WO2024048303A1 - (meth)acrylic resin particles, vehicle composition, slurry composition, and method for manufacturing electronic components - Google Patents

(meth)acrylic resin particles, vehicle composition, slurry composition, and method for manufacturing electronic components Download PDF

Info

Publication number
WO2024048303A1
WO2024048303A1 PCT/JP2023/029724 JP2023029724W WO2024048303A1 WO 2024048303 A1 WO2024048303 A1 WO 2024048303A1 JP 2023029724 W JP2023029724 W JP 2023029724W WO 2024048303 A1 WO2024048303 A1 WO 2024048303A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
meth
acrylic resin
resin particles
less
Prior art date
Application number
PCT/JP2023/029724
Other languages
French (fr)
Japanese (ja)
Inventor
丈 大塚
健司 山内
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2024048303A1 publication Critical patent/WO2024048303A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical

Definitions

  • the present invention relates to (meth)acrylic resin particles, vehicle compositions, slurry compositions, and methods for producing electronic components.
  • Multilayer ceramic capacitors are known to have a structure including a laminate in which a plurality of dielectric layers and internal electrodes are alternately stacked, and a pair of external electrodes provided to sandwich the laminate.
  • the external electrodes are formed by applying a conductive paste for external electrodes on the surface of the laminate and sintering the paste.
  • the inorganic particles used for external electrodes have also been miniaturized. Fine inorganic particles tend to aggregate in the paste, and when agglomeration occurs, voids tend to remain during the degreasing and firing processes, and when made into a multilayer ceramic capacitor, the dispersibility of the inorganic particles decreases, resulting in problems with the product. This causes deterioration of electrical characteristics.
  • Patent Document 1 discloses a method for efficiently dispersing ceramic powder in a configuration using these binders. Specifically, a method is disclosed in which ceramic powder such as calcium titanate is primarily crushed in a solvent such as ethanol, and then a resin such as polyvinyl butyral resin or ethyl cellulose resin is added. Further, Patent Document 2 discloses a method using an acrylic resin or the like as a binder.
  • Patent Document 1 has a problem that it has a high decomposition temperature and cannot be applied to applications where low-temperature firing is desirable, for example, applications using easily oxidized metals such as copper or low-melting glass.
  • Patent Document 2 describes the use of an acrylic resin, but when using fine inorganic particles with an average particle diameter of less than 1 ⁇ m, there is a problem that the dispersibility deteriorates. Furthermore, the acrylic resin described in Patent Document 2 has a problem in that it deteriorates due to oxidation during degreasing, which requires a high firing temperature.
  • the present invention is an inorganic particle that has excellent low-temperature decomposition properties, can prevent deterioration due to oxidation of inorganic particles such as copper when used as a binder for dispersing inorganic particles, and has particularly excellent dispersibility of fine inorganic particles.
  • An object of the present invention is to provide (meth)acrylic resin particles that can be used to prepare a dispersed slurry composition.
  • Another object of the present invention is to provide (meth)acrylic resin particles that can be used as a binder for the external electrodes of a multilayer ceramic capacitor to produce a multilayer ceramic capacitor with excellent reliability.
  • it is an object to provide vehicle compositions, slurry compositions, and methods of manufacturing electronic components.
  • the present disclosure (1) is (meth)acrylic resin particles having a weight average molecular weight of 100,000 to 1,000,000 and a weight concentration of S atoms of 0.03 to 2.50 weight%.
  • the present disclosure (2) is the (meth)acrylic resin particles of the present disclosure (1) in which the weight concentration of COOH groups is 0.06% by weight or more and 3.00% by weight or less.
  • the present disclosure (3) is the (meth)acrylic resin particles of the present disclosure (1) or (2), in which the weight concentration of K atoms is 0.010% by weight or more and 1.000% by weight or less.
  • the present disclosure (4) is (meth)acrylic resin particles in any combination with any of the present disclosures (1) to (3), in which the content of a component derived from an acrylic monomer is 5% by weight or less.
  • the present disclosure (5) is (meth)acrylic resin particles in any combination with any of the present disclosures (1) to (4), which have an average particle diameter of 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the present disclosure (6) is a vehicle composition containing the (meth)acrylic resin particles according to any one of the present disclosures (1) to (5) and a solvent containing an organic solvent.
  • the present disclosure (7) is the vehicle composition of the present disclosure (6), wherein the solvent further contains water in an amount of 100 ppm to 40,000 ppm by weight.
  • the present disclosure (8) provides the present disclosure (6), wherein the organic solvent contains a compound having two or more OH groups, and the content of the compound having two or more OH groups in the solvent is 10% by weight or more and 50% by weight or less. ) or (7).
  • the present disclosure (9) is a slurry composition containing the vehicle composition of any of the present disclosures (6) to (8), inorganic particles, and a dispersant.
  • the present disclosure (10) is a method for manufacturing an electronic component using the slurry composition of the present disclosure (9). The present invention will be explained in detail below.
  • the present inventors have discovered that (meth)acrylic resin particles having a predetermined weight average molecular weight and weight concentration of S atoms have excellent low-temperature decomposition properties, and when used as a binder for dispersing inorganic particles, they can oxidize inorganic particles such as copper. We have found that deterioration caused by Furthermore, it has been found that by using such a (meth)acrylic resin, an inorganic particle-dispersed slurry composition having particularly excellent dispersibility of fine inorganic particles can be obtained. Furthermore, the inventors have discovered that by using such (meth)acrylic resin particles as a binder for the external electrodes of a multilayer ceramic capacitor, a multilayer ceramic capacitor with excellent reliability can be produced, and the present invention has been completed.
  • the (meth)acrylic resin particles have a weight average molecular weight (Mw) of 100,000 or more and 1,000,000 or less. By setting it as the said range, when it forms an inorganic particle dispersion slurry composition, the dispersibility of inorganic particles can be improved. In addition, it has sufficient viscosity and printability can be improved.
  • the weight average molecular weight (Mw) is preferably 150,000 or more, particularly preferably 170,000 or more. Further, the weight average molecular weight (Mw) is preferably 900,000 or less, more preferably 800,000 or less, even more preferably 700,000 or less, and particularly preferably 500,000 or less.
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the (meth)acrylic resin particles is preferably 8 or less, more preferably 6 or less, and even more preferably 5 or less.
  • the above weight average molecular weight (Mw) and the above number average molecular weight (Mn) are average molecular weights in terms of polystyrene, and are obtained by performing GPC measurement using, for example, column LF-804 (manufactured by Showa Denko) as a column. be able to.
  • the weight concentration of S atoms contained in the (meth)acrylic resin particles is 0.03% by weight or more and 2.50% by weight or less. By setting it within the above range, when an inorganic particle-dispersed slurry composition is prepared, it can be made to have particularly excellent dispersibility in inorganic particles.
  • the weight concentration of the S atoms is preferably 0.30% by weight or more, preferably 2.00% by weight or less, more preferably 0.50% by weight or more, more preferably 1.80% by weight or less, and 0.70% by weight. % or more is more preferable, and 1.50 weight % or less is still more preferable.
  • the weight concentration of the S atoms means the weight ratio of the S atoms in the (meth)acrylic resin structure to the weight of the (meth)acrylic resin particles, and can be calculated based on the following formula. Furthermore, the above values are rounded to the third decimal place.
  • Weight concentration of S atoms contained in (meth)acrylic resin particles [(Weight of S atoms contained in all monomers + Weight of S atoms contained in all chain transfer agents + S contained in all polymerization initiators) weight of atoms)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)] ⁇ 100 Further, the weight concentration of the S atoms can also be determined by ICP-AES (Inductively Coupled Plasma Emission Spectroscopy).
  • the weight concentration of COOH groups contained in the (meth)acrylic resin particles is preferably 0.06% by weight or more, and preferably 3.00% by weight or less. Within the above range, there is an advantage that the inorganic particles have particularly excellent dispersibility.
  • the weight concentration of the COOH group is more preferably 0.50% by weight or more, more preferably 2.70% by weight or less, still more preferably 1.00% by weight or more, and even more preferably 2.50% by weight or more.
  • the weight concentration of the COOH group means the ratio of the weight of the COOH group in the (meth)acrylic resin structure to the weight of the (meth)acrylic resin particles, and can be calculated based on the following formula. Furthermore, the above values are rounded to the third decimal place.
  • Weight concentration of COOH groups contained in (meth)acrylic resin particles [(Weight of COOH groups contained in all monomers + Weight of COOH groups contained in all chain transfer agents + COOH contained in all polymerization initiators) weight of group)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)] ⁇ 100 Furthermore, the weight concentration of the COOH group can also be determined by ESCA analysis using a gas phase chemical modification method.
  • the weight concentration of K atoms contained in the (meth)acrylic resin particles is preferably 0.001% by weight or more, and preferably 1.500% by weight or less. Within the above range, storage stability is improved.
  • the weight concentration of the K atoms is more preferably 0.005% by weight or more, and more preferably 1.200% by weight or less.
  • the weight concentration of K atoms means the ratio of the weight of K atoms in the (meth)acrylic resin structure to the weight of the (meth)acrylic resin particles, and can be calculated based on the following formula. Furthermore, the above values are rounded to the fourth decimal place.
  • Weight concentration of K atoms contained in (meth)acrylic resin particles [(Weight of K atoms contained in all monomers + Weight of K atoms contained in all chain transfer agents + K contained in all polymerization initiators) weight of atoms)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)] ⁇ 100 Moreover, the weight concentration of K atoms can also be measured using an atomic absorption spectrophotometer.
  • the weight concentration of OH groups contained in the (meth)acrylic resin particles is preferably 0.05% by weight or more, preferably 3.00% by weight or less, more preferably 0.08% by weight or more, and 2.50% by weight.
  • the following is more preferable, 0.10% by weight or more is even more preferable, and even more preferably 2.00% by weight or less.
  • the weight concentration of the OH group means the ratio of the weight of the OH group in the (meth)acrylic resin structure to the weight of the (meth)acrylic resin particles, and can be calculated based on the following formula. Furthermore, the above values are rounded to the third decimal place.
  • Weight concentration of OH groups contained in (meth)acrylic resin particles [(Weight of OH groups contained in all monomers + Weight of OH groups contained in all chain transfer agents + OH contained in all polymerization initiators) weight of group)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)] ⁇ 100 Further, the weight concentration of the OH group can also be determined by ESCA analysis using a gas phase chemical modification method.
  • the ratio of the weight concentration of COOH groups to the weight concentration of S atoms contained in the (meth)acrylic resin particles is preferably 0.03 or more, and 3. 00 or less, more preferably 0.05 or more, and even more preferably 1.00 or less.
  • the ratio of the weight concentration of OH groups to the weight concentration of S atoms contained in the (meth)acrylic resin particles is preferably 0.10 or more and 3.00 or less. is preferable, 0.15 or more is more preferable, and 1.20 or less is more preferable.
  • the ratio of the weight concentration of K atoms to the weight concentration of S atoms contained in the (meth)acrylic resin particles is preferably 0.01 or more and 1.50 or less. is preferable, 0.05 or more is more preferable, and 1.20 or less is more preferable.
  • the average particle diameter of the (meth)acrylic resin particles is preferably 0.1 ⁇ m or more, and preferably 1.0 ⁇ m or less. By setting it as the said range, the solubility of (meth)acrylic resin particles can be improved more.
  • the average particle diameter is more preferably 0.2 ⁇ m or more, more preferably 0.9 ⁇ m or less, even more preferably 0.3 ⁇ m or more, and even more preferably 0.8 ⁇ m or less.
  • the average particle diameter can be determined, for example, by measuring the volume average particle diameter using a laser diffraction/scattering particle size distribution measuring device. Note that the above average particle diameter can be adjusted by adjusting the amount of the polymerization initiator. For example, when the content of the polymerization initiator is high, the average particle size tends to be small, and when the content of the polymerization initiator is low, the average particle size tends to be large.
  • the (meth)acrylic resin particles preferably contain a segment derived from a (meth)acrylic acid ester in which the number of carbon atoms in the ester substituent is 8 or less.
  • the fact that the number of carbon atoms in the ester substituent is 8 or less means that the total number of carbon atoms other than the carbon constituting the (meth)acryloyl group in the (meth)acrylic ester is 8 or less.
  • the (meth)acrylic ester in which the ester substituent has 8 or less carbon atoms refers to a (meth)acrylic ester other than the glycidyl group-containing (meth)acrylic ester described below.
  • Examples of the (meth)acrylic ester in which the ester substituent has 8 or less carbon atoms include (meth)acrylic esters having a linear, branched, or cyclic alkyl group.
  • Examples of the (meth)acrylic ester having a linear alkyl group include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and n-butyl (meth)acrylate. It will be done.
  • Examples of the (meth)acrylic ester having a branched alkyl group include isopropyl (meth)acrylate, t-butyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. It will be done.
  • Examples of the (meth)acrylic acid ester having a cyclic alkyl group include cyclohexyl (meth)acrylate, benzyl (meth)acrylate, and the like.
  • examples of (meth)acrylic acid esters in which the number of carbon atoms in the ester substituent is 8 or less include 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, and (meth)acrylic acid ester.
  • (Meth)acrylates having hydroxyl groups or carboxyl groups such as acids can also be used.
  • (meth)acrylic esters having a linear alkyl group and (meth)acrylic esters having a branched alkyl group are preferred.
  • methyl methacrylate, ethyl methacrylate, and isobutyl methacrylate are more preferred.
  • a combination of a (meth)acrylic ester having a linear alkyl group and a (meth)acrylic ester having a branched alkyl group is preferred.
  • (meth)acrylic ester in which the ester substituent has 8 or less carbon atoms a (meth)acrylic ester in which the ester substituent has 1 to 4 carbon atoms may be used; (Meth)acrylic acid esters having a number of 5 to 8 may also be used. Among these, (meth)acrylic esters in which the ester substituent has 1 to 4 carbon atoms are preferred.
  • the content of the segment derived from the (meth)acrylic acid ester in which the ester substituent has 8 or less carbon atoms in the (meth)acrylic resin particles is preferably 40% by weight or more, more preferably 60% by weight or more, More preferably 80% by weight or more.
  • the upper limit is not particularly limited, but is preferably 100% by weight or less, more preferably 99% by weight or less, and even more preferably 98% by weight or less.
  • the content of the segment in the (meth)acrylic resin particles is based on the raw materials used to produce the (meth)acrylic resin constituting the (meth)acrylic resin particles, excluding the polymerization initiator and chain transfer agent. It can be calculated based on the ratio of each monomer to 100 parts by weight of the monomer.
  • the content of the segment derived from the (meth)acrylic ester in which the ester substituent has 1 to 4 carbon atoms in the (meth)acrylic resin particles is preferably 40% by weight or more, more preferably 60% by weight or more. , more preferably 80% by weight or more.
  • the upper limit is not particularly limited, but is, for example, 100% by weight or less.
  • the content of the segment derived from the (meth)acrylic ester in which the ester substituent has 1 to 2 carbon atoms in the (meth)acrylic resin particles is preferably 35% by weight or more, more preferably 40% by weight or more, The content is preferably 65% by weight or less, more preferably 60% by weight or less.
  • the content of the segment derived from the (meth)acrylic ester in which the ester substituent has 5 to 8 carbon atoms in the (meth)acrylic resin particles is preferably 60% by weight or less, more preferably 40% by weight or less. , more preferably 20% by weight or less.
  • the lower limit is not particularly limited, but is, for example, 0% by weight or more.
  • the content of segments derived from methyl methacrylate in the (meth)acrylic resin particles is preferably 30% by weight or more, preferably 60% by weight or less, more preferably 35% by weight or more, and more preferably 50% by weight or less.
  • the content of segments derived from ethyl methacrylate in the (meth)acrylic resin particles is preferably 10% by weight or more, preferably 30% by weight or less, more preferably 15% by weight or more, and more preferably 25% by weight or less.
  • the content of segments derived from isobutyl methacrylate in the (meth)acrylic resin particles is preferably 30% by weight or more, preferably 60% by weight or less, more preferably 35% by weight or less, and even more preferably 50% by weight or less.
  • the (meth)acrylic resin particles may have a segment derived from a (meth)acrylic acid ester in which the ester substituent has 9 or more carbon atoms.
  • the number of carbon atoms in the ester substituent is more preferably 10 or more, preferably 30 or less, and more preferably 20 or less.
  • (meth)acrylic ester in which the ester substituent has 9 or more carbon atoms, (meth)acrylic ester having a linear or branched alkyl group having 9 or more carbon atoms, polyalkylene glycol Examples include (meth)acrylate.
  • Examples of the linear or branched (meth)acrylic acid ester having an alkyl group having 9 or more carbon atoms include n-nonyl (meth)acrylate, isononyl (meth)acrylate, and n-decyl (meth)acrylate. Acrylate, isodecyl (meth)acrylate, n-lauryl (meth)acrylate, isolauryl (meth)acrylate, n-stearyl (meth)acrylate, isostearyl (meth)acrylate, and the like.
  • Examples of the polyalkylene glycol (meth)acrylate include those having ethylene glycol units, propylene glycol units, butylene glycol units, and the like.
  • polyalkylene glycol (meth)acrylate may have an alkoxy group at the end, or may have an ethylhexyl group at the end. Moreover, the polyalkylene glycol (meth)acrylate may have a linear alkylene glycol unit or may have a branched alkylene glycol unit.
  • the content of the segment derived from the (meth)acrylic ester in which the ester substituent has 9 or more carbon atoms in the (meth)acrylic resin particles is preferably 60% by weight or less, more preferably 40% by weight or less, More preferably, it is 20% by weight or less.
  • the lower limit is not particularly limited, but is, for example, 0% by weight or more.
  • the (meth)acrylic resin particles may have a segment derived from a (meth)acrylic acid ester having a glycidyl group.
  • examples of the (meth)acrylic acid ester having a glycidyl group include glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and 3,4-epoxycyclohexyl (meth)acrylate.
  • the content of the segment derived from the acrylic monomer in the (meth)acrylic resin particles is preferably 5% by weight or less, and more preferably 1% by weight or less, since the smaller the content, the better the low-temperature decomposition property is. preferable.
  • the lower limit is not particularly limited, but is, for example, 0% by weight or more.
  • the said acrylic monomer means acrylic acid and acrylic acid ester.
  • the glass transition temperature (Tg) of the (meth)acrylic resin particles is preferably 30°C or higher, and preferably 85°C or lower. By setting it as the said range, the addition amount of a plasticizer can be reduced and low-temperature decomposability can be improved.
  • the above Tg is more preferably 32°C or higher, more preferably 80°C or lower, even more preferably 42°C or higher, and even more preferably 75°C or lower.
  • the glass transition temperature (Tg) can be measured using, for example, a differential scanning calorimeter (DSC).
  • the (meth)acrylic resin particles preferably have a 90% decomposition temperature of 280°C or lower, more preferably 270°C or lower, and 260°C or lower when heated from 30°C to 5°C/min. It is even more preferable that there be.
  • the lower limit is not particularly limited, and is 30° C. or higher, and the lower the temperature, the more preferable.
  • the above-mentioned (meth)acrylic resin particles for example, an organic solvent or the like is added to a raw material monomer mixture containing (meth)acrylic acid ester, etc. to prepare a monomer mixture, and further, the obtained monomer mixture is A method of copolymerizing the above raw material monomers by adding a polymerization initiator and a chain transfer agent to the monomer can be mentioned.
  • the polymerization method is not particularly limited, and examples include emulsion polymerization, suspension polymerization, bulk polymerization, interfacial polymerization, and solution polymerization. Among these, solution polymerization is preferred.
  • organic solvents examples include toluene, ethyl acetate, butyl acetate, pentyl acetate, hexyl acetate, ethyl butyrate, butyl butyrate, pentyl butyrate, hexyl butyrate, isopropanol, methyl isobutyl ketone, methyl ethyl ketone, methyl isobutyl ketone, and ethylene glycol ethyl ether.
  • butyl acetate, terpineol, terpineol acetate, dihydroterpineol, dihydroterpineol acetate, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisobutyl ether, butyl carbitol, butyl carbitol acetate, and texanol are preferred.
  • butyl acetate, terpineol, terpineol acetate, dihydroterpineol, and dihydroterpineol acetate are more preferred. Note that these organic solvents may be used alone or in combination of two or more.
  • polymerization initiator examples include t-butylperoxypivalate, P-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroxyperoxide, Examples include t-butyl hydroxy peroxide, cyclohexanone peroxide, and disuccinic acid peroxide.
  • polymerization initiators containing S atoms and polymerization initiators containing K atoms are preferably used.
  • potassium persulfate, ammonium persulfate, 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis[2-methyl-N-(2-hydroxyethyl) ) propionamide] is preferred, and potassium persulfate and 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] are more preferred.
  • the amount of the polymerization initiator added is preferably 0.03 parts by weight or more, preferably 4.0 parts by weight or less, more preferably 0.05 parts by weight or more, and 3.6 parts by weight based on 100 parts by weight of the raw material monomer. Part or less is more preferable.
  • a chain transfer agent having an S atom is preferably used, such as 3-mercapto-1,2-propanediol, 3-mercapto-1-propanol, 3-mercapto-2-butanol, 8- Examples include mercapto-1-octanol, 2-mercaptobenzimidazole, mercaptosuccinic acid, and mercaptoacetic acid. Among them, 3-mercapto-1,2-propanediol and mercaptosuccinic acid are preferably used.
  • the amount of the chain transfer agent added is preferably 0.1 parts by weight or more, preferably 10.0 parts by weight or less, more preferably 0.4 parts by weight or more, and 5.0 parts by weight based on 100 parts by weight of the raw material monomer. Part or less is more preferable.
  • the temperature during polymerization is preferably 50°C or higher, preferably 90°C or lower, more preferably 60°C or higher, and more preferably 80°C or lower.
  • a vehicle composition can be prepared using the above (meth)acrylic resin particles and a solvent containing an organic solvent.
  • a vehicle composition containing the above-mentioned (meth)acrylic resin particles and a solvent including an organic solvent is also one aspect of the present invention.
  • the content of the (meth)acrylic resin particles in the vehicle composition is preferably 5% by weight or more, preferably 30% by weight or less, more preferably 10% by weight or more, and more preferably 20% by weight or less.
  • the vehicle composition contains an organic solvent.
  • organic solvent include alcohols such as aliphatic alcohols, glycols, terpene alcohols, and aromatic alcohols, aromatic hydrocarbons, esters, ketones, N-methylpyrrolidone, and the like.
  • Examples of the aliphatic alcohols include ethanol, propanol, isopropanol, heptanol, octanol, decanol, tridecanol, lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol, oleyl alcohol, texanol, Examples include 2-butyl-2-ethyl-1,3-propanediol and neopentyl glycol.
  • glycols include ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisobutyl ether, butyl carbitol, ethylene glycol monoethyl ether acetate, trimethylpentanediol monoisobutyrate, butyl carbitol acetate, and texanol. , ethylene glycol monophenyl ether, propylene glycol monophenyl ether, ethylene glycol ethyl ether, and the like.
  • terpene alcohols examples include terpineol, dihydroterpineol, terpineol acetate, dihydroterpineol acetate, and the like.
  • aromatic alcohols examples include benzyl alcohol and the like.
  • aromatic hydrocarbons include toluene and the like.
  • esters include ethyl acetate, butyl acetate, hexyl acetate, isoamyl acetate, butyl butyrate, bityl lactate, dioctyl phthalate, dioctyl adipate, and the like.
  • ketones examples include methyl isobutyl ketone, methyl ethyl ketone, methyl isobutyl ketone, and isophorone.
  • aliphatic alcohols and terpene alcohols are preferred, and 2-butyl-2-ethyl-1,3-propanediol and dihydroterpineol acetate are more preferred.
  • the organic solvent has a compound having two or more OH groups.
  • the content of the compound having two or more OH groups in the above solvent is preferably 10% by weight or more, and preferably 50% by weight or less.
  • the content of the solvent in the vehicle composition is not particularly limited, but is preferably 65% by weight or more, preferably 90% by weight or less, more preferably 70% by weight or more, and more preferably 85% by weight or less.
  • the solvent preferably further contains water.
  • the content of water in the solvent is preferably at least 100 ppm by weight, and preferably at most 40,000 ppm by weight. Containing water within the above range has the advantage of improving compatibility with the dispersant and improving thermal decomposition properties.
  • the content of water in the solvent is more preferably at least 300 ppm by weight, and more preferably at most 20,000 ppm by weight.
  • the weight concentration of S atoms contained in the vehicle composition is preferably 0.004% by weight or more, preferably 0.400% by weight or less, more preferably 0.100% by weight or more, and 0.200% by weight or less. More preferred.
  • the weight concentration of S atoms means the ratio of the weight of S atoms contained in the vehicle composition to the weight of the entire vehicle composition, and can be calculated based on the following formula.
  • Weight concentration of S atoms contained in the vehicle composition [Content (% by weight) of (meth)acrylic resin particles in vehicle composition ⁇ Weight concentration (weight %) of S atoms contained in (meth)acrylic resin particles %)] ⁇ 100
  • the weight concentration of COOH groups contained in the vehicle composition is preferably 0.005% by weight or more, preferably 0.500% by weight or less, more preferably 0.009% by weight or more, and 0.300% by weight or less. More preferred.
  • the weight concentration of the COOH group means the weight ratio of the COOH group contained in the vehicle composition to the weight of the entire vehicle composition, and can be calculated based on the following formula.
  • Weight concentration of COOH groups contained in the vehicle composition ⁇ [Content (% by weight) of (meth)acrylic resin particles in the vehicle composition ⁇ Weight concentration of COOH groups contained in the (meth)acrylic resin particles ( weight%)]+[Content of organic solvent in vehicle composition (weight%) x weight concentration of COOH group contained in organic solvent (weight%)] ⁇ 100
  • the weight concentration of OH groups contained in the vehicle composition is preferably 0.01% by weight or more, preferably 13.00% by weight or less, more preferably 0.02% by weight or more, and 11.00% by weight or less. More preferred.
  • the weight concentration of the OH groups means the weight ratio of the OH groups contained in the vehicle composition to the weight of the entire vehicle composition, and can be calculated based on the following formula.
  • Weight concentration of OH groups contained in the vehicle composition ⁇ [Content (% by weight) of (meth)acrylic resin particles in the vehicle composition ⁇ Weight concentration of OH groups contained in the (meth)acrylic resin particles ( (% by weight)] + [Content of organic solvent in vehicle composition (% by weight) x Weight concentration of OH groups contained in organic solvent (% by weight)] + [Content of water in vehicle composition (% by weight) %) x weight concentration of OH groups in water (weight %)] ⁇ 100
  • the weight concentration of K atoms contained in the vehicle composition is preferably 0.001% by weight or more, preferably 0.200% by weight or less, more preferably 0.010% by weight or more, and 0.160% by weight or less. More preferred.
  • the weight concentration of K atoms means the weight ratio of K atoms contained in the vehicle composition to the weight of the entire vehicle composition, and can be calculated based on the following formula.
  • Weight concentration of K atoms contained in the vehicle composition [Content of (meth)acrylic resin particles in the vehicle composition (wt%) x Weight concentration of K atoms contained in the (meth)acrylic resin particles (weight %)] ⁇ 100
  • the ratio of the weight concentration of OH groups to the weight concentration of S atoms contained in the vehicle composition is preferably 0.1 or more, and preferably 100 or less, It is more preferably 0.2 or more, and more preferably 75 or less.
  • Examples of the method for producing the vehicle composition include a method in which an organic solvent, water, etc. are added to the (meth)acrylic resin particles obtained by the above method, and the mixture is stirred.
  • a slurry composition can be prepared using the vehicle composition, inorganic particles, and dispersant described above.
  • a slurry composition containing the above vehicle composition, inorganic particles, and a dispersant is also part of the present invention.
  • the content of the (meth)acrylic resin particles in the slurry composition is preferably 3% by weight or more, preferably 10% by weight or less, more preferably 5% by weight or more, and more preferably 8% by weight or less.
  • the content of the organic solvent in the slurry composition is preferably 25% by weight or more, preferably 40% by weight or less, more preferably 30% by weight or more, and more preferably 35% by weight or less.
  • the content of water in the slurry composition is preferably at least 30 ppm by weight, preferably at most 15,000 ppm by weight, more preferably at least 1,000 ppm by weight, more preferably at most 10,000 ppm by weight, even more preferably at least 5,000 ppm by weight, and even more preferably at least 7,000 ppm by weight. It is more preferably less than ppm by weight.
  • the slurry composition contains inorganic particles.
  • the inorganic particles are not particularly limited, and include, for example, glass powder, ceramic powder, phosphor fine particles, silicon oxide, metal fine particles, and the like.
  • the above-mentioned glass powder is not particularly limited, and includes, for example, glass powder such as bismuth oxide glass, silicate glass, lead glass, zinc glass, boron glass, CaO-Al 2 O 3 -SiO 2 system, MgO-Al 2 O Examples include glass powders of various silicon oxides such as 3- SiO 2 series, LiO 2 -Al 2 O 3 -SiO 2 series, and the like.
  • R is an element selected from the group consisting of Zn, Ba, Ca, Mg, Sr, Sn, Ni, Fe, and Mn.
  • the above ceramic powder is not particularly limited, and examples thereof include alumina, ferrite, zirconia, zircon, barium zirconate, calcium zirconate, titanium oxide, barium titanate, strontium titanate, calcium titanate, magnesium titanate, zinc titanate, Lanthanum titanate, neodymium titanate, lead zirconium titanate, alumina nitride, silicon nitride, boron nitride, boron carbide, barium stannate, calcium stannate, magnesium silicate, mullite, steatite, cordierite, forsterite, etc. It will be done.
  • ITO, FTO, niobium oxide, vanadium oxide, tungsten oxide, lanthanum strontium manganite, lanthanum strontium cobalt ferrite, yttrium-stabilized zirconia, gadolinium-doped ceria, nickel oxide, lanthanum chromite, and the like can also be used.
  • the phosphor fine particles are not particularly limited, and for example, blue phosphor substances, red phosphor substances, green phosphor substances, etc., which are conventionally known as phosphor substances for displays, can be used as the phosphor substance.
  • blue phosphor substances include MgAl 10 O 17 :Eu system, Y 2 SiO 5 :Ce system, CaWO 4 :Pb system, BaMgAl 14 O 23 :Eu system, BaMgAl 16 O 27 :Eu system, BaMg 2 Al. 14 O 23 : Eu-based, BaMg 2 Al 14 O 27 : Eu-based, and ZnS: (Ag, Cd)-based are used.
  • red phosphor substances include Y 2 O 3 :Eu-based, Y 2 SiO 5 :Eu-based, Y 3 Al 5 O 12 :Eu-based, Zn 3 (PO 4 ) 2 :Mn-based, YBO 3 :Eu.
  • green phosphor substances include Zn 2 SiO 4 :Mn system, BaAl 12 O 19 :Mn system, SrAl 13 O 19 :Mn system, CaAl 12 O 19 :Mn system, YBO 3 :Tb system, BaMgAl 14 O 23 : Mn type, LuBO 3 : Tb type, GdBO 3 : Tb type, ScBO 3 : Tb type, and Sr6Si 3 O 3 Cl 4 : Eu type are used.
  • the metal fine particles are not particularly limited, and include, for example, powders made of iron, copper, nickel, palladium, platinum, gold, silver, aluminum, tungsten, and alloys thereof. Further, metals such as copper and iron, which have good adsorption properties with carboxyl groups, amino groups, amide groups, etc. and are easily oxidized, can also be suitably used. These metal powders may be used alone or in combination of two or more. In addition to metal complexes, various carbon blacks, carbon nanotubes, etc. may be used as the metal fine particles.
  • the inorganic particles preferably contain lithium or titanium.
  • low melting point glass such as LiO 2 / Al 2 O 3 / SiO 2 type inorganic glass
  • lithium cobalt composite oxide such as LiCeO2
  • lithium manganese composite oxide such as LiMnO4
  • lithium nickel composite oxide lithium vanadium composite oxide
  • lithium zirconium composite oxide lithium hafnium composite oxide
  • lithium silicate Li 3.5 Si 0.5 P 0.5 O 4
  • lithium titanium phosphate LiTi 2 (PO 4 ) 3
  • lithium titanate Li 4 Ti 5 O 12
  • Li 4/3 Ti 5/3 O 4 LiCoO 2 , lithium germanium phosphate (LiGe 2 (PO 4 ) 3 ), Li 2 -SiS glass, Li 4 GeS 4 -Li 3 PS 4 glass, LiSiO 3 , LiMn 2 O 4 , Li 2 S- P 2 S 5 -based glass/ceramics, Li 2 O-SiO 2 , Li 2 O-V 2 O 5 -SiO 2 , LiS-SiS 2 -Li 4 SiO 4 -based glass, ion conductive oxides
  • the average particle diameter of the inorganic particles is preferably 0.01 ⁇ m or more, preferably 5 ⁇ m or less, more preferably 0.05 ⁇ m or more, more preferably 3 ⁇ m or less, even more preferably 0.1 ⁇ m or more, and even more preferably 1 ⁇ m or less.
  • the average particle diameter can be determined, for example, by measuring the volume average particle diameter using a laser diffraction/scattering particle size distribution measuring device.
  • the content of the inorganic particles in the slurry composition is preferably 30% by weight or more, and preferably 90% by weight or less. When it is within the above range, it can have sufficient viscosity and excellent coating properties, and furthermore, can have excellent dispersibility of inorganic particles.
  • the content of the inorganic particles is more preferably 40% by weight or more, and more preferably 70% by weight or less.
  • the slurry composition contains a dispersant.
  • Suitable examples of the dispersant include fatty acids, aliphatic amines, alkanolamides, and phosphoric acid esters. Additionally, a silane coupling agent or the like may be added.
  • the above fatty acids are not particularly limited, and include, for example, saturated fatty acids such as behenic acid, stearic acid, palmitic acid, myristic acid, lauric acid, capric acid, caprylic acid, and coconut fatty acids; oleic acid, linoleic acid, linolenic acid, and sorbic acid. , beef tallow fatty acid, unsaturated fatty acids such as castor hydrogenated fatty acid, and the like.
  • lauric acid, stearic acid, oleic acid, etc. are preferred.
  • the above aliphatic amines are not particularly limited, and include, for example, laurylamine, myristylamine, cetylamine, stearylamine, oleylamine, alkyl (coconut) amine, alkyl (hardened beef tallow) amine, alkyl (beef tallow) amine, and alkyl (soybean) amine. etc.
  • the alkanolamide is not particularly limited, and includes, for example, coconut fatty acid diethanolamide, beef tallow fatty acid diethanolamide, lauric acid diethanolamide, oleic acid diethanolamide, and the like.
  • the above-mentioned phosphoric acid ester is not particularly limited, and examples thereof include polyoxyethylene alkyl ether phosphoric ester and polyoxyethylene alkyl allyl ether phosphoric ester.
  • the content of the dispersant in the slurry composition is preferably 0.1% by weight or more, preferably 1% by weight or less, more preferably 0.15% by weight or more, and even more preferably 0.5% by weight or less.
  • the slurry composition may further contain additives such as a plasticizer and a surfactant.
  • plasticizers include di(butoxyethyl) adipate, dibutoxyethoxyethyl adipate, triethylene glycol dibutyl, triethylene glycol bis(2-ethylhexanoate), triethylene glycol dihexanoate, acetyl Triethyl citrate, acetyl tributyl citrate, acetyl diethyl citrate, acetyl dibutyl citrate, dibutyl sebacate, triacetin, diethyl acetyloxymalonate, diethyl ethoxymalonate, and the like.
  • the above-mentioned surfactant is not particularly limited, and examples thereof include cationic surfactants, anionic surfactants, and nonionic surfactants.
  • the nonionic surfactant is not particularly limited, but preferably has an HLB value of 10 or more and 20 or less.
  • the HLB value is used as an index representing the hydrophilicity and lipophilicity of surfactants, and several calculation methods have been proposed.
  • saponification value There are definitions such as S, the acid value of the fatty acid constituting the surfactant, A, and the HLB value of 20 (1-S/A).
  • a nonionic surfactant having polyethylene oxide with an alkylene ether added to a fatty chain is suitable, and specifically, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, etc. are preferably used. It will be done.
  • the above-mentioned nonionic surfactant has good thermal decomposition properties, but if added in large quantities, the thermal decomposition properties of the inorganic particle dispersed slurry composition may decrease, so the preferable upper limit of the content is 5% by weight. .
  • the viscosity of the slurry composition of the present invention is not particularly limited, but it is preferably 80,000 or more, preferably 2,000,000 or less, and 100,000 or more when measured at 25°C using a B-type viscometer. is more preferable, and more preferably 600,000 or less. By setting it as the said range, it becomes possible for the inorganic particle dispersion sheet obtained to maintain a predetermined shape after coating by a die coat printing method etc. In addition, problems such as inability to erase die coating marks can be prevented, resulting in excellent printability.
  • the method for producing the slurry composition is not particularly limited, and examples thereof include conventionally known stirring methods. Specifically, for example, the above vehicle composition, the above inorganic particles, the above dispersant, and the above-mentioned dispersant are added as necessary. Examples include a method in which other components such as an additional solvent and a plasticizer are stirred using three rolls or the like. The order of addition of the constituent components of the slurry composition can be set as appropriate.
  • Electronic components can be manufactured using the above slurry composition.
  • a method of manufacturing an electronic component using the above slurry composition is also one aspect of the present invention.
  • the above electronic components include die attach paste (ACP), die attach film (ACF), via electrodes for TSV and TGV, touch panels, various circuits for RFID and sensor boards, various die bonding agents, sealants for MEMS devices, solar Examples include electrode materials for batteries, laminated ceramic capacitors, LTCCs, silicon capacitors, all-solid-state batteries, and the like.
  • it can also be used for antibacterial materials, electromagnetic shields, catalysts, fluorescent materials, and the like.
  • an inorganic particle-dispersed molded product can be produced by coating the slurry composition on a support film that has been subjected to a mold release treatment on one side, drying the organic solvent, and molding the slurry composition.
  • the shape of the inorganic particle-dispersed molded product is not particularly limited, it can be, for example, in the shape of a sheet or the like.
  • Examples of the method for manufacturing the inorganic particle dispersion molded product include a method in which the slurry composition is coated uniformly on a support film using a coating method such as a roll coater, die coater, squeeze coater, curtain coater, etc. Can be mentioned.
  • the support film used when manufacturing the inorganic particle dispersion molded product is a resin film that has heat resistance, solvent resistance, and flexibility. is preferred. Due to the flexibility of the support film, the inorganic particle-dispersed slurry composition can be applied to the surface of the support film using a roll coater, blade coater, etc., and the resulting inorganic particle-dispersed sheet-forming film is wound into a roll. It can be stored and supplied in this state.
  • the resin forming the support film examples include fluororesins such as polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, polyvinyl chloride, and polyfluoroethylene, nylon, and cellulose.
  • the thickness of the support film is preferably, for example, 20 to 100 ⁇ m. Further, it is preferable that the surface of the support film is subjected to a release treatment, so that the peeling operation of the support film can be easily performed in the transfer process.
  • An inorganic particle-dispersed molded product can be produced by applying and drying the slurry composition. Further, by using the slurry composition and the inorganic particle dispersion molded product in a conductive paste for external electrodes, a multilayer ceramic capacitor, which is an electronic component, can be manufactured.
  • the method for manufacturing the multilayer ceramic capacitor includes a step of printing and drying a conductive paste on the inorganic particle dispersed molded product to prepare a dielectric sheet, and a step of laminating the dielectric sheets. can be mentioned.
  • the conductive paste contains conductive powder.
  • the material of the conductive powder is not particularly limited as long as it is conductive, and examples thereof include nickel, palladium, platinum, gold, silver, copper, molybdenum, tin, and alloys thereof. These conductive powders may be used alone or in combination of two or more.
  • the method for printing the conductive paste is not particularly limited, and examples thereof include screen printing, die coat printing, offset printing, gravure printing, inkjet printing, and the like.
  • a raw ceramic laminate is produced by laminating dielectric sheets printed with the conductive paste, and then a firing treatment is performed in a reducing atmosphere at a temperature of 1000 to 1500°C. , This allows a large number of component bodies to be obtained.
  • a conductive paste for external electrodes containing the above-mentioned (meth)acrylic resin particles is applied to both end faces of each of these component bodies by dipping, and then, after drying at 100 to 200°C, under a reducing atmosphere. , 450 to 800° C. to form external electrodes at both ends of the component body.
  • the external electrodes are subjected to electrolytic plating to sequentially form a Cu film, a Ni film, and a Sn film on the external electrodes, thereby obtaining a multilayer ceramic capacitor.
  • the present invention has excellent low-temperature decomposition properties, can prevent deterioration of inorganic particles such as copper due to oxidation when used as a binder for dispersing inorganic particles, and has particularly excellent dispersibility of fine inorganic particles. It is possible to provide (meth)acrylic resin particles from which an inorganic particle-dispersed slurry composition can be made. In addition, by using the present invention as a binder for the external electrodes of a multilayer ceramic capacitor, it is possible to provide (meth)acrylic resin particles that can produce a multilayer ceramic capacitor with excellent reliability. Furthermore, vehicle compositions, slurry compositions, and methods of manufacturing electronic components can be provided.
  • CT-1 3-mercapto-1,2-propanediol
  • CT-2 Mercaptosuccinic acid
  • KPS Potassium persulfate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • VA-086 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Nopcosperse 092 manufactured by Sanyo Chemical Industries, Ltd.
  • ⁇ Inorganic particles Copper powder (manufactured by Fujino Metal Co., Ltd., average particle size 0.1 ⁇ m)
  • Glass frit manufactured by AGC, product name ASF-1094, main component Bi 2 O 3 ⁇ B 2 O 3 ⁇ SiO 2 , average particle size 0.8 ⁇ m
  • a perovskite oxide containing Ba and Ti was used as a dielectric material.
  • a ceramic slurry was prepared by mixing 80 parts by weight of the ceramic dielectric powder, 8 parts by weight of an acrylic binder, 10 parts by weight of an organic solvent, 1 part by weight of a plasticizer, and 1 part by weight of a dispersant. Then, this ceramic slurry was formed on a resin film so that the thickness after drying would be 3.0 ⁇ m to produce a ceramic green sheet for inner layer or outer layer.
  • the acrylic binder is Marproof MH-03041 (manufactured by NOF Corporation), the organic solvent is butyl acetate, the plasticizer is G-260 (Sekisui Chemical Co., Ltd.), and the dispersant is Nopcosperse 092 (Sanyo Chemical Co., Ltd.). (manufactured by Seiko Co., Ltd.) was used.
  • conductive paste was applied to this ceramic green sheet for inner layer in a pattern corresponding to the size of the ceramic element after firing (3.2 mm x 1.6 mm) so that the thickness after drying was 1 ⁇ 0.1 ⁇ m. I screen printed it to look like this.
  • the conductive paste contains 50 parts by weight of Ni powder, 5 parts by weight of a perovskite oxide containing Ba and Ti as co-materials, 44 parts by weight of the above vehicle composition for dispersing inorganic particles, and polycarbonate.
  • a conductive paste containing 1 part by weight of an acidic dispersant was prepared.
  • the blending ratio of the binder resin was 6.6 parts by weight/50 parts by weight of Ni, and a conductive paste was obtained using a ball mill.
  • the average particle diameter of the Ni powder used was 0.2 ⁇ m. Further, the average particle diameter of the perovskite oxide containing Ba and Ti was 30 nm.
  • an electrode layer was formed in a nitrogen-air-steam mixed atmosphere or a nitrogen-hydrogen-steam mixed atmosphere at a top temperature of 790 to 880° C. and an oxygen electromotive force of 220 to 280 mV at the top temperature.
  • a first plating layer containing Ni is formed on the surface of the electrode layer, and a second plating layer containing Sn is formed on the surface of the first plating layer, thereby forming an external electrode having a three-layer structure.
  • a multilayer ceramic capacitor was fabricated.
  • Example 5 (Comparative Examples 5 and 6) The procedure was the same as in Example 1 except that polyvinyl butyral resin (manufactured by Sekisui Chemical Co., Ltd., BH-3) and ethyl cellulose resin (manufactured by Nisshin Kasei Co., Ltd., STD-100) were used instead of the (meth)acrylic resin particles.
  • a vehicle composition for dispersing inorganic particles, a slurry composition for dispersing inorganic particles, and a laminated ceramic capacitor were obtained.
  • the weight concentration of S atoms, the weight concentration of OH groups, the weight concentration of COOH groups, and the weight concentration of K atoms contained in (meth)acrylic resin particles are determined by the following methods. The weight concentration, the weight concentration of COOH groups, and the weight concentration of K atoms were calculated.
  • Viscosity The viscosity of the obtained inorganic particle-dispersed slurry composition at 25° C. was measured using a B-type viscometer (DVII+Pro, manufactured by BROOK FIELD).
  • the obtained inorganic particle dispersed slurry composition was stored in an environment at a temperature of 23° C. and a humidity of 50%. One month later, the state of the slurry composition was checked and evaluated according to the following criteria. If the storage stability is high, it can be said that the dispersibility of the inorganic particles is excellent. ⁇ : No separation of the slurry composition or sedimentation of inorganic particles was observed, and the slurry remained in a smooth state. ⁇ : Sedimentation of inorganic particles was not observed, but separation of the slurry composition was observed. x: The inorganic particles were sedimented or the slurry composition was gelled.
  • Viscosity Stability The viscosity at 20°C of the obtained inorganic particle dispersed slurry composition was taken as the initial viscosity measured in the same manner as in "(4) Viscosity". Further, the slurry composition after measurement was stored in a constant temperature room at 20° C. for one month, and the viscosity after storage was measured in the same manner. The rate of change in viscosity after storage relative to the initial viscosity ([(viscosity after storage - initial viscosity)/initial viscosity] x 100) was determined and evaluated according to the following criteria. If the stability is high, it can be said that the dispersibility of the inorganic particles is excellent.
  • the viscosity change rate was less than 5%. Good: The viscosity change rate was 5% or more and less than 10%. ⁇ : The viscosity change rate was 10% or more and less than 20%. ⁇ : The viscosity change rate was 20% or more.
  • Printability Screen printing machine manufactured by Microtech, MT-320TV
  • screen plate manufactured by Tokyo Process Service, ST500, emulsion 2 ⁇ m, 2012 pattern, screen frame 320mm x 320mm
  • printing glass substrate silica glass, 150 mm x 150 mm, thickness 1.5 mm
  • the inorganic particle dispersed slurry composition was printed in an environment of temperature 23 °C and humidity 50%, and the solvent was dried in a blower oven at 100 °C for 30 minutes. I did it.
  • the printed pattern was observed visually or with a magnifying microscope to confirm the shape of the edge of the printed surface, and evaluated based on the following criteria.
  • Printing was performed according to the printing pattern, and one part where the printing edge was disordered like threads was observed.
  • Printing was performed according to the printing pattern, and 2 to 4 areas where the printed edges were disordered like strings were observed.
  • Printing was not performed according to the printing pattern, or 5 or more portions were observed where the printed edges were disordered like strings.
  • the present invention has excellent low-temperature decomposition properties, can prevent deterioration of inorganic particles such as copper due to oxidation when used as a binder for dispersing inorganic particles, and has particularly excellent dispersibility of fine inorganic particles. It is possible to provide (meth)acrylic resin particles from which an inorganic particle-dispersed slurry composition can be made. Furthermore, by using the present invention as a binder for the external electrode of a multilayer ceramic capacitor, it is possible to provide (meth)acrylic resin particles that can produce a multilayer ceramic capacitor with excellent reliability. Furthermore, vehicle compositions, slurry compositions, and methods of manufacturing electronic components can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides (meth)acrylic resin particles that have excellent low-temperature decomposition properties, and when used as a binder for dispersing inorganic particles, are capable of preventing deterioration caused by oxidation of inorganic particles such as copper, and can be used to manufacture an inorganic-particle-dispersed slurry composition that has particularly excellent dispersibility of fine inorganic particles. In addition, provided are (meth)acrylic resin particles that, by being used as a binder for external electrodes of a layered ceramic capacitor, enable manufacture of a layered ceramic capacitor having excellent reliability. Furthermore, provided are a vehicle composition, a slurry composition, and a method for manufacturing electronic components. The (meth)acrylic resin particles of the present invention have a weight average molecular weight of 100,000-1,000,000 and a weight concentration of S atoms of 0.03-2.50 wt%.

Description

(メタ)アクリル樹脂粒子、ビヒクル組成物、スラリー組成物及び電子部品の製造方法(Meth)acrylic resin particles, vehicle composition, slurry composition, and method for producing electronic components
本発明は、(メタ)アクリル樹脂粒子、ビヒクル組成物、スラリー組成物及び電子部品の製造方法に関する。 The present invention relates to (meth)acrylic resin particles, vehicle compositions, slurry compositions, and methods for producing electronic components.
積層セラミクスコンデンサは、誘電体層と内部電極とが交互に複数積層された積層体と、積層体を挟持するように設けられた一対の外部電極とを備えた構造が知られている。外部電極は、上記積層体の表面上に外部電極用導電性ペーストを塗布し、焼結することによって形成している。 2. Description of the Related Art Multilayer ceramic capacitors are known to have a structure including a laminate in which a plurality of dielectric layers and internal electrodes are alternately stacked, and a pair of external electrodes provided to sandwich the laminate. The external electrodes are formed by applying a conductive paste for external electrodes on the surface of the laminate and sintering the paste.
近年、積層セラミクスコンデンサの微細化に伴い、外部電極に用いる無機粒子の微細化も進んでいる。微細化した無機粒子はペースト中で凝集しやすく、凝集が生じると脱脂工程及び焼成工程においてボイドが残りやすくなったり、積層セラミクスコンデンサとした際に、無機粒子の分散性が低下した結果、製品の電気特性を低下させる原因となる。 In recent years, with the miniaturization of multilayer ceramic capacitors, the inorganic particles used for external electrodes have also been miniaturized. Fine inorganic particles tend to aggregate in the paste, and when agglomeration occurs, voids tend to remain during the degreasing and firing processes, and when made into a multilayer ceramic capacitor, the dispersibility of the inorganic particles decreases, resulting in problems with the product. This causes deterioration of electrical characteristics.
外部電極に用いるバインダー樹脂としては、例えば、エチルセルロースが用いられることが一般的である。例えば、特許文献1には、これらのバインダーを用いる構成において、セラミック粉末を効率的に分散させる方法が開示されている。具体的には、チタン酸カルシウム等のセラミック粉末をエタノール等の溶剤中で一次解砕し、その後、ポリビニルブチラール樹脂、エチルセルロース樹脂等の樹脂を添加する方法が開示されている。
また、特許文献2には、アクリル樹脂等をバインダーとして用いる方法が開示されている。
As the binder resin used for the external electrode, for example, ethyl cellulose is generally used. For example, Patent Document 1 discloses a method for efficiently dispersing ceramic powder in a configuration using these binders. Specifically, a method is disclosed in which ceramic powder such as calcium titanate is primarily crushed in a solvent such as ethanol, and then a resin such as polyvinyl butyral resin or ethyl cellulose resin is added.
Further, Patent Document 2 discloses a method using an acrylic resin or the like as a binder.
特開2011-84433号公報JP2011-84433A 特開2021-111525号公報JP 2021-111525 Publication
しかしながら、特許文献1に記載のポリビニルアセタール樹脂は、分解温度が高く、低温焼成が望ましい用途、例えば、酸化しやすい銅等の金属や低融点ガラス等を用いる用途に適用できないという問題がある。
また、特許文献2にはアクリル樹脂を用いることが記載されているが、平均粒子径が1μmを下回る微細な無機粒子を用いる場合、分散性が悪化するという問題がある。更に、特許文献2に記載のアクリル樹脂では、高い焼成温度が必要となる脱脂中に酸化による劣化が生じるという問題がある。
However, the polyvinyl acetal resin described in Patent Document 1 has a problem that it has a high decomposition temperature and cannot be applied to applications where low-temperature firing is desirable, for example, applications using easily oxidized metals such as copper or low-melting glass.
Further, Patent Document 2 describes the use of an acrylic resin, but when using fine inorganic particles with an average particle diameter of less than 1 μm, there is a problem that the dispersibility deteriorates. Furthermore, the acrylic resin described in Patent Document 2 has a problem in that it deteriorates due to oxidation during degreasing, which requires a high firing temperature.
本発明は、低温分解性に優れ、無機粒子分散用のバインダーとして用いた場合に銅等の無機粒子の酸化による劣化を防止することができ、微細な無機粒子の分散性に特に優れた無機粒子分散スラリー組成物を作製可能な(メタ)アクリル樹脂粒子を提供することを目的とする。また、特に積層セラミクスコンデンサの外部電極用のバインダーとして用いることで、信頼性に優れた積層セラミクスコンデンサを作製可能な(メタ)アクリル樹脂粒子を提供することを目的とする。更に、ビヒクル組成物、スラリー組成物及び電子部品の製造方法を提供することを目的とする。 The present invention is an inorganic particle that has excellent low-temperature decomposition properties, can prevent deterioration due to oxidation of inorganic particles such as copper when used as a binder for dispersing inorganic particles, and has particularly excellent dispersibility of fine inorganic particles. An object of the present invention is to provide (meth)acrylic resin particles that can be used to prepare a dispersed slurry composition. Another object of the present invention is to provide (meth)acrylic resin particles that can be used as a binder for the external electrodes of a multilayer ceramic capacitor to produce a multilayer ceramic capacitor with excellent reliability. Furthermore, it is an object to provide vehicle compositions, slurry compositions, and methods of manufacturing electronic components.
本開示(1)は、重量平均分子量が10万以上100万以下であり、S原子の重量濃度が0.03重量%以上2.50重量%以下である(メタ)アクリル樹脂粒子である。
本開示(2)は、COOH基の重量濃度が0.06重量%以上3.00重量%以下である本開示(1)の(メタ)アクリル樹脂粒子である。
本開示(3)は、K原子の重量濃度が0.010重量%以上1.000重量%以下である本開示(1)又は(2)の(メタ)アクリル樹脂粒子である。
本開示(4)は、アクリルモノマーに由来する成分の含有量が5重量%以下である本開示(1)~(3)のいずれかとの任意の組み合わせの(メタ)アクリル樹脂粒子である。
本開示(5)は、平均粒子径が0.1μm以上1.0μm以下である本開示(1)~(4)のいずれかとの任意の組み合わせの(メタ)アクリル樹脂粒子である。
本開示(6)は、本開示(1)~(5)のいずれかの(メタ)アクリル樹脂粒子と有機溶剤を含む溶剤とを含有するビヒクル組成物である。
本開示(7)は、溶剤が更に水を100重量ppm以上40000重量ppm以下含有する本開示(6)のビヒクル組成物である。
本開示(8)は、有機溶剤がOH基を2つ以上有する化合物を含み、溶剤における前記OH基を2つ以上有する化合物の含有量が10重量%以上50重量%以下である本開示(6)又は(7)のビヒクル組成物である。
本開示(9)は、本開示(6)~(8)のいずれかのビヒクル組成物と無機粒子と分散剤とを含有するスラリー組成物である。
本開示(10)は、本開示(9)のスラリー組成物を用いる電子部品の製造方法である。
以下に本発明を詳述する。
The present disclosure (1) is (meth)acrylic resin particles having a weight average molecular weight of 100,000 to 1,000,000 and a weight concentration of S atoms of 0.03 to 2.50 weight%.
The present disclosure (2) is the (meth)acrylic resin particles of the present disclosure (1) in which the weight concentration of COOH groups is 0.06% by weight or more and 3.00% by weight or less.
The present disclosure (3) is the (meth)acrylic resin particles of the present disclosure (1) or (2), in which the weight concentration of K atoms is 0.010% by weight or more and 1.000% by weight or less.
The present disclosure (4) is (meth)acrylic resin particles in any combination with any of the present disclosures (1) to (3), in which the content of a component derived from an acrylic monomer is 5% by weight or less.
The present disclosure (5) is (meth)acrylic resin particles in any combination with any of the present disclosures (1) to (4), which have an average particle diameter of 0.1 μm or more and 1.0 μm or less.
The present disclosure (6) is a vehicle composition containing the (meth)acrylic resin particles according to any one of the present disclosures (1) to (5) and a solvent containing an organic solvent.
The present disclosure (7) is the vehicle composition of the present disclosure (6), wherein the solvent further contains water in an amount of 100 ppm to 40,000 ppm by weight.
The present disclosure (8) provides the present disclosure (6), wherein the organic solvent contains a compound having two or more OH groups, and the content of the compound having two or more OH groups in the solvent is 10% by weight or more and 50% by weight or less. ) or (7).
The present disclosure (9) is a slurry composition containing the vehicle composition of any of the present disclosures (6) to (8), inorganic particles, and a dispersant.
The present disclosure (10) is a method for manufacturing an electronic component using the slurry composition of the present disclosure (9).
The present invention will be explained in detail below.
本発明者らは、所定の重量平均分子量、S原子の重量濃度を有する(メタ)アクリル樹脂粒子が低温分解性に優れ、無機粒子分散用のバインダーとして用いた場合に銅等の無機粒子の酸化による劣化を防止できることを見出した。また、このような(メタ)アクリル樹脂を用いることで微細な無機粒子の分散性に特に優れた無機粒子分散スラリー組成物とできることを見出した。更に、このような(メタ)アクリル樹脂粒子を積層セラミクスコンデンサの外部電極用のバインダーとして用いることで、信頼性に優れた積層セラミクスコンデンサを作製できることを見出し、本発明を完成するに至った。 The present inventors have discovered that (meth)acrylic resin particles having a predetermined weight average molecular weight and weight concentration of S atoms have excellent low-temperature decomposition properties, and when used as a binder for dispersing inorganic particles, they can oxidize inorganic particles such as copper. We have found that deterioration caused by Furthermore, it has been found that by using such a (meth)acrylic resin, an inorganic particle-dispersed slurry composition having particularly excellent dispersibility of fine inorganic particles can be obtained. Furthermore, the inventors have discovered that by using such (meth)acrylic resin particles as a binder for the external electrodes of a multilayer ceramic capacitor, a multilayer ceramic capacitor with excellent reliability can be produced, and the present invention has been completed.
上記(メタ)アクリル樹脂粒子は、重量平均分子量(Mw)が10万以上100万以下である。
上記範囲とすることで、無機粒子分散スラリー組成物とした際、無機粒子に分散性を向上できる。また、充分な粘度を有するものとなり、印刷性を向上できる。
上記重量平均分子量(Mw)は、15万以上が好ましく、17万以上が特に好ましい。また、上記重量平均分子量(Mw)は、90万以下が好ましく、80万以下がより好ましく、70万以下が更に好ましく、50万以下が特に好ましい。
更に、上記(メタ)アクリル樹脂粒子の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、8以下が好ましく、6以下がより好ましく、5以下が更に好ましい。
なお、上記重量平均分子量(Mw)、上記数平均分子量(Mn)は、ポリスチレン換算による平均分子量であり、カラムとして例えばカラムLF-804(昭和電工社製)を用いてGPC測定を行うことで得ることができる。
The (meth)acrylic resin particles have a weight average molecular weight (Mw) of 100,000 or more and 1,000,000 or less.
By setting it as the said range, when it forms an inorganic particle dispersion slurry composition, the dispersibility of inorganic particles can be improved. In addition, it has sufficient viscosity and printability can be improved.
The weight average molecular weight (Mw) is preferably 150,000 or more, particularly preferably 170,000 or more. Further, the weight average molecular weight (Mw) is preferably 900,000 or less, more preferably 800,000 or less, even more preferably 700,000 or less, and particularly preferably 500,000 or less.
Furthermore, the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the (meth)acrylic resin particles is preferably 8 or less, more preferably 6 or less, and even more preferably 5 or less.
The above weight average molecular weight (Mw) and the above number average molecular weight (Mn) are average molecular weights in terms of polystyrene, and are obtained by performing GPC measurement using, for example, column LF-804 (manufactured by Showa Denko) as a column. be able to.
上記(メタ)アクリル樹脂粒子中に含まれるS原子の重量濃度は0.03重量%以上2.50重量%以下である。
上記範囲とすることで、無機粒子分散スラリー組成物とした際、無機粒子に分散性に特に優れたものとできる。
上記S原子の重量濃度は、0.30重量%以上が好ましく、2.00重量%以下が好ましく、0.50重量%以上がより好ましく、1.80重量%以下がより好ましく、0.70重量%以上が更に好ましく、1.50重量%以下が更に好ましい。
上記S原子の重量濃度は、上記(メタ)アクリル樹脂粒子の重量に対する上記(メタ)アクリル樹脂構造中のS原子の重量の割合を意味し、以下の式に基づいて算出することができる。また、上記値は小数点以下第3位を四捨五入したものである。
 (メタ)アクリル樹脂粒子中に含まれるS原子の重量濃度=[(全モノマーに含まれるS原子の重量+全連鎖移動剤中に含まれるS原子の重量+全重合開始剤中に含まれるS原子の重量)/(全モノマーの重量+全連鎖移動剤の重量+全重合開始剤の重量)]×100
また、上記S原子の重量濃度は、ICP-AES(誘導結合プラズマ発光分光分析法)によっても求めることができる。
The weight concentration of S atoms contained in the (meth)acrylic resin particles is 0.03% by weight or more and 2.50% by weight or less.
By setting it within the above range, when an inorganic particle-dispersed slurry composition is prepared, it can be made to have particularly excellent dispersibility in inorganic particles.
The weight concentration of the S atoms is preferably 0.30% by weight or more, preferably 2.00% by weight or less, more preferably 0.50% by weight or more, more preferably 1.80% by weight or less, and 0.70% by weight. % or more is more preferable, and 1.50 weight % or less is still more preferable.
The weight concentration of the S atoms means the weight ratio of the S atoms in the (meth)acrylic resin structure to the weight of the (meth)acrylic resin particles, and can be calculated based on the following formula. Furthermore, the above values are rounded to the third decimal place.
Weight concentration of S atoms contained in (meth)acrylic resin particles = [(Weight of S atoms contained in all monomers + Weight of S atoms contained in all chain transfer agents + S contained in all polymerization initiators) weight of atoms)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)]×100
Further, the weight concentration of the S atoms can also be determined by ICP-AES (Inductively Coupled Plasma Emission Spectroscopy).
上記(メタ)アクリル樹脂粒子中に含まれるCOOH基の重量濃度は0.06重量%以上であることが好ましく、3.00重量%以下であることが好ましい。
上記範囲であると無機粒子に分散性に特に優れたものとできるという利点がある。
上記COOH基の重量濃度は、0.50重量%以上がより好ましく、2.70重量%以下がより好ましく、1.00重量%以上が更に好ましく、2.50重量%以上が更に好ましい。
上記COOH基の重量濃度は、上記(メタ)アクリル樹脂粒子の重量に対する上記(メタ)アクリル樹脂構造中のCOOH基の重量の割合を意味し、以下の式に基づいて算出することができる。また、上記値は小数点以下第3位を四捨五入したものである。
 (メタ)アクリル樹脂粒子中に含まれるCOOH基の重量濃度=[(全モノマーに含まれるCOOH基の重量+全連鎖移動剤中に含まれるCOOH基の重量+全重合開始剤中に含まれるCOOH基の重量)/(全モノマーの重量+全連鎖移動剤の重量+全重合開始剤の重量)]×100
また、上記COOH基の重量濃度は、気相化学修飾法によるESCA分析によっても求めることができる。
The weight concentration of COOH groups contained in the (meth)acrylic resin particles is preferably 0.06% by weight or more, and preferably 3.00% by weight or less.
Within the above range, there is an advantage that the inorganic particles have particularly excellent dispersibility.
The weight concentration of the COOH group is more preferably 0.50% by weight or more, more preferably 2.70% by weight or less, still more preferably 1.00% by weight or more, and even more preferably 2.50% by weight or more.
The weight concentration of the COOH group means the ratio of the weight of the COOH group in the (meth)acrylic resin structure to the weight of the (meth)acrylic resin particles, and can be calculated based on the following formula. Furthermore, the above values are rounded to the third decimal place.
Weight concentration of COOH groups contained in (meth)acrylic resin particles = [(Weight of COOH groups contained in all monomers + Weight of COOH groups contained in all chain transfer agents + COOH contained in all polymerization initiators) weight of group)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)]×100
Furthermore, the weight concentration of the COOH group can also be determined by ESCA analysis using a gas phase chemical modification method.
上記(メタ)アクリル樹脂粒子中に含まれるK原子の重量濃度は0.001重量%以上であることが好ましく、1.500重量%以下であることが好ましい。
上記範囲とすることで貯蔵安定性が向上する。
上記K原子の重量濃度は、0.005重量%以上がより好ましく、1.200重量%以下がより好ましい。
上記K原子の重量濃度は、上記(メタ)アクリル樹脂粒子の重量に対する上記(メタ)アクリル樹脂構造中のK原子の重量の割合を意味し、以下の式に基づいて算出することができる。また、上記値は小数点以下第4位を四捨五入したものである。
 (メタ)アクリル樹脂粒子中に含まれるK原子の重量濃度=[(全モノマーに含まれるK原子の重量+全連鎖移動剤中に含まれるK原子の重量+全重合開始剤中に含まれるK原子の重量)/(全モノマーの重量+全連鎖移動剤の重量+全重合開始剤の重量)]×100
また、上記K原子の重量濃度は、原子吸光光度計を用いて測定することもできる。
The weight concentration of K atoms contained in the (meth)acrylic resin particles is preferably 0.001% by weight or more, and preferably 1.500% by weight or less.
Within the above range, storage stability is improved.
The weight concentration of the K atoms is more preferably 0.005% by weight or more, and more preferably 1.200% by weight or less.
The weight concentration of K atoms means the ratio of the weight of K atoms in the (meth)acrylic resin structure to the weight of the (meth)acrylic resin particles, and can be calculated based on the following formula. Furthermore, the above values are rounded to the fourth decimal place.
Weight concentration of K atoms contained in (meth)acrylic resin particles = [(Weight of K atoms contained in all monomers + Weight of K atoms contained in all chain transfer agents + K contained in all polymerization initiators) weight of atoms)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)]×100
Moreover, the weight concentration of K atoms can also be measured using an atomic absorption spectrophotometer.
上記(メタ)アクリル樹脂粒子中に含まれるOH基の重量濃度は0.05重量%以上が好ましく、3.00重量%以下が好ましく、0.08重量%以上がより好ましく、2.50重量%以下がより好ましく、0.10重量%以上が更に好ましく、2.00重量%以下が更に好ましい。上記範囲内であることにより、貯蔵安定性、粘度安定性、分解性が向上する。
上記OH基の重量濃度は、上記(メタ)アクリル樹脂粒子の重量に対する上記(メタ)アクリル樹脂構造中のOH基の重量の割合を意味し、以下の式に基づいて算出することができる。また、上記値は小数点以下第3位を四捨五入したものである。
 (メタ)アクリル樹脂粒子中に含まれるOH基の重量濃度=[(全モノマーに含まれるOH基の重量+全連鎖移動剤中に含まれるOH基の重量+全重合開始剤中に含まれるOH基の重量)/(全モノマーの重量+全連鎖移動剤の重量+全重合開始剤の重量)]×100
また、上記OH基の重量濃度は、気相化学修飾法によるESCA分析によっても求めることができる。
The weight concentration of OH groups contained in the (meth)acrylic resin particles is preferably 0.05% by weight or more, preferably 3.00% by weight or less, more preferably 0.08% by weight or more, and 2.50% by weight. The following is more preferable, 0.10% by weight or more is even more preferable, and even more preferably 2.00% by weight or less. By being within the above range, storage stability, viscosity stability, and degradability are improved.
The weight concentration of the OH group means the ratio of the weight of the OH group in the (meth)acrylic resin structure to the weight of the (meth)acrylic resin particles, and can be calculated based on the following formula. Furthermore, the above values are rounded to the third decimal place.
Weight concentration of OH groups contained in (meth)acrylic resin particles = [(Weight of OH groups contained in all monomers + Weight of OH groups contained in all chain transfer agents + OH contained in all polymerization initiators) weight of group)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)]×100
Further, the weight concentration of the OH group can also be determined by ESCA analysis using a gas phase chemical modification method.
また、上記(メタ)アクリル樹脂粒子中に含まれるS原子の重量濃度に対するCOOH基の重量濃度の比(COOH基の重量濃度/S原子の重量濃度)は、0.03以上が好ましく、3.00以下が好ましく、0.05以上がより好ましく、1.00以下がより好ましい。 The ratio of the weight concentration of COOH groups to the weight concentration of S atoms contained in the (meth)acrylic resin particles (weight concentration of COOH groups/weight concentration of S atoms) is preferably 0.03 or more, and 3. 00 or less, more preferably 0.05 or more, and even more preferably 1.00 or less.
上記(メタ)アクリル樹脂粒子中に含まれるS原子の重量濃度に対するOH基の重量濃度の比(OH基の重量濃度/S原子の重量濃度)は、0.10以上が好ましく、3.00以下が好ましく、0.15以上がより好ましく、1.20以下がより好ましい。 The ratio of the weight concentration of OH groups to the weight concentration of S atoms contained in the (meth)acrylic resin particles (weight concentration of OH groups/weight concentration of S atoms) is preferably 0.10 or more and 3.00 or less. is preferable, 0.15 or more is more preferable, and 1.20 or less is more preferable.
上記(メタ)アクリル樹脂粒子中に含まれるS原子の重量濃度に対するK原子の重量濃度の比(K原子の重量濃度/S原子の重量濃度)は、0.01以上が好ましく、1.50以下が好ましく、0.05以上がより好ましく、1.20以下がより好ましい。 The ratio of the weight concentration of K atoms to the weight concentration of S atoms contained in the (meth)acrylic resin particles (weight concentration of K atoms/weight concentration of S atoms) is preferably 0.01 or more and 1.50 or less. is preferable, 0.05 or more is more preferable, and 1.20 or less is more preferable.
上記(メタ)アクリル樹脂粒子の平均粒子径は0.1μm以上が好ましく、1.0μm以下が好ましい。
上記範囲とすることで(メタ)アクリル樹脂粒子の溶解性をより向上できる。
上記平均粒子径は0.2μm以上がより好ましく、0.9μm以下がより好ましく、0.3μm以上が更に好ましく、0.8μm以下が更に好ましい。
上記平均粒子径は、例えば、レーザー回折/散乱式粒子径分布測定装置により体積平均粒子径を測定することで求めることができる。
なお、上記平均粒子径は、重合開始剤の量により調整することができる。例えば、重合開始剤の含有量が多いと平均粒子径は小さくなり、重合開始剤の含有量が少ないと平均粒子径は大きくなる傾向にある。
The average particle diameter of the (meth)acrylic resin particles is preferably 0.1 μm or more, and preferably 1.0 μm or less.
By setting it as the said range, the solubility of (meth)acrylic resin particles can be improved more.
The average particle diameter is more preferably 0.2 μm or more, more preferably 0.9 μm or less, even more preferably 0.3 μm or more, and even more preferably 0.8 μm or less.
The average particle diameter can be determined, for example, by measuring the volume average particle diameter using a laser diffraction/scattering particle size distribution measuring device.
Note that the above average particle diameter can be adjusted by adjusting the amount of the polymerization initiator. For example, when the content of the polymerization initiator is high, the average particle size tends to be small, and when the content of the polymerization initiator is low, the average particle size tends to be large.
上記(メタ)アクリル樹脂粒子は、エステル置換基の炭素数が8以下である(メタ)アクリル酸エステルに由来するセグメントを含有することが好ましい。
なお、上記エステル置換基の炭素数が8以下であるとは、(メタ)アクリル酸エステルにおける(メタ)アクリロイル基を構成する炭素以外の炭素数が合計8以下であることを示す。また、本明細書中、上記エステル置換基の炭素数が8以下である(メタ)アクリル酸エステルは、後述するグリシジル基を有する(メタ)アクリル酸エステル以外のものをいう。
上記エステル置換基の炭素数が8以下である(メタ)アクリル酸エステルとしては、直鎖状、分岐鎖状又は環状のアルキル基を有する(メタ)アクリル酸エステルが挙げられる。
上記直鎖状のアルキル基を有する(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート等が挙げられる。
上記分岐鎖状のアルキル基を有する(メタ)アクリル酸エステルとしては、例えば、イソプロピル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が挙げられる。
上記環状のアルキル基を有する(メタ)アクリル酸エステルとしては、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。
また、上記エステル置換基の炭素数が8以下である(メタ)アクリル酸エステルとしては、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、(メタ)アクリル酸等の水酸基又はカルボキシル基を有する(メタ)アクリレート等を用いることもできる。
なかでも、直鎖状のアルキル基を有する(メタ)アクリル酸エステル、分岐鎖状のアルキル基を有する(メタ)アクリル酸エステルが好ましい。また、メチルメタクリレート、エチルメタクリレート、イソブチルメタクリレートがより好ましい。更に、直鎖状のアルキル基を有する(メタ)アクリル酸エステルと分岐鎖状のアルキル基を有する(メタ)アクリル酸エステルとの組み合わせが好ましい。
The (meth)acrylic resin particles preferably contain a segment derived from a (meth)acrylic acid ester in which the number of carbon atoms in the ester substituent is 8 or less.
In addition, the fact that the number of carbon atoms in the ester substituent is 8 or less means that the total number of carbon atoms other than the carbon constituting the (meth)acryloyl group in the (meth)acrylic ester is 8 or less. Furthermore, in this specification, the (meth)acrylic ester in which the ester substituent has 8 or less carbon atoms refers to a (meth)acrylic ester other than the glycidyl group-containing (meth)acrylic ester described below.
Examples of the (meth)acrylic ester in which the ester substituent has 8 or less carbon atoms include (meth)acrylic esters having a linear, branched, or cyclic alkyl group.
Examples of the (meth)acrylic ester having a linear alkyl group include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and n-butyl (meth)acrylate. It will be done.
Examples of the (meth)acrylic ester having a branched alkyl group include isopropyl (meth)acrylate, t-butyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. It will be done.
Examples of the (meth)acrylic acid ester having a cyclic alkyl group include cyclohexyl (meth)acrylate, benzyl (meth)acrylate, and the like.
In addition, examples of (meth)acrylic acid esters in which the number of carbon atoms in the ester substituent is 8 or less include 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, and (meth)acrylic acid ester. (Meth)acrylates having hydroxyl groups or carboxyl groups such as acids can also be used.
Among these, (meth)acrylic esters having a linear alkyl group and (meth)acrylic esters having a branched alkyl group are preferred. Furthermore, methyl methacrylate, ethyl methacrylate, and isobutyl methacrylate are more preferred. Furthermore, a combination of a (meth)acrylic ester having a linear alkyl group and a (meth)acrylic ester having a branched alkyl group is preferred.
上記エステル置換基の炭素数が8以下である(メタ)アクリル酸エステルとしては、エステル置換基の炭素数が1~4である(メタ)アクリル酸エステルを用いてもよく、エステル置換基の炭素数が5~8である(メタ)アクリル酸エステルを用いてもよい。なかでも、エステル置換基の炭素数が1~4である(メタ)アクリル酸エステルが好ましい。 As the (meth)acrylic ester in which the ester substituent has 8 or less carbon atoms, a (meth)acrylic ester in which the ester substituent has 1 to 4 carbon atoms may be used; (Meth)acrylic acid esters having a number of 5 to 8 may also be used. Among these, (meth)acrylic esters in which the ester substituent has 1 to 4 carbon atoms are preferred.
上記(メタ)アクリル樹脂粒子における上記エステル置換基の炭素数が8以下である(メタ)アクリル酸エステルに由来するセグメントの含有量は、40重量%以上が好ましく、60重量%以上がより好ましく、80重量%以上が更に好ましい。上限は特に限定されないが、100重量%以下が好ましく、99重量%以下がより好ましく、98重量%以下が更に好ましい。
なお、上記(メタ)アクリル樹脂粒子における上記セグメントの含有量は、(メタ)アクリル樹脂粒子を構成する(メタ)アクリル樹脂を作製する際の原料のうち重合開始剤、連鎖移動剤を除いた原料モノマー100重量部に対する各モノマーの割合に基づき算出できる。
The content of the segment derived from the (meth)acrylic acid ester in which the ester substituent has 8 or less carbon atoms in the (meth)acrylic resin particles is preferably 40% by weight or more, more preferably 60% by weight or more, More preferably 80% by weight or more. The upper limit is not particularly limited, but is preferably 100% by weight or less, more preferably 99% by weight or less, and even more preferably 98% by weight or less.
The content of the segment in the (meth)acrylic resin particles is based on the raw materials used to produce the (meth)acrylic resin constituting the (meth)acrylic resin particles, excluding the polymerization initiator and chain transfer agent. It can be calculated based on the ratio of each monomer to 100 parts by weight of the monomer.
上記(メタ)アクリル樹脂粒子における上記エステル置換基の炭素数が1~4である(メタ)アクリル酸エステルに由来するセグメントの含有量は、40重量%以上が好ましく、60重量%以上がより好ましく、80重量%以上が更に好ましい。上限は特に限定されないが、例えば、100重量%以下である。 The content of the segment derived from the (meth)acrylic ester in which the ester substituent has 1 to 4 carbon atoms in the (meth)acrylic resin particles is preferably 40% by weight or more, more preferably 60% by weight or more. , more preferably 80% by weight or more. The upper limit is not particularly limited, but is, for example, 100% by weight or less.
上記(メタ)アクリル樹脂粒子におけるエステル置換基の炭素数が1~2である(メタ)アクリル酸エステルに由来するセグメントの含有量は、35重量%以上が好ましく、40重量%以上がより好ましく、65重量%以下が好ましく、60重量%以下がより好ましい。 The content of the segment derived from the (meth)acrylic ester in which the ester substituent has 1 to 2 carbon atoms in the (meth)acrylic resin particles is preferably 35% by weight or more, more preferably 40% by weight or more, The content is preferably 65% by weight or less, more preferably 60% by weight or less.
上記(メタ)アクリル樹脂粒子における上記エステル置換基の炭素数が5~8である(メタ)アクリル酸エステルに由来するセグメントの含有量は、60重量%以下が好ましく、40重量%以下がより好ましく、20重量%以下が更に好ましい。下限は特に限定されないが、例えば、0重量%以上である。 The content of the segment derived from the (meth)acrylic ester in which the ester substituent has 5 to 8 carbon atoms in the (meth)acrylic resin particles is preferably 60% by weight or less, more preferably 40% by weight or less. , more preferably 20% by weight or less. The lower limit is not particularly limited, but is, for example, 0% by weight or more.
上記(メタ)アクリル樹脂粒子におけるメチルメタクリレートに由来するセグメントの含有量は、30重量%以上が好ましく、60重量%以下が好ましく、35重量%以上がより好ましく、50重量%以下がより好ましい。 The content of segments derived from methyl methacrylate in the (meth)acrylic resin particles is preferably 30% by weight or more, preferably 60% by weight or less, more preferably 35% by weight or more, and more preferably 50% by weight or less.
上記(メタ)アクリル樹脂粒子におけるエチルメタクリレートに由来するセグメントの含有量は、10重量%以上が好ましく、30重量%以下が好ましく、15重量%以上がより好ましく、25重量%以下がより好ましい。 The content of segments derived from ethyl methacrylate in the (meth)acrylic resin particles is preferably 10% by weight or more, preferably 30% by weight or less, more preferably 15% by weight or more, and more preferably 25% by weight or less.
上記(メタ)アクリル樹脂粒子におけるイソブチルメタクリレートに由来するセグメントの含有量は、30重量%以上が好ましく、60重量%以下が好ましく、35重量%以下がより好ましく、50重量%以下がより好ましい。 The content of segments derived from isobutyl methacrylate in the (meth)acrylic resin particles is preferably 30% by weight or more, preferably 60% by weight or less, more preferably 35% by weight or less, and even more preferably 50% by weight or less.
上記(メタ)アクリル樹脂粒子は、エステル置換基の炭素数が9以上である(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。
上記エステル置換基の炭素数は10以上がより好ましく、30以下が好ましく、20以下がより好ましい。
The (meth)acrylic resin particles may have a segment derived from a (meth)acrylic acid ester in which the ester substituent has 9 or more carbon atoms.
The number of carbon atoms in the ester substituent is more preferably 10 or more, preferably 30 or less, and more preferably 20 or less.
上記エステル置換基の炭素数が9以上である(メタ)アクリル酸エステルとしては、直鎖状又は分岐鎖状の炭素数が9以上であるアルキル基を有する(メタ)アクリル酸エステル、ポリアルキレングリコール(メタ)アクリレート等が挙げられる。 As the (meth)acrylic ester in which the ester substituent has 9 or more carbon atoms, (meth)acrylic ester having a linear or branched alkyl group having 9 or more carbon atoms, polyalkylene glycol Examples include (meth)acrylate.
上記直鎖状又は分岐鎖状の炭素数が9以上のアルキル基を有する(メタ)アクリル酸エステルとしては、例えば、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、イソラウリル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等が挙げられる。
上記ポリアルキレングリコール(メタ)アクリレートとしては、エチレングリコール単位、プロピレングリコール単位、ブチレングリコール単位等を有するものが挙げられる。
また、上記ポリアルキレングリコール(メタ)アクリレートは、末端にアルコキシ基を有するものであってもよく、末端にエチルヘキシル基を有するものであってもよい。
また、上記ポリアルキレングリコール(メタ)アクリレートは、直鎖状のアルキレングリコール単位を有するものでもよく、分岐鎖状のアルキレングリコール単位を有するものでもよい。
Examples of the linear or branched (meth)acrylic acid ester having an alkyl group having 9 or more carbon atoms include n-nonyl (meth)acrylate, isononyl (meth)acrylate, and n-decyl (meth)acrylate. Acrylate, isodecyl (meth)acrylate, n-lauryl (meth)acrylate, isolauryl (meth)acrylate, n-stearyl (meth)acrylate, isostearyl (meth)acrylate, and the like.
Examples of the polyalkylene glycol (meth)acrylate include those having ethylene glycol units, propylene glycol units, butylene glycol units, and the like.
Further, the polyalkylene glycol (meth)acrylate may have an alkoxy group at the end, or may have an ethylhexyl group at the end.
Moreover, the polyalkylene glycol (meth)acrylate may have a linear alkylene glycol unit or may have a branched alkylene glycol unit.
上記(メタ)アクリル樹脂粒子における上記エステル置換基の炭素数が9以上である(メタ)アクリル酸エステルに由来するセグメントの含有量は、60重量%以下が好ましく、40重量%以下がより好ましく、20重量%以下が更に好ましい。下限は特に限定されないが、例えば、0重量%以上である。 The content of the segment derived from the (meth)acrylic ester in which the ester substituent has 9 or more carbon atoms in the (meth)acrylic resin particles is preferably 60% by weight or less, more preferably 40% by weight or less, More preferably, it is 20% by weight or less. The lower limit is not particularly limited, but is, for example, 0% by weight or more.
上記(メタ)アクリル樹脂粒子は、グリシジル基を有する(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。
上記グリシジル基を有する(メタ)アクリル酸エステルとしては、例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロヘキシル(メタ)アクリレート等が挙げられる。
The (meth)acrylic resin particles may have a segment derived from a (meth)acrylic acid ester having a glycidyl group.
Examples of the (meth)acrylic acid ester having a glycidyl group include glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and 3,4-epoxycyclohexyl (meth)acrylate.
上記(メタ)アクリル樹脂粒子におけるアクリルモノマーに由来するセグメントの含有量は、少ないほど低温分解性を向上させるという利点があることから、5重量%以下であることが好ましく、1重量%以下がより好ましい。下限は特に限定されないが、例えば、0重量%以上である。
なお、上記アクリルモノマーとは、アクリル酸及びアクリル酸エステルを意味する。
The content of the segment derived from the acrylic monomer in the (meth)acrylic resin particles is preferably 5% by weight or less, and more preferably 1% by weight or less, since the smaller the content, the better the low-temperature decomposition property is. preferable. The lower limit is not particularly limited, but is, for example, 0% by weight or more.
In addition, the said acrylic monomer means acrylic acid and acrylic acid ester.
上記(メタ)アクリル樹脂粒子のガラス転移温度(Tg)は30℃以上が好ましく、85℃以下が好ましい。
上記範囲とすることで、可塑剤の添加量を少なくすることができ、また、低温分解性を向上させることができる。
上記Tgは32℃以上がより好ましく、80℃以下がより好ましく、42℃以上が更に好ましく、75℃以下が更に好ましい。
なお、上記ガラス転移温度(Tg)は、例えば、示差走査熱量計(DSC)等を用いて測定することができる。
The glass transition temperature (Tg) of the (meth)acrylic resin particles is preferably 30°C or higher, and preferably 85°C or lower.
By setting it as the said range, the addition amount of a plasticizer can be reduced and low-temperature decomposability can be improved.
The above Tg is more preferably 32°C or higher, more preferably 80°C or lower, even more preferably 42°C or higher, and even more preferably 75°C or lower.
Note that the glass transition temperature (Tg) can be measured using, for example, a differential scanning calorimeter (DSC).
上記(メタ)アクリル樹脂粒子は、30℃から5℃/分で加熱した場合の90重量%分解温度が280℃以下であることが好ましく、270℃以下であることがより好ましく、260℃以下であることが更に好ましい。下限は特に限定されず、30℃以上であり、低ければ低いほど好ましい。 The (meth)acrylic resin particles preferably have a 90% decomposition temperature of 280°C or lower, more preferably 270°C or lower, and 260°C or lower when heated from 30°C to 5°C/min. It is even more preferable that there be. The lower limit is not particularly limited, and is 30° C. or higher, and the lower the temperature, the more preferable.
上記(メタ)アクリル樹脂粒子を製造する方法としては、例えば、(メタ)アクリル酸エステル等を含む原料モノマー混合物に有機溶剤等を加えてモノマー混合液を調整し、更に、得られたモノマー混合液に重合開始剤、連鎖移動剤を添加して、上記原料モノマーを共重合させる方法が挙げられる。
重合させる方法は特に限定されず、乳化重合、懸濁重合、塊状重合、界面重合、溶液重合等が挙げられる。なかでも、溶液重合が好ましい。
As a method for manufacturing the above-mentioned (meth)acrylic resin particles, for example, an organic solvent or the like is added to a raw material monomer mixture containing (meth)acrylic acid ester, etc. to prepare a monomer mixture, and further, the obtained monomer mixture is A method of copolymerizing the above raw material monomers by adding a polymerization initiator and a chain transfer agent to the monomer can be mentioned.
The polymerization method is not particularly limited, and examples include emulsion polymerization, suspension polymerization, bulk polymerization, interfacial polymerization, and solution polymerization. Among these, solution polymerization is preferred.
上記有機溶剤としては、例えば、トルエン、酢酸エチル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、酪酸エチル、酪酸ブチル、酪酸ペンチル、酪酸ヘキシル、イソプロパノール、メチルイソブチルケトン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコールエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソブチルエーテル、トリメチルペンタンジオールモノイソブチレート、ブチルカルビトール、ブチルカルビトールアセテート、テルピネオール、テルピネオールアセテート、ジヒドロテルピネオール、ジヒドロテルピネオールアセテート、テキサノール、イソホロン、乳酸ブチル、ジオクチルフタレート、ジオクチルアジペート、ベンジルアルコール、フェニルプロピレングリコール、クレゾール等が挙げられる。なかでも、酢酸ブチル、テルピネオール、テルピネオールアセテート、ジヒドロテルピネオール、ジヒドロテルピネオールアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソブチルエーテル、ブチルカルビトール、ブチルカルビトールアセテート、テキサノールが好ましい。また、酢酸ブチル、テルピネオール、テルピネオールアセテート、ジヒドロテルピネオール、ジヒドロテルピネオールアセテートがより好ましい。なお、これらの有機溶剤は単独で用いてもよく、2種以上を併用してもよい。 Examples of the organic solvents include toluene, ethyl acetate, butyl acetate, pentyl acetate, hexyl acetate, ethyl butyrate, butyl butyrate, pentyl butyrate, hexyl butyrate, isopropanol, methyl isobutyl ketone, methyl ethyl ketone, methyl isobutyl ketone, and ethylene glycol ethyl ether. , ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisobutyl ether, trimethylpentanediol monoisobutyrate, butyl carbitol, butyl carbitol acetate, terpineol, terpineol acetate, dihydro Examples include terpineol, dihydroterpineol acetate, texanol, isophorone, butyl lactate, dioctyl phthalate, dioctyl adipate, benzyl alcohol, phenylpropylene glycol, and cresol. Among these, butyl acetate, terpineol, terpineol acetate, dihydroterpineol, dihydroterpineol acetate, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisobutyl ether, butyl carbitol, butyl carbitol acetate, and texanol are preferred. Moreover, butyl acetate, terpineol, terpineol acetate, dihydroterpineol, and dihydroterpineol acetate are more preferred. Note that these organic solvents may be used alone or in combination of two or more.
上記重合開始剤としては、例えば、t-ブチルパーオキシピバレート、P-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロキシパーオキサイド、t-ブチルハイドロキシパーオキサイド、過酸化シクロヘキサノン、ジコハク酸パーオキサイド等が挙げられる。また、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]スルファトハイドレイト、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]等のイミダゾール系アゾ化合物の酸混合物、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラハイドレート、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、4,4’-アゾビス-4-シアノバレリックアシッド等の水溶性アゾ化合物、過硫酸カリウム(ペルオキソ二硫酸カリウム)、過硫酸アンモニウム(ペルオキソ二硫酸アンモニウム)、過硫酸ナトリウム(ペルオキソ二硫酸ナトリウム)等のオキソ酸類、過酸化水素、過酢酸、過ギ酸、過プロピオン酸等の過酸化物等が挙げられる。
なかでも、S原子を含有する重合開始剤、K原子を含有する重合開始剤が好ましく用いられる。また、過硫酸カリウム、過硫酸アンモニウム、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]が好ましく、過硫酸カリウム、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]がより好ましい。
Examples of the polymerization initiator include t-butylperoxypivalate, P-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroxyperoxide, Examples include t-butyl hydroxy peroxide, cyclohexanone peroxide, and disuccinic acid peroxide. Also, 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane]sulfatohydrate, Acid mixtures of imidazole azo compounds such as 2,2'-azobis[2-(2-imidazolin-2-yl)propane], 2,2'-azobis(2-methylpropionamidine) dihydrochloride, 2,2' -Azobis[N-(2-carboxyethyl)-2-methylpropionamidine]tetrahydrate, 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 4,4'- Water-soluble azo compounds such as azobis-4-cyanovaleric acid, oxoacids such as potassium persulfate (potassium peroxodisulfate), ammonium persulfate (ammonium peroxodisulfate), sodium persulfate (sodium peroxodisulfate), hydrogen peroxide , peroxides such as peracetic acid, performic acid, perpropionic acid, and the like.
Among these, polymerization initiators containing S atoms and polymerization initiators containing K atoms are preferably used. Also, potassium persulfate, ammonium persulfate, 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis[2-methyl-N-(2-hydroxyethyl) ) propionamide] is preferred, and potassium persulfate and 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] are more preferred.
上記重合開始剤の添加量は、原料モノマー100重量部に対して、0.03重量部以上が好ましく、4.0重量部以下が好ましく、0.05重量部以上がより好ましく、3.6重量部以下がより好ましい。 The amount of the polymerization initiator added is preferably 0.03 parts by weight or more, preferably 4.0 parts by weight or less, more preferably 0.05 parts by weight or more, and 3.6 parts by weight based on 100 parts by weight of the raw material monomer. Part or less is more preferable.
上記連鎖移動剤としては、S原子を有する連鎖移動剤が好ましく用いられ、例えば、3-メルカプト-1,2-プロパンジオール、3-メルカプト-1-プロパノール、3-メルカプト-2-ブタノール、8-メルカプト-1-オクタノール、2-メルカプトベンゾイミダゾール、メルカプトコハク酸、メルカプト酢酸等が挙げられる。
なかでも、3-メルカプト-1,2-プロパンジオール、メルカプトコハク酸が好ましく用いられる。
As the chain transfer agent, a chain transfer agent having an S atom is preferably used, such as 3-mercapto-1,2-propanediol, 3-mercapto-1-propanol, 3-mercapto-2-butanol, 8- Examples include mercapto-1-octanol, 2-mercaptobenzimidazole, mercaptosuccinic acid, and mercaptoacetic acid.
Among them, 3-mercapto-1,2-propanediol and mercaptosuccinic acid are preferably used.
上記連鎖移動剤の添加量は、原料モノマー100重量部に対して、0.1重量部以上が好ましく、10.0重量部以下が好ましく、0.4重量部以上がより好ましく、5.0重量部以下がより好ましい。 The amount of the chain transfer agent added is preferably 0.1 parts by weight or more, preferably 10.0 parts by weight or less, more preferably 0.4 parts by weight or more, and 5.0 parts by weight based on 100 parts by weight of the raw material monomer. Part or less is more preferable.
重合させる際の温度は、50℃以上が好ましく、90℃以下が好ましく、60℃以上がより好ましく、80℃以下がより好ましい。 The temperature during polymerization is preferably 50°C or higher, preferably 90°C or lower, more preferably 60°C or higher, and more preferably 80°C or lower.
上記(メタ)アクリル樹脂粒子及び有機溶剤を含む溶剤を用いてビヒクル組成物を作製することができる。
上記(メタ)アクリル樹脂粒子と有機溶剤を含む溶剤とを含有するビヒクル組成物もまた本発明の1つである。
A vehicle composition can be prepared using the above (meth)acrylic resin particles and a solvent containing an organic solvent.
A vehicle composition containing the above-mentioned (meth)acrylic resin particles and a solvent including an organic solvent is also one aspect of the present invention.
上記ビヒクル組成物における上記(メタ)アクリル樹脂粒子の含有量は、5重量%以上が好ましく、30重量%以下が好ましく、10重量%以上がより好ましく、20重量%以下がより好ましい。 The content of the (meth)acrylic resin particles in the vehicle composition is preferably 5% by weight or more, preferably 30% by weight or less, more preferably 10% by weight or more, and more preferably 20% by weight or less.
上記ビヒクル組成物は有機溶剤を含有する。
上記有機溶剤としては、例えば、脂肪族アルコール類、グリコール類、テルペンアルコール類、芳香族アルコール類等のアルコール類、芳香族炭化水素類、エステル類、ケトン類、N-メチルピロリドン等が挙げられる。
上記脂肪族アルコール類としては、エタノール、プロパノール、イソプロパノール、ヘプタノール、オクタノール、デカノール、トリデカノール、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール、テキサノール、2-ブチル-2-エチル-1,3-プロパンジオール、ネオペンチルグリコール等が挙げられる。
上記グリコール類としては、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソブチルエーテル、ブチルカルビトール、エチレングリコールモノエチルエーテルアセテート、トリメチルペンタンジオールモノイソブチレート、ブチルカルビトールアセテート、テキサノール、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル、エチレングリコールエチルエーテル等が挙げられる。
上記テルペンアルコール類としては、テルピネオール、ジヒドロテルピネオール、テルピネオールアセテート、ジヒドロテルピネオールアセテート等が挙げられる。
上記芳香族アルコール類としては、ベンジルアルコール等が挙げられる。
上記芳香族炭化水素類としては、トルエン等が挙げられる。
上記エステル類としては、酢酸エチル、酢酸ブチル、酢酸ヘキシル、酢酸イソアミル、酪酸ブチル、乳酸ビチル、ジオクチルフタレート、ジオクチルアジペート等が挙げられる。
上記ケトン類としては、メチルイソブチルケトン、メチルエチルケトン、メチルイソブチルケトン、イソホロン等が挙げられる。
なかでも、脂肪族アルコール類、テルペンアルコール類が好ましく、2-ブチル-2-エチル-1,3-プロパンジオール、ジヒドロテルピネオールアセテートがより好ましい。
The vehicle composition contains an organic solvent.
Examples of the organic solvent include alcohols such as aliphatic alcohols, glycols, terpene alcohols, and aromatic alcohols, aromatic hydrocarbons, esters, ketones, N-methylpyrrolidone, and the like.
Examples of the aliphatic alcohols include ethanol, propanol, isopropanol, heptanol, octanol, decanol, tridecanol, lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol, oleyl alcohol, texanol, Examples include 2-butyl-2-ethyl-1,3-propanediol and neopentyl glycol.
The above glycols include ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisobutyl ether, butyl carbitol, ethylene glycol monoethyl ether acetate, trimethylpentanediol monoisobutyrate, butyl carbitol acetate, and texanol. , ethylene glycol monophenyl ether, propylene glycol monophenyl ether, ethylene glycol ethyl ether, and the like.
Examples of the terpene alcohols include terpineol, dihydroterpineol, terpineol acetate, dihydroterpineol acetate, and the like.
Examples of the aromatic alcohols include benzyl alcohol and the like.
Examples of the aromatic hydrocarbons include toluene and the like.
Examples of the esters include ethyl acetate, butyl acetate, hexyl acetate, isoamyl acetate, butyl butyrate, bityl lactate, dioctyl phthalate, dioctyl adipate, and the like.
Examples of the ketones include methyl isobutyl ketone, methyl ethyl ketone, methyl isobutyl ketone, and isophorone.
Among these, aliphatic alcohols and terpene alcohols are preferred, and 2-butyl-2-ethyl-1,3-propanediol and dihydroterpineol acetate are more preferred.
上記有機溶剤は、OH基を2つ以上有する化合物を有することが好ましい。
上記溶剤におけるOH基を2つ以上有する化合物の含有量は10重量%以上が好ましく、50重量%以下が好ましい。
上記範囲とすることで、無機粒子に分散性に特に優れたものとできるという利点がある。
It is preferable that the organic solvent has a compound having two or more OH groups.
The content of the compound having two or more OH groups in the above solvent is preferably 10% by weight or more, and preferably 50% by weight or less.
By setting it within the above range, there is an advantage that the inorganic particles can have particularly excellent dispersibility.
上記ビヒクル組成物における上記溶剤の含有量は特に限定されないが、65重量%以上が好ましく、90重量%以下が好ましく、70重量%以上がより好ましく、85重量%以下がより好ましい。 The content of the solvent in the vehicle composition is not particularly limited, but is preferably 65% by weight or more, preferably 90% by weight or less, more preferably 70% by weight or more, and more preferably 85% by weight or less.
上記ビヒクル組成物において、溶剤は更に水を含有することが好ましい。
上記溶剤における上記水の含有量は100重量ppm以上が好ましく、40000重量ppm以下が好ましい。
水を上記範囲で含むことにより、分散剤との馴染みがよくなり熱分解性が向上するという利点がある。
上記溶剤における上記水の含有量は、300重量ppm以上がより好ましく、20000重量ppm以下がより好ましい。
In the above vehicle composition, the solvent preferably further contains water.
The content of water in the solvent is preferably at least 100 ppm by weight, and preferably at most 40,000 ppm by weight.
Containing water within the above range has the advantage of improving compatibility with the dispersant and improving thermal decomposition properties.
The content of water in the solvent is more preferably at least 300 ppm by weight, and more preferably at most 20,000 ppm by weight.
上記ビヒクル組成物中に含まれるS原子の重量濃度は、0.004重量%以上が好ましく、0.400重量%以下が好ましく、0.100重量%以上がより好ましく、0.200重量%以下がより好ましい。
上記S原子の重量濃度は、上記ビヒクル組成物全体の重量に対する上記ビヒクル組成物に含まれるS原子の重量の割合を意味し、以下の式に基づいて算出することができる。
 ビヒクル組成物中に含まれるS原子の重量濃度=[ビヒクル組成物中の(メタ)アクリル樹脂粒子の含有量(重量%)×(メタ)アクリル樹脂粒子中に含まれるS原子の重量濃度(重量%)]÷100
The weight concentration of S atoms contained in the vehicle composition is preferably 0.004% by weight or more, preferably 0.400% by weight or less, more preferably 0.100% by weight or more, and 0.200% by weight or less. More preferred.
The weight concentration of S atoms means the ratio of the weight of S atoms contained in the vehicle composition to the weight of the entire vehicle composition, and can be calculated based on the following formula.
Weight concentration of S atoms contained in the vehicle composition = [Content (% by weight) of (meth)acrylic resin particles in vehicle composition × Weight concentration (weight %) of S atoms contained in (meth)acrylic resin particles %)]÷100
上記ビヒクル組成物中に含まれるCOOH基の重量濃度は、0.005重量%以上が好ましく、0.500重量%以下が好ましく、0.009重量%以上がより好ましく、0.300重量%以下がより好ましい。
上記COOH基の重量濃度は、上記ビヒクル組成物全体の重量に対する上記ビヒクル組成物に含まれるCOOH基の重量の割合を意味し、以下の式に基づいて算出することができる。
 ビヒクル組成物中に含まれるCOOH基の重量濃度={[ビヒクル組成物中の(メタ)アクリル樹脂粒子の含有量(重量%)×(メタ)アクリル樹脂粒子中に含まれるCOOH基の重量濃度(重量%)]+[ビヒクル組成物中の有機溶剤の含有量(重量%)×有機溶剤中に含まれるCOOH基の重量濃度(重量%)]}÷100
The weight concentration of COOH groups contained in the vehicle composition is preferably 0.005% by weight or more, preferably 0.500% by weight or less, more preferably 0.009% by weight or more, and 0.300% by weight or less. More preferred.
The weight concentration of the COOH group means the weight ratio of the COOH group contained in the vehicle composition to the weight of the entire vehicle composition, and can be calculated based on the following formula.
Weight concentration of COOH groups contained in the vehicle composition = {[Content (% by weight) of (meth)acrylic resin particles in the vehicle composition × Weight concentration of COOH groups contained in the (meth)acrylic resin particles ( weight%)]+[Content of organic solvent in vehicle composition (weight%) x weight concentration of COOH group contained in organic solvent (weight%)]}÷100
上記ビヒクル組成物中に含まれるOH基の重量濃度は、0.01重量%以上が好ましく、13.00重量%以下が好ましく、0.02重量%以上がより好ましく、11.00重量%以下がより好ましい。
上記OH基の重量濃度は、上記ビヒクル組成物全体の重量に対する上記ビヒクル組成物に含まれるOH基の重量の割合を意味し、以下の式に基づいて算出することができる。
 ビヒクル組成物中に含まれるOH基の重量濃度={[ビヒクル組成物中の(メタ)アクリル樹脂粒子の含有量(重量%)×(メタ)アクリル樹脂粒子中に含まれるOH基の重量濃度(重量%)]+[ビヒクル組成物中の有機溶剤の含有量(重量%)×有機溶剤中に含まれるOH基の重量濃度(重量%)]+[ビヒクル組成物中の水の含有量(重量%)×水中のOH基の重量濃度(重量%)]}÷100
The weight concentration of OH groups contained in the vehicle composition is preferably 0.01% by weight or more, preferably 13.00% by weight or less, more preferably 0.02% by weight or more, and 11.00% by weight or less. More preferred.
The weight concentration of the OH groups means the weight ratio of the OH groups contained in the vehicle composition to the weight of the entire vehicle composition, and can be calculated based on the following formula.
Weight concentration of OH groups contained in the vehicle composition = {[Content (% by weight) of (meth)acrylic resin particles in the vehicle composition × Weight concentration of OH groups contained in the (meth)acrylic resin particles ( (% by weight)] + [Content of organic solvent in vehicle composition (% by weight) x Weight concentration of OH groups contained in organic solvent (% by weight)] + [Content of water in vehicle composition (% by weight) %) x weight concentration of OH groups in water (weight %)] ÷ 100
上記ビヒクル組成物中に含まれるK原子の重量濃度は、0.001重量%以上が好ましく、0.200重量%以下が好ましく、0.010重量%以上がより好ましく、0.160重量%以下がより好ましい。
上記K原子の重量濃度は、上記ビヒクル組成物全体の重量に対する上記ビヒクル組成物に含まれるK原子の重量の割合を意味し、以下の式に基づいて算出することができる。
 ビヒクル組成物中に含まれるK原子の重量濃度=[ビヒクル組成物中の(メタ)アクリル樹脂粒子の含有量(重量%)×(メタ)アクリル樹脂粒子中に含まれるK原子の重量濃度(重量%)]÷100
The weight concentration of K atoms contained in the vehicle composition is preferably 0.001% by weight or more, preferably 0.200% by weight or less, more preferably 0.010% by weight or more, and 0.160% by weight or less. More preferred.
The weight concentration of K atoms means the weight ratio of K atoms contained in the vehicle composition to the weight of the entire vehicle composition, and can be calculated based on the following formula.
Weight concentration of K atoms contained in the vehicle composition = [Content of (meth)acrylic resin particles in the vehicle composition (wt%) x Weight concentration of K atoms contained in the (meth)acrylic resin particles (weight %)]÷100
また、上記ビヒクル組成物中に含まれるS原子の重量濃度に対するOH基の重量濃度の比(OH基の重量濃度/S原子の重量濃度)は、0.1以上が好ましく、100以下が好ましく、0.2以上がより好ましく、75以下がより好ましい。 Further, the ratio of the weight concentration of OH groups to the weight concentration of S atoms contained in the vehicle composition (weight concentration of OH groups/weight concentration of S atoms) is preferably 0.1 or more, and preferably 100 or less, It is more preferably 0.2 or more, and more preferably 75 or less.
上記ビヒクル組成物を製造する方法としては、例えば、上記方法により得られた(メタ)アクリル樹脂粒子に有機溶剤、水等を添加して攪拌混合する方法が挙げられる。 Examples of the method for producing the vehicle composition include a method in which an organic solvent, water, etc. are added to the (meth)acrylic resin particles obtained by the above method, and the mixture is stirred.
上記ビヒクル組成物、無機粒子及び分散剤を用いてスラリー組成物を作製することができる。
上記ビヒクル組成物、無機粒子及び分散剤を含有するスラリー組成物もまた本発明の1つである。
A slurry composition can be prepared using the vehicle composition, inorganic particles, and dispersant described above.
A slurry composition containing the above vehicle composition, inorganic particles, and a dispersant is also part of the present invention.
上記スラリー組成物における上記(メタ)アクリル樹脂粒子の含有量は、3重量%以上が好ましく、10重量%以下が好ましく、5重量%以上がより好ましく、8重量%以下がより好ましい。 The content of the (meth)acrylic resin particles in the slurry composition is preferably 3% by weight or more, preferably 10% by weight or less, more preferably 5% by weight or more, and more preferably 8% by weight or less.
上記スラリー組成物における上記有機溶剤の含有量は、25重量%以上が好ましく、40重量%以下が好ましく、30重量%以上がより好ましく、35重量%以下がより好ましい。 The content of the organic solvent in the slurry composition is preferably 25% by weight or more, preferably 40% by weight or less, more preferably 30% by weight or more, and more preferably 35% by weight or less.
上記スラリー組成物における水の含有量は、30重量ppm以上が好ましく、15000重量ppm以下が好ましく、1000重量ppm以上がより好ましく、10000重量ppm以下がより好ましく、5000重量ppm以上が更に好ましく、7000重量ppm以下が更に好ましい。 The content of water in the slurry composition is preferably at least 30 ppm by weight, preferably at most 15,000 ppm by weight, more preferably at least 1,000 ppm by weight, more preferably at most 10,000 ppm by weight, even more preferably at least 5,000 ppm by weight, and even more preferably at least 7,000 ppm by weight. It is more preferably less than ppm by weight.
上記スラリー組成物は無機粒子を含有する。
上記無機粒子は特に限定されず、例えば、ガラス粉末、セラミック粉末、蛍光体微粒子、珪素酸化物等、金属微粒子等が挙げられる。
The slurry composition contains inorganic particles.
The inorganic particles are not particularly limited, and include, for example, glass powder, ceramic powder, phosphor fine particles, silicon oxide, metal fine particles, and the like.
上記ガラス粉末は特に限定されず、例えば、酸化ビスマスガラス、ケイ酸塩ガラス、鉛ガラス、亜鉛ガラス、ボロンガラス等のガラス粉末や、CaO-Al-SiO系、MgO-Al-SiO系、LiO-Al-SiO系等の各種ケイ素酸化物のガラス粉末等が挙げられる。
また、上記ガラス粉末として、SnO-B-P-Al混合物、PbO-B-SiO混合物、BaO-ZnO-B-SiO混合物、ZnO-Bi-B-SiO混合物、Bi-B-BaO-CuO混合物、Bi-ZnO-B-Al-SrO混合物、ZnO-Bi-B混合物、Bi-SiO混合物、P-NaO-CaO-BaO-Al-B混合物、P-SnO混合物、P-SnO-B混合物、P-SnO-SiO混合物、CuO-P-RO混合物、SiO-B-ZnO-NaO-LiO-NaF-V混合物、P-ZnO-SnO-RO-RO混合物、B-SiO-ZnO混合物、B-SiO-Al-ZrO混合物、SiO-B-ZnO-RO-RO混合物、SiO-B-Al-RO-RO混合物、SrO-ZnO-P混合物、SrO-ZnO-P混合物、BaO-ZnO-B-SiO混合物等のガラス粉末も用いることができる。なお、Rは、Zn、Ba、Ca、Mg、Sr、Sn、Ni、Fe及びMnからなる群より選択される元素である。
特に、PbO-B-SiO混合物のガラス粉末や、鉛を含有しないBaO-ZnO-B-SiO混合物又はZnO-Bi-B-SiO混合物等の無鉛ガラス粉末が好ましい。
The above-mentioned glass powder is not particularly limited, and includes, for example, glass powder such as bismuth oxide glass, silicate glass, lead glass, zinc glass, boron glass, CaO-Al 2 O 3 -SiO 2 system, MgO-Al 2 O Examples include glass powders of various silicon oxides such as 3- SiO 2 series, LiO 2 -Al 2 O 3 -SiO 2 series, and the like.
In addition, as the above-mentioned glass powder, SnO-B 2 O 3 -P 2 O 5 -Al 2 O 3 mixture, PbO-B 2 O 3 -SiO 2 mixture, BaO-ZnO-B 2 O 3 -SiO 2 mixture, ZnO -Bi 2 O 3 -B 2 O 3 -SiO 2 mixture, Bi 2 O 3 -B 2 O 3 -BaO-CuO mixture, Bi 2 O 3 -ZnO-B 2 O 3 -Al 2 O 3 -SrO mixture, ZnO-Bi 2 O 3 -B 2 O 3 mixture, Bi 2 O 3 -SiO 2 mixture, P 2 O 5 -Na 2 O-CaO-BaO-Al 2 O 3 -B 2 O 3 mixture, P 2 O 5 -SnO mixture, P 2 O 5 -SnO-B 2 O 3 mixture, P 2 O 5 -SnO-SiO 2 mixture, CuO-P 2 O 5 -RO mixture, SiO 2 -B 2 O 3 -ZnO-Na 2 O-Li 2 O-NaF-V 2 O 5 mixture, P 2 O 5 -ZnO-SnO-R 2 O-RO mixture, B 2 O 3 -SiO 2 -ZnO mixture, B 2 O 3 -SiO 2 -Al 2 O 3 -ZrO 2 mixture, SiO 2 -B 2 O 3 -ZnO-R 2 O-RO mixture, SiO 2 -B 2 O 3 -Al 2 O 3 -RO-R 2 O mixture, SrO-ZnO-P Glass powders such as 2 O 5 mixture, SrO-ZnO-P 2 O 5 mixture, BaO-ZnO-B 2 O 3 -SiO 2 mixture can also be used. Note that R is an element selected from the group consisting of Zn, Ba, Ca, Mg, Sr, Sn, Ni, Fe, and Mn.
In particular, glass powder of PbO-B 2 O 3 -SiO 2 mixture, lead-free BaO-ZnO-B 2 O 3 -SiO 2 mixture or ZnO-Bi 2 O 3 -B 2 O 3 -SiO 2 mixture, etc. Lead-free glass powder is preferred.
上記セラミック粉末は特に限定されず、例えば、アルミナ、フェライト、ジルコニア、ジルコン、ジルコン酸バリウム、ジルコン酸カルシウム、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸亜鉛、チタン酸ランタン、チタン酸ネオジウム、チタン酸ジルコン鉛、窒化アルミナ、窒化ケイ素、窒化ホウ素、炭化ホウ素、錫酸バリウム、錫酸カルシウム、珪酸マグネシウム、ムライト、ステアタイト、コーディエライト、フォルステライト等が挙げられる。
また、ITO、FTO、酸化ニオブ、酸化バナジウム、酸化タングステン、ランタンストロンチウムマンガナイト、ランタンストロンチウムコバルトフェライト、イットリウム安定化ジルコニア、ガドリニウムドープセリア、酸化ニッケル、ランタンクロマイト等も使用することができる。
上記蛍光体微粒子は特に限定されず、例えば、蛍光体物質としては、ディスプレイ用の蛍光体物質として従来知られている青色蛍光体物質、赤色蛍光体物質、緑色蛍光体物質などが用いられる。青色蛍光体物質としては、例えば、MgAl1017:Eu系、YSiO:Ce系、CaWO:Pb系、BaMgAl1423:Eu系、BaMgAl1627:Eu系、BaMgAl1423:Eu系、BaMgAl1427:Eu系、ZnS:(Ag,Cd)系のものが用いられる。赤色蛍光体物質としては、例えば、Y:Eu系、YSiO:Eu系、YAl12:Eu系、Zn(PO:Mn系、YBO:Eu系、(Y,Gd)BO:Eu系、GdBO:Eu系、ScBO:Eu系、LuBO:Eu系のものが用いられる。緑色蛍光体物質としては、例えば、ZnSiO:Mn系、BaAl1219:Mn系、SrAl1319:Mn系、CaAl1219:Mn系、YBO:Tb系、BaMgAl1423:Mn系、LuBO:Tb系、GdBO:Tb系、ScBO:Tb系、Sr6SiCl:Eu系のものが用いられる。その他、ZnO:Zn系、ZnS:(Cu,Al)系、ZnS:Ag系、YS:Eu系、ZnS:Zn系、(Y,Cd)BO:Eu系、BaMgAl1223:Eu系のものも用いることができる。
The above ceramic powder is not particularly limited, and examples thereof include alumina, ferrite, zirconia, zircon, barium zirconate, calcium zirconate, titanium oxide, barium titanate, strontium titanate, calcium titanate, magnesium titanate, zinc titanate, Lanthanum titanate, neodymium titanate, lead zirconium titanate, alumina nitride, silicon nitride, boron nitride, boron carbide, barium stannate, calcium stannate, magnesium silicate, mullite, steatite, cordierite, forsterite, etc. It will be done.
ITO, FTO, niobium oxide, vanadium oxide, tungsten oxide, lanthanum strontium manganite, lanthanum strontium cobalt ferrite, yttrium-stabilized zirconia, gadolinium-doped ceria, nickel oxide, lanthanum chromite, and the like can also be used.
The phosphor fine particles are not particularly limited, and for example, blue phosphor substances, red phosphor substances, green phosphor substances, etc., which are conventionally known as phosphor substances for displays, can be used as the phosphor substance. Examples of blue phosphor substances include MgAl 10 O 17 :Eu system, Y 2 SiO 5 :Ce system, CaWO 4 :Pb system, BaMgAl 14 O 23 :Eu system, BaMgAl 16 O 27 :Eu system, BaMg 2 Al. 14 O 23 : Eu-based, BaMg 2 Al 14 O 27 : Eu-based, and ZnS: (Ag, Cd)-based are used. Examples of red phosphor substances include Y 2 O 3 :Eu-based, Y 2 SiO 5 :Eu-based, Y 3 Al 5 O 12 :Eu-based, Zn 3 (PO 4 ) 2 :Mn-based, YBO 3 :Eu. (Y,Gd)BO 3 :Eu system, GdBO 3 :Eu system, ScBO 3 :Eu system, and LuBO 3 :Eu system. Examples of green phosphor substances include Zn 2 SiO 4 :Mn system, BaAl 12 O 19 :Mn system, SrAl 13 O 19 :Mn system, CaAl 12 O 19 :Mn system, YBO 3 :Tb system, BaMgAl 14 O 23 : Mn type, LuBO 3 : Tb type, GdBO 3 : Tb type, ScBO 3 : Tb type, and Sr6Si 3 O 3 Cl 4 : Eu type are used. Others include ZnO:Zn series , ZnS :(Cu,Al) series, ZnS:Ag series, Y2O2S:Eu series, ZnS:Zn series, (Y,Cd) BO3 :Eu series , BaMgAl12O23 :Eu-based materials can also be used.
上記金属微粒子は特に限定されず、例えば、鉄、銅、ニッケル、パラジウム、白金、金、銀、アルミニウム、タングステンやこれらの合金等からなる粉末等が挙げられる。
また、カルボキシル基、アミノ基、アミド基等との吸着特性が良好で酸化されやすい銅や鉄等の金属も好適に用いることができる。これらの金属粉末は、単独で用いてもよく、2種以上を併用してもよい。
また、上記金属微粒子は、金属錯体のほか、種々のカーボンブラック、カーボンナノチューブ等を使用してもよい。
The metal fine particles are not particularly limited, and include, for example, powders made of iron, copper, nickel, palladium, platinum, gold, silver, aluminum, tungsten, and alloys thereof.
Further, metals such as copper and iron, which have good adsorption properties with carboxyl groups, amino groups, amide groups, etc. and are easily oxidized, can also be suitably used. These metal powders may be used alone or in combination of two or more.
In addition to metal complexes, various carbon blacks, carbon nanotubes, etc. may be used as the metal fine particles.
上記無機粒子は、リチウム又はチタンを含有することが好ましい。具体的には例えば、LiO・Al・SiO系無機ガラス等の低融点ガラス、LiS-M(M=B、Si、Ge、P)等のリチウム硫黄系ガラス、LiCeO等のリチウムコバルト複合酸化物、LiMnO等のリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムバナジウム複合酸化物、リチウムジルコニウム複合酸化物、リチウムハフニウム複合酸化物、ケイリン酸リチウム(Li3.5Si0.50.5)、リン酸チタンリチウム(LiTi(PO)、チタン酸リチウム(LiTi12)、Li4/3Ti5/3、LiCoO、リン酸ゲルマニウムリチウム(LiGe(PO)、Li-SiS系ガラス、LiGeS-LiPS系ガラス、LiSiO、LiMn、LiS-P系ガラス・セラミクス、LiO-SiO、LiO-V-SiO、LiS-SiS-LiSiO系ガラス、LiPON等のイオン導電性酸化物、LiO-P-B、LiO-GeOBa等の酸化リチウム化合物、LiAlTi(PO系ガラス、LaLiTiO系ガラス、LiGe系ガラス、LiLaZr12系ガラス、LiSiCl系ガラス、LiNbO等のリチウムニオブ酸化物、Li-β-アルミナ等のリチウムアルミナ化合物、Li14Zn(GeO等のリチウム亜鉛酸化物等が挙げられる。 The inorganic particles preferably contain lithium or titanium. Specifically, for example, low melting point glass such as LiO 2 / Al 2 O 3 / SiO 2 type inorganic glass, lithium sulfur type glass such as Li 2 S-M x S y (M=B, Si, Ge, P), etc. , lithium cobalt composite oxide such as LiCeO2 , lithium manganese composite oxide such as LiMnO4 , lithium nickel composite oxide, lithium vanadium composite oxide, lithium zirconium composite oxide, lithium hafnium composite oxide, lithium silicate (Li 3.5 Si 0.5 P 0.5 O 4 ), lithium titanium phosphate (LiTi 2 (PO 4 ) 3 ), lithium titanate (Li 4 Ti 5 O 12 ), Li 4/3 Ti 5/3 O 4 , LiCoO 2 , lithium germanium phosphate (LiGe 2 (PO 4 ) 3 ), Li 2 -SiS glass, Li 4 GeS 4 -Li 3 PS 4 glass, LiSiO 3 , LiMn 2 O 4 , Li 2 S- P 2 S 5 -based glass/ceramics, Li 2 O-SiO 2 , Li 2 O-V 2 O 5 -SiO 2 , LiS-SiS 2 -Li 4 SiO 4 -based glass, ion conductive oxides such as LiPON, Li Lithium oxide compounds such as 2 O-P 2 O 5 -B 2 O 3 and Li 2 O-GeO 2 Ba, Li x Al y T z (PO 4 ) 3 -based glass, La x Li y TiO z -based glass, Li x Ge y P z O 4 -based glass, Li 7 La 3 Zr 2 O 12 -based glass, Li v Si w P x S y Cl z -based glass, lithium niobium oxide such as LiNbO 3 , Li-β-alumina, etc. Examples include lithium alumina compounds, lithium zinc oxides such as Li 14 Zn(GeO 4 ) 4 , and the like.
上記無機粒子の平均粒子径は、0.01μm以上が好ましく、5μm以下が好ましく、0.05μm以上がより好ましく、3μm以下がより好ましく、0.1μm以上が更に好ましく、1μm以下が更に好ましい。
上記平均粒子径は、例えば、レーザー回折/散乱式粒子径分布測定装置により体積平均粒子径を測定することで求めることができる。
The average particle diameter of the inorganic particles is preferably 0.01 μm or more, preferably 5 μm or less, more preferably 0.05 μm or more, more preferably 3 μm or less, even more preferably 0.1 μm or more, and even more preferably 1 μm or less.
The average particle diameter can be determined, for example, by measuring the volume average particle diameter using a laser diffraction/scattering particle size distribution measuring device.
上記スラリー組成物における上記無機粒子の含有量は、30重量%以上が好ましく、90重量%以下が好ましい。上記範囲であると、充分な粘度を有し、優れた塗工性を有するものとでき、更に、無機粒子の分散性に優れるものとできる。
上記無機粒子の含有量は、40重量%以上がより好ましく、70重量%以下がより好ましい。
The content of the inorganic particles in the slurry composition is preferably 30% by weight or more, and preferably 90% by weight or less. When it is within the above range, it can have sufficient viscosity and excellent coating properties, and furthermore, can have excellent dispersibility of inorganic particles.
The content of the inorganic particles is more preferably 40% by weight or more, and more preferably 70% by weight or less.
上記スラリー組成物は分散剤を含有する。
上記分散剤としては、例えば、脂肪酸、脂肪族アミン、アルカノールアミド、リン酸エステルが好適である。また、シランカップリング剤等を配合してもよい。
上記脂肪酸としては特に限定されず、例えば、ベヘニン酸、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸、カプリン酸、カプリル酸、ヤシ脂肪酸等の飽和脂肪酸;オレイン酸、リノール酸、リノレン酸、ソルビン酸、牛脂脂肪酸、ヒマシ硬化脂肪酸等の不飽和脂肪酸等が挙げられる。なかでも、ラウリン酸、ステアリン酸、オレイン酸等が好適である。
上記脂肪族アミンとしては特に限定されず、例えば、ラウリルアミン、ミリスチルアミン、セチルアミン、ステアリルアミン、オレイルアミン、アルキル(ヤシ)アミン、アルキル(硬化牛脂)アミン、アルキル(牛脂)アミン、アルキル(大豆)アミン等が挙げられる。
上記アルカノールアミドとしては特に限定されず、例えば、ヤシ脂肪酸ジエタノールアミド、牛脂脂肪酸ジエタノールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等が挙げられる。
上記リン酸エステルとしては特に限定されず、例えば、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンアルキルアリルエーテルリン酸エステルが挙げられる。
The slurry composition contains a dispersant.
Suitable examples of the dispersant include fatty acids, aliphatic amines, alkanolamides, and phosphoric acid esters. Additionally, a silane coupling agent or the like may be added.
The above fatty acids are not particularly limited, and include, for example, saturated fatty acids such as behenic acid, stearic acid, palmitic acid, myristic acid, lauric acid, capric acid, caprylic acid, and coconut fatty acids; oleic acid, linoleic acid, linolenic acid, and sorbic acid. , beef tallow fatty acid, unsaturated fatty acids such as castor hydrogenated fatty acid, and the like. Among these, lauric acid, stearic acid, oleic acid, etc. are preferred.
The above aliphatic amines are not particularly limited, and include, for example, laurylamine, myristylamine, cetylamine, stearylamine, oleylamine, alkyl (coconut) amine, alkyl (hardened beef tallow) amine, alkyl (beef tallow) amine, and alkyl (soybean) amine. etc.
The alkanolamide is not particularly limited, and includes, for example, coconut fatty acid diethanolamide, beef tallow fatty acid diethanolamide, lauric acid diethanolamide, oleic acid diethanolamide, and the like.
The above-mentioned phosphoric acid ester is not particularly limited, and examples thereof include polyoxyethylene alkyl ether phosphoric ester and polyoxyethylene alkyl allyl ether phosphoric ester.
上記スラリー組成物における上記分散剤の含有量は、0.1重量%以上が好ましく、1重量%以下が好ましく、0.15重量%以上がより好ましく、0.5重量%以下がより好ましい。 The content of the dispersant in the slurry composition is preferably 0.1% by weight or more, preferably 1% by weight or less, more preferably 0.15% by weight or more, and even more preferably 0.5% by weight or less.
上記スラリー組成物は、更に、可塑剤、界面活性剤等の添加剤を含んでいてもよい。
上記可塑剤としては、例えば、アジピン酸ジ(ブトキシエチル)、アジピン酸ジブトキシエトキシエチル、トリエチレングリコールジブチル、トリエチレングリコールビス(2-エチルヘキサノエート)、トリエチレングリコールジヘキサノエート、アセチルクエン酸トリエチル、アセチルクエン酸トリブチル、アセチルクエン酸ジエチル、アセチルクエン酸ジブチル、セバシン酸ジブチル、トリアセチン、アセチルオキシマロン酸ジエチル、エトキシマロン酸ジエチル等が挙げられる。
The slurry composition may further contain additives such as a plasticizer and a surfactant.
Examples of the plasticizers include di(butoxyethyl) adipate, dibutoxyethoxyethyl adipate, triethylene glycol dibutyl, triethylene glycol bis(2-ethylhexanoate), triethylene glycol dihexanoate, acetyl Triethyl citrate, acetyl tributyl citrate, acetyl diethyl citrate, acetyl dibutyl citrate, dibutyl sebacate, triacetin, diethyl acetyloxymalonate, diethyl ethoxymalonate, and the like.
上記界面活性剤は特に限定されず、例えば、カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤が挙げられる。
上記ノニオン系界面活性剤としては特に限定されないが、HLB値が10以上20以下のノニオン系界面活性剤であることが好ましい。ここで、HLB値とは、界面活性剤の親水性、親油性を表す指標として用いられるものであって、計算方法がいくつか提案されており、例えば、エステル系の界面活性剤について、鹸化価をS、界面活性剤を構成する脂肪酸の酸価をAとし、HLB値を20(1-S/A)等の定義がある。具体的には、脂肪鎖にアルキレンエーテルを付加させたポリエチレンオキサイドを有するノニオン系界面活性剤が好適であり、具体的には例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル等が好適に用いられる。なお、上記ノニオン系界面活性剤は、熱分解性がよいが、大量に添加すると無機粒子分散スラリー組成物の熱分解性が低下することがあるため、含有量の好ましい上限は5重量%である。
The above-mentioned surfactant is not particularly limited, and examples thereof include cationic surfactants, anionic surfactants, and nonionic surfactants.
The nonionic surfactant is not particularly limited, but preferably has an HLB value of 10 or more and 20 or less. Here, the HLB value is used as an index representing the hydrophilicity and lipophilicity of surfactants, and several calculation methods have been proposed.For example, for ester surfactants, saponification value There are definitions such as S, the acid value of the fatty acid constituting the surfactant, A, and the HLB value of 20 (1-S/A). Specifically, a nonionic surfactant having polyethylene oxide with an alkylene ether added to a fatty chain is suitable, and specifically, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, etc. are preferably used. It will be done. The above-mentioned nonionic surfactant has good thermal decomposition properties, but if added in large quantities, the thermal decomposition properties of the inorganic particle dispersed slurry composition may decrease, so the preferable upper limit of the content is 5% by weight. .
本発明のスラリー組成物の粘度は特に限定されないが、25℃においてB型粘度計を用い測定した場合の粘度が80000以上であることが好ましく、2000000以下であることが好ましく、100000以上であることがより好ましく、600000以下であることがより好ましい。
上記範囲とすることで、ダイコート印刷法等により塗工した後、得られる無機粒子分散シートが所定の形状を維持することが可能となる。また、ダイの塗出痕が消えない等の不具合を防止して、印刷性に優れるものとできる。
The viscosity of the slurry composition of the present invention is not particularly limited, but it is preferably 80,000 or more, preferably 2,000,000 or less, and 100,000 or more when measured at 25°C using a B-type viscometer. is more preferable, and more preferably 600,000 or less.
By setting it as the said range, it becomes possible for the inorganic particle dispersion sheet obtained to maintain a predetermined shape after coating by a die coat printing method etc. In addition, problems such as inability to erase die coating marks can be prevented, resulting in excellent printability.
上記スラリー組成物を作製する方法は特に限定されず、従来公知の攪拌方法が挙げられ、具体的には、例えば、上記ビヒクル組成物、上記無機粒子、上記分散剤及び必要に応じて添加される追加の溶剤、可塑剤等の他の成分を3本ロール等で攪拌する方法等が挙げられる。上記スラリー組成物の構成成分の添加順序は適宜設定することができる。 The method for producing the slurry composition is not particularly limited, and examples thereof include conventionally known stirring methods. Specifically, for example, the above vehicle composition, the above inorganic particles, the above dispersant, and the above-mentioned dispersant are added as necessary. Examples include a method in which other components such as an additional solvent and a plasticizer are stirred using three rolls or the like. The order of addition of the constituent components of the slurry composition can be set as appropriate.
上記スラリー組成物を用いることで電子部品を作製することができる。
上記スラリー組成物を用いる電子部品の製造方法もまた本発明の1つである。
上記電子部品としては、ダイアタッチペースト(ACP)、ダイアタッチフィルム(ACF)、TSV、TGV用ビア電極、タッチパネル、RFIDやセンサー基板の各種回路、各種ダイボンディング剤、MEMSデバイスの封止剤、太陽電池、積層セラミクスコンデンサ、LTCC、シリコンコンデンサ、全固体電池等の電極材料等が挙げられる。また、上記電極回路用途以外に、抗菌部材や電磁波シールド、触媒、蛍光材料等にも用いることができる。
Electronic components can be manufactured using the above slurry composition.
A method of manufacturing an electronic component using the above slurry composition is also one aspect of the present invention.
The above electronic components include die attach paste (ACP), die attach film (ACF), via electrodes for TSV and TGV, touch panels, various circuits for RFID and sensor boards, various die bonding agents, sealants for MEMS devices, solar Examples include electrode materials for batteries, laminated ceramic capacitors, LTCCs, silicon capacitors, all-solid-state batteries, and the like. In addition to the above-mentioned electrode circuit applications, it can also be used for antibacterial materials, electromagnetic shields, catalysts, fluorescent materials, and the like.
例えば、上記スラリー組成物を、片面離型処理を施した支持フィルム上に塗工し、有機溶剤を乾燥させ、成形することで、無機粒子分散成形物を製造することができる。
上記無機粒子分散成形物の形状は特に限定されないが、例えば、シート等の形状とすることができる。
For example, an inorganic particle-dispersed molded product can be produced by coating the slurry composition on a support film that has been subjected to a mold release treatment on one side, drying the organic solvent, and molding the slurry composition.
Although the shape of the inorganic particle-dispersed molded product is not particularly limited, it can be, for example, in the shape of a sheet or the like.
上記無機粒子分散成形物の製造方法としては、例えば、上記スラリー組成物をロールコーター、ダイコーター、スクイズコーター、カーテンコーター等の塗工方式によって支持フィルム上に均一に塗膜を形成する方法等が挙げられる。 Examples of the method for manufacturing the inorganic particle dispersion molded product include a method in which the slurry composition is coated uniformly on a support film using a coating method such as a roll coater, die coater, squeeze coater, curtain coater, etc. Can be mentioned.
例えば、上記無機粒子分散成形物がシート状である場合、上記無機粒子分散成形物を製造する際に用いる支持フィルムは、耐熱性及び耐溶剤性を有するとともに可撓性を有する樹脂フィルムであることが好ましい。支持フィルムが可撓性を有することにより、ロールコーター、ブレードコーターなどによって支持フィルムの表面に無機粒子分散スラリー組成物を塗布することができ、得られる無機粒子分散シート形成フィルムをロール状に巻回した状態で保存し、供給することができる。 For example, when the inorganic particle dispersion molded product is in the form of a sheet, the support film used when manufacturing the inorganic particle dispersion molded product is a resin film that has heat resistance, solvent resistance, and flexibility. is preferred. Due to the flexibility of the support film, the inorganic particle-dispersed slurry composition can be applied to the surface of the support film using a roll coater, blade coater, etc., and the resulting inorganic particle-dispersed sheet-forming film is wound into a roll. It can be stored and supplied in this state.
上記支持フィルムを形成する樹脂としては、例えばポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリビニルアルコール、ポリ塩化ビニル、ポリフロロエチレン等の含フッ素樹脂、ナイロン、セルロース等が挙げられる。
上記支持フィルムの厚みは、例えば、20~100μmが好ましい。
また、支持フィルムの表面には離型処理が施されていることが好ましく、これにより、転写工程において、支持フィルムの剥離操作を容易に行うことができる。
Examples of the resin forming the support film include fluororesins such as polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, polyvinyl chloride, and polyfluoroethylene, nylon, and cellulose.
The thickness of the support film is preferably, for example, 20 to 100 μm.
Further, it is preferable that the surface of the support film is subjected to a release treatment, so that the peeling operation of the support film can be easily performed in the transfer process.
上記スラリー組成物を塗工乾燥することで無機粒子分散成形物を製造することができる。
また、上記スラリー組成物、無機粒子分散成形物を、外部電極用導電性ペーストに用いることで電子部品である積層セラミクスコンデンサを製造することができる。
An inorganic particle-dispersed molded product can be produced by applying and drying the slurry composition.
Further, by using the slurry composition and the inorganic particle dispersion molded product in a conductive paste for external electrodes, a multilayer ceramic capacitor, which is an electronic component, can be manufactured.
上記積層セラミクスコンデンサを製造する方法としては、上記無機粒子分散成形物に導電性ペーストを印刷、乾燥して、誘電体シートを作製する工程、及び、前記誘電体シートを積層する工程を有する製造方法が挙げられる。 The method for manufacturing the multilayer ceramic capacitor includes a step of printing and drying a conductive paste on the inorganic particle dispersed molded product to prepare a dielectric sheet, and a step of laminating the dielectric sheets. can be mentioned.
上記導電性ペーストは、導電粉末を含有するものである。
上記導電粉末の材質は、導電性を有する材質であれば特に限定されず、例えば、ニッケル、パラジウム、白金、金、銀、銅、モリブデン、錫及びこれらの合金等が挙げられる。これらの導電粉末は、単独で用いてもよく、2種以上を併用してもよい。
The conductive paste contains conductive powder.
The material of the conductive powder is not particularly limited as long as it is conductive, and examples thereof include nickel, palladium, platinum, gold, silver, copper, molybdenum, tin, and alloys thereof. These conductive powders may be used alone or in combination of two or more.
上記導電性ペーストを印刷する方法は特に限定されず、例えば、スクリーン印刷法、ダイコート印刷法、オフセット印刷法、グラビア印刷法、インクジェット印刷法等が挙げられる。 The method for printing the conductive paste is not particularly limited, and examples thereof include screen printing, die coat printing, offset printing, gravure printing, inkjet printing, and the like.
上記積層セラミクスコンデンサの製造方法では、上記導電性ペーストを印刷した誘電体シートを積層することで、生のセラミック積層体を作製し、その後、温度1000~1500℃の還元雰囲気下で焼成処理を施し、これにより多数の部品素体が得られる。 In the method for manufacturing a multilayer ceramic capacitor, a raw ceramic laminate is produced by laminating dielectric sheets printed with the conductive paste, and then a firing treatment is performed in a reducing atmosphere at a temperature of 1000 to 1500°C. , This allows a large number of component bodies to be obtained.
次に、これら各部品素体の両端面に上記(メタ)アクリル樹脂粒子を含む外部電極用導電性ペーストを浸漬法により塗布し、次いで、これを100~200℃で乾燥した後、還元雰囲気下、450~800℃で焼成処理を行い、部品素体の両端部に外部電極を形成する。 Next, a conductive paste for external electrodes containing the above-mentioned (meth)acrylic resin particles is applied to both end faces of each of these component bodies by dipping, and then, after drying at 100 to 200°C, under a reducing atmosphere. , 450 to 800° C. to form external electrodes at both ends of the component body.
次に、外部電極に電解めっきを施し、外部電極上にCu皮膜、Ni皮膜、及びSn皮膜を順次形成し、これにより積層セラミクスコンデンサが得られる。 Next, the external electrodes are subjected to electrolytic plating to sequentially form a Cu film, a Ni film, and a Sn film on the external electrodes, thereby obtaining a multilayer ceramic capacitor.
本発明によれば、低温分解性に優れ、無機粒子分散用のバインダーとして用いた場合に銅等の無機粒子の酸化による劣化を防止することができ、微細な無機粒子の分散性に特に優れた無機粒子分散スラリー組成物を作製可能な(メタ)アクリル樹脂粒子を提供することができる。また、特に積層セラミクスコンデンサの外部電極用のバインダーとして用いることで、信頼性に優れた積層セラミクスコンデンサを作製可能な(メタ)アクリル樹脂粒子を提供することができる。更に、ビヒクル組成物、スラリー組成物及び電子部品の製造方法を提供することができる。 According to the present invention, the present invention has excellent low-temperature decomposition properties, can prevent deterioration of inorganic particles such as copper due to oxidation when used as a binder for dispersing inorganic particles, and has particularly excellent dispersibility of fine inorganic particles. It is possible to provide (meth)acrylic resin particles from which an inorganic particle-dispersed slurry composition can be made. In addition, by using the present invention as a binder for the external electrodes of a multilayer ceramic capacitor, it is possible to provide (meth)acrylic resin particles that can produce a multilayer ceramic capacitor with excellent reliability. Furthermore, vehicle compositions, slurry compositions, and methods of manufacturing electronic components can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(実施例1~21、比較例1~4)
((メタ)アクリル樹脂粒子の作製)
攪拌機、冷却器、温度計、湯浴、及び、窒素ガス導入口を備えた2Lセパラブルフラスコを用意し、2Lセパラブルフラスコに、表1及び2に示す配合となるようにモノマー合計100重量部を投入した。更に、有機溶剤として酢酸ブチル50重量部とを混合し、モノマー混合液を得た。
なお、モノマーとしては、以下のものを用いた。
MMA:メチルメタクリレート
EMA:エチルメタクリレート
iBMA:イソブチルメタクリレート
2EHMA:2-エチルヘキシルメタクリレート
(Examples 1 to 21, Comparative Examples 1 to 4)
(Preparation of (meth)acrylic resin particles)
Prepare a 2L separable flask equipped with a stirrer, cooler, thermometer, hot water bath, and nitrogen gas inlet, and add a total of 100 parts by weight of monomers to the 2L separable flask as shown in Tables 1 and 2. was introduced. Furthermore, 50 parts by weight of butyl acetate as an organic solvent was mixed to obtain a monomer mixture.
In addition, the following monomers were used.
MMA: Methyl methacrylate EMA: Ethyl methacrylate iBMA: Isobutyl methacrylate 2EHMA: 2-ethylhexyl methacrylate
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら湯浴が80℃になるまで昇温した。その後、連鎖移動剤及び重合開始剤を表1及び2に示す添加量となるように加えて重合を開始した。
重合開始から7時間後、室温まで冷却し重合を終了させた。その後130℃のオーブンで得られた樹脂溶液を乾燥させ有機溶剤を取り除いた。これにより、(メタ)アクリル樹脂粒子を得た。
なお、連鎖移動剤及び重合開始剤としては、以下のものを用いた。
<連鎖移動剤>
CT-1:3-メルカプト-1,2-プロパンジオール
CT-2:メルカプトコハク酸
<重合開始剤>
KPS:過硫酸カリウム(富士フイルム和光純薬社製)
VA-086:2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](富士フイルム和光純薬社製)
After removing dissolved oxygen by bubbling the obtained monomer mixture with nitrogen gas for 20 minutes, the inside of the separable flask system was replaced with nitrogen gas, and the temperature was raised while stirring until the water bath reached 80°C. did. Thereafter, a chain transfer agent and a polymerization initiator were added in amounts shown in Tables 1 and 2 to initiate polymerization.
Seven hours after the start of polymerization, the mixture was cooled to room temperature to complete the polymerization. Thereafter, the resulting resin solution was dried in an oven at 130°C to remove the organic solvent. Thereby, (meth)acrylic resin particles were obtained.
The following were used as the chain transfer agent and polymerization initiator.
<Chain transfer agent>
CT-1: 3-mercapto-1,2-propanediol CT-2: Mercaptosuccinic acid <polymerization initiator>
KPS: Potassium persulfate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
VA-086: 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
(無機粒子分散用ビヒクル組成物の作製)
得られた(メタ)アクリル樹脂粒子15重量部に表3及び4に示す配合の溶剤85重量部を加え、均一になるまで攪拌し、無機粒子分散用ビヒクル組成物を得た。
なお、溶剤としては、以下のものを用いた。
DHTA:ジヒドロテルピネオールアセテート
BEPG:2-ブチルー2-エチル-1,3-プロパンジオール
(Preparation of vehicle composition for dispersing inorganic particles)
85 parts by weight of the solvent shown in Tables 3 and 4 were added to 15 parts by weight of the obtained (meth)acrylic resin particles, and the mixture was stirred until homogeneous to obtain a vehicle composition for dispersing inorganic particles.
The following solvents were used.
DHTA: dihydroterpineol acetate BEPG: 2-butyl-2-ethyl-1,3-propanediol
(無機粒子分散スラリー組成物の作製)
得られた無機粒子分散用ビヒクル組成物に対して、表3及び4に示す配合となるように分散剤、無機粒子を加え、高速撹拌機で混錬して、無機粒子分散スラリー組成物を得た。
なお、分散剤、無機粒子としては、以下のものを用いた。
<分散剤>
ノプコスパース092(三洋化成工業社製)
<無機粒子>
銅粉末(藤野金属社製、平均粒子径0.1μm)
ガラスフリット(AGC社製、品名ASF-1094、主成分Bi3・3・SiO、平均粒子径0.8μm)
(Preparation of inorganic particle dispersed slurry composition)
To the obtained vehicle composition for dispersing inorganic particles, a dispersant and inorganic particles were added so as to have the formulations shown in Tables 3 and 4, and the mixture was kneaded with a high-speed stirrer to obtain an inorganic particle dispersion slurry composition. Ta.
Note that the following were used as the dispersant and inorganic particles.
<Dispersant>
Nopcosperse 092 (manufactured by Sanyo Chemical Industries, Ltd.)
<Inorganic particles>
Copper powder (manufactured by Fujino Metal Co., Ltd., average particle size 0.1 μm)
Glass frit (manufactured by AGC, product name ASF-1094, main component Bi 2 O 3 ・B 2 O 3 ・SiO 2 , average particle size 0.8 μm)
(積層セラミクスコンデンサの作製)
まず、内層用及び外層用セラミック層の主成分は、誘電体材料として、Ba、Tiを含むペロブスカイト型酸化物を使用した。上記セラミックス誘電体粉末を80重量部、アクリルバインダ8重量部、有機溶剤10重量部、可塑剤1重量部、分散剤1重量部とを混合し、セラミックスラリーを調製した。それから、このセラミックスラリーを樹脂フィルム上に、乾燥後の厚みが3.0μmになるように形成して、内層用もしくは外層用セラミックグリーンシートを作製した。なお、アクリルバインダとしてはマープルーフ MH-03041(日油社製)、有機溶剤としては酢酸ブチル、可塑剤としてはG-260(積水化学工業社製)、分散剤としてはノプコスパース092(三洋化成工業社製)を用いた。
(Production of multilayer ceramic capacitor)
First, as the main component of the inner and outer ceramic layers, a perovskite oxide containing Ba and Ti was used as a dielectric material. A ceramic slurry was prepared by mixing 80 parts by weight of the ceramic dielectric powder, 8 parts by weight of an acrylic binder, 10 parts by weight of an organic solvent, 1 part by weight of a plasticizer, and 1 part by weight of a dispersant. Then, this ceramic slurry was formed on a resin film so that the thickness after drying would be 3.0 μm to produce a ceramic green sheet for inner layer or outer layer. The acrylic binder is Marproof MH-03041 (manufactured by NOF Corporation), the organic solvent is butyl acetate, the plasticizer is G-260 (Sekisui Chemical Co., Ltd.), and the dispersant is Nopcosperse 092 (Sanyo Chemical Co., Ltd.). (manufactured by Seiko Co., Ltd.) was used.
次に、この内層用セラミックグリーンシートに、焼成後のセラミック素子の大きさ(3.2mm×1.6mm)に対応するようなパターンで、導電性ペーストを乾燥後の厚みが1±0.1μmになるようにスクリーン印刷した。
なお、導電性ペーストとしては、Ni粉末を50重量部と、共材としてBa、Tiを含むペロブスカイト型酸化物を5重量部と、上記無機粒子分散用ビヒクル組成物を44重量部と、ポリカルボン酸系分散剤1重量部を配合してなる導電性ペーストを作製した。バインダ樹脂の配合比率は、6.6重量部/Ni50重量部となるように調合し、ボールミルで導電性ペーストを得た。
Ni粉末の平均粒子径は、0.2μmのものを用いた。また、Ba、Tiを含むペロブスカイト型酸化物の平均粒子径は、30nmのものを用いた。
Next, conductive paste was applied to this ceramic green sheet for inner layer in a pattern corresponding to the size of the ceramic element after firing (3.2 mm x 1.6 mm) so that the thickness after drying was 1 ± 0.1 μm. I screen printed it to look like this.
The conductive paste contains 50 parts by weight of Ni powder, 5 parts by weight of a perovskite oxide containing Ba and Ti as co-materials, 44 parts by weight of the above vehicle composition for dispersing inorganic particles, and polycarbonate. A conductive paste containing 1 part by weight of an acidic dispersant was prepared. The blending ratio of the binder resin was 6.6 parts by weight/50 parts by weight of Ni, and a conductive paste was obtained using a ball mill.
The average particle diameter of the Ni powder used was 0.2 μm. Further, the average particle diameter of the perovskite oxide containing Ba and Ti was 30 nm.
それから、導電性ペーストをスクリーン印刷した内層用セラミックグリーンシート及び外層用セラミックグリーンシートを樹脂フィルムから剥離後、あわせて350枚重ねて、圧着することにより積層体を形成し、この積層体を所定の大きさにカットして個々の未焼成のセラミック本体に分割した。
個々のセラミック本体を、窒素雰囲気中、400℃、10時間の条件で脱脂処理した後、窒素-水素-水蒸気混合雰囲気下で、トップ温度1200℃、酸素分圧10-9~10-10MPaの条件で焼成した。
次に、得られた焼成後のセラミック本体に、各実施例及び比較例で得られた無機粒子分散スラリー組成物を、乾燥後の側面厚みで50μmになるようにディップ法により塗布し、乾燥させた。その後、窒素-Air-水蒸気混合雰囲気もしくは窒素-水素-水蒸気混合雰囲気中、トップ温度790~880℃で、トップ温度時の酸素起電力が220~280mVの条件で、電極層を形成した。
その後、電極層の表面にNiを含む第1のめっき層、第1のめっき層の表面にSnを含む第2のめっき層を形成することにより、3層構造に構成された外部電極を形成し積層セラミクスコンデンサを作製した。
Then, after peeling off the inner layer ceramic green sheets and the outer layer ceramic green sheets screen-printed with conductive paste from the resin film, a total of 350 sheets were stacked and pressed together to form a laminate. It was cut to size and divided into individual green ceramic bodies.
After degreasing each ceramic body in a nitrogen atmosphere at 400°C for 10 hours, it was degreased in a nitrogen-hydrogen-steam mixed atmosphere at a top temperature of 1200°C and an oxygen partial pressure of 10 -9 to 10 -10 MPa. Fired under the following conditions.
Next, the inorganic particle dispersed slurry composition obtained in each example and comparative example was applied to the obtained fired ceramic body by a dipping method so that the side surface thickness after drying was 50 μm, and then dried. Ta. Thereafter, an electrode layer was formed in a nitrogen-air-steam mixed atmosphere or a nitrogen-hydrogen-steam mixed atmosphere at a top temperature of 790 to 880° C. and an oxygen electromotive force of 220 to 280 mV at the top temperature.
After that, a first plating layer containing Ni is formed on the surface of the electrode layer, and a second plating layer containing Sn is formed on the surface of the first plating layer, thereby forming an external electrode having a three-layer structure. A multilayer ceramic capacitor was fabricated.
(比較例5、6)
(メタ)アクリル樹脂粒子に代えて、ポリビニルブチラール樹脂(積水化学工業社製、BH-3)、エチルセルロース樹脂(日新化成社製、STD-100)を用いた以外は実施例1と同様にして無機粒子分散用ビヒクル組成物、無機粒子分散スラリー組成物、積層セラミクスコンデンサを得た。
(Comparative Examples 5 and 6)
The procedure was the same as in Example 1 except that polyvinyl butyral resin (manufactured by Sekisui Chemical Co., Ltd., BH-3) and ethyl cellulose resin (manufactured by Nisshin Kasei Co., Ltd., STD-100) were used instead of the (meth)acrylic resin particles. A vehicle composition for dispersing inorganic particles, a slurry composition for dispersing inorganic particles, and a laminated ceramic capacitor were obtained.
<評価>
実施例及び比較例で得られた(メタ)アクリル樹脂粒子、無機粒子分散スラリー組成物について以下の評価を行った。結果を表1~4に示した。
<Evaluation>
The following evaluations were performed on the (meth)acrylic resin particles and inorganic particle dispersed slurry compositions obtained in Examples and Comparative Examples. The results are shown in Tables 1 to 4.
(1)S原子の重量濃度、OH基の重量濃度、COOH基の重量濃度、K原子の重量濃度
以下の方法により、(メタ)アクリル樹脂粒子中に含まれるS原子の重量濃度、OH基の重量濃度、COOH基の重量濃度、K原子の重量濃度を算出した。
 (メタ)アクリル樹脂粒子中に含まれるS原子の重量濃度=[(全モノマー中に含まれるS原子の重量+全連鎖移動剤中に含まれるS原子の重量+全重合開始剤中に含まれるS原子の重量)/(全モノマーの重量+全連鎖移動剤の重量+全重合開始剤の重量)]×100
 (メタ)アクリル樹脂粒子中に含まれるOH基の重量濃度=[(全モノマー中に含まれるOH基の重量+全連鎖移動剤中に含まれるOH基の重量+全重合開始剤中に含まれるOH基の重量)/(全モノマーの重量+全連鎖移動剤の重量+全重合開始剤の重量)]×100
 (メタ)アクリル樹脂粒子中に含まれるCOOH基の重量濃度=[(全モノマー中に含まれるCOOH基の重量+全連鎖移動剤中に含まれるCOOH基の重量+全重合開始剤中に含まれるCOOH基の重量)/(全モノマーの重量+全連鎖移動剤の重量+全重合開始剤の重量)]×100
 (メタ)アクリル樹脂粒子中に含まれるK原子の重量濃度=[(全モノマー中に含まれるK原子の重量+全連鎖移動剤中に含まれるK原子の重量+全重合開始剤中に含まれるK原子の重量)/(全モノマーの重量+全連鎖移動剤の重量+全重合開始剤の重量)]×100
(1) The weight concentration of S atoms, the weight concentration of OH groups, the weight concentration of COOH groups, and the weight concentration of K atoms contained in (meth)acrylic resin particles are determined by the following methods. The weight concentration, the weight concentration of COOH groups, and the weight concentration of K atoms were calculated.
Weight concentration of S atoms contained in (meth)acrylic resin particles = [(Weight of S atoms contained in all monomers + Weight of S atoms contained in all chain transfer agents + Weight of S atoms contained in all polymerization initiators) weight of S atoms)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)]×100
Weight concentration of OH groups contained in (meth)acrylic resin particles = [(Weight of OH groups contained in all monomers + Weight of OH groups contained in all chain transfer agents + Weight of OH groups contained in all polymerization initiators) OH group weight)/(total monomer weight + total chain transfer agent weight + total polymerization initiator weight)] x 100
Weight concentration of COOH groups contained in (meth)acrylic resin particles = [(Weight of COOH groups contained in all monomers + Weight of COOH groups contained in all chain transfer agents + Weight of COOH groups contained in all polymerization initiators) weight of COOH group)/(weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)]×100
Weight concentration of K atoms contained in (meth)acrylic resin particles = [(Weight of K atoms contained in all monomers + Weight of K atoms contained in all chain transfer agents + Weight of K atoms contained in all polymerization initiators) Weight of K atoms) / (weight of total monomers + weight of total chain transfer agents + weight of total polymerization initiators)] x 100
(2)粒子径
得られた無機粒子分散用ビヒクル組成物を、レーザー回折/散乱式粒子径分布測定装置(堀場製作所社製、LA-950)に供給して(メタ)アクリル樹脂粒子の体積平均粒子径を測定した。
(2) Particle size The obtained vehicle composition for dispersing inorganic particles is supplied to a laser diffraction/scattering particle size distribution analyzer (manufactured by Horiba, Ltd., LA-950) to obtain a volume average of (meth)acrylic resin particles. The particle size was measured.
(3)平均分子量
得られた(メタ)アクリル樹脂粒子について、カラムとしてLF-804(SHOKO社製)を用い、ゲルパーミエーションクロマトグラフィーにより、ポリスチレン換算による重量平均分子量(Mw)及び数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を算出した。
(3) Average molecular weight The obtained (meth)acrylic resin particles were analyzed by gel permeation chromatography using LF-804 (manufactured by SHOKO) as a column to determine the weight average molecular weight (Mw) and number average molecular weight (Mw) in terms of polystyrene. Mn) was measured, and the molecular weight distribution (Mw/Mn) was calculated.
(4)粘度
得られた無機粒子分散スラリー組成物について、B型粘度計(BROOK FIELD社製、DVII+Pro)を用いて25℃における粘度を測定した。
(4) Viscosity The viscosity of the obtained inorganic particle-dispersed slurry composition at 25° C. was measured using a B-type viscometer (DVII+Pro, manufactured by BROOK FIELD).
(5)貯蔵安定性
得られた無機粒子分散スラリー組成物を温度23℃、湿度50%の環境下で保管した。1ヶ月後にスラリー組成物の状態を確認し、下記の基準により評価した。貯蔵安定性が高いと、無機粒子の分散性に優れているといえる。
〇:スラリー組成物の分離、無機粒子の沈降が確認されず、なめらかな状態のままであった。
△:無機粒子の沈降は確認されなかったがスラリー組成物の分離が確認された。
×:無機粒子が沈降していた、又は、スラリー組成物がゲル化していた。
(5) Storage Stability The obtained inorganic particle dispersed slurry composition was stored in an environment at a temperature of 23° C. and a humidity of 50%. One month later, the state of the slurry composition was checked and evaluated according to the following criteria. If the storage stability is high, it can be said that the dispersibility of the inorganic particles is excellent.
○: No separation of the slurry composition or sedimentation of inorganic particles was observed, and the slurry remained in a smooth state.
Δ: Sedimentation of inorganic particles was not observed, but separation of the slurry composition was observed.
x: The inorganic particles were sedimented or the slurry composition was gelled.
(6)粘度安定性
得られた無機粒子分散スラリー組成物の20℃における粘度を「(4)粘度」と同様の測定した初期粘度とした。また、測定後のスラリー組成物を20℃の恒温室に1ヶ月間保管し、保管後の粘度を同様にして測定した。初期粘度に対する保管後の粘度変化率([(保管後の粘度-初期粘度)/初期粘度]×100)を求め、以下の基準により評価した。何度安定性が高いと、無機粒子の分散性に優れているといえる。
◎:粘度変化率が5%未満であった。
〇:粘度変化率が5%以上10%未満であった。
△:粘度変化率が10%以上20%未満であった。
×:粘度変化率が20%以上であった。
(6) Viscosity Stability The viscosity at 20°C of the obtained inorganic particle dispersed slurry composition was taken as the initial viscosity measured in the same manner as in "(4) Viscosity". Further, the slurry composition after measurement was stored in a constant temperature room at 20° C. for one month, and the viscosity after storage was measured in the same manner. The rate of change in viscosity after storage relative to the initial viscosity ([(viscosity after storage - initial viscosity)/initial viscosity] x 100) was determined and evaluated according to the following criteria. If the stability is high, it can be said that the dispersibility of the inorganic particles is excellent.
◎: The viscosity change rate was less than 5%.
Good: The viscosity change rate was 5% or more and less than 10%.
Δ: The viscosity change rate was 10% or more and less than 20%.
×: The viscosity change rate was 20% or more.
(7)印刷性
スクリーン印刷機(マイクロテック社製、MT-320TV)とスクリーン版(東京プロセスサービス社製、ST500、乳剤2μm、2012パターン、スクリーン枠320mm×320mm)、印刷ガラス基板(ソーダガラス、150mm×150mm、厚み1.5mm)を用いて、温度23℃、湿度50%の環境下にて無機粒子分散スラリー組成物の印刷を行い、100℃30分の条件下で送風オーブンにて溶剤乾燥を行った。印刷パターンを目視又は拡大顕微鏡で観察し、印刷面の端の形状を確認し、以下の基準により評価した。
◎:印刷パターン通り印刷されており、印刷端部が糸状に乱れた部分が確認されなかった。
〇:印刷パターン通り印刷されており、印刷端部が糸状に乱れた部分が1か所確認された。
△:印刷パターン通り印刷されており、印刷端部が糸状に乱れた部分が2~4所確認された。
×:印刷パターン通り印刷されていない、又は、印刷端部が糸状に乱れた部分が5ヶ所以上確認された。
(7) Printability Screen printing machine (manufactured by Microtech, MT-320TV), screen plate (manufactured by Tokyo Process Service, ST500, emulsion 2μm, 2012 pattern, screen frame 320mm x 320mm), printing glass substrate (soda glass, 150 mm x 150 mm, thickness 1.5 mm), the inorganic particle dispersed slurry composition was printed in an environment of temperature 23 °C and humidity 50%, and the solvent was dried in a blower oven at 100 °C for 30 minutes. I did it. The printed pattern was observed visually or with a magnifying microscope to confirm the shape of the edge of the printed surface, and evaluated based on the following criteria.
◎: Printing was performed according to the printing pattern, and no thread-like disordered portions were observed at the printed edges.
○: Printing was performed according to the printing pattern, and one part where the printing edge was disordered like threads was observed.
△: Printing was performed according to the printing pattern, and 2 to 4 areas where the printed edges were disordered like strings were observed.
×: Printing was not performed according to the printing pattern, or 5 or more portions were observed where the printed edges were disordered like strings.
(8)分解性
得られた無機粒子分散スラリー組成物をTG-DTAのプラチナパンに詰め、30℃から5℃/minにて窒素雰囲気下で昇温し、溶媒を蒸発、樹脂、分散剤を熱分解させた。その後、61.9重量%を示した(90重量%脱脂が終了した)時間(分)を測定した。
(8) Degradability The obtained inorganic particle dispersed slurry composition was packed into a platinum pan of TG-DTA, and the temperature was raised from 30°C to 5°C/min in a nitrogen atmosphere to evaporate the solvent and remove the resin and dispersant. Pyrolyzed. Thereafter, the time (minutes) at which 61.9% by weight was reached (90% by weight degreasing was completed) was measured.
(9)酸化状態
得られた無機粒子分散スラリー組成物をTG-DTAのプラチナパンに詰め、30℃から5℃/minにて窒素雰囲気下で昇温し、溶媒を蒸発、樹脂、分散剤を熱分解させた。その後、61.9重量%を示した(90重量%脱脂が終了した)時間(分)を測定した。
また、測定後に残ったプラチナパンの内容物の色を目視により下記の基準で評価した。
〇:内容物の色が無機粒子分散スラリー組成物の作製に用いた銅の色と変化していない。
×:内容物の色が無機粒子分散スラリー組成物の作製に用いた銅の色から変化していた。
(9) Oxidation state The obtained inorganic particle dispersion slurry composition was packed into a platinum pan of TG-DTA, and the temperature was raised from 30°C to 5°C/min in a nitrogen atmosphere to evaporate the solvent and remove the resin and dispersant. Pyrolyzed. Thereafter, the time (minutes) at which 61.9% by weight was reached (90% by weight degreasing was completed) was measured.
In addition, the color of the contents of the platinum pan remaining after the measurement was visually evaluated according to the following criteria.
○: The color of the contents did not change from the color of the copper used to prepare the inorganic particle dispersed slurry composition.
×: The color of the contents had changed from the color of the copper used to prepare the inorganic particle dispersed slurry composition.
(10)耐電圧不良率
耐電圧不良率は、得られた積層セラミクスコンデンサの10000個に対して、150Vの直流電圧を印加したときの短絡不良の有無を測定し、下記式により算出した。
耐電圧不良率=短絡した試料数/10000
(10) Withstand voltage defect rate The withstand voltage defect rate was calculated by the following formula by measuring the presence or absence of short circuit defects when a DC voltage of 150 V was applied to 10,000 of the obtained multilayer ceramic capacitors.
Withstand voltage failure rate = number of shorted samples / 10000
(11)静電容量低下品の発生率
静電容量低下品の発生率は、得られた積層セラミクスコンデンサの10000個に対して、静電容量を測定し、設計容量の90%に満たない試料を容量低下品と判断し、その発生率を算出した。
(11) Incidence of products with reduced capacitance The incidence of products with reduced capacitance is determined by measuring the capacitance of 10,000 obtained multilayer ceramic capacitors, and measuring the capacitance of samples with less than 90% of the design capacity. were determined to be products with reduced capacity, and the occurrence rate was calculated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
本発明によれば、低温分解性に優れ、無機粒子分散用のバインダーとして用いた場合に銅等の無機粒子の酸化による劣化を防止することができ、微細な無機粒子の分散性に特に優れた無機粒子分散スラリー組成物を作製可能な(メタ)アクリル樹脂粒子を提供することができる。また、特に積層セラミクスコンデンサの外部電極用のバインダーとして用いることで、信頼性に優れた積層セラミクスコンデンサを作製可能な(メタ)アクリル樹脂粒子を提供することができる。更に、ビヒクル組成物、スラリー組成物及び電子部品の製造方法を提供することができる。 According to the present invention, the present invention has excellent low-temperature decomposition properties, can prevent deterioration of inorganic particles such as copper due to oxidation when used as a binder for dispersing inorganic particles, and has particularly excellent dispersibility of fine inorganic particles. It is possible to provide (meth)acrylic resin particles from which an inorganic particle-dispersed slurry composition can be made. Furthermore, by using the present invention as a binder for the external electrode of a multilayer ceramic capacitor, it is possible to provide (meth)acrylic resin particles that can produce a multilayer ceramic capacitor with excellent reliability. Furthermore, vehicle compositions, slurry compositions, and methods of manufacturing electronic components can be provided.

Claims (10)

  1. 重量平均分子量が10万以上100万以下であり、
    S原子の重量濃度が0.03重量%以上2.50重量%以下である、(メタ)アクリル樹脂粒子。
    The weight average molecular weight is 100,000 or more and 1,000,000 or less,
    (Meth)acrylic resin particles having a weight concentration of S atoms of 0.03% by weight or more and 2.50% by weight or less.
  2. COOH基の重量濃度が0.06重量%以上3.00重量%以下である、請求項1に記載の(メタ)アクリル樹脂粒子。 The (meth)acrylic resin particles according to claim 1, wherein the weight concentration of COOH groups is 0.06% by weight or more and 3.00% by weight or less.
  3. K原子の重量濃度が0.010重量%以上1.000重量%以下である、請求項1又は2に記載の(メタ)アクリル樹脂粒子。 The (meth)acrylic resin particles according to claim 1 or 2, wherein the weight concentration of K atoms is 0.010% by weight or more and 1.000% by weight or less.
  4. アクリルモノマーに由来する成分の含有量が5重量%以下である、請求項1~3のいずれかに記載の(メタ)アクリル樹脂粒子。 The (meth)acrylic resin particles according to any one of claims 1 to 3, wherein the content of components derived from acrylic monomers is 5% by weight or less.
  5. 平均粒子径が0.1μm以上1.0μm以下である、請求項1~4のいずれかに記載の(メタ)アクリル樹脂粒子。 The (meth)acrylic resin particles according to any one of claims 1 to 4, having an average particle diameter of 0.1 μm or more and 1.0 μm or less.
  6. 請求項1~5のいずれかに記載の(メタ)アクリル樹脂粒子と有機溶剤を含む溶剤とを含有する、ビヒクル組成物。 A vehicle composition comprising the (meth)acrylic resin particles according to any one of claims 1 to 5 and a solvent containing an organic solvent.
  7. 溶剤は更に水を100重量ppm以上40000重量ppm以下含有する、請求項6に記載のビヒクル組成物。 7. The vehicle composition according to claim 6, wherein the solvent further contains 100 to 40,000 ppm by weight of water.
  8. 有機溶剤がOH基を2つ以上有する化合物を含み、
    溶剤における前記OH基を2つ以上有する化合物の含有量が10重量%以上50重量%以下である、請求項6又は7に記載のビヒクル組成物。
    The organic solvent contains a compound having two or more OH groups,
    The vehicle composition according to claim 6 or 7, wherein the content of the compound having two or more OH groups in the solvent is 10% by weight or more and 50% by weight or less.
  9. 請求項6~8のいずれかに記載のビヒクル組成物と無機粒子と分散剤とを含有する、スラリー組成物。 A slurry composition comprising the vehicle composition according to any one of claims 6 to 8, inorganic particles, and a dispersant.
  10. 請求項9に記載のスラリー組成物を用いる、電子部品の製造方法。 A method for manufacturing an electronic component using the slurry composition according to claim 9.
PCT/JP2023/029724 2022-08-30 2023-08-17 (meth)acrylic resin particles, vehicle composition, slurry composition, and method for manufacturing electronic components WO2024048303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-136855 2022-08-30
JP2022136855 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024048303A1 true WO2024048303A1 (en) 2024-03-07

Family

ID=90099426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029724 WO2024048303A1 (en) 2022-08-30 2023-08-17 (meth)acrylic resin particles, vehicle composition, slurry composition, and method for manufacturing electronic components

Country Status (1)

Country Link
WO (1) WO2024048303A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106980A1 (en) * 2009-03-17 2010-09-23 積水化学工業株式会社 Inorganic microparticle-dispersed paste composition
JP2012012564A (en) * 2009-12-25 2012-01-19 Asahi Kasei Chemicals Corp Methacrylic resin for melt molding, methacrylic resin composition for melt molding, manufacturing methods for the same, and molded article
WO2021125033A1 (en) * 2019-12-17 2021-06-24 積水化学工業株式会社 Resin composition for sintering, inorganic fine particle dispersed slurry composition, and inorganic fine particle dispersed sheet
WO2022270460A1 (en) * 2021-06-21 2022-12-29 積水化学工業株式会社 (meth)acrylic resin composition, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed molded product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106980A1 (en) * 2009-03-17 2010-09-23 積水化学工業株式会社 Inorganic microparticle-dispersed paste composition
JP2012012564A (en) * 2009-12-25 2012-01-19 Asahi Kasei Chemicals Corp Methacrylic resin for melt molding, methacrylic resin composition for melt molding, manufacturing methods for the same, and molded article
WO2021125033A1 (en) * 2019-12-17 2021-06-24 積水化学工業株式会社 Resin composition for sintering, inorganic fine particle dispersed slurry composition, and inorganic fine particle dispersed sheet
WO2022270460A1 (en) * 2021-06-21 2022-12-29 積水化学工業株式会社 (meth)acrylic resin composition, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed molded product

Similar Documents

Publication Publication Date Title
KR102229238B1 (en) Resin composition, inorganic fine particle dispersion slurry composition, inorganic fine particle dispersion sheet, manufacturing method of all-solid-state battery, and manufacturing method of multilayer ceramic capacitor
US7651764B2 (en) Release layer paste and method of production of a multilayer type electronic device
JP6438538B2 (en) Inorganic fine particle-dispersed paste composition, inorganic fine particle-dispersed sheet, and method for producing inorganic fine-particle dispersed sheet
WO2019220667A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
CN105967680B (en) Dielectric ceramic compositions and ceramic electronic components
JP2010257937A (en) Conductive paste, method of manufacturing the same, and method of manufacturing electronic parts
JP2022048283A (en) Resin composition for sintering, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed sheet
JP6618969B2 (en) Conductive paste
JP7444716B2 (en) Slurry composition and method for producing ceramic sintered body
CN116829643A (en) (meth) acrylic resin composition, inorganic fine particle dispersion slurry composition, and inorganic fine particle dispersion molded article
WO2024048303A1 (en) (meth)acrylic resin particles, vehicle composition, slurry composition, and method for manufacturing electronic components
JP7506644B2 (en) Inorganic fine particle dispersion slurry composition and method for producing inorganic fine particle dispersion sheet using the same
TW202419487A (en) (Meth)acrylic resin particles, vehicle composition, slurry composition and method for producing electronic parts
JP7494554B2 (en) Conductive paste, electronic components, and multilayer ceramic capacitors
CN118076696A (en) Carrier composition for inorganic fine particle dispersion, method for producing carrier composition for inorganic fine particle dispersion, inorganic fine particle dispersion slurry composition, and method for producing electronic component
JP7246420B2 (en) (Meth)acrylic resin composition, vehicle composition for dispersing inorganic fine particles, slurry composition for dispersing inorganic fine particles, and inorganic fine particle-dispersed sheet
WO2023190614A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
JP2021042370A (en) Slurry composition for dispersing inorganic fine particle, inorganic fine particle dispersion sheet, and manufacturing method of inorganic fine particle dispersion sheet
JP2024027682A (en) Slurry composition, electronic component and manufacturing method of electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860066

Country of ref document: EP

Kind code of ref document: A1