WO2024048181A1 - Machine tool and management system - Google Patents

Machine tool and management system Download PDF

Info

Publication number
WO2024048181A1
WO2024048181A1 PCT/JP2023/028221 JP2023028221W WO2024048181A1 WO 2024048181 A1 WO2024048181 A1 WO 2024048181A1 JP 2023028221 W JP2023028221 W JP 2023028221W WO 2024048181 A1 WO2024048181 A1 WO 2024048181A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
unit
workpiece
tool
cutting
Prior art date
Application number
PCT/JP2023/028221
Other languages
French (fr)
Japanese (ja)
Inventor
則夫 賀来
Original Assignee
スター精密株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スター精密株式会社 filed Critical スター精密株式会社
Publication of WO2024048181A1 publication Critical patent/WO2024048181A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools

Definitions

  • the present invention relates to a machine tool that cuts a workpiece with a tool, and a management system that includes the machine tool.
  • NC machine tools such as NC (numerical control) lathes form products such as cut parts by cutting a workpiece with a tool according to a machining program.
  • stickers printed with identification codes such as bar codes are affixed to the products, or stamps are stamped on the products.
  • the information acquisition and identification system disclosed in Patent Document 1 photographs an n-dimensional symbol attached to a part or product and a satin pattern formed thereon, acquires information regarding the part or product, and identifies the part, product, or , identify products whose components are parts.
  • a part or product is attached with an n-dimensional symbol indicating information regarding the part, the product, or a product having the component as a component, and a satin pattern is formed at a location determined by the n-dimensional symbol.
  • the information acquisition and identification system is provided with an image feature storage means for acquiring and storing image features of a satin pattern formed on a part or product.
  • the information acquisition and identification system acquires information about parts or products from an image of an n-dimensional symbol extracted from a photographed image, and compares the image characteristics of the satin pattern image extracted from the photographed image with the stored image characteristics. and identify parts, products, or products that have parts as components.
  • the present invention discloses a machine tool and a management system that can improve the convenience of managing products formed from workpieces.
  • the machine tool of the present invention is a drive unit that changes the relative positional relationship between the workpiece and the tool; a reception unit that receives input of information for the detection device to detect;
  • the drive unit includes a control unit that changes the relative positional relationship so that cutting marks including embedded information that can be detected by the detection device are formed on the workpiece during machining with the tool. , has aspects.
  • the management system of the present invention is a management system including a machine tool and an information detection device
  • the machine tool is a drive unit that changes the relative positional relationship between the workpiece and the tool; a reception unit that receives input of the information;
  • the drive unit includes a control unit that changes the relative positional relationship so that cutting marks including embedded information that can be detected by the detection device are formed on the workpiece during machining with the tool.
  • the detection device has an aspect of detecting the information from the embedded information formed on the workpiece.
  • FIG. 1 is a diagram schematically showing a configuration example of a management system including a machine tool and a detection device.
  • FIG. 2 is a block diagram schematically showing a configuration example of an electric circuit of a machine tool.
  • FIG. 3 is a diagram schematically showing an example of cutting marks formed on the surface of a workpiece due to movement of the cutting edge of an end mill.
  • FIG. 3 is a diagram schematically showing an example of embedded information included in cutting marks.
  • FIG. 3 is a diagram schematically showing an example of forming embedded information in the form of a barcode.
  • FIG. 6 is a diagram schematically showing an example in which four-valued unit information is formed with the same length.
  • FIG. 7 is a diagram schematically showing an example in which four-valued unit information is formed using the same number of rotations.
  • FIG. 3 is a flowchart schematically showing an example of a cutting control process that receives input of a cutting command and executes the cutting command.
  • FIG. 2 is a diagram schematically showing a configuration example and a processing example of a detection device.
  • FIG. 3 is a diagram schematically showing an example of cutting marks formed on the side surface of a rotating workpiece by the movement of a cutting tool.
  • FIG. 3 is a diagram schematically showing an example of cutting marks formed on the end surface of a rotating workpiece by the movement of a cutting tool.
  • FIG. 3 is a diagram schematically showing an example of cutting marks formed on the surface of a workpiece by the movement of the cutting edge of an end mill in which the positions of intersections of circular arcs are used as embedded information.
  • FIG. 3 is a diagram schematically showing an example in which cutting marks are formed by matching the positions of intersections between circular arcs with input information.
  • 12 is a flowchart schematically showing an example of a cutting control process in which input of a cutting command is received and the cutting command is executed when the position of the intersection between circular arcs is embedded information.
  • FIG. 2 is a diagram schematically showing a configuration example and a processing example of a detection device in a case where the positions of intersections between circular arcs are embedded information.
  • FIG. 3 is a diagram schematically showing an example of embedded information included in cutting marks formed on the surface of a workpiece due to minute changes in machining depth.
  • FIG. 12 is a flowchart schematically showing an example of a cutting control process in which input of a cutting command is received and the cutting command is executed when the processing depth is embedded information.
  • FIG. 3 is a diagram schematically showing a configuration example and a processing example of a detection device in a case where the machining depth is used as embedded information.
  • a machine tool 1 As illustrated in FIGS. 1 and 2, a machine tool 1 according to one aspect of the present technology includes a drive section U1, a reception section U2, and a control section U3.
  • the drive unit U1 changes the relative positional relationship between the workpiece W1 and the tool TO1.
  • the reception unit U2 receives input of information IN1 to be detected by the detection device 200.
  • the control unit U3 causes the drive unit U1 to control the relative position so that cutting marks C1 including embedded information IN2 that can detect the information IN1 with the detection device 200 are formed on the workpiece W1 during machining by the tool TO1. change the positional relationship.
  • the drive unit that changes the relative positional relationship between the work and the tool may move the tool without moving the work, may move the work without moving the tool, or may move the work without moving the tool. Both the tool and the workpiece may be moved.
  • the control unit can form cutting marks including embedded information on the workpiece during machining with a tool by various means.
  • a surface roughness meter, an image processing device, a laser displacement meter, an eddy current displacement meter, a three-dimensional measuring machine, etc. can be used as the detection device.
  • the information that is accepted for input is related to manufacturing, such as manufacturing date, manufacturer, manufacturing lot, etc.
  • information related to manufacturing when the product was manufactured can be obtained from the detection device.
  • the information to be input is related to a product such as a part number, unit number, company name, etc.
  • the information related to the product can be obtained from the detection device. By using the obtained information, inventory management and the like can be performed.
  • the information linked to the information related to handling of the product can be obtained from the detection device.
  • the information related to the handling of the product linked to the obtained information the product can be used or maintained.
  • the drive unit U1 moves the rotation object R0, which is one of the workpiece W1 and the tool TO1, to the center line AX0 of the rotation object R0 (for example, between the spindle center line AX1 and the tool center line AX2).
  • the drive unit U1 may include a control axis drive unit U12 that changes the relative positional relationship along a control axis (for example, one of the X axis, Y axis, and Z axis).
  • a control axis drive unit U12 that changes the relative positional relationship along a control axis (for example, one of the X axis, Y axis, and Z axis).
  • the control unit U3 controls the rotational drive unit U11 so that the cutting marks C1 including the embedded information IN2 are formed on the workpiece W1 during machining by the tool TO1.
  • the rotation target R0 may be rotated to cause the control shaft drive unit U12 to change the relative positional relationship.
  • one of the workpiece W1 and the tool TO1 rotates around the center line AX0, and the relative positional relationship between the workpiece W1 and the tool TO1 changes along the control axis.
  • a cutting mark C1 including embedded information IN2 is formed on the workpiece W1. Therefore, the above aspect can provide a suitable example of forming cutting marks including embedded information.
  • a machine tool when a machine tool includes a main spindle with a motor, such as a lathe, the main spindle with a motor that rotates a workpiece (rotation object) about the centerline of the main spindle serves as a rotation drive unit and rotates the workpiece.
  • Machine tools can easily form cutting marks containing embedded information on a workpiece by controlling the rotation of the workpiece and the relative positional relationship between the workpiece and the tool along a control axis.
  • a machine tool is equipped with a motorized tool spindle on which a rotating tool (rotating object) is installed, such as a milling machine, the motorized tool spindle that rotates the rotating tool around the tool center line rotates the rotating tool as a rotation drive unit.
  • Machine tools can easily form cutting marks containing embedded information on a workpiece by controlling the rotation of a rotary tool and the relative positional relationship between the workpiece and the rotary tool along a control axis.
  • the embedded information IN2 may include a plurality of unit information IN3 that can be in a first state ST1 and a second state ST2 different from the first state ST1.
  • the control unit U3 controls the drive unit U1 at the relative position so that when the unit information IN3 is set to the first state ST1, the unit information IN3 in the first state ST1 is formed on the workpiece W1.
  • the relationship may be changed at the first speed F1.
  • the control unit U3 controls the drive unit U1 at the relative position so that when the unit information IN3 is set to the second state ST2, the unit information IN3 in the second state ST2 is formed on the workpiece W1.
  • the relationship may be changed at a second speed F2 different from the first speed F1.
  • the state of the cutting mark C1 changes.
  • the state of the cutting mark C1 when the relative speed is a first speed F1 is defined as a first state ST1
  • the state of the cutting mark C1 when the relative speed is a second speed F2 different from the first speed F1 is a second state. If ST2, the second state ST2 is different from the first state ST1. Therefore, at least the first state ST1 and the second state ST2 can be assigned to each unit information IN3 included in the embedded information IN2, and the embedded information IN2 corresponding to the input information IN1 can be formed. Therefore, the above aspect can provide a more preferable example of forming cutting marks including embedded information.
  • the unit information may be information that can be in a third state different from the first state and the second state, or may be information that can be in a further different state.
  • first”, “second”, “third”, etc. are terms for identifying each component included in a plurality of components having similarities, and do not mean an order. Which component among the plurality of components applies to "first”, “second”, “third”, etc. is determined relatively.
  • the control unit U3 applies an upper limit speed (for example, a cutting command CD1) to a command (for example, a cutting command CD1) for changing the relative positional relationship so that the cutting mark C1 including the embedded information IN2 is formed.
  • a cutting command CD1 for example, a cutting command CD1
  • the first speed F1 is adjusted to the upper limit speed (fff)
  • the drive unit U1 is directed to the relative position so that the unit information IN3 of the first state ST1 is formed on the workpiece W1.
  • the control unit U3 sets the second speed F2 to a speed obtained by multiplying the upper limit speed (fff) by a predetermined ratio k smaller than 1, so that the unit information IN3 of the second state ST2 is formed on the workpiece W1.
  • the relative positional relationship may be changed in the drive unit U1 so that the drive unit U1 changes the relative positional relationship.
  • the embedded information IN2 including the plurality of unit information IN3 is formed by simply specifying the upper limit speed (fff) when forming the embedded information IN2. Therefore, the above embodiment can improve convenience for the operator of the machine tool. Further, the cutting mark C1 including the embedded information IN2 can be formed on the workpiece W1 while limiting the rate of change in the relative positional relationship between the workpiece W1 and the tool TO1 to the upper limit speed (fff) in the command (CD1). Therefore, it is possible to obtain a product with the desired surface roughness.
  • the control shaft drive unit U12 may change the relative positional relationship along a plurality of control axes having different directions.
  • the cutting mark C1 includes a first circular arc 321 and a second circular arc 322 that follows the first circular arc 321 and intersects with the first circular arc 321. It's okay to stay.
  • the embedded information IN2 may include coordinates of an intersection 331 between the first circular arc 321 and the second circular arc 322, with the origin 330 being the center coordinates of the first circular arc 321.
  • the control unit U3 causes the control shaft drive unit U12 to control the relative axis so that the first circular arc 321 and the second circular arc 322 having the intersection point 331 at the coordinates corresponding to the information IN1 are formed on the workpiece W1.
  • a cutting mark C1 is formed on the workpiece W1 during machining by the tool TO1, and the input information IN1 includes the embedded information IN2 corresponding to the coordinates of the intersection 331 of the first circular arc 321 and the second circular arc 322 that are continuous with each other. be done. Therefore, the above aspect can provide a more preferable example of forming cutting marks including embedded information.
  • the coordinates of the intersection 331 of the arcs (321, 322) can be associated with an amount of information exceeding binary or quaternary values, the amount of embedded information per unit area can be increased.
  • the embedded information IN2 includes a plurality of unit information IN5 that can be a first machining depth DE1 and a second machining depth DE2 different from the first machining depth DE1. May contain.
  • the control unit U3 changes the relative positional relationship in a direction in which the plurality of unit information IN5 are sequentially formed on the drive unit U1, and performs processing on the drive unit U1 corresponding to each unit information IN5.
  • the relative positional relationship may be changed in the direction in which the machining depth DE changes so that the workpiece W1 is cut at the depth DE.
  • cutting marks C1 including embedded information IN2 including a plurality of unit information IN5 that can be the first machining depth DE1 and the second machining depth DE2 are formed on the workpiece W1 during machining with the tool TO1.
  • Embedded information IN2 corresponding to the input information IN1 can be formed. Therefore, the above aspect can provide a suitable example of forming cutting marks including embedded information.
  • the unit information IN5 is represented by the machining depth DE which is simple and does not easily contain noise, it is possible to improve the accuracy of detecting information from the embedded information.
  • the information IN1 can be detected from the embedded information IN2 using an inexpensive laser measuring device or the like, the cost of the detection device can be reduced and high-speed decoding processing is also possible.
  • the unit information may be information that can be a third machining depth different from the first machining depth and the second machining depth, or may be information that can be a further different machining depth.
  • the management system SY1 includes a machine tool 1 including the drive section U1, the reception section U2, and the control section U3, and a detection device for the information IN1. Including 200.
  • the detection device 200 detects the information IN1 from the embedded information IN2 formed on the workpiece W1.
  • a cutting mark C1 including the embedded information IN2 which allows the detection device 200 to detect the information IN1
  • No special processing is required to add information IN1 to product W2.
  • the input information IN1 is detected by the detection device 200 from the embedded information IN2 added to the product W2.
  • the administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200 without having to put a sticker or stamp on the product W2. Therefore, the above aspect can provide a management system that can improve the convenience of managing products formed by machine tools.
  • FIG. 1 schematically illustrates the configuration of a management system SY1 including a machine tool 1 and a detection device 200.
  • FIG. 2 schematically illustrates the configuration of the electric circuit of the machine tool 1.
  • the machine tool 1 shown in FIGS. 1 and 2 is an NC automatic lathe that includes an NC (numerical control) device 70 that numerically controls machining of a workpiece W1. Since the computer 100 is not an essential element in the machine tool 1, the external computer 100 may not be connected to the machine body 2.
  • the NC device 70 is an example of the control unit U3. Note that the control unit U3 may be provided in the computer 100.
  • the control axes of the machine tool 1 shown in FIG. 1 include an X axis indicated by "X”, a Y axis indicated by “Y”, and a Z axis indicated by “Z”.
  • the Z-axis direction is a horizontal direction along the spindle center line AX1, which is the rotation center of the workpiece W1.
  • the X-axis direction is a horizontal direction orthogonal to the Z-axis.
  • the Y-axis direction is a vertical direction orthogonal to the Z-axis. Note that the Z-axis and the They do not need to be orthogonal. Further, the drawings referred to in this specification merely show examples for explaining the present technology, and do not limit the present technology.
  • the machine tool 1 includes a headstock 10 incorporating a spindle 11 having a gripping part 12 such as a collet, a headstock drive section 14, a tool rest 20 to which a tool TO1 is attached, a tool rest drive section 24, a receiving section U2, This is an NC machine tool equipped with an NC device 70, etc.
  • the machine tool 1 may include a plurality of combinations of the headstock 10 and the headstock drive section 14, or may include a plurality of combinations of the tool rest 20 and the tool rest drive section 24.
  • the headstock 10 may be a front headstock or a back headstock, also referred to as an opposing headstock.
  • the main shaft 11 may be a front main shaft or a back main shaft, also called an opposing main shaft.
  • the front headstock drive section moves the front headstock at least in the Z-axis direction
  • the back headstock drive section moves the back headstock at least in the Z-axis direction
  • the control axes of the front spindle include at least the Z-axis
  • the control axes of the back spindle include at least the Z-axis
  • the machine tool 1 may be a fixed spindle type lathe in which the front headstock does not move, or the front headstock may move in the Z-axis direction without moving the back headstock.
  • the main shaft 11 is provided with a main shaft rotation drive section 13 that rotates the main shaft 11 about the main shaft center line AX1.
  • the main shaft rotation drive section 13 may be a built-in motor built into the main shaft 11 or a servo motor installed outside the main shaft 11.
  • the main spindle 11 releasably grips the workpiece W1 using the gripping portion 12, and is rotatable together with the workpiece W1 about the main spindle center line AX1.
  • the tool rest 20 may be a comb-shaped tool rest, a turret tool rest, or the like.
  • the tool rest drive unit 24 moves the tool rest 20 in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the control axes of tool TO1 include at least one of the X-axis, Y-axis, and Z-axis.
  • the tool TO1 may be a rotating tool such as an end mill TO2 shown in FIG. 3, or a non-rotating tool such as a cutting tool TO3 shown in FIG. 10.
  • the tool post 20 includes a tool rotation drive section 23 that rotates the tool TO1 around the tool center line AX2.
  • the tool rotation drive section 23 may be a built-in motor built into the tool spindle, or a servo motor installed outside the tool spindle.
  • the workpiece W1 held by the main shaft 11 is processed by the tool TO1, it becomes a product W2.
  • the machine tool 1 is equipped with a front spindle and a back spindle, front-machining of the workpiece W1 held by the front spindle is performed, and the workpiece W1 after front-machining is transferred from the front spindle to the back spindle, where it is gripped by the back spindle.
  • a product W2 is formed.
  • the rotation target R0 collectively refers to the workpiece W1 and the tool TO1
  • the center line AX0 of the rotation target R0 collectively refers to the spindle center line AX1 and the tool center line AX2.
  • the rotation drive unit U11 that rotates the rotation target R0 about the center line AX0 collectively refers to the spindle rotation drive unit 13 and the tool rotation drive unit 23.
  • the control shaft drive unit U12 that changes the relative positional relationship between the workpiece W1 and the tool TO1 along the control axis collectively refers to the headstock drive unit 14 and the tool post drive unit 24.
  • the rotation drive unit U11 and the control shaft drive unit U12 constitute a drive unit U1 that changes the relative positional relationship between the workpiece W1 and the tool TO1.
  • the reception unit U2 receives input of information IN1 to be detected by the detection device 200.
  • the reception unit U2 may be the operation unit 80 shown in FIG. 2 or the computer 100 shown in FIG. 2.
  • the NC device 70 changes the positional relationship relative to the drive unit U1 so that a cutting mark C1 including embedded information IN2 that can detect the information IN1 by the detection device 200 is formed on the workpiece W1 during machining by the tool TO1. .
  • the embedded information IN2 is formed during cutting to form the product W2 from the workpiece W1. Therefore, a dedicated process for forming the embedded information IN2 on the surface of the workpiece W1 is not necessary, and almost no time is required to form the embedded information IN2.
  • a product W2 formed from the workpiece W1 has cutting marks C1 including embedded information IN2.
  • the detection device 200 detects information IN1 from embedded information IN2 formed in the workpiece W1. This allows the administrator to manage the product W2 based on the embedded information IN2.
  • an operating section 80, a spindle rotation drive section 13, a tool rotation drive section 23, a headstock drive section 14, a tool rest drive section 24, etc. are connected to the NC device 70.
  • the spindle rotation drive unit 13 includes a motor and a servo amplifier to rotate the spindle 11.
  • the tool rotation drive unit 23 includes a motor and a servo amplifier to rotate the tool TO1.
  • the headstock drive unit 14 includes a motor and a servo amplifier to move the headstock 10 along the control axis.
  • the turret drive unit 24 includes a motor and a servo amplifier to move the turret 20 along the control axis.
  • the NC device 70 includes a CPU 71 as a processor, a ROM 72 as a semiconductor memory, a RAM 73 as a semiconductor memory, a clock circuit 74, an I/F (interface) 75, and the like. Therefore, the NC device 70 is a type of computer. In FIG. 2, I/Fs such as the operation unit 80, the drive unit U1, and the external computer 100 are collectively shown as an I/F 75.
  • a control program PR1 and the like for interpreting and executing the machining program PR2 are written in the ROM72.
  • the ROM 72 may be a rewritable semiconductor memory.
  • a machining program PR2 created by an operator is stored in the RAM 73 in a rewritable manner.
  • the machining program is also called an NC program.
  • the CPU 71 realizes the functions of the NC device 70 by using the RAM 73 as a work area and executing the control program PR1 recorded in the ROM 72.
  • some or all of the functions realized by the control program PR1 may be realized by other means such as an ASIC (Application Specific Integrated Circuit).
  • the operation unit 80 includes an input unit 81 and a display unit 82, and functions as a user interface for the NC device 70.
  • the input unit 81 includes, for example, buttons and a touch panel for receiving operation input from an operator.
  • the display unit 82 includes, for example, a display that displays the contents of various settings received from the operator and various information regarding the machine tool 1.
  • the operator can store the machining program PR2 in the RAM 73 using the operation unit 80 or the computer 100.
  • the external computer 100 connected to the NC device 70 includes a CPU (Central Processing Unit) 101 which is a processor, a ROM (Read Only Memory) 102 which is a semiconductor memory, a RAM (Random Access Memory) 103 which is a semiconductor memory, and a storage device. 104, an input device 105, a display device 106, an audio output device 107, an I/F (interface) 108, a clock circuit 109, and the like.
  • a control program for the computer 100 is stored in the storage device 104, read into the RAM 103 by the CPU 101, and executed by the CPU 101.
  • the storage device 104 a semiconductor memory such as a flash memory, a magnetic recording medium such as a hard disk, etc. can be used.
  • the input device 105 a pointing device, a keyboard, a touch panel attached to the surface of the display device 106, or the like can be used.
  • the I/F 108 is connected to the NC device 70 by wire or wirelessly, and receives data from the NC device 70 and transmits data to the NC device 70.
  • the connection between the computer 100 and the machine tool 1 may be a network connection such as the Internet or an intranet.
  • the computer 100 includes a personal computer including a tablet terminal, a mobile phone such as a smartphone, and the like.
  • FIG. 3 schematically illustrates cutting marks C1 formed on the surface of the workpiece W1 due to the movement of the cutting edge TO2t of the end mill TO2 as the rotating tool TO1.
  • "+Y” indicates one direction along the Y axis
  • "+Z” indicates one direction along the Z axis.
  • the machine tool 1 applies the cutting edge TO2t of the end mill TO2 facing the X-axis direction to the side surface of the work W1 without rotating or moving the work W1, and moves the end mill TO2 at a feed rate F Assume that end mill cutting is performed by moving in the +Z direction.
  • the locus 300 of the cutting edge TO2t of the end mill TO2 has a trochoid curve pattern as shown in the middle part of FIG.
  • a trajectory 300 shown in FIG. 3 shows the movement of the cutting edge TO2t when the end mill TO2 rotates three times from the starting point 301 to the ending point 302.
  • the pattern of the trajectory 300 is based on the rotation speed of the end mill TO2 (N rpm), the diameter of the end mill TO2 (D mm), the number of teeth of the end mill TO2 (Z blades), and the feed rate F (unit: mm/min).
  • the workpiece W1 is mainly cut when the cutting edge TO2t is on the feed side of the end mill TO2. Therefore, as shown in the lower part of FIG. 3, a semicircular score convex in the +Z direction is formed on the surface of the workpiece W1, and a cutting mark C1 is created by repeating the score in the +Z direction.
  • the feed rate F changes, the interval between the grinding marks changes and the surface roughness of the cutting marks C1 changes. Therefore, it is conceivable to set an information area AR1 on the surface of the workpiece W1 that includes the rotation center of the end mill TO2 moving in the +Z direction.
  • the cutting marks C1 as shown in FIG. 3 are caused by a similar change in the relative positional relationship, such as the end mill TO2 moving in the +Z direction and the workpiece W1 moving in the -Z direction opposite to the +Z direction. It is formed.
  • FIG. 4 schematically illustrates the embedded information IN2 included in the cutting mark C1.
  • cutting marks C1 existing on the surface of the product W2 are schematically illustrated.
  • a surface unevenness shape corresponding to the position A1-A1 in FIG. 3 in the information area AR1 of the product W2 is schematically illustrated.
  • the cutting marks C1 become rougher.
  • the relative feed rate F becomes slower, the cutting marks C1 become relatively smoother.
  • the cutting marks C1 are rough, there is a large difference between the peaks and valleys on the workpiece surface, in other words, the peaks are high and the surface roughness (referred to as R) is large.
  • the cutting marks C1 are relatively smooth, the difference between peaks and valleys on the workpiece surface is small, in other words, the peaks are low and the surface roughness R is small.
  • the surface roughness R includes maximum height roughness Rz, arithmetic mean roughness Ra, ten-point mean roughness RzJIZ, and the like. These surface roughnesses R are specified in JIS (Japanese Industrial Standard) B0601:2013 (ISO (International Organization for Standardization) 4287:1997, Amendment 1 (2009)), etc.
  • the maximum height roughness Rz is the distance between the peak line and the valley bottom line in the part where the reference length is extracted from the roughness curve.
  • the arithmetic mean roughness Ra is determined by setting the coordinate in the direction of the average line to x and the coordinate of the unevenness of the roughness curve to f(x) in the part where the reference length (L) is extracted from the roughness curve.
  • the ten-point average roughness RzJIZ is the average of the absolute values of the elevations of the highest to fifth mountain peaks and the lowest to fifth valley bottoms in the part where the reference length is extracted from the roughness curve. It is the sum of the absolute value of altitude and the average value.
  • the unit of these surface roughnesses R is usually micrometers ( ⁇ m). It can be said that when any surface roughness R is large, the difference between the peaks and the valleys is large, and when it is small, the difference between the peaks and the valleys is small.
  • the feed speed F can be a first speed F1 and a second speed F2 that are different from each other.
  • the second speed F2 is slower than the first speed F1.
  • the feed rate F is a relatively fast first speed F1
  • the difference between peaks and valleys in the cutting marks C1 is large, and the surface roughness R of the cutting marks C1 is large.
  • the surface roughness R obtained by measuring the first state ST1 of the product surface with a surface roughness meter is the first surface roughness. Let it be R1.
  • the feed rate F is the relatively slow second speed F2
  • the difference between peaks and valleys in the cutting marks C1 is small, and the surface roughness R of the cutting marks C1 is small.
  • the surface roughness obtained by setting the surface state of the part cut at F F2 in product W2 to a second state ST2 different from the first state ST1, and measuring the second state ST2 of the product surface with a surface roughness meter.
  • R be the second surface roughness R2.
  • the second surface roughness R2 is smaller than the first surface roughness R1.
  • the NC device 70 divides the embedded information IN2 of the cutting mark C1 into a plurality of unit information IN3, and controls the machining of the workpiece W1 so that each unit information IN3 can be at least in the first state ST1 and the second state ST2. be able to.
  • the original information IN1 is expressed as a binary value
  • the unit information "0" included in the original information IN1 is assigned to the first state ST1 having the first surface roughness R1
  • the original information The unit information “1” included in IN1 is assigned to the second state ST2 where the second surface roughness is R2.
  • the NC device 70 controls the feed speed F to the first speed F1 when embedding the unit information IN3 of the first state ST1 corresponding to the original "0" into the cutting mark C1. In this way, the NC device 70 causes the control shaft drive unit U12 to control the workpiece W1 and the tool so that when the unit information IN3 is set to the first state ST1, the unit information IN3 of the first state ST1 is formed on the workpiece W1. The relative positional relationship with TO1 is changed at a first speed F1.
  • the NC device 70 controls the feed speed F to the second speed F2. In this way, the NC device 70 positions the unit information IN3 in the second state ST2 relative to the control shaft drive unit U12 so that the unit information IN3 in the second state ST2 is formed on the workpiece W1. The relationship is changed at a second speed F2.
  • the detection device 200 detects the original information IN1 from the embedded information IN2 formed in the workpiece W1.
  • the detection device 200 is not limited to a detection device using a surface roughness meter, and may include an image processing device that images the embedded information IN2 and analyzes the image, a laser displacement meter, an eddy current displacement meter, a three-dimensional measuring device, etc. can be used.
  • the cut pattern of the embedded information IN2 may conform to a bar code standard expressed by an ITF (Interleaved Two of Five) symbol, such as a JAN (Japanese Article Number) code. .
  • FIG. 5 schematically shows an example of forming barcode-shaped embedded information IN2.
  • An ITF continuous code such as the JAN code is a barcode that has two widths for each shade.
  • "NB” is a narrow bar meaning a narrow bar
  • WB is a wide bar meaning a thick bar
  • NS is a narrow space meaning a narrow gap.
  • WS is wide space, meaning a wide gap.
  • the widths of NB and NS are the same
  • the widths of WB and WS are the same
  • WB/NB is 2-3.
  • the NC device 70 may control the feed speed F and length so that the plurality of unit information IN3 includes NB, WB, NS, and WS.
  • the number of rotations of the tool TO1 such as the end mill TO2 is set so that the length of one piece of unit information is 0.3 mm.
  • the number of rotations corresponding to NB is 3 rev, and the number of rotations corresponding to NS is 6 rev.
  • the number of rotations of the tool TO1 is set so that the length of the two unit information is 0.6 mm.
  • the number of rotations corresponding to WB is 6 rev, and the number of rotations corresponding to WS is 12 rev.
  • a product W2 having the embedded information IN2 including NB, WB, NS, and WS in the cutting mark C1 is obtained.
  • the detection device 200 in addition to a surface roughness meter, a device that reads information based on a principle similar to a barcode reader can be used.
  • the unit information IN3 is not limited to binary values.
  • FIG. 6 schematically shows an example in which four-valued unit information IN3 is formed with the same length.
  • the length of unit information IN3 is the same as 0.6 mm for all of "0", “1", “2”, and "3".
  • the feed rate F is the fastest 0.2 mm/rev
  • the number of rotations of the tool such as the end mill TO2 is 3 rev
  • the surface state of the unit information IN3 becomes the first state ST1. shall be taken as a thing.
  • the feed rate F is 0.15 mm/rev
  • the number of rotations of the tool TO1 is 4 rev
  • the surface state of the unit information IN3 is assumed to be in the second state ST2.
  • the feed rate F is 0.1 mm/rev
  • the number of rotations of the tool TO1 is 6 rev
  • the surface state of the unit information IN3 is in a third state different from the above-mentioned state. shall become.
  • the feed rate F is the slowest 0.05 mm/rev
  • the number of rotations of the tool TO1 is 12 rev
  • the surface condition of the unit information IN3 is the fourth one, which is different from the above-mentioned condition. shall be in the state.
  • the detection device 200 can decode each unit information IN3 based on the length.
  • FIG. 7 schematically shows an example in which the four-valued unit information IN3 is formed by the same number of rotations.
  • the number of rotations of the tool TO1 such as the end mill TO2 is "0", “1", “2", and "3", all of which are the same as 3rev.
  • the feed speed F is the fastest 0.2 mm/rev
  • the length of the unit information IN3 is 0.6 mm
  • the surface state of the unit information IN3 is in the first state ST1. shall become.
  • the feed rate F is 0.15 mm/rev
  • the length of the unit information IN3 is 0.45 mm
  • the surface state of the unit information IN3 becomes the second state ST2.
  • the feed rate F is 0.1 mm/rev
  • the length of the unit information IN3 is 0.3 mm
  • the surface state of the unit information IN3 is different from the above-mentioned state.
  • the feed speed F is the slowest 0.05 mm/rev
  • the length of the unit information IN3 is 0.15 mm
  • the surface condition of the unit information IN3 is different from the above-mentioned condition. It is assumed that the fourth state is different.
  • the length of the unit information IN3 changes, the length of the unit information IN3 can be detected by the number of peaks corresponding to the number of rotations of the tool TO1. Each unit information IN3 can be decoded based on the number of peaks.
  • FIG. 8 schematically illustrates a cutting control process in which input of a cutting command CD1 for forming a product W2 from a workpiece W1 is received and the cutting command CD1 is executed.
  • the cutting control process is assumed to be performed by the NC device 70 and the operation unit 80, an external computer 100 may perform a part of the cutting control process.
  • the reception unit U2 performs the process in step S102
  • the control unit U3 performs the processes in steps S104 to S106.
  • the NC device 70 and the operation unit 80 accept the input of the cutting command CD1 (step S102).
  • the cutting command CD1 is a command for forming the product W2 from the workpiece W1, and is not a dedicated command for forming the embedded information IN2.
  • the cutting command CD1 shown in FIG. 8 includes a cutting code number mmm starting from "M”, a Z-axis reference position zzz starting from “Z”, an upper limit speed fff starting from “F”, and information ddd starting from "D”. Contains.
  • the cutting command CD1 cuts the workpiece W1 by relatively moving the workpiece W1 and the tool TO1 in the Z-axis direction from the reference position zzz at a feed rate that does not exceed the upper limit speed fff in order to form the product W2. This is a command to cut with tool TO1.
  • This cutting command CD1 includes information ddd to be embedded.
  • "Zzzzz” may be replaced with the reference position xxx of the X-axis starting from “X”, and in the case of the Y-axis, “Zzzzz” ” should be replaced with the Y-axis reference position yyy starting from “Y”.
  • "Ffff” can be omitted, and if "Ffff” is omitted, the default upper limit speed is applied.
  • the information ddd corresponds to information IN1 for the detection device 200 to detect.
  • the process of step S102 may be a process in which the operation unit 80 receives the input of the cutting command CD1 under the control of the NC device 70, or a process in which the computer 100 receives the input of the cutting command CD1. Moreover, the process of step S102 may be a process of accepting input of the machining program PR2 including the cutting command CD1.
  • the NC device 70 sets the feed rate F for each state of the unit information IN3 (step S104). For example, as shown in FIG. 4, unit information IN3 of a first state ST1 having a first surface roughness R1 is formed at a first speed F1 to obtain unit information IN3 of a second state ST2 having a second surface roughness R2. Assume that it is formed at a second speed F2. Since F1>F2, the NC device 70 sets the first speed F1 to the upper limit speed fff, and sets the second speed F2 to the speed k ⁇ fff, which is obtained by multiplying the upper limit speed fff by a predetermined ratio k where 0 ⁇ k ⁇ 1. Set. Since the embedded information IN2 can be formed on the workpiece W1 while the relative movement speed of the workpiece W1 and the tool TO1 is limited to the upper limit speed fff, it is possible to suppress the surface roughness of the product to a desired level.
  • the NC device 70 moves the rotating tool TO1 in the Z-axis direction at a feed rate F that corresponds to the state of the plurality of unit information IN3 constituting the input information ddd while moving the workpiece W1.
  • the drive unit U1 is controlled so as to cut (step S106). For example, when the information ddd is "105" in decimal and expressed as "01101001" in binary, the NC device 70 sends the tool TO1 to the tool rest drive unit 24 at the location where the unit information "0" is embedded.
  • the tool TO1 is moved in the axial direction at a first speed F1, and the tool TO1 is caused to be moved in the Z-axis direction at a second speed F2 by the tool post drive unit 24 at the location where the unit information "1" is embedded.
  • the surface state of the embedded information IN2 is determined in units of the unit information IN3: a first state ST1 having a first surface roughness R1, a second state ST2 having a second surface roughness R2, a second state ST2, a second state ST2 having a second surface roughness R2, and a second state ST2 having a second surface roughness R2.
  • the state changes from one state ST1, second state ST2, first state ST1, first state ST1, and second state ST2.
  • the administrator can perform various types of management by linking information about products, information about products, information about handling of products, etc. to information ddd.
  • the NC device 70 causes the tool post drive section 24 to move the tool TO1 in the Z-axis direction so that the first speed F1 is adjusted to the upper limit speed fff and the unit information IN3 of the first state ST1 is formed on the workpiece W1.
  • the NC device 70 sets the second speed F2 to a speed k ⁇ fff that is slower than the upper limit speed fff, and causes the tool TO1 to be applied to the tool post drive unit 24 so that the unit information IN3 of the second state ST2 is formed on the workpiece W1. Move in the Z-axis direction.
  • the NC device 70 causes the tool rotation drive unit 23 to rotate the tool TO1 so that cutting marks C1 including the embedded information IN2 are formed on the workpiece W1 during machining by the tool TO1, and the control shaft drive unit U12 The relative positional relationship between the workpiece W1 and the tool TO1 is changed. After step S106, the NC device 70 ends the cutting control process.
  • FIG. 9 schematically shows a configuration example and a processing example of the detection device 200.
  • the detection device 200 shown in the upper part of FIG. 9 includes a surface roughness meter 201, a display section 202, and a measurement control section 203.
  • the measurement control unit 203 includes a CPU, ROM, RAM, etc., acquires the surface roughness R from the surface roughness meter 201, detects information IN1 from the embedded information IN2, and displays it on the display unit 202.
  • part or all of the measurement control unit 203 may be realized by other means such as ASIC.
  • the lower part of FIG. 9 shows decoding processing performed by the measurement control unit 203. When the surface roughness meter 201 performs an operation to read the embedded information IN2 present in the product W2, the decoding process starts.
  • the measurement control unit 203 sequentially acquires the surface roughness R of the unit information IN3 from the surface roughness meter 201 (step S202).
  • the surface roughness R may be the maximum height roughness Rz, the arithmetic mean roughness Ra, the ten-point average roughness RzJIZ, or the like.
  • the measurement control unit 203 decodes the surface roughness R into the original unit information (step S204). For example, as shown in FIG. 4, it is assumed that the first surface roughness R1 corresponds to the unit information "0" and the second surface roughness R2 corresponds to the unit information "1".
  • the measurement control unit 203 can assign "0" to the unit information when the surface roughness R is larger than the threshold value THR, and assign "1" to the unit information when the surface roughness R is smaller than the threshold value THR. be able to.
  • the measurement control unit 203 repeats the processing of steps S202 to S204 until all the unit information IN3 included in the embedded information IN2 is decoded into the original unit information (step S206).
  • the measurement control unit 203 displays the information IN1 detected from the embedded information IN2 on the display unit 202 (step S208), and decodes the information IN3. Terminate the process. For example, if the decoded information IN1 is “01101001” in binary and “105” in decimal, the measurement control unit 203 may display “105” on the display unit 202. The administrator can perform various management by visually checking the displayed information "105".
  • the detection device 200 detects the information IN1 from the embedded information IN2 formed in the workpiece W1.
  • the administrator can group the products W2 by manufacturing date and have the detection device 200 read the embedded information IN2 present in any of the grouped products W2.
  • the original information IN1 linked to the product W2 can be confirmed.
  • the administrator can grasp the manufacturing date of each product W2 without putting a sticker with an identification code printed on it or stamping it on the product W2, making it more efficient. Able to manage inventory well.
  • the administrator causes the detection device 200 to read the embedded information IN2 of the product W2 in which the defective product occurs, and thereby retrieves the original information IN1 linked to the product W2. It can be confirmed. This allows the administrator to efficiently investigate the cause of the defect by narrowing it down to the manufacturing date.
  • the administrator can group the products W2 by type of parts and have the detection device 200 read the embedded information IN2 present in any of the grouped products W2.
  • the original information IN1 linked to the product W2 can be confirmed. Thereby, the manager can grasp the type of parts in units of the grouped products W2, and can efficiently manage inventory.
  • the administrator checks the original information IN1 linked to the product W2 by having the detection device 200 read the embedded information IN2 present in the product W2. can do. Thereby, the administrator can easily use the product W2 by referring to the instruction manual information linked to the information IN1.
  • the cutting mark C1 containing the embedded information IN2 that can detect the information IN1 with the detection device 200 appears on the workpiece W2 during machining with the tool TO1. is formed. Since the processing of the workpiece W1 is used to add the information IN1 to the product W2, there is no need for a dedicated processing process to add the information IN1 to the product W2.
  • the administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200 without having to put a sticker or stamp on the product W2.
  • FIG. 10 schematically illustrates cutting marks C1 formed on the side surface of the rotating workpiece W1 by the movement of the cutting tool TO3.
  • the machine tool 1 rotates the workpiece W1 around the spindle center line AX1, applies the cutting edge TO3t of the cutting tool TO3 facing the Y-axis direction to the side surface of the workpiece W1, and rotates the cutting tool TO3.
  • the locus of the cutting edge TO3t of the cutting tool TO3 is a spiral pattern centered on the spindle center line AX1.
  • the trajectory pattern is uniquely determined by the rotational speed of the main shaft 11, the diameter of the work W1, and the feed rate F.
  • a cutting mark C1 is created which continues in the +Z direction in a spiral shape.
  • the cutting marks C1 as shown in FIG. 10 are formed by a similar change in the relative positional relationship, such as the workpiece W1 moving in the -Z direction instead of the cutting tool TO3 moving in the +Z direction.
  • the cutting marks C1 become rougher, and when the relative feed rate F becomes slower, the cutting marks C1 become relatively smoother.
  • the cutting mark C1 when the feed rate F is a relatively fast first speed F1, the cutting mark C1 is in a first state ST1 with a large difference between peaks and valleys, and the surface roughness R of the cutting mark C1 is is large.
  • the cutting mark C1 is in a second state ST2 in which the difference between peaks and valleys is small, and the surface roughness R of the cutting mark C1 is small.
  • the embedded information IN2 of the cutting mark C1 is divided into a plurality of unit information IN3, and the NC device 70 controls the machining of the workpiece W1 so that each unit information IN3 can be at least in the first state ST1 and the second state ST2. Can be done.
  • the original information IN1 is expressed as a binary value
  • the unit information "0" included in the original information IN1 is assigned to the first state ST1 having the first surface roughness R1
  • the original information The unit information “1” included in IN1 is assigned to the second state ST2 where the second surface roughness is R2.
  • the NC device 70 controls the feed speed F to the first speed F1 when embedding the unit information IN3 of the first state ST1 corresponding to the original "0" into the cutting mark C1. In this way, the NC device 70 causes the control shaft drive unit U12 to control the workpiece W1 and the tool so that when the unit information IN3 is set to the first state ST1, the unit information IN3 of the first state ST1 is formed on the workpiece W1. The relative positional relationship with TO1 is changed at a first speed F1.
  • the NC device 70 controls the feed speed F to the second speed F2. In this way, the NC device 70 positions the unit information IN3 in the second state ST2 relative to the control shaft drive unit U12 so that the unit information IN3 in the second state ST2 is formed on the workpiece W1. The relationship is changed at a second speed F2.
  • the cut pattern of the embedded information IN2 may conform to the barcode standard as shown in FIG.
  • the unit information IN3 is not limited to binary values, as illustrated in FIGS. 6 and 7.
  • the detection device 200 measures the surface roughness R of each unit information IN3 included in the embedded information IN2 on the surface of the product W2, and returns the original information IN1 according to the correspondence relationship between the surface roughness R and the unit information. can be detected.
  • the detection device 200 is not limited to a detection device using a surface roughness meter, and may be an image processing device, a laser displacement meter, an eddy current displacement meter, a three-dimensional measuring machine, or the like.
  • the process of forming the embedded information IN2 on the workpiece W1 during turning can be performed, for example, according to the cutting control process shown in FIG. 8.
  • the NC device 70 and the operation unit 80 accept the input of the cutting command CD1 (step S102).
  • the NC device 70 sets the feed rate F for each state of the unit information IN3 (step S104).
  • the NC device 70 moves the tool TO1 in the Z-axis direction at a feed rate F corresponding to the state of the plurality of unit information IN3 constituting the received input information ddd while moving the rotating workpiece W1.
  • the drive unit U1 is controlled so as to cut (step S106).
  • the NC device 70 ends the cutting control process.
  • the NC device 70 causes the tool post drive unit 24 to move the tool TO1 in the Z-axis direction so that the first speed F1 is adjusted to the upper limit speed fff and the unit information IN3 of the first state ST1 is formed on the workpiece W1.
  • the NC device 70 sets the second speed F2 to a speed k ⁇ fff that is slower than the upper limit speed fff, and causes the tool TO1 to be applied to the tool rest drive unit 24 so that the unit information IN3 of the second state ST2 is formed on the workpiece W1. Move in the Z-axis direction.
  • the workpiece W1 is rotated by the spindle rotation drive section 13, and the workpiece W1 and the tool are moved by the control shaft drive section U12 so that cutting marks C1 including the embedded information IN2 are formed on the workpiece W1 during machining by the tool TO1. Change the relative positional relationship with TO1.
  • Detection of the information IN1 from the product W2 can be performed using a detection device 200 shown in FIG.
  • the processing of the workpiece W1 is also used to add the information IN1 to the product W2, so there is no need for a dedicated processing process to add the information IN1 to the product W2.
  • the administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200.
  • FIG. 11 schematically illustrates cutting marks C1 formed on the end surface of the rotating workpiece W1 by the movement of the cutting tool TO3.
  • "+X” indicates one direction along the X-axis
  • "+Y” indicates one direction along the Y-axis.
  • the machine tool 1 rotates the workpiece W1 around the spindle center line AX1, applies the cutting edge TO3t of the cutting tool TO3 to the end surface of the workpiece W1, and moves the cutting tool TO3 in the +Y direction at a feed rate F.
  • the moving direction of the cutting tool TO3 may be any direction that intersects the Z-axis, such as the +X direction.
  • the trajectory of the cutting edge TO3t of the cutting tool TO3 is a spiral pattern centered on the spindle center line AX1.
  • the trajectory pattern is uniquely determined by the rotational speed of the main shaft 11, the diameter of the work W1, and the feed rate F.
  • Cutting marks C1 are formed on the end surface of the workpiece W1, in which a spiral cut line centered on the spindle centerline AX1 continues in the radial direction.
  • the feed rate F changes, the interval between the grinding marks changes and the surface roughness of the cutting marks C1 changes.
  • the cutting marks C1 as shown in FIG. 11 are caused by a similar change in relative positional relationship, such as the workpiece W1 moving in the -Y direction opposite to the +Y direction instead of the cutting tool TO3 moving in the +Y direction. It is formed.
  • the cutting mark C1 when the feed rate F is a relatively fast first speed F1, the cutting mark C1 is in a first state ST1 with a large difference between peaks and valleys, and the surface roughness R of the cutting mark C1 is is large.
  • the cutting mark C1 is in a second state ST2 in which the difference between peaks and valleys is small, and the surface roughness R of the cutting mark C1 is small.
  • the NC device 70 controls the feed speed F to the first speed F1 when embedding the unit information IN3 of the first state ST1 corresponding to the original "0" into the cutting mark C1.
  • the NC device 70 controls the feed speed F to the second speed F2.
  • the cut pattern of the embedded information IN2 may conform to the barcode standard as shown in FIG.
  • the unit information IN3 is not limited to binary values, as illustrated in FIGS. 6 and 7.
  • the process of forming the embedded information IN2 on the workpiece W1 during turning can be performed, for example, according to the cutting control process shown in FIG. 8.
  • Detection of the information IN1 from the product W2 can be performed using a detection device 200 shown in FIG.
  • the processing of the workpiece W1 is also used to add the information IN1 to the product W2, so there is no need for a dedicated processing process to add the information IN1 to the product W2.
  • the administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200.
  • Embedded information IN2 can be formed.
  • the information IN1 can be decoded from the embedded information IN2 by extracting the center coordinates of the circular arcs and the coordinates of the intersection of the circular arcs from the cutting mark C1, for example, by image analysis.
  • FIG. 12 schematically illustrates a cutting mark C1 formed on the surface of the workpiece W1 by the movement of the cutting edge TO2t of the end mill TO2, which sets the position of the intersection 331 between circular arcs as the embedded information IN2.
  • FIG. 12 an enlarged view of the cutting mark C1 caused by the locus 320 of the cutting edge TO2t of the end mill TO2 is shown.
  • the tool post drive unit 24 is capable of moving the end mill TO2 along the Y-axis and the Z-axis, which have different directions.
  • the work W1 is subjected to end mill cutting in which the rotating end mill TO2 moves along the Y-axis and the Z-axis.
  • the start position of end mill cutting with respect to the command range is the position of the reference circle 310 determined by the center coordinates and the diameter.
  • a valley is formed on the surface of the workpiece W1 at the position of the reference circle 310 by the cutting edge TO2t of the end mill TO2.
  • the NC device 70 moves the reference circle 310 along the Y-axis and the Z-axis so that the coordinates of the intersection of the reference circle 310 as the first arc for one revolution of the end mill and the arc for one continuous revolution of the end mill become the coordinates according to the information IN1. Controls the movement of the end mill TO2. It should be noted that each circular arc does not have to correspond to one rotation of an end mill, such as 0.5 rotation of an end mill, as long as an intersection occurs between the circular arcs.
  • FIG. 13 schematically shows an example in which cutting marks C1 are formed by matching the positions of intersections 331 between circular arcs to input information.
  • an information table TA1 showing the correspondence between the coordinates of the intersection point 331 and the unit information IN4 included in the information IN1 is shown.
  • the locus 320 of the cutting edge TO2t of the end mill TO2 is a first circular arc 321 and a second circular arc 322 following the first circular arc 321, which intersects with the first circular arc 321.
  • a second circular arc 322 is included.
  • the locus 320 becomes a valley in the cutting mark C1. Therefore, the cutting mark C1 includes the first circular arc 321 and the second circular arc 322.
  • the center coordinates of the first circular arc 321 are taken as the origin 330
  • the coordinates of the intersection 331 between the first circular arc 321 and the second circular arc 322 are taken as the coordinates with the origin 330 as a reference.
  • the origin 330 is the average position of the tool center line AX2 during one rotation of the end mill TO2 on the surface of the workpiece W1.
  • the embedded information IN2 includes the coordinates of an intersection 331 between the first circular arc 321 and the second circular arc 322, with the origin 330 being the center coordinates of the first circular arc 321.
  • the embedded information IN2 includes the coordinates of the intersection 331, and the unit information IN4 is a component of the original information IN1.
  • the coordinates of the point where the second arc 322 first intersects with the first arc 321 are (z1, z1), and then the coordinates of the point where the second arc 322 intersects with the first arc 321 are (z2, z2).
  • the coordinates (z1, z1) and (z2, z2) of the intersection point 331 can be set at desired positions. Therefore, by associating the unit information IN4 with the combination of the absolute value of the z coordinate and the absolute value of the y coordinate, as shown in the information table TA1 shown in the upper part of FIG.
  • a trajectory 320 having an intersection of coordinates (z, y) can be realized.
  • the amount of embedded information IN2 per unit area can be increased, and a large amount of embedded information IN2 can be formed in a small area of the workpiece W1.
  • the previous second arc 322 is set as a new first arc 321
  • the arc corresponding to one revolution of the end mill following the first arc 321 is set as a new second arc 322
  • a new The coordinates of the intersection point 331 are determined by setting the center coordinates of the first circular arc 321 as the origin 330.
  • the coordinates of the point where the second circular arc 322 first intersects with the first circular arc 321 are (z3, z3), and then the coordinates of the point where the second circular arc 322 intersects with the first circular arc 321 are (z4, z4).
  • the coordinates (z3, z3) and (z4, z4) of the intersection point 331 can be set to desired positions.
  • Each arc is not limited to one revolution of the end mill.
  • FIG. 14 schematically illustrates a cutting control process in which input of the cutting command CD2 is received and the cutting command CD2 is executed when the position of the intersection 331 between circular arcs is set as the embedded information IN2.
  • the cutting control process is assumed to be performed by the NC device 70 and the operation unit 80, an external computer 100 may perform a part of the cutting control process.
  • the reception unit U2 performs the process of step S302, and the control unit U3 performs the process of steps S304 to S306.
  • the NC device 70 and the operation unit 80 accept input of the cutting command CD2 (step S302).
  • the cutting command CD2 is a command for forming the product W2 from the workpiece W1, and is not a dedicated command for forming the embedded information IN2.
  • the cutting command CD2 shown in FIG. 14 includes a cutting code number mmm starting from “M”, a Z-axis reference position zzzz starting from “Z”, a Y-axis reference position yyy starting from “Y”, and an upper limit speed starting from “F”. fff and information ddd starting with "D”.
  • the reference position zzz,yyy is the center coordinate of the reference circle 310.
  • the cutting command CD2 relatively moves the workpiece W1 and the tool TO1 along the Z-axis and Y-axis from the reference position zzz, yyy at a feed rate that does not exceed the upper limit speed fff in order to form the product W2.
  • This cutting command CD1 includes information ddd to be embedded. Note that if the relative movement direction between the workpiece W1 and the tool TO1 is along the Z-axis and the X-axis, "Yyyy” may be replaced with the reference position xxx of the X-axis starting from “X”. "Ffff" can be omitted, and if "Ffff" is omitted, the default upper limit speed is applied.
  • the information ddd corresponds to the information IN1 to be detected by the detection device 200, and corresponds to a combination of the unit information IN4.
  • the process of step S302 may be a process in which the operation unit 80 receives the input of the cutting command CD2 under the control of the NC device 70, or a process in which the computer 100 receives the input of the cutting command CD2. Moreover, the process of step S302 may be a process of accepting input of the machining program PR2 including the cutting command CD2.
  • the NC device 70 determines that the cutting mark C1 including the first circular arc 321 and the second circular arc 322 having an intersection point 331 at the coordinates corresponding to the unit information IN4 of the input information ddd is
  • the feed rate F of each control axis is set so that the feed rate is W1 (step S304).
  • the coordinates (z1, y1) correspond to the first unit information IN4
  • the coordinates (z2, y2) correspond to the second unit information IN4
  • the coordinates (z2, y2) correspond to the third unit information IN4.
  • the Z-axis feed rate and the Y-axis feed rate are set so that an intersection 331 occurs at coordinates (z3, y3), . . .
  • the NC device 70 adjusts the Z-axis feed so that the arc following the previous second arc 322 and the previous second arc 322 do not intersect. What is necessary is to set the speed and the feed rate of the Y axis.
  • the NC device 70 After setting the feed rate F, the NC device 70 operates the drive unit U1 so as to cut the workpiece W1 while moving the rotating tool TO1 from the reference circle 310 in the Z-axis direction and the Y-axis direction at the set feed rate F. (step S306). After step S306, the NC device 70 ends the cutting control process. As described above, the NC device 70 controls the control shaft drive unit U12 so that the first circular arc 321 and the second circular arc 322 having the intersection point 331 at the coordinates corresponding to the input information IN1 are formed on the workpiece W1. Change relative positional relationship.
  • FIG. 15 schematically shows a configuration example and a processing example of the detection device 200 in the case where the position of the intersection 331 between circular arcs is used as embedded information IN2.
  • the detection device 200 shown in the upper part of FIG. 15 includes an imaging device 211, a display section 212, and a measurement control section 213.
  • the imaging device 211 includes a light source that shines light onto the surface of the product W2, and photographs the surface of the product W2 so that arcs existing on the surface of the product W2 can be identified.
  • the direction of the light applied to the surface of the product W2 (direction of the light source)
  • the difference in brightness between the peaks and valleys existing in the cutting mark C1 can be adjusted.
  • the surface of the product W2 can be photographed so that the arc in the mark C1 can be identified.
  • the measurement control unit 213 includes a CPU, ROM, RAM, etc., and acquires a photographed image with embedded information IN2 from the imaging device 211, detects information IN1 from the embedded information IN2 included in the photographed image, and displays it on the display unit 212. let Of course, part or all of the measurement control unit 213 may be realized by other means such as ASIC.
  • the lower part of FIG. 15 shows decoding processing performed by the measurement control unit 213. When an operation is performed on the imaging device 211 to image the embedded information IN2 present in the product W2, decoding processing starts.
  • the measurement control unit 213 acquires a photographed image of the embedded information IN2 from the imaging device 211 (step S402). As shown in FIG. 12, the photographed image shows a cutting mark C1 including an arc (321, 322) having an intersection point 331 at the coordinates corresponding to each unit information IN4. Next, the measurement control unit 213 extracts the center position and diameter of the reference circle 310 from the captured image (step S404). For example, since the center position zzz, yyy of the reference circle 310 is set from the cutting command CD2 shown in FIG. The center position and diameter of the reference circle 310 may be specified.
  • the measurement control unit 213 After extracting the reference circle 310, the measurement control unit 213 extracts a first circular arc 321 and a second circular arc 322 from the captured image, and sets the first circular arc 321 and the second circular arc 322 with the center coordinates of the first circular arc 321 as the origin 330.
  • the coordinates of the intersection point 331 are determined (step S406).
  • the first first circular arc 321 is the reference circle 310.
  • the coordinates (z1, y1) and (z2, y2) of the intersection point 331 are determined from the cutting mark C1 shown in the middle part of FIG. 13.
  • the measurement control unit 213 decodes the coordinates of the intersection into the original unit information IN4 according to the information table TA1 as shown in FIG. 13 (step S408).
  • the measurement control unit 203 repeats the processes of steps S402 to S408 while an arc following the second arc 322 exists in the captured image (step S410).
  • the measurement control unit 213 sets the previous second arc 322 as a new first arc 321, and sets the arc following the first arc 321 as a new second arc, as shown in the lower part of FIG. 322, and the coordinates of the intersection 331 are determined with the center coordinates of the new first circular arc 321 as the origin 330. If an arc following the second arc 322 does not exist in the captured image, the measurement control unit 203 displays information IN1 represented by unit information IN4 linked to the coordinate group of the intersection 331 included in the embedded information IN2 on the display unit 202.
  • step S412 the decoding process ends.
  • the detection device 200 detects the information IN1 from the embedded information IN2 formed in the workpiece W1.
  • the above-described decoding process does not directly extract the intersection 331 from the captured image, but extracts continuous arcs (321, 322) from the reference circle 310 from the captured image and then determines the coordinates of the intersection 331. Even if a dent or indentation occurs on the product W2, it is thought that there are few cases in which the entire arc (321, 322) disappears, and even if the intersection 331 disappears from the product W2 due to a dent or indentation, the arc ( 321, 322), it is possible to determine the coordinates of the intersection point 331. Furthermore, since intersections between non-contiguous arcs are excluded from the reference circle 310, the coordinates of intersections that are not related to the embedded information IN2 are not decoded.
  • the processing of the workpiece W1 is used to add the information IN1 to the product W2, so there is no need for a dedicated processing process to add the information IN1 to the product W2.
  • the administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200.
  • the processing for forming the embedded information IN2 represented by the coordinates of the intersection 331 between circular arcs on the workpiece W1 is not limited to milling, but may also be turning.
  • the machine tool 1 can control the rotational speed of the workpiece W1 in the spindle rotation drive unit 13, and can control the relative positional relationship between the workpiece W1 and the tool TO1 along the X-axis and the Y-axis in the control axis drive unit U12. It can be changed.
  • the machine tool 1 in cutting the end face of the workpiece W1, can form a cutting mark C1 including arcs (321, 322) as shown in FIGS. 12 and 13 on the end face of the workpiece W1.
  • the machine tool 1 can form the cutting marks C1 including the circular arcs (321, 322) corresponding to the information IN1 on the end surface of the workpiece W1 by performing the cutting control process as shown in FIG.
  • the detection device 200 can detect the original information IN1 from the embedded information IN2 included in the cutting mark C1 by performing the decoding process as shown in FIG.
  • FIG. 16 schematically illustrates embedded information IN2 included in cutting marks C1 formed on the surface of workpiece W1 due to minute changes in machining depth DE.
  • the machine tool 1 does not rotate or move the workpiece W1, applies the cutting edge TO3t of the cutting tool TO3 facing the Y-axis direction to the side surface of the workpiece W1, and moves the cutting tool TO3 at a feed rate F Shaping (shaper processing) is performed by moving in the +Z direction.
  • Shaping shape processing
  • the machining depth DE is changed by a minute amount
  • the unit information IN5 of the embedded information IN2 is changed by a minute amount. This will be expressed as the machining depth DE.
  • a surface roughness meter can read a level difference of about 0.1 ⁇ m, so even if the change in machining depth DE is minute, about 0.2 to 1 ⁇ m, the difference in machining depth DE can be detected on the surface. It can be read with a roughness meter.
  • the surface roughness meter it is also possible to use a laser displacement meter, an eddy current displacement meter, a coordinate measuring machine, an image processing device, etc.
  • the embedded information IN2 of the cutting mark C1 is divided into a plurality of unit information IN5, and each unit information IN5 has at least the first machining depth DE1 and the second machining depth different from the first machining depth DE1.
  • the NC device 70 may control the machining of the workpiece W1 so that the depth DE2 can be achieved.
  • the original information IN1 is expressed in binary
  • the unit information "0" included in the original information IN1 is assigned to the first machining depth DE1
  • the unit included in the original information IN1 is assigned to the first machining depth DE1.
  • Information "1" is assigned to the second machining depth DE2.
  • the NC device 70 changes the relative positional relationship between the workpiece W1 and the tool TO1 in a direction in which a plurality of unit information IN5 are sequentially formed on the headstock drive section 14.
  • the NC device 70 drives the headstock so that the machining depth DE becomes the first machining depth DE1.
  • the NC device 70 operates the headstock drive unit 14 so that the machining depth DE becomes the second machining depth DE2. Control.
  • the NC device 70 causes the control shaft drive unit U12 to move the workpiece W1 and the tool TO1 in the direction in which the machining depth DE changes so that the workpiece W1 is cut at the machining depth DE corresponding to each unit information IN5.
  • the cutting marks C1 as shown in FIG. 16 are caused by a similar change in relative positional relationship, such as planer machining, in which the workpiece W1 moves in the -Z direction instead of the tool TO3 moving in the +Z direction. It is formed.
  • the cutting marks C1 including the embedded information IN2 are created in the same way. can be formed.
  • the cut pattern of the embedded information IN2 may conform to the barcode standard as shown in FIG.
  • the unit information IN3 is not limited to binary values, as illustrated in FIGS. 6 and 7.
  • the detection device 200 measures the machining depth DE of each unit information IN5 included in the embedded information IN2 on the surface of the product W2, and restores the original information IN1 according to the correspondence between the machining depth DE and the unit information. can be detected. Since each piece of unit information IN5 is represented by a machining depth DE that is simple and difficult to be affected by noise, embedded information IN2 with a high S/N ratio is formed in workpiece W1, and the reading accuracy of unit information IN5 can be improved.
  • the detection device 200 a surface roughness meter, a laser displacement meter, an eddy current displacement meter, a coordinate measuring machine, an image processing device, etc. can be used. Since the unit information IN5 can be read even with an inexpensive laser measuring device or the like, it is possible to keep the cost of the detection device low and to speed up the decoding process.
  • FIG. 17 schematically illustrates a cutting control process in which input of the cutting command CD1 is received and the cutting command CD1 is executed when the processing depth DE is set to the embedded information IN2.
  • the reception unit U2 performs the process of step S502, and the control unit U3 performs the process of steps S504 to S506.
  • the NC device 70 and the operating unit 80 accept the input of the cutting command CD1 (step S502).
  • the cutting command CD1 cuts the workpiece W1 by relatively moving the workpiece W1 and the tool TO1 in the Z-axis direction from the reference position zzz at a feed rate that does not exceed the upper limit speed fff in order to form the product W2. This is a command to cut with tool TO1.
  • This cutting command CD1 includes information ddd to be embedded.
  • Zerozzz is the X-axis reference position xxx or Y-axis reference position yyy starting from “X” or "Y”. You can replace it with
  • the NC device 70 sets each machining depth DE of the unit information IN5 (step S504). For example, as shown in FIG. 16, unit information "0" is set to the first machining depth DE1, and unit information "1" is set to the second machining depth DE2. After setting the machining depth DE, the NC device 70 controls the drive unit U1 to cut the workpiece W1 at the machining depth DE according to the state of the plurality of unit information IN5 forming the received input information ddd. (Step S506).
  • the NC device 70 causes the tool post drive unit 24 to move the cutting tool TO3 in the +Z direction at a feed rate F, and the machining depth DE is set to the unit information "0".
  • the position of the cutting tool TO3 in the Y-axis direction is controlled so that the first machining depth DE1 is at the embedding location of "" and the second machining depth DE1 is at the embedding location of the unit information "1".
  • the surface state of the embedded information IN2 is determined in units of the unit information IN5: first machining depth DE1, second machining depth DE2, second machining depth DE2, first machining depth DE1, The machining depth changes to a second machining depth DE2, a first machining depth DE1, a first machining depth DE1, and a second machining depth DE2.
  • the NC device 70 changes the relative positional relationship between the workpiece W1 and the tool TO1 in a direction in which a plurality of unit information IN5 is sequentially formed in the drive unit U1, and also changes the relative positional relationship between the workpiece W1 and the tool TO1 so that a plurality of unit information IN5 is sequentially formed in the drive unit U1.
  • the relative positional relationship between the workpiece W1 and the tool TO1 is changed in the direction in which the machining depth DE changes so that the workpiece W1 is cut at a machining depth DE corresponding to .
  • the NC device 70 ends the cutting control process.
  • FIG. 18 schematically shows a configuration example and a processing example of the detection device 200.
  • the detection device 200 shown in the upper part of FIG. 18 includes a laser displacement meter 221, a display section 222, and a measurement control section 223.
  • Laser displacement meter 221 measures the height of the surface of product W2.
  • the height of the surface of the product W2 corresponds to the processing depth DE.
  • the measurement control unit 223 includes a CPU, ROM, RAM, etc., and acquires a height measurement value from the laser displacement meter 221, detects information IN1 from the embedded information IN2, and causes the display unit 202 to display the detected information IN1.
  • part or all of the measurement control unit 203 may be realized by other means such as ASIC.
  • the lower part of FIG. 18 shows decoding processing performed by the measurement control unit 203. When the laser displacement meter 221 is operated to read the embedded information IN2 present in the product W2, the decoding process starts.
  • the measurement control unit 223 sequentially acquires the machining depth DE of the unit information IN5 (step S602).
  • the process of step S602 may be, for example, a process of sequentially acquiring height measurement values corresponding to the machining depth DE of the unit information IN5.
  • the measurement control unit 223 decodes the machining depth DE into the original unit information (step S604). For example, assuming that the first machining depth DE1 corresponds to the unit information "0" and the second machining depth DE2 corresponds to the unit information "1" as shown in FIG.
  • THDE be a threshold value for identifying DE1 and second machining depth DE2.
  • the measurement control unit 223 can assign "0" to the unit information when the machining depth DE is greater than the threshold value THDE, and assign "1" to the unit information when the machining depth DE is less than the threshold value THDE. be able to.
  • the detection device 200 may assign either "0" or "1” to the unit information.
  • the measurement control unit 223 may acquire the measured height value from the laser displacement meter 221, convert it into the machining depth DE, and then decode the unit information using the threshold THDE.
  • the unit information may be decoded using the measured value itself and the height threshold.
  • the measurement control unit 223 repeats the processing of steps S602 to S604 until all of the unit information IN5 included in the embedded information IN2 is decoded into the original unit information (step S606).
  • the measurement control unit 223 displays the information IN1 detected from the embedded information IN2 on the display unit 202 (step S608), and decodes the information IN1. Terminate the process.
  • the detection device 200 detects the information IN1 from the embedded information IN2 formed in the workpiece W1.
  • the processing of the workpiece W1 is also used to add the information IN1 to the product W2, so there is no need for a dedicated processing process to add the information IN1 to the product W2.
  • the administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200.
  • the machine tool 1 does not have to be a milling machine or a lathe, but may be a milling machine that does not have a milling or turning function, such as a shaping machine, a planing machine, or a vertical turning machine. A sharpening machine, etc. may also be used.
  • the machine tool 1 when performing milling, is not limited to a lathe, but may be a milling machine or the like that does not have a turning function. Of course, when performing turning, the machine tool 1 may be a lathe or the like that does not have a milling function.
  • the control unit U3 may be provided not in the machine body 2 but in the computer 100 (see FIG. 1). Further, it is also possible that both the machine main body 2 and the computer 100 constitute the control unit U3.

Abstract

The present invention provides a technology that makes it possible to increase convenience in managing products formed by a machine tool. A machine tool (1) comprises: a drive unit (U11, U12) that changes the relative positional relationship between a workpiece (W1) and a tool (TO1); a reception unit (U2) that receives input of information (IN1) for causing a detection device (200) to perform detection; and a control unit (U3). The control unit (U3) causes the drive unit (U1) to change the relative positional relationship to form, in the workpiece (W1) during machining by the tool (TO1), a cut trace (C1) including embedded information (IN2) from which the information (IN1) can be detected by the detection device (200).

Description

工作機械、及び、管理システムMachine tools and management systems
 本発明は、ワークを工具で切削する工作機械、及び、該工作機械を含む管理システムに関する。 The present invention relates to a machine tool that cuts a workpiece with a tool, and a management system that includes the machine tool.
 NC(数値制御)旋盤等のNC工作機械は、加工プログラムに従ってワークを工具で切削することにより、切削部品等の製品を形成する。ワークから形成された製品を管理するため、バーコード等の識別コードを印刷したシールを製品に貼ったり、製品に刻印を打ったりすることが行われている。 NC machine tools such as NC (numerical control) lathes form products such as cut parts by cutting a workpiece with a tool according to a machining program. In order to manage products formed from workpieces, stickers printed with identification codes such as bar codes are affixed to the products, or stamps are stamped on the products.
 特許文献1に開示された情報取得識別システムは、部品又は生産物に付されたn次元シンボル及び形成された梨地模様を撮影し、部品又は生産物に関する情報を取得し、部品、生産物、又は、部品を構成要素とする生産物を識別する。部品又は生産物には、部品、生産物、又は、部品を構成要素とする生産物に関する情報を示すn次元シンボルが付され、n次元シンボルによって位置が定まる個所に梨地模様が形成されている。情報取得識別システムには、部品又は生産物に形成された梨地模様の画像特徴を取得して記憶するための画像特徴記憶手段が設けられている。情報取得識別システムは、撮影画像から抽出されるn次元シンボルの画像から部品又は生産物に関する情報を取得し、撮影画像から抽出される梨地模様の画像の画像特徴と、記憶されている画像特徴とを照合し、部品、生産物、又は、部品を構成要素とする生産物を識別する。 The information acquisition and identification system disclosed in Patent Document 1 photographs an n-dimensional symbol attached to a part or product and a satin pattern formed thereon, acquires information regarding the part or product, and identifies the part, product, or , identify products whose components are parts. A part or product is attached with an n-dimensional symbol indicating information regarding the part, the product, or a product having the component as a component, and a satin pattern is formed at a location determined by the n-dimensional symbol. The information acquisition and identification system is provided with an image feature storage means for acquiring and storing image features of a satin pattern formed on a part or product. The information acquisition and identification system acquires information about parts or products from an image of an n-dimensional symbol extracted from a photographed image, and compares the image characteristics of the satin pattern image extracted from the photographed image with the stored image characteristics. and identify parts, products, or products that have parts as components.
国際公開第2014/163015号International Publication No. 2014/163015
 工作機械により形成される製品には油が付着していることが多いため、製品にシールを貼ると、製品を扱っている最中にシールが剥がれることがある。また、製品に打つ刻印を変えることは、容易でない。例えば、ロット毎、生産日毎、等のように日々変化するデータを製品に埋め込むためには、毎日、刻印を変える必要があり、大変煩わしい。
 上述した情報取得識別システムにおいて、部品又は生産物に形成される梨地模様は、どのような模様が形成されるかは事前に分からない。このため、上記情報取得識別システム
では、形成された梨地模様を撮影する等して梨地模様の画像特徴を予め画像特徴記憶手段に記憶させる必要があり、梨地模様の画像特徴を記憶した画像特徴記憶手段を用意する手間がかかる。
Products formed using machine tools often have oil attached to them, so if a sticker is attached to the product, the sticker may peel off while the product is being handled. Furthermore, it is not easy to change the markings stamped on products. For example, in order to embed data that changes daily, such as by lot or production date, into a product, it is necessary to change the stamp every day, which is very troublesome.
In the information acquisition and identification system described above, it is not known in advance what kind of satin pattern will be formed on the parts or products. Therefore, in the above information acquisition and identification system, it is necessary to store the image characteristics of the satin pattern in advance in the image feature storage means by photographing the formed satin pattern, etc. It takes time to prepare the means.
 以上より、工作機械により形成された製品を管理する利便性を向上させることが望まれる。
 本発明は、ワークから形成された製品を管理する利便性を向上させることが可能な工作機械、及び、管理システムを開示するものである。
In view of the above, it is desirable to improve the convenience of managing products formed by machine tools.
The present invention discloses a machine tool and a management system that can improve the convenience of managing products formed from workpieces.
 本発明の工作機械は、
 ワークと工具との相対的な位置関係を変化させる駆動部と、
 検出装置に検出させるための情報の入力を受け付ける受付部と、
 前記検出装置で前記情報を検出可能な埋め込み情報を含む切削痕が前記工具による加工時に前記ワークに形成されるように、前記駆動部に前記相対的な位置関係を変化させる制御部と、を備える、態様を有する。
The machine tool of the present invention is
a drive unit that changes the relative positional relationship between the workpiece and the tool;
a reception unit that receives input of information for the detection device to detect;
The drive unit includes a control unit that changes the relative positional relationship so that cutting marks including embedded information that can be detected by the detection device are formed on the workpiece during machining with the tool. , has aspects.
 また、本発明の管理システムは、工作機械、及び、情報の検出装置を含む管理システムであって、
 前記工作機械は、
  ワークと工具との相対的な位置関係を変化させる駆動部と、
  前記情報の入力を受け付ける受付部と、
  前記検出装置で前記情報を検出可能な埋め込み情報を含む切削痕が前記工具による加工時に前記ワークに形成されるように、前記駆動部に前記相対的な位置関係を変化させる制御部と、を備え、
 前記検出装置は、前記ワークに形成された前記埋め込み情報から前記情報を検出する、態様を有する。
Further, the management system of the present invention is a management system including a machine tool and an information detection device,
The machine tool is
a drive unit that changes the relative positional relationship between the workpiece and the tool;
a reception unit that receives input of the information;
The drive unit includes a control unit that changes the relative positional relationship so that cutting marks including embedded information that can be detected by the detection device are formed on the workpiece during machining with the tool. ,
The detection device has an aspect of detecting the information from the embedded information formed on the workpiece.
 本発明によれば、工作機械により形成された製品を管理する利便性を向上させることが可能な技術を提供することができる。 According to the present invention, it is possible to provide a technology that can improve the convenience of managing products formed by machine tools.
工作機械と検出装置を含む管理システムの構成例を模式的に示す図である。1 is a diagram schematically showing a configuration example of a management system including a machine tool and a detection device. 工作機械の電気回路の構成例を模式的に示すブロック図である。FIG. 2 is a block diagram schematically showing a configuration example of an electric circuit of a machine tool. エンドミルの刃先の動きによりワークの表面に形成される切削痕の例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of cutting marks formed on the surface of a workpiece due to movement of the cutting edge of an end mill. 切削痕に含まれる埋め込み情報の例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of embedded information included in cutting marks. バーコード状の埋め込み情報を形成する例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of forming embedded information in the form of a barcode. 4値の単位情報を同じ長さで形成する例を模式的に示す図である。FIG. 6 is a diagram schematically showing an example in which four-valued unit information is formed with the same length. 4値の単位情報を同じ回転回数で形成する例を模式的に示す図である。FIG. 7 is a diagram schematically showing an example in which four-valued unit information is formed using the same number of rotations. 切削コマンドの入力を受け付けて切削コマンドを実行する切削制御処理の例を模式的に示すフローチャートである。3 is a flowchart schematically showing an example of a cutting control process that receives input of a cutting command and executes the cutting command. 検出装置の構成例及び処理例を模式的に示す図である。FIG. 2 is a diagram schematically showing a configuration example and a processing example of a detection device. 回転するワークの側面にバイトの動きにより形成される切削痕の例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of cutting marks formed on the side surface of a rotating workpiece by the movement of a cutting tool. 回転するワークの端面にバイトの動きにより形成される切削痕の例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of cutting marks formed on the end surface of a rotating workpiece by the movement of a cutting tool. 円弧同士の交点の位置を埋め込み情報にするエンドミルの刃先の動きによりワークの表面に形成される切削痕の例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of cutting marks formed on the surface of a workpiece by the movement of the cutting edge of an end mill in which the positions of intersections of circular arcs are used as embedded information. 円弧同士の交点の位置を入力情報に合わせて切削痕を形成する例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example in which cutting marks are formed by matching the positions of intersections between circular arcs with input information. 円弧同士の交点の位置を埋め込み情報にする場合に切削コマンドの入力を受け付けて切削コマンドを実行する切削制御処理の例を模式的に示すフローチャートである。12 is a flowchart schematically showing an example of a cutting control process in which input of a cutting command is received and the cutting command is executed when the position of the intersection between circular arcs is embedded information. 円弧同士の交点の位置を埋め込み情報にする場合における検出装置の構成例及び処理例を模式的に示す図である。FIG. 2 is a diagram schematically showing a configuration example and a processing example of a detection device in a case where the positions of intersections between circular arcs are embedded information. 加工深さの微小変化によりワークの表面に形成される切削痕に含まれる埋め込み情報の例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of embedded information included in cutting marks formed on the surface of a workpiece due to minute changes in machining depth. 加工深さを埋め込み情報にする場合に切削コマンドの入力を受け付けて切削コマンドを実行する切削制御処理の例を模式的に示すフローチャートである。12 is a flowchart schematically showing an example of a cutting control process in which input of a cutting command is received and the cutting command is executed when the processing depth is embedded information. 加工深さを埋め込み情報にする場合における検出装置の構成例及び処理例を模式的に示す図である。FIG. 3 is a diagram schematically showing a configuration example and a processing example of a detection device in a case where the machining depth is used as embedded information.
 以下、本発明の実施形態を説明する。むろん、以下の実施形態は本発明を例示するものに過ぎず、実施形態に示す特徴の全てが発明の解決手段に必須になるとは限らない。 Embodiments of the present invention will be described below. Of course, the following embodiments are merely illustrative of the present invention, and not all of the features shown in the embodiments are essential to the solution of the invention.
(1)本発明に含まれる技術の概要:
 まず、図1~18に示される例を参照して本発明に含まれる技術の概要を説明する。尚、本願の図は模式的に例を示す図であり、これらの図に示される各方向の拡大率は異なることがあり、各図は整合していないことがある。むろん、本技術の各要素は、符号で示される具体例に限定されない。
 また、本願において、数値範囲「Min~Max」は、最小値Min以上、且つ、最大値Max以下を意味する。
(1) Overview of technology included in the present invention:
First, an overview of the technology included in the present invention will be explained with reference to examples shown in FIGS. 1 to 18. Note that the figures in this application are diagrams schematically showing examples, and the magnification in each direction shown in these figures may be different, and the figures may not be consistent. Of course, each element of the present technology is not limited to the specific examples indicated by the symbols.
Furthermore, in the present application, the numerical range "Min to Max" means greater than or equal to the minimum value Min and less than or equal to the maximum value Max.
[態様1]
 図1,2に例示するように、本技術の一態様に係る工作機械1は、駆動部U1、受付部U2、及び、制御部U3を備える。前記駆動部U1は、ワークW1と工具TO1との相対的な位置関係を変化させる。前記受付部U2は、検出装置200に検出させるための情報IN1の入力を受け付ける。前記制御部U3は、前記検出装置200で前記情報IN1を検出可能な埋め込み情報IN2を含む切削痕C1が前記工具TO1による加工時に前記ワークW1に形成されるように、前記駆動部U1に前記相対的な位置関係を変化させる。
[Aspect 1]
As illustrated in FIGS. 1 and 2, a machine tool 1 according to one aspect of the present technology includes a drive section U1, a reception section U2, and a control section U3. The drive unit U1 changes the relative positional relationship between the workpiece W1 and the tool TO1. The reception unit U2 receives input of information IN1 to be detected by the detection device 200. The control unit U3 causes the drive unit U1 to control the relative position so that cutting marks C1 including embedded information IN2 that can detect the information IN1 with the detection device 200 are formed on the workpiece W1 during machining by the tool TO1. change the positional relationship.
 検出装置200に検出させるための情報IN1が工作機械1に入力されると、検出装置200で情報IN1を検出可能な埋め込み情報IN2を含む切削痕C1が工具TO1による加工時にワークW1に形成される。ワークW1から形成される製品W2に情報IN1を付加するためにワークW1の加工が利用されるので、製品W2に情報IN1を付加する専用の加工処理は不要である。管理者は、製品W2にシールを貼ったり刻印を打ったりする作業を行わなくても、検出装置200で埋め込み情報IN2から検出される情報IN1に基づいて製品W2を管理することができる。従って、上記態様は、製品を管理する利便性を向上させることが可能な工作機械を提供することができる。 When information IN1 to be detected by the detection device 200 is input to the machine tool 1, cutting marks C1 including embedded information IN2 that can detect the information IN1 by the detection device 200 are formed on the workpiece W1 during machining with the tool TO1. . Since the processing of the workpiece W1 is used to add the information IN1 to the product W2 formed from the workpiece W1, there is no need for a dedicated processing process to add the information IN1 to the product W2. The administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200 without having to put a sticker or stamp on the product W2. Therefore, the above embodiment can provide a machine tool that can improve the convenience of managing products.
 ここで、ワークと工具との相対的な位置関係を変化させる駆動部は、ワークを移動させずに工具を移動させてもよいし、工具を移動させずにワークを移動させてもよいし、工具とワークの両方を移動させてもよい。
 制御部は、後述するように、様々な手段により、工具による加工時において埋め込み情報を含む切削痕をワークに形成することができる。
 検出装置には、表面粗さ計、画像処理装置、レーザー変位計、渦電流変位計、三次元測定機、等を用いることができる。
Here, the drive unit that changes the relative positional relationship between the work and the tool may move the tool without moving the work, may move the work without moving the tool, or may move the work without moving the tool. Both the tool and the workpiece may be moved.
As described later, the control unit can form cutting marks including embedded information on the workpiece during machining with a tool by various means.
As the detection device, a surface roughness meter, an image processing device, a laser displacement meter, an eddy current displacement meter, a three-dimensional measuring machine, etc. can be used.
 例えば、入力を受け付ける情報が製造日、製作者、製造ロット、等といった製造に関する場合、製品が製造されたときの製造に関する情報を検出装置から得ることができる。得られた情報を用いることにより、在庫管理をしたり、製品に不良品が生じた場合に当該製品に関する情報に基づいて不良の原因を調査したりすることができる。
 入力を受け付ける情報が部品ナンバー、ユニットナンバー、会社名、等といった商品に関する場合、商品に関する情報を検出装置から得ることができる。得られた情報を用いることにより、在庫管理等を行うことができる。
 入力を受け付ける情報がサービス情報、取説情報、保守情報、等といった製品の扱いに関する情報に紐付けられる場合、製品の扱いに関する情報に紐付けられた情報を検出装置から得ることができる。得られた情報に紐付けられた、製品の扱いに関する情報を参照することにより、製品を使用したり、製品の保守を行ったりすることができる。
 上述した付言は、以下の態様においても適用される。
For example, if the information that is accepted for input is related to manufacturing, such as manufacturing date, manufacturer, manufacturing lot, etc., information related to manufacturing when the product was manufactured can be obtained from the detection device. By using the obtained information, it is possible to perform inventory management, and when a defective product occurs, it is possible to investigate the cause of the defect based on the information regarding the product.
If the information to be input is related to a product such as a part number, unit number, company name, etc., the information related to the product can be obtained from the detection device. By using the obtained information, inventory management and the like can be performed.
When the information accepted for input is linked to information related to handling of the product, such as service information, instruction manual information, maintenance information, etc., the information linked to the information related to handling of the product can be obtained from the detection device. By referring to the information related to the handling of the product linked to the obtained information, the product can be used or maintained.
The above-mentioned additional remarks also apply to the following aspects.
[態様2]
 図1,2に例示するように、前記駆動部U1は、前記ワークW1と前記工具TO1の一方である回転対象R0を該回転対象R0の中心線AX0(例えば主軸中心線AX1と工具中心線AX2の一方)を中心として回転させる回転駆動部U11を含んでいてもよい。当該駆動部U1は、前記相対的な位置関係を制御軸(例えばX軸、Y軸、及び、Z軸のいずれか)に沿って変化させる制御軸駆動部U12を含んでいてもよい。図3,10等に例示するように、前記制御部U3は、前記埋め込み情報IN2を含む前記切削痕C1が前記工具TO1による加工時に前記ワークW1に形成されるように、前記回転駆動部U11に前記回転対象R0を回転させ、前記制御軸駆動部U12に前記相対的な位置関係を変化させてもよい。
 以上の場合、工具TO1による加工時に、ワークW1と工具TO1の一方が中心線AX0を中心として回転し、ワークW1と工具TO1との相対的な位置関係が制御軸に沿って変化することにより、埋め込み情報IN2を含む切削痕C1がワークW1に形成される。従って、上記態様は、埋め込み情報を含む切削痕を形成する好適な例を提供することができる。
[Aspect 2]
As illustrated in FIGS. 1 and 2, the drive unit U1 moves the rotation object R0, which is one of the workpiece W1 and the tool TO1, to the center line AX0 of the rotation object R0 (for example, between the spindle center line AX1 and the tool center line AX2). may include a rotational drive unit U11 that rotates around one of the following. The drive unit U1 may include a control axis drive unit U12 that changes the relative positional relationship along a control axis (for example, one of the X axis, Y axis, and Z axis). As illustrated in FIGS. 3, 10, etc., the control unit U3 controls the rotational drive unit U11 so that the cutting marks C1 including the embedded information IN2 are formed on the workpiece W1 during machining by the tool TO1. The rotation target R0 may be rotated to cause the control shaft drive unit U12 to change the relative positional relationship.
In the above case, during machining with the tool TO1, one of the workpiece W1 and the tool TO1 rotates around the center line AX0, and the relative positional relationship between the workpiece W1 and the tool TO1 changes along the control axis. A cutting mark C1 including embedded information IN2 is formed on the workpiece W1. Therefore, the above aspect can provide a suitable example of forming cutting marks including embedded information.
 例えば、工作機械が旋盤等のようにモーター付き主軸を備える場合、主軸中心線を中心としてワーク(回転対象)を回転させるモーター付き主軸が回転駆動部としてワークを回転させる。工作機械は、ワークの回転、及び、ワークと工具との制御軸に沿った相対的な位置関係を制御することにより、埋め込み情報を含む切削痕をワークに容易に形成することができる。工作機械がフライス盤等のように回転工具(回転対象)が設けられたモーター付き工具主軸を備える場合、工具中心線を中心として回転工具を回転させるモーター付き工具主軸が回転駆動部として回転工具を回転させる。工作機械は、回転工具の回転、及び、ワークと回転工具との制御軸に沿った相対的な位置関係を制御することにより、埋め込み情報を含む切削痕をワークに容易に形成することができる。
 上述した付言は、以下の態様においても適用される。
For example, when a machine tool includes a main spindle with a motor, such as a lathe, the main spindle with a motor that rotates a workpiece (rotation object) about the centerline of the main spindle serves as a rotation drive unit and rotates the workpiece. Machine tools can easily form cutting marks containing embedded information on a workpiece by controlling the rotation of the workpiece and the relative positional relationship between the workpiece and the tool along a control axis. When a machine tool is equipped with a motorized tool spindle on which a rotating tool (rotating object) is installed, such as a milling machine, the motorized tool spindle that rotates the rotating tool around the tool center line rotates the rotating tool as a rotation drive unit. let Machine tools can easily form cutting marks containing embedded information on a workpiece by controlling the rotation of a rotary tool and the relative positional relationship between the workpiece and the rotary tool along a control axis.
The above-mentioned additional remarks also apply to the following aspects.
[態様3]
 図3,10等に例示するように、前記埋め込み情報IN2は、第一状態ST1、及び、該第一状態ST1とは異なる第二状態ST2になり得る単位情報IN3を複数含んでいてもよい。前記制御部U3は、前記単位情報IN3を前記第一状態ST1にする場合に該第一状態ST1の前記単位情報IN3が前記ワークW1に形成されるように前記駆動部U1に前記相対的な位置関係を第一速度F1で変化させてもよい。当該制御部U3は、前記単位情報IN3を前記第二状態ST2にする場合に該第二状態ST2の前記単位情報IN3が前記ワークW1に形成されるように前記駆動部U1に前記相対的な位置関係を前記第一速度F1とは異なる第二速度F2で変化させてもよい。
 ワークW1と工具TO1との相対的な位置関係が変化する速度である相対速度が変わると、切削痕C1の状態が変わる。相対速度が第一速度F1である場合における切削痕C1の状態を第一状態ST1とし、相対速度が第一速度F1とは異なる第二速度F2である場合における切削痕C1の状態を第二状態ST2とすると、第二状態ST2は第一状態ST1とは異なる。そこで、埋め込み情報IN2に含まれる各単位情報IN3に少なくとも第一状態ST1及び第二状態ST2を割り当てることができ、入力を受け付けた情報IN1に対応する埋め込み情報IN2を形成することができる。従って、上記態様は、埋め込み情報を含む切削痕を形成するさらに好適な例を提供することができる。
[Aspect 3]
As illustrated in FIGS. 3, 10, etc., the embedded information IN2 may include a plurality of unit information IN3 that can be in a first state ST1 and a second state ST2 different from the first state ST1. The control unit U3 controls the drive unit U1 at the relative position so that when the unit information IN3 is set to the first state ST1, the unit information IN3 in the first state ST1 is formed on the workpiece W1. The relationship may be changed at the first speed F1. The control unit U3 controls the drive unit U1 at the relative position so that when the unit information IN3 is set to the second state ST2, the unit information IN3 in the second state ST2 is formed on the workpiece W1. The relationship may be changed at a second speed F2 different from the first speed F1.
When the relative speed, which is the speed at which the relative positional relationship between the workpiece W1 and the tool TO1 changes, changes, the state of the cutting mark C1 changes. The state of the cutting mark C1 when the relative speed is a first speed F1 is defined as a first state ST1, and the state of the cutting mark C1 when the relative speed is a second speed F2 different from the first speed F1 is a second state. If ST2, the second state ST2 is different from the first state ST1. Therefore, at least the first state ST1 and the second state ST2 can be assigned to each unit information IN3 included in the embedded information IN2, and the embedded information IN2 corresponding to the input information IN1 can be formed. Therefore, the above aspect can provide a more preferable example of forming cutting marks including embedded information.
 ここで、単位情報は、第一状態及び第二状態とは異なる第三状態になり得る情報でもよいし、さらに異なる状態になり得る情報でもよい。
 本願における「第一」、「第二」、「第三」、…は、類似点を有する複数の構成要素に含まれる各構成要素を識別するための用語であり、順番を意味しない。複数の構成要素のうちどの構成要素が「第一」、「第二」、「第三」、…に当てはまるのかは、相対的に決まる。
 上述した付言は、以下の態様においても適用される。
Here, the unit information may be information that can be in a third state different from the first state and the second state, or may be information that can be in a further different state.
In the present application, "first", "second", "third", etc. are terms for identifying each component included in a plurality of components having similarities, and do not mean an order. Which component among the plurality of components applies to "first", "second", "third", etc. is determined relatively.
The above-mentioned additional remarks also apply to the following aspects.
[態様4]
 図8に例示するように、前記制御部U3は、前記埋め込み情報IN2を含む前記切削痕C1が形成されるように前記相対的な位置関係を変化させる指令(例えば切削コマンドCD1)に上限速度(例えばfff)が含まれる場合、前記第一速度F1を前記上限速度(fff)に合わせて前記第一状態ST1の前記単位情報IN3が前記ワークW1に形成されるように前記駆動部U1に前記相対的な位置関係を変化させてもよい。当該制御部U3は、1よりも小さい所定比kを前記上限速度(fff)に乗じた速度に前記第二速度F2を合わせて前記第二状態ST2の前記単位情報IN3が前記ワークW1に形成されるように前記駆動部U1に前記相対的な位置関係を変化させてもよい。
 以上の場合、埋め込み情報IN2を形成する際の上限速度(fff)を指定するだけで複数の単位情報IN3を含む埋め込み情報IN2が形成される。従って、上記態様は、工作機械のオペレーターの利便性を向上させることができる。また、ワークW1と工具TO1との相対的な位置関係の変化速度を指令(CD1)中の上限速度(fff)に制限した上で埋め込み情報IN2を含む切削痕C1をワークW1に形成することができるので、所望の面粗度の製品を得ることができる。
[Aspect 4]
As illustrated in FIG. 8, the control unit U3 applies an upper limit speed (for example, a cutting command CD1) to a command (for example, a cutting command CD1) for changing the relative positional relationship so that the cutting mark C1 including the embedded information IN2 is formed. fff), the first speed F1 is adjusted to the upper limit speed (fff), and the drive unit U1 is directed to the relative position so that the unit information IN3 of the first state ST1 is formed on the workpiece W1. You may also change the physical relationship. The control unit U3 sets the second speed F2 to a speed obtained by multiplying the upper limit speed (fff) by a predetermined ratio k smaller than 1, so that the unit information IN3 of the second state ST2 is formed on the workpiece W1. The relative positional relationship may be changed in the drive unit U1 so that the drive unit U1 changes the relative positional relationship.
In the above case, the embedded information IN2 including the plurality of unit information IN3 is formed by simply specifying the upper limit speed (fff) when forming the embedded information IN2. Therefore, the above embodiment can improve convenience for the operator of the machine tool. Further, the cutting mark C1 including the embedded information IN2 can be formed on the workpiece W1 while limiting the rate of change in the relative positional relationship between the workpiece W1 and the tool TO1 to the upper limit speed (fff) in the command (CD1). Therefore, it is possible to obtain a product with the desired surface roughness.
[態様5]
 前記制御軸駆動部U12は、向きが異なる複数の前記制御軸に沿って前記相対的な位置関係を変化させてもよい。図12,13に例示するように、前記切削痕C1は、第一円弧321、及び、該第一円弧321に続く第二円弧322であって前記第一円弧321と交わる第二円弧322を含んでいてもよい。前記埋め込み情報IN2は、前記第一円弧321の中心座標を原点330とした前記第一円弧321と前記第二円弧322との交点331の座標を含んでいてもよい。前記制御部U3は、前記情報IN1に対応する前記座標に前記交点331を有する前記第一円弧321及び前記第二円弧322が前記ワークW1に形成されるように前記制御軸駆動部U12に前記相対的な位置関係を変化させてもよい。
 以上の場合、入力を受け付けた情報IN1が互いに連続する第一円弧321と第二円弧322との交点331の座標に対応する埋め込み情報IN2を含む切削痕C1が工具TO1による加工時にワークW1に形成される。従って、上記態様は、埋め込み情報を含む切削痕を形成するさらに好適な例を提供することができる。また、円弧(321,322)の交点331の座標に2値乃至4値を超える情報量を紐付けることができるので、単位面積当たりの埋め込み情報の情報量を増やすことができる。
[Aspect 5]
The control shaft drive unit U12 may change the relative positional relationship along a plurality of control axes having different directions. As illustrated in FIGS. 12 and 13, the cutting mark C1 includes a first circular arc 321 and a second circular arc 322 that follows the first circular arc 321 and intersects with the first circular arc 321. It's okay to stay. The embedded information IN2 may include coordinates of an intersection 331 between the first circular arc 321 and the second circular arc 322, with the origin 330 being the center coordinates of the first circular arc 321. The control unit U3 causes the control shaft drive unit U12 to control the relative axis so that the first circular arc 321 and the second circular arc 322 having the intersection point 331 at the coordinates corresponding to the information IN1 are formed on the workpiece W1. You may change the physical relationship.
In the above case, a cutting mark C1 is formed on the workpiece W1 during machining by the tool TO1, and the input information IN1 includes the embedded information IN2 corresponding to the coordinates of the intersection 331 of the first circular arc 321 and the second circular arc 322 that are continuous with each other. be done. Therefore, the above aspect can provide a more preferable example of forming cutting marks including embedded information. Furthermore, since the coordinates of the intersection 331 of the arcs (321, 322) can be associated with an amount of information exceeding binary or quaternary values, the amount of embedded information per unit area can be increased.
[態様6]
 図16に例示するように、前記埋め込み情報IN2は、第一の加工深さDE1、及び、該第一の加工深さDE1とは異なる第二の加工深さDE2になり得る単位情報IN5を複数含んでいてもよい。前記制御部U3は、前記駆動部U1に前記複数の単位情報IN5が順に形成される向きに前記相対的な位置関係を変化させ、且つ、前記駆動部U1に各前記単位情報IN5に対応する加工深さDEで前記ワークW1が切削されるように前記加工深さDEが変わる向きに前記相対的な位置関係を変化させてもよい。
 以上の場合、工具TO1による加工時に第一の加工深さDE1及び第二の加工深さDE2になり得る単位情報IN5を複数含む埋め込み情報IN2を含む切削痕C1がワークW1に形成されるので、入力を受け付けた情報IN1に対応する埋め込み情報IN2を形成することができる。従って、上記態様は、埋め込み情報を含む切削痕を形成する好適な例を提供することができる。また、シンプルでノイズが入り難い加工深さDEで単位情報IN5が表されるので、埋め込み情報からの情報の検出精度を高めることができる。さらに、安価なレーザー測定機等を用いて埋め込み情報IN2から情報IN1を検出することができるので、検出装置のコストを低減させることができ、高速のデコード処理も可能となる。
[Aspect 6]
As illustrated in FIG. 16, the embedded information IN2 includes a plurality of unit information IN5 that can be a first machining depth DE1 and a second machining depth DE2 different from the first machining depth DE1. May contain. The control unit U3 changes the relative positional relationship in a direction in which the plurality of unit information IN5 are sequentially formed on the drive unit U1, and performs processing on the drive unit U1 corresponding to each unit information IN5. The relative positional relationship may be changed in the direction in which the machining depth DE changes so that the workpiece W1 is cut at the depth DE.
In the above case, cutting marks C1 including embedded information IN2 including a plurality of unit information IN5 that can be the first machining depth DE1 and the second machining depth DE2 are formed on the workpiece W1 during machining with the tool TO1. Embedded information IN2 corresponding to the input information IN1 can be formed. Therefore, the above aspect can provide a suitable example of forming cutting marks including embedded information. Furthermore, since the unit information IN5 is represented by the machining depth DE which is simple and does not easily contain noise, it is possible to improve the accuracy of detecting information from the embedded information. Furthermore, since the information IN1 can be detected from the embedded information IN2 using an inexpensive laser measuring device or the like, the cost of the detection device can be reduced and high-speed decoding processing is also possible.
 ここで、単位情報は、第一の加工深さ及び第二の加工深さとは異なる第三の加工深さになり得る情報でもよいし、さらに異なる加工深さになり得る情報でもよい。
 上述した付言は、以下の態様においても適用される。
Here, the unit information may be information that can be a third machining depth different from the first machining depth and the second machining depth, or may be information that can be a further different machining depth.
The above-mentioned additional remarks also apply to the following aspects.
[態様7]
 ところで、図1に例示するように、本技術の一態様に係る管理システムSY1は、前記駆動部U1と前記受付部U2と前記制御部U3を備える工作機械1、及び、前記情報IN1の検出装置200を含む。前記検出装置200は、前記ワークW1に形成された前記埋め込み情報IN2から前記情報IN1を検出する。
 工作機械1に情報IN1が入力されると、検出装置200で情報IN1を検出可能な埋め込み情報IN2を含む切削痕C1が工具TO1による加工時にワークW1に形成される。製品W2に情報IN1を付加する専用の加工処理は、不要である。製品W2に付加された埋め込み情報IN2からは、入力された情報IN1が検出装置200により検出される。管理者は、製品W2にシールを貼ったり刻印を打ったりする作業を行わなくても、検出装置200で埋め込み情報IN2から検出される情報IN1に基づいて製品W2を管理することができる。従って、上記態様は、工作機械により形成された製品を管理する利便性を向上させることが可能な管理システムを提供することができる。
[Aspect 7]
By the way, as illustrated in FIG. 1, the management system SY1 according to one aspect of the present technology includes a machine tool 1 including the drive section U1, the reception section U2, and the control section U3, and a detection device for the information IN1. Including 200. The detection device 200 detects the information IN1 from the embedded information IN2 formed on the workpiece W1.
When the information IN1 is input to the machine tool 1, a cutting mark C1 including the embedded information IN2, which allows the detection device 200 to detect the information IN1, is formed on the workpiece W1 during machining with the tool TO1. No special processing is required to add information IN1 to product W2. The input information IN1 is detected by the detection device 200 from the embedded information IN2 added to the product W2. The administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200 without having to put a sticker or stamp on the product W2. Therefore, the above aspect can provide a management system that can improve the convenience of managing products formed by machine tools.
(2)工作機械の構成の具体例:
 図1は、工作機械1と検出装置200を含む管理システムSY1の構成を模式的に例示している。図2は、工作機械1の電気回路の構成を模式的に例示している。図1,2に示す工作機械1は、ワークW1の加工の数値制御を行うNC(数値制御)装置70を備えるNC自動旋盤である。工作機械1においてコンピューター100は必須の要素ではないため、機械本体2に外部のコンピューター100が接続されないことがある。本具体例において、NC装置70は、制御部U3の例である。尚、制御部U3は、コンピューター100に設けられてもよい。
(2) Specific example of machine tool configuration:
FIG. 1 schematically illustrates the configuration of a management system SY1 including a machine tool 1 and a detection device 200. FIG. 2 schematically illustrates the configuration of the electric circuit of the machine tool 1. The machine tool 1 shown in FIGS. 1 and 2 is an NC automatic lathe that includes an NC (numerical control) device 70 that numerically controls machining of a workpiece W1. Since the computer 100 is not an essential element in the machine tool 1, the external computer 100 may not be connected to the machine body 2. In this specific example, the NC device 70 is an example of the control unit U3. Note that the control unit U3 may be provided in the computer 100.
 図1に示す工作機械1の制御軸は、「X」で示されるX軸、「Y」で示されるY軸、及び、「Z」で示されるZ軸を含んでいる。Z軸方向は、ワークW1の回転中心となる主軸中心線AX1に沿った水平方向である。X軸方向は、Z軸と直交する水平方向である。Y軸方向は、Z軸と直交する鉛直方向である。尚、Z軸とX軸とは交差していれば直交していなくてもよく、Z軸とY軸とは交差していれば直交していなくてもよく、X軸とY軸とは交差していれば直交していなくてもよい。また、本明細書において参照される図面は、本技術を説明するための例を示しているに過ぎず、本技術を限定するものではない。また、各部の位置関係の説明は、例示に過ぎない。従って、左右を逆にしたり、回転方向を逆にしたり等することも、本技術に含まれる。また、方向や位置等の同一は、厳密な一致に限定されず、誤差により厳密な一致からずれることを含む。 The control axes of the machine tool 1 shown in FIG. 1 include an X axis indicated by "X", a Y axis indicated by "Y", and a Z axis indicated by "Z". The Z-axis direction is a horizontal direction along the spindle center line AX1, which is the rotation center of the workpiece W1. The X-axis direction is a horizontal direction orthogonal to the Z-axis. The Y-axis direction is a vertical direction orthogonal to the Z-axis. Note that the Z-axis and the They do not need to be orthogonal. Further, the drawings referred to in this specification merely show examples for explaining the present technology, and do not limit the present technology. Moreover, the description of the positional relationship of each part is merely an example. Therefore, reversing the left and right sides, reversing the rotation direction, etc. is also included in the present technology. Furthermore, the sameness in direction, position, etc. is not limited to exact coincidence, but includes deviations from exact coincidence due to errors.
 工作機械1は、コレットといった把持部12を有する主軸11が組み込まれている主軸台10、主軸台駆動部14、工具TO1が取り付けられている刃物台20、刃物台駆動部24、受付部U2、NC装置70、等を備えるNC工作機械である。工作機械1は、主軸台10と主軸台駆動部14の組合せを複数備えていてもよく、刃物台20と刃物台駆動部24の組合せを複数備えていてもよい。例えば、主軸台10は、正面主軸台でもよいし、対向主軸台とも呼ばれる背面主軸台でもよい。従って、主軸11は、正面主軸でもよいし、対向主軸とも呼ばれる背面主軸でもよい。工作機械1が主軸移動型旋盤である場合、正面主軸台駆動部が正面主軸台を少なくともZ軸方向へ移動させ、背面主軸台駆動部が背面主軸台を少なくともZ軸方向へ移動させる。この場合、正面主軸の制御軸には少なくともZ軸が含まれ、背面主軸の制御軸には少なくともZ軸が含まれる。むろん、工作機械1は正面主軸台が移動しない主軸固定型旋盤でもよいし、背面主軸台が移動せずに正面主軸台がZ軸方向へ移動してもよい。
 主軸11には、主軸中心線AX1を中心として主軸11を回転させる主軸回転駆動部13が設けられている。主軸回転駆動部13は、主軸11に内蔵されたビルトインモーターでもよいし、主軸11の外に設置されたサーボモーターでもよい。主軸11は、把持部12によりワークW1を解放可能に把持し、ワークW1とともに主軸中心線AX1を中心として回転可能である。
The machine tool 1 includes a headstock 10 incorporating a spindle 11 having a gripping part 12 such as a collet, a headstock drive section 14, a tool rest 20 to which a tool TO1 is attached, a tool rest drive section 24, a receiving section U2, This is an NC machine tool equipped with an NC device 70, etc. The machine tool 1 may include a plurality of combinations of the headstock 10 and the headstock drive section 14, or may include a plurality of combinations of the tool rest 20 and the tool rest drive section 24. For example, the headstock 10 may be a front headstock or a back headstock, also referred to as an opposing headstock. Therefore, the main shaft 11 may be a front main shaft or a back main shaft, also called an opposing main shaft. When the machine tool 1 is a moving spindle type lathe, the front headstock drive section moves the front headstock at least in the Z-axis direction, and the back headstock drive section moves the back headstock at least in the Z-axis direction. In this case, the control axes of the front spindle include at least the Z-axis, and the control axes of the back spindle include at least the Z-axis. Of course, the machine tool 1 may be a fixed spindle type lathe in which the front headstock does not move, or the front headstock may move in the Z-axis direction without moving the back headstock.
The main shaft 11 is provided with a main shaft rotation drive section 13 that rotates the main shaft 11 about the main shaft center line AX1. The main shaft rotation drive section 13 may be a built-in motor built into the main shaft 11 or a servo motor installed outside the main shaft 11. The main spindle 11 releasably grips the workpiece W1 using the gripping portion 12, and is rotatable together with the workpiece W1 about the main spindle center line AX1.
 刃物台20には、ワークW1を加工するための1以上の工具TO1が取り付けられている。刃物台20は、くし形刃物台でもよいし、タレット刃物台等でもよい。刃物台駆動部24は、刃物台20をX軸方向、Y軸方向、及び、Z軸方向の少なくとも一方向へ移動させる。この場合、工具TO1の制御軸には、X軸、Y軸、及び、Z軸の少なくとも一つが含まれる。工具TO1は、図3に示すエンドミルTO2等のように回転工具でもよいし、図10に示すバイトTO3等のように回転しない工具でもよい。工具TO1が工具中心線AX2を中心として回転可能な回転工具である場合、刃物台20は、工具中心線AX2を中心として工具TO1を回転させる工具回転駆動部23を備える。工具回転駆動部23は、工具主軸に内蔵されたビルトインモーターでもよいし、工具主軸の外に設置されたサーボモーターでもよい。主軸11に把持されているワークW1は、工具TO1により加工されると、製品W2となる。工作機械1が正面主軸台と背面主軸台を備える場合、正面主軸に把持されたワークW1の正面加工が行われ、正面加工後のワークW1が正面主軸から背面主軸に引き渡され、背面主軸に把持されたワークW1の背面加工が行われると、製品W2が形成される。 One or more tools TO1 for processing the workpiece W1 are attached to the tool post 20. The tool rest 20 may be a comb-shaped tool rest, a turret tool rest, or the like. The tool rest drive unit 24 moves the tool rest 20 in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction. In this case, the control axes of tool TO1 include at least one of the X-axis, Y-axis, and Z-axis. The tool TO1 may be a rotating tool such as an end mill TO2 shown in FIG. 3, or a non-rotating tool such as a cutting tool TO3 shown in FIG. 10. When the tool TO1 is a rotary tool that can rotate around the tool center line AX2, the tool post 20 includes a tool rotation drive section 23 that rotates the tool TO1 around the tool center line AX2. The tool rotation drive section 23 may be a built-in motor built into the tool spindle, or a servo motor installed outside the tool spindle. When the workpiece W1 held by the main shaft 11 is processed by the tool TO1, it becomes a product W2. When the machine tool 1 is equipped with a front spindle and a back spindle, front-machining of the workpiece W1 held by the front spindle is performed, and the workpiece W1 after front-machining is transferred from the front spindle to the back spindle, where it is gripped by the back spindle. When the back side of the workpiece W1 is processed, a product W2 is formed.
 尚、回転対象R0はワークW1と工具TO1を総称し、回転対象R0の中心線AX0は主軸中心線AX1と工具中心線AX2を総称している。中心線AX0を中心として回転対象R0を回転させる回転駆動部U11は、主軸回転駆動部13と工具回転駆動部23を総称している。ワークW1と工具TO1との相対的な位置関係を制御軸に沿って変化させる制御軸駆動部U12は、主軸台駆動部14と刃物台駆動部24を総称している。図1,2に示す工作機械1において、回転駆動部U11と制御軸駆動部U12は、ワークW1と工具TO1との相対的な位置関係を変化させる駆動部U1を構成する。 Note that the rotation target R0 collectively refers to the workpiece W1 and the tool TO1, and the center line AX0 of the rotation target R0 collectively refers to the spindle center line AX1 and the tool center line AX2. The rotation drive unit U11 that rotates the rotation target R0 about the center line AX0 collectively refers to the spindle rotation drive unit 13 and the tool rotation drive unit 23. The control shaft drive unit U12 that changes the relative positional relationship between the workpiece W1 and the tool TO1 along the control axis collectively refers to the headstock drive unit 14 and the tool post drive unit 24. In the machine tool 1 shown in FIGS. 1 and 2, the rotation drive unit U11 and the control shaft drive unit U12 constitute a drive unit U1 that changes the relative positional relationship between the workpiece W1 and the tool TO1.
 受付部U2は、検出装置200に検出させるための情報IN1の入力を受け付ける。受付部U2は、図2に示す操作部80でもよいし、図2に示すコンピューター100でもよい。NC装置70は、検出装置200で情報IN1を検出可能な埋め込み情報IN2を含む切削痕C1が工具TO1による加工時にワークW1に形成されるように、駆動部U1に相対的な位置関係を変化させる。埋め込み情報IN2は、ワークW1から製品W2を形成するための切削のついでに形成される。従って、ワークW1の表面に埋め込み情報IN2を形成する専用の処理は不要であり、埋め込み情報IN2を形成するための時間をほとんど要しない。ワークW1から形成される製品W2は、埋め込み情報IN2を含む切削痕C1を有している。検出装置200は、ワークW1に形成された埋め込み情報IN2から情報IN1を検出する。これにより、管理者は、埋め込み情報IN2に基づいて製品W2を管理することができる。 The reception unit U2 receives input of information IN1 to be detected by the detection device 200. The reception unit U2 may be the operation unit 80 shown in FIG. 2 or the computer 100 shown in FIG. 2. The NC device 70 changes the positional relationship relative to the drive unit U1 so that a cutting mark C1 including embedded information IN2 that can detect the information IN1 by the detection device 200 is formed on the workpiece W1 during machining by the tool TO1. . The embedded information IN2 is formed during cutting to form the product W2 from the workpiece W1. Therefore, a dedicated process for forming the embedded information IN2 on the surface of the workpiece W1 is not necessary, and almost no time is required to form the embedded information IN2. A product W2 formed from the workpiece W1 has cutting marks C1 including embedded information IN2. The detection device 200 detects information IN1 from embedded information IN2 formed in the workpiece W1. This allows the administrator to manage the product W2 based on the embedded information IN2.
 図2に示す工作機械1において、NC装置70には、操作部80、主軸回転駆動部13、工具回転駆動部23、主軸台駆動部14、刃物台駆動部24、等が接続されている。主軸回転駆動部13は、主軸11を回転させるためにモーターとサーボアンプを備えている。工具回転駆動部23は、工具TO1を回転させるためにモーターとサーボアンプを備えている。主軸台駆動部14は、制御軸に沿って主軸台10を移動させるためにモーターとサーボアンプを備えている。刃物台駆動部24は、制御軸に沿って刃物台20を移動させるためにモーターとサーボアンプを備えている。NC装置70は、プロセッサーであるCPU71、半導体メモリーであるROM72、半導体メモリーであるRAM73、時計回路74、I/F(インターフェイス)75、等を備えている。従って、NC装置70は、コンピューターの一種である。図2では、操作部80、駆動部U1、外部のコンピューター100、等のI/FをまとめてI/F75と示している。 In the machine tool 1 shown in FIG. 2, an operating section 80, a spindle rotation drive section 13, a tool rotation drive section 23, a headstock drive section 14, a tool rest drive section 24, etc. are connected to the NC device 70. The spindle rotation drive unit 13 includes a motor and a servo amplifier to rotate the spindle 11. The tool rotation drive unit 23 includes a motor and a servo amplifier to rotate the tool TO1. The headstock drive unit 14 includes a motor and a servo amplifier to move the headstock 10 along the control axis. The turret drive unit 24 includes a motor and a servo amplifier to move the turret 20 along the control axis. The NC device 70 includes a CPU 71 as a processor, a ROM 72 as a semiconductor memory, a RAM 73 as a semiconductor memory, a clock circuit 74, an I/F (interface) 75, and the like. Therefore, the NC device 70 is a type of computer. In FIG. 2, I/Fs such as the operation unit 80, the drive unit U1, and the external computer 100 are collectively shown as an I/F 75.
 ROM72には、加工プログラムPR2を解釈して実行するための制御プログラムPR1等が書き込まれている。ROM72は、データを書き換え可能な半導体メモリーでもよい。RAM73には、オペレーターにより作成された加工プログラムPR2が書き換え可能に記憶される。加工プログラムは、NCプログラムとも呼ばれる。CPU71は、RAM73をワークエリアとして使用し、ROM72に記録されている制御プログラムPR1を実行することにより、NC装置70の機能を実現させる。むろん、制御プログラムPR1により実現される機能の一部又は全部をASIC(Application Specific Integrated Circuit)といった他の手段により実現させてもよい。操作部80は、入力部81及び表示部82を備え、NC装置70のユーザーインターフェイスとして機能する。入力部81は、例えば、オペレーターから操作入力を受け付けるためのボタンやタッチパネルから構成される。表示部82は、例えば、オペレーターから操作入力を受け付けた各種設定の内容や工作機械1に関する各種情報を表示するディスプレイで構成される。オペレーターは、操作部80やコンピューター100を用いて加工プログラムPR2をRAM73に記憶させることが可能である。 A control program PR1 and the like for interpreting and executing the machining program PR2 are written in the ROM72. The ROM 72 may be a rewritable semiconductor memory. A machining program PR2 created by an operator is stored in the RAM 73 in a rewritable manner. The machining program is also called an NC program. The CPU 71 realizes the functions of the NC device 70 by using the RAM 73 as a work area and executing the control program PR1 recorded in the ROM 72. Of course, some or all of the functions realized by the control program PR1 may be realized by other means such as an ASIC (Application Specific Integrated Circuit). The operation unit 80 includes an input unit 81 and a display unit 82, and functions as a user interface for the NC device 70. The input unit 81 includes, for example, buttons and a touch panel for receiving operation input from an operator. The display unit 82 includes, for example, a display that displays the contents of various settings received from the operator and various information regarding the machine tool 1. The operator can store the machining program PR2 in the RAM 73 using the operation unit 80 or the computer 100.
 NC装置70に接続された外部のコンピューター100は、プロセッサーであるCPU(Central Processing Unit)101、半導体メモリーであるROM(Read Only Memory)102、半導体メモリーであるRAM(Random Access Memory)103、記憶装置104、入力装置105、表示装置106、音声出力装置107、I/F(インターフェイス)108、時計回路109、等を備えている。コンピューター100の制御プログラムは、記憶装置104に記憶され、CPU101によりRAM103に読み出され、CPU101により実行される。記憶装置104には、フラッシュメモリーといった半導体メモリー、ハードディスクといった磁気記録媒体、等を用いることができる。入力装置105には、ポインティングデバイス、キーボード、表示装置106の表面に貼り付けられたタッチパネル、等を用いることができる。I/F108は、NC装置70に有線又は無線で接続され、NC装置70からデータを受信したりNC装置70にデータを送信したりする。コンピューター100と工作機械1との接続は、インターネットやイントラネット等のネットワーク接続でもよい。コンピューター100には、タブレット型端末を含むパーソナルコンピューター、スマートフォンといった携帯電話、等が含まれる。 The external computer 100 connected to the NC device 70 includes a CPU (Central Processing Unit) 101 which is a processor, a ROM (Read Only Memory) 102 which is a semiconductor memory, a RAM (Random Access Memory) 103 which is a semiconductor memory, and a storage device. 104, an input device 105, a display device 106, an audio output device 107, an I/F (interface) 108, a clock circuit 109, and the like. A control program for the computer 100 is stored in the storage device 104, read into the RAM 103 by the CPU 101, and executed by the CPU 101. As the storage device 104, a semiconductor memory such as a flash memory, a magnetic recording medium such as a hard disk, etc. can be used. As the input device 105, a pointing device, a keyboard, a touch panel attached to the surface of the display device 106, or the like can be used. The I/F 108 is connected to the NC device 70 by wire or wirelessly, and receives data from the NC device 70 and transmits data to the NC device 70. The connection between the computer 100 and the machine tool 1 may be a network connection such as the Internet or an intranet. The computer 100 includes a personal computer including a tablet terminal, a mobile phone such as a smartphone, and the like.
(3)加工のついでに埋め込み情報をワークに形成する第一の例:
 次に、図3以降を参照して、工具TO1でワークW1を加工するついでに埋め込み情報IN2をワークW1に形成する例を説明する。図3は、回転する工具TO1としてのエンドミルTO2の刃先TO2tの動きによりワークW1の表面に形成される切削痕C1を模式的に例示している。図3中、「+Y」はY軸に沿った一方向を示し、「+Z」はZ軸に沿った一方向を示している。
 図3の上段に示すように、工作機械1は、ワークW1を回転も移動もさせず、X軸方向に向いたエンドミルTO2の刃先TO2tをワークW1の側面に当て、該エンドミルTO2を送り速度Fで+Z方向へ移動させるエンドミル切削を行うものとする。エンドミルTO2の刃先TO2tの軌跡300は、図3の中段に示すようなトロコイド曲線状のパターンとなる。図3に示す軌跡300は、始点301から終点302までエンドミルTO2が3回転したときの刃先TO2tの動きを示している。軌跡300のパターンは、エンドミルTO2の回転数(Nrpmとする。)、エンドミルTO2の直径(Dmmとする。)、エンドミルTO2の刃数(Z枚とする。)、及び、送り速度F(単位をmm/minとする。)によって一意的に決定される。
(3) First example of forming embedded information on a workpiece during processing:
Next, with reference to FIG. 3 and subsequent figures, an example will be described in which embedded information IN2 is formed on the workpiece W1 while the tool TO1 processes the workpiece W1. FIG. 3 schematically illustrates cutting marks C1 formed on the surface of the workpiece W1 due to the movement of the cutting edge TO2t of the end mill TO2 as the rotating tool TO1. In FIG. 3, "+Y" indicates one direction along the Y axis, and "+Z" indicates one direction along the Z axis.
As shown in the upper part of FIG. 3, the machine tool 1 applies the cutting edge TO2t of the end mill TO2 facing the X-axis direction to the side surface of the work W1 without rotating or moving the work W1, and moves the end mill TO2 at a feed rate F Assume that end mill cutting is performed by moving in the +Z direction. The locus 300 of the cutting edge TO2t of the end mill TO2 has a trochoid curve pattern as shown in the middle part of FIG. A trajectory 300 shown in FIG. 3 shows the movement of the cutting edge TO2t when the end mill TO2 rotates three times from the starting point 301 to the ending point 302. The pattern of the trajectory 300 is based on the rotation speed of the end mill TO2 (N rpm), the diameter of the end mill TO2 (D mm), the number of teeth of the end mill TO2 (Z blades), and the feed rate F (unit: mm/min).
 エンドミル切削では、ワークW1は主に、刃先TO2tがエンドミルTO2の送り側にあるときに切削される。そこで、図3の下段に示すように、+Z方向へ凸の半円状の挽き目がワークW1の表面に形成され、該挽き目が+Z方向へ繰り返された切削痕C1が生じる。送り速度Fが変わると、挽き目の間隔が変わり、切削痕C1の表面粗さが変わる。そこで、ワークW1の表面の内、+Z方向へ移動するエンドミルTO2の回転中心を含む情報領域AR1を設定することが考えられる。
 尚、図3に示すような切削痕C1は、エンドミルTO2が+Z方向へ移動する代わりにワークW1が+Z方向とは反対の-Z方向へ移動するといった、同様の相対的な位置関係の変化により形成される。
In end mill cutting, the workpiece W1 is mainly cut when the cutting edge TO2t is on the feed side of the end mill TO2. Therefore, as shown in the lower part of FIG. 3, a semicircular score convex in the +Z direction is formed on the surface of the workpiece W1, and a cutting mark C1 is created by repeating the score in the +Z direction. When the feed rate F changes, the interval between the grinding marks changes and the surface roughness of the cutting marks C1 changes. Therefore, it is conceivable to set an information area AR1 on the surface of the workpiece W1 that includes the rotation center of the end mill TO2 moving in the +Z direction.
Note that the cutting marks C1 as shown in FIG. 3 are caused by a similar change in the relative positional relationship, such as the end mill TO2 moving in the +Z direction and the workpiece W1 moving in the -Z direction opposite to the +Z direction. It is formed.
 図4は、切削痕C1に含まれる埋め込み情報IN2を模式的に例示している。図4の上部には、製品W2の表面に存在する切削痕C1が模式的に例示されている。図4の下部には、製品W2の情報領域AR1において図3のA1-A1の位置に相当する表面の凹凸形状が模式的に例示されている。
 一般に、エンドミル切削のように回転する工具TO1でワークW1を切削するフライス加工や、回転するワークW1を工具TO1で加工する旋削では、相対的な送り速度Fが速くなると切削痕C1が粗くなり、相対的な送り速度Fが遅くなると切削痕C1が比較的滑らかになる。切削痕C1が粗い場合、ワーク表面において山と谷の差が大きく、言い換えると山が高く、表面粗さ(Rとする。)が大きい。切削痕C1が比較的滑らかである場合、ワーク表面において山と谷の差が小さく、言い換えると山が低く、表面粗さRが小さい。
FIG. 4 schematically illustrates the embedded information IN2 included in the cutting mark C1. In the upper part of FIG. 4, cutting marks C1 existing on the surface of the product W2 are schematically illustrated. In the lower part of FIG. 4, a surface unevenness shape corresponding to the position A1-A1 in FIG. 3 in the information area AR1 of the product W2 is schematically illustrated.
Generally, in milling where the workpiece W1 is cut with a rotating tool TO1 such as end mill cutting, or turning where the rotating workpiece W1 is machined with the tool TO1, as the relative feed rate F increases, the cutting marks C1 become rougher. As the relative feed rate F becomes slower, the cutting marks C1 become relatively smoother. When the cutting marks C1 are rough, there is a large difference between the peaks and valleys on the workpiece surface, in other words, the peaks are high and the surface roughness (referred to as R) is large. When the cutting marks C1 are relatively smooth, the difference between peaks and valleys on the workpiece surface is small, in other words, the peaks are low and the surface roughness R is small.
 表面粗さRには、最大高さ粗さRz、算術平均粗さRa、十点平均粗さRzJIZ、等が含まれる。これらの表面粗さRは、JIS(日本産業規格)B0601:2013(ISO(国際標準化機構)4287:1997、Amendment 1(2009))等に規定されている。
 最大高さ粗さRzは、粗さ曲線から基準長さを抜き取った部分における山頂線と谷底線との間隔である。算術平均粗さRaは、粗さ曲線から基準長さ(Lとする。)を抜き取った部分において、平均線の方向の座標をxとし、粗さ曲線の凹凸の座標をf(x)として、f(x)の絶対値の積分値を基準長さLで除した値である。
Figure JPOXMLDOC01-appb-M000001

十点平均粗さRzJIZは、粗さ曲線から基準長さを抜き取った部分において、最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和である。これらの表面粗さRの単位は、通常、マイクロメートル(μm)である。いずれの表面粗さRも、大きい場合には山と谷の差が大きく、小さい場合には山と谷の差が小さいといえる。
The surface roughness R includes maximum height roughness Rz, arithmetic mean roughness Ra, ten-point mean roughness RzJIZ, and the like. These surface roughnesses R are specified in JIS (Japanese Industrial Standard) B0601:2013 (ISO (International Organization for Standardization) 4287:1997, Amendment 1 (2009)), etc.
The maximum height roughness Rz is the distance between the peak line and the valley bottom line in the part where the reference length is extracted from the roughness curve. The arithmetic mean roughness Ra is determined by setting the coordinate in the direction of the average line to x and the coordinate of the unevenness of the roughness curve to f(x) in the part where the reference length (L) is extracted from the roughness curve. This is the value obtained by dividing the integral value of the absolute value of f(x) by the reference length L.
Figure JPOXMLDOC01-appb-M000001

The ten-point average roughness RzJIZ is the average of the absolute values of the elevations of the highest to fifth mountain peaks and the lowest to fifth valley bottoms in the part where the reference length is extracted from the roughness curve. It is the sum of the absolute value of altitude and the average value. The unit of these surface roughnesses R is usually micrometers (μm). It can be said that when any surface roughness R is large, the difference between the peaks and the valleys is large, and when it is small, the difference between the peaks and the valleys is small.
 図4に示すように、送り速度Fが互いに異なる第一速度F1及び第二速度F2になり得るとする。図4において、第二速度F2は、第一速度F1よりも遅い。送り速度Fが比較的速い第一速度F1である時、切削痕C1において山と谷の差が大きく、切削痕C1の表面粗さRが大きい。製品W2においてF=F1で切削された箇所の表面状態を第一状態ST1とし、製品表面の第一状態ST1を表面粗さ計で測定することにより得られる表面粗さRを第一表面粗さR1とする。送り速度Fが比較的遅い第二速度F2である時、切削痕C1において山と谷の差が小さく、切削痕C1の表面粗さRが小さい。製品W2においてF=F2で切削された箇所の表面状態を第一状態ST1とな異なる第二状態ST2とし、製品表面の第二状態ST2を表面粗さ計で測定することにより得られる表面粗さRを第二表面粗さR2とする。第二表面粗さR2は、第一表面粗さR1よりも小さい。 As shown in FIG. 4, it is assumed that the feed speed F can be a first speed F1 and a second speed F2 that are different from each other. In FIG. 4, the second speed F2 is slower than the first speed F1. When the feed rate F is a relatively fast first speed F1, the difference between peaks and valleys in the cutting marks C1 is large, and the surface roughness R of the cutting marks C1 is large. The surface condition of the part cut at F=F1 in product W2 is defined as the first state ST1, and the surface roughness R obtained by measuring the first state ST1 of the product surface with a surface roughness meter is the first surface roughness. Let it be R1. When the feed rate F is the relatively slow second speed F2, the difference between peaks and valleys in the cutting marks C1 is small, and the surface roughness R of the cutting marks C1 is small. The surface roughness obtained by setting the surface state of the part cut at F=F2 in product W2 to a second state ST2 different from the first state ST1, and measuring the second state ST2 of the product surface with a surface roughness meter. Let R be the second surface roughness R2. The second surface roughness R2 is smaller than the first surface roughness R1.
 以上より、切削痕C1の埋め込み情報IN2を複数の単位情報IN3に分け、各単位情報IN3が少なくとも第一状態ST1及び第二状態ST2になり得るようにNC装置70がワークW1の加工を制御することができる。図4に示す例では、元の情報IN1が2値で表され、元の情報IN1に含まれる単位情報”0”が第一表面粗さR1となる第一状態ST1に割り当てられ、元の情報IN1に含まれる単位情報”1”が第二表面粗さR2となる第二状態ST2に割り当てられている。NC装置70は、元の”0”に対応する第一状態ST1の単位情報IN3を切削痕C1に埋め込む場合、送り速度Fを第一速度F1に制御する。このようにして、NC装置70は、単位情報IN3を第一状態ST1にする場合に該第一状態ST1の単位情報IN3がワークW1に形成されるように制御軸駆動部U12にワークW1と工具TO1との相対的な位置関係を第一速度F1で変化させる。NC装置70は、元の”1”に対応する第二状態ST2の単位情報IN3を切削痕C1に埋め込む場合、送り速度Fを第二速度F2に制御する。このようにして、NC装置70は、単位情報IN3を第二状態ST2にする場合に該第二状態ST2の単位情報IN3がワークW1に形成されるように制御軸駆動部U12に相対的な位置関係を第二速度F2で変化させる。 As described above, the NC device 70 divides the embedded information IN2 of the cutting mark C1 into a plurality of unit information IN3, and controls the machining of the workpiece W1 so that each unit information IN3 can be at least in the first state ST1 and the second state ST2. be able to. In the example shown in FIG. 4, the original information IN1 is expressed as a binary value, and the unit information "0" included in the original information IN1 is assigned to the first state ST1 having the first surface roughness R1, and the original information The unit information “1” included in IN1 is assigned to the second state ST2 where the second surface roughness is R2. The NC device 70 controls the feed speed F to the first speed F1 when embedding the unit information IN3 of the first state ST1 corresponding to the original "0" into the cutting mark C1. In this way, the NC device 70 causes the control shaft drive unit U12 to control the workpiece W1 and the tool so that when the unit information IN3 is set to the first state ST1, the unit information IN3 of the first state ST1 is formed on the workpiece W1. The relative positional relationship with TO1 is changed at a first speed F1. When embedding the unit information IN3 of the second state ST2 corresponding to the original "1" into the cutting mark C1, the NC device 70 controls the feed speed F to the second speed F2. In this way, the NC device 70 positions the unit information IN3 in the second state ST2 relative to the control shaft drive unit U12 so that the unit information IN3 in the second state ST2 is formed on the workpiece W1. The relationship is changed at a second speed F2.
 検出装置200は、製品W2の表面の埋め込み情報IN2に含まれる各単位情報IN3の表面粗さRを測定し、表面粗さRと単位情報との対応関係に従って元の情報IN1を検出する。例えば、第一表面粗さR1と第二表面粗さR2との閾値をTHRとすると、検出装置200は、表面粗さRが閾値THRよりも大きい場合に単位情報に”0”を割り当て、表面粗さRが閾値THRよりも小さい場合に単位情報に”1”を割り当てることができる。R=THRである場合、検出装置200は、単位情報に”0”を割り当ててもよいし、単位情報に”1”を割り当ててもよい。
 以上のようにして、検出装置200は、ワークW1に形成された埋め込み情報IN2から元の情報IN1を検出する。尚、検出装置200は、表面粗さ計を用いた検出装置に限定されず、埋め込み情報IN2を撮像して画像を解析する画像処理装置、レーザー変位計、渦電流変位計、三次元測定機、等を用いることができる。
The detection device 200 measures the surface roughness R of each unit information IN3 included in the embedded information IN2 on the surface of the product W2, and detects the original information IN1 according to the correspondence between the surface roughness R and the unit information. For example, if the threshold value between the first surface roughness R1 and the second surface roughness R2 is THR, the detection device 200 assigns "0" to the unit information when the surface roughness R is larger than the threshold value THR, and When the roughness R is smaller than the threshold THR, "1" can be assigned to the unit information. When R=THR, the detection device 200 may assign "0" to the unit information or may assign "1" to the unit information.
As described above, the detection device 200 detects the original information IN1 from the embedded information IN2 formed in the workpiece W1. Note that the detection device 200 is not limited to a detection device using a surface roughness meter, and may include an image processing device that images the embedded information IN2 and analyzes the image, a laser displacement meter, an eddy current displacement meter, a three-dimensional measuring device, etc. can be used.
 図5に例示するように、埋め込み情報IN2の挽き目パターンは、JAN(Japanese Article Number)コードのようにITF(Interleaved Two of Five)シンボル等で表現されるバーコードの規格に準拠してもよい。図5は、バーコード状の埋め込み情報IN2を形成する例を模式的に示している。
 JANコードのようなITF系連続コードは、濃淡それぞれに2種類の幅を有するバーコードである。図5中、「NB」は狭い幅の濃い棒を意味するナローバーであり、「WB」は太い幅の濃い棒を意味するワイドバーであり、「NS」は狭い幅の隙間を意味するナロースペースであり、「WS」は広い幅の隙間を意味するワイドスペースである。一般に、NBとNSの幅は同じであり、WBとWSの幅は同じであり、WB/NBは2~3である。
As illustrated in FIG. 5, the cut pattern of the embedded information IN2 may conform to a bar code standard expressed by an ITF (Interleaved Two of Five) symbol, such as a JAN (Japanese Article Number) code. . FIG. 5 schematically shows an example of forming barcode-shaped embedded information IN2.
An ITF continuous code such as the JAN code is a barcode that has two widths for each shade. In Figure 5, "NB" is a narrow bar meaning a narrow bar, "WB" is a wide bar meaning a thick bar, and "NS" is a narrow space meaning a narrow gap. , and "WS" is wide space, meaning a wide gap. Generally, the widths of NB and NS are the same, the widths of WB and WS are the same, and WB/NB is 2-3.
 そこで、NC装置70は、複数の単位情報IN3がNB、WB、NS、及び、WSを含むように送り速度F及び長さを制御してもよい。図5において、NBとWBの形成時、送り速度Fは比較的速いF1=0.1mm/revであり、単位情報IN3の表面状態は第一状態ST1になる。NSとWSの形成時、送り速度Fは比較的遅いF2=0.05mm/revであり、単位情報IN3の表面状態は第二状態ST2になる。NBとNSの形成時、単位情報一つ分の長さ0.3mmとなるように、エンドミルTO2といった工具TO1の回転回数が設定されている。NBに対応する回転回数は3revであり、NSに対応する回転回数は6revである。WBとWSの形成時、単位情報二つ分の長さ0.6mmとなるように、工具TO1の回転回数が設定されている。WBに対応する回転回数は6revであり、WSに対応する回転回数は12revである。
 以上の制御により、NB、WB、NS、及び、WSを含む埋め込み情報IN2を切削痕C1に有する製品W2が得られる。検出装置200には、表面粗さ計等の他、バーコードリーダーに類似する原理で情報を読み取る装置を用いることができる。
Therefore, the NC device 70 may control the feed speed F and length so that the plurality of unit information IN3 includes NB, WB, NS, and WS. In FIG. 5, when forming the NB and WB, the feed rate F is relatively fast F1=0.1 mm/rev, and the surface state of the unit information IN3 becomes the first state ST1. When forming NS and WS, the feed rate F is relatively slow F2 = 0.05 mm/rev, and the surface state of the unit information IN3 becomes the second state ST2. When forming NB and NS, the number of rotations of the tool TO1 such as the end mill TO2 is set so that the length of one piece of unit information is 0.3 mm. The number of rotations corresponding to NB is 3 rev, and the number of rotations corresponding to NS is 6 rev. When forming the WB and WS, the number of rotations of the tool TO1 is set so that the length of the two unit information is 0.6 mm. The number of rotations corresponding to WB is 6 rev, and the number of rotations corresponding to WS is 12 rev.
By the above control, a product W2 having the embedded information IN2 including NB, WB, NS, and WS in the cutting mark C1 is obtained. As the detection device 200, in addition to a surface roughness meter, a device that reads information based on a principle similar to a barcode reader can be used.
 図6,7に例示するように、単位情報IN3は、2値に限定されない。
 図6は、4値の単位情報IN3を同じ長さで形成する例を模式的に示している。図6において、単位情報IN3の長さは、”0”、”1”、”2”、及び、”3”のいずれも0.6mmと同じである。”0”の単位情報IN3の形成時、送り速度Fは最も速い0.2mm/revであり、エンドミルTO2といった工具の回転回数は3revであり、単位情報IN3の表面状態は第一状態ST1になるものとする。”1”の単位情報IN3の形成時、送り速度Fは0.15mm/revであり、工具TO1の回転回数は4revであり、単位情報IN3の表面状態は第二状態ST2になるものとする。”2”の単位情報IN3の形成時、送り速度Fは0.1mm/revであり、工具TO1の回転回数は6revであり、単位情報IN3の表面状態は前述の状態とは異なる第三状態になるものとする。”3”の単位情報IN3の形成時、送り速度Fは最も遅い0.05mm/revであり、工具TO1の回転回数は12revであり、単位情報IN3の表面状態は前述の状態とは異なる第四状態になるものとする。図6に示す例は、単位情報IN3の長さが変わらないので、検出装置200は長さを基準として各単位情報IN3をデコードすることができる。
As illustrated in FIGS. 6 and 7, the unit information IN3 is not limited to binary values.
FIG. 6 schematically shows an example in which four-valued unit information IN3 is formed with the same length. In FIG. 6, the length of unit information IN3 is the same as 0.6 mm for all of "0", "1", "2", and "3". When the unit information IN3 of "0" is formed, the feed rate F is the fastest 0.2 mm/rev, the number of rotations of the tool such as the end mill TO2 is 3 rev, and the surface state of the unit information IN3 becomes the first state ST1. shall be taken as a thing. When the unit information IN3 of "1" is formed, the feed rate F is 0.15 mm/rev, the number of rotations of the tool TO1 is 4 rev, and the surface state of the unit information IN3 is assumed to be in the second state ST2. When the unit information IN3 of "2" is formed, the feed rate F is 0.1 mm/rev, the number of rotations of the tool TO1 is 6 rev, and the surface state of the unit information IN3 is in a third state different from the above-mentioned state. shall become. When forming the unit information IN3 of "3", the feed rate F is the slowest 0.05 mm/rev, the number of rotations of the tool TO1 is 12 rev, and the surface condition of the unit information IN3 is the fourth one, which is different from the above-mentioned condition. shall be in the state. In the example shown in FIG. 6, since the length of the unit information IN3 does not change, the detection device 200 can decode each unit information IN3 based on the length.
 図7は、4値の単位情報IN3を同じ回転回数で形成する例を模式的に示している。図7において、エンドミルTO2といった工具TO1の回転回数は、”0”、”1”、”2”、及び、”3”のいずれも3revと同じである。”0”の単位情報IN3の形成時、送り速度Fは最も速い0.2mm/revであり、単位情報IN3の長さは0.6mmであり、単位情報IN3の表面状態は第一状態ST1になるものとする。”1”の単位情報IN3の形成時、送り速度Fは0.15mm/revであり、単位情報IN3の長さは0.45mmであり、単位情報IN3の表面状態は第二状態ST2になるものとする。”2”の単位情報IN3の形成時、送り速度Fは0.1mm/revであり、単位情報IN3の長さは0.3mmであり、単位情報IN3の表面状態は前述の状態とは異なる第三状態になるものとする。”3”の単位情報IN3の形成時、送り速度Fは最も遅い0.05mm/revであり、単位情報IN3の長さは0.15mmであり、単位情報IN3の表面状態は前述の状態とは異なる第四状態になるものとする。図7に示す例は、単位情報IN3の長さが変わるものの、工具TO1の回転回数に対応する山の数で単位情報IN3の長さを検出することができるので、検出装置200は切削痕C1の山の数を基準として各単位情報IN3をデコードすることができる。 FIG. 7 schematically shows an example in which the four-valued unit information IN3 is formed by the same number of rotations. In FIG. 7, the number of rotations of the tool TO1 such as the end mill TO2 is "0", "1", "2", and "3", all of which are the same as 3rev. When forming the unit information IN3 of "0", the feed speed F is the fastest 0.2 mm/rev, the length of the unit information IN3 is 0.6 mm, and the surface state of the unit information IN3 is in the first state ST1. shall become. When forming the unit information IN3 of "1", the feed rate F is 0.15 mm/rev, the length of the unit information IN3 is 0.45 mm, and the surface state of the unit information IN3 becomes the second state ST2. shall be. When forming the unit information IN3 of "2", the feed rate F is 0.1 mm/rev, the length of the unit information IN3 is 0.3 mm, and the surface state of the unit information IN3 is different from the above-mentioned state. Assume that there are three states. When forming the unit information IN3 of "3", the feed speed F is the slowest 0.05 mm/rev, the length of the unit information IN3 is 0.15 mm, and the surface condition of the unit information IN3 is different from the above-mentioned condition. It is assumed that the fourth state is different. In the example shown in FIG. 7, although the length of the unit information IN3 changes, the length of the unit information IN3 can be detected by the number of peaks corresponding to the number of rotations of the tool TO1. Each unit information IN3 can be decoded based on the number of peaks.
 以下、図8を参照して、加工のついでに埋め込み情報IN2をワークW1に形成する処理の具体例を説明する。図8は、ワークW1から製品W2を形成するための切削コマンドCD1の入力を受け付けて切削コマンドCD1を実行する切削制御処理を模式的に例示している。切削制御処理はNC装置70と操作部80で行われるものとするが、外部のコンピューター100が切削制御処理の一部を行ってもよい。図8に示す切削制御処理において、受付部U2がステップS102の処理を行い、制御部U3がステップS104~S106の処理を行う。
 まず、NC装置70及び操作部80は、切削コマンドCD1の入力を受け付ける(ステップS102)。切削コマンドCD1は、ワークW1から製品W2を形成するためのコマンドであり、埋め込み情報IN2を形成する専用のコマンドではない。図8に示す切削コマンドCD1は、「M」から始まる切削コード番号mmm、「Z」から始まるZ軸の基準位置zzz、「F」から始まる上限速度fff、及び、「D」から始まる情報dddを含んでいる。基本的には、切削コマンドCD1は、製品W2を形成するために、Z軸方向において基準位置zzzから上限速度fffを超えない送り速度でワークW1と工具TO1とを相対的に移動させてワークW1を工具TO1で切削するコマンドである。この切削コマンドCD1に埋め込み対象の情報dddが含まれている。尚、ワークW1と工具TO1との相対的な移動方向がX軸に沿っている場合は「Zzzz」を「X」から始まるX軸の基準位置xxxに置き換えればよく、Y軸の場合は「Zzzz」を「Y」から始まるY軸の基準位置yyyに置き換えればよい。「Ffff」は省略可能であり、「Ffff」が省略されるとデフォルトの上限速度が適用される。情報dddは、検出装置200に検出させるための情報IN1に相当する。ステップS102の処理は、NC装置70の制御に従って操作部80が切削コマンドCD1の入力を受け付ける処理でもよいし、コンピューター100が切削コマンドCD1の入力を受け付ける処理でもよい。また、ステップS102の処理は、切削コマンドCD1を含む加工プログラムPR2の入力を受け付ける処理でもよい。
Hereinafter, with reference to FIG. 8, a specific example of the process of forming the embedded information IN2 on the workpiece W1 during processing will be described. FIG. 8 schematically illustrates a cutting control process in which input of a cutting command CD1 for forming a product W2 from a workpiece W1 is received and the cutting command CD1 is executed. Although the cutting control process is assumed to be performed by the NC device 70 and the operation unit 80, an external computer 100 may perform a part of the cutting control process. In the cutting control process shown in FIG. 8, the reception unit U2 performs the process in step S102, and the control unit U3 performs the processes in steps S104 to S106.
First, the NC device 70 and the operation unit 80 accept the input of the cutting command CD1 (step S102). The cutting command CD1 is a command for forming the product W2 from the workpiece W1, and is not a dedicated command for forming the embedded information IN2. The cutting command CD1 shown in FIG. 8 includes a cutting code number mmm starting from "M", a Z-axis reference position zzz starting from "Z", an upper limit speed fff starting from "F", and information ddd starting from "D". Contains. Basically, the cutting command CD1 cuts the workpiece W1 by relatively moving the workpiece W1 and the tool TO1 in the Z-axis direction from the reference position zzz at a feed rate that does not exceed the upper limit speed fff in order to form the product W2. This is a command to cut with tool TO1. This cutting command CD1 includes information ddd to be embedded. In addition, if the relative movement direction between the workpiece W1 and the tool TO1 is along the X-axis, "Zzzzz" may be replaced with the reference position xxx of the X-axis starting from "X", and in the case of the Y-axis, "Zzzzz" ” should be replaced with the Y-axis reference position yyy starting from “Y”. "Ffff" can be omitted, and if "Ffff" is omitted, the default upper limit speed is applied. The information ddd corresponds to information IN1 for the detection device 200 to detect. The process of step S102 may be a process in which the operation unit 80 receives the input of the cutting command CD1 under the control of the NC device 70, or a process in which the computer 100 receives the input of the cutting command CD1. Moreover, the process of step S102 may be a process of accepting input of the machining program PR2 including the cutting command CD1.
 ステップS102の後、NC装置70(又はコンピューター100)は、単位情報IN3の各状態の送り速度Fを設定する(ステップS104)。例えば、図4に示すように第一表面粗さR1となる第一状態ST1の単位情報IN3を第一速度F1で形成して第二表面粗さR2となる第二状態ST2の単位情報IN3を第二速度F2で形成すると想定する。F1>F2であるので、NC装置70は、第一速度F1を上限速度fffに設定し、0<k<1である所定比kを上限速度fffに乗じた速度k×fffに第二速度F2を設定する。ワークW1と工具TO1とを相対的に移動させる速度が上限速度fffに制限される状態でワークW1に埋め込み情報IN2を形成することができるので、製品を所望の面粗度に抑えることができる。 After step S102, the NC device 70 (or computer 100) sets the feed rate F for each state of the unit information IN3 (step S104). For example, as shown in FIG. 4, unit information IN3 of a first state ST1 having a first surface roughness R1 is formed at a first speed F1 to obtain unit information IN3 of a second state ST2 having a second surface roughness R2. Assume that it is formed at a second speed F2. Since F1>F2, the NC device 70 sets the first speed F1 to the upper limit speed fff, and sets the second speed F2 to the speed k×fff, which is obtained by multiplying the upper limit speed fff by a predetermined ratio k where 0<k<1. Set. Since the embedded information IN2 can be formed on the workpiece W1 while the relative movement speed of the workpiece W1 and the tool TO1 is limited to the upper limit speed fff, it is possible to suppress the surface roughness of the product to a desired level.
 送り速度Fの設定後、NC装置70は、入力を受け付けた情報dddを構成する複数の単位情報IN3の状態に応じた送り速度Fで回転状態の工具TO1をZ軸方向へ移動させながらワークW1を切削するように駆動部U1を制御する(ステップS106)。例えば、情報dddが10進数で「105」であって2進数で「01101001」と表される場合、NC装置70は、単位情報”0”の埋め込み箇所において刃物台駆動部24に工具TO1をZ軸方向へ第一速度F1で移動させ、単位情報”1”の埋め込み箇所において刃物台駆動部24に工具TO1をZ軸方向へ第二速度F2で移動させる。これにより、埋め込み情報IN2の表面状態は、単位情報IN3の単位で、第一表面粗さR1となる第一状態ST1、第二表面粗さR2となる第二状態ST2、第二状態ST2、第一状態ST1、第二状態ST2、第一状態ST1、第一状態ST1、及び、第二状態ST2と変化する。管理者は、製品に関する情報、商品に関する情報、製品の扱いに関する情報、等を情報dddに紐付けておくことにより、様々な管理を行うことができる。 After setting the feed rate F, the NC device 70 moves the rotating tool TO1 in the Z-axis direction at a feed rate F that corresponds to the state of the plurality of unit information IN3 constituting the input information ddd while moving the workpiece W1. The drive unit U1 is controlled so as to cut (step S106). For example, when the information ddd is "105" in decimal and expressed as "01101001" in binary, the NC device 70 sends the tool TO1 to the tool rest drive unit 24 at the location where the unit information "0" is embedded. The tool TO1 is moved in the axial direction at a first speed F1, and the tool TO1 is caused to be moved in the Z-axis direction at a second speed F2 by the tool post drive unit 24 at the location where the unit information "1" is embedded. As a result, the surface state of the embedded information IN2 is determined in units of the unit information IN3: a first state ST1 having a first surface roughness R1, a second state ST2 having a second surface roughness R2, a second state ST2, a second state ST2 having a second surface roughness R2, and a second state ST2 having a second surface roughness R2. The state changes from one state ST1, second state ST2, first state ST1, first state ST1, and second state ST2. The administrator can perform various types of management by linking information about products, information about products, information about handling of products, etc. to information ddd.
 以上より、NC装置70は、第一速度F1を上限速度fffに合わせて第一状態ST1の単位情報IN3がワークW1に形成されるように刃物台駆動部24に工具TO1をZ軸方向へ移動させる。当該NC装置70は、第二速度F2を上限速度fffよりも遅い速度k×fffに合わせて第二状態ST2の単位情報IN3がワークW1に形成されるように刃物台駆動部24に工具TO1をZ軸方向へ移動させる。いずれの場合も、NC装置70は、埋め込み情報IN2を含む切削痕C1が工具TO1による加工時にワークW1に形成されるように、工具回転駆動部23に工具TO1を回転させ、制御軸駆動部U12にワークW1と工具TO1との相対的な位置関係を変化させることになる。
 ステップS106の後、NC装置70は、切削制御処理を終了させる。
As described above, the NC device 70 causes the tool post drive section 24 to move the tool TO1 in the Z-axis direction so that the first speed F1 is adjusted to the upper limit speed fff and the unit information IN3 of the first state ST1 is formed on the workpiece W1. let The NC device 70 sets the second speed F2 to a speed k×fff that is slower than the upper limit speed fff, and causes the tool TO1 to be applied to the tool post drive unit 24 so that the unit information IN3 of the second state ST2 is formed on the workpiece W1. Move in the Z-axis direction. In either case, the NC device 70 causes the tool rotation drive unit 23 to rotate the tool TO1 so that cutting marks C1 including the embedded information IN2 are formed on the workpiece W1 during machining by the tool TO1, and the control shaft drive unit U12 The relative positional relationship between the workpiece W1 and the tool TO1 is changed.
After step S106, the NC device 70 ends the cutting control process.
 図9は、検出装置200の構成例及び処理例を模式的に示している。
 図9の上部に示す検出装置200は、表面粗さ計201、表示部202、及び、計測制御部203を含んでいる。計測制御部203は、CPU、ROM、RAM、等を備え、表面粗さ計201から表面粗さRを取得し、埋め込み情報IN2から情報IN1を検出して表示部202に表示させる。むろん、計測制御部203の一部又は全部は、ASICといった他の手段により実現されてもよい。図9の下部には、計測制御部203により行われるデコード処理が示されている。製品W2に存在する埋め込み情報IN2を読み取るための操作が表面粗さ計201に行われると、デコード処理が開始する。
FIG. 9 schematically shows a configuration example and a processing example of the detection device 200.
The detection device 200 shown in the upper part of FIG. 9 includes a surface roughness meter 201, a display section 202, and a measurement control section 203. The measurement control unit 203 includes a CPU, ROM, RAM, etc., acquires the surface roughness R from the surface roughness meter 201, detects information IN1 from the embedded information IN2, and displays it on the display unit 202. Of course, part or all of the measurement control unit 203 may be realized by other means such as ASIC. The lower part of FIG. 9 shows decoding processing performed by the measurement control unit 203. When the surface roughness meter 201 performs an operation to read the embedded information IN2 present in the product W2, the decoding process starts.
 デコード処理が開始すると、計測制御部203は、表面粗さ計201から単位情報IN3の表面粗さRを順次、取得する(ステップS202)。上述したように、表面粗さRは、最大高さ粗さRzでもよいし、算術平均粗さRaでもよいし、十点平均粗さRzJIZ等でもよい。次に、計測制御部203は、表面粗さRを元の単位情報にデコードする(ステップS204)。例えば、図4に示すように第一表面粗さR1が単位情報”0”に対応して第二表面粗さR2が単位情報”1”に対応すると想定する。計測制御部203は、表面粗さRが閾値THRよりも大きい場合に単位情報に”0”を割り当てることができ、表面粗さRが閾値THRよりも小さい場合に単位情報に”1”を割り当てることができる。R=THRである場合、検出装置200は、単位情報に”0”と”1”のどちらを割り当ててもよい。 When the decoding process starts, the measurement control unit 203 sequentially acquires the surface roughness R of the unit information IN3 from the surface roughness meter 201 (step S202). As described above, the surface roughness R may be the maximum height roughness Rz, the arithmetic mean roughness Ra, the ten-point average roughness RzJIZ, or the like. Next, the measurement control unit 203 decodes the surface roughness R into the original unit information (step S204). For example, as shown in FIG. 4, it is assumed that the first surface roughness R1 corresponds to the unit information "0" and the second surface roughness R2 corresponds to the unit information "1". The measurement control unit 203 can assign "0" to the unit information when the surface roughness R is larger than the threshold value THR, and assign "1" to the unit information when the surface roughness R is smaller than the threshold value THR. be able to. When R=THR, the detection device 200 may assign either "0" or "1" to the unit information.
 計測制御部203は、埋め込み情報IN2に含まれる全ての単位情報IN3が元の単位情報にデコードされるまで、ステップS202~S204の処理を繰り返す(ステップS206)。埋め込み情報IN2に含まれる全ての単位情報IN3が元の単位情報にデコードされた場合、計測制御部203は、埋め込み情報IN2から検出された情報IN1を表示部202に表示させ(ステップS208)、デコード処理を終了させる。例えば、デコードされた情報IN1が2進数で「01101001」であって10進数で「105」である場合、計測制御部203は、「105」を表示部202に表示させてもよい。管理者は、表示情報「105」を視認することにより、様々な管理を行うことができる。
 以上より、検出装置200は、ワークW1に形成された埋め込み情報IN2から情報IN1を検出する。
The measurement control unit 203 repeats the processing of steps S202 to S204 until all the unit information IN3 included in the embedded information IN2 is decoded into the original unit information (step S206). When all the unit information IN3 included in the embedded information IN2 has been decoded into the original unit information, the measurement control unit 203 displays the information IN1 detected from the embedded information IN2 on the display unit 202 (step S208), and decodes the information IN3. Terminate the process. For example, if the decoded information IN1 is “01101001” in binary and “105” in decimal, the measurement control unit 203 may display “105” on the display unit 202. The administrator can perform various management by visually checking the displayed information "105".
As described above, the detection device 200 detects the information IN1 from the embedded information IN2 formed in the workpiece W1.
 例えば、情報dddが製造日である場合、管理者は、製造日毎に製品W2をまとめておけば、まとめられた製品W2のいずれかに存在する埋め込み情報IN2を検出装置200に読み取らせることにより、当該製品W2に紐付けられた元の情報IN1を確認することができる。これにより、管理者は、識別コードを印刷したシールを製品W2に貼ったり、製品W2に刻印を打ったりしなくても、まとめられた製品W2の単位で製造日を把握することができ、効率よく在庫管理を行うことができる。また、製品W2に不良品が生じた場合、管理者は、不良品が生じた製品W2の埋め込み情報IN2を検出装置200に読み取らせることにより、当該製品W2に紐付けられた元の情報IN1を確認することができる。これにより、管理者は、不良の原因を製造日に絞って効率よく調査することができる。 For example, if the information ddd is the manufacturing date, the administrator can group the products W2 by manufacturing date and have the detection device 200 read the embedded information IN2 present in any of the grouped products W2. The original information IN1 linked to the product W2 can be confirmed. As a result, the administrator can grasp the manufacturing date of each product W2 without putting a sticker with an identification code printed on it or stamping it on the product W2, making it more efficient. Able to manage inventory well. In addition, when a defective product occurs in the product W2, the administrator causes the detection device 200 to read the embedded information IN2 of the product W2 in which the defective product occurs, and thereby retrieves the original information IN1 linked to the product W2. It can be confirmed. This allows the administrator to efficiently investigate the cause of the defect by narrowing it down to the manufacturing date.
 情報dddが部品ナンバーである場合、管理者は、部品の種類毎に製品W2をまとめておけば、まとめられた製品W2のいずれかに存在する埋め込み情報IN2を検出装置200に読み取らせることにより、当該製品W2に紐付けられた元の情報IN1を確認することができる。これにより、管理者は、まとめられた製品W2の単位で部品の種類を把握することができ、効率よく在庫管理を行うことができる。
 情報dddが取説情報に紐付けられている場合、管理者は、製品W2に存在する埋め込み情報IN2を検出装置200に読み取らせることにより、当該製品W2に紐付けられた元の情報IN1を確認することができる。これにより、管理者は、情報IN1に紐付けられた取説情報を参照することにより、製品W2を容易に使用することができる。
If the information ddd is a part number, the administrator can group the products W2 by type of parts and have the detection device 200 read the embedded information IN2 present in any of the grouped products W2. The original information IN1 linked to the product W2 can be confirmed. Thereby, the manager can grasp the type of parts in units of the grouped products W2, and can efficiently manage inventory.
If the information ddd is linked to the instruction manual information, the administrator checks the original information IN1 linked to the product W2 by having the detection device 200 read the embedded information IN2 present in the product W2. can do. Thereby, the administrator can easily use the product W2 by referring to the instruction manual information linked to the information IN1.
 以上説明したように、オペレーターが製品W2に紐付けたい情報IN1を工作機械1に入力すると、検出装置200で情報IN1を検出可能な埋め込み情報IN2を含む切削痕C1が工具TO1による加工時にワークW1に形成される。製品W2に情報IN1を付加するためにワークW1の加工が利用されるので、製品W2に情報IN1を付加する専用の加工処理は不要である。管理者は、製品W2にシールを貼ったり刻印を打ったりする作業を行わなくても、検出装置200で埋め込み情報IN2から検出される情報IN1に基づいて製品W2を管理することができる。 As explained above, when the operator inputs the information IN1 that he/she wants to associate with the product W2 into the machine tool 1, the cutting mark C1 containing the embedded information IN2 that can detect the information IN1 with the detection device 200 appears on the workpiece W2 during machining with the tool TO1. is formed. Since the processing of the workpiece W1 is used to add the information IN1 to the product W2, there is no need for a dedicated processing process to add the information IN1 to the product W2. The administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200 without having to put a sticker or stamp on the product W2.
(4)加工のついでに埋め込み情報をワークに形成する第二の例:
 埋め込み情報IN2をワークW1に形成する加工は、フライス加工に限定されず、旋削でもよい。
 図10は、回転するワークW1の側面にバイトTO3の動きにより形成される切削痕C1を模式的に例示している。
(4) Second example of forming embedded information on the workpiece during processing:
The processing for forming the embedded information IN2 on the workpiece W1 is not limited to milling, but may also be turning.
FIG. 10 schematically illustrates cutting marks C1 formed on the side surface of the rotating workpiece W1 by the movement of the cutting tool TO3.
 図10の上部に示すように、工作機械1は、主軸中心線AX1を中心としてワークW1を回転させ、Y軸方向に向いたバイトTO3の刃先TO3tをワークW1の側面に当て、該バイトTO3を送り速度Fで+Z方向へ移動させる旋削を行うものとする。バイトTO3の刃先TO3tの軌跡は、主軸中心線AX1を中心とする螺旋状のパターンとなる。軌跡のパターンは、主軸11の回転数、ワークW1の直径、及び、送り速度Fによって一意的に決定される。ワークW1の側面には、螺旋状の挽き目が+Z方向へ続く切削痕C1が生じる。送り速度Fが変わると、挽き目の間隔が変わり、切削痕C1の表面粗さが変わる。そこで、ワークW1の側面の内、Z軸に沿った情報領域AR1を設定することが考えられる。
 むろん、図10に示すような切削痕C1は、バイトTO3が+Z方向へ移動する代わりにワークW1が-Z方向へ移動するといった、同様の相対的な位置関係の変化により形成される。
As shown in the upper part of FIG. 10, the machine tool 1 rotates the workpiece W1 around the spindle center line AX1, applies the cutting edge TO3t of the cutting tool TO3 facing the Y-axis direction to the side surface of the workpiece W1, and rotates the cutting tool TO3. Assume that turning is performed by moving in the +Z direction at a feed rate F. The locus of the cutting edge TO3t of the cutting tool TO3 is a spiral pattern centered on the spindle center line AX1. The trajectory pattern is uniquely determined by the rotational speed of the main shaft 11, the diameter of the work W1, and the feed rate F. On the side surface of the workpiece W1, a cutting mark C1 is created which continues in the +Z direction in a spiral shape. When the feed rate F changes, the interval between the grinding marks changes and the surface roughness of the cutting marks C1 changes. Therefore, it is conceivable to set the information area AR1 along the Z axis on the side surface of the workpiece W1.
Of course, the cutting marks C1 as shown in FIG. 10 are formed by a similar change in the relative positional relationship, such as the workpiece W1 moving in the -Z direction instead of the cutting tool TO3 moving in the +Z direction.
 上述したように、相対的な送り速度Fが速くなると切削痕C1が粗くなり、相対的な送り速度Fが遅くなると切削痕C1が比較的滑らかになる。図10の下部に示すように、送り速度Fが比較的速い第一速度F1である時、切削痕C1は山と谷の差が大きい第一状態ST1であり、切削痕C1の表面粗さRが大きい。送り速度Fが比較的遅い第二速度F2である時、切削痕C1において山と谷の差が小さい第二状態ST2であり、切削痕C1の表面粗さRが小さい。そこで、切削痕C1の埋め込み情報IN2を複数の単位情報IN3に分け、各単位情報IN3が少なくとも第一状態ST1及び第二状態ST2になり得るようにNC装置70がワークW1の加工を制御することができる。図10に示す例でも、元の情報IN1が2値で表され、元の情報IN1に含まれる単位情報”0”が第一表面粗さR1となる第一状態ST1に割り当てられ、元の情報IN1に含まれる単位情報”1”が第二表面粗さR2となる第二状態ST2に割り当てられている。NC装置70は、元の”0”に対応する第一状態ST1の単位情報IN3を切削痕C1に埋め込む場合、送り速度Fを第一速度F1に制御する。このようにして、NC装置70は、単位情報IN3を第一状態ST1にする場合に該第一状態ST1の単位情報IN3がワークW1に形成されるように制御軸駆動部U12にワークW1と工具TO1との相対的な位置関係を第一速度F1で変化させる。NC装置70は、元の”1”に対応する第二状態ST2の単位情報IN3を切削痕C1に埋め込む場合、送り速度Fを第二速度F2に制御する。このようにして、NC装置70は、単位情報IN3を第二状態ST2にする場合に該第二状態ST2の単位情報IN3がワークW1に形成されるように制御軸駆動部U12に相対的な位置関係を第二速度F2で変化させる。 As described above, when the relative feed rate F becomes faster, the cutting marks C1 become rougher, and when the relative feed rate F becomes slower, the cutting marks C1 become relatively smoother. As shown in the lower part of FIG. 10, when the feed rate F is a relatively fast first speed F1, the cutting mark C1 is in a first state ST1 with a large difference between peaks and valleys, and the surface roughness R of the cutting mark C1 is is large. When the feed rate F is a relatively slow second speed F2, the cutting mark C1 is in a second state ST2 in which the difference between peaks and valleys is small, and the surface roughness R of the cutting mark C1 is small. Therefore, the embedded information IN2 of the cutting mark C1 is divided into a plurality of unit information IN3, and the NC device 70 controls the machining of the workpiece W1 so that each unit information IN3 can be at least in the first state ST1 and the second state ST2. Can be done. In the example shown in FIG. 10 as well, the original information IN1 is expressed as a binary value, and the unit information "0" included in the original information IN1 is assigned to the first state ST1 having the first surface roughness R1, and the original information The unit information “1” included in IN1 is assigned to the second state ST2 where the second surface roughness is R2. The NC device 70 controls the feed speed F to the first speed F1 when embedding the unit information IN3 of the first state ST1 corresponding to the original "0" into the cutting mark C1. In this way, the NC device 70 causes the control shaft drive unit U12 to control the workpiece W1 and the tool so that when the unit information IN3 is set to the first state ST1, the unit information IN3 of the first state ST1 is formed on the workpiece W1. The relative positional relationship with TO1 is changed at a first speed F1. When embedding the unit information IN3 of the second state ST2 corresponding to the original "1" into the cutting mark C1, the NC device 70 controls the feed speed F to the second speed F2. In this way, the NC device 70 positions the unit information IN3 in the second state ST2 relative to the control shaft drive unit U12 so that the unit information IN3 in the second state ST2 is formed on the workpiece W1. The relationship is changed at a second speed F2.
 むろん、埋め込み情報IN2の挽き目パターンは、図5に示すようにバーコードの規格に準拠してもよい。単位情報IN3は、図6,7に例示するように、2値に限定されない。
 いずれの場合も、検出装置200は、製品W2の表面の埋め込み情報IN2に含まれる各単位情報IN3の表面粗さRを測定し、表面粗さRと単位情報との対応関係に従って元の情報IN1を検出することができる。ここでも、検出装置200は、表面粗さ計を用いた検出装置に限定されず、画像処理装置、レーザー変位計、渦電流変位計、三次元測定機、等を用いることができる。
Of course, the cut pattern of the embedded information IN2 may conform to the barcode standard as shown in FIG. The unit information IN3 is not limited to binary values, as illustrated in FIGS. 6 and 7.
In either case, the detection device 200 measures the surface roughness R of each unit information IN3 included in the embedded information IN2 on the surface of the product W2, and returns the original information IN1 according to the correspondence relationship between the surface roughness R and the unit information. can be detected. Here, too, the detection device 200 is not limited to a detection device using a surface roughness meter, and may be an image processing device, a laser displacement meter, an eddy current displacement meter, a three-dimensional measuring machine, or the like.
 旋削のついでに埋め込み情報IN2をワークW1に形成する処理は、例えば、図8に示す切削制御処理に従って行うことができる。図8を参照して説明すると、まず、NC装置70及び操作部80(又はコンピューター100)は、切削コマンドCD1の入力を受け付ける(ステップS102)。ステップS102の後、NC装置70(又はコンピューター100)は、単位情報IN3の各状態の送り速度Fを設定する(ステップS104)。送り速度Fの設定後、NC装置70は、入力を受け付けた情報dddを構成する複数の単位情報IN3の状態に応じた送り速度Fで工具TO1をZ軸方向へ移動させながら回転状態のワークW1を切削するように駆動部U1を制御する(ステップS106)。ステップS106の後、NC装置70は、切削制御処理を終了させる。
 以上より、NC装置70は、第一速度F1を上限速度fffに合わせて第一状態ST1の単位情報IN3がワークW1に形成されるように刃物台駆動部24に工具TO1をZ軸方向へ移動させる。当該NC装置70は、第二速度F2を上限速度fffよりも遅い速度k×fffに合わせて第二状態ST2の単位情報IN3がワークW1に形成されるように刃物台駆動部24に工具TO1をZ軸方向へ移動させる。いずれの場合も、埋め込み情報IN2を含む切削痕C1が工具TO1による加工時にワークW1に形成されるように、主軸回転駆動部13にワークW1を回転させ、制御軸駆動部U12にワークW1と工具TO1との相対的な位置関係を変化させる。
The process of forming the embedded information IN2 on the workpiece W1 during turning can be performed, for example, according to the cutting control process shown in FIG. 8. To explain with reference to FIG. 8, first, the NC device 70 and the operation unit 80 (or the computer 100) accept the input of the cutting command CD1 (step S102). After step S102, the NC device 70 (or computer 100) sets the feed rate F for each state of the unit information IN3 (step S104). After setting the feed rate F, the NC device 70 moves the tool TO1 in the Z-axis direction at a feed rate F corresponding to the state of the plurality of unit information IN3 constituting the received input information ddd while moving the rotating workpiece W1. The drive unit U1 is controlled so as to cut (step S106). After step S106, the NC device 70 ends the cutting control process.
As described above, the NC device 70 causes the tool post drive unit 24 to move the tool TO1 in the Z-axis direction so that the first speed F1 is adjusted to the upper limit speed fff and the unit information IN3 of the first state ST1 is formed on the workpiece W1. let The NC device 70 sets the second speed F2 to a speed k×fff that is slower than the upper limit speed fff, and causes the tool TO1 to be applied to the tool rest drive unit 24 so that the unit information IN3 of the second state ST2 is formed on the workpiece W1. Move in the Z-axis direction. In either case, the workpiece W1 is rotated by the spindle rotation drive section 13, and the workpiece W1 and the tool are moved by the control shaft drive section U12 so that cutting marks C1 including the embedded information IN2 are formed on the workpiece W1 during machining by the tool TO1. Change the relative positional relationship with TO1.
 製品W2からの情報IN1の検出は、図9に示す検出装置200を用いて行うことができる。
 図10に示す例も、製品W2に情報IN1を付加するためにワークW1の加工が利用されるので、製品W2に情報IN1を付加する専用の加工処理は不要である。管理者は、検出装置200で埋め込み情報IN2から検出される情報IN1に基づいて製品W2を管理することができる。
Detection of the information IN1 from the product W2 can be performed using a detection device 200 shown in FIG.
In the example shown in FIG. 10, the processing of the workpiece W1 is also used to add the information IN1 to the product W2, so there is no need for a dedicated processing process to add the information IN1 to the product W2. The administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200.
 また、図11に例示するように、回転するワークW1の端面に埋め込み情報IN2を含む切削痕C1を形成してもよい。図11は、回転するワークW1の端面にバイトTO3の動きにより形成される切削痕C1を模式的に例示している。図11中、「+X」はX軸に沿った一方向を示し、「+Y」はY軸に沿った一方向を示している。
 図11の上部に示すように、工作機械1は、主軸中心線AX1を中心としてワークW1を回転させ、バイトTO3の刃先TO3tをワークW1の端面に当て、該バイトTO3を送り速度Fで+Y方向へ移動させる旋削を行うものとする。バイトTO3の移動方向は、Z軸と交差する方向であればよく、+X方向等でもよい。バイトTO3の刃先TO3tの軌跡は、主軸中心線AX1を中心とする渦巻状のパターンとなる。軌跡のパターンは、主軸11の回転数、ワークW1の直径、及び、送り速度Fによって一意的に決定される。ワークW1の端面には、主軸中心線AX1を中心とする渦巻状の挽き目が径方向へ続く切削痕C1が生じる。送り速度Fが変わると、挽き目の間隔が変わり、切削痕C1の表面粗さが変わる。むろん、図11に示すような切削痕C1は、バイトTO3が+Y方向へ移動する代わりにワークW1が+Y方向とは反対の-Y方向へ移動するといった、同様の相対的な位置関係の変化により形成される。
Further, as illustrated in FIG. 11, cutting marks C1 including embedded information IN2 may be formed on the end surface of the rotating workpiece W1. FIG. 11 schematically illustrates cutting marks C1 formed on the end surface of the rotating workpiece W1 by the movement of the cutting tool TO3. In FIG. 11, "+X" indicates one direction along the X-axis, and "+Y" indicates one direction along the Y-axis.
As shown in the upper part of FIG. 11, the machine tool 1 rotates the workpiece W1 around the spindle center line AX1, applies the cutting edge TO3t of the cutting tool TO3 to the end surface of the workpiece W1, and moves the cutting tool TO3 in the +Y direction at a feed rate F. Turning shall be performed to move the The moving direction of the cutting tool TO3 may be any direction that intersects the Z-axis, such as the +X direction. The trajectory of the cutting edge TO3t of the cutting tool TO3 is a spiral pattern centered on the spindle center line AX1. The trajectory pattern is uniquely determined by the rotational speed of the main shaft 11, the diameter of the work W1, and the feed rate F. Cutting marks C1 are formed on the end surface of the workpiece W1, in which a spiral cut line centered on the spindle centerline AX1 continues in the radial direction. When the feed rate F changes, the interval between the grinding marks changes and the surface roughness of the cutting marks C1 changes. Of course, the cutting marks C1 as shown in FIG. 11 are caused by a similar change in relative positional relationship, such as the workpiece W1 moving in the -Y direction opposite to the +Y direction instead of the cutting tool TO3 moving in the +Y direction. It is formed.
 図11の下部に示すように、送り速度Fが比較的速い第一速度F1である時、切削痕C1は山と谷の差が大きい第一状態ST1であり、切削痕C1の表面粗さRが大きい。送り速度Fが比較的遅い第二速度F2である時、切削痕C1において山と谷の差が小さい第二状態ST2であり、切削痕C1の表面粗さRが小さい。NC装置70は、元の”0”に対応する第一状態ST1の単位情報IN3を切削痕C1に埋め込む場合、送り速度Fを第一速度F1に制御する。NC装置70は、元の”1”に対応する第二状態ST2の単位情報IN3を切削痕C1に埋め込む場合、送り速度Fを第二速度F2に制御する。むろん、埋め込み情報IN2の挽き目パターンは、図5に示すようにバーコードの規格に準拠してもよい。単位情報IN3は、図6,7に例示するように、2値に限定されない。 As shown in the lower part of FIG. 11, when the feed rate F is a relatively fast first speed F1, the cutting mark C1 is in a first state ST1 with a large difference between peaks and valleys, and the surface roughness R of the cutting mark C1 is is large. When the feed rate F is a relatively slow second speed F2, the cutting mark C1 is in a second state ST2 in which the difference between peaks and valleys is small, and the surface roughness R of the cutting mark C1 is small. The NC device 70 controls the feed speed F to the first speed F1 when embedding the unit information IN3 of the first state ST1 corresponding to the original "0" into the cutting mark C1. When embedding the unit information IN3 of the second state ST2 corresponding to the original "1" into the cutting mark C1, the NC device 70 controls the feed speed F to the second speed F2. Of course, the cut pattern of the embedded information IN2 may conform to the barcode standard as shown in FIG. The unit information IN3 is not limited to binary values, as illustrated in FIGS. 6 and 7.
 旋削のついでに埋め込み情報IN2をワークW1に形成する処理は、例えば、図8に示す切削制御処理に従って行うことができる。製品W2からの情報IN1の検出は、図9に示す検出装置200を用いて行うことができる。
 図11に示す例も、製品W2に情報IN1を付加するためにワークW1の加工が利用されるので、製品W2に情報IN1を付加する専用の加工処理は不要である。管理者は、検出装置200で埋め込み情報IN2から検出される情報IN1に基づいて製品W2を管理することができる。
The process of forming the embedded information IN2 on the workpiece W1 during turning can be performed, for example, according to the cutting control process shown in FIG. 8. Detection of the information IN1 from the product W2 can be performed using a detection device 200 shown in FIG.
In the example shown in FIG. 11, the processing of the workpiece W1 is also used to add the information IN1 to the product W2, so there is no need for a dedicated processing process to add the information IN1 to the product W2. The administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200.
(5)加工のついでに埋め込み情報をワークに形成する第三の例:
 制御軸駆動部U12による駆動軸の数がY軸とZ軸の2軸等、2軸以上である場合、切削痕C1に含まれる谷同士又は山同士の交点の座標等を制御することにより、埋め込み情報IN2を形成することができる。例えば、エンドミル切削では、多数の円弧状の谷及び山を含む切削痕C1がワークW1の表面に形成される。そこで、切削痕C1から円弧の中心座標と円弧同士の交点の座標とを例えば画像解析により抽出することにより、埋め込み情報IN2から情報IN1をデコードすることができる。
(5) Third example of forming embedded information on the workpiece during processing:
When the number of drive axes by the control shaft drive unit U12 is two or more, such as two axes, Y-axis and Z-axis, by controlling the coordinates of intersections between valleys or peaks included in the cutting marks C1, Embedded information IN2 can be formed. For example, in end mill cutting, cutting marks C1 including many arcuate valleys and peaks are formed on the surface of the workpiece W1. Therefore, the information IN1 can be decoded from the embedded information IN2 by extracting the center coordinates of the circular arcs and the coordinates of the intersection of the circular arcs from the cutting mark C1, for example, by image analysis.
 図12は、円弧同士の交点331の位置を埋め込み情報IN2にするエンドミルTO2の刃先TO2tの動きによりワークW1の表面に形成される切削痕C1を模式的に例示している。図12の下部には、エンドミルTO2の刃先TO2tの軌跡320により生じる切削痕C1の拡大図が示されている。例えば、刃物台駆動部24は、互いに向きが異なるY軸及びZ軸に沿ってエンドミルTO2を移動させることが可能であるとする。
 図12に示す指令範囲において、回転するエンドミルTO2がY軸及びZ軸に沿って移動するエンドミル切削がワークW1に行われるものとする。指令範囲に対するエンドミル切削の開始位置は、中心座標と直径とで定まる基準円310の位置とする。ワークW1の表面には、エンドミルTO2の刃先TO2tにより基準円310の位置に谷が形成される。NC装置70は、基準円310をエンドミル1回転分の最初の円弧として連続するエンドミル1回転分の円弧との交点の座標が情報IN1に応じた座標となるように、Y軸及びZ軸に沿ったエンドミルTO2の移動を制御する。尚、各円弧は、円弧同士に交点が生じる限り、エンドミル0.5回転分等、エンドミル1回転分でなくてもよい。
FIG. 12 schematically illustrates a cutting mark C1 formed on the surface of the workpiece W1 by the movement of the cutting edge TO2t of the end mill TO2, which sets the position of the intersection 331 between circular arcs as the embedded information IN2. In the lower part of FIG. 12, an enlarged view of the cutting mark C1 caused by the locus 320 of the cutting edge TO2t of the end mill TO2 is shown. For example, it is assumed that the tool post drive unit 24 is capable of moving the end mill TO2 along the Y-axis and the Z-axis, which have different directions.
In the command range shown in FIG. 12, it is assumed that the work W1 is subjected to end mill cutting in which the rotating end mill TO2 moves along the Y-axis and the Z-axis. The start position of end mill cutting with respect to the command range is the position of the reference circle 310 determined by the center coordinates and the diameter. A valley is formed on the surface of the workpiece W1 at the position of the reference circle 310 by the cutting edge TO2t of the end mill TO2. The NC device 70 moves the reference circle 310 along the Y-axis and the Z-axis so that the coordinates of the intersection of the reference circle 310 as the first arc for one revolution of the end mill and the arc for one continuous revolution of the end mill become the coordinates according to the information IN1. Controls the movement of the end mill TO2. It should be noted that each circular arc does not have to correspond to one rotation of an end mill, such as 0.5 rotation of an end mill, as long as an intersection occurs between the circular arcs.
 図13は、円弧同士の交点331の位置を入力情報に合わせて切削痕C1を形成する例を模式的に示している。図13の上段には、交点331の座標と情報IN1に含まれる単位情報IN4との対応関係を表す情報テーブルTA1が示されている。
 ここで、図13の中段に示すように、エンドミルTO2の刃先TO2tの軌跡320は、第一円弧321、及び、該第一円弧321に続く第二円弧322であって前記第一円弧321と交わる第二円弧322を含んでいる。軌跡320は、切削痕C1における谷となる。従って、切削痕C1は、第一円弧321と第二円弧322を含むことになる。また、第一円弧321の中心座標を原点330とし、第一円弧321と第二円弧322との交点331の座標は原点330を基準とした座標とする。原点330は、ワークW1の表面においてエンドミルTO2が1回転する間の工具中心線AX2の平均位置とする。埋め込み情報IN2は、第一円弧321の中心座標を原点330とした第一円弧321と第二円弧322との交点331の座標を含むことになる。尚、第三の例において、埋め込み情報IN2に含まれるのは交点331の座標であり、単位情報IN4は元の情報IN1の構成要素である。
FIG. 13 schematically shows an example in which cutting marks C1 are formed by matching the positions of intersections 331 between circular arcs to input information. In the upper part of FIG. 13, an information table TA1 showing the correspondence between the coordinates of the intersection point 331 and the unit information IN4 included in the information IN1 is shown.
Here, as shown in the middle part of FIG. 13, the locus 320 of the cutting edge TO2t of the end mill TO2 is a first circular arc 321 and a second circular arc 322 following the first circular arc 321, which intersects with the first circular arc 321. A second circular arc 322 is included. The locus 320 becomes a valley in the cutting mark C1. Therefore, the cutting mark C1 includes the first circular arc 321 and the second circular arc 322. Further, the center coordinates of the first circular arc 321 are taken as the origin 330, and the coordinates of the intersection 331 between the first circular arc 321 and the second circular arc 322 are taken as the coordinates with the origin 330 as a reference. The origin 330 is the average position of the tool center line AX2 during one rotation of the end mill TO2 on the surface of the workpiece W1. The embedded information IN2 includes the coordinates of an intersection 331 between the first circular arc 321 and the second circular arc 322, with the origin 330 being the center coordinates of the first circular arc 321. In the third example, the embedded information IN2 includes the coordinates of the intersection 331, and the unit information IN4 is a component of the original information IN1.
 図13の中段に示すように、第二円弧322が最初に第一円弧321と交わる点の座標を(z1,z1)とし、次に第二円弧322が第一円弧321と交わる点の座標を(z2,z2)とする。Z軸及びY軸に沿ったエンドミルTO2の移動を制御することにより、交点331の座標(z1,z1)及び(z2,z2)を所望の位置にすることができる。そこで、図13の上段に示す情報テーブルTA1のように、z座標の絶対値とy座標の絶対値との組合せに単位情報IN4が何であるかを紐付けておくことにより、単位情報IN4に応じた座標(z,y)の交点を有する軌跡320を実現させることができる。図13の上段に示す情報テーブルTA1では、例えば、座標(|z|,|y|)が(1,1)である場合に単位情報”a”が紐付けられ、座標(|z|,|y|)が(1,2)である場合に単位情報”b”が紐付けられている。交点331の座標(z,y)が二次元の座標であるので、座標(z,y)に紐付けられる単位情報IN4を2値(0又は1)や4値(0、1、2、又は、3)を超える情報量とすることができる。これにより、単位面積当たりの埋め込み情報IN2の情報量を増やすことができ、多くの情報量の埋め込み情報IN2をワークW1の少ない領域に形成することができる。
 さらに、図13の下段に示すように、前回の第二円弧322を新たな第一円弧321とし、該第一円弧321に続くエンドミル1回転分の円弧を新たな第二円弧322とし、新たな第一円弧321の中心座標を原点330として交点331の座標を定めることにする。この場合において、第二円弧322が最初に第一円弧321と交わる点の座標を(z3,z3)とし、次に第二円弧322が第一円弧321と交わる点の座標を(z4,z4)とする。Z軸及びY軸に沿ったエンドミルTO2の移動を制御することにより、交点331の座標(z3,z3)及び(z4,z4)を所望の位置にすることができる。各円弧は、エンドミル1回転分に限定されない。
As shown in the middle part of FIG. 13, the coordinates of the point where the second arc 322 first intersects with the first arc 321 are (z1, z1), and then the coordinates of the point where the second arc 322 intersects with the first arc 321 are (z2, z2). By controlling the movement of the end mill TO2 along the Z-axis and the Y-axis, the coordinates (z1, z1) and (z2, z2) of the intersection point 331 can be set at desired positions. Therefore, by associating the unit information IN4 with the combination of the absolute value of the z coordinate and the absolute value of the y coordinate, as shown in the information table TA1 shown in the upper part of FIG. A trajectory 320 having an intersection of coordinates (z, y) can be realized. In the information table TA1 shown in the upper part of FIG. 13, for example, when the coordinates (|z|, |y|) are (1, 1), unit information "a" is linked, and the coordinates (|z|, | When y|) is (1, 2), unit information "b" is associated. Since the coordinates (z, y) of the intersection point 331 are two-dimensional coordinates, the unit information IN4 linked to the coordinates (z, y) can be set to binary (0 or 1) or quaternary (0, 1, 2, or , 3). As a result, the amount of embedded information IN2 per unit area can be increased, and a large amount of embedded information IN2 can be formed in a small area of the workpiece W1.
Furthermore, as shown in the lower part of FIG. 13, the previous second arc 322 is set as a new first arc 321, the arc corresponding to one revolution of the end mill following the first arc 321 is set as a new second arc 322, and a new The coordinates of the intersection point 331 are determined by setting the center coordinates of the first circular arc 321 as the origin 330. In this case, the coordinates of the point where the second circular arc 322 first intersects with the first circular arc 321 are (z3, z3), and then the coordinates of the point where the second circular arc 322 intersects with the first circular arc 321 are (z4, z4). shall be. By controlling the movement of the end mill TO2 along the Z-axis and the Y-axis, the coordinates (z3, z3) and (z4, z4) of the intersection point 331 can be set to desired positions. Each arc is not limited to one revolution of the end mill.
 図14は、円弧同士の交点331の位置を埋め込み情報IN2にする場合に切削コマンドCD2の入力を受け付けて切削コマンドCD2を実行する切削制御処理を模式的に例示している。切削制御処理はNC装置70と操作部80で行われるものとするが、外部のコンピューター100が切削制御処理の一部を行ってもよい。図14に示す切削制御処理において、受付部U2がステップS302の処理を行い、制御部U3がステップS304~S306の処理を行う。
 まず、NC装置70及び操作部80は、切削コマンドCD2の入力を受け付ける(ステップS302)。切削コマンドCD2は、ワークW1から製品W2を形成するためのコマンドであり、埋め込み情報IN2を形成する専用のコマンドではない。図14に示す切削コマンドCD2は、「M」から始まる切削コード番号mmm、「Z」から始まるZ軸の基準位置zzz、「Y」から始まるY軸の基準位置yyy、「F」から始まる上限速度fff、及び、「D」から始まる情報dddを含んでいる。基準位置zzz,yyyは、基準円310の中心座標である。基本的には、切削コマンドCD2は、製品W2を形成するために、Z軸及びY軸に沿って基準位置zzz,yyyから上限速度fffを超えない送り速度でワークW1と工具TO1とを相対的に移動させてワークW1を工具TO1で切削するコマンドである。この切削コマンドCD1に埋め込み対象の情報dddが含まれている。尚、ワークW1と工具TO1との相対的な移動方向がZ軸及びX軸に沿っている場合は「Yyyy」を「X」から始まるX軸の基準位置xxxに置き換えればよい。「Ffff」は省略可能であり、「Ffff」が省略されるとデフォルトの上限速度が適用される。情報dddは、検出装置200に検出させるための情報IN1に相当し、単位情報IN4の組合せに相当する。ステップS302の処理は、NC装置70の制御に従って操作部80が切削コマンドCD2の入力を受け付ける処理でもよいし、コンピューター100が切削コマンドCD2の入力を受け付ける処理でもよい。また、ステップS302の処理は、切削コマンドCD2を含む加工プログラムPR2の入力を受け付ける処理でもよい。
FIG. 14 schematically illustrates a cutting control process in which input of the cutting command CD2 is received and the cutting command CD2 is executed when the position of the intersection 331 between circular arcs is set as the embedded information IN2. Although the cutting control process is assumed to be performed by the NC device 70 and the operation unit 80, an external computer 100 may perform a part of the cutting control process. In the cutting control process shown in FIG. 14, the reception unit U2 performs the process of step S302, and the control unit U3 performs the process of steps S304 to S306.
First, the NC device 70 and the operation unit 80 accept input of the cutting command CD2 (step S302). The cutting command CD2 is a command for forming the product W2 from the workpiece W1, and is not a dedicated command for forming the embedded information IN2. The cutting command CD2 shown in FIG. 14 includes a cutting code number mmm starting from "M", a Z-axis reference position zzzz starting from "Z", a Y-axis reference position yyy starting from "Y", and an upper limit speed starting from "F". fff and information ddd starting with "D". The reference position zzz,yyy is the center coordinate of the reference circle 310. Basically, the cutting command CD2 relatively moves the workpiece W1 and the tool TO1 along the Z-axis and Y-axis from the reference position zzz, yyy at a feed rate that does not exceed the upper limit speed fff in order to form the product W2. This is a command to move the workpiece W1 to the tool TO1 and cut the workpiece W1 with the tool TO1. This cutting command CD1 includes information ddd to be embedded. Note that if the relative movement direction between the workpiece W1 and the tool TO1 is along the Z-axis and the X-axis, "Yyyy" may be replaced with the reference position xxx of the X-axis starting from "X". "Ffff" can be omitted, and if "Ffff" is omitted, the default upper limit speed is applied. The information ddd corresponds to the information IN1 to be detected by the detection device 200, and corresponds to a combination of the unit information IN4. The process of step S302 may be a process in which the operation unit 80 receives the input of the cutting command CD2 under the control of the NC device 70, or a process in which the computer 100 receives the input of the cutting command CD2. Moreover, the process of step S302 may be a process of accepting input of the machining program PR2 including the cutting command CD2.
 ステップS302の後、NC装置70(又はコンピューター100)は、入力を受け付けた情報dddの単位情報IN4に対応する座標に交点331を有する第一円弧321及び第二円弧322を含む切削痕C1がワークW1に形成されるように各制御軸の送り速度Fを設定する(ステップS304)。図13に示す例では、最初の単位情報IN4に対応させた座標(z1,y1)、2番目の単位情報IN4に対応させた座標(z2,y2)、3番目の単位情報IN4に対応させた座標(z3,y3)、…に交点331が生じるように、Z軸の送り速度、及び、Y軸の送り速度が設定される。
 尚、次の単位情報IN4が情報IN1に存在しない場合、NC装置70は、例えば、前回の第二円弧322に続く円弧と前回の第二円弧322とに交点が生じないようにZ軸の送り速度、及び、Y軸の送り速度を設定すればよい。
After step S302, the NC device 70 (or computer 100) determines that the cutting mark C1 including the first circular arc 321 and the second circular arc 322 having an intersection point 331 at the coordinates corresponding to the unit information IN4 of the input information ddd is The feed rate F of each control axis is set so that the feed rate is W1 (step S304). In the example shown in FIG. 13, the coordinates (z1, y1) correspond to the first unit information IN4, the coordinates (z2, y2) correspond to the second unit information IN4, and the coordinates (z2, y2) correspond to the third unit information IN4. The Z-axis feed rate and the Y-axis feed rate are set so that an intersection 331 occurs at coordinates (z3, y3), . . . .
Note that if the next unit information IN4 does not exist in the information IN1, the NC device 70, for example, adjusts the Z-axis feed so that the arc following the previous second arc 322 and the previous second arc 322 do not intersect. What is necessary is to set the speed and the feed rate of the Y axis.
 送り速度Fの設定後、NC装置70は、設定された送り速度Fで基準円310から回転状態の工具TO1をZ軸方向及びY軸方向へ移動させながらワークW1を切削するように駆動部U1を制御する(ステップS306)。ステップS306の後、NC装置70は、切削制御処理を終了させる。
 以上のようにして、NC装置70は、入力を受け付けた情報IN1に対応する座標に交点331を有する第一円弧321及び第二円弧322がワークW1に形成されるように制御軸駆動部U12に相対的な位置関係を変化させる。
After setting the feed rate F, the NC device 70 operates the drive unit U1 so as to cut the workpiece W1 while moving the rotating tool TO1 from the reference circle 310 in the Z-axis direction and the Y-axis direction at the set feed rate F. (step S306). After step S306, the NC device 70 ends the cutting control process.
As described above, the NC device 70 controls the control shaft drive unit U12 so that the first circular arc 321 and the second circular arc 322 having the intersection point 331 at the coordinates corresponding to the input information IN1 are formed on the workpiece W1. Change relative positional relationship.
 図15は、円弧同士の交点331の位置を埋め込み情報IN2にする場合における検出装置200の構成例及び処理例を模式的に示している。
 図15の上部に示す検出装置200は、撮像装置211、表示部212、及び、計測制御部213を含んでいる。撮像装置211は、製品W2の表面に光を当てる光源を備え、製品W2の表面に存在する円弧を識別可能に製品W2の表面を撮影する。尚、製品W2の表面に当てる光の向き(光源の向き)を調節することにより切削痕C1に存在する山と谷の明るさの差を調整することができるので、光の向きの調節により切削痕C1中の円弧を識別可能に製品W2の表面を撮影することができる。計測制御部213は、CPU、ROM、RAM、等を備え、撮像装置211から埋め込み情報IN2の撮影画像を取得し、撮影画像に含まれる埋め込み情報IN2から情報IN1を検出して表示部212に表示させる。むろん、計測制御部213の一部又は全部は、ASICといった他の手段により実現されてもよい。図15の下部には、計測制御部213により行われるデコード処理が示されている。製品W2に存在する埋め込み情報IN2を撮像するための操作が撮像装置211に行われると、デコード処理が開始する。
FIG. 15 schematically shows a configuration example and a processing example of the detection device 200 in the case where the position of the intersection 331 between circular arcs is used as embedded information IN2.
The detection device 200 shown in the upper part of FIG. 15 includes an imaging device 211, a display section 212, and a measurement control section 213. The imaging device 211 includes a light source that shines light onto the surface of the product W2, and photographs the surface of the product W2 so that arcs existing on the surface of the product W2 can be identified. In addition, by adjusting the direction of the light applied to the surface of the product W2 (direction of the light source), the difference in brightness between the peaks and valleys existing in the cutting mark C1 can be adjusted. The surface of the product W2 can be photographed so that the arc in the mark C1 can be identified. The measurement control unit 213 includes a CPU, ROM, RAM, etc., and acquires a photographed image with embedded information IN2 from the imaging device 211, detects information IN1 from the embedded information IN2 included in the photographed image, and displays it on the display unit 212. let Of course, part or all of the measurement control unit 213 may be realized by other means such as ASIC. The lower part of FIG. 15 shows decoding processing performed by the measurement control unit 213. When an operation is performed on the imaging device 211 to image the embedded information IN2 present in the product W2, decoding processing starts.
 デコード処理が開始すると、計測制御部213は、撮像装置211から埋め込み情報IN2の撮影画像を取得する(ステップS402)。撮影画像には、図12に示すように、各単位情報IN4に対応する座標に交点331を有する円弧(321,322)を含む切削痕C1が表されている。次に、計測制御部213は、撮影画像から基準円310の中心位置及び直径を抽出する(ステップS404)。例えば、図14に示す切削コマンドCD2から基準円310の中心位置zzz,yyyが設定されるので、計測制御部213は、撮影画像において位置zzz,yyyに対応する円を基準円310として画像解析により抽出し、該基準円310の中心位置及び直径を特定すればよい。 When the decoding process starts, the measurement control unit 213 acquires a photographed image of the embedded information IN2 from the imaging device 211 (step S402). As shown in FIG. 12, the photographed image shows a cutting mark C1 including an arc (321, 322) having an intersection point 331 at the coordinates corresponding to each unit information IN4. Next, the measurement control unit 213 extracts the center position and diameter of the reference circle 310 from the captured image (step S404). For example, since the center position zzz, yyy of the reference circle 310 is set from the cutting command CD2 shown in FIG. The center position and diameter of the reference circle 310 may be specified.
 基準円310の抽出後、計測制御部213は、撮影画像から第一円弧321及び第二円弧322を抽出し、第一円弧321の中心座標を原点330とした第一円弧321と第二円弧322との交点331の座標を割り出す(ステップS406)。上述したように、最初の第一円弧321は、基準円310である。この場合、図13の中段に示す切削痕C1からは、交点331の座標(z1,y1)及び(z2,y2)が割り出される。その後、計測制御部213は、図13に示すような情報テーブルTA1に従って、交点の座標を元の単位情報IN4にデコードする(ステップS408)。 After extracting the reference circle 310, the measurement control unit 213 extracts a first circular arc 321 and a second circular arc 322 from the captured image, and sets the first circular arc 321 and the second circular arc 322 with the center coordinates of the first circular arc 321 as the origin 330. The coordinates of the intersection point 331 are determined (step S406). As mentioned above, the first first circular arc 321 is the reference circle 310. In this case, the coordinates (z1, y1) and (z2, y2) of the intersection point 331 are determined from the cutting mark C1 shown in the middle part of FIG. 13. After that, the measurement control unit 213 decodes the coordinates of the intersection into the original unit information IN4 according to the information table TA1 as shown in FIG. 13 (step S408).
 計測制御部203は、第二円弧322に続く円弧が撮像画像に存在する間、ステップS402~S408の処理を繰り返す(ステップS410)。次のステップS406において、計測制御部213は、図13の下段に示すように、前回の第二円弧322を新たな第一円弧321とし、該第一円弧321に続く円弧を新たな第二円弧322とし、新たな第一円弧321の中心座標を原点330として交点331の座標を割り出す。第二円弧322に続く円弧が撮像画像に存在しない場合、計測制御部203は、埋め込み情報IN2に含まれる交点331の座標群に紐付けられた単位情報IN4で表された情報IN1を表示部202に表示させ(ステップS412)、デコード処理を終了させる。基準円310の抽出を起点としてステップS410の判断処理が行われることにより、埋め込み情報IN2を構成しない交点の座標がデコードされることを防ぐことができる。
 以上より、検出装置200は、ワークW1に形成された埋め込み情報IN2から情報IN1を検出する。
The measurement control unit 203 repeats the processes of steps S402 to S408 while an arc following the second arc 322 exists in the captured image (step S410). In the next step S406, the measurement control unit 213 sets the previous second arc 322 as a new first arc 321, and sets the arc following the first arc 321 as a new second arc, as shown in the lower part of FIG. 322, and the coordinates of the intersection 331 are determined with the center coordinates of the new first circular arc 321 as the origin 330. If an arc following the second arc 322 does not exist in the captured image, the measurement control unit 203 displays information IN1 represented by unit information IN4 linked to the coordinate group of the intersection 331 included in the embedded information IN2 on the display unit 202. (step S412), and the decoding process ends. By performing the determination process in step S410 starting from the extraction of the reference circle 310, it is possible to prevent the coordinates of an intersection point that does not constitute the embedded information IN2 from being decoded.
As described above, the detection device 200 detects the information IN1 from the embedded information IN2 formed in the workpiece W1.
 上述したデコード処理は、撮影画像から交点331を直接抽出する訳ではなく、基準円310から連続する円弧(321,322)を撮影画像から抽出してから交点331の座標を割り出している。製品W2に打痕や圧痕等が生じても、円弧(321,322)の全体が消えてしまう場合は少ないと考えられ、製品W2から打痕や圧痕等により交点331が消えても、円弧(321,322)から交点331の座標を割り出すことが可能である。また、基準円310から連続していない円弧同士の交点が除外されることにより、埋め込み情報IN2に関係しない交点の座標がデコードされない。 The above-described decoding process does not directly extract the intersection 331 from the captured image, but extracts continuous arcs (321, 322) from the reference circle 310 from the captured image and then determines the coordinates of the intersection 331. Even if a dent or indentation occurs on the product W2, it is thought that there are few cases in which the entire arc (321, 322) disappears, and even if the intersection 331 disappears from the product W2 due to a dent or indentation, the arc ( 321, 322), it is possible to determine the coordinates of the intersection point 331. Furthermore, since intersections between non-contiguous arcs are excluded from the reference circle 310, the coordinates of intersections that are not related to the embedded information IN2 are not decoded.
 第三の例でも、製品W2に情報IN1を付加するためにワークW1の加工が利用されるので、製品W2に情報IN1を付加する専用の加工処理は不要である。管理者は、検出装置200で埋め込み情報IN2から検出される情報IN1に基づいて製品W2を管理することができる。 In the third example as well, the processing of the workpiece W1 is used to add the information IN1 to the product W2, so there is no need for a dedicated processing process to add the information IN1 to the product W2. The administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200.
 円弧同士の交点331の座標で表される埋め込み情報IN2をワークW1に形成する加工は、フライス加工に限定されず、旋削でもよい。工作機械1は、主軸回転駆動部13においてワークW1の回転速度を制御することができ、制御軸駆動部U12においてX軸及びY軸に沿ってワークW1と工具TO1との相対的な位置関係を変化させることができる。工作機械1は、例えば、ワークW1の端面切削において、図12,13に示すような円弧(321,322)を含む切削痕C1をワークW1の端面に形成することができる。従って、工作機械1は、図14に示すような切削制御処理を行うことにより情報IN1に対応する円弧(321,322)を含む切削痕C1をワークW1の端面に形成することができる。検出装置200は、図15に示すようなデコード処理を行うことにより、切削痕C1に含まれる埋め込み情報IN2から元の情報IN1を検出することができる。 The processing for forming the embedded information IN2 represented by the coordinates of the intersection 331 between circular arcs on the workpiece W1 is not limited to milling, but may also be turning. The machine tool 1 can control the rotational speed of the workpiece W1 in the spindle rotation drive unit 13, and can control the relative positional relationship between the workpiece W1 and the tool TO1 along the X-axis and the Y-axis in the control axis drive unit U12. It can be changed. For example, in cutting the end face of the workpiece W1, the machine tool 1 can form a cutting mark C1 including arcs (321, 322) as shown in FIGS. 12 and 13 on the end face of the workpiece W1. Therefore, the machine tool 1 can form the cutting marks C1 including the circular arcs (321, 322) corresponding to the information IN1 on the end surface of the workpiece W1 by performing the cutting control process as shown in FIG. The detection device 200 can detect the original information IN1 from the embedded information IN2 included in the cutting mark C1 by performing the decoding process as shown in FIG.
(6)加工のついでに埋め込み情報をワークに形成する第四の例:
 埋め込み情報IN2をワークW1に形成する加工は、フライス加工や旋削に限定されない。
 図16は、加工深さDEの微小変化によりワークW1の表面に形成される切削痕C1に含まれる埋め込み情報IN2を模式的に例示している。
(6) Fourth example of forming embedded information on the workpiece during processing:
The processing for forming the embedded information IN2 on the workpiece W1 is not limited to milling or turning.
FIG. 16 schematically illustrates embedded information IN2 included in cutting marks C1 formed on the surface of workpiece W1 due to minute changes in machining depth DE.
 図16の上段に示すように、工作機械1は、ワークW1を回転も移動もさせず、Y軸方向に向いたバイトTO3の刃先TO3tをワークW1の側面に当て、該バイトTO3を送り速度Fで+Z方向へ移動させる形削り(シェーパー加工)を行うものとする。ここで、切削痕C1に埋め込み情報IN2を含めるため、形削り中にバイトTO3をY軸に沿って微小量変化させることにより加工深さDEを微小量変化させ、埋め込み情報IN2の単位情報IN5を加工深さDEで表すことにする。加工深さDEの変化を「微小量」と表現したのは、加工深さDEの変化を形削りの誤差程度に収める意図による。例えば、表面粗さ計では0.1μm程度の段差を読み取ることが可能であるため、加工深さDEの変化が0.2~1μm程度の微小量であっても加工深さDEの違いを表面粗さ計で読み取ることが可能である。表面粗さ計の代わりに、レーザー変位計、渦電流変位計、三次元測定機、画像処理装置、等を用いることも可能である。 As shown in the upper part of FIG. 16, the machine tool 1 does not rotate or move the workpiece W1, applies the cutting edge TO3t of the cutting tool TO3 facing the Y-axis direction to the side surface of the workpiece W1, and moves the cutting tool TO3 at a feed rate F Shaping (shaper processing) is performed by moving in the +Z direction. Here, in order to include the embedded information IN2 in the cutting mark C1, by changing the cutting tool TO3 by a minute amount along the Y axis during shaping, the machining depth DE is changed by a minute amount, and the unit information IN5 of the embedded information IN2 is changed by a minute amount. This will be expressed as the machining depth DE. The reason why the change in the machining depth DE is expressed as a "minor amount" is due to the intention of keeping the change in the machining depth DE within the level of the machining error. For example, a surface roughness meter can read a level difference of about 0.1 μm, so even if the change in machining depth DE is minute, about 0.2 to 1 μm, the difference in machining depth DE can be detected on the surface. It can be read with a roughness meter. Instead of the surface roughness meter, it is also possible to use a laser displacement meter, an eddy current displacement meter, a coordinate measuring machine, an image processing device, etc.
 以上より、切削痕C1の埋め込み情報IN2を複数の単位情報IN5に分け、各単位情報IN5が少なくとも第一の加工深さDE1、及び、該第一の加工深さDE1とは異なる第二の加工深さDE2になり得るようにNC装置70がワークW1の加工を制御してもよい。図16に示す例では、元の情報IN1が2値で表され、元の情報IN1に含まれる単位情報”0”が第一の加工深さDE1に割り当てられ、元の情報IN1に含まれる単位情報”1”が第二の加工深さDE2に割り当てられている。NC装置70は、主軸台駆動部14に複数の単位情報IN5が順に形成される向きにワークW1と工具TO1との相対的な位置関係を変化させる。ここで、NC装置70は、元の”0”に対応する第一の加工深さDE1を切削痕C1に埋め込む場合、加工深さDEが第一の加工深さDE1になるように主軸台駆動部14を制御する。NC装置70は、元の”1”に対応する第二の加工深さDE2を切削痕C1に埋め込む場合、加工深さDEが第二の加工深さDE2になるように主軸台駆動部14を制御する。このようにして、NC装置70は、制御軸駆動部U12に各単位情報IN5に対応する加工深さDEでワークW1が切削されるように加工深さDEが変わる向きにワークW1と工具TO1との相対的な位置関係を変化させる。
 むろん、図16に示すような切削痕C1は、バイトTO3が+Z方向へ移動する代わりにワークW1が-Z方向へ移動する平削り(プレーナー加工)といった、同様の相対的な位置関係の変化により形成される。また、ワークW1を回転も移動もさせず、バイトTO3を送り速度Fで鉛直方向へ移動させる立削り(スロッター加工)が行われる場合等も、同様にして、埋め込み情報IN2を含む切削痕C1を形成することができる。
From the above, the embedded information IN2 of the cutting mark C1 is divided into a plurality of unit information IN5, and each unit information IN5 has at least the first machining depth DE1 and the second machining depth different from the first machining depth DE1. The NC device 70 may control the machining of the workpiece W1 so that the depth DE2 can be achieved. In the example shown in FIG. 16, the original information IN1 is expressed in binary, the unit information "0" included in the original information IN1 is assigned to the first machining depth DE1, and the unit included in the original information IN1 is assigned to the first machining depth DE1. Information "1" is assigned to the second machining depth DE2. The NC device 70 changes the relative positional relationship between the workpiece W1 and the tool TO1 in a direction in which a plurality of unit information IN5 are sequentially formed on the headstock drive section 14. Here, when embedding the first machining depth DE1 corresponding to the original "0" into the cutting mark C1, the NC device 70 drives the headstock so that the machining depth DE becomes the first machining depth DE1. 14. When embedding the second machining depth DE2 corresponding to the original "1" into the cutting mark C1, the NC device 70 operates the headstock drive unit 14 so that the machining depth DE becomes the second machining depth DE2. Control. In this way, the NC device 70 causes the control shaft drive unit U12 to move the workpiece W1 and the tool TO1 in the direction in which the machining depth DE changes so that the workpiece W1 is cut at the machining depth DE corresponding to each unit information IN5. change the relative positional relationship of
Of course, the cutting marks C1 as shown in FIG. 16 are caused by a similar change in relative positional relationship, such as planer machining, in which the workpiece W1 moves in the -Z direction instead of the tool TO3 moving in the +Z direction. It is formed. In addition, when vertical cutting (slotter processing) is performed in which the workpiece W1 is not rotated or moved and the cutting tool TO3 is moved in the vertical direction at the feed rate F, the cutting marks C1 including the embedded information IN2 are created in the same way. can be formed.
 むろん、埋め込み情報IN2の挽き目パターンは、図5に示すようにバーコードの規格に準拠してもよい。単位情報IN3は、図6,7に例示するように、2値に限定されない。
 いずれの場合も、検出装置200は、製品W2の表面の埋め込み情報IN2に含まれる各単位情報IN5の加工深さDEを測定し、加工深さDEと単位情報との対応関係に従って元の情報IN1を検出することができる。シンプルでノイズが乗り難い加工深さDEで各単位情報IN5が表されるので、S/N比が高い埋め込み情報IN2がワークW1に形成され、単位情報IN5の読み取り精度を高めることができる。検出装置200には、表面粗さ計、レーザー変位計、渦電流変位計、三次元測定機、画像処理装置、等を用いることができる。安価なレーザー測定機等でも単位情報IN5を読み取ることができるので、検出装置のコストを低く抑えることができ、デコード処理を高速化させることも可能となる。
Of course, the cut pattern of the embedded information IN2 may conform to the barcode standard as shown in FIG. The unit information IN3 is not limited to binary values, as illustrated in FIGS. 6 and 7.
In either case, the detection device 200 measures the machining depth DE of each unit information IN5 included in the embedded information IN2 on the surface of the product W2, and restores the original information IN1 according to the correspondence between the machining depth DE and the unit information. can be detected. Since each piece of unit information IN5 is represented by a machining depth DE that is simple and difficult to be affected by noise, embedded information IN2 with a high S/N ratio is formed in workpiece W1, and the reading accuracy of unit information IN5 can be improved. As the detection device 200, a surface roughness meter, a laser displacement meter, an eddy current displacement meter, a coordinate measuring machine, an image processing device, etc. can be used. Since the unit information IN5 can be read even with an inexpensive laser measuring device or the like, it is possible to keep the cost of the detection device low and to speed up the decoding process.
 以下、図17を参照して、形削り、平削り、立削り、等といった削りのついでに埋め込み情報IN2をワークW1に形成する処理の具体例を説明する。図17は、加工深さDEを埋め込み情報IN2にする場合に切削コマンドCD1の入力を受け付けて切削コマンドCD1を実行する切削制御処理を模式的に例示している。図17に示す切削制御処理において、受付部U2がステップS502の処理を行い、制御部U3がステップS504~S506の処理を行う。
 まず、NC装置70及び操作部80(又はコンピューター100)は、切削コマンドCD1の入力を受け付ける(ステップS502)。図17に示す切削コマンドCD1は、「M」から始まる切削コード番号mmm、「Z」から始まるZ軸の基準位置zzz、「F」から始まる上限速度fff、及び、「D」から始まる情報dddを含んでいる。基本的には、切削コマンドCD1は、製品W2を形成するために、Z軸方向において基準位置zzzから上限速度fffを超えない送り速度でワークW1と工具TO1とを相対的に移動させてワークW1を工具TO1で切削するコマンドである。この切削コマンドCD1に埋め込み対象の情報dddが含まれている。ワークW1と工具TO1との相対的な移動方向がX軸又はY軸に沿っている場合は「Zzzz」を「X」又は「Y」から始まるX軸の基準位置xxx又はY軸の基準位置yyyに置き換えればよい。
Hereinafter, with reference to FIG. 17, a specific example of processing for forming the embedded information IN2 on the workpiece W1 during cutting such as shaping, planing, vertical cutting, etc. will be described. FIG. 17 schematically illustrates a cutting control process in which input of the cutting command CD1 is received and the cutting command CD1 is executed when the processing depth DE is set to the embedded information IN2. In the cutting control process shown in FIG. 17, the reception unit U2 performs the process of step S502, and the control unit U3 performs the process of steps S504 to S506.
First, the NC device 70 and the operating unit 80 (or the computer 100) accept the input of the cutting command CD1 (step S502). The cutting command CD1 shown in FIG. 17 includes a cutting code number mmm starting from "M", a Z-axis reference position zzz starting from "Z", an upper limit speed fff starting from "F", and information ddd starting from "D". Contains. Basically, the cutting command CD1 cuts the workpiece W1 by relatively moving the workpiece W1 and the tool TO1 in the Z-axis direction from the reference position zzz at a feed rate that does not exceed the upper limit speed fff in order to form the product W2. This is a command to cut with tool TO1. This cutting command CD1 includes information ddd to be embedded. If the relative movement direction of workpiece W1 and tool TO1 is along the X-axis or Y-axis, "Zzzz" is the X-axis reference position xxx or Y-axis reference position yyy starting from "X" or "Y". You can replace it with
 ステップS502の後、NC装置70(又はコンピューター100)は、単位情報IN5の各加工深さDEを設定する(ステップS504)。例えば、図16に示すように、単位情報”0”を第一の加工深さDE1に設定し、単位情報”1”を第二の加工深さDE2に設定する。加工深さDEの設定後、NC装置70は、入力を受け付けた情報dddを構成する複数の単位情報IN5の状態に応じた加工深さDEでワークW1を切削するように駆動部U1を制御する(ステップS506)。例えば、情報dddが2進数で「01101001」と表される場合、NC装置70は、刃物台駆動部24にバイトTO3を+Z方向へ送り速度Fで移動させ、加工深さDEが単位情報”0”の埋め込み箇所において第一の加工深さDE1となって単位情報”1”の埋め込み箇所において第二の加工深さDE1となるようにY軸方向におけるバイトTO3の位置を制御する。これにより、埋め込み情報IN2の表面状態は、単位情報IN5の単位で、第一の加工深さDE1、第二の加工深さDE2、第二の加工深さDE2、第一の加工深さDE1、第二の加工深さDE2、第一の加工深さDE1、第一の加工深さDE1、及び、第二の加工深さDE2と変化する。 After step S502, the NC device 70 (or computer 100) sets each machining depth DE of the unit information IN5 (step S504). For example, as shown in FIG. 16, unit information "0" is set to the first machining depth DE1, and unit information "1" is set to the second machining depth DE2. After setting the machining depth DE, the NC device 70 controls the drive unit U1 to cut the workpiece W1 at the machining depth DE according to the state of the plurality of unit information IN5 forming the received input information ddd. (Step S506). For example, when the information ddd is expressed as "01101001" in binary, the NC device 70 causes the tool post drive unit 24 to move the cutting tool TO3 in the +Z direction at a feed rate F, and the machining depth DE is set to the unit information "0". The position of the cutting tool TO3 in the Y-axis direction is controlled so that the first machining depth DE1 is at the embedding location of "" and the second machining depth DE1 is at the embedding location of the unit information "1". As a result, the surface state of the embedded information IN2 is determined in units of the unit information IN5: first machining depth DE1, second machining depth DE2, second machining depth DE2, first machining depth DE1, The machining depth changes to a second machining depth DE2, a first machining depth DE1, a first machining depth DE1, and a second machining depth DE2.
 以上より、NC装置70は、駆動部U1に複数の単位情報IN5が順に形成される向きにワークW1と工具TO1との相対的な位置関係を変化させ、且つ、駆動部U1に各単位情報IN5に対応する加工深さDEでワークW1が切削されるように加工深さDEが変わる向きにワークW1と工具TO1との相対的な位置関係を変化させることになる。
 ステップS506の後、NC装置70は、切削制御処理を終了させる。
As described above, the NC device 70 changes the relative positional relationship between the workpiece W1 and the tool TO1 in a direction in which a plurality of unit information IN5 is sequentially formed in the drive unit U1, and also changes the relative positional relationship between the workpiece W1 and the tool TO1 so that a plurality of unit information IN5 is sequentially formed in the drive unit U1. The relative positional relationship between the workpiece W1 and the tool TO1 is changed in the direction in which the machining depth DE changes so that the workpiece W1 is cut at a machining depth DE corresponding to .
After step S506, the NC device 70 ends the cutting control process.
 図18は、検出装置200の構成例及び処理例を模式的に示している。
 図18の上部に示す検出装置200は、レーザー変位計221、表示部222、及び、計測制御部223を含んでいる。レーザー変位計221は、製品W2の表面の高さを測定する。製品W2の表面の高さは、加工深さDEに対応している。計測制御部223は、CPU、ROM、RAM、等を備え、レーザー変位計221から高さの測定値を取得し、埋め込み情報IN2から情報IN1を検出して表示部202に表示させる。むろん、計測制御部203の一部又は全部は、ASICといった他の手段により実現されてもよい。図18の下部には、計測制御部203により行われるデコード処理が示されている。製品W2に存在する埋め込み情報IN2を読み取るための操作がレーザー変位計221に行われると、デコード処理が開始する。
FIG. 18 schematically shows a configuration example and a processing example of the detection device 200.
The detection device 200 shown in the upper part of FIG. 18 includes a laser displacement meter 221, a display section 222, and a measurement control section 223. Laser displacement meter 221 measures the height of the surface of product W2. The height of the surface of the product W2 corresponds to the processing depth DE. The measurement control unit 223 includes a CPU, ROM, RAM, etc., and acquires a height measurement value from the laser displacement meter 221, detects information IN1 from the embedded information IN2, and causes the display unit 202 to display the detected information IN1. Of course, part or all of the measurement control unit 203 may be realized by other means such as ASIC. The lower part of FIG. 18 shows decoding processing performed by the measurement control unit 203. When the laser displacement meter 221 is operated to read the embedded information IN2 present in the product W2, the decoding process starts.
 デコード処理が開始すると、計測制御部223は、単位情報IN5の加工深さDEを順次、取得する(ステップS602)。ステップS602の処理は、例えば、単位情報IN5の加工深さDEに対応する高さの測定値を順次、取得する処理でもよい。次に、計測制御部223は、加工深さDEを元の単位情報にデコードする(ステップS604)。例えば、図4に示すように第一の加工深さDE1が単位情報”0”に対応して第二の加工深さDE2が単位情報”1”に対応すると想定し、第一の加工深さDE1と第二の加工深さDE2とを識別するための閾値をTHDEとする。計測制御部223は、加工深さDEが閾値THDEよりも大きい場合に単位情報に”0”を割り当てることができ、加工深さDEが閾値THDEよりも小さい場合に単位情報に”1”を割り当てることができる。DE=THDEである場合、検出装置200は、単位情報に”0”と”1”のどちらを割り当ててもよい。尚、計測制御部223は、レーザー変位計221から高さの測定値を取得して加工深さDEに換算してから閾値THDEを用いて単位情報のデコードを行ってもよいし、高さの測定値自体と高さの閾値とを用いて単位情報のデコードを行ってもよい。 When the decoding process starts, the measurement control unit 223 sequentially acquires the machining depth DE of the unit information IN5 (step S602). The process of step S602 may be, for example, a process of sequentially acquiring height measurement values corresponding to the machining depth DE of the unit information IN5. Next, the measurement control unit 223 decodes the machining depth DE into the original unit information (step S604). For example, assuming that the first machining depth DE1 corresponds to the unit information "0" and the second machining depth DE2 corresponds to the unit information "1" as shown in FIG. Let THDE be a threshold value for identifying DE1 and second machining depth DE2. The measurement control unit 223 can assign "0" to the unit information when the machining depth DE is greater than the threshold value THDE, and assign "1" to the unit information when the machining depth DE is less than the threshold value THDE. be able to. When DE=THDE, the detection device 200 may assign either "0" or "1" to the unit information. The measurement control unit 223 may acquire the measured height value from the laser displacement meter 221, convert it into the machining depth DE, and then decode the unit information using the threshold THDE. The unit information may be decoded using the measured value itself and the height threshold.
 計測制御部223は、埋め込み情報IN2に含まれる全ての単位情報IN5が元の単位情報にデコードされるまで、ステップS602~S604の処理を繰り返す(ステップS606)。埋め込み情報IN2に含まれる全ての単位情報IN5が元の単位情報にデコードされた場合、計測制御部223は、埋め込み情報IN2から検出された情報IN1を表示部202に表示させ(ステップS608)、デコード処理を終了させる。
 以上より、検出装置200は、ワークW1に形成された埋め込み情報IN2から情報IN1を検出する。
The measurement control unit 223 repeats the processing of steps S602 to S604 until all of the unit information IN5 included in the embedded information IN2 is decoded into the original unit information (step S606). When all the unit information IN5 included in the embedded information IN2 has been decoded into the original unit information, the measurement control unit 223 displays the information IN1 detected from the embedded information IN2 on the display unit 202 (step S608), and decodes the information IN1. Terminate the process.
As described above, the detection device 200 detects the information IN1 from the embedded information IN2 formed in the workpiece W1.
 図16~18に示す例も、製品W2に情報IN1を付加するためにワークW1の加工が利用されるので、製品W2に情報IN1を付加する専用の加工処理は不要である。管理者は、検出装置200で埋め込み情報IN2から検出される情報IN1に基づいて製品W2を管理することができる。
 また、図16~18に示す例において、工作機械1は、フライス盤や旋盤でなくてもよく、フライス加工や旋削の機能を有していない削り盤、例えば、形削り盤、平削り盤、立削り盤、等でもよい。 
In the examples shown in FIGS. 16 to 18, the processing of the workpiece W1 is also used to add the information IN1 to the product W2, so there is no need for a dedicated processing process to add the information IN1 to the product W2. The administrator can manage the product W2 based on the information IN1 detected from the embedded information IN2 by the detection device 200.
In the examples shown in FIGS. 16 to 18, the machine tool 1 does not have to be a milling machine or a lathe, but may be a milling machine that does not have a milling or turning function, such as a shaping machine, a planing machine, or a vertical turning machine. A sharpening machine, etc. may also be used.
(7)変形例:
 本発明は、種々の変形例が考えられる。
 例えば、工作機械1は、フライス加工を行う場合、旋盤に限定されず、旋削機能を有していないフライス盤等でもよい。むろん、工作機械1は、旋削を行う場合、フライス加工機能を有していない旋盤等でもよい。
 制御部U3は、機械本体2ではなく、コンピューター100(図1参照)に設けられてもよい。また、機械本体2とコンピューター100の両方が制御部U3を構成することも可能である。
(7) Modification example:
Various modifications of the present invention are possible.
For example, when performing milling, the machine tool 1 is not limited to a lathe, but may be a milling machine or the like that does not have a turning function. Of course, when performing turning, the machine tool 1 may be a lathe or the like that does not have a milling function.
The control unit U3 may be provided not in the machine body 2 but in the computer 100 (see FIG. 1). Further, it is also possible that both the machine main body 2 and the computer 100 constitute the control unit U3.
(8)結び:
 以上説明したように、本発明によると、種々の態様により、工作機械により形成された製品を管理する利便性を向上させることが可能な技術等を提供することができる。むろん、独立請求項に係る構成要件のみからなる技術でも、上述した基本的な作用、効果が得られる。
 また、上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術及び上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も実施可能である。本発明は、これらの構成等も含まれる。
(8) Conclusion:
As described above, according to the present invention, in various aspects, it is possible to provide a technique etc. that can improve the convenience of managing products formed by machine tools. Of course, the above-mentioned basic operation and effect can be obtained even with a technique consisting only of the constituent elements according to the independent claim.
In addition, configurations in which the configurations disclosed in the above-mentioned examples are mutually replaced or the combinations are changed, and configurations in which the configurations disclosed in the publicly known technology and the above-mentioned examples are mutually replaced or the combinations are changed. It is also possible to implement such a configuration. The present invention also includes these configurations.
1…工作機械、2…機械本体、10…主軸台、11…主軸、
13…主軸回転駆動部、14…主軸台駆動部、20…刃物台、
23…工具回転駆動部、24…刃物台駆動部、70…NC装置、
80…操作部、81…入力部、82…表示部、100…コンピューター、
200…検出装置、300…軌跡、301…始点、302…終点、
310…基準円、320…軌跡、321…第一円弧、322…第二円弧、
330…原点、331…交点、AX0…中心線、AX1…主軸中心線、
AX2…工具中心線、C1…切削痕、CD1,CD2…切削コマンド、
DE…加工深さ、DE1…第一の加工深さ、DE2…第二の加工深さ、
F1…第一速度、F2…第二速度、IN1…情報、IN2…埋め込み情報、
IN3…単位情報、IN4…単位情報、IN5…単位情報、k…所定比、
R0…回転対象、ST1…第一状態、ST2…第二状態、
SY1…管理システム、TO1…工具、TO2…エンドミル、
TO2t…刃先、TO3…バイト、TO3t…刃先、U1…駆動部、
U2…受付部、U3…制御部、U11…回転駆動部、
U12…制御軸駆動部、W1…ワーク、W2…製品。
1... Machine tool, 2... Machine body, 10... Headstock, 11... Spindle,
13... Spindle rotation drive unit, 14... Headstock drive unit, 20... Turret,
23... Tool rotation drive unit, 24... Turret drive unit, 70... NC device,
80...Operation unit, 81...Input unit, 82...Display unit, 100...Computer,
200...detection device, 300...trajectory, 301...start point, 302...end point,
310...Reference circle, 320...Trajectory, 321...First arc, 322...Second arc,
330...Origin, 331...Intersection, AX0...Center line, AX1...Spindle center line,
AX2...Tool center line, C1...Cutting marks, CD1, CD2...Cutting commands,
DE...machining depth, DE1...first machining depth, DE2...second machining depth,
F1...first speed, F2...second speed, IN1...information, IN2...embedded information,
IN3...unit information, IN4...unit information, IN5...unit information, k...predetermined ratio,
R0...rotation object, ST1...first state, ST2...second state,
SY1...management system, TO1...tool, TO2...end mill,
TO2t...Blade tip, TO3...Bite, TO3t...Blade tip, U1...Drive unit,
U2...reception unit, U3...control unit, U11...rotation drive unit,
U12...Control shaft drive unit, W1...Workpiece, W2...Product.

Claims (7)

  1.  ワークと工具との相対的な位置関係を変化させる駆動部と、
     検出装置に検出させるための情報の入力を受け付ける受付部と、
     前記検出装置で前記情報を検出可能な埋め込み情報を含む切削痕が前記工具による加工時に前記ワークに形成されるように、前記駆動部に前記相対的な位置関係を変化させる制御部と、を備える、工作機械。
    a drive unit that changes the relative positional relationship between the workpiece and the tool;
    a reception unit that receives input of information for the detection device to detect;
    The drive unit includes a control unit that changes the relative positional relationship so that cutting marks including embedded information that can be detected by the detection device are formed on the workpiece during machining with the tool. ,Machine Tools.
  2.  前記駆動部は、
      前記ワークと前記工具の一方である回転対象を該回転対象の中心線を中心として回転させる回転駆動部と、
      前記相対的な位置関係を制御軸に沿って変化させる制御軸駆動部と、を含み、
     前記制御部は、前記埋め込み情報を含む前記切削痕が前記工具による加工時に前記ワークに形成されるように、前記回転駆動部に前記回転対象を回転させ、前記制御軸駆動部に前記相対的な位置関係を変化させる、請求項1に記載の工作機械。
    The drive unit includes:
    a rotation drive unit that rotates a rotational object, which is one of the workpiece and the tool, about a center line of the rotational object;
    a control shaft drive unit that changes the relative positional relationship along the control axis,
    The control unit causes the rotation drive unit to rotate the object to be rotated, and causes the control shaft drive unit to rotate the relative object so that the cutting marks including the embedded information are formed on the workpiece during machining by the tool. The machine tool according to claim 1, wherein the machine tool changes the positional relationship.
  3.  前記埋め込み情報は、第一状態、及び、該第一状態とは異なる第二状態になり得る単位情報を複数含み、
     前記制御部は、前記単位情報を前記第一状態にする場合に該第一状態の前記単位情報が前記ワークに形成されるように前記駆動部に前記相対的な位置関係を第一速度で変化させ、前記単位情報を前記第二状態にする場合に該第二状態の前記単位情報が前記ワークに形成されるように前記駆動部に前記相対的な位置関係を前記第一速度とは異なる第二速度で変化させる、請求項1又は請求項2に記載の工作機械。
    The embedded information includes a first state and a plurality of unit information that can be in a second state different from the first state,
    The control unit causes the drive unit to change the relative positional relationship at a first speed so that the unit information in the first state is formed on the workpiece when the unit information is in the first state. and set the relative positional relationship to a speed different from the first speed to the drive unit so that when the unit information is in the second state, the unit information in the second state is formed on the workpiece. The machine tool according to claim 1 or claim 2, wherein the machine tool is changed at two speeds.
  4.  前記制御部は、前記埋め込み情報を含む前記切削痕が形成されるように前記相対的な位置関係を変化させる指令に上限速度が含まれる場合、前記第一速度を前記上限速度に合わせて前記第一状態の前記単位情報が前記ワークに形成されるように前記駆動部に前記相対的な位置関係を変化させ、1よりも小さい所定比を前記上限速度に乗じた速度に前記第二速度を合わせて前記第二状態の前記単位情報が前記ワークに形成されるように前記駆動部に前記相対的な位置関係を変化させる、請求項3に記載の工作機械。 If the command for changing the relative positional relationship so that the cutting marks including the embedded information are formed includes an upper limit speed, the control unit adjusts the first speed to the upper limit speed and adjusts the first speed to the upper limit speed. causing the drive unit to change the relative positional relationship so that the unit information of one state is formed on the workpiece, and adjusting the second speed to a speed obtained by multiplying the upper limit speed by a predetermined ratio smaller than 1. The machine tool according to claim 3, wherein the drive unit changes the relative positional relationship so that the unit information in the second state is formed on the workpiece.
  5.  前記制御軸駆動部は、向きが異なる複数の前記制御軸に沿って前記相対的な位置関係を変化させ、
     前記切削痕は、第一円弧、及び、該第一円弧に続く第二円弧であって前記第一円弧と交わる第二円弧を含み、
     前記埋め込み情報は、前記第一円弧の中心座標を原点とした前記第一円弧と前記第二円弧との交点の座標を含み、
     前記制御部は、前記情報に対応する前記座標に前記交点を有する前記第一円弧及び前記第二円弧が前記ワークに形成されるように前記制御軸駆動部に前記相対的な位置関係を変化させる、請求項2に記載の工作機械。
    The control shaft drive unit changes the relative positional relationship along the plurality of control axes having different directions,
    The cutting trace includes a first circular arc, and a second circular arc that follows the first circular arc and intersects with the first circular arc,
    The embedded information includes coordinates of an intersection between the first circular arc and the second circular arc, with the origin being the center coordinates of the first circular arc,
    The control unit causes the control shaft drive unit to change the relative positional relationship so that the first circular arc and the second circular arc having the intersection point at the coordinates corresponding to the information are formed on the workpiece. , The machine tool according to claim 2.
  6.  前記埋め込み情報は、第一の加工深さ、及び、該第一の加工深さとは異なる第二の加工深さになり得る単位情報を複数含み、
     前記制御部は、前記駆動部に前記複数の単位情報が順に形成される向きに前記相対的な位置関係を変化させ、且つ、前記駆動部に各前記単位情報に対応する加工深さで前記ワークが切削されるように前記加工深さが変わる向きに前記相対的な位置関係を変化させる、請求項1又は請求項2に記載の工作機械。
    The embedded information includes a first machining depth and a plurality of unit information that can be a second machining depth different from the first machining depth,
    The control unit changes the relative positional relationship in a direction in which the plurality of unit information is sequentially formed on the drive unit, and causes the drive unit to apply the workpiece at a machining depth corresponding to each piece of unit information. The machine tool according to claim 1 or 2, wherein the relative positional relationship is changed in a direction in which the machining depth is changed so that the machining depth is changed.
  7.  工作機械、及び、情報の検出装置を含む管理システムであって、
     前記工作機械は、
      ワークと工具との相対的な位置関係を変化させる駆動部と、
      前記情報の入力を受け付ける受付部と、
      前記検出装置で前記情報を検出可能な埋め込み情報を含む切削痕が前記工具による加工時に前記ワークに形成されるように、前記駆動部に前記相対的な位置関係を変化させる制御部と、を備え、
     前記検出装置は、前記ワークに形成された前記埋め込み情報から前記情報を検出する、管理システム。
    A management system including a machine tool and an information detection device,
    The machine tool is
    a drive unit that changes the relative positional relationship between the workpiece and the tool;
    a reception unit that receives input of the information;
    The drive unit includes a control unit that changes the relative positional relationship so that cutting marks including embedded information that can be detected by the detection device are formed on the workpiece during machining with the tool. ,
    The detection device is a management system that detects the information from the embedded information formed in the workpiece.
PCT/JP2023/028221 2022-08-30 2023-08-02 Machine tool and management system WO2024048181A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-136437 2022-08-30
JP2022136437A JP2024033059A (en) 2022-08-30 2022-08-30 Machine tools and management systems

Publications (1)

Publication Number Publication Date
WO2024048181A1 true WO2024048181A1 (en) 2024-03-07

Family

ID=90099204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028221 WO2024048181A1 (en) 2022-08-30 2023-08-02 Machine tool and management system

Country Status (2)

Country Link
JP (1) JP2024033059A (en)
WO (1) WO2024048181A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541623U (en) * 1991-11-15 1993-06-08 株式会社オプテイコン Groove cutting tool for barcode
JPH0696297A (en) * 1991-08-10 1994-04-08 Asahi Tec Corp Bar-code and its expressing method
JP2016043419A (en) * 2014-08-19 2016-04-04 トヨタ自動車株式会社 Individual identification apparatus
JP2016201075A (en) * 2015-04-14 2016-12-01 株式会社Kmc Nc control program, nc control device, nc machining system, nc control method, method for manufacturing two-dimensional code, two-dimensional code, and metal component
JP6752398B1 (en) * 2020-01-15 2020-09-09 三菱電機株式会社 Numerical control device and numerical control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696297A (en) * 1991-08-10 1994-04-08 Asahi Tec Corp Bar-code and its expressing method
JPH0541623U (en) * 1991-11-15 1993-06-08 株式会社オプテイコン Groove cutting tool for barcode
JP2016043419A (en) * 2014-08-19 2016-04-04 トヨタ自動車株式会社 Individual identification apparatus
JP2016201075A (en) * 2015-04-14 2016-12-01 株式会社Kmc Nc control program, nc control device, nc machining system, nc control method, method for manufacturing two-dimensional code, two-dimensional code, and metal component
JP6752398B1 (en) * 2020-01-15 2020-09-09 三菱電機株式会社 Numerical control device and numerical control method

Also Published As

Publication number Publication date
JP2024033059A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
JP4261563B2 (en) Machining origin setting method and machine tool for implementing the method
US7218995B2 (en) Device and method for workpiece calibration
US10585418B2 (en) Control system of machine tool
JP7068317B2 (en) How to control a machine tool
JP4549332B2 (en) Tool positioning method and apparatus
JP2001009603A (en) Cutting method and tool for inner corner
JP6865058B2 (en) Machine tool system, manufacturing method of machined products, machining program correction device, correction machining program creation method, and machine tool control device
CN110209120A (en) The operating simulation device of lathe
CN104460519A (en) Method for controlling a gear cutting machine and gear cutting machine
CN104439709A (en) Three-dimensional laser marking method and device and three-dimensional laser machining equipment
Denkena et al. Direct part marking by vibration assisted face milling
WO2024048181A1 (en) Machine tool and management system
KR20140079176A (en) Cooler for spindle bearing of machine tool and control method for the same
TW202408719A (en) Machine tools and management systems
WO2019198734A1 (en) Tool path creation method, tool path creation device, tool path creation program, and recording medium having program recorded thereon
WO2017014142A1 (en) Encoder device, drive device, stage device, robot device, and information acquisition method
WO2017113331A1 (en) Spindle orientation method, numerical control device, and numerically controlled machine tool
JP7177669B2 (en) Analysis device, analysis method and processing system
JP4220732B2 (en) Method for controlling a machine tool having a turning tool turret
WO2019159823A1 (en) Chuck mechanism and top jaw
JP2016043419A (en) Individual identification apparatus
JP6752032B2 (en) Position detection device for movable members of actuators
JP2009285783A (en) Boring method of nc machine tool
CN209021436U (en) For carving the Multi-axis simultaneous machining equipment of milling
WO2022215452A1 (en) Information processing device and information processing program