン、および前記金属の合金等が挙げられる。 There is no particular restriction on the material for forming the measurement electrode 4 as long as it can measure tunnel current. Examples include gold, platinum, silver, palladium, tungsten, and alloys of the above metals.
 電子ビームリソグラフィーに用いられるフォトレジスト、現像およびエッチング等に用いる試薬は、微細加工技術の分野で一般的に使用されている材料であれば特に制限はない。また、スピンコータおよびエッチング等に用いる装置も、微細加工技術の分野で一般的に使用されている材料であれば特に制限はない。 The photoresist used in electron beam lithography and the reagents used in development, etching, etc. are not particularly limited as long as they are materials commonly used in the field of microfabrication technology. Furthermore, there are no particular limitations on the equipment used for spin coaters, etching, etc. as long as they are made of materials commonly used in the field of microfabrication technology.
 カバー部材5は、流路3を形成した基材2に貼り付けることができる材料であれば特に制限はない。カバー部材5の材料としては、例えば、ポリメチルジシロキサン(PDMS)等が挙げられる。カバー部材5と基材2とは、例えば、オゾンプラズマ処理等により貼り付ければよい。 The cover member 5 is not particularly limited as long as it can be attached to the base material 2 on which the flow path 3 is formed. Examples of the material for the cover member 5 include polymethyldisiloxane (PDMS). The cover member 5 and the base material 2 may be attached by, for example, ozone plasma treatment.
 なお、本明細書において「基材」とは、流路3を形成するための基礎となる材料部分を意味する。図6に示す例では、基材2には、基板2a、絶縁層2b、堆積層2cおよびレジスト層2dが含まれる。なお、図6は測定用電極4を分子メモリ測定流路32に配置した測定部分の作製手順の一例に過ぎない。測定部分は、分子メモリが通過した時のトンネル電流が測定できる範囲であれば、他の工程を追加あるいは削除してもよい。例えば、エッチングにより流路3を形成した後に、レジスト層2dは除去されてもよい。その場合、基材2にはレジスト層2dは含まれない。また、測定部分は、電子線彫刻法やナノプリンティング等により作製してもよい。 Note that in this specification, the "base material" refers to a material portion that becomes the basis for forming the flow path 3. In the example shown in FIG. 6, the base material 2 includes a substrate 2a, an insulating layer 2b, a deposited layer 2c, and a resist layer 2d. Note that FIG. 6 is only an example of the procedure for manufacturing a measurement part in which the measurement electrode 4 is arranged in the molecular memory measurement channel 32. Other steps may be added or deleted in the measurement part as long as the tunnel current when the molecular memory passes can be measured. For example, after forming the channel 3 by etching, the resist layer 2d may be removed. In that case, the base material 2 does not include the resist layer 2d. Further, the measurement portion may be produced by electron beam engraving, nanoprinting, or the like.
 また、理解を容易にするため、図5A~図5Cに示す例では、基板2a、絶縁層2b、堆積層2cおよびレジスト層2dの詳細な記載は省略し、基材2と記載してある。 Further, in order to facilitate understanding, in the examples shown in FIGS. 5A to 5C, detailed descriptions of the substrate 2a, the insulating layer 2b, the deposited layer 2c, and the resist layer 2d are omitted, and they are referred to as the base material 2.
 分子メモリ投入流路31と分子メモリ回収流路34に電圧を印加することで分子メモリには電気泳動力が付与され、分子メモリの移動速度が増加する。その結果、電気泳動力を付与しない場合と比較して、分子メモリの測定速度が向上する。一方、流路3に電圧を印加し分子メモリに電気泳動力を付与する場合、流路3の断面積が大きくなるほどより大きな電圧が必要となる。 By applying a voltage to the molecular memory input channel 31 and the molecular memory recovery channel 34, an electrophoretic force is applied to the molecular memory, increasing the moving speed of the molecular memory. As a result, the measurement speed of molecular memory is improved compared to the case where no electrophoretic force is applied. On the other hand, when applying a voltage to the flow path 3 to impart an electrophoretic force to the molecular memory, the larger the cross-sectional area of the flow path 3, the greater the voltage required.
 ところで、トンネル電流による分子メモリの読み取りは、測定したピコアンペアレベルの電流値の差異を識別することで行われる。μmオーダーの流路に投入した分子メモリに電気泳動力を付与できるレベルの電圧を印加した場合、電気泳動用の電圧に起因するノイズを測定用電極4が検出するおそれがある。図5A~図5Cに示す測定部分は、低い電圧で分子メモリに電気泳動力を付与できることから、電気泳動用の電圧に起因するノイズが少ないトンネル電流の測定ができる。 By the way, reading of molecular memory using tunnel current is performed by identifying differences in measured current values at the picoampere level. When a voltage at a level capable of imparting an electrophoretic force to a molecular memory placed in a flow channel on the order of μm is applied, there is a possibility that the measurement electrode 4 may detect noise caused by the voltage for electrophoresis. The measurement portion shown in FIGS. 5A to 5C can apply electrophoretic force to the molecular memory with a low voltage, and therefore can measure tunnel current with less noise caused by electrophoresis voltage.
 分子メモリ投入流路31は、分子メモリを含む溶液を投入するため、所定の大きさが必要である。そのため、測定部分は、測定用電極4を配置する分子メモリ測定流路32の幅を狭くし(小さくし)、分子メモリ投入流路31と分子メモリ測定流路32を第1テーパー流路33で接続する構造を採用している。 The molecular memory input channel 31 needs to have a predetermined size in order to input a solution containing molecular memory. Therefore, in the measurement part, the width of the molecular memory measurement channel 32 in which the measurement electrode 4 is arranged is narrowed (reduced), and the molecular memory input channel 31 and the molecular memory measurement channel 32 are replaced by the first tapered channel 33. Adopts a connecting structure.
 上記のとおり、電気泳動用の電圧に起因するノイズを軽減するためには、分子メモリ測定流路32の幅は狭い方が好ましい。第1テーパー流路33と分子メモリ測定流路32の接続部分の幅W1と規定した時に、W1は、200nm以下、180nm以下、160nm以下、140nm以下、120nm以下、100nm以下、90nm以下、80nm以下、70nm以下、60nm以下、50nm以下とすればよい。一方、W1の下限は製造可能な範囲であれば特に制限はない。限定されるものではないが、例えば、20nm以上、25nm以上、30nm以上とすればよい。 As mentioned above, in order to reduce noise caused by the voltage for electrophoresis, it is preferable that the width of the molecular memory measurement channel 32 is narrow. When the width W1 of the connecting portion between the first taper channel 33 and the molecular memory measurement channel 32 is specified, W1 is 200 nm or less, 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, 100 nm or less, 90 nm or less, 80 nm or less , 70 nm or less, 60 nm or less, or 50 nm or less. On the other hand, the lower limit of W1 is not particularly limited as long as it is within a manufacturable range. Although not limited, the thickness may be, for example, 20 nm or more, 25 nm or more, or 30 nm or more.
 分子メモリ測定流路32の幅は、何れの箇所も同じであってもよいし、測定結果の解析等を行う際に影響が出ない範囲であれば異なっていてもよい。図5Aに示す例では、分子メモリ測定流路32のW1とは反対側の端部をW1aと規定した時に、W1aはW1と同じであってもよいし、W1より大きくても小さくてもよい。 The width of the molecular memory measurement channel 32 may be the same at any location, or may be different as long as it does not affect analysis of measurement results. In the example shown in FIG. 5A, when the end of the molecular memory measurement channel 32 opposite to W1 is defined as W1a, W1a may be the same as W1, or may be larger or smaller than W1. .
 一対の測定用電極4aおよび4bの隙間(ギャップG、図5B参照)は、分子メモリが通過する際のトンネル電流が測定できる範囲内であれば特に制限はない。限定されるものではないが、例えば、0.1nm以上、0.3nm以上、0.5nm以上、0.7nm以上、0.9nm以上とすればよい。一方、ギャップGの上限は、限定されるものではないが、例えば、50nm以下、30nm以下、10nm以下、8nm以下、6nm以下、5nm以下、4nm以下、3nm以下、2nm以下、1nm以下とすればよい。 The gap between the pair of measurement electrodes 4a and 4b (gap G, see FIG. 5B) is not particularly limited as long as it is within a range where the tunneling current when the molecular memory passes can be measured. Although not limited, the thickness may be, for example, 0.1 nm or more, 0.3 nm or more, 0.5 nm or more, 0.7 nm or more, or 0.9 nm or more. On the other hand, the upper limit of the gap G is not limited, but may be, for example, 50 nm or less, 30 nm or less, 10 nm or less, 8 nm or less, 6 nm or less, 5 nm or less, 4 nm or less, 3 nm or less, 2 nm or less, 1 nm or less. good.
 測定用電極4の長さ(図5AのL2と同じ方向の隙間Gの長さ)も、分子メモリが通過する際のトンネル電流が測定できる範囲内であれば特に制限はない。限定されるものではないが、例えば、1000nm以下、800nm以下、600nm以下、400nm以下、200nm以下、100nm以下、80nm以下、60nm以下とすればよい。 The length of the measurement electrode 4 (the length of the gap G in the same direction as L2 in FIG. 5A) is also not particularly limited as long as it is within the range in which the tunneling current when the molecular memory passes can be measured. Although not limited, it may be, for example, 1000 nm or less, 800 nm or less, 600 nm or less, 400 nm or less, 200 nm or less, 100 nm or less, 80 nm or less, or 60 nm or less.
 なお、MCBJでは切断を容易にするため、測定用電極4の堆積量(測定用電極4の長さ方向に直交する方向、または、図5BのH方向。以下、「厚み」と記載することがある。)は小さい方が好ましい。測定用電極4の厚みを増やすと切断場所が制御し難くなり、作製したギャップGの切断面が乱雑となる恐れがある。そのため、測定用電極4の厚みは、限定されるものではないが、例えば、80nm以下、70nm以下、60nm以下、50nm以下とすればよい。測定用電極4の厚みの下限値はトンネル電流が測定できれば特に制限はなく、限定されるものではないが、例えば、2nm以上、4nm以上、6nm以上、8nm以上、10nm以上、15nm以上、20nm以上とすればよい。 In addition, in order to facilitate cutting in MCBJ, the amount of accumulation of the measurement electrode 4 (direction perpendicular to the length direction of the measurement electrode 4, or direction H in FIG. 5B; hereinafter referred to as "thickness") ) is preferably smaller. If the thickness of the measurement electrode 4 is increased, it becomes difficult to control the cutting location, and there is a possibility that the cut surface of the produced gap G may become disordered. Therefore, the thickness of the measurement electrode 4 is not limited, but may be, for example, 80 nm or less, 70 nm or less, 60 nm or less, or 50 nm or less. The lower limit of the thickness of the measurement electrode 4 is not particularly limited as long as the tunnel current can be measured, and is not limited, for example, 2 nm or more, 4 nm or more, 6 nm or more, 8 nm or more, 10 nm or more, 15 nm or more, 20 nm or more. And it is sufficient.
 上記のとおり、測定用電極4の厚さを小さくしてMCBJによりギャップGを形成する関係上、測定用電極4の長さは厚さより大きくすることが好ましい。限定されるものではないが、例えば、長さ/厚さの比は10~100が挙げられる。 As mentioned above, in order to reduce the thickness of the measurement electrode 4 and form the gap G by MCBJ, it is preferable that the length of the measurement electrode 4 be larger than the thickness. For example, the length/thickness ratio may be 10 to 100, although it is not limited to this.
 分子メモリ測定流路32の長さL2は、分子メモリが通過する際のトンネル電流が測定できる範囲内であれば特に制限はない。長すぎると測定部分の流路全体が長くなる。一方、短すぎると、細長い分子メモリが伸長した状態を維持し難くなる。限定されるものではないが、L2は、20nm以上、25nm以上、30nm以上、35nm以上、40nm以上、45nm以上、50nm以上とすればよい。また、L2は、2000nm以下、1500nm以下、1000nm以下、800nm以下、600nm以下、400nm以下、200nm以下、180nm以下、160nm以下、140nm以下、120nm以下、100nm以下とすればよい。勿論、L2の長さは測定用電極4のギャップG部分の長さより長くする必要がある。 The length L2 of the molecular memory measurement channel 32 is not particularly limited as long as it is within a range where the tunnel current when the molecular memory passes can be measured. If it is too long, the entire flow path of the measurement portion will become long. On the other hand, if it is too short, it becomes difficult for the elongated molecular memory to maintain its extended state. Although not limited, L2 may be 20 nm or more, 25 nm or more, 30 nm or more, 35 nm or more, 40 nm or more, 45 nm or more, or 50 nm or more. Further, L2 may be 2000 nm or less, 1500 nm or less, 1000 nm or less, 800 nm or less, 600 nm or less, 400 nm or less, 200 nm or less, 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, or 100 nm or less. Of course, the length L2 needs to be longer than the length of the gap G portion of the measurement electrode 4.
 電気泳動用の電圧に起因するノイズを軽減するためには、流路3の深さHも小さい方が好ましい。流路3の深さHは、限定されるものではないが、例えば、200nm以下、180nm以下、160nm以下、140nm以下、120nm以下、100nm以下、90nm以下、80nm以下、70nm以下、60nm以下、50nm以下とすればよい。一方、流路3の深さHは、例えば、20nm以上、25nm以上、30nm以上とすればよい。 In order to reduce noise caused by voltage for electrophoresis, it is preferable that the depth H of the channel 3 is also small. The depth H of the channel 3 is not limited, but is, for example, 200 nm or less, 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 nm. The following may be used. On the other hand, the depth H of the channel 3 may be, for example, 20 nm or more, 25 nm or more, or 30 nm or more.
 図5A~図5Cに示す測定部分では、第1テーパー流路33の長さ(図5AのL1)および分子メモリ投入流路31の幅(第1テーパー流路33との接続部分、図5AのW2)に特に制限はないが、流路3の幅は可能な範囲で小さくすることが望ましい。なお、分子メモリを含む溶液を投入するため、分子メモリ投入流路31は必要に応じてW2より幅が広い幅広部分を有していてもよい。 In the measurement portions shown in FIGS. 5A to 5C, the length of the first tapered channel 33 (L1 in FIG. 5A) and the width of the molecular memory input channel 31 (the connection part with the first tapered channel 33, Although W2) is not particularly limited, it is desirable to make the width of the flow path 3 as small as possible. Note that, in order to input a solution containing molecular memory, the molecular memory input channel 31 may have a wide portion wider than W2 as necessary.
 測定部分では、分子メモリ回収流路34の幅および任意付加的に設けられる第2テーパー流路35の長さ(図5AのL1a)に特に制限はないが、流路3の幅は可能な範囲で小さくすることが望ましい。なお、分子メモリを回収するため、分子メモリ回収流路34は必要に応じてW2aより幅が広い幅広部分を有していてもよい。 In the measurement part, there are no particular restrictions on the width of the molecular memory recovery channel 34 and the length of the optionally additionally provided second tapered channel 35 (L1a in FIG. 5A), but the width of the channel 3 is within a possible range. It is desirable to make it small. Note that in order to recover the molecular memory, the molecular memory recovery channel 34 may have a wide portion wider than W2a as necessary.
 測定部分は、第1テーパー流路33と分子メモリ測定流路32の接続部分の幅をW1と規定し、第1テーパー流路33と分子メモリ投入流路31の接続部分の幅をW2と規定した時に、W2/W1の下限を2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、10以上とし、上限を50以下、40以下、30以下、20以下としてもよい。また、第1テーパー流路33と分子メモリ測定流路32の接続部分W1および第1テーパー流路と分子メモリ投入流路の接続部分の長さをL1と規定した時に、L1/W2の下限を0.3以上、0.4以上、0.5以上とし、上限を10以下、9以下、8以下、7以下、6以下、5以下としてもよい。 In the measurement portion, the width of the connecting portion between the first taper channel 33 and the molecular memory measurement channel 32 is defined as W1, and the width of the connecting portion between the first taper channel 33 and the molecular memory input channel 31 is defined as W2. The lower limit of W2/W1 is 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, and the upper limit is 50 or less, 40 or less, 30 or less, 20 or less. You can also use it as Furthermore, when the length of the connecting portion W1 between the first taper flow path 33 and the molecular memory measurement flow path 32 and the length of the connection portion between the first taper flow path and the molecular memory input flow path is defined as L1, the lower limit of L1/W2 is defined as L1. It may be 0.3 or more, 0.4 or more, or 0.5 or more, and the upper limit may be 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, or 5 or less.
 第1テーパー流路33の形状を上記の比とした場合、以下の効果を奏する。
(1)第1テーパー流路33を上記の比にすることで、溶液中の分子メモリを直線化しやすくできる。
(2)流路に溶媒を充填して電圧を印加した際には流路内には電気浸透流(EOF)が発生するが、壁に沿った領域は逆流する。第1テーパー流路33を上記の範囲にすると、EOFの発生が抑制されやすく、また、第1テーパー流路33の形状により電界増強による加速効果が得られる。したがって、溶液中に含まれる分子メモリを直線化した上で、分子メモリ測定流路32に導入しやすくなる。
When the shape of the first tapered flow path 33 is set to the above ratio, the following effects are achieved.
(1) By setting the first tapered channel 33 to the above ratio, it is possible to easily linearize the molecular memory in the solution.
(2) When the flow channel is filled with a solvent and a voltage is applied, an electroosmotic flow (EOF) is generated within the flow channel, but reverse flow occurs in the region along the wall. When the first taper flow path 33 is set within the above range, the generation of EOF is easily suppressed, and the shape of the first taper flow path 33 provides an acceleration effect due to electric field reinforcement. Therefore, it becomes easier to straighten the molecular memory contained in the solution and then introduce it into the molecular memory measurement channel 32.
 測定部分は、分子メモリ測定流路32と分子メモリ回収流路34との間に配置され、分子メモリ測定流路32から分子メモリ回収流路34に向けて流路幅が広くなる第2テーパー流路35を含んでもよい。 The measurement part is a second tapered flow which is disposed between the molecular memory measurement channel 32 and the molecular memory recovery channel 34, and the channel width increases from the molecular memory measurement channel 32 to the molecular memory recovery channel 34. A path 35 may also be included.
 測定部分が第2テーパー流路35を含む場合、分子メモリ測定流路32の出口で分子メモリがスタックすることを防ぎ、分子メモリの通過を促進するとの効果を奏する。 When the measurement portion includes the second tapered flow path 35, this has the effect of preventing the molecular memory from stacking at the exit of the molecular memory measurement flow path 32 and promoting passage of the molecular memory.
 測定部分は、分子メモリ測定流路32と第2テーパー流路35の接続部分の幅をW1aと規定し、第2テーパー流路35と分子メモリ回収流路34の接続部分の幅をW2aと規定し、第2テーパー流路35と分子メモリ測定流路32の接続部分および第2テーパー流路35と分子メモリ回収流路32の接続部分の長さをL1aと規定した時に、W1=W1a、W2=W2a、および、L1=L1aの関係を満たしてもよい。換言すると、流路3は、分子メモリ測定流路32を中心にして左右対称となるように形成してもよい。 In the measurement portion, the width of the connecting portion between the molecular memory measurement channel 32 and the second tapered channel 35 is defined as W1a, and the width of the connecting portion between the second tapered channel 35 and the molecular memory recovery channel 34 is defined as W2a. When the length of the connection between the second taper flow path 35 and the molecular memory measurement flow path 32 and the length of the connection between the second taper flow path 35 and the molecular memory recovery flow path 32 is defined as L1a, W1=W1a, W2. =W2a and L1=L1a may be satisfied. In other words, the channel 3 may be formed to be symmetrical with respect to the molecular memory measurement channel 32.
 解析部9は、アドレス領域101(101a、101b)を構成する分子のコンダクタンスおよびメモリ領域102を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極4を通過する際の方向を特定する。また、解析部9は、第1アドレス領域101aを構成する分子のコンダクタンスおよび第2アドレス領域101bを構成する分子のコンダクタンスに基づき、分子メモリが測定用電極を通過する際の方向を特定する。分子メモリは細長い形状であり、伸長しながら測定用電極4を通過する。そのため、測定用電極4を分子メモリが通過する際の方向は一定ではない。換言すると、図1に示す分子メモリ100の場合、アドレス領域101からデコードされる場合と、メモリ領域102からデコードされる場合が混在する。図2に示す分子メモリ100aの場合も同様に、第1アドレス領域101aからデコードされる場合と、第2アドレス領域101bからデコードされる場合が混在する。解析部9が、分子メモリの通過方向を特定することで、分子メモリに格納されている情報を正しくデコードすることができる。 The analysis unit 9 identifies the direction in which the molecular memory passes through the measurement electrode 4 based on the conductance of the molecules forming the address area 101 (101a, 101b) and the conductance of the molecules forming the memory area 102. Furthermore, the analysis unit 9 identifies the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the first address area 101a and the conductance of the molecules forming the second address area 101b. The molecular memory has an elongated shape and passes through the measurement electrode 4 while expanding. Therefore, the direction in which the molecular memory passes through the measurement electrode 4 is not constant. In other words, in the case of the molecular memory 100 shown in FIG. 1, there are cases where decoding is performed from the address area 101 and cases where decoding is performed from the memory area 102. Similarly, in the case of the molecular memory 100a shown in FIG. 2, there are cases in which data is decoded from the first address area 101a and cases where data is decoded from the second address area 101b. By specifying the passing direction of the molecular memory, the analysis unit 9 can correctly decode the information stored in the molecular memory.
(分子メモリのデコード方法の実施形態
 次に、図7を参照して分子メモリのデコード方法(以下、単に「デコード方法」と記載することがある)の実施形態を説明する。図7は、デコード方法の一例を示すフローチャートである。デコード方法は、上記デバイス1を用いて行われる。また、分子メモリは、上記分子メモリ100、100a、100’、100a’或いは本出願で開示する技術思想の範囲内で改変された分子メモリを用いることができる。なお、煩雑化を避けるため、以下の説明において分子メモリの符号の記載は省略する。
(Embodiment of molecular memory decoding method) Next, an embodiment of a molecular memory decoding method (hereinafter sometimes simply referred to as "decoding method") will be described with reference to FIG. 7. It is a flowchart showing an example of the method.The decoding method is performed using the above-mentioned device 1.Moreover, the molecular memory is the above-mentioned molecular memory 100, 100a, 100', 100a' or the scope of the technical idea disclosed in this application. A molecular memory modified within can be used. Note that to avoid complication, the reference numerals of the molecular memory will be omitted in the following description.
 デコード方法は、分子メモリ電気泳動工程(ST1)と、測定工程(ST2)と、解析工程(ST3)と、分子メモリ通過方向特定工程(ST4)と、を含む。 The decoding method includes a molecular memory electrophoresis step (ST1), a measurement step (ST2), an analysis step (ST3), and a molecular memory passage direction identification step (ST4).
 分子メモリ電気泳動工程(ST1)は、分子メモリ投入流路31および分子メモリ回収流路34に電圧を印加することで、分子メモリ投入流路31の分子メモリを、分子メモリ回収流路34に向けて電気泳動させる。より具体的には、分子メモリ投入流路31に分子メモリを含む溶液を投入し、分子メモリ回収流路34に溶媒を投入し、第1電極61および第2電極62に電圧を印加することで実施される。第1テーパー流路33、分子メモリ測定流路32、必要に応じて形成される第2テーパー流路35には、投入した分子メモリまたは溶媒が毛管力により浸透することで液絡が取れる。分子メモリを含む溶液を作製するための溶媒は電気が通ればよい。限定されるものではないが、例えば、超純水、緩衝液等が挙げられる。超純水は、例えば、EMDミリポア社(Milli-Q(登録商標)Integral33/5/1015(カタログ番号))によって製造されたMilli-Q(登録商標)Integral3(装置名)を用いて製造することができる。緩衝液としては、TEバッファー、TBEバッファー等の公知の電気泳動用のバッファーが挙げられる。バッファーの濃度は、限定されるものではないが、例えば1μM以下等、電気泳動ができる範囲で適宜調整すればよい。また、分子メモリを含む溶液には、電気浸透流(EOF)の影響を軽減するため、必要に応じてpolyvinyl-pyrrolidone(PVP)等の界面活性剤の他、両親媒性の化学物質を添加してもよい。 In the molecular memory electrophoresis step (ST1), the molecular memory in the molecular memory input channel 31 is directed toward the molecular memory recovery channel 34 by applying a voltage to the molecular memory input channel 31 and the molecular memory recovery channel 34. and perform electrophoresis. More specifically, a solution containing molecular memory is introduced into the molecular memory input channel 31, a solvent is introduced into the molecular memory recovery channel 34, and a voltage is applied to the first electrode 61 and the second electrode 62. Implemented. The introduced molecular memory or solvent permeates into the first tapered channel 33, the molecular memory measurement channel 32, and the second tapered channel 35 formed as necessary by capillary force, thereby creating a liquid junction. A solvent for producing a solution containing molecular memory only needs to conduct electricity. Examples include, but are not limited to, ultrapure water, buffer solutions, and the like. Ultrapure water can be produced using, for example, Milli-Q (registered trademark) Integral 3 (device name) manufactured by EMD Millipore (Milli-Q (registered trademark) Integral 33/5/1015 (catalog number)). Can be done. Examples of the buffer include known electrophoresis buffers such as TE buffer and TBE buffer. The concentration of the buffer is not limited, but may be adjusted as appropriate within a range that allows electrophoresis, such as 1 μM or less. In addition, in addition to surfactants such as polyvinyl-pyrrolidone (PVP), amphiphilic chemicals may be added to the solution containing molecular memory as necessary to reduce the effects of electroosmotic flow (EOF). It's okay.
 図4に示す例では、分子メモリ測定流路32および分子メモリ測定流路32に配置した一対の測定用電極4a、4bで測定部を形成している。そして、分子メモリ投入流路31内の分子メモリを含む溶液と接する箇所に電気泳動用第1電極(以下、「第1電極」と記載することがある。)61が形成され、分子メモリ回収流路34内の溶媒と接する箇所に電気泳動用第2電極(以下、「第2電極」と記載することがある。)62が形成されている。そして、第1電極61に接続する第1電源6aおよび第2電極62に接続する第1電源6bを用い、測定用電極4a、4bを跨ぐように電圧を印加することで、分子メモリが電気泳動により測定用電極4a、4bを通過する。なお、図4には、2つの第1電源6を用いて電気泳動用の電圧を印加する例が示されているが、第1電源6は一つであってもよい。 In the example shown in FIG. 4, the molecular memory measurement channel 32 and a pair of measurement electrodes 4a and 4b arranged in the molecular memory measurement channel 32 form a measurement section. Then, a first electrode for electrophoresis (hereinafter sometimes referred to as "first electrode") 61 is formed at a location in contact with the solution containing molecular memory in the molecular memory input channel 31, and a molecular memory recovery channel A second electrode for electrophoresis (hereinafter sometimes referred to as "second electrode") 62 is formed at a location in the channel 34 that comes into contact with the solvent. Then, by applying a voltage across the measurement electrodes 4a and 4b using the first power supply 6a connected to the first electrode 61 and the first power supply 6b connected to the second electrode 62, the molecular memory undergoes electrophoresis. It passes through the measurement electrodes 4a and 4b. Although FIG. 4 shows an example in which the voltage for electrophoresis is applied using two first power supplies 6, the number of first power supplies 6 may be one.
 第1電極61および第2電極62は、Ag/AgCl、アルミニウム、銅、白金、金、銀、チタン等の公知の導電性金属で形成することができる。第1電極61および第2電極62は、基材2上に形成してもよいし、デバイス1とは別体としカバー部材5の孔を介して挿入してもよい。 The first electrode 61 and the second electrode 62 can be formed of a known conductive metal such as Ag/AgCl, aluminum, copper, platinum, gold, silver, or titanium. The first electrode 61 and the second electrode 62 may be formed on the base material 2 or may be made separate from the device 1 and inserted through a hole in the cover member 5.
 第1電源6が印加する電圧は、小さすぎると分子メモリの移動速度が遅くなり測定に時間を要する。限定されるものではないが、例えば、10mV以上、15mV以上、20mV以上、25mV以上、30mV以上とすればよい。一方、第1電源6が印加する電圧の上限は、後述する解析工程の精度および流路3の幅等を考慮し適宜設定すればよい。限定されるものではないが、例えば、5V以下、3V以下、1V以下、500mV以下、300mV以下、100mV以下、90mV以下、80mV以下、70mV以下、60mV以下、50mV以下とすればよい。 If the voltage applied by the first power supply 6 is too small, the movement speed of the molecular memory will be slow and measurement will take time. Although not limited, the voltage may be, for example, 10 mV or more, 15 mV or more, 20 mV or more, 25 mV or more, or 30 mV or more. On the other hand, the upper limit of the voltage applied by the first power source 6 may be appropriately set in consideration of the accuracy of the analysis process, the width of the flow path 3, etc., which will be described later. Although not limited, the voltage may be, for example, 5V or less, 3V or less, 1V or less, 500mV or less, 300mV or less, 100mV or less, 90mV or less, 80mV or less, 70mV or less, 60mV or less, or 50mV or less.
 測定工程(ST2)では、分子メモリ測定流路32に配置された一対の測定用電極4aおよび4bの隙間を分子メモリが通過する時のトンネル電流を測定する。図4に示す例では、測定工程(ST2)は、トンネル電流測定用電源(以下、「第2電源」と記載することがある。)8により一対の測定用電極4aおよび4bに電圧を印加し、一対の測定用電極4aおよび4bの隙間を分子メモリが通過するときに発生するトンネル電流の変化をトンネル電流検出部7で測定している。なお、図4に示す例は測定工程(ST2)の一例であって、限定されるものではない。発生するトンネル電流の変化はピコアンペアレベルであることから、トンネル電流検出部7は、ピコアンペアレベルの電流を測定できる公知の電流計を使用すればよい。また、電圧計で測定した電圧から電流を計算してもよい。トンネル電流検出部7は、任意付加的に、電流増幅アンプ、ノイズ除去装置、A/Dコンバーター等を含んでいてもよい。トンネル電流検出部7が、電流増幅アンプ、ノイズ除去装置、A/Dコンバーター等を含む場合は、測定したトンネル電流値の生データではなく、解析しやすいデータを提供できる。代替的に、トンネル電流検出部7はトンネル電流の変化を測定できる構成のみとし、電流増幅アンプ、ノイズ除去装置、A/Dコンバーター等は、解析部9の構成としてもよい。 In the measurement step (ST2), a tunnel current is measured when the molecular memory passes through the gap between the pair of measurement electrodes 4a and 4b arranged in the molecular memory measurement channel 32. In the example shown in FIG. 4, the measurement step (ST2) involves applying a voltage to the pair of measurement electrodes 4a and 4b by a tunnel current measurement power supply (hereinafter sometimes referred to as "second power supply") 8. The tunnel current detection unit 7 measures the change in tunnel current that occurs when the molecular memory passes through the gap between the pair of measurement electrodes 4a and 4b. Note that the example shown in FIG. 4 is an example of the measurement step (ST2), and is not limited thereto. Since the change in the tunnel current that occurs is at the picoampere level, the tunneling current detection section 7 may use a known ammeter that can measure current at the picoampere level. Alternatively, the current may be calculated from the voltage measured with a voltmeter. The tunnel current detection unit 7 may optionally include a current amplification amplifier, a noise removal device, an A/D converter, and the like. When the tunnel current detection unit 7 includes a current amplification amplifier, a noise removal device, an A/D converter, etc., data that is easy to analyze can be provided instead of raw data of the measured tunnel current value. Alternatively, the tunnel current detection section 7 may be configured only to be able to measure changes in tunnel current, and the current amplification amplifier, noise removal device, A/D converter, etc. may be configured in the analysis section 9.
 第2電源8は、一対の測定用電極4aおよび4bに電圧を印加する。第2電極8によって印加される電圧は、トンネル電流が測定できれば特に制限はない。限定されるものではないが、例えば、下限を20mV以上、50mV以上、100mV以上とし、上限を750mV以下、500mV以下、250mV以下等にすればよい。第2電源8の具体的な構成は特に限定されるものではなく、周知の電源装置を使用すればよい。図4に示す例では、デバイス1は、流路3、特に、分子メモリ測定流路32の幅を非常に小さくすることで、分子メモリの電気泳動に必要な電圧を小さくできる。そのため、トンネル電流検出部7は、分子メモリが測定用電極4の隙間を通過する際のトンネル電流を測定する際に、ノイズ成分が小さなトンネル電流の測定値が得られる。トンネル電流測定工程では、分子メモリが一対の測定用電極4aおよび4bの隙間を通過する際に、分子メモリを構成する分子毎にトンネル電流を測定できる。 The second power supply 8 applies a voltage to the pair of measurement electrodes 4a and 4b. The voltage applied by the second electrode 8 is not particularly limited as long as tunnel current can be measured. Although not limited, for example, the lower limit may be set to 20 mV or more, 50 mV or more, or 100 mV or more, and the upper limit may be set to 750 mV or less, 500 mV or less, 250 mV or less, etc. The specific configuration of the second power source 8 is not particularly limited, and any known power source device may be used. In the example shown in FIG. 4, the device 1 can reduce the voltage required for electrophoresis of the molecular memory by making the width of the channel 3, particularly the molecular memory measurement channel 32, very small. Therefore, when measuring the tunnel current when the molecular memory passes through the gap between the measurement electrodes 4, the tunnel current detection unit 7 can obtain a measured value of the tunnel current with a small noise component. In the tunnel current measurement step, when the molecular memory passes through the gap between the pair of measurement electrodes 4a and 4b, the tunnel current can be measured for each molecule making up the molecular memory.
 解析工程(ST3)では、測定したトンネル電流の測定結果から、分子メモリを構成する分子の配列を解析する。図4に示す例では、解析工程(ST3)は解析部9で行われる(以下、解析部で行われる解析工程について、単に「解析部」と記載することがある)。より具体的には、解析部9はトンネル電流の測定値からコンダクタンスを計算する。コンダクタンスは、トンネル電流の測定値を一対の測定用電極4aおよび4bに印加した電圧で割ることで計算できる。分子が一対の測定用電極4aおよび4bを通過する際に発生するトンネル電流から計算したコンダクタンスは、分子の種類により異なる。その理由は、例えば、分子がヌクレオシドの場合は塩基構造の違い、アミノ酸の場合は構成する構造の違いにより、電気の流れ易さが異なるためである。したがって、予め測定および計算した各種分子のコンダクタンスと測定した分子のコンダクタンスとを対比し、トンネル電流の測定値を時系列に解析することで分子メモリを構成する分子配列を読み取ることができる。なお、上記記載は解析部9の一例に過ぎない。測定したトンネル電流から分子の配列を解析できれば、コンダクタンス以外の方法で解析してもよい。なお、コンダクタンスは、計測データから得られる絶対値になるため、計測システムのノイズや変動を含む値である。必要に応じて、グアニンのコンダクタンスで規格化(Relative G)することで、システムのノイズ等の影響を少なくしてもよい。 In the analysis step (ST3), the arrangement of molecules constituting the molecular memory is analyzed from the results of the measured tunnel current. In the example shown in FIG. 4, the analysis step (ST3) is performed in the analysis section 9 (hereinafter, the analysis step performed in the analysis section may be simply referred to as "analysis section"). More specifically, the analysis unit 9 calculates conductance from the measured value of tunnel current. The conductance can be calculated by dividing the measured value of the tunnel current by the voltage applied to the pair of measurement electrodes 4a and 4b. The conductance calculated from the tunnel current generated when molecules pass through the pair of measurement electrodes 4a and 4b differs depending on the type of molecule. The reason for this is that, for example, the ease with which electricity flows differs due to differences in base structure in the case of nucleosides, and differences in constituent structures in the case of amino acids. Therefore, by comparing the conductance of various molecules measured and calculated in advance with the measured conductance of molecules and analyzing the measured values of tunnel current in time series, it is possible to read the molecular arrangement that constitutes the molecular memory. Note that the above description is only an example of the analysis section 9. As long as the molecular arrangement can be analyzed from the measured tunnel current, analysis methods other than conductance may be used. Note that since conductance is an absolute value obtained from measurement data, it is a value that includes noise and fluctuations of the measurement system. If necessary, the influence of system noise etc. may be reduced by normalizing (Relative G) using the conductance of guanine.
 分子メモリ通過方向特定工程(ST4)は、(第1、第2)アドレス領域101を構成する分子のコンダクタンスおよびメモリ領域102を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極4a、4bを通過する際の方向を特定する。本出願で開示する分子メモリ100、100aは、(第1、第2)アドレス領域101およびメモリ領域102を構成する分子の少なくとも一部の種類を異なるように設計されている。したがって、分子の種類に応じたコンダクタンスに基づき、分子メモリ100の場合はアドレス領域101またはメモリ領域102の何れの方向からデコードされたのか、また、分子メモリ100aの場合は第1アドレス領域101aまたは第2アドレス領域101bの何れの方向からデコードされたのか特定できる。 In the molecular memory passage direction identification step (ST4), the molecular memory determines the measurement electrodes 4a and 4b based on the conductance of the molecules constituting the (first and second) address areas 101 and the conductance of the molecules constituting the memory area 102. Determine the direction of passage. The molecular memories 100 and 100a disclosed in this application are designed so that the types of at least some of the molecules forming the (first and second) address areas 101 and memory areas 102 are different. Therefore, based on the conductance depending on the type of molecule, in the case of the molecular memory 100, it is determined from which direction of the address area 101 or the memory area 102, and in the case of the molecular memory 100a, it is determined whether the decoding is from the first address area 101a or the first address area 101a. It is possible to specify from which direction of the 2-address area 101b the decoding is performed.
 デコード方法は、分子メモリ通過方向特定工程(ST4)の後に、任意付加的に、情報復原工程を備えていてもよい。例えば、ASCIIコード表に対応する分子配列表を準備しておいて、この分子配列表を用いてエンコードした情報を復元してもよい。 The decoding method may optionally include an information restoration step after the molecular memory passage direction identification step (ST4). For example, a molecular sequence table corresponding to the ASCII code table may be prepared, and the encoded information may be restored using this molecular sequence table.
 また、図4に示すように、デコード方法を実施する装置の例として、解析工程(ST3)や通過方向特定工程(ST4)で提供される情報を表示するための表示部10、予め解析部9や表示部10を機能させるためのプログラムを格納したプログラムメモリ11、プログラムメモリ11に格納されているこのプログラムを読み出し実行するための制御部12を含んでいてもよい。プログラムは、予めプログラムメモリ11に記憶しておいても良いし、記録媒体に記録され、インストール手段を用いてプログラムメモリ11に格納されるようにしてもよい。 Further, as shown in FIG. 4, as an example of a device that implements the decoding method, a display section 10 for displaying information provided in the analysis step (ST3) and the passing direction identification step (ST4), an analysis section 9 It may also include a program memory 11 storing a program for operating the display unit 10, and a control unit 12 for reading and executing the program stored in the program memory 11. The program may be stored in the program memory 11 in advance, or may be recorded on a recording medium and stored in the program memory 11 using an installation means.
 表示部10は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなど、公知の表示装置を用いればよい。 For the display unit 10, a known display device such as a liquid crystal display, a plasma display, an organic EL display, etc. may be used.
 本出願で開示する分子メモリ、分子メモリの製造方法、分子メモリのデコード方法および分子メモリをデコードするためのデバイスを用いることで、大容量の分子メモリを提供できる。したがって、情報産業にとって有用である。 A large-capacity molecular memory can be provided by using the molecular memory, the method for manufacturing the molecular memory, the method for decoding the molecular memory, and the device for decoding the molecular memory disclosed in this application. Therefore, it is useful for the information industry.
1…デバイス、2…基材、2a…基板、2b…絶縁層、2c…堆積層、2d…レジスト層、3…流路、31…分子メモリ投入流路、32…分子メモリ測定流路、33…第1テーパー流路、34…分子メモリ回収流路、35…第2テーパー流路、4、4a、4b…測定用電極、5…カバー部材、6、6a、6b…電気泳動用電源、61…電気泳動用第1電極、62…電気泳動用第2電極、7…トンネル電流検出部、8…トンネル電流測定用電源、9…解析部、10…表示部、11…プログラムメモリ、12…制御部、100…分子メモリ、101…アドレス領域、101a…第1アドレス領域、101b…第2アドレス領域、102…メモリ領域、103、103a、103b…冗長領域 DESCRIPTION OF SYMBOLS 1... Device, 2... Base material, 2a... Substrate, 2b... Insulating layer, 2c... Deposition layer, 2d... Resist layer, 3... Channel, 31... Molecular memory input channel, 32... Molecular memory measurement channel, 33 ...First taper channel, 34...Molecular memory recovery channel, 35...Second taper channel, 4, 4a, 4b...Measurement electrode, 5...Cover member, 6, 6a, 6b...Power source for electrophoresis, 61 ...First electrode for electrophoresis, 62... Second electrode for electrophoresis, 7... Tunnel current detection unit, 8... Power supply for tunnel current measurement, 9... Analysis unit, 10... Display unit, 11... Program memory, 12... Control Part, 100...Molecular memory, 101...Address area, 101a...First address area, 101b...Second address area, 102...Memory area, 103, 103a, 103b...Redundant area

Claims (15)

  1.  アドレス領域と、アドレス領域に連結するメモリ領域と、を含む分子メモリであって、
     アドレス領域およびメモリ領域は、トンネル電流を発生する分子で構成され、
     メモリ領域は、4種類以上の第1分子グループから選択した分子で構成され、
     アドレス領域は、4種類以上の第2分子グループから選択した分子で構成され、
     第1分子グループに含まれる分子は、
      第2分子グループに含まれる分子の種類と全て異なる種類である、または、
      第2分子グループに含まれる分子の種類と同じ種類および異なる種類を含む、
    ことで、
     アドレス領域およびメモリ領域を構成する分子の少なくとも一部は種類が異なる、
     分子メモリ。
    A molecular memory comprising an address area and a memory area connected to the address area,
    The address area and memory area are composed of molecules that generate tunnel current,
    The memory area is composed of molecules selected from a first molecule group of four or more types,
    The address area is composed of molecules selected from a second molecule group of four or more types,
    The molecules included in the first molecule group are:
    The types of molecules contained in the second molecule group are all different types, or
    Including the same types and different types of molecules contained in the second molecule group,
    By that,
    At least some of the molecules constituting the address area and the memory area are of different types,
    molecular memory.
  2.  第1分子グループが、第2分子グループに含まれる分子と同じ種類の分子を含む場合、第1分子グループおよび第2分子グループに含まれる同じ種類の分子は、
      アドレス領域のメモリ領域側の末端およびメモリ領域のアドレス領域側の末端に配置されない、
     請求項1に記載の分子メモリ。
    When the first molecule group includes molecules of the same type as molecules included in the second molecule group, the molecules of the same type included in the first molecule group and the second molecule group are
    It is not located at the end of the address area on the memory area side and at the end of the address area side of the memory area.
    The molecular memory according to claim 1.
  3.  第1分子グループに含まれる分子の中でコンダクタンスが最も小さい分子は、アドレス領域側とは反対側のメモリ領域の末端には配置されず、
     第2分子グループに含まれる分子の中でコンダクタンスが最も小さい分子は、メモリ領域側とは反対側のアドレス領域の末端には配置されない、
     請求項1に記載の分子メモリ。
    The molecule with the smallest conductance among the molecules included in the first molecule group is not placed at the end of the memory area on the opposite side from the address area side,
    The molecule with the smallest conductance among the molecules included in the second molecule group is not placed at the end of the address area on the opposite side to the memory area side.
    The molecular memory according to claim 1.
  4.  第1分子グループに含まれる分子の種類が、第2分子グループに含まれる分子の種類と全て異なる、
     請求項1に記載の分子メモリ。
    The types of molecules included in the first molecule group are all different from the types of molecules included in the second molecule group,
    The molecular memory according to claim 1.
  5.  第1分子グループに含まれる分子の種類が、第2分子グループに含まれる分子の種類と全て異なる、
     請求項3に記載の分子メモリ。
    The types of molecules included in the first molecule group are all different from the types of molecules included in the second molecule group,
    The molecular memory according to claim 3.
  6.  第1分子グループまたは第2分子グループの一方が、
    からなる群から選択される4種以上の分子を含み、
     第1分子グループまたは第2分子グループの他方が、
    からなる群から選択される4種以上の分子を含む、
     請求項4に記載の分子メモリ。
    One of the first molecular group or the second molecular group is
    4 or more molecules selected from the group consisting of
    The other of the first molecular group or the second molecular group is
    4 or more molecules selected from the group consisting of
    The molecular memory according to claim 4.
  7.  第1分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第1コンダクタンス範囲と、第2分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第2コンダクタンス範囲とが、オーバーラップしない、
     請求項1に記載の分子メモリ。
    A first conductance range that is the range of minimum and maximum conductance values of molecules included in the first molecule group, and a second conductance range that is a range of minimum and maximum conductance values of molecules included in the second molecule group. do not overlap,
    The molecular memory according to claim 1.
  8.  第1分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第1コンダクタンス範囲と、第2分子グループに含まれる分子のコンダクタンスの最小値と最大値の範囲である第2コンダクタンス範囲とが、オーバーラップしない、
     請求項6に記載の分子メモリ。
    A first conductance range that is the range of minimum and maximum conductance values of molecules included in the first molecule group, and a second conductance range that is a range of minimum and maximum conductance values of molecules included in the second molecule group. do not overlap,
    The molecular memory according to claim 6.
  9.  アドレス領域が、
      メモリ領域の一端に連結する第1アドレス領域と、
      メモリ領域の他端に連結する第2アドレス領域と、
    を含み、
     第1アドレス領域は、4種類以上の第2a分子グループから選択した分子で構成され、
     第2アドレス領域は、4種類以上の第2b分子グループから選択した分子で構成され、
     第1分子グループに含まれる分子は、
      第2a分子グループに含まれる分子の種類と全て異なる種類である、または、
      第2a分子グループに含まれる分子の種類と同じ種類および異なる種類を含み、且つ
      第2b分子グループに含まれる分子の種類と全て異なる種類である、または、
      第2b分子グループに含まれる分子の種類と同じ種類および異なる種類を含み、
     第2b分子グループに含まれる分子は、
      第2a分子グループに含まれる分子の種類と全て異なる種類である、または、
      第2a分子グループに含まれる分子の種類と同じ種類および異なる種類を含む、
     請求項1に記載の分子メモリ。
    The address area is
    a first address area connected to one end of the memory area;
    a second address area connected to the other end of the memory area;
    including;
    The first address area is composed of molecules selected from four or more types of 2a molecule groups,
    The second address area is composed of molecules selected from four or more types of second b molecule groups,
    The molecules included in the first molecule group are:
    The types of molecules contained in the 2a molecule group are all different types, or
    It includes the same types and different types of molecules as those included in the molecule group 2a, and is all different types from the types of molecules included in the molecule group 2b, or
    Including the same types and different types of molecules contained in the second b molecule group,
    Molecules included in the 2b molecule group are:
    The types of molecules contained in the 2a molecule group are all different types, or
    Including the same types and different types of molecules contained in the 2a molecule group,
    The molecular memory according to claim 1.
  10.  第1分子グループに含まれる分子の種類と、第2a分子グループに含まれる分子の種類と、第2b分子グループに含まれる分子の種類が、全て異なり、
     第2a分子グループおよび第2b分子グループの一方が、
    からなる群から選択される4種以上の分子を含み、
     第2a分子グループおよび第2b分子グループの他方が、
    からなる群から選択される4種以上の分子を含む、
     請求項9に記載の分子メモリ。
    The types of molecules included in the first molecule group, the types of molecules included in the second a molecule group, and the types of molecules included in the second b molecule group are all different,
    One of the 2a molecular group and the 2b molecular group,
    4 or more molecules selected from the group consisting of
    The other of the 2a molecule group and the 2b molecule group is
    4 or more molecules selected from the group consisting of
    The molecular memory according to claim 9.
  11.  アドレス領域とメモリ領域との間に冗長領域が連結され、
     冗長領域は、
      トンネル電流を発生する冗長領域分子で構成され、
      冗長領域分子のコンダクタンスは、アドレス領域およびメモリ領域を構成する分子のコンダクタンスより小さい、
     請求項1に記載の分子メモリ。
    A redundant area is connected between the address area and the memory area,
    The redundant area is
    Consists of redundant region molecules that generate tunnel current,
    The conductance of the redundant area molecules is smaller than the conductance of the molecules composing the address area and memory area.
    The molecular memory according to claim 1.
  12.  第1アドレス領域とメモリ領域との間に第1冗長領域が連結され、
     第2アドレス領域とメモリ領域との間に第2冗長領域が連結され、
     第1冗長領域および第2冗長領域は、
      トンネル電流を発生する冗長領域分子で構成され、
      冗長領域分子のコンダクタンスは、第1アドレス領域、第2アドレス領域およびメモリ領域を構成する分子のコンダクタンスより小さい、
     請求項9に記載の分子メモリ。
    a first redundant area is connected between the first address area and the memory area;
    a second redundant area is connected between the second address area and the memory area;
    The first redundant area and the second redundant area are
    Consists of redundant region molecules that generate tunnel current,
    The conductance of the redundant area molecules is smaller than the conductance of molecules forming the first address area, the second address area, and the memory area.
    The molecular memory according to claim 9.
  13.  請求項1~12の何れか一項に記載の分子メモリの製造方法であって、該製造方法は、
     エンコードする情報を準備する情報準備工程と、
     準備された情報を、分子メモリを構成する分子に変換し分子メモリの配列を決定する分子配列決定工程と、
     決定した配列に基づき、分子メモリを構成する分子を合成する合成工程と、
    を含む、
     製造方法。
    A method for manufacturing a molecular memory according to any one of claims 1 to 12, comprising:
    an information preparation step for preparing information to be encoded;
    a molecular sequencing step of converting the prepared information into molecules constituting the molecular memory and determining the arrangement of the molecular memory;
    a synthesis step of synthesizing molecules constituting the molecular memory based on the determined sequence;
    including,
    Production method.
  14.  請求項1~12の何れか一項に記載の分子メモリをデコードするためのデバイスであって、該デバイスは、
      基材と、
      基材に形成された流路と、
      分子メモリが通過した時のトンネル電流を測定するための一対の測定用電極と、
      制御部と、
    を含み、
     流路は、
      分子メモリ投入流路と、
      測定用電極が配置される分子メモリ測定流路と、
      分子メモリ投入流路と分子メモリ測定流路との間に配置され、分子メモリ投入流路から分子メモリ測定流路に向けて流路幅が狭くなる第1テーパー流路と、
      分子メモリ測定流路を通過した分子メモリを回収する分子メモリ回収流路と、
    を含み、
     第1テーパー流路と分子メモリ測定流路の接続部分の幅が20nm~200nmであり、
     解析部は、
      アドレス領域を構成する分子のコンダクタンスおよびメモリ領域を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極を通過する際の方向を特定する、または、
      第1アドレス領域を構成する分子のコンダクタンスおよび第2アドレス領域を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極を通過する際の方向を特定する、
     デバイス。
    A device for decoding a molecular memory according to any one of claims 1 to 12, comprising:
    base material and
    A flow path formed in the base material,
    a pair of measurement electrodes for measuring tunneling current when the molecular memory passes;
    a control unit;
    including;
    The flow path is
    a molecular memory input channel;
    a molecular memory measurement channel in which measurement electrodes are arranged;
    a first tapered channel that is disposed between the molecular memory input channel and the molecular memory measurement channel, and whose channel width becomes narrower from the molecular memory input channel to the molecular memory measurement channel;
    a molecular memory recovery channel for recovering the molecular memory that has passed through the molecular memory measurement channel;
    including;
    The width of the connecting portion between the first taper channel and the molecular memory measurement channel is 20 nm to 200 nm,
    The analysis department is
    Identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the address area and the conductance of the molecules forming the memory area, or
    identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the first address area and the conductance of the molecules forming the second address area;
    device.
  15.  請求項14に記載のデバイスを用いた請求項1~12の何れか一項に記載の分子メモリのデコード方法であって、
     分子メモリのデコード方法は、分子メモリ電気泳動工程と、測定工程と、解析工程と、分子メモリ通過方向特定工程と、を含み、
     分子メモリ電気泳動工程は、
      分子メモリ投入流路および分子メモリ回収流路に電圧を印加することで、分子メモリ投入流路の分子メモリを分子メモリ回収流路に向けて電気泳動し、
     測定工程は、
      分子メモリ測定流路に配置された一対の測定用電極の隙間を分子メモリが通過する時のトンネル電流を測定し、
     解析工程は、
      測定したトンネル電流の測定結果から、分子メモリを構成する分子の配列を解析し、
     分子メモリ通過方向特定工程は、
      アドレス領域を構成する分子のコンダクタンスおよびメモリ領域を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極を通過する際の方向を特定する、または、
      第1アドレス領域を構成する分子のコンダクタンスおよび第2アドレス領域を構成する分子のコンダクタンスに基づき、分子メモリが測定用電極を通過する際の方向を特定する、
     分子メモリのデコード方法。
    A method for decoding a molecular memory according to any one of claims 1 to 12 using the device according to claim 14,
    The molecular memory decoding method includes a molecular memory electrophoresis step, a measurement step, an analysis step, and a molecular memory passage direction identification step,
    The molecular memory electrophoresis process is
    By applying a voltage to the molecular memory input channel and the molecular memory recovery channel, the molecular memory in the molecular memory input channel is electrophoresed towards the molecular memory recovery channel,
    The measurement process is
    Measure the tunneling current when the molecular memory passes through the gap between a pair of measurement electrodes placed in the molecular memory measurement channel,
    The analysis process is
    Based on the measured tunnel current, we analyze the arrangement of the molecules that make up the molecular memory.
    The molecular memory passing direction identification process is
    Identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the address area and the conductance of the molecules forming the memory area, or
    identifying the direction in which the molecular memory passes through the measurement electrode based on the conductance of the molecules forming the first address area and the conductance of the molecules forming the second address area;
    How to decode molecular memory.
PCT/JP2023/030588 2022-08-29 2023-08-24 Molecular memory, method for manufacturing molecular memory, method for decoding molecular memory, and device for decoding molecular memory WO2024048422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-136341 2022-08-29
JP2022136341 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048422A1 true WO2024048422A1 (en) 2024-03-07

Family

ID=90099759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030588 WO2024048422A1 (en) 2022-08-29 2023-08-24 Molecular memory, method for manufacturing molecular memory, method for decoding molecular memory, and device for decoding molecular memory

Country Status (1)

Country Link
WO (1) WO2024048422A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095651A1 (en) * 2005-03-07 2006-09-14 Ntt Docomo, Inc. Molecular communication system
JP2015154750A (en) * 2014-02-20 2015-08-27 国立大学法人大阪大学 Electrode for biomolecule sequencing apparatus, and biomolecule sequencing apparatus, method, and program
JP2022500626A (en) * 2018-09-07 2022-01-04 イリディア・インコーポレイテッドIridia, Inc. Improved systems and methods for writing and reading data stored in polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095651A1 (en) * 2005-03-07 2006-09-14 Ntt Docomo, Inc. Molecular communication system
JP2015154750A (en) * 2014-02-20 2015-08-27 国立大学法人大阪大学 Electrode for biomolecule sequencing apparatus, and biomolecule sequencing apparatus, method, and program
JP2022500626A (en) * 2018-09-07 2022-01-04 イリディア・インコーポレイテッドIridia, Inc. Improved systems and methods for writing and reading data stored in polymers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAGIYA, MASAMI: "DNA calculation, optical information processing, nanotechnology: New computer possibilities. Recent molecular computing", COMPUTER TODAY, IENSUSHA, TOKYO, SA, vol. 19, no. 3, 1 May 2002 (2002-05-01), SA , pages 4 - 10, XP009553271, ISSN: 0289-3509 *
KASHIWAMURA SATOSHI, YAMAMOTO MASAHITO, KAMEDA ATSUSHI, OHUCHI AZUMA: "Study of Construction of Molecular Memory Based on DNA and Enlargement of Capacity", FIT2005 4TH INFORMATION SCIENCE AND TECHNOLOGY FORUM, vol. 2, 22 August 2005 (2005-08-22), pages 367 - 369, XP093143474 *

Similar Documents

Publication Publication Date Title
Li et al. Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science
Dekker et al. Electronic properties of DNA
Endres et al. Colloquium: The quest for high-conductance DNA
Soleymani et al. Programming the detection limits of biosensors through controlled nanostructuring
US8034222B2 (en) Conducting polymer nanowire sensors
Reed Molecular-scale electronics
Waleed Shinwari et al. Electrical conductance in biological molecules
Lee et al. Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules
Slinker et al. DNA charge transport over 34 nm
Park et al. Finite‐size, fully addressable DNA tile lattices formed by hierarchical assembly procedures
McKendry et al. Chiral discrimination by chemical force microscopy
Okuno et al. Single-walled carbon nanotube-arrayed microelectrode chip for electrochemical analysis
US20070190542A1 (en) Hybridization assisted nanopore sequencing
Luan et al. Spontaneous ssDNA stretching on graphene and hexagonal boron nitride in plane heterostructures
Erdmann et al. Electrically induced bonding of DNA to gold
Erdmann et al. Electrically controlled DNA adhesion
Zhuravel et al. Advances in synthesis and measurement of charge transport in DNA‐based derivatives
Kim et al. Conformations and charge transport characteristics of biphenyldithiol self-assembled-monolayer molecular electronic devices: A multiscale computational study
Amatore et al. Electrochemistry within molecules using ultrafast cyclic voltammetry
Mao et al. Micro/nanoelectrodes and their use in electrocrystallization: Historical perspective and current trends
WO2024048422A1 (en) Molecular memory, method for manufacturing molecular memory, method for decoding molecular memory, and device for decoding molecular memory
Dief et al. Advances in single-molecule junctions as tools for chemical and biochemical analysis
JP2011045944A (en) Nanoribbon and manufacturing method thereof, fet using nanoribbon and manufacturing method thereof, and base sequence determination method using nanoribbon and apparatus for the same
Kelly et al. Scanning tunneling microscopy and spectroscopy of dialkyl disulfide fullerenes inserted into alkanethiolate SAMs
Darwish et al. Principles of Molecular Devices Operated by Electric Fields

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860185

Country of ref document: EP

Kind code of ref document: A1