WO2024048072A1 - Inspection method using unmanned underwater vehicle - Google Patents

Inspection method using unmanned underwater vehicle Download PDF

Info

Publication number
WO2024048072A1
WO2024048072A1 PCT/JP2023/025073 JP2023025073W WO2024048072A1 WO 2024048072 A1 WO2024048072 A1 WO 2024048072A1 JP 2023025073 W JP2023025073 W JP 2023025073W WO 2024048072 A1 WO2024048072 A1 WO 2024048072A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
inspection
inspected
rov
underwater vehicle
Prior art date
Application number
PCT/JP2023/025073
Other languages
French (fr)
Japanese (ja)
Inventor
茂明 稲葉
栄二郎 大橋
昌平 伊藤
Original Assignee
株式会社FullDepth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社FullDepth filed Critical 株式会社FullDepth
Publication of WO2024048072A1 publication Critical patent/WO2024048072A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot

Definitions

  • Patent Document 1 describes an AUV that inspects an undersea pipeline while traveling along the pipeline.
  • This AUV can be equipped with a wall thickness tester that tests the wall thickness of the pipeline to check the degree of corrosion and the presence or absence of damage.
  • the present application includes a plurality of means for solving the above-mentioned problems, but to give one example, a first unmanned underwater vehicle equipped with a deposit removal means is used to remove deposits attached to an object to be inspected. removing the object; and measuring the thickness of the object to be inspected using the first unmanned underwater vehicle further comprising a first sensor or the second unmanned underwater vehicle comprising the first sensor; Alternatively, there is an inspection method including a step of generating an image of the inspection object.
  • FIG. 1 shows an example of an inspection system 100.
  • FIG. 2 is a perspective view showing an example of the appearance of the ROV 101.
  • FIG. 3 is a plan view showing an example of the appearance of the ROV 101.
  • FIG. 4 is a side view showing an example of the appearance of the ROV 101.
  • FIG. 5 is a bottom view showing an example of the appearance of the ROV 101.
  • FIG. 6 is a front view showing an example of the appearance of the ROV 101.
  • FIG. 7 is a rear view showing an example of the appearance of the ROV 101.
  • FIG. 8 is a perspective view showing an example of the appearance of the ROV main body 201.
  • FIG. 9 is a plan view showing an example of the appearance of the ROV main body 201.
  • FIG. 9 is a plan view showing an example of the appearance of the ROV main body 201.
  • FIG. 10 is a side view showing an example of the appearance of the ROV main body 201.
  • FIG. 11 is a bottom view showing an example of the external appearance of the ROV main body 201.
  • FIG. 12 is a front view showing an example of the external appearance of the ROV main body 201.
  • FIG. 13 is a rear view showing an example of the external appearance of the ROV main body 201.
  • FIG. 14 is a perspective view showing an example of the high-pressure cleaning unit 202.
  • FIG. 15 is a plan view showing an example of the high pressure cleaning unit 202.
  • FIG. 16 is a side view showing an example of the high-pressure cleaning unit 202.
  • FIG. 17 is a perspective view showing an example of the wall thickness inspection unit 203.
  • FIG. 18 is a plan view showing an example of the wall thickness inspection unit 203.
  • FIG. 19 is a side view showing an example of the wall thickness inspection unit 203.
  • FIG. 20 is a bottom view showing an example of the wall thickness inspection unit 203.
  • FIG. 21 is an exploded perspective view showing an example of the cover plate 1701 and the tip portion 1702.
  • FIG. 22 is a perspective view showing an example of the wall thickness inspection unit 203 with the cover plate 1701 removed.
  • FIG. 23 is a perspective view showing an example of the tension rod 204.
  • FIG. 24 shows an example of a work flow 2400 for wall thickness inspection.
  • FIG. 25 is a plan view showing an example of the ROV 101 in which the tip of the underwater ultrasonic thickness gauge 2105 is pressed against the surface to be inspected 2501.
  • FIG. 25 is a plan view showing an example of the ROV 101 in which the tip of the underwater ultrasonic thickness gauge 2105 is pressed against the surface to be inspected 2501.
  • FIG. 26 is a side view showing an example of the ROV 101 in which the tip of the underwater ultrasonic thickness gauge 2105 is pressed against the surface to be inspected 2501.
  • FIG. 27 shows an example of the hardware configuration of automatic control device 2700.
  • FIG. 28 shows an example of a work flow 2800 for this wall thickness inspection.
  • FIG. 1 shows an example of an inspection system 100.
  • An inspection system 100 shown in the figure is a system for inspecting the wall thickness of a steel pipe pile 105 underwater.
  • This inspection system 100 includes an ROV (Remotely Operated Vehicle) 101, an operation terminal 102, a cloud server 103, and a client terminal 104.
  • ROV Remote Operated Vehicle
  • the ROV 101 is a wired and remotely operated unmanned underwater vehicle (in other words, an unmanned exploration vehicle, an underwater robot, or an underwater drone).
  • This ROV 101 is equipped with an underwater ultrasonic thickness gauge 2105 to measure the wall thickness of the steel pipe pile 105, as will be described later.
  • the operating terminal 102 is a computer device for remotely operating the ROV 101. This operating terminal 102 is connected to the ROV 101 via a communication cable 106.
  • the cloud server 103 is a server for accumulating inspection data generated by the ROV 101.
  • the client terminal 104 is a computer device that downloads test data from the cloud server 103 and displays it on a display.
  • the client terminal 104, the operation terminal 102, and the cloud server 103 are connected to each other via a communication network 107.
  • FIG. 2 is a perspective view
  • FIG. 3 is a top view
  • FIG. 4 is a side view
  • FIG. 5 is a bottom view
  • FIG. 6 is a front view
  • FIG. 7 is a rear view.
  • the ROV 101 shown in these figures roughly consists of an ROV main body 201, a high-pressure cleaning unit 202, a wall thickness inspection unit 203, and four tension rods 204.
  • a high-pressure cleaning unit 202 is attached to the bottom surface of the ROV main body 201, and includes a high-pressure cleaning nozzle 1402 as described later.
  • This high-pressure cleaning unit 202 is a means for removing deposits attached to the object to be inspected.
  • the wall thickness inspection unit 203 is attached to the front side of the ROV main body 201, and includes an underwater ultrasonic thickness gauge 2105 as described later.
  • This wall thickness inspection unit 203 is a holding means that holds an underwater ultrasonic thickness gauge 2105 in front of the ROV main body 201 in a state where it is indirectly biased by a coil spring 1709, which will be described later.
  • the four tension rods 204 are attached to the front side of the ROV main body 201, and a portion thereof protrudes to the front of the ROV main body 201. These four tension rods 204 are two pairs of abutting means whose tips are abutted against the object to be inspected. These high-pressure washing unit 202, wall thickness inspection unit 203, and four tension rods 204 are removable from the ROV main body 201 and constitute an inspection unit.
  • FIG. 8 to 13 show examples of the appearance of the ROV main body 201.
  • 8 is a perspective view
  • FIG. 9 is a top view
  • FIG. 10 is a side view
  • FIG. 11 is a bottom view
  • FIG. 12 is a front view
  • FIG. 13 is a rear view.
  • the ROV main body 201 shown in these figures includes a main body frame 801, an underwater camera 802, four underwater lights 803, and seven propellers 804.
  • the main body frame 801 is made up of a plurality of plate-shaped bodies and forms a rectangular parallelepiped-shaped external outline.
  • This main body frame 801 corresponds to a housing.
  • Underwater camera 802 is a visible light image sensor.
  • This underwater camera 802 is housed in a cylindrical case 805 housed in the main body frame 801.
  • This underwater camera 802 faces the front of the ROV main body 201.
  • the four underwater lights 803 are installed on the front side of the ROV main body 201 so as to illuminate the front of the ROV main body 201.
  • the seven propellers 804 are installed at various locations on the main body frame 801, and enable movement of the ROV main body 201 in three-dimensional directions.
  • the ROV main body 201 is equipped with devices such as a GPS receiver, an electronic compass, a depth sensor, a sonar, a manipulator, and a position measurement means (for example, a USB (Ultra Short Base Line) positioning device). It is possible.
  • FIG. 14 is a perspective view
  • FIG. 15 is a plan view
  • FIG. 16 is a side view.
  • the high-pressure cleaning unit 202 shown in these figures includes a frame 1401, a high-pressure cleaning nozzle 1402, and a high-pressure hose 1403.
  • the frame 1401 is made up of a plurality of plate-like bodies and has a ladder-like shape.
  • High-pressure cleaning nozzle 1402 has a cylindrical shape and is attached to the front side of frame 1401.
  • This high-pressure cleaning nozzle 1402 is inclined with respect to the longitudinal and lateral directions of the frame 1401. Further, this high-pressure cleaning nozzle 1402 extends in substantially the same plane as the frame 1401. However, the high pressure cleaning nozzle 1402 does not necessarily have to extend in substantially the same plane as the frame 1401. The high-pressure cleaning nozzle 1402 may be inclined vertically with respect to the frame 1401. Further, the tip of this high-pressure cleaning nozzle 1402 projects forward of the frame 1401. As shown in FIG. 4, the tip of this high-pressure cleaning nozzle 1402 is located behind the tip of the wall thickness inspection unit 203 and the tip of the tension rod 204.
  • the position of the tip of the high-pressure cleaning nozzle 1402 shown in FIG. 3 is just an example.
  • the position of the tip of the high-pressure cleaning nozzle 1402 can be adjusted by changing the fixed position of the high-pressure cleaning nozzle 1402 with respect to the frame 1401.
  • the position of the tip of the high-pressure cleaning nozzle 1402 is adjusted according to the shape of the object to be inspected.
  • one end of the high-pressure hose 1403 is connected to the high-pressure cleaning nozzle 1402, and the other end is connected to a high-pressure pump (not shown).
  • This high-pressure hose 1403 supplies high-pressure water sent out from a high-pressure pump to the high-pressure cleaning nozzle 1402.
  • the high-pressure water supplied to the high-pressure cleaning nozzle 1402 is discharged from the tip of the nozzle. The discharged high-pressure water is used to remove deposits attached to the surface to be inspected.
  • FIG. 17 to 22 show examples of the wall thickness inspection unit 203.
  • 17 is a perspective view
  • FIG. 18 is a plan view
  • FIG. 19 is a side view
  • FIG. 20 is a bottom view.
  • FIG. 21 is an exploded perspective view of a cover plate 1701 and a tip portion 1702, which will be described later.
  • FIG. 22 is a perspective view of the wall thickness inspection unit 203 with the cover plate 1701 removed.
  • the wall thickness inspection unit 203 shown in these figures roughly consists of a cover plate 1701, a tip portion 1702, a base portion 1703, and a fixing plate 1704. Each component will be explained below.
  • the cover plate 1701 has a rectangular shape with four protruding corners. As shown in FIG. 21, this cover plate 1701 has a hole 2101 formed in the center and four holes 2102 formed at equal intervals around the hole 2101. The tip of an underwater ultrasonic thickness gauge 2105, which will be described later, is inserted into the hole 2101. This cover plate 1701 is attached to the front side of the tip portion 1702.
  • the tip portion 1702 has an inner annular portion 2103, an outer annular portion 2104, an underwater ultrasonic thickness gauge 2105, a holding portion 2106, and a base portion 2107, as shown in FIGS. 21 and 22.
  • the inner annular portion 2103 is an annular member having two protrusions in the left-right direction.
  • This inner annular portion 2103 has a hole 2108 and two protrusions 2109 extending perpendicularly from the front surface of the inner annular portion 2103.
  • the tip of an underwater ultrasonic thickness gauge 2105 is inserted into the hole 2108 .
  • Two protrusions 2109 are inserted into holes 2102 of cover plate 1701.
  • the outer annular portion 2104 is an annular member extending in the left-right direction. This outer annular portion 2104 has a hole 2110 and two protrusions 2111 extending perpendicularly from the front surface of the outer annular portion 2104 .
  • the inner annular portion 2103 is inserted into the hole 2110 .
  • the inner annular portion 2103 is held by the outer annular portion 2104 so as to be able to swing in a substantially horizontal plane within the hole 2110 (see arrow 2201 in FIG. 22). Since the inner annular part 2103 is swingable in a substantially horizontal plane, the tip of the underwater ultrasonic thickness gauge 2105 fitted into the inner annular part 2103 is also swingable in a substantially horizontal plane. There is.
  • Two protrusions 2111 are inserted into holes 2102 of cover plate 1701.
  • the underwater ultrasonic thickness gauge 2105 is a sensor that measures the thickness of underwater structures using ultrasonic echoes.
  • the holding portion 2106 is a substantially U-shaped member having two protrusions extending forward.
  • An outer annular portion 2104 is sandwiched between the two protrusions of this holding portion 2106.
  • the outer annular portion 2104 is held by a holding portion 2106 so as to be able to swing in a substantially vertical plane between its two protrusions (see arrow 2202 in FIG. 22). Since the outer annular portion 2104 is swingable in a substantially vertical plane, the tip of the underwater ultrasonic thickness gauge 2105 fitted into the outer annular portion 2104 via the inner annular portion 2103 is also substantially vertical. It can swing within a plane. As described above, the tip of the underwater ultrasonic thickness gauge 2105 is swingable in a substantially horizontal plane and a substantially vertical plane. In other words, the tip of the underwater ultrasonic thickness gauge 2105 is held in the wall thickness inspection unit 203 so as to be swingable around two axes.
  • the base portion 2107 is a substantially rectangular parallelepiped member.
  • the base portion 2107 has a recessed portion 2112 formed on the front surface thereof, and a shaft insertion hole 2113 formed along the front-rear direction.
  • the rear end of the holding part 2106 is fixed to the recessed part 2112.
  • the tip of a shaft 1707, which will be described later, is inserted into the shaft insertion hole 2113.
  • the above is a description of the tip portion 1702.
  • the base portion 1703 of the wall thickness inspection unit 203 is a rectangular plate having a substantially U-shaped peripheral wall 1705 on the front surface.
  • a shaft insertion hole 1706 is formed in the peripheral wall 1705 of the base portion 1703 along the front-rear direction of the base portion 1703.
  • the rear end of a shaft 1707 is inserted into this shaft insertion hole 1706.
  • the base portion 1703 is connected to the tip portion 1702 via this shaft 1707.
  • a coil spring 1709 is attached to the shaft 1707.
  • the tip portion 1702 is urged forward by this coil spring 1709.
  • the base portion 1703 is also connected to the tip portion 1702 by two sliders 1708.
  • Each slider 1708 has its outer surface fixed to the inner surface of the peripheral wall 1705, and its inner surface fixed to the base portion 2107 of the tip portion 1702.
  • the distal end portion 1702 is movable in the front-rear direction with respect to the base portion 1703 by these two sliders 1708.
  • the fixed plate 1704 is, for example, a substantially rectangular plate extending in the left-right direction, as shown in FIG. 17 .
  • a base portion 1703 is fixed to the center of the front surface of this fixed plate 1704. Both ends of this fixing plate 1704 are fixed to the main body frame 801 of the ROV main body 201 (see FIG. 2).
  • the above is the description of the wall thickness inspection unit 203.
  • FIG. 23 is a perspective view showing an example of the tension rod 204.
  • the tension rod 204 shown in the figure roughly consists of a rod portion 2301 and a holding portion 2304. Among these components, the rod portion 2301 has a tip cap 2302 attached to its tip and a rear end cap 2303 attached to its rear end. The tip of this rod portion 2301 is abutted against the object to be inspected.
  • the holding portion 2304 is a substantially rectangular parallelepiped member. This holding portion 2304 has a rod insertion hole 2305 that penetrates in the front-rear direction. A rod portion 2301 is inserted into this rod insertion hole 2305. The rod portion 2301 is held by a holding portion 2304 in a state where it is biased by a coil spring 2307. The holding portion 2304 is fixed to the main body frame 801 of the ROV main body 201 (see FIG. 2).
  • a tip side fastener 2306 is fixed to the rod portion 2301 between its tip and the holding portion 2304.
  • a coil spring 2307 is attached between the tip side fastener 2306 and the holding portion 2304 of the rod portion 2301 .
  • the rod portion 2301 is urged forward with respect to the holding portion 2304 by the coil spring 2307.
  • a rear end fastener 2308 is fixed to the rod portion 2301 between the rear end and the holding portion 2304 .
  • This rear end side fastener 2308 and the above-mentioned front end side fastener 2306 restrict the movement of the rod portion 2301 in the front-rear direction relative to the holding portion 2304.
  • the length of the rod portion 2301 protruding from the holding portion 2304 can be adjusted.
  • the length of this rod portion 2301 is adjusted depending on the shape of the object to be inspected. The above is the explanation about the tension rod 204.
  • FIG. 24 shows an example of a work flow 2400 for this wall thickness inspection.
  • the work flow 2400 shown in the figure assumes the wall thickness inspection of a steel pipe pile underwater.
  • the inspector operates the operating terminal 102 to start photographing and recording using the underwater camera 802 of the ROV 101 (step 2401). After that, the inspector drops the ROV 101 into the water (step 2402).
  • the inspector After dropping the ROV 101 into the water, the inspector operates the ROV 101 while viewing the image of the underwater camera 802 displayed on the operating terminal 102, and moves the ROV 101 to the surface to be inspected of the steel pipe pile (step 2403).
  • the inspector determines whether shellfish or seaweed are attached to the surface to be inspected based on the image from the underwater camera 802 (step 2404). As a result of this determination, if shellfish or seaweed is attached to the surface to be inspected (YES in step 2404), the inspector removes the attached matter (step 2405).
  • the inspector operates the operating terminal 102 to inject high-pressure water from the high-pressure cleaning nozzle 1402 of the ROV 101 onto the surface to be inspected. At this time, the inspector injects high-pressure water while controlling the propeller 804 to provide thrust in the forward direction so that the ROV 101 does not rotate or retreat due to the reaction force of the injected high pressure.
  • the inspector After spraying high-pressure water for a certain period of time, the inspector re-determines whether shellfish or seaweed are attached to the surface to be inspected (step 2404). As a result of this determination, if shellfish or seaweed are still attached to the inspected surface (YES in step 2404), the inspector removes the attached matter again (step 2405). On the other hand, if the result of this determination is that no shellfish or seaweed is attached to the surface to be inspected (NO in step 2404), the inspector conducts a wall thickness inspection (step 2406).
  • the inspector operates the operating terminal 102 to move the ROV 101 forward toward the steel pipe pile, butts the four tension rods 204 of the ROV 101 against the steel pipe pile, and checks the underwater ultrasonic thickness of the ROV 101. Press the tip of the gauge 2105 against the surface to be inspected. At this time, the coil springs 2307 of each tension rod 204 absorb the impact caused by the ROV 101 colliding with the steel pipe pile. Further, a coil spring 1709 placed behind the underwater ultrasonic thickness gauge 2105 also absorbs the same impact. Therefore, the ROV 101 is prevented from colliding with the steel pipe pile and bouncing. Moreover, even if the steel pipe pile swings, the coil springs 2307 and 1709 can imitate the steel pipe pile and allow the ROV 101 to abut against the steel pipe pile.
  • FIG. 25 and 26 show an example of the ROV 101 in which the tip of the underwater ultrasonic thickness gauge 2105 is pressed against the surface to be inspected 2501.
  • FIG. 25 is a plan view
  • FIG. 26 is a side view.
  • the inspector continues to move the ROV 101 forward so that the ROV 101 maintains its posture with respect to the surface to be inspected.
  • the ROV 101 is positioned relative to the surface to be inspected by the four tension rods 204, the ROV 101 is prevented from rotating or deviating from the surface to be inspected due to the forward force.
  • the underwater ultrasonic thickness gauge 2105 is capable of swinging around two axes, as described above. Therefore, even if the ROV 101 is somewhat inclined with respect to the surface to be inspected, the tip surface of the underwater ultrasonic thickness gauge 2105 can be maintained parallel to the surface to be inspected. Therefore, the underwater ultrasonic thickness gauge 2105 can reliably detect reflected echoes.
  • the inspector After pressing the tip of the underwater ultrasonic thickness meter 2105 against the surface to be inspected, the inspector operates the operation terminal 102 to measure the thickness of the surface to be inspected.
  • the measured wall thickness data is stored in the storage device of the operation terminal 102.
  • the inspector also stores the image data of the underwater camera 802 at the time of wall thickness measurement in the storage device of the operation terminal 102 in association with the measurement data (step 2407).
  • the method of associating the image data with the measurement data includes, for example, attaching the same date and time data, location information, or identification information (for example, project ID, survey ID, equipment ID, worker name, etc.) to both data. It will be done.
  • the user of the client terminal 104 can easily refer to the state of the surface to be inspected at the time the measurement data was generated.
  • the inspector After completing the wall thickness inspection, the inspector floats the ROV 101 above the water and collects it (step 2408). After collecting the ROV 101, the inspector stops photographing and recording by the underwater camera 802 (step 2409).
  • the examiner operates the operation terminal 102 to upload video data, measurement data, and image data (hereinafter collectively referred to as "inspection data") to the cloud server 103 (step 2410).
  • the cloud server 103 stores the uploaded test data.
  • a client who desires to view the test data operates the client terminal 104 to download the test data from the cloud server 103 (step 2411).
  • the above is a description of the work flow 2400 for wall thickness inspection.
  • the inspection data is uploaded to the cloud server 103 after collecting the ROV 101, but the inspection data may be uploaded to the cloud server 103 before collecting the ROV 101.
  • step 2410 may be executed simultaneously with or immediately after step 2407, and in a situation where radio waves are unstable, step 2410 may be executed after step 2409. In this case, if the radio waves are stable, step 2411 may be executed before collecting the ROV 101.
  • the wall thickness inspection is performed manually. Instead of such an inspection method, the wall thickness inspection may be performed automatically. Below, a method for automatically performing wall thickness inspection will be explained.
  • an automatic control device 2700 is used in place of the operation terminal 102 in order to automatically perform a wall thickness inspection.
  • the automatic control device 2700 may be, for example, a portable terminal (mobile terminal) such as a smartphone, a tablet, a mobile phone, or a personal digital assistant (PDA), or may be a wearable terminal such as a glasses type, a wristwatch type, or a wearable type. Alternatively, it may be a stationary or portable computer, or a server placed on a cloud or network.
  • the function may be a VR (Virtual Reality) terminal, an AR (Augmented Reality) terminal, or an MR (Mixed Reality) terminal. Alternatively, it may be a combination of these multiple terminals. For example, a combination of one smartphone and one wearable terminal can logically function as one terminal. Further, information processing terminals other than these may also be used.
  • the automatic control device 2700 includes a processor that executes an operating system, applications, programs, etc., a main storage device such as RAM (Random Access Memory), and auxiliary devices such as an IC card, hard disk drive, SSD (Solid State Drive), and flash memory.
  • Storage devices communication control units such as network cards, wireless communication modules, and mobile communication modules; input devices such as touch panels, keyboards, mice, voice input, and input based on motion detection using image capture by cameras; and monitors and displays, etc. and an output device.
  • the output device may be a device or terminal that transmits information to be output to an external monitor, display, printer, device, or the like.
  • the main storage device stores various programs, applications, etc. (modules), and when the processor executes these programs and applications, each functional element of the overall system is realized.
  • each of these modules may be implemented in hardware by integrating them or the like.
  • each module may be an independent program or application, or may be implemented as a part of a subprogram or function within one integrated program or application.
  • each module is described as a subject (subject) that performs processing, but in reality, a processor that processes various programs, applications, etc. (modules) executes processing.
  • FIG. 27 shows an example of the hardware configuration of automatic control device 2700.
  • the automatic control device 2700 shown in the figure includes a main storage device 2701, an auxiliary storage device 2702, a processor 2703, an input device 2704, an output device 2705, and a communication control section 2706.
  • the main storage device 2701 stores programs and applications such as a navigation control module 2711, an imaging control module 2712, a determination module 2713, a cleaning control module 2714, and an inspection control module 2715.
  • Each functional element of the automatic control device 2700 is realized by the processor 2703 executing these programs and applications. Each module will be explained below.
  • the navigation control module 2711 controls the navigation of the ROV 101 based on sensor values such as an acceleration sensor, a gyroscope, and a pressure sensor included in the ROV 101.
  • the photographing control module 2712 controls photographing and recording by the underwater camera 802 of the ROV 101.
  • the determination module 2713 determines whether shellfish or seaweed are attached to the surface to be inspected, based on the image of the underwater camera 802 of the ROV 101. Specifically, this module inputs the image of the underwater camera 802 into an adhesion determination model, and determines whether shellfish or seaweed is attached to the surface to be inspected.
  • the adhesion determination model used by this module is generated by having a machine learning model such as a neural network learn a large amount of teacher data.
  • the training data to be trained by the machine learning model are a group of images of the inspected surface to which shellfish and seaweed are attached (positive example data), and a group of images of the inspected surface to which shellfish and seaweed are not attached ( negative example data).
  • the adhesion determination model generated in this manner receives the image from the underwater camera 802 as input, and outputs information indicating whether or not shellfish or seaweed are attached.
  • the cleaning control module 2714 injects high-pressure water from the high-pressure cleaning nozzle 1402 of the ROV 101 onto the surface to be inspected based on the image of the underwater camera 802.
  • the inspection control module 2715 executes a wall thickness inspection. Specifically, the inspection control module 2715 moves the ROV 101 forward toward the steel pipe pile based on the image of the underwater camera 802, hits the four tension rods 204 of the ROV 101 against the steel pipe pile, and moves the ROV 101 underwater. The tip of the ultrasonic thickness gauge 2105 is pressed against the surface to be inspected. The module then measures the wall thickness of the surface to be inspected.
  • the module After measuring the wall thickness, the module stores the measurement data in the auxiliary storage device 2702 of the automatic control device 2700 in association with the image data of the underwater camera 802 at the time of measuring the wall thickness.
  • the method of associating measurement data and image data includes, for example, attaching the same date and time data or identification information to both data. By associating the image data with the measurement data in this way, the user of the client terminal 104 can easily refer to the state of the surface to be inspected at the time the measurement data was generated.
  • FIG. 28 shows an example of a work flow 2800 for this wall thickness inspection.
  • the work flow 2800 shown in the figure assumes the wall thickness inspection of a steel pipe pile underwater.
  • the inspector first inputs the position information of the surface to be inspected and the position information of the collection point of the ROV 101 into the automatic control device 2700 (step 2801). After inputting the position information, the inspector drops the ROV 101 into the water (step 2802) and inputs an inspection start instruction to the automatic control device 2700 (step 2803).
  • the photographing control module 2712 of the automatic control device 2700 starts photographing and recording by the underwater camera 802 of the ROV 101 (step 2804). Further, the navigation control module 2711 of the automatic control device 2700 moves the ROV 101 to the surface to be inspected of the steel pipe pile (step 2805).
  • the determination module 2713 of the automatic control device 2700 determines whether shellfish or seaweed are attached to the surface to be inspected based on the image of the underwater camera 802 (step 2806). As a result of this determination, if shellfish or seaweed is attached to the surface to be inspected (YES in step 2806), the cleaning control module 2714 of the automatic control device 2700 removes the attached matter (step 2807).
  • the cleaning control module 2714 injects high-pressure water from the high-pressure cleaning nozzle 1402 of the ROV 101 onto the surface to be inspected based on the image of the underwater camera 802. At this time, the module injects high-pressure water while controlling the propeller 804 to provide thrust in the forward direction so that the ROV 101 does not rotate or retreat due to the reaction force of the injected high-pressure.
  • the determination module 2713 determines again whether shellfish or seaweed are attached to the surface to be inspected (step 2806). As a result of this determination, if shellfish or seaweed are still attached to the surface to be inspected (YES at step 2806), the cleaning control module 2714 removes the attached matter again (step 2807). On the other hand, if the result of this determination is that no shellfish or seaweed is attached to the surface to be inspected (NO in step 2806), the inspection control module 2715 of the automatic control device 2700 performs a wall thickness inspection (step 2808).
  • the inspection control module 2715 moves the ROV 101 forward toward the steel pipe pile based on the image of the underwater camera 802, hits the four tension rods 204 of the ROV 101 against the steel pipe pile, and moves the ROV 101 underwater.
  • the tip of the ultrasonic thickness gauge 2105 is pressed against the surface to be inspected.
  • the coil springs 2307 of each tension rod 204 absorb the impact caused by the ROV 101 colliding with the steel pipe pile.
  • a coil spring 1709 placed behind the underwater ultrasonic thickness gauge 2105 also absorbs the same impact. Therefore, the ROV 101 is prevented from colliding with the steel pipe pile and bouncing.
  • the inspection control module 2715 continues to move the ROV 101 forward so that the ROV 101 maintains its posture with respect to the surface to be inspected. At this time, since the ROV 101 is positioned relative to the surface to be inspected by the four tension rods 204, the ROV 101 is prevented from rotating or deviating from the surface to be inspected due to the forward force.
  • the underwater ultrasonic thickness gauge 2105 is capable of swinging around two axes, as described above. Therefore, even if the ROV 101 is somewhat inclined with respect to the surface to be inspected, the tip surface of the underwater ultrasonic thickness gauge 2105 can be maintained parallel to the surface to be inspected. Therefore, the underwater ultrasonic thickness gauge 2105 can reliably detect reflected echoes.
  • the inspection control module 2715 measures the thickness of the surface to be inspected after the tip of the underwater ultrasonic thickness meter 2105 is pressed against the surface to be inspected. The module then stores the measurement data in the auxiliary storage device 2702 of the automatic control device 2700 in association with the image data of the underwater camera 802 at the time of wall thickness measurement (step 2809).
  • the navigation control module 2711 moves the ROV 101 to a predetermined collection point (step 2810).
  • the photographing control module 2712 stops photographing and recording by the underwater camera 802 of the ROV 101 (step 2811). The inspector collects the ROV 101 that has returned to the predetermined collection point (step 2812).
  • the examiner operates the operating terminal 102 to upload video data, measurement data, and image data (hereinafter collectively referred to as "inspection data") to the cloud server 103 (step 2813).
  • the cloud server 103 stores the uploaded test data.
  • the client who desires to view the test data operates the client terminal 104 to download the test data from the cloud server 103 (step 2814).
  • the above is a description of the work flow 2800 for wall thickness inspection.
  • the ROV 101 includes a high-pressure cleaning unit 202 as a means for removing deposits.
  • this high-pressure cleaning unit 202 is only an example of deposit removal means.
  • the ROV 101 may include, for example, an electric rotating brush instead of the high-pressure cleaning unit 202.
  • the automatic control device 2700 controls the ROV 101.
  • the ROV 101 itself may control its own operation.
  • the ROV 101 may be operated as an AUV (Autonomous Underwater Vehicle).
  • each device and each function (see FIG. 27) included in the automatic control device 2700 will be implemented in the ROV 101.
  • the wall thickness inspection is performed using one ROV 101.
  • the above wall thickness inspection may be performed using two ROVs 101.
  • the cleaning process and the inspection process for the above-mentioned wall thickness inspection may be shared between two ROVs 101.
  • the wall thickness inspection unit 203 may be omitted from the ROV 101 that is responsible for the cleaning process.
  • the high-pressure cleaning unit 202 may be omitted from the ROV 101 that is in charge of the inspection process.
  • the first ROV 101 removes deposits from the surface to be inspected.
  • the second ROV 101 performs a thickness inspection of the surface to be inspected.
  • the wall thickness inspection can also be performed using the inspection method described above.
  • the wall thickness inspection of steel pipe piles is assumed.
  • the objects of wall thickness inspection are not limited to steel pipe piles.
  • underwater structures such as steel sheet piles, ship hulls, and submarine piping may be subject to wall thickness inspection.
  • the underwater camera 802 is a visible light image sensor.
  • a sensor may be used that generates an image of the inspection object using the reflection speed of light or sound waves.
  • a Time-of-Flight camera, LiDAR scanner, multi-beam sonar, Doppler velocimeter, infrared camera, acoustic camera, etc. may be used. By using these sensors, it is possible to generate images that clearly represent the object to be inspected even in water with low transparency.
  • a wall thickness inspection is assumed as an inspection item.
  • the inspection items are not limited to wall thickness inspection.
  • a sacrificial electrode test may be performed instead of a wall thickness test.
  • the sacrificial electrode may be photographed by the ROV 101, and the inspector may determine the degree of corrosion of the sacrificial electrode based on the photographed image.
  • the captured image of the sacrificial electrode may be captured by the underwater camera 802 of the ROV 101, or may be generated by other sensors (e.g., Time-of-Flight camera, LiDAR scanner, multibeam sonar, Doppler velocimeter, etc.) You may.
  • the number of tension rods 204 is not limited to four.
  • the number of tension rods 204 may be changed as appropriate depending on the shape of the object to be inspected.
  • the coil springs 1709 and 2307 are used as members for absorbing the impact caused by the ROV 101 colliding with the steel pipe pile.
  • other elastic members such as rubber may be used instead of the coil springs 1709 and 2307.
  • each of the above-mentioned configurations, functions, processing units, processing means, etc. may be partially or entirely realized by hardware, for example, by designing an integrated circuit.
  • each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, files, etc. that realize each function can be stored in a memory, a recording device such as a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines are shown to be necessary for explanation purposes, and not all control lines and information lines are necessarily shown in the product. In reality, almost all components may be considered to be interconnected. Note that the above-described embodiments disclose at least the configuration described in the claims.
  • 100... Inspection system 101... ROV, 102... Operation terminal, 103... Cloud server, 104... Client terminal, 105... Steel pipe pile, 106... Communication cable, 107... Communication network, 201... ROV main body, 202... High pressure cleaning unit , 203... Thickness inspection unit, 204... Tension rod, 801... Body frame, 802... Underwater camera, 803... Underwater light, 804... Propeller, 1401... Frame, 1402... High pressure cleaning nozzle, 1403... High pressure hose, 1701...
  • Cover plate 1702...Tip, 1703...Base, 1704...Fixing plate, 1705...Peripheral wall, 1706...Shaft insertion hole, 1707...Shaft, 1708...Slider, 1709...Coil spring, 2101...Hole, 2102...Hole , 2103...Inner annular part, 2104...Outer annular part, 2105...Underwater ultrasonic thickness gauge, 2106...Holding part, 2107...Base part, 2108...Hole part, 2109...Protrusion part, 2110...Hole part, 2111...Protrusion part part, 2112... recessed part, 2113... shaft insertion hole, 2301... rod part, 2302... tip cap, 2303... rear end cap, 2304...

Abstract

Provided is a mechanism for suppressing a decrease in inspection precision caused by an object attached to an inspection target. Provided is an inspection method comprising a step of using a first unmanned underwater vehicle including an attached-object removal means to remove an object attached to an inspection target and a step of using the first unmanned underwater vehicle further including a first sensor or a second unmanned underwater vehicle including the first sensor to measure the thickness of the inspection target or to generate an image of the inspection target.

Description

無人潜水機を用いた検査方法Inspection method using unmanned underwater vehicle
[関連出願]
 本出願は、2022年8月29日に出願された「無人潜水機を用いた検査方法」と題する日本特許出願2022-136238号の優先権を主張し、その開示はその全体が参照により本明細書に取り込まれる。
 本開示は、検査方法、無人潜水機、検査システムおよび検査ユニットに関する。
[Related applications]
This application claims priority to Japanese Patent Application No. 2022-136238 entitled "Inspection method using unmanned underwater vehicle" filed on August 29, 2022, the disclosure of which is incorporated herein by reference in its entirety. incorporated into the book.
The present disclosure relates to an inspection method, an unmanned underwater vehicle, an inspection system, and an inspection unit.
 従来、無人潜水機を用いた検査方法が知られている。例えば、特許文献1には、海底パイプラインに沿って航走しながら、当該パイプラインを検査するAUVが記載されている。このAUVは、腐食の程度や損傷の有無を検査するためにパイプラインの肉厚を検査する肉厚検査器を備えることができる。 Conventionally, inspection methods using unmanned underwater vehicles have been known. For example, Patent Document 1 describes an AUV that inspects an undersea pipeline while traveling along the pipeline. This AUV can be equipped with a wall thickness tester that tests the wall thickness of the pipeline to check the degree of corrosion and the presence or absence of damage.
特開2019-189112号公報JP2019-189112A
 上記のAUVの検査対象であるパイプラインには、貝や海藻などの異物が付着しやすい。パイプラインに異物が付着した場合、その肉厚を正確に検査することができないという問題がある。
 本開示はこのような事情に鑑みてなされたものであり、検査対象物に付着した付着物に起因する検査精度の低下を抑制するための仕組みを提供する。
Foreign substances such as shellfish and seaweed are likely to adhere to pipelines that are subject to the above AUV inspection. When foreign matter adheres to a pipeline, there is a problem in that its wall thickness cannot be accurately inspected.
The present disclosure has been made in view of such circumstances, and provides a mechanism for suppressing a decrease in inspection accuracy caused by deposits attached to an object to be inspected.
 上記課題を解決するために、例えば、特許請求の範囲に記載の構成を採用する。
 本願は上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、付着物除去手段を備えた第1の無人潜水機を用いて、検査対象物に付着した付着物を除去するステップと、第1のセンサをさらに備えた前記第1の無人潜水機または前記第1のセンサを備えた第2の無人潜水機を用いて、前記検査対象物の厚みを測定するか、または前記検査対象物の画像を生成するステップとを有する検査方法が挙げられる。
In order to solve the above problems, for example, the configurations described in the claims are adopted.
The present application includes a plurality of means for solving the above-mentioned problems, but to give one example, a first unmanned underwater vehicle equipped with a deposit removal means is used to remove deposits attached to an object to be inspected. removing the object; and measuring the thickness of the object to be inspected using the first unmanned underwater vehicle further comprising a first sensor or the second unmanned underwater vehicle comprising the first sensor; Alternatively, there is an inspection method including a step of generating an image of the inspection object.
 本開示によれば、検査対象物に付着した付着物に起因する検査精度の低下を抑制するための仕組みを提供することができる。
 上記したもの以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present disclosure, it is possible to provide a mechanism for suppressing a decrease in inspection accuracy caused by deposits attached to an object to be inspected.
Problems, configurations, and effects other than those described above will be made clear by the description of the embodiments below.
図1は、検査システム100の例を示す。FIG. 1 shows an example of an inspection system 100. 図2は、ROV101の外観の例を示す斜視図である。FIG. 2 is a perspective view showing an example of the appearance of the ROV 101. 図3は、ROV101の外観の例を示す平面図である。FIG. 3 is a plan view showing an example of the appearance of the ROV 101. 図4は、ROV101の外観の例を示す側面図である。FIG. 4 is a side view showing an example of the appearance of the ROV 101. 図5は、ROV101の外観の例を示す底面図である。FIG. 5 is a bottom view showing an example of the appearance of the ROV 101. 図6は、ROV101の外観の例を示す正面図である。FIG. 6 is a front view showing an example of the appearance of the ROV 101. 図7は、ROV101の外観の例を示す背面図である。FIG. 7 is a rear view showing an example of the appearance of the ROV 101. 図8は、ROV本体201の外観の例を示す斜視図である。FIG. 8 is a perspective view showing an example of the appearance of the ROV main body 201. 図9は、ROV本体201の外観の例を示す平面図である。FIG. 9 is a plan view showing an example of the appearance of the ROV main body 201. 図10は、ROV本体201の外観の例を示す側面図である。FIG. 10 is a side view showing an example of the appearance of the ROV main body 201. 図11は、ROV本体201の外観の例を示す底面図である。FIG. 11 is a bottom view showing an example of the external appearance of the ROV main body 201. 図12は、ROV本体201の外観の例を示す正面図である。FIG. 12 is a front view showing an example of the external appearance of the ROV main body 201. 図13は、ROV本体201の外観の例を示す背面図である。FIG. 13 is a rear view showing an example of the external appearance of the ROV main body 201. 図14は、高圧洗浄ユニット202の例を示す斜視図である。FIG. 14 is a perspective view showing an example of the high-pressure cleaning unit 202. 図15は、高圧洗浄ユニット202の例を示す平面図である。FIG. 15 is a plan view showing an example of the high pressure cleaning unit 202. 図16は、高圧洗浄ユニット202の例を示す側面図である。FIG. 16 is a side view showing an example of the high-pressure cleaning unit 202. 図17は、肉厚検査ユニット203の例を示す斜視図である。FIG. 17 is a perspective view showing an example of the wall thickness inspection unit 203. 図18は、肉厚検査ユニット203の例を示す平面図である。FIG. 18 is a plan view showing an example of the wall thickness inspection unit 203. 図19は、肉厚検査ユニット203の例を示す側面図である。FIG. 19 is a side view showing an example of the wall thickness inspection unit 203. 図20は、肉厚検査ユニット203の例を示す底面図である。FIG. 20 is a bottom view showing an example of the wall thickness inspection unit 203. 図21は、カバープレート1701と先端部1702の例を示す分解斜視図である。FIG. 21 is an exploded perspective view showing an example of the cover plate 1701 and the tip portion 1702. 図22は、カバープレート1701を取り外した状態の肉厚検査ユニット203の例を示す斜視図である。FIG. 22 is a perspective view showing an example of the wall thickness inspection unit 203 with the cover plate 1701 removed. 図23は、突っ張り棒204の例を示す斜視図である。FIG. 23 is a perspective view showing an example of the tension rod 204. 図24は、肉厚検査の作業フロー2400の例を示す。FIG. 24 shows an example of a work flow 2400 for wall thickness inspection. 図25は、被検査面2501に水中超音波厚さ計2105の先端を押し当てたROV101の例を示す平面図である。FIG. 25 is a plan view showing an example of the ROV 101 in which the tip of the underwater ultrasonic thickness gauge 2105 is pressed against the surface to be inspected 2501. 図26は、被検査面2501に水中超音波厚さ計2105の先端を押し当てたROV101の例を示す側面図である。FIG. 26 is a side view showing an example of the ROV 101 in which the tip of the underwater ultrasonic thickness gauge 2105 is pressed against the surface to be inspected 2501. 図27は、自動制御装置2700のハードウェア構成の例を示す。FIG. 27 shows an example of the hardware configuration of automatic control device 2700. 図28は、この肉厚検査の作業フロー2800の例を示す。FIG. 28 shows an example of a work flow 2800 for this wall thickness inspection.
 以下、図面を用いて実施例について説明する。
1.第1実施例
1-1.構成
 図1は、検査システム100の例を示す。同図に示す検査システム100は、水中の鋼管杭105の肉厚検査を行うためのシステムである。
 この検査システム100は、ROV(Remotely Operated Vehicle)101、操作用端末102、クラウドサーバ103およびクライアント端末104を有する。
Examples will be described below with reference to the drawings.
1. First Example 1-1. Configuration FIG. 1 shows an example of an inspection system 100. An inspection system 100 shown in the figure is a system for inspecting the wall thickness of a steel pipe pile 105 underwater.
This inspection system 100 includes an ROV (Remotely Operated Vehicle) 101, an operation terminal 102, a cloud server 103, and a client terminal 104.
 この検査システム100を構成する装置のうち、ROV101は、有線式かつ遠隔操作型の無人潜水機(言い換えると、無人探査機、水中ロボットまたは水中ドローン)である。このROV101は、後述するように水中超音波厚さ計2105を備え、鋼管杭105の肉厚を測定する。
 操作用端末102は、ROV101を遠隔操作するためのコンピュータ装置である。この操作用端末102は、通信ケーブル106を介してROV101と接続されている。
Among the devices constituting this inspection system 100, the ROV 101 is a wired and remotely operated unmanned underwater vehicle (in other words, an unmanned exploration vehicle, an underwater robot, or an underwater drone). This ROV 101 is equipped with an underwater ultrasonic thickness gauge 2105 to measure the wall thickness of the steel pipe pile 105, as will be described later.
The operating terminal 102 is a computer device for remotely operating the ROV 101. This operating terminal 102 is connected to the ROV 101 via a communication cable 106.
 クラウドサーバ103は、ROV101により生成された検査データを蓄積するためのサーバである。
 クライアント端末104は、クラウドサーバ103から検査データをダウンロードして、ディスプレイに表示するためのコンピュータ装置である。このクライアント端末104と操作用端末102とクラウドサーバ103は、通信ネットワーク107を介して互いに接続されている。
The cloud server 103 is a server for accumulating inspection data generated by the ROV 101.
The client terminal 104 is a computer device that downloads test data from the cloud server 103 and displays it on a display. The client terminal 104, the operation terminal 102, and the cloud server 103 are connected to each other via a communication network 107.
 次に、ROV101について詳細に説明する。
 図2~図7は、ROV101の外観の例を示す。図2は斜視図であり、図3は平面図であり、図4は側面図であり、図5は底面図であり、図6は正面図であり、図7は背面図である。
 これらの図に示すROV101は、大略、ROV本体201、高圧洗浄ユニット202、肉厚検査ユニット203および4本の突っ張り棒204からなる。
Next, the ROV 101 will be explained in detail.
2 to 7 show examples of the appearance of the ROV 101. 2 is a perspective view, FIG. 3 is a top view, FIG. 4 is a side view, FIG. 5 is a bottom view, FIG. 6 is a front view, and FIG. 7 is a rear view.
The ROV 101 shown in these figures roughly consists of an ROV main body 201, a high-pressure cleaning unit 202, a wall thickness inspection unit 203, and four tension rods 204.
 このROV101を構成する要素のうち、高圧洗浄ユニット202は、ROV本体201の底面に取り付けられており、後述するように高圧洗浄ノズル1402を備える。この高圧洗浄ユニット202は、検査対象物に付着した付着物を除去するための手段である。
 肉厚検査ユニット203は、ROV本体201の正面側に取り付けられており、後述するように水中超音波厚さ計2105を備える。この肉厚検査ユニット203は、ROV本体201の前方に、後述するコイルばね1709で間接的に付勢された状態で水中超音波厚さ計2105を保持する保持手段である。
Among the elements constituting this ROV 101, a high-pressure cleaning unit 202 is attached to the bottom surface of the ROV main body 201, and includes a high-pressure cleaning nozzle 1402 as described later. This high-pressure cleaning unit 202 is a means for removing deposits attached to the object to be inspected.
The wall thickness inspection unit 203 is attached to the front side of the ROV main body 201, and includes an underwater ultrasonic thickness gauge 2105 as described later. This wall thickness inspection unit 203 is a holding means that holds an underwater ultrasonic thickness gauge 2105 in front of the ROV main body 201 in a state where it is indirectly biased by a coil spring 1709, which will be described later.
 4本の突っ張り棒204は、ROV本体201の正面側に取り付けられており、その一部がROV本体201の前方に突出している。この4本の突っ張り棒204は、その先端が検査対象物に突き当てられる2対の突き当て手段である。
 これらの高圧洗浄ユニット202、肉厚検査ユニット203および4本の突っ張り棒204は、ROV本体201に対して着脱可能であり、検査ユニットを構成する。
The four tension rods 204 are attached to the front side of the ROV main body 201, and a portion thereof protrudes to the front of the ROV main body 201. These four tension rods 204 are two pairs of abutting means whose tips are abutted against the object to be inspected.
These high-pressure washing unit 202, wall thickness inspection unit 203, and four tension rods 204 are removable from the ROV main body 201 and constitute an inspection unit.
 次に、ROV本体201の各構成要素について詳細に説明する。
 図8~図13は、ROV本体201の外観の例を示す。図8は斜視図であり、図9は平面図であり、図10は側面図であり、図11は底面図であり、図12は正面図であり、図13は背面図である。
 これらの図に示すROV本体201は、本体フレーム801、水中カメラ802、4台の水中ライト803および7台の推進器804を備える。
Next, each component of the ROV main body 201 will be explained in detail.
8 to 13 show examples of the appearance of the ROV main body 201. 8 is a perspective view, FIG. 9 is a top view, FIG. 10 is a side view, FIG. 11 is a bottom view, FIG. 12 is a front view, and FIG. 13 is a rear view.
The ROV main body 201 shown in these figures includes a main body frame 801, an underwater camera 802, four underwater lights 803, and seven propellers 804.
 このROV本体201を構成する要素のうち、本体フレーム801は、複数の板状体からなり、直方体状の外形輪郭を形成する。この本体フレーム801は筐体に相当する。
 水中カメラ802は、可視光イメージセンサである。この水中カメラ802は、本体フレーム801に収容された円筒状ケース805に格納されている。この水中カメラ802は、ROV本体201の前方を向いている。
Among the elements constituting this ROV main body 201, the main body frame 801 is made up of a plurality of plate-shaped bodies and forms a rectangular parallelepiped-shaped external outline. This main body frame 801 corresponds to a housing.
Underwater camera 802 is a visible light image sensor. This underwater camera 802 is housed in a cylindrical case 805 housed in the main body frame 801. This underwater camera 802 faces the front of the ROV main body 201.
 4台の水中ライト803は、ROV本体201の前方を照らせるようにROV本体201の前側に設置されている。
 7台の推進器804は、本体フレーム801の各所に設置されており、ROV本体201の3次元方向への移動を可能にする。
 ROV本体201は、以上説明した構成要素以外にも、GPS受信機、電子コンパス、深度センサ、ソナー、マニピュレータ、位置計測手段(例えば、USBL(Ultra Short Base Line)方式測位装置)等の機器を搭載可能である。
The four underwater lights 803 are installed on the front side of the ROV main body 201 so as to illuminate the front of the ROV main body 201.
The seven propellers 804 are installed at various locations on the main body frame 801, and enable movement of the ROV main body 201 in three-dimensional directions.
In addition to the components described above, the ROV main body 201 is equipped with devices such as a GPS receiver, an electronic compass, a depth sensor, a sonar, a manipulator, and a position measurement means (for example, a USB (Ultra Short Base Line) positioning device). It is possible.
 次に、高圧洗浄ユニット202について説明する。
 図14~図16は、高圧洗浄ユニット202の例を示す。図14は斜視図であり、図15は平面図であり、図16は側面図である。
 これらの図に示す高圧洗浄ユニット202は、フレーム1401、高圧洗浄ノズル1402および高圧ホース1403を備える。
Next, the high pressure cleaning unit 202 will be explained.
14 to 16 show examples of the high pressure cleaning unit 202. FIG. 14 is a perspective view, FIG. 15 is a plan view, and FIG. 16 is a side view.
The high-pressure cleaning unit 202 shown in these figures includes a frame 1401, a high-pressure cleaning nozzle 1402, and a high-pressure hose 1403.
 この高圧洗浄ユニット202を構成する要素のうち、フレーム1401は、複数の板状体からなり、梯子状の形状を有する。
 高圧洗浄ノズル1402は、円筒形状を有し、フレーム1401の前側に取り付けられている。
Among the elements constituting this high-pressure cleaning unit 202, the frame 1401 is made up of a plurality of plate-like bodies and has a ladder-like shape.
High-pressure cleaning nozzle 1402 has a cylindrical shape and is attached to the front side of frame 1401.
 この高圧洗浄ノズル1402は、フレーム1401の長手方向および短手方向に対して傾斜している。また、この高圧洗浄ノズル1402は、フレーム1401と略同一平面内で延びている。ただし、高圧洗浄ノズル1402は、必ずしもフレーム1401と略同一平面内で延びなくてもよい。高圧洗浄ノズル1402はフレーム1401に対して上下方向に傾斜してもよい。
 また、この高圧洗浄ノズル1402は、その先端がフレーム1401の前方に突出している。この高圧洗浄ノズル1402の先端は、図4に示すように、肉厚検査ユニット203の先端と突っ張り棒204の先端よりも後方に位置する。
This high-pressure cleaning nozzle 1402 is inclined with respect to the longitudinal and lateral directions of the frame 1401. Further, this high-pressure cleaning nozzle 1402 extends in substantially the same plane as the frame 1401. However, the high pressure cleaning nozzle 1402 does not necessarily have to extend in substantially the same plane as the frame 1401. The high-pressure cleaning nozzle 1402 may be inclined vertically with respect to the frame 1401.
Further, the tip of this high-pressure cleaning nozzle 1402 projects forward of the frame 1401. As shown in FIG. 4, the tip of this high-pressure cleaning nozzle 1402 is located behind the tip of the wall thickness inspection unit 203 and the tip of the tension rod 204.
 なお、図3に示す高圧洗浄ノズル1402の先端の位置は、あくまで一例である。高圧洗浄ノズル1402の先端の位置は、フレーム1401に対する高圧洗浄ノズル1402の固定位置を変更することで調整可能である。高圧洗浄ノズル1402の先端の位置は、検査対象物の形状に応じて調整される。 Note that the position of the tip of the high-pressure cleaning nozzle 1402 shown in FIG. 3 is just an example. The position of the tip of the high-pressure cleaning nozzle 1402 can be adjusted by changing the fixed position of the high-pressure cleaning nozzle 1402 with respect to the frame 1401. The position of the tip of the high-pressure cleaning nozzle 1402 is adjusted according to the shape of the object to be inspected.
 次に、高圧ホース1403は、その一端が高圧洗浄ノズル1402に接続され、その他端が高圧ポンプ(図示略)に接続されている。この高圧ホース1403は、高圧ポンプから送出される高圧水を高圧洗浄ノズル1402に供給する。高圧洗浄ノズル1402に供給された高圧水は当該ノズルの先端から吐出される。吐出される高圧水は、検査対象面に付着した付着物を除去するために利用される。 Next, one end of the high-pressure hose 1403 is connected to the high-pressure cleaning nozzle 1402, and the other end is connected to a high-pressure pump (not shown). This high-pressure hose 1403 supplies high-pressure water sent out from a high-pressure pump to the high-pressure cleaning nozzle 1402. The high-pressure water supplied to the high-pressure cleaning nozzle 1402 is discharged from the tip of the nozzle. The discharged high-pressure water is used to remove deposits attached to the surface to be inspected.
 次に、肉厚検査ユニット203について説明する。
 図17~図22は、肉厚検査ユニット203の例を示す。図17は斜視図であり、図18は平面図であり、図19は側面図であり、図20は底面図である。図21は、後述するカバープレート1701と先端部1702の分解斜視図である。図22は、カバープレート1701を取り外した状態の肉厚検査ユニット203の斜視図である。
 これらの図に示す肉厚検査ユニット203は、大略、カバープレート1701、先端部1702、ベース部1703および固定プレート1704からなる。以下、各構成要素について説明する。
Next, the wall thickness inspection unit 203 will be explained.
17 to 22 show examples of the wall thickness inspection unit 203. 17 is a perspective view, FIG. 18 is a plan view, FIG. 19 is a side view, and FIG. 20 is a bottom view. FIG. 21 is an exploded perspective view of a cover plate 1701 and a tip portion 1702, which will be described later. FIG. 22 is a perspective view of the wall thickness inspection unit 203 with the cover plate 1701 removed.
The wall thickness inspection unit 203 shown in these figures roughly consists of a cover plate 1701, a tip portion 1702, a base portion 1703, and a fixing plate 1704. Each component will be explained below.
 カバープレート1701は、四隅が突出した矩形の形状を有する。このカバープレート1701は、図21に示すように、中央に形成された孔部2101と、孔部2101の周囲に等間隔に形成された4個の孔部2102を有する。孔部2101には、後述する水中超音波厚さ計2105の先端が挿入されている。
 このカバープレート1701は、先端部1702の前側に取り付けられている。
The cover plate 1701 has a rectangular shape with four protruding corners. As shown in FIG. 21, this cover plate 1701 has a hole 2101 formed in the center and four holes 2102 formed at equal intervals around the hole 2101. The tip of an underwater ultrasonic thickness gauge 2105, which will be described later, is inserted into the hole 2101.
This cover plate 1701 is attached to the front side of the tip portion 1702.
 先端部1702は、図21および図22に示すように、内側環状部2103、外側環状部2104、水中超音波厚さ計2105、保持部2106およびベース部2107を有する。
 これらの構成要素のうち、内側環状部2103は、左右方向に2つの突出部を有する環状の部材である。この内側環状部2103は、孔部2108と、内側環状部2103のおもて面から垂直に延びる2つの突起部2109とを有する。孔部2108には、水中超音波厚さ計2105の先端が挿入されている。2つの突起部2109は、カバープレート1701の孔部2102に挿入されている。
The tip portion 1702 has an inner annular portion 2103, an outer annular portion 2104, an underwater ultrasonic thickness gauge 2105, a holding portion 2106, and a base portion 2107, as shown in FIGS. 21 and 22.
Among these components, the inner annular portion 2103 is an annular member having two protrusions in the left-right direction. This inner annular portion 2103 has a hole 2108 and two protrusions 2109 extending perpendicularly from the front surface of the inner annular portion 2103. The tip of an underwater ultrasonic thickness gauge 2105 is inserted into the hole 2108 . Two protrusions 2109 are inserted into holes 2102 of cover plate 1701.
 外側環状部2104は、左右方向に延びた環状の部材である。この外側環状部2104は、孔部2110と、外側環状部2104のおもて面から垂直に延びる2つの突起部2111とを有する。孔部2110には、内側環状部2103が挿入されている。内側環状部2103は、孔部2110内において略水平面内で揺動可能なように(図22の矢印2201参照)外側環状部2104に保持されている。内側環状部2103が略水平面内で揺動可能であることから、この内側環状部2103に嵌め込まれている水中超音波厚さ計2105の先端も、同様に略水平面内で揺動可能になっている。
 2つの突起部2111は、カバープレート1701の孔部2102に挿入されている。
The outer annular portion 2104 is an annular member extending in the left-right direction. This outer annular portion 2104 has a hole 2110 and two protrusions 2111 extending perpendicularly from the front surface of the outer annular portion 2104 . The inner annular portion 2103 is inserted into the hole 2110 . The inner annular portion 2103 is held by the outer annular portion 2104 so as to be able to swing in a substantially horizontal plane within the hole 2110 (see arrow 2201 in FIG. 22). Since the inner annular part 2103 is swingable in a substantially horizontal plane, the tip of the underwater ultrasonic thickness gauge 2105 fitted into the inner annular part 2103 is also swingable in a substantially horizontal plane. There is.
Two protrusions 2111 are inserted into holes 2102 of cover plate 1701.
 水中超音波厚さ計2105は、超音波エコーにより水中構造物の厚みを測定するセンサである。 The underwater ultrasonic thickness gauge 2105 is a sensor that measures the thickness of underwater structures using ultrasonic echoes.
 保持部2106は、前方に延びる2つの突出部を有する略コ字状の部材である。この保持部2106の2つの突出部の間には、外側環状部2104が挟み込まれている。外側環状部2104は、その2つの突出部の間において略垂直平面内で揺動可能なように(図22の矢印2202参照)保持部2106に保持されている。外側環状部2104が略垂直平面内で揺動可能であることから、この外側環状部2104に内側環状部2103を介して嵌め込まれている水中超音波厚さ計2105の先端も、同様に略垂直平面内で揺動可能になっている。
 水中超音波厚さ計2105の先端は、上記の通り、略水平面内および略垂直平面内で揺動可能になっている。言い換えると水中超音波厚さ計2105の先端は、2軸周りに揺動可能なように肉厚検査ユニット203において保持されている。
The holding portion 2106 is a substantially U-shaped member having two protrusions extending forward. An outer annular portion 2104 is sandwiched between the two protrusions of this holding portion 2106. The outer annular portion 2104 is held by a holding portion 2106 so as to be able to swing in a substantially vertical plane between its two protrusions (see arrow 2202 in FIG. 22). Since the outer annular portion 2104 is swingable in a substantially vertical plane, the tip of the underwater ultrasonic thickness gauge 2105 fitted into the outer annular portion 2104 via the inner annular portion 2103 is also substantially vertical. It can swing within a plane.
As described above, the tip of the underwater ultrasonic thickness gauge 2105 is swingable in a substantially horizontal plane and a substantially vertical plane. In other words, the tip of the underwater ultrasonic thickness gauge 2105 is held in the wall thickness inspection unit 203 so as to be swingable around two axes.
 ベース部2107は、略直方体状の部材である。このベース部2107は、その前側のおもて面に形成された凹み部2112と、その前後方向に沿って形成されたシャフト挿入孔2113とを有する。凹み部2112には、保持部2106の後端が固定されている。シャフト挿入孔2113には、後述するシャフト1707の先端が挿入されている。
 以上が先端部1702についての説明である。
The base portion 2107 is a substantially rectangular parallelepiped member. The base portion 2107 has a recessed portion 2112 formed on the front surface thereof, and a shaft insertion hole 2113 formed along the front-rear direction. The rear end of the holding part 2106 is fixed to the recessed part 2112. The tip of a shaft 1707, which will be described later, is inserted into the shaft insertion hole 2113.
The above is a description of the tip portion 1702.
 次に、肉厚検査ユニット203のベース部1703について説明する。
 ベース部1703は、例えば図17に示すように、おもて面に略コ字状の周壁1705を有する矩形の板体である。このベース部1703の周壁1705には、ベース部1703の前後方向に沿って形成されたシャフト挿入孔1706が形成されている。このシャフト挿入孔1706には、シャフト1707の後端が挿入されている。ベース部1703は、このシャフト1707を介して先端部1702と連結されている。
 シャフト1707には、コイルばね1709が装着されている。先端部1702は、このコイルばね1709により前方に付勢されている。
Next, the base portion 1703 of the wall thickness inspection unit 203 will be explained.
For example, as shown in FIG. 17, the base portion 1703 is a rectangular plate having a substantially U-shaped peripheral wall 1705 on the front surface. A shaft insertion hole 1706 is formed in the peripheral wall 1705 of the base portion 1703 along the front-rear direction of the base portion 1703. The rear end of a shaft 1707 is inserted into this shaft insertion hole 1706. The base portion 1703 is connected to the tip portion 1702 via this shaft 1707.
A coil spring 1709 is attached to the shaft 1707. The tip portion 1702 is urged forward by this coil spring 1709.
 ベース部1703は、2本のスライダ1708によっても先端部1702と連結されている。各スライダ1708は、その外側の面が周壁1705の内面に固定され、その内側の面が先端部1702のベース部2107に固定されている。先端部1702は、この2本のスライダ1708により、ベース部1703に対して前後方向に移動可能になっている。 The base portion 1703 is also connected to the tip portion 1702 by two sliders 1708. Each slider 1708 has its outer surface fixed to the inner surface of the peripheral wall 1705, and its inner surface fixed to the base portion 2107 of the tip portion 1702. The distal end portion 1702 is movable in the front-rear direction with respect to the base portion 1703 by these two sliders 1708.
 次に、固定プレート1704について説明する。
 固定プレート1704は、例えば図17に示すように、左右方向に延びる略矩形状の板体である。この固定プレート1704のおもて面の中央には、ベース部1703が固定されている。この固定プレート1704の両端は、ROV本体201の本体フレーム801に固定されている(図2参照)。
 以上が肉厚検査ユニット203についての説明である。
Next, the fixed plate 1704 will be explained.
The fixed plate 1704 is, for example, a substantially rectangular plate extending in the left-right direction, as shown in FIG. 17 . A base portion 1703 is fixed to the center of the front surface of this fixed plate 1704. Both ends of this fixing plate 1704 are fixed to the main body frame 801 of the ROV main body 201 (see FIG. 2).
The above is the description of the wall thickness inspection unit 203.
 次に、4本の突っ張り棒204について説明する。
 図23は、突っ張り棒204の例を示す斜視図である。同図に示す突っ張り棒204は、大略、棒部2301と保持部2304からなる。
 これらの構成要素のうち、棒部2301は、その先端に先端キャップ2302が装着され、その後端に後端キャップ2303が装着されている。この棒部2301の先端は、検査対象物に突き当てられる。
Next, the four tension rods 204 will be explained.
FIG. 23 is a perspective view showing an example of the tension rod 204. The tension rod 204 shown in the figure roughly consists of a rod portion 2301 and a holding portion 2304.
Among these components, the rod portion 2301 has a tip cap 2302 attached to its tip and a rear end cap 2303 attached to its rear end. The tip of this rod portion 2301 is abutted against the object to be inspected.
 保持部2304は、略直方体状の部材である。この保持部2304は、前後方向に貫通する棒挿入孔2305を有する。この棒挿入孔2305には、棒部2301が挿入されている。棒部2301は保持部2304により、コイルばね2307で付勢された状態で保持される。
 保持部2304は、ROV本体201の本体フレーム801に固定されている(図2参照)。
The holding portion 2304 is a substantially rectangular parallelepiped member. This holding portion 2304 has a rod insertion hole 2305 that penetrates in the front-rear direction. A rod portion 2301 is inserted into this rod insertion hole 2305. The rod portion 2301 is held by a holding portion 2304 in a state where it is biased by a coil spring 2307.
The holding portion 2304 is fixed to the main body frame 801 of the ROV main body 201 (see FIG. 2).
 棒部2301には、その先端と保持部2304の間に先端側留め具2306が固定されている。棒部2301のうち、先端側留め具2306と保持部2304の間にはコイルばね2307が装着されている。棒部2301は、このコイルばね2307により、保持部2304に対して前側に付勢されている。 A tip side fastener 2306 is fixed to the rod portion 2301 between its tip and the holding portion 2304. A coil spring 2307 is attached between the tip side fastener 2306 and the holding portion 2304 of the rod portion 2301 . The rod portion 2301 is urged forward with respect to the holding portion 2304 by the coil spring 2307.
 また棒部2301には、その後端と保持部2304の間に後端側留め具2308が固定されている。この後端側留め具2308と上述した先端側留め具2306により、保持部2304に対する棒部2301の前後方向の動きが規制される。これらの留め具の位置を変更することで、保持部2304から突出する棒部2301の長さを調整することができる。この棒部2301の長さは、検査対象物の形状に応じて調整される。
 以上が突っ張り棒204についての説明である。
Further, a rear end fastener 2308 is fixed to the rod portion 2301 between the rear end and the holding portion 2304 . This rear end side fastener 2308 and the above-mentioned front end side fastener 2306 restrict the movement of the rod portion 2301 in the front-rear direction relative to the holding portion 2304. By changing the positions of these fasteners, the length of the rod portion 2301 protruding from the holding portion 2304 can be adjusted. The length of this rod portion 2301 is adjusted depending on the shape of the object to be inspected.
The above is the explanation about the tension rod 204.
1-2.動作
 次に、以上説明した検査システム100を用いた肉厚検査について説明する。図24は、この肉厚検査の作業フロー2400の例を示す。同図に示す作業フロー2400は、水中の鋼管杭の肉厚検査を想定している。
1-2. Operation Next, wall thickness inspection using the inspection system 100 described above will be explained. FIG. 24 shows an example of a work flow 2400 for this wall thickness inspection. The work flow 2400 shown in the figure assumes the wall thickness inspection of a steel pipe pile underwater.
 検査者はまず、操作用端末102を操作して、ROV101の水中カメラ802による撮影および録画を開始する(ステップ2401)。その後、検査者はROV101を水中に投下する(ステップ2402)。 First, the inspector operates the operating terminal 102 to start photographing and recording using the underwater camera 802 of the ROV 101 (step 2401). After that, the inspector drops the ROV 101 into the water (step 2402).
 検査者は、ROV101を水中に投下後、操作用端末102に表示される水中カメラ802の映像を見ながらROV101を操作し、鋼管杭の被検査面までROV101を移動させる(ステップ2403)。
 検査者は、ROV101が被検査面に到着すると、水中カメラ802の映像をもとに、被検査面に貝や海藻が付着していないか判定する(ステップ2404)。この判定の結果、被検査面に貝や海藻が付着している場合には(ステップ2404のYES)、検査者は付着物を除去する(ステップ2405)。
After dropping the ROV 101 into the water, the inspector operates the ROV 101 while viewing the image of the underwater camera 802 displayed on the operating terminal 102, and moves the ROV 101 to the surface to be inspected of the steel pipe pile (step 2403).
When the ROV 101 arrives at the surface to be inspected, the inspector determines whether shellfish or seaweed are attached to the surface to be inspected based on the image from the underwater camera 802 (step 2404). As a result of this determination, if shellfish or seaweed is attached to the surface to be inspected (YES in step 2404), the inspector removes the attached matter (step 2405).
 具体的には検査者は、操作用端末102を操作して、ROV101の高圧洗浄ノズル1402から被検査面に対して高圧水を噴射させる。その際、検査者は、噴射する高圧力の反力によってROV101が回転したり後退したりしないように、前進方向に推力を与えるよう推進器804を制御しつつ高圧水を噴射させる。 Specifically, the inspector operates the operating terminal 102 to inject high-pressure water from the high-pressure cleaning nozzle 1402 of the ROV 101 onto the surface to be inspected. At this time, the inspector injects high-pressure water while controlling the propeller 804 to provide thrust in the forward direction so that the ROV 101 does not rotate or retreat due to the reaction force of the injected high pressure.
 検査者は、一定時間、高圧水を噴射後、被検査面に貝や海藻が付着していないか再度判定する(ステップ2404)。この判定の結果、被検査面に依然として貝や海藻が付着している場合には(ステップ2404のYES)、検査者は再度、付着物を除去する(ステップ2405)。一方、この判定の結果、被検査面に貝や海藻が付着していない場合には(ステップ2404のNO)、検査者は肉厚検査を実施する(ステップ2406)。 After spraying high-pressure water for a certain period of time, the inspector re-determines whether shellfish or seaweed are attached to the surface to be inspected (step 2404). As a result of this determination, if shellfish or seaweed are still attached to the inspected surface (YES in step 2404), the inspector removes the attached matter again (step 2405). On the other hand, if the result of this determination is that no shellfish or seaweed is attached to the surface to be inspected (NO in step 2404), the inspector conducts a wall thickness inspection (step 2406).
 具体的には検査者は、操作用端末102を操作して、鋼管杭に向かってROV101を前進させ、ROV101の4本の突っ張り棒204を鋼管杭に突き当て、かつ、ROV101の水中超音波厚さ計2105の先端を被検査面に押し当てる。その際、各突っ張り棒204のコイルばね2307は、ROV101が鋼管杭に衝突することで生じる衝撃を吸収する。また、水中超音波厚さ計2105の後方に配置されたコイルばね1709も、同衝撃を吸収する。そのため、ROV101が鋼管杭に衝突してバウンドしてしまうことが防止される。また、コイルばね2307および1709は、鋼管杭が揺動した場合でも、当該鋼管杭に倣ってROV101を突き当てることができる。 Specifically, the inspector operates the operating terminal 102 to move the ROV 101 forward toward the steel pipe pile, butts the four tension rods 204 of the ROV 101 against the steel pipe pile, and checks the underwater ultrasonic thickness of the ROV 101. Press the tip of the gauge 2105 against the surface to be inspected. At this time, the coil springs 2307 of each tension rod 204 absorb the impact caused by the ROV 101 colliding with the steel pipe pile. Further, a coil spring 1709 placed behind the underwater ultrasonic thickness gauge 2105 also absorbs the same impact. Therefore, the ROV 101 is prevented from colliding with the steel pipe pile and bouncing. Moreover, even if the steel pipe pile swings, the coil springs 2307 and 1709 can imitate the steel pipe pile and allow the ROV 101 to abut against the steel pipe pile.
 図25および図26は、被検査面2501に水中超音波厚さ計2105の先端を押し当てたROV101の例を示す。図25は平面図であり、図26は側面図である。 25 and 26 show an example of the ROV 101 in which the tip of the underwater ultrasonic thickness gauge 2105 is pressed against the surface to be inspected 2501. FIG. 25 is a plan view, and FIG. 26 is a side view.
 検査者は、被検査面に水中超音波厚さ計2105の先端を押し当てた後も、ROV101が被検査面に対して姿勢を維持できるようにROV101を前進させ続ける。このとき、ROV101は4本の突っ張り棒204により被検査面に対して位置決めされているため、前進する力によってROV101が回転したり被検査面から逸れたりすることが防止される。 Even after pressing the tip of the underwater ultrasonic thickness gauge 2105 against the surface to be inspected, the inspector continues to move the ROV 101 forward so that the ROV 101 maintains its posture with respect to the surface to be inspected. At this time, since the ROV 101 is positioned relative to the surface to be inspected by the four tension rods 204, the ROV 101 is prevented from rotating or deviating from the surface to be inspected due to the forward force.
 加えて、水中超音波厚さ計2105は、上述の通り、2軸周りに揺動可能になっている。そのため、ROV101が被検査面に対して多少傾いたとしても、水中超音波厚さ計2105の先端面を被検査面に対して平行に維持することができる。このため、水中超音波厚さ計2105は、反射エコーを確実に検出することができる。 In addition, the underwater ultrasonic thickness gauge 2105 is capable of swinging around two axes, as described above. Therefore, even if the ROV 101 is somewhat inclined with respect to the surface to be inspected, the tip surface of the underwater ultrasonic thickness gauge 2105 can be maintained parallel to the surface to be inspected. Therefore, the underwater ultrasonic thickness gauge 2105 can reliably detect reflected echoes.
 検査者は、被検査面に水中超音波厚さ計2105の先端を押し当てた後、操作用端末102を操作して被検査面の肉厚を測定する。測定された肉厚のデータは、操作用端末102の記憶装置に保存される。 After pressing the tip of the underwater ultrasonic thickness meter 2105 against the surface to be inspected, the inspector operates the operation terminal 102 to measure the thickness of the surface to be inspected. The measured wall thickness data is stored in the storage device of the operation terminal 102.
 また検査者は、肉厚測定時の水中カメラ802の画像データを、測定データと対応付けて操作用端末102の記憶装置に保存する(ステップ2407)。ここで、画像データを測定データに関連付ける方法には、例えば、両データに同じ日時データや位置情報や識別情報(例えば、案件ID、調査ID、機材ID、作業者名など)を付すことが含まれる。
 このように測定データに画像データを関連付けることで、クライアント端末104の利用者は、当該測定データの生成時の被検査面の様子を容易に参照することができる。
The inspector also stores the image data of the underwater camera 802 at the time of wall thickness measurement in the storage device of the operation terminal 102 in association with the measurement data (step 2407). Here, the method of associating the image data with the measurement data includes, for example, attaching the same date and time data, location information, or identification information (for example, project ID, survey ID, equipment ID, worker name, etc.) to both data. It will be done.
By associating the image data with the measurement data in this way, the user of the client terminal 104 can easily refer to the state of the surface to be inspected at the time the measurement data was generated.
 検査者は、肉厚検査を終えると、ROV101を水上に浮上させて回収する(ステップ2408)。検査者は、ROV101を回収後、水中カメラ802による撮影および録画を停止する(ステップ2409)。 After completing the wall thickness inspection, the inspector floats the ROV 101 above the water and collects it (step 2408). After collecting the ROV 101, the inspector stops photographing and recording by the underwater camera 802 (step 2409).
 その後、検査者は、操作用端末102を操作して、映像データ、測定データおよび画像データ(以下、まとめて「検査データ」という。)をクラウドサーバ103にアップロードする(ステップ2410)。クラウドサーバ103は、アップロードされた検査データを記憶する。 Thereafter, the examiner operates the operation terminal 102 to upload video data, measurement data, and image data (hereinafter collectively referred to as "inspection data") to the cloud server 103 (step 2410). The cloud server 103 stores the uploaded test data.
 その後、検査データの閲覧を所望するクライアントは、クライアント端末104を操作して、クラウドサーバ103から検査データをダウンロードする(ステップ2411)。
 以上が肉厚検査の作業フロー2400についての説明である。
Thereafter, a client who desires to view the test data operates the client terminal 104 to download the test data from the cloud server 103 (step 2411).
The above is a description of the work flow 2400 for wall thickness inspection.
 なお、上記の作業フロー2400では、ROV101を回収してから検査データをクラウドサーバ103にアップロードしているが、ROV101を回収する前に検査データをクラウドサーバ103にアップロードしてもよい。
 例えば、電波が安定している状況では、ステップ2407と同時に又はその直後にステップ2410を実行し、電波が不安定な状況では、ステップ2409の後にステップ2410を実行するようにしてもよい。
 この場合、電波が安定している状況では、ROV101の回収前にステップ2411を実行してもよい。
Note that in the above work flow 2400, the inspection data is uploaded to the cloud server 103 after collecting the ROV 101, but the inspection data may be uploaded to the cloud server 103 before collecting the ROV 101.
For example, in a situation where radio waves are stable, step 2410 may be executed simultaneously with or immediately after step 2407, and in a situation where radio waves are unstable, step 2410 may be executed after step 2409.
In this case, if the radio waves are stable, step 2411 may be executed before collecting the ROV 101.
2.第2実施例
 上記の第1実施例では、肉厚検査が手動で行われている。このような検査方法に代えて、肉厚検査を自動で行ってもよい。以下では、肉厚検査を自動で行う方法について説明する。
2. Second Embodiment In the first embodiment described above, the wall thickness inspection is performed manually. Instead of such an inspection method, the wall thickness inspection may be performed automatically. Below, a method for automatically performing wall thickness inspection will be explained.
2-1.構成
 本実施例では、肉厚検査を自動で行うために、操作用端末102に代えて自動制御装置2700が使用される。
 自動制御装置2700は、例えば、スマートフォン、タブレット、携帯電話機、携帯情報端末(PDA)などの携帯端末(モバイル端末)でもよいし、メガネ型や腕時計型、着衣型などのウェアラブル端末でもよい。また、据置型または携帯型のコンピュータや、クラウドやネットワーク上に配置されるサーバでもよい。また、機能としてはVR(仮想現実:Virtual Reality)端末、AR(拡張現実:Augmented Reality)端末、MR(複合現実:Mixed Reality)端末でもよい。あるいは、これらの複数の端末の組合せであってもよい。例えば、1台のスマートフォンと1台のウェアラブル端末との組合せが論理的に一つの端末として機能し得る。またこれら以外の情報処理端末であってもよい。
2-1. Configuration In this embodiment, an automatic control device 2700 is used in place of the operation terminal 102 in order to automatically perform a wall thickness inspection.
The automatic control device 2700 may be, for example, a portable terminal (mobile terminal) such as a smartphone, a tablet, a mobile phone, or a personal digital assistant (PDA), or may be a wearable terminal such as a glasses type, a wristwatch type, or a wearable type. Alternatively, it may be a stationary or portable computer, or a server placed on a cloud or network. In addition, the function may be a VR (Virtual Reality) terminal, an AR (Augmented Reality) terminal, or an MR (Mixed Reality) terminal. Alternatively, it may be a combination of these multiple terminals. For example, a combination of one smartphone and one wearable terminal can logically function as one terminal. Further, information processing terminals other than these may also be used.
 自動制御装置2700は、オペレーティングシステムやアプリケーション、プログラムなどを実行するプロセッサと、RAM(Random Access Memory)等の主記憶装置と、ICカードやハードディスクドライブ、SSD(Solid State Drive)、フラッシュメモリ等の補助記憶装置と、ネットワークカードや無線通信モジュール、モバイル通信モジュール等の通信制御部と、タッチパネルやキーボード、マウス、音声入力、カメラ部の撮像による動き検知による入力などの入力装置と、モニタやディスプレイ等の出力装置とを備える。なお、出力装置は、外部のモニタやディスプレイ、プリンタ、機器などに、出力するための情報を送信する装置や端子であってもよい。 The automatic control device 2700 includes a processor that executes an operating system, applications, programs, etc., a main storage device such as RAM (Random Access Memory), and auxiliary devices such as an IC card, hard disk drive, SSD (Solid State Drive), and flash memory. Storage devices, communication control units such as network cards, wireless communication modules, and mobile communication modules; input devices such as touch panels, keyboards, mice, voice input, and input based on motion detection using image capture by cameras; and monitors and displays, etc. and an output device. Note that the output device may be a device or terminal that transmits information to be output to an external monitor, display, printer, device, or the like.
 主記憶装置には、各種プログラムやアプリケーションなど(モジュール)が記憶されており、これらのプログラムやアプリケーションをプロセッサが実行することで全体システムの各機能要素が実現される。なお、これらの各モジュールは集積化する等によりハードウェアで実装してもよい。また、各モジュールはそれぞれ独立したプログラムやアプリケーションでもよいが、1つの統合プログラムやアプリケーションの中の一部のサブプログラムや関数などの形で実装されていてもよい。 The main storage device stores various programs, applications, etc. (modules), and when the processor executes these programs and applications, each functional element of the overall system is realized. Note that each of these modules may be implemented in hardware by integrating them or the like. Further, each module may be an independent program or application, or may be implemented as a part of a subprogram or function within one integrated program or application.
 本明細書では、各モジュールが、処理を行う主体(主語)として記載をしているが、実際には各種プログラムやアプリケーションなど(モジュール)を処理するプロセッサが処理を実行する。 In this specification, each module is described as a subject (subject) that performs processing, but in reality, a processor that processes various programs, applications, etc. (modules) executes processing.
 図27は、自動制御装置2700のハードウェア構成の例を示す。
 同図に示す自動制御装置2700は、主記憶装置2701、補助記憶装置2702、プロセッサ2703、入力装置2704、出力装置2705および通信制御部2706を有する。
 これらの構成要素のうち、主記憶装置2701は、航行制御モジュール2711、撮影制御モジュール2712、判定モジュール2713、清掃制御モジュール2714、検査制御モジュール2715等のプログラムやアプリケーションを記憶する。これらのプログラムやアプリケーションをプロセッサ2703が実行することで、自動制御装置2700の各機能要素が実現される。
 以下、各モジュールについて説明する。
FIG. 27 shows an example of the hardware configuration of automatic control device 2700.
The automatic control device 2700 shown in the figure includes a main storage device 2701, an auxiliary storage device 2702, a processor 2703, an input device 2704, an output device 2705, and a communication control section 2706.
Among these components, the main storage device 2701 stores programs and applications such as a navigation control module 2711, an imaging control module 2712, a determination module 2713, a cleaning control module 2714, and an inspection control module 2715. Each functional element of the automatic control device 2700 is realized by the processor 2703 executing these programs and applications.
Each module will be explained below.
 航行制御モジュール2711は、ROV101が備える加速度センサ、ジャイロスコープ、圧力センサ等のセンサ値に基づいてROV101の航行を制御する。 The navigation control module 2711 controls the navigation of the ROV 101 based on sensor values such as an acceleration sensor, a gyroscope, and a pressure sensor included in the ROV 101.
 撮影制御モジュール2712は、ROV101の水中カメラ802による撮影および録画を制御する。 The photographing control module 2712 controls photographing and recording by the underwater camera 802 of the ROV 101.
 判定モジュール2713は、ROV101の水中カメラ802の映像をもとに、被検査面に貝や海藻が付着していないか判定する。具体的には当該モジュールは、水中カメラ802の画像を付着判定モデルに入力して、被検査面に貝や海藻が付着していないか判定する。 The determination module 2713 determines whether shellfish or seaweed are attached to the surface to be inspected, based on the image of the underwater camera 802 of the ROV 101. Specifically, this module inputs the image of the underwater camera 802 into an adhesion determination model, and determines whether shellfish or seaweed is attached to the surface to be inspected.
 ここで当該モジュールが使用する付着判定モデルは、多数の教師データをニューラルネットワーク等の機械学習モデルに学習させることで生成される。ここで、機械学習モデルに学習させる教師データとは、貝や海藻が付着している被検査面の画像群(正例データ)と、貝や海藻が付着していない被検査面の画像群(負例データ)である。
 このように生成される付着判定モデルは、水中カメラ802の画像を入力とし、貝や海藻の付着の有無を示す情報を出力する。
The adhesion determination model used by this module is generated by having a machine learning model such as a neural network learn a large amount of teacher data. Here, the training data to be trained by the machine learning model are a group of images of the inspected surface to which shellfish and seaweed are attached (positive example data), and a group of images of the inspected surface to which shellfish and seaweed are not attached ( negative example data).
The adhesion determination model generated in this manner receives the image from the underwater camera 802 as input, and outputs information indicating whether or not shellfish or seaweed are attached.
 清掃制御モジュール2714は、水中カメラ802の映像をもとに、ROV101の高圧洗浄ノズル1402から被検査面に対して高圧水を噴射させる。 The cleaning control module 2714 injects high-pressure water from the high-pressure cleaning nozzle 1402 of the ROV 101 onto the surface to be inspected based on the image of the underwater camera 802.
 検査制御モジュール2715は、肉厚検査を実行する。具体的には検査制御モジュール2715は、水中カメラ802の映像をもとに、鋼管杭に向かってROV101を前進させ、ROV101の4本の突っ張り棒204を鋼管杭に突き当て、かつ、ROV101の水中超音波厚さ計2105の先端を被検査面に押し当てる。そして当該モジュールは、被検査面の肉厚を測定する。 The inspection control module 2715 executes a wall thickness inspection. Specifically, the inspection control module 2715 moves the ROV 101 forward toward the steel pipe pile based on the image of the underwater camera 802, hits the four tension rods 204 of the ROV 101 against the steel pipe pile, and moves the ROV 101 underwater. The tip of the ultrasonic thickness gauge 2105 is pressed against the surface to be inspected. The module then measures the wall thickness of the surface to be inspected.
 肉厚測定後、当該モジュールは、測定データを、肉厚測定時の水中カメラ802の画像データと関連付けて、自動制御装置2700の補助記憶装置2702に保存する。ここで、測定データと画像データを関連付ける方法には、例えば、両データに同じ日時データや識別情報を付すことが含まれる。
 このように測定データに画像データを関連付けることで、クライアント端末104の利用者は、当該測定データの生成時の被検査面の様子を容易に参照することができる。
After measuring the wall thickness, the module stores the measurement data in the auxiliary storage device 2702 of the automatic control device 2700 in association with the image data of the underwater camera 802 at the time of measuring the wall thickness. Here, the method of associating measurement data and image data includes, for example, attaching the same date and time data or identification information to both data.
By associating the image data with the measurement data in this way, the user of the client terminal 104 can easily refer to the state of the surface to be inspected at the time the measurement data was generated.
2-2.動作
 次に、以上説明した自動制御装置2700を用いた肉厚検査について説明する。図28は、この肉厚検査の作業フロー2800の例を示す。同図に示す作業フロー2800は、水中の鋼管杭の肉厚検査を想定している。
2-2. Operation Next, wall thickness inspection using the automatic control device 2700 described above will be described. FIG. 28 shows an example of a work flow 2800 for this wall thickness inspection. The work flow 2800 shown in the figure assumes the wall thickness inspection of a steel pipe pile underwater.
 検査者はまず、被検査面の位置情報と、ROV101の回収地点の位置情報を自動制御装置2700に入力する(ステップ2801)。検査者は、位置情報の入力後、ROV101を水中に投下し(ステップ2802)、検査開始指示を自動制御装置2700に入力する(ステップ2803)。 The inspector first inputs the position information of the surface to be inspected and the position information of the collection point of the ROV 101 into the automatic control device 2700 (step 2801). After inputting the position information, the inspector drops the ROV 101 into the water (step 2802) and inputs an inspection start instruction to the automatic control device 2700 (step 2803).
 検査開始指示が入力されると、自動制御装置2700の撮影制御モジュール2712は、ROV101の水中カメラ802による撮影および録画を開始する(ステップ2804)。また自動制御装置2700の航行制御モジュール2711は、鋼管杭の被検査面までROV101を移動させる(ステップ2805)。 When the inspection start instruction is input, the photographing control module 2712 of the automatic control device 2700 starts photographing and recording by the underwater camera 802 of the ROV 101 (step 2804). Further, the navigation control module 2711 of the automatic control device 2700 moves the ROV 101 to the surface to be inspected of the steel pipe pile (step 2805).
 ROV101が被検査面に到着すると、自動制御装置2700の判定モジュール2713は、水中カメラ802の映像をもとに、被検査面に貝や海藻が付着していないか判定する(ステップ2806)。この判定の結果、被検査面に貝や海藻が付着している場合には(ステップ2806のYES)、自動制御装置2700の清掃制御モジュール2714は付着物を除去する(ステップ2807)。 When the ROV 101 arrives at the surface to be inspected, the determination module 2713 of the automatic control device 2700 determines whether shellfish or seaweed are attached to the surface to be inspected based on the image of the underwater camera 802 (step 2806). As a result of this determination, if shellfish or seaweed is attached to the surface to be inspected (YES in step 2806), the cleaning control module 2714 of the automatic control device 2700 removes the attached matter (step 2807).
 具体的には清掃制御モジュール2714は、水中カメラ802の映像をもとに、ROV101の高圧洗浄ノズル1402から被検査面に対して高圧水を噴射させる。その際、当該モジュールは、噴射する高圧力の反力によってROV101が回転したり後退したりしないように、前進方向に推力を与えるよう推進器804を制御しつつ高圧水を噴射させる。 Specifically, the cleaning control module 2714 injects high-pressure water from the high-pressure cleaning nozzle 1402 of the ROV 101 onto the surface to be inspected based on the image of the underwater camera 802. At this time, the module injects high-pressure water while controlling the propeller 804 to provide thrust in the forward direction so that the ROV 101 does not rotate or retreat due to the reaction force of the injected high-pressure.
 一定時間、高圧水を噴射後、判定モジュール2713は、被検査面に貝や海藻が付着していないか再度判定する(ステップ2806)。この判定の結果、被検査面に依然として貝や海藻が付着している場合には(ステップ2806のYES)、清掃制御モジュール2714は再度、付着物を除去する(ステップ2807)。一方、この判定の結果、被検査面に貝や海藻が付着していない場合には(ステップ2806のNO)、自動制御装置2700の検査制御モジュール2715は肉厚検査を実施する(ステップ2808)。 After spraying high-pressure water for a certain period of time, the determination module 2713 determines again whether shellfish or seaweed are attached to the surface to be inspected (step 2806). As a result of this determination, if shellfish or seaweed are still attached to the surface to be inspected (YES at step 2806), the cleaning control module 2714 removes the attached matter again (step 2807). On the other hand, if the result of this determination is that no shellfish or seaweed is attached to the surface to be inspected (NO in step 2806), the inspection control module 2715 of the automatic control device 2700 performs a wall thickness inspection (step 2808).
 具体的には検査制御モジュール2715は、水中カメラ802の映像をもとに、鋼管杭に向かってROV101を前進させ、ROV101の4本の突っ張り棒204を鋼管杭に突き当て、かつ、ROV101の水中超音波厚さ計2105の先端を被検査面に押し当てる。その際、各突っ張り棒204のコイルばね2307は、ROV101が鋼管杭に衝突することで生じる衝撃を吸収する。また、水中超音波厚さ計2105の後方に配置されたコイルばね1709も、同衝撃を吸収する。そのため、ROV101が鋼管杭に衝突してバウンドしてしまうことが防止される。 Specifically, the inspection control module 2715 moves the ROV 101 forward toward the steel pipe pile based on the image of the underwater camera 802, hits the four tension rods 204 of the ROV 101 against the steel pipe pile, and moves the ROV 101 underwater. The tip of the ultrasonic thickness gauge 2105 is pressed against the surface to be inspected. At this time, the coil springs 2307 of each tension rod 204 absorb the impact caused by the ROV 101 colliding with the steel pipe pile. Further, a coil spring 1709 placed behind the underwater ultrasonic thickness gauge 2105 also absorbs the same impact. Therefore, the ROV 101 is prevented from colliding with the steel pipe pile and bouncing.
 検査制御モジュール2715は、被検査面に水中超音波厚さ計2105の先端を押し当てた後も、ROV101が被検査面に対して姿勢を維持できるようにROV101を前進させ続ける。このとき、ROV101は4本の突っ張り棒204により被検査面に対して位置決めされているため、前進する力によってROV101が回転したり被検査面から逸れたりすることが防止される。 Even after pressing the tip of the underwater ultrasonic thickness gauge 2105 against the surface to be inspected, the inspection control module 2715 continues to move the ROV 101 forward so that the ROV 101 maintains its posture with respect to the surface to be inspected. At this time, since the ROV 101 is positioned relative to the surface to be inspected by the four tension rods 204, the ROV 101 is prevented from rotating or deviating from the surface to be inspected due to the forward force.
 加えて、水中超音波厚さ計2105は、上述の通り、2軸周りに揺動可能になっている。そのため、ROV101が被検査面に対して多少傾いたとしても、水中超音波厚さ計2105の先端面を被検査面に対して平行に維持することができる。このため、水中超音波厚さ計2105は、反射エコーを確実に検出することができる。 In addition, the underwater ultrasonic thickness gauge 2105 is capable of swinging around two axes, as described above. Therefore, even if the ROV 101 is somewhat inclined with respect to the surface to be inspected, the tip surface of the underwater ultrasonic thickness gauge 2105 can be maintained parallel to the surface to be inspected. Therefore, the underwater ultrasonic thickness gauge 2105 can reliably detect reflected echoes.
 検査制御モジュール2715は、被検査面に水中超音波厚さ計2105の先端が押し当てられた後、被検査面の肉厚を測定する。そして当該モジュールは、測定データを、肉厚測定時の水中カメラ802の画像データと関連付けて、自動制御装置2700の補助記憶装置2702に保存する(ステップ2809)。 The inspection control module 2715 measures the thickness of the surface to be inspected after the tip of the underwater ultrasonic thickness meter 2105 is pressed against the surface to be inspected. The module then stores the measurement data in the auxiliary storage device 2702 of the automatic control device 2700 in association with the image data of the underwater camera 802 at the time of wall thickness measurement (step 2809).
 肉厚検査の終了後、航行制御モジュール2711は、ROV101を所定の回収地点に移動させる(ステップ2810)。ROV101が所定の回収地点に到着すると、撮影制御モジュール2712は、ROV101の水中カメラ802による撮影および録画を停止する(ステップ2811)。検査者は、所定の回収地点に帰還したROV101を回収する(ステップ2812)。 After completing the wall thickness inspection, the navigation control module 2711 moves the ROV 101 to a predetermined collection point (step 2810). When the ROV 101 arrives at the predetermined collection point, the photographing control module 2712 stops photographing and recording by the underwater camera 802 of the ROV 101 (step 2811). The inspector collects the ROV 101 that has returned to the predetermined collection point (step 2812).
 その後、検査者は、操作用端末102を操作して、映像データ、測定データおよび画像データ(以下、まとめて「検査データ」という。)をクラウドサーバ103にアップロードする(ステップ2813)。クラウドサーバ103は、アップロードされた検査データを記憶する。 Thereafter, the examiner operates the operating terminal 102 to upload video data, measurement data, and image data (hereinafter collectively referred to as "inspection data") to the cloud server 103 (step 2813). The cloud server 103 stores the uploaded test data.
 その後、検査データの閲覧を所望するクライアントは、クライアント端末104を操作して、クラウドサーバ103から検査データをダウンロードする(ステップ2814)。
 以上が肉厚検査の作業フロー2800についての説明である。
Thereafter, the client who desires to view the test data operates the client terminal 104 to download the test data from the cloud server 103 (step 2814).
The above is a description of the work flow 2800 for wall thickness inspection.
3.変形例
 上記の実施例は以下のように変形してもよい。なお、以下の変形は組み合わせて採用してもよい。
3. Modifications The above embodiment may be modified as follows. Note that the following modifications may be employed in combination.
(1)上記の第1および第2実施例においてROV101は、付着物除去手段として高圧洗浄ユニット202を有している。しかし、この高圧洗浄ユニット202は付着物除去手段の一例にすぎない。ROV101は、高圧洗浄ユニット202に代えて、例えば、電動回転ブラシを有してもよい。 (1) In the first and second embodiments described above, the ROV 101 includes a high-pressure cleaning unit 202 as a means for removing deposits. However, this high-pressure cleaning unit 202 is only an example of deposit removal means. The ROV 101 may include, for example, an electric rotating brush instead of the high-pressure cleaning unit 202.
(2)上記の第2実施例では、自動制御装置2700がROV101を制御している。しかし、この制御方法に代えて、ROV101自体に自機の動作を制御させてもよい。言い換えると、ROV101をAUV(Autonomous Underwater Vehicle)として動作させてもよい。その場合、自動制御装置2700が備える各装置および各機能(図27参照)は、ROV101に実装されることになる。 (2) In the second embodiment described above, the automatic control device 2700 controls the ROV 101. However, instead of this control method, the ROV 101 itself may control its own operation. In other words, the ROV 101 may be operated as an AUV (Autonomous Underwater Vehicle). In that case, each device and each function (see FIG. 27) included in the automatic control device 2700 will be implemented in the ROV 101.
(3)上記の第1実施例では、1台のROV101で肉厚検査を実施している。しかし、この検査方法に代えて、2台のROV101を用いて上記の肉厚検査を実施してもよい。具体的には、上記の肉厚検査の洗浄工程と検査工程を2台のROV101で分担して行ってもよい。 (3) In the first embodiment described above, the wall thickness inspection is performed using one ROV 101. However, instead of this inspection method, the above wall thickness inspection may be performed using two ROVs 101. Specifically, the cleaning process and the inspection process for the above-mentioned wall thickness inspection may be shared between two ROVs 101.
 その場合、洗浄工程を担当させるROV101からは、肉厚検査ユニット203を省略してもよい。一方、検査工程を担当させるROV101からは、高圧洗浄ユニット202を省略してもよい。
 肉厚検査の作業の進め方としては、まず1台目のROV101で、被検査面の付着物を除去する。次に、2台目のROV101で、被検査面の肉厚検査を実施する。
 以上説明した検査方法でも、肉厚検査の実施が可能である。
In that case, the wall thickness inspection unit 203 may be omitted from the ROV 101 that is responsible for the cleaning process. On the other hand, the high-pressure cleaning unit 202 may be omitted from the ROV 101 that is in charge of the inspection process.
To proceed with the wall thickness inspection, first, the first ROV 101 removes deposits from the surface to be inspected. Next, the second ROV 101 performs a thickness inspection of the surface to be inspected.
The wall thickness inspection can also be performed using the inspection method described above.
(4)上記の第1および第2実施例では、鋼管杭の肉厚検査を想定している。しかし、肉厚検査の対象は鋼管杭に限られない。例えば、鋼管杭に代えて、鋼矢板、船体、海底配管などの水中構造物を肉厚検査の対象としてもよい。 (4) In the first and second embodiments described above, the wall thickness inspection of steel pipe piles is assumed. However, the objects of wall thickness inspection are not limited to steel pipe piles. For example, instead of steel pipe piles, underwater structures such as steel sheet piles, ship hulls, and submarine piping may be subject to wall thickness inspection.
(5)上記の第1および第2実施例において、水中カメラ802は可視光イメージセンサである。この水中カメラ802に代えて又は加えて、光または音波の反射速度を利用して検査対象物の画像を生成するセンサを使用してもよい。具体的には、Time-of-Flightカメラ、LiDARスキャナ、マルチビームソナー、ドップラー速度計、赤外線カメラ、音響カメラなどを使用してもよい。これらのセンサを使用することで、透明度が低い水中においても検査対象物を鮮明に表す画像を生成することができる。 (5) In the first and second embodiments described above, the underwater camera 802 is a visible light image sensor. Instead of or in addition to this underwater camera 802, a sensor may be used that generates an image of the inspection object using the reflection speed of light or sound waves. Specifically, a Time-of-Flight camera, LiDAR scanner, multi-beam sonar, Doppler velocimeter, infrared camera, acoustic camera, etc. may be used. By using these sensors, it is possible to generate images that clearly represent the object to be inspected even in water with low transparency.
(6)上記の第1および第2実施例では、検査項目として肉厚検査を想定している。しかし、検査項目は肉厚検査に限られない。例えば、肉厚検査に代えて、犠牲電極の検査を実施してもよい。具体的には、犠牲電極をROV101で撮影して、撮影画像をもとに検査者が犠牲電極の腐食の程度を判定してもよい。
 その場合、犠牲電極の撮影画像は、ROV101の水中カメラ802で撮影してもよいし、その他のセンサ(例えば、Time-of-Flightカメラ、LiDARスキャナ、マルチビームソナー、ドップラー速度計など)で生成してもよい。
(6) In the first and second embodiments described above, a wall thickness inspection is assumed as an inspection item. However, the inspection items are not limited to wall thickness inspection. For example, a sacrificial electrode test may be performed instead of a wall thickness test. Specifically, the sacrificial electrode may be photographed by the ROV 101, and the inspector may determine the degree of corrosion of the sacrificial electrode based on the photographed image.
In that case, the captured image of the sacrificial electrode may be captured by the underwater camera 802 of the ROV 101, or may be generated by other sensors (e.g., Time-of-Flight camera, LiDAR scanner, multibeam sonar, Doppler velocimeter, etc.) You may.
(7)上記の第1および第2実施例において、突っ張り棒204の数は4本に限られない。突っ張り棒204の数は、検査対象物の形状に応じて適宜変更してよい。 (7) In the first and second embodiments described above, the number of tension rods 204 is not limited to four. The number of tension rods 204 may be changed as appropriate depending on the shape of the object to be inspected.
(8)上記の第1および第2実施例では、ROV101が鋼管杭に衝突することで生じる衝撃を吸収するための部材としてコイルばね1709および2307が使用されている。しかし、このコイルばね1709および2307に代えて、ゴム等のその他の弾性部材を使用してもよい。 (8) In the first and second embodiments described above, the coil springs 1709 and 2307 are used as members for absorbing the impact caused by the ROV 101 colliding with the steel pipe pile. However, instead of the coil springs 1709 and 2307, other elastic members such as rubber may be used.
(9)なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 (9) Note that the present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add, delete, or replace a part of the configuration of each embodiment with other configurations.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the above-mentioned configurations, functions, processing units, processing means, etc. may be partially or entirely realized by hardware, for example, by designing an integrated circuit. Furthermore, each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, files, etc. that realize each function can be stored in a memory, a recording device such as a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 なお、上述の実施例は少なくとも特許請求の範囲に記載の構成を開示している。
Further, the control lines and information lines are shown to be necessary for explanation purposes, and not all control lines and information lines are necessarily shown in the product. In reality, almost all components may be considered to be interconnected.
Note that the above-described embodiments disclose at least the configuration described in the claims.
100…検査システム、101…ROV、102…操作用端末、103…クラウドサーバ、104…クライアント端末、105…鋼管杭、106…通信ケーブル、107…通信ネットワーク、201…ROV本体、202…高圧洗浄ユニット、203…肉厚検査ユニット、204…突っ張り棒、801…本体フレーム、802…水中カメラ、803…水中ライト、804…推進器、1401…フレーム、1402…高圧洗浄ノズル、1403…高圧ホース、1701…カバープレート、1702…先端部、1703…ベース部、1704…固定プレート、1705…周壁、1706…シャフト挿入孔、1707…シャフト、1708…スライダ、1709…コイルばね、2101…孔部、2102…孔部、2103…内側環状部、2104…外側環状部、2105…水中超音波厚さ計、2106…保持部、2107…ベース部、2108…孔部、2109…突起部、2110…孔部、2111…突起部、2112…凹み部、2113…シャフト挿入孔、2301…棒部、2302…先端キャップ、2303…後端キャップ、2304…保持部、2305…棒挿入孔、2306…先端側留め具、2307…コイルばね、2308…後端側留め具、2700…自動制御装置、2701…主記憶装置、2702…補助記憶装置、2703…プロセッサ、2704…入力装置、2705…出力装置、2706…通信制御部、2711…航行制御モジュール、2712…撮影制御モジュール、2713…判定モジュール、2714…清掃制御モジュール、2715…検査制御モジュール 100... Inspection system, 101... ROV, 102... Operation terminal, 103... Cloud server, 104... Client terminal, 105... Steel pipe pile, 106... Communication cable, 107... Communication network, 201... ROV main body, 202... High pressure cleaning unit , 203... Thickness inspection unit, 204... Tension rod, 801... Body frame, 802... Underwater camera, 803... Underwater light, 804... Propeller, 1401... Frame, 1402... High pressure cleaning nozzle, 1403... High pressure hose, 1701... Cover plate, 1702...Tip, 1703...Base, 1704...Fixing plate, 1705...Peripheral wall, 1706...Shaft insertion hole, 1707...Shaft, 1708...Slider, 1709...Coil spring, 2101...Hole, 2102...Hole , 2103...Inner annular part, 2104...Outer annular part, 2105...Underwater ultrasonic thickness gauge, 2106...Holding part, 2107...Base part, 2108...Hole part, 2109...Protrusion part, 2110...Hole part, 2111...Protrusion part part, 2112... recessed part, 2113... shaft insertion hole, 2301... rod part, 2302... tip cap, 2303... rear end cap, 2304... holding part, 2305... rod insertion hole, 2306... tip side fastener, 2307... coil Spring, 2308... Rear end side fastener, 2700... Automatic control device, 2701... Main storage device, 2702... Auxiliary storage device, 2703... Processor, 2704... Input device, 2705... Output device, 2706... Communication control unit, 2711... Navigation control module, 2712... Photography control module, 2713... Judgment module, 2714... Cleaning control module, 2715... Inspection control module

Claims (14)

  1.  付着物除去手段を備えた第1の無人潜水機を用いて、検査対象物に付着した付着物を除去するステップと、
     第1のセンサをさらに備えた前記第1の無人潜水機または前記第1のセンサを備えた第2の無人潜水機を用いて、前記検査対象物の厚みを測定するか、または前記検査対象物の画像を生成するステップと
     を有する検査方法。
    removing the deposits attached to the inspection object using a first unmanned underwater vehicle equipped with a deposit removal means;
    The thickness of the object to be inspected is measured using the first unmanned underwater vehicle further including a first sensor or the second unmanned underwater vehicle including the first sensor, or the thickness of the object to be inspected is measured. An inspection method comprising the steps of: generating an image of .
  2.  前記第1のセンサは、前記検査対象物の画像を生成するためのセンサであり、
     前記第1のセンサにより生成された画像データに基づいて、前記検査対象物から前記付着物が除去されたか否かを判定するステップと、
     前記検査対象物から前記付着物が除去されていない場合に、前記第1の無人潜水機を用いて前記検査対象物から前記付着物を除去するステップと
     をさらに有することを特徴とする、請求項1に記載の検査方法。
    The first sensor is a sensor for generating an image of the inspection object,
    Determining whether the deposit has been removed from the inspection object based on image data generated by the first sensor;
    Claim further comprising the step of, if the deposit has not been removed from the inspection target, using the first unmanned underwater vehicle to remove the deposit from the inspection target. The inspection method described in 1.
  3.  前記第1のセンサは、光または音波の反射時間を利用して前記検査対象物の画像を生成するセンサであることを特徴とする、請求項2に記載の検査方法。 3. The inspection method according to claim 2, wherein the first sensor is a sensor that generates an image of the inspection object using reflection time of light or sound waves.
  4.  前記第1のセンサは、前記検査対象物の厚みを測定するためのセンサであり、
     前記第1の無人潜水機または前記第2の無人潜水機は、前記検査対象物の画像を生成するための第2のセンサをさらに備え、
     前記第1のセンサにより測定された測定データと、前記第2のセンサにより生成された画像データを関連付けて記憶手段に保存するステップをさらに備えることを特徴とする、請求項1に記載の検査方法。
    The first sensor is a sensor for measuring the thickness of the inspection target,
    The first unmanned underwater vehicle or the second unmanned underwater vehicle further includes a second sensor for generating an image of the inspection target,
    The inspection method according to claim 1, further comprising the step of associating the measurement data measured by the first sensor with the image data generated by the second sensor and storing them in a storage means. .
  5.  検査対象物に付着した付着物を除去するための付着物除去手段と、
     前記検査対象物の厚みを測定するか、または前記検査対象物の画像を生成するための第1のセンサと
     を備える無人潜水機。
    A deposit removal means for removing deposits attached to an object to be inspected;
    and a first sensor for measuring the thickness of the object to be inspected or generating an image of the object to be inspected.
  6.  前記第1のセンサは、前記検査対象物の厚みを測定するためのセンサであり、
     前記検査対象物の画像を生成するための第2のセンサと、
     前記第1のセンサにより測定された測定データと、前記第2のセンサにより生成された画像データを関連付けて記憶手段に保存するための保存手段と
     をさらに備えることを特徴とする、請求項5に記載の無人潜水機。
    The first sensor is a sensor for measuring the thickness of the inspection target,
    a second sensor for generating an image of the inspection object;
    6. The apparatus according to claim 5, further comprising a storage means for storing measurement data measured by the first sensor and image data generated by the second sensor in a storage means in association with each other. The unmanned underwater vehicle described.
  7.  前記第1のセンサは、前記検査対象物の厚みを測定するためのセンサであり、
     筐体と、
     前記筐体の前方に突出するように前記筐体に取り付けられ、前記検査対象物に突き当てられる一対の突き当て手段と、
     前記筐体に取り付けられた保持手段であって、前記筐体の前方に、弾性部材で付勢された状態で前記第1のセンサを保持する保持手段と
     をさらに備えることを特徴とする、請求項5に記載の無人潜水機。
    The first sensor is a sensor for measuring the thickness of the inspection target,
    A casing and
    a pair of abutting means attached to the casing so as to protrude forward of the casing and abutting against the object to be inspected;
    A holding means attached to the casing, the holding means holding the first sensor in a state in which it is biased by an elastic member in front of the casing. The unmanned underwater vehicle described in item 5.
  8.  前記保持手段は、前記第1のセンサを2軸周りに揺動可能なように保持することを特徴とする、請求項7に記載の無人潜水機。 The unmanned underwater vehicle according to claim 7, wherein the holding means holds the first sensor so as to be able to swing around two axes.
  9.  前記一対の突き当て手段は、それぞれ、
     前記検査対象物に突き当てられる棒部と、
     前記棒部を、弾性部材で付勢された状態で保持する保持部と
     を備えることを特徴とする、請求項7に記載の無人潜水機。
    The pair of abutting means each include:
    a rod portion that abuts against the inspection target;
    The unmanned underwater vehicle according to claim 7, further comprising: a holding part that holds the rod part in a biased state with an elastic member.
  10.  検査対象物に付着した付着物を除去するための付着物除去手段と、
     前記検査対象物の画像を生成するための第1のセンサと
     を備える無人潜水機と、
     前記第1のセンサにより生成された画像データに基づいて、前記検査対象物から前記付着物が除去されたか否かを判定する判定手段と、
     前記検査対象物から前記付着物が除去されていない場合に、前記付着物除去手段を制御して前記検査対象物から前記付着物を除去する制御手段と
     を備える検査システム。
    A deposit removal means for removing deposits attached to an object to be inspected;
    a first sensor for generating an image of the inspection object;
    determination means for determining whether or not the deposit has been removed from the inspection object based on image data generated by the first sensor;
    An inspection system comprising: control means for controlling the deposit removing means to remove the deposit from the inspection target when the deposit has not been removed from the test target.
  11.  前記第1のセンサは、光または音波の反射時間を利用して前記検査対象物の画像を生成するセンサであることを特徴とする、請求項10に記載の検査システム。 11. The inspection system according to claim 10, wherein the first sensor is a sensor that generates an image of the inspection object using reflection time of light or sound waves.
  12.  無人潜水機に取り付けられる検査ユニットであって、
     前記無人潜水機の筐体に取り付けられる、検査対象物に付着した付着物を除去するための付着物除去手段と、
     前記筐体の前方に突出するように前記筐体に取り付けられ、前記検査対象物に突き当てられる一対の突き当て手段と、
     前記検査対象物の厚みを測定するための第1のセンサと、
     前記筐体に取り付けられる保持手段であって、前記筐体の前方に、弾性部材で付勢された状態で前記第1のセンサを保持する保持手段と
     を備える検査ユニット。
    An inspection unit attached to an unmanned underwater vehicle,
    A deposit removing means attached to the casing of the unmanned underwater vehicle for removing deposits attached to the object to be inspected;
    a pair of abutting means attached to the casing so as to protrude forward of the casing and abutting against the object to be inspected;
    a first sensor for measuring the thickness of the inspection target;
    An inspection unit comprising: a holding means attached to the casing, the holding means holding the first sensor in a state in which it is biased by an elastic member in front of the casing.
  13.  前記保持手段は、前記第1のセンサを2軸周りに揺動可能なように保持することを特徴とする、請求項12に記載の検査ユニット。 13. The inspection unit according to claim 12, wherein the holding means holds the first sensor so as to be able to swing around two axes.
  14.  前記一対の突き当て手段は、それぞれ、
     前記検査対象物に突き当てられる棒部と、
     前記棒部を、弾性部材で付勢された状態で保持する保持部と
     を備えることを特徴とする、請求項12に記載の検査ユニット。

     
    The pair of abutting means each include:
    a rod portion that abuts against the inspection target;
    The inspection unit according to claim 12, further comprising: a holding section that holds the rod section in a biased state with an elastic member.

PCT/JP2023/025073 2022-08-29 2023-07-06 Inspection method using unmanned underwater vehicle WO2024048072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022136238 2022-08-29
JP2022-136238 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048072A1 true WO2024048072A1 (en) 2024-03-07

Family

ID=90099468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025073 WO2024048072A1 (en) 2022-08-29 2023-07-06 Inspection method using unmanned underwater vehicle

Country Status (1)

Country Link
WO (1) WO2024048072A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042449A (en) * 2010-07-20 2012-03-01 Univ Of Electro-Communications Ultrasonic wave propagation time measuring method and ultrasonic wave propagation time measuring apparatus
JP2019531477A (en) * 2016-09-15 2019-10-31 サウジ アラビアン オイル カンパニー Integrated ultrasonic test and cathodic protection test probe
JP2019533599A (en) * 2016-09-20 2019-11-21 サウジ アラビアン オイル カンパニー Underwater boat and inspection method
JP2020105726A (en) * 2018-12-26 2020-07-09 阪神高速技術株式会社 Waterside structure inspection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042449A (en) * 2010-07-20 2012-03-01 Univ Of Electro-Communications Ultrasonic wave propagation time measuring method and ultrasonic wave propagation time measuring apparatus
JP2019531477A (en) * 2016-09-15 2019-10-31 サウジ アラビアン オイル カンパニー Integrated ultrasonic test and cathodic protection test probe
JP2019533599A (en) * 2016-09-20 2019-11-21 サウジ アラビアン オイル カンパニー Underwater boat and inspection method
JP2020105726A (en) * 2018-12-26 2020-07-09 阪神高速技術株式会社 Waterside structure inspection system

Similar Documents

Publication Publication Date Title
JP6313931B2 (en) Surface visualization system to show inconsistencies
US10107907B2 (en) Bobber field acoustic detection system
Lee et al. Visual servoing for underwater docking of an autonomous underwater vehicle with one camera
AU2016200864A1 (en) Estimating Position and Orientation of an Underwater Vehicle Relative to Underwater Structures
EP2633339A2 (en) Detecting structural changes to underwater structures
US7848894B2 (en) Non-destructive inspection apparatus
CN109974915B (en) System and method for testing explosion pressure in water
US11789146B2 (en) Combined method of location of sonar detection device
MXPA06008524A (en) Seismic cable positioning using coupled inertial system units.
CN207595225U (en) A kind of underwater robot for detecting port and pier
Gu et al. Development of image sonar simulator for underwater object recognition
WO2024048072A1 (en) Inspection method using unmanned underwater vehicle
CN108227744B (en) Underwater robot positioning navigation system and positioning navigation method
Biondi et al. Kinematic registration and shape analysis for locating center of mass in large passive spacecraft
Fedorovich Sensor performance analysis for mine detection with unmanned vehicles in very shallow water and surf zones
Hansen et al. The application of real time 3D acoustical imaging
Goldstein et al. Use of highly portable micro-sized remotely operated vehicles for environmental monitoring and mapping
KR20130017893A (en) Portable underwater exploring device
Dobie et al. Automatic ultrasonic robotic array
Nguyen et al. An experimental study on the motion of the floater moored near port in waves generated by a ship
JP2020143920A (en) Model generation device, vehicle simulation system, model generation method, vehicle simulation method, and computer program
Gille et al. Optimization of Mirror Positioning for Single‐Camera 3D Displacement Measurements
CN114952832B (en) Mechanical arm assembling method and device based on monocular six-degree-of-freedom object attitude estimation
Nocerino et al. High accuracy low-cost videogrammetric system: an application to 6DOF estimation of ship models
Ciuccoli Intelligent Systems for the Exploration of Structured and Complex Environments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859842

Country of ref document: EP

Kind code of ref document: A1