WO2024048038A1 - Robot hand - Google Patents

Robot hand Download PDF

Info

Publication number
WO2024048038A1
WO2024048038A1 PCT/JP2023/023414 JP2023023414W WO2024048038A1 WO 2024048038 A1 WO2024048038 A1 WO 2024048038A1 JP 2023023414 W JP2023023414 W JP 2023023414W WO 2024048038 A1 WO2024048038 A1 WO 2024048038A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot hand
claw
bellows
finger
claws
Prior art date
Application number
PCT/JP2023/023414
Other languages
French (fr)
Japanese (ja)
Inventor
栗山 広志
永幸 工藤
征司 大国
Original Assignee
株式会社豆蔵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豆蔵 filed Critical 株式会社豆蔵
Publication of WO2024048038A1 publication Critical patent/WO2024048038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present invention relates to a robot hand, and particularly to a robot hand for grasping an object.
  • an object of the present invention is to provide a robot hand that is highly safe, capable of high-speed gripping and releasing operations, and has a low workload during cleaning.
  • a first aspect of the present invention is a robot hand, the robot hand having two or more claws for grasping an article, and the same number of finger parts as the claws to which each of the two or more claws is connected,
  • the parts include fingers and as many bellows as the fingers to which the fingers are connected, the bellows being connected to a pneumatic control system, the bellows being connected to a pneumatic control system, the bellows being rotatably connected to each other at a link.
  • the gist is that by controlling the internal air pressure and controlling the length of the bellows, the distance between the fingers is controlled and the object is gripped by the claws.
  • the claw has two protrusions at a position connected to the finger, and each of the two protrusions is fixed to two fitting holes provided in the finger.
  • the claw may be connected to the finger.
  • the smallest distance between the fingers may be larger than the size of the article.
  • resin that is destroyed by an external force exceeding a predetermined value is used for at least some of the parts constituting the robot hand, and the parts are preferentially destroyed by overload on the robot hand. It's okay.
  • the bellows has a connecting portion at both ends, the finger has a groove sandwiching the connecting portion at a position where it is connected to the bellows, and the pneumatic control system has a groove at a position where it is connected to the bellows.
  • the bellows may have a second groove sandwiching the connecting portion therebetween, and a packing may be provided between the pneumatic control system and the bellows.
  • the invention further includes a bayonet ring and a mounting flange connected to a pneumatic control system, and the mounting flange and the robot hand are brought into contact with each other, and the mounting flange and the robot hand are brought into contact with each other by rotating the bayonet ring. may be fixed.
  • the bayonet ring is provided with a fitting groove having a fitting groove convex portion
  • the robot hand is provided with an outer claw having a claw recess, and when the bayonet ring is rotated, the fitting groove is aligned with the outer claw.
  • the mounting flange and the robot hand may be fixed by sliding the fitting groove projection and the claw recess into engagement.
  • the robot hand includes an elastic portion and a protrusion at the tip of the elastic portion, and the bayonet ring includes a mating hole, and when the bayonet ring is rotated, the protrusion enters the mating hole and is attached.
  • the flange and the robot hand may be fixed.
  • the first aspect of the present invention further includes a second packing, the second packing is arranged between the mounting flange and the robot hand, and connects the air joint of the pneumatic control system of the robot hand and the air pressure control system of the mounting flange.
  • the air joint of the pressure control system, the electrical contact of the robot hand, and the electrical contact of the mounting flange may be connected at a position where the mounting flange and the robot hand are in contact.
  • the claw may have a gripping portion, and the gripping portion may be composed of a plurality of long nails.
  • the claw may have a gripping portion, and the gripping portion may be cup-shaped.
  • the claw may have a gripping portion, and the gripping portion may have a pressing plate.
  • FIG. 1 is a front view of a robot hand according to an embodiment of the present invention.
  • FIG. 2 is a front sectional view of the robot hand according to the present embodiment.
  • FIG. 3 is a sectional view of the bellows portion of the robot hand according to the present embodiment. It is a sectional view of the tool changer of the robot hand concerning this embodiment.
  • FIG. 3 is a top view of the tool changer of the robot hand according to the present embodiment.
  • FIG. 6 is a cross-sectional view of the tool changer shown in FIGS. 4 and 5 taken along the line A-A'.
  • FIG. 3 is a top view of the tool changer of the robot hand according to the present embodiment.
  • FIG. 3 is a bottom view of the tool changer of the robot hand according to the present embodiment.
  • FIG. 3 is a sectional view of a connecting portion of the robot hand according to the present embodiment. It is a figure showing an example of the claw of the robot hand concerning this embodiment, and is (a) a top view, (b) a left side view, and (c) a front view. It is a figure which shows the nail
  • FIG. 13 is attached to a finger part, (a) is a front view, (b) is a front side perspective view. It is a figure showing an example of the claw of the robot hand concerning this embodiment, and is (a) a top view, (b) a left side view, and (c) a front view.
  • FIG. 16 is a bottom perspective view showing the nail of FIG. 15 when it is attached to a finger portion. It is a figure showing an example of the claw of the robot hand concerning this embodiment, and is (a) a top view, (b) a left side view, and (c) a front view.
  • FIG. 18 is a bottom perspective view of the claw shown in FIG. 17 when it is attached to a finger.
  • FIG. 1 shows a front view of a robot hand 1 according to this embodiment.
  • the robot hand 1 shown in FIG. 1 includes a tool changer 2, a hand body 3, and a claw part 4.
  • the tool changer 2 connects the hand body 3 and a pneumatic control system (not shown). As will be described later, the tool changer 2 allows the hand body 3 to be easily removed from and attached to the pneumatic control system. This facilitates maintenance such as replacing and cleaning the robot hand.
  • the hand main body 3 has a claw portion 4 connected to its tip, and is connected to a pneumatic control system (not shown) via a tool changer 2.
  • the claw portion 4 is connected to the finger portions 20a and 20b of the hand body 3, and the claw portion 4 grips and releases an article by operating the hand body 3.
  • the claw portion 4 includes a claw 4a and a claw 4b, and the claw 4a and the claw 4b have shapes that are mirror-symmetrical to each other.
  • the gripping portions 17a and 17b of the claws 4a and 4b have shapes suitable for gripping and releasing articles reliably and easily, as will be described later.
  • the claws 4a, 4b are removable, and can be attached to the hand main body 3 as the claws 4a, 4b, which have gripping portions 17a, 17b shaped according to the type and shape of the article.
  • the claws 4a and 4b shown in FIGS. 1 and 2 are examples of the claws according to this embodiment.
  • All parts of the robot hand 1 shown in FIG. 1 are made of resin material.
  • a conventional robot hand includes metal parts, and the metal parts are coated with anti-rust oil and lubricating oil. When cleaning these robot hands, it is necessary to use a detergent that matches the oil and reapply the oil after cleaning. Furthermore, when metal parts become rusted, it is necessary to remove the rust, replace parts, etc., resulting in a high maintenance work load.
  • the robot hand 1 according to the present embodiment has all parts made of resin materials, does not require anti-rust oil or lubricating oil, and is easier to clean and has a lower workload than robot hands that include metal parts. . Examples of the resin material used in the robot hand 1 according to this embodiment include thermoplastic resins such as polyethylene and polypropylene, and fluororesins such as PTFE.
  • the hand body 3 includes bellows 12a, 12b, a link 14, inner connecting portions 13a, 13b, outer connecting portions 18a, 18b, finger portions 20a, 20b, upper finger portions 25a, 25b, and a shaft portion 19. It consists of
  • FIG. 2 shows a front sectional view of the robot hand 1 according to this embodiment.
  • the robot hand 1 shown in FIG. 1 is in a state where the claws 4a and 4b are in contact with each other, and the finger portions 20a and 20b are closest to each other. This state will be hereinafter referred to as a state in which the finger portions 20a and 20b are closed.
  • the claws 4a and 4b are separated from each other, and the finger portions 20a and 20b are separated from each other. This state will be hereinafter referred to as a state in which the finger portions 20a and 20b are open.
  • the robot hand 1 shown in FIGS. 1 and 2 has a mirror-symmetrical structure in the plane of the drawing except for the link 14, and includes the bellows 12a of the hand body 3, the inner connecting part 13a, the outer connecting part 18a,
  • the finger portion 20a, the upper finger portion 25a, the bellows 12b, the inner connecting portion 13b, the outer connecting portion 18b, the finger portion 20b, and the upper finger portion 25b have a mirror-symmetrical positional relationship with each other.
  • the bellows 12a is connected to the shaft portion 19 via the inner connecting portion 13a, and is connected to the upper finger portion 25a via the outer connecting portion 18a.
  • An upper finger portion 25a is continuous from the upper end of the finger portion 20a.
  • a link 14 is arranged at the lower end of the shaft portion 19.
  • the finger portion 20a and the finger portion 20b are connected to each other at the link 14, and the finger portion 20a and the finger portion 20b are mutually rotatable about the link 14.
  • An internal pipe 10 is disposed inside the shaft portion 19, and each of the bellows 12a, 12b and the internal pipe 10 are connected at respective positions of the inner connecting portions 13a, 13b.
  • the internal piping 10 is connected to a pneumatic control system (not shown), and the pneumatic pressure inside the internal piping 10 is set to either positive pressure or negative pressure by turning on/off a solenoid valve of the pneumatic control system. controlled so that As will be described later, as shown in FIG. 3, the bellows 12a has a hollow structure, and the hollow portion of the internal pipe 10 and the space 22a, which is the hollow portion of the bellows 12a, are continuous. Thereby, the air pressure inside the internal pipe 10 is controlled, and at the same time, the air pressure inside the bellows 12a is also controlled. Similarly to the bellows 12a, in the bellows 12b, the air pressure inside the internal pipe 10 is controlled, and at the same time, the air pressure inside is also controlled.
  • the bellows 12a and 12b are made of a highly flexible resin material.
  • the respective lengths of the bellows 12a, 12b that is, the distance between the inner connecting portion 13a and the outer connecting portion 18a, and the inner connecting portion 13b. and the outer connecting portion 18b becomes longer, and as shown in FIG. 1, the finger portions 20a and 20b are in a closed state with the link 14 as the center.
  • the air pressure inside the bellows 12a, 12b becomes a negative pressure
  • the length of each of the bellows 12a, 12b becomes shorter, and the finger portions 20a and 20b become open, as shown in FIG. .
  • the opening and closing operations of the finger sections 20a and 20b cause the claw section 4 to grip and release the article.
  • the bellows 12a, 12b Since the finger portion 20a and the finger portion 20b are connected through the link 14, the bellows 12a, 12b is in a state where the air pressure inside the bellows 12a, 12b becomes negative pressure and the length of the bellows 12a, 12b is short, as shown in FIG.
  • the angles formed with the portion 19 are different from each other.
  • the mechanism for opening and closing the fingers is made of metal parts, as in conventional robot hands, the angle of the air cylinder and lever chuck changes as the fingers open and close, so sliding parts and link structures are required. Therefore, the mechanism for opening and closing the fingers has a complicated structure.
  • the bellows 12a and 12b of the robot hand 1 according to the present embodiment are made of a highly flexible resin material, so that the bellows 12a and 12b change from the shape shown in FIG. 2 to the shape shown in FIG. hardly deforms into the shape shown. As a result, the mechanism for opening and closing the fingers has a simple structure, making manufacturing and maintenance easier.
  • the piping of the air cylinder is placed outside the robot hand structure, so the piping air tube restricts the movement of the robot hand.
  • the robot hand 1 in this embodiment since the piping is arranged inside the robot hand 1, the piping does not restrict the operation of the robot hand 1.
  • all parts of the robot hand 1 are made of resin material, and are extremely lightweight compared to conventional robot hands that include metal parts.
  • deformation of the hand due to the sliding part and link structure associated with gripping and releasing an object takes time due to the complicated mechanism, but in the robot hand 1 according to the present embodiment, it takes time. Since there is only one rotating part on the link 14, and the structure is simple with the bellows 12a and 12b, it does not take much time to deform. Therefore, compared to the opening/closing movements of the fingers of a conventional robot hand including metal parts, the opening/closing movements of the fingers 20a, 20b quickly respond to the on/off of the solenoid valve of the pneumatic control system.
  • the bellows 12a, the inner connecting part 13a, and the outer connecting part 18a may be fastened using an adhesive, or by fitting the bellows 12a into the grooves 23a and 24a without using an adhesive. Although it may be done by a structure, it is not limited to these. In this embodiment, a method using a fitting structure is shown as an example of a method of fastening the bellows 12a, the inner connecting portion 13a, and the outer connecting portion 18a.
  • FIG. 3 is a cross-sectional view of the bellows 12a, the inner connecting portion 13a, and the outer connecting portion 18a.
  • the inner connecting portion 13a and the outer connecting portion 18a have a groove 23a and a groove 24a, respectively.
  • the hollow part of the internal pipe 10 and the space 22a which is the hollow part of the bellows 12a, are continuous, and are controlled by the on/off operation of the solenoid valve of the pneumatic control system connected to the internal pipe 10.
  • the air pressure in the space 22a is controlled.
  • a packing may be used between the bellows 12a and the inner connecting portion 13a.
  • An annular rubber or resin packing 21a is installed at the connection between the bellows 12a and the inner connecting portion 13a to prevent air from leaking from the space 22a to the outside of the bellows 12a.
  • the configurations of the bellows 12b, the inner connecting portion 13b, and the outer connecting portion 18b are similar to those of the bellows 12a, the inner connecting portion 13a, and the outer connecting portion 18a shown in FIG. 3, except that they are mirror symmetrical. It is the composition.
  • the number of finger parts 20a and 20b of the robot hand is two, but the number of finger parts 20a and 20b is not limited to two, and can be three or more. It may be. Even when the number of fingers is three or more, the robot hand has the same number of bellows, inner coupling parts, and outer coupling parts as the number of fingers. Each finger is connected to the shaft by one or more links and further connected to the bellows via an outer connection. A bellows connected to each finger is connected to the shaft via an inner connection. Even when the number of fingers is three or more, the fingers are opened and closed by controlling the air pressure inside the bellows.
  • the mechanism for opening and closing the fingers is complicated. Therefore, if there are three or more fingers, the weight of the robot hand becomes heavy and the volume increases, etc. There are many problems.
  • the mechanism for modifying the finger portions has a simple structure, manufacturing and maintenance of the robot hand having three or more fingers is easier compared to conventional robot hands. be.
  • FIG. 4 shows a sectional view of the tool changer 2
  • FIG. 5 shows a top view of the tool changer 2 shown in FIG.
  • the tool changer 2 shown in FIGS. 4 and 5 includes a robot hand body 56, a bayonet ring 55, a mounting flange 53, and a packing 57.
  • An internal pipe 10 is arranged at the center of the robot hand body 56 and the air joint 52.
  • the air joint 52 and the mounting flange 53 are fixed to each other and cannot be removed.
  • the bayonet ring 55 is rotatable relative to the mounting flange 53. When removing the hand body 3 from the pneumatic control system, the bayonet ring 55 is rotated and the robot hand body 56 is removed from the mounting flange 53.
  • the mounting flange 53 is fixed relative to the air joint 52, and even if the bayonet ring 55 is rotated, the mounting flange 53 will not rotate relative to the air joint 52. Further, when the robot hand body 56 is attached to or removed from the mounting flange 53, only the bayonet ring 55 is rotated with respect to the attachment flange 53, and the robot hand body 56 is not rotated.
  • the mounting flange 53 and the robot hand body 56 are not rotated, and only the bayonet ring 55 is rotated for fastening. Enough space can be secured for installation. Further, since the mounting flange 53 and the robot hand main body 56 are not rotated when they are fastened together, the air piping contacts do not rub and the electrical contacts do not separate. Thereby, the air joint and the electric contact can be incorporated into the mounting flange 53 and the robot hand body 56, and the movement of the robot is not restricted by these.
  • the tool changer 2 fastens the robot hand main body 56 to the mounting flange 53.
  • the hollow portion of the air joint 52, the hollow portion of the mounting flange 53, and the hollow portion of the robot hand body 56 are continuous and form the hollow portion of the internal piping 10 shown in FIG.
  • an annular rubber or resin packing 57 is installed at the connection between the mounting flange 53 and the robot hand body 56 to prevent air from leaking from the hollow part of the internal pipe 10 to the outside of the air fitting 52. .
  • the tool changer 2 is locked when the bayonet ring 55 is rotated to fasten the robot hand body 56 to the mounting flange 53, and when the tool changer 2 is locked, a click sound or a tactile response (hereinafter referred to as a click feeling) similar to pressing a switch is generated. It has a locking mechanism that allows you to experience and confirm the As a locking mechanism according to this embodiment, a locking mechanism based on a concave-convex fit will be described below.
  • FIG. 6 shows a sectional view taken along the section A-A' shown in FIGS. 4 and 5.
  • FIG. 7 shows a top view of the robot hand main body 56 shown in FIG. 4.
  • FIG. 6 and FIG. 7 are diagrams in the case where the tool changer 2 according to the present embodiment has a locking function by concave-convex fitting.
  • the top view of the robot hand main body 56 shown in FIG. 7 shows the robot hand main body 56 shown in FIG. 4 with the mounting flange 53 and bayonet ring 55 removed.
  • the bayonet ring 55 has a fitting groove 79
  • the robot hand body 56 shown in FIG. 7 has an external claw 71.
  • the bayonet ring 55 has a fitting groove convex portion 122 having a convex shape inside the fitting groove 79 .
  • the outer claw 71 of the robot main body has a claw recess 121 having a concave shape and a claw tip end portion 123 that slopes smoothly from the tip of the outer claw 71.
  • the conventional mechanism for removing and attaching the robot hand from the robot hand control system was to fix it by strongly tightening a screw-shaped, helical structure fixing part (for example, see Re-Table No. 2019/142709). .
  • a screw-shaped, helical structure fixing part for example, see Re-Table No. 2019/142709.
  • the fitting groove convex portion 122 fits into the claw recess 121 and is fixed, so that the robot hand main body 56 is fixed without moving relative to the mounting flange 53 after fastening.
  • FIG. 8 shows a bottom view of the tool changer 2.
  • FIG. 8 is a diagram showing a case where the tool changer 2 according to this embodiment has a snap-fit locking function.
  • the robot hand main body 56 has an elastic portion 72 and a protrusion 75 at the tip of the elastic portion 72.
  • a gap 74 is provided between the elastic part 72 and the main body part 58 of the robot hand main body 56, and when pressure is applied to the protrusion 75 in the direction of the main body part 58, the elastic part 72 deforms and the protrusion 75 It deforms in the direction of 58.
  • a fitting hole 78 is provided on the outer peripheral surface of the bayonet ring 55.
  • the robot hand body 56 When fastening the robot hand body 56 to the mounting flange 53, the robot hand body 56 is attached to the bayonet ring 55 while being pushed into the protrusion 75 in the direction of the body portion 58.
  • the bayonet ring 55 When the bayonet ring 55 is rotated, the projection 75 is pushed toward the main body portion 58 by the bayonet ring 55, and the bayonet ring 55 rotates while the elastic portion 72 remains in a deformed state.
  • the protrusion 75 elastically enters the fitting hole 78 and is fixed.
  • the portion of the protrusion 75 in the fitting hole 78 that protrudes from the outer peripheral surface of the bayonet ring 55 is moved toward the main body 58 with a finger or the like.
  • the robot hand main body 56 can be removed from the mounting flange 53 by pushing it into the inside of the bayonet ring 55 and rotating the bayonet ring 55 in this state.
  • FIG. 9 shows a diagram illustrating an example of use of the robot hand 1 according to this embodiment.
  • the example of use shown in FIG. 9 is, for example, a serving operation in which cooked foods 81 and 82 are put into a food container 84 flowing on a belt conveyor in a ready-made meal factory.
  • the robot hand 1 is connected to a robot body 85 via a robot arm 86.
  • the robot hand 1 is placed next to the worker 83, and the robot hand 1 and the worker 83 work together to perform the plating work.
  • the robot hand 1 according to this embodiment is entirely made of resin material.
  • a part of the robot hand 1 shown in FIG. 10 surrounded by a broken line is a part made of a resin whose thickness is less than that which will be destroyed if it receives an external force exceeding a predetermined value.
  • the structure is designed to be destroyed preferentially due to overload, such as when workers come into contact with it.
  • the thickness of the resin in the area surrounded by the broken line shown in FIG. 10 is 5 mm or less.
  • the bellows 12 is made of a highly flexible resin material and deforms due to overload. With these configurations, the robot hand 1 according to the present embodiment can provide passive safety functions such as preventing accidents even if the robot hand and a worker come into contact with each other.
  • the claw portion 4 will be explained.
  • Each of the claws 4a and 4b constituting the claw part 4 is connected to each of the finger parts 20a and 20b of the hand body 3, and when the hand body 3 moves, the claw part 4 grips and releases an object. .
  • the hand body 3 can be attached with a claw having a shape suitable for the type, shape, etc. of the cooked food. .
  • FIG. 11 shows a claw 120a according to this embodiment.
  • 11(a), FIG. 11(b), and FIG. 11(c) are a top view, a left side view, and a front view of the claw 120a, respectively, in a state where the claw 120a is not attached to the finger portions 20a, 20b of the hand body 3. It is the nail of.
  • the claw 120a shown in FIG. 12 includes a connecting portion 15a, a supporting portion 16a, and a gripping portion 17a.
  • the connecting portion 15a is a portion for connecting the claw 120a to the finger portions 20a, 20b of the hand body 3.
  • the grip part 17a is a part that grips an article.
  • the support portion 16a supports the connection portion 15a and the grip portion 17a.
  • the grip portion 17a of the claw 120a shown in FIG. 11 is composed of three long claws 123a.
  • the claw shown in FIG. 11 is one of the two claws of the robot hand 1 shown in FIG. 1.
  • Two claws shown in FIG. The claws are attached to each of the two finger parts 20a and 20b of the hand 1 so that the left side of the claw shown in FIG. 11(c) is on the inside.
  • the object is gripped by the grip part 17a.
  • FIG. 12 shows a cross-sectional view of the connecting portion 15a of the robot hand 1 shown in FIG. 1, when viewed from the horizontal direction of the page.
  • the support portion 16 of the claw 4 is fixed to the finger portion 20a of the hand body 3 by a protrusion 90 of the claw 4a.
  • the hand main body 3 is provided with main support columns 91, 92, 93, and 94, and a gap is provided between the main support support 91 and the main support support 93 in which the support support 95 is fitted without any gap.
  • a gap is provided through which the protrusion 90 can pass, the protrusion 90 is exposed to the outside of the hand main body 3, the protrusion 90 is caught, and the elastic A fitting hole 96 is provided in which the protrusion 90 is fixed and does not come off.
  • the claw 4a When attaching the claw 4a to the finger 20a, insert the support 95 and protrusion 90 of the claw 4a between the main support 91 and the main support 93 of the hand main body 3 from below in the paper of FIG. and between the main body support 93 and the main body support 94.
  • the claw 4a is attached to the finger 20a by the protrusion 90 being caught in the receiving hole 96.
  • the protrusion 90 When removing the claw 4a from the finger portion 20a, the protrusion 90 is pushed into the fitting hole 96 using a finger or the like to deform the support 97 and the protrusion 90, and the claw 4a is pulled out downward in the plane of FIG. 12.
  • the robot hand 1 shown in FIG. 1 has a gap 79 between the two finger parts 20a and 20b. This gap 79 can prevent an article from being caught between the two fingers 20a, 20b.
  • FIG. 13 shows a claw 140a according to this embodiment.
  • 13(a), 13(b), and 13(c) show a top view, a left side view, and a front view of the claw 140a.
  • the gripping portion 17a of the claw 140a is composed of five long claws 141a.
  • FIG. 14 shows the state of the claw portion 4 when the claw 140a is attached to the finger portion 20 of the hand body 3 and the two finger portions 20a and 20b are in a closed state as shown in FIG.
  • FIG. 14(a) is a front view
  • FIG. 14(b) is a front perspective view.
  • the article is gripped by pinching the article between the five long claws 141a.
  • FIG. 15 shows a claw 160a according to this embodiment.
  • 15(a), 15(b), and 15(c) show a top view, a left side view, and a front view of the claw 160a.
  • the claws 4a and 4b shown in FIGS. 1 and 2 are the same as the claw 160a shown in FIG. 15.
  • FIG. 16 shows the state of the claw 160a when the claw 160a is attached to each of the two finger parts 20a and 20b of the hand body 3 and the space between the two finger parts 20a and 20b is in a closed state as shown in FIG. shows.
  • FIG. 16 is a bottom perspective view.
  • the gripping portion 17a has a cup shape, and grips the article by sandwiching the article between two cups.
  • FIG. 17 shows a claw 180a according to this embodiment.
  • 17(a), 17(b), and 17(c) show a bottom view, a left side view, and a front view of the claw 180a.
  • FIG. 18 shows the claw 180a when the claw 180a is attached to each of the two finger parts 20a, 20b of the hand main body 3, and the space between the two finger parts 20a, 20b is in a closed state as shown in FIG. The situation is shown below.
  • FIG. 18 is a bottom perspective view.
  • the width of the cup shape of the grip portion 17a of the claw 160a shown in FIG. 15(b) is different from the width of the cup shape of the grip portion 17a of the claw 180a shown in FIG. 17(b).
  • the amount and size of objects that can be gripped can be adjusted.
  • FIG. 19 shows a claw 200a according to this embodiment.
  • FIGS. 19(a), 19(b), and 19(c) show a bottom view, a left side view, and a front view of the claw 200a.
  • the grip portion 17a of the claw 200a shown in FIG. 19 is composed of three long claws 201a.
  • the long claw 201a has a wider shape than the long claw 121a shown in FIG. 11, and is made of a highly flexible resin material.
  • FIG. 20 shows a diagram illustrating how an article is actually gripped when a claw 200a is attached to each of the two finger parts 20a and 20b.
  • 20(a) shows a state in which the fingers 20a and 20b are closed without gripping an article
  • FIG. 20(b) shows a state before gripping the article 110 with the fingers 20a and 20b open.
  • (c) shows a state in which the finger portions 20a and 20b are closed and the article 110 is being gripped.
  • the article 110 shown in FIG. 20 is, for example, a chopped green onion. Chopped green onions are soft and can be easily damaged if pinched with too much force, such as deforming the shape. Since the claw 200a shown in FIG. 20 is made of a highly flexible resin material, as shown in FIG. It can be pinched with force. In conventional robot hands that include metal parts, gripping force control requires a complicated control system, making high-speed operation difficult. According to the claw 200a according to this embodiment, the claw 200a is made of a highly flexible resin material, so that it is possible to grip an article that is easily damaged. Further, by adjusting the degree of flexibility, length, and shape of the claw 200a, it is possible to adapt to the softness, shape, weight, etc. of the article.
  • FIG. 21 shows a claw 220a according to this embodiment.
  • 21(a), 21(b), and 21(c) show a bottom view, a left side view, and a front view of the claw 220a.
  • the gripping portion 17a of the claw 220a shown in FIG. 21 has a pressing plate 111. As shown in FIG.
  • FIG. 22 shows a diagram illustrating how an article is actually gripped when a claw 220a is attached to each of the two finger parts 20a and 20b.
  • the articles shown in FIGS. 22(a) and 22(b) are, for example, chopped green onions. Chopped green onions are soft, and when a large amount of chopped green onions are piled up, it is thought that the green onions located at the top of the piled green onions retain their shape when chopped and have a lower density. It is thought that the green onions located at the bottom of the pile of green onions are compressed by the weight of the piled green onions and become denser. It is thought that the green onions located at the middle depth of the piled green onions have a density between that of the green onions located at the top and the green onions located at the bottom. Therefore, the amount of green onions that can be harvested varies depending on the timing of picking up the piled green onions.
  • the pressing plate 111 of the claw 220a does not touch the green onion, so the density of the green onion is low at the top of the stack of green onions.
  • the density of the green onion located at the top becomes comparable to the density of the green onion located at the middle depth. .
  • the claws shown in FIGS. 11 to 22 are examples of claws that can be used in the robot hand according to this embodiment, but the claws are not limited to these, and may vary depending on the shape, size, hardness, etc. of the article. Nails of various shapes can be used. Furthermore, although there are two finger sections 20a and 20b in the robot hand 1 shown in FIG. 1, there may be three or more finger sections, and the shape of the claws can change depending on the number of finger sections 20a and 20b. Furthermore, all of the claws shown in FIGS. 11 to 22 are used by attaching two claws of the same shape to each of the two finger parts 20a and 20b, but multiple claws of one robot hand are used.
  • the plurality of claws attached to each of the fingers of one robot hand do not have to be the same, and depending on the shape, size, hardness, etc. of the object, the plurality of claws attached to each of the plurality of fingers of one robot hand may be different. , the nails may have different shapes, etc.
  • the robot hand according to the present embodiment is highly safe, capable of high-speed gripping and releasing operations, and can provide a robot hand with a low workload during cleaning.
  • the article gripped by the robot hand according to this embodiment is a cooked food, but the present invention is not limited to this, and it is also possible to handle articles other than food.
  • Robot hand 2 Tool changer 3 Hand body 4 Claws 4a, 4b Claws 10 Internal piping 12a, 12b Bellows 13a, 13b Inner connection portion 14 Links 16a, 16b Support portions 17a, 17b Gripping portions 18a, 18b Outer connection portion 19 Shaft portion 20a, 20b Finger section 22a Space 23a, 24a Groove 25a, 25b Upper finger section 52 Air joint 53 Mounting flange 55 Bayonet ring 56 Robot hand body 57 Packing 58 Main body section 71 External claw 72 Elastic section 74 Gap 75 Projection 78 Fitting hole 79 Fitting Grooves 81, 82 Food 83 Worker 84 Food container 85 Robot body 86 Robot arm 90 Projections 91, 92, 93, 94 Main body support 95 Support 96 Fitting hole 100 Claw 110 Article 111 Pressing plate 120a, 140a, 160a, 180a, 200a, 220a Claw 121 Claw recess 122 Fitting groove convex portion 123 Claw tip 123a, 141

Abstract

Provided is a robot hand that is highly safe and capable of performing high-speed grip and release operations, and is configured so that the cleaning workload is low. This robot hand comprises: two or more claws for gripping an article; finger parts to which the claws are connected, the number of finger parts being equal to the number of the claws and the finger parts being rotatably connected to each other at a link; and bellows to which the finger parts are connected, the number of the bellows being equal to the number of the finger parts. The bellows are connected to a pneumatic control system, and the length of the bellows is controlled by controlling the air pressure inside the bellows with the pneumatic control system, thereby controlling the distance between the finger parts to allow the claws to grip an article.

Description

ロボットハンドrobot hand
 本発明は、ロボットハンドに関し、特に、物品把持のためのロボットハンドに関する。 The present invention relates to a robot hand, and particularly to a robot hand for grasping an object.
 弁当・調理済み食品・総菜等を示す中食を製造する中食工場における調理済みの食品を食品容器に入れる盛り付け作業は、かつては全て作業員による手作業によって行われていたが、近年の人手不足、人件費高騰等の理由により、作業員による手作業に代わって、食品盛り付けに特化したロボットが開発されている。 At ready-made meal factories that manufacture ready-made meals such as boxed lunches, prepared foods, and side dishes, the work of putting cooked foods into food containers used to be done entirely by hand by workers, but in recent years it has become more manual. Due to shortages, rising labor costs, and other reasons, robots specialized in food plating have been developed to replace manual work by workers.
特開2022-15985号公報JP2022-15985A
 従来の食品把持のためのロボットハンドは、金属部品を含むため重く、ハンドの変形、及び制御に時間がかかるため、食品の高速把持、解放動作が困難であった(例えば、特許文献1参照)。また、金属部品には錆止めオイル、潤滑オイル等が塗布され、洗浄時にはオイルに合わせた洗剤を使用し、洗浄後に再度オイルを塗布する必要があった。さらに、金属部品が錆びた場合は、錆落とし、部品交換等を行う必要があり、作業負荷が高かった。 Conventional robot hands for grasping food are heavy because they include metal parts, and it takes time to deform and control the hand, making it difficult to grasp and release food at high speed (for example, see Patent Document 1). . In addition, metal parts are coated with anti-rust oil, lubricating oil, etc. When cleaning, it is necessary to use a detergent suitable for the oil and reapply the oil after cleaning. Furthermore, when metal parts become rusty, it is necessary to remove the rust and replace the parts, resulting in a high workload.
 また、従来の金属部品を含むロボットハンドは硬くて重いため、例えばロボットハンドと作業員が接触したとき、事故が起こりかねない等、受動的安全機能の提供が困難であった。 Furthermore, because conventional robot hands that include metal parts are hard and heavy, it is difficult to provide passive safety functions, such as when an accident occurs when the robot hand comes into contact with a worker.
 上記問題点を鑑み、本発明は、安全性が高く、高速把持、解放動作が可能であり、洗浄時の作業負荷が低いロボットハンドを提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a robot hand that is highly safe, capable of high-speed gripping and releasing operations, and has a low workload during cleaning.
 本発明の第1の態様は、ロボットハンドであって、物品を把持するための2つ以上の爪と、2つ以上の爪のそれぞれが接続された爪と同数の指部であって、指部はリンクにおいて互いに回転可能に接続されている、指部と、指部が接続された指部と同数のベローズとを備え、ベローズは空圧制御システムに接続され、空圧制御システムによってベローズの内部の空圧が制御されてベローズの長さが制御されることによって、指部の間の距離が制御されて爪によって物品が把持されることを要旨とする。 A first aspect of the present invention is a robot hand, the robot hand having two or more claws for grasping an article, and the same number of finger parts as the claws to which each of the two or more claws is connected, The parts include fingers and as many bellows as the fingers to which the fingers are connected, the bellows being connected to a pneumatic control system, the bellows being connected to a pneumatic control system, the bellows being rotatably connected to each other at a link. The gist is that by controlling the internal air pressure and controlling the length of the bellows, the distance between the fingers is controlled and the object is gripped by the claws.
 本発明の第1の態様において、爪は、指部に接続される位置に2つの突起部を有し、2つの突起部のそれぞれは、指部に設けられた2つの迎合孔に固定されることによって、爪は、指部に接続されてもよい。 In the first aspect of the invention, the claw has two protrusions at a position connected to the finger, and each of the two protrusions is fixed to two fitting holes provided in the finger. Alternatively, the claw may be connected to the finger.
 本発明の第1の態様において、指部の間の距離が最も小さいときの距離が、物品の大きさより大きくてもよい。 In the first aspect of the present invention, the smallest distance between the fingers may be larger than the size of the article.
 本発明の第1の態様において、ロボットハンドを構成する部品の少なくとも一部に、所定の値を超える外力によって破壊される樹脂が用いられ、ロボットハンドに対する過負荷により、優先的に部品が破壊されてもよい。 In the first aspect of the present invention, resin that is destroyed by an external force exceeding a predetermined value is used for at least some of the parts constituting the robot hand, and the parts are preferentially destroyed by overload on the robot hand. It's okay.
 本発明の第1の態様において、ベローズは、両端に連結部を備え、指部はローズに接続される位置に連結部を挟む溝を有し、空圧制御システムは、ベローズに接続される位置に連結部を挟む第2の溝を有し、空圧制御システムとベローズの間にパッキンを備えてもよい。 In a first aspect of the invention, the bellows has a connecting portion at both ends, the finger has a groove sandwiching the connecting portion at a position where it is connected to the bellows, and the pneumatic control system has a groove at a position where it is connected to the bellows. The bellows may have a second groove sandwiching the connecting portion therebetween, and a packing may be provided between the pneumatic control system and the bellows.
 本発明の第1の態様において、バヨネットリングと、空圧制御システムに接続された取付フランジとをさらに備え、取付フランジとロボットハンドとを接触させ、バヨネットリングを回転させることによって取付フランジとロボットハンドとを固定してもよい。 In the first aspect of the present invention, the invention further includes a bayonet ring and a mounting flange connected to a pneumatic control system, and the mounting flange and the robot hand are brought into contact with each other, and the mounting flange and the robot hand are brought into contact with each other by rotating the bayonet ring. may be fixed.
 本発明の第1の態様において、バヨネットリングは、勘合溝凸部を有する勘合溝を備え、ロボットハンドは、爪凹部を有する外爪を備え、バヨネットリングを回転させると、勘合溝は外爪対してスライドし、勘合溝凸部と爪凹部とが勘合することによって取付フランジとロボットハンドとが固定されてよい。 In a first aspect of the present invention, the bayonet ring is provided with a fitting groove having a fitting groove convex portion, and the robot hand is provided with an outer claw having a claw recess, and when the bayonet ring is rotated, the fitting groove is aligned with the outer claw. The mounting flange and the robot hand may be fixed by sliding the fitting groove projection and the claw recess into engagement.
 本発明の第1の態様において、ロボットハンドは、弾性部と、弾性部の先端に突起を備え、バヨネットリングは、迎合孔を備え、バヨネットリングを回転させると、突起が迎合孔に入り、取付フランジとロボットハンドとが固定されてよい。 In a first aspect of the present invention, the robot hand includes an elastic portion and a protrusion at the tip of the elastic portion, and the bayonet ring includes a mating hole, and when the bayonet ring is rotated, the protrusion enters the mating hole and is attached. The flange and the robot hand may be fixed.
 本発明の第1の態様において、第2のパッキンをさらに備え、第2のパッキンは取付フランジとロボットハンドとの間に配置され、ロボットハンドの空圧制御システムのエア接手と、取付フランジの空圧制御システムのエア接手、及び、ロボットハンドの電気接点と、取付フランジの電気接点とは、取付フランジとロボットハンドとが接触する位置において接続されてもよい。 The first aspect of the present invention further includes a second packing, the second packing is arranged between the mounting flange and the robot hand, and connects the air joint of the pneumatic control system of the robot hand and the air pressure control system of the mounting flange. The air joint of the pressure control system, the electrical contact of the robot hand, and the electrical contact of the mounting flange may be connected at a position where the mounting flange and the robot hand are in contact.
 本発明の第1の態様において、爪は把持部を有し、前記把持部は複数の長爪から成ってよい。 In the first aspect of the present invention, the claw may have a gripping portion, and the gripping portion may be composed of a plurality of long nails.
 本発明の第1の態様において、爪は把持部を有し、前記把持部はカップ形状をなしてよい。 In the first aspect of the present invention, the claw may have a gripping portion, and the gripping portion may be cup-shaped.
 本発明の第1の態様において、爪は把持部を有し、前記把持部は押し当てプレートを有してよい。 In the first aspect of the present invention, the claw may have a gripping portion, and the gripping portion may have a pressing plate.
 本発明によれば、安全性が高く、高速把持、解放動作が可能であり、洗浄時の作業負荷が低いロボットハンドを提供できる。 According to the present invention, it is possible to provide a robot hand that is highly safe, capable of high-speed gripping and releasing operations, and has a low workload during cleaning.
本発明の実施形態に係るロボットハンドの正面図である。FIG. 1 is a front view of a robot hand according to an embodiment of the present invention. 本実施形態に係るロボットハンドの正面断面図である。FIG. 2 is a front sectional view of the robot hand according to the present embodiment. 本実施形態に係るロボットハンドのベローズ部の断面図である。FIG. 3 is a sectional view of the bellows portion of the robot hand according to the present embodiment. 本実施形態に係るロボットハンドのツールチェンジャの断面図である。It is a sectional view of the tool changer of the robot hand concerning this embodiment. 本実施形態に係るロボットハンドのツールチェンジャの上面図である。FIG. 3 is a top view of the tool changer of the robot hand according to the present embodiment. 図4、及び図5に示すツールチェンジャの断面A―A’における断面図である。FIG. 6 is a cross-sectional view of the tool changer shown in FIGS. 4 and 5 taken along the line A-A'. 本実施形態に係るロボットハンドのツールチェンジャの上面図である。FIG. 3 is a top view of the tool changer of the robot hand according to the present embodiment. 本実施形態に係るロボットハンドのツールチェンジャの下面図である。FIG. 3 is a bottom view of the tool changer of the robot hand according to the present embodiment. 本実施形態に係るロボットハンドの使用例を説明する図である。It is a figure explaining the example of use of the robot hand concerning this embodiment. 本実施形態に係るロボットハンドの安全性について説明する図である。It is a figure explaining the safety of the robot hand concerning this embodiment. 本実施形態に係るロボットハンドの爪の一例を示す図であり、(a)上面図、(b)左側面図、及び(c)正面図である。It is a figure showing an example of the claw of the robot hand concerning this embodiment, and is (a) a top view, (b) a left side view, and (c) a front view. 本実施形態に係るロボットハンドの接続部の断面図である。FIG. 3 is a sectional view of a connecting portion of the robot hand according to the present embodiment. 本実施形態に係るロボットハンドの爪の一例を示す図であり、(a)上面図、(b)左側面図、及び(c)正面図である。It is a figure showing an example of the claw of the robot hand concerning this embodiment, and is (a) a top view, (b) a left side view, and (c) a front view. 図13の爪を指部に取り付けたときの爪を示す図であり、(a)正面図、(b)正面側斜視図である。It is a figure which shows the nail|claw when the nail|claw of FIG. 13 is attached to a finger part, (a) is a front view, (b) is a front side perspective view. 本実施形態に係るロボットハンドの爪の一例を示す図であり、(a)上面図、(b)左側面図、及び(c)正面図である。It is a figure showing an example of the claw of the robot hand concerning this embodiment, and is (a) a top view, (b) a left side view, and (c) a front view. 図15の爪を指部に取り付けたときの爪を示す下面側斜視図である。FIG. 16 is a bottom perspective view showing the nail of FIG. 15 when it is attached to a finger portion. 本実施形態に係るロボットハンドの爪の一例を示す図であり、(a)上面図、(b)左側面図、及び(c)正面図である。It is a figure showing an example of the claw of the robot hand concerning this embodiment, and is (a) a top view, (b) a left side view, and (c) a front view. 図17の爪を指部に取り付けたときの爪を示す下面側斜視図である。FIG. 18 is a bottom perspective view of the claw shown in FIG. 17 when it is attached to a finger. 本実施形態に係るロボットハンドの爪の一例を示す図であり、(a)上面図、(b)左側面図、及び(c)正面図である。It is a figure showing an example of the claw of the robot hand concerning this embodiment, and is (a) a top view, (b) a left side view, and (c) a front view. 図19の爪を指部に取り付けたときの爪を示す図であり、(a)は指部を閉じた状態の爪、(b)は物品を把持する前段階の爪、(c)は物品を把持している状態の爪である。It is a figure which shows the nail when the nail of FIG. 19 is attached to a finger part, (a) is a nail in a state where the finger part is closed, (b) is a nail in a stage before gripping an article, and (c) is an article. The claws are in a state of gripping. 本実施形態に係るロボットハンドの爪の一例を示す図であり、(a)上面図、(b)左側面図、及び(c)正面図である。It is a figure showing an example of the claw of the robot hand concerning this embodiment, and is (a) a top view, (b) a left side view, and (c) a front view. 図21の爪を指部に取り付けたときの爪を示す図であり、(a)は葱に触れる前の爪、(b)は葱に押し当てられる爪である。It is a figure which shows the nail when the nail of FIG. 21 is attached to a finger part, (a) is a nail before touching a green onion, (b) is a nail pressed against a green onion.
 次に、図面を参照して、本発明の実施形態を説明する。実施形態に係る図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものである。 Next, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings related to the embodiments, the same or similar parts are denoted by the same or similar symbols. However, the drawings are schematic.
 又、実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、各構成要素の構成や配置、レイアウト等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 In addition, the embodiments exemplify devices and methods for embodying the technical idea of the present invention. It is not something specific. The technical idea of the present invention can be modified in various ways within the technical scope defined by the claims.
(実施形態)
 本発明の実施形態に係るロボットハンドを以下に説明する。図1に、本実施形態に係るロボットハンド1の正面図を示す。図1に示すロボットハンド1は、ツールチェンジャ2、ハンド本体3、及び爪部4から構成される。
(Embodiment)
A robot hand according to an embodiment of the present invention will be described below. FIG. 1 shows a front view of a robot hand 1 according to this embodiment. The robot hand 1 shown in FIG. 1 includes a tool changer 2, a hand body 3, and a claw part 4.
 ツールチェンジャ2は、ハンド本体3と、図示しない空圧制御システムとを接続する。後述するように、ツールチェンジャ2によって、ハンド本体3を空圧制御システムから容易に取り外し、また、取り付けることができる。これにより、ロボットハンドの交換、洗浄等のメンテナンスが容易になる。 The tool changer 2 connects the hand body 3 and a pneumatic control system (not shown). As will be described later, the tool changer 2 allows the hand body 3 to be easily removed from and attached to the pneumatic control system. This facilitates maintenance such as replacing and cleaning the robot hand.
 ハンド本体3は、先端に爪部4が接続され、ツールチェンジャ2によって図示しない空圧制御システムに接続される。 The hand main body 3 has a claw portion 4 connected to its tip, and is connected to a pneumatic control system (not shown) via a tool changer 2.
 爪部4は、ハンド本体3の指部20a、20bに接続され、ハンド本体3が動作することによって爪部4によって物品の把持、及び開放がなされる。爪部4は、本実施形態において、爪4a、及び爪4bによって構成され、爪4aと爪4bとは、互いに鏡映対称な形状をなす。爪4a、及び爪4bの把持部17a、17bは、後述するように、物品を把持、解放が確実に、かつ容易になされるのに適した形状をなしている。爪4a、4bは取り外しが可能であり、物品の種類、形状に応じた形状の把持部17a、17bを有する爪を爪4a、4bとしてハンド本体3に取り付けることができる。図1及び図2に示す爪4a、4bは、本実施形態に係る爪の一例である。 The claw portion 4 is connected to the finger portions 20a and 20b of the hand body 3, and the claw portion 4 grips and releases an article by operating the hand body 3. In this embodiment, the claw portion 4 includes a claw 4a and a claw 4b, and the claw 4a and the claw 4b have shapes that are mirror-symmetrical to each other. The gripping portions 17a and 17b of the claws 4a and 4b have shapes suitable for gripping and releasing articles reliably and easily, as will be described later. The claws 4a, 4b are removable, and can be attached to the hand main body 3 as the claws 4a, 4b, which have gripping portions 17a, 17b shaped according to the type and shape of the article. The claws 4a and 4b shown in FIGS. 1 and 2 are examples of the claws according to this embodiment.
 図1に示すロボットハンド1は、全ての部品が樹脂材料によって構成されている。従来のロボットハンドは、金属部品を含み、金属部品には、錆止めオイル、及び潤滑オイルが塗布されている。こういったロボットハンドの洗浄時には、オイルに合わせた洗剤を用いて洗浄し、洗浄後にはオイルを再度塗布する必要がある。又、金属部品が錆びた場合には、錆落とし、部品交換等の対応が必要となるなど、メンテナンス作業の負荷が高い。本実施形態に係るロボットハンド1は、全ての部品が樹脂材料によって構成されており、錆止めオイル、潤滑オイルを必要とせず、金属部品を含むロボットハンドと比較すると、洗浄が容易で作業負荷が低い。本実施形態に係るロボットハンド1に使用される樹脂材料としては、例えば、ポリエチレン、ポリプロピレン等の熱可塑性樹脂、PTFE等のフッ素樹脂等が挙げられる。 All parts of the robot hand 1 shown in FIG. 1 are made of resin material. A conventional robot hand includes metal parts, and the metal parts are coated with anti-rust oil and lubricating oil. When cleaning these robot hands, it is necessary to use a detergent that matches the oil and reapply the oil after cleaning. Furthermore, when metal parts become rusted, it is necessary to remove the rust, replace parts, etc., resulting in a high maintenance work load. The robot hand 1 according to the present embodiment has all parts made of resin materials, does not require anti-rust oil or lubricating oil, and is easier to clean and has a lower workload than robot hands that include metal parts. . Examples of the resin material used in the robot hand 1 according to this embodiment include thermoplastic resins such as polyethylene and polypropylene, and fluororesins such as PTFE.
(ハンド本体)
 ハンド本体3について説明する。ハンド本体3は、ベローズ12a、12bと、リンク14と、内側連結部13a、13bと、外側連結部18a、18bと、指部20a、20bと、上側指部25a、25bと、軸部19とから構成される。
(hand body)
The hand body 3 will be explained. The hand body 3 includes bellows 12a, 12b, a link 14, inner connecting portions 13a, 13b, outer connecting portions 18a, 18b, finger portions 20a, 20b, upper finger portions 25a, 25b, and a shaft portion 19. It consists of
 図2に、本実施形態に係るロボットハンド1の正面断面図を示す。図1に示すロボットハンド1は爪4aと爪4bとが互いに接触し、指部20aと指部20bとが互いに最も近づいた状態である。この状態を、以下では指部20aと指部20bとが閉じた状態と表現する。図2に示すロボットハンド1は、爪4aと爪4bとが互いに離れ、指部20aと指部20bの間が離れた状態である。この状態を、以下では指部20aと指部20bとが開いた状態と表現する。 FIG. 2 shows a front sectional view of the robot hand 1 according to this embodiment. The robot hand 1 shown in FIG. 1 is in a state where the claws 4a and 4b are in contact with each other, and the finger portions 20a and 20b are closest to each other. This state will be hereinafter referred to as a state in which the finger portions 20a and 20b are closed. In the robot hand 1 shown in FIG. 2, the claws 4a and 4b are separated from each other, and the finger portions 20a and 20b are separated from each other. This state will be hereinafter referred to as a state in which the finger portions 20a and 20b are open.
 図1、及び図2に示すロボットハンド1は、リンク14の部分を除き、紙面内において鏡映対称の構造をなしており、ハンド本体3のベローズ12a、内側連結部13a、外側連結部18a、指部20a、上側指部25aと、ベローズ12b、内側連結部13b、外側連結部18b、指部20b、上側指部25bとは、互いの位置関係が鏡映対称となっている。ベローズ12aは、内側連結部13aを介して軸部19に接続されており、外側連結部18aを介して上側指部25aと接続されている。指部20aの上端から上側指部25aが連続している。軸部19の下端にリンク14が配置されている。指部20aと指部20bとは、リンク14において互いに接続されており、リンク14を中心として、指部20aと指部20bとは互いに回転可能となっている。軸部19の内部には内部配管10が配置されており、ベローズ12a、12bのそれぞれと内部配管10とは内側連結部13a、13bのそれぞれの位置において接続されている。 The robot hand 1 shown in FIGS. 1 and 2 has a mirror-symmetrical structure in the plane of the drawing except for the link 14, and includes the bellows 12a of the hand body 3, the inner connecting part 13a, the outer connecting part 18a, The finger portion 20a, the upper finger portion 25a, the bellows 12b, the inner connecting portion 13b, the outer connecting portion 18b, the finger portion 20b, and the upper finger portion 25b have a mirror-symmetrical positional relationship with each other. The bellows 12a is connected to the shaft portion 19 via the inner connecting portion 13a, and is connected to the upper finger portion 25a via the outer connecting portion 18a. An upper finger portion 25a is continuous from the upper end of the finger portion 20a. A link 14 is arranged at the lower end of the shaft portion 19. The finger portion 20a and the finger portion 20b are connected to each other at the link 14, and the finger portion 20a and the finger portion 20b are mutually rotatable about the link 14. An internal pipe 10 is disposed inside the shaft portion 19, and each of the bellows 12a, 12b and the internal pipe 10 are connected at respective positions of the inner connecting portions 13a, 13b.
 内部配管10は図示しない空圧制御システムに接続されており、空圧制御システムの電磁弁のオン/オフにより、内部配管10の内部の空圧が、正圧力、又は負圧力負圧力のいずれかとなるように制御される。後述するが、図3に示すように、ベローズ12aは中空構造をなしており、内部配管10の中空部分と、ベローズ12aの中空部分である空間22aは連続している。これにより、内部配管10の内部の空圧が制御されると同時に、ベローズ12aの内部の空圧も制御される。ベローズ12bにおいても、ベローズ12aと同様、内部配管10の内部の空圧が制御されると同時に、内部の空圧も制御される。 The internal piping 10 is connected to a pneumatic control system (not shown), and the pneumatic pressure inside the internal piping 10 is set to either positive pressure or negative pressure by turning on/off a solenoid valve of the pneumatic control system. controlled so that As will be described later, as shown in FIG. 3, the bellows 12a has a hollow structure, and the hollow portion of the internal pipe 10 and the space 22a, which is the hollow portion of the bellows 12a, are continuous. Thereby, the air pressure inside the internal pipe 10 is controlled, and at the same time, the air pressure inside the bellows 12a is also controlled. Similarly to the bellows 12a, in the bellows 12b, the air pressure inside the internal pipe 10 is controlled, and at the same time, the air pressure inside is also controlled.
 ベローズ12a、12bは柔軟性の高い樹脂素材によって構成される。これにより、ベローズ12a、12bの内部の空圧が、正圧力になると、ベローズ12a、12bのそれぞれの長さ、即ち内側連結部13aと外側連結部18aとの間の距離、及び内側連結部13bと外側連結部18bとの間の距離が長くなり、図1に示すように、リンク14を中心として、指部20aと指部20bとが閉じた状態となる。ベローズ12a、12bの内部の空圧が、負圧力になると、ベローズ12a、12bのそれぞれの長さが短くなり、図2に示すように、指部20aと指部20bとが開いた状態となる。指部20a、20bの開閉動作により、爪部4による物品の把持、及び解放がなされる。 The bellows 12a and 12b are made of a highly flexible resin material. As a result, when the air pressure inside the bellows 12a, 12b becomes a positive pressure, the respective lengths of the bellows 12a, 12b, that is, the distance between the inner connecting portion 13a and the outer connecting portion 18a, and the inner connecting portion 13b. and the outer connecting portion 18b becomes longer, and as shown in FIG. 1, the finger portions 20a and 20b are in a closed state with the link 14 as the center. When the air pressure inside the bellows 12a, 12b becomes a negative pressure, the length of each of the bellows 12a, 12b becomes shorter, and the finger portions 20a and 20b become open, as shown in FIG. . The opening and closing operations of the finger sections 20a and 20b cause the claw section 4 to grip and release the article.
 指部20aと指部20bとがリンク14において接続されているため、図2に示す、ベローズ12a、12bの内部の空圧が負圧力になりベローズ12a、12bの長さが短い状態でのベローズ12a、12bと軸部19とのなす角度と、図1に示す、ベローズ12a、12bの内部の空圧が正圧力になりベローズ12a、12bの長さが長い状態でのベローズ12a、12bと軸部19とのなす角度とは、互いに異なる。従来のロボットハンドのように、指部を開閉させる機構が金属部品によって構成される場合、指部の開閉に伴いエアシリンダとレバーチャックの角度が変わるため、摺動部やリンク構造が必要となり、従って指部を開閉させる機構が複雑な構造になる。本実施形態に係るロボットハンド1のベローズ12a、12bは、柔軟性の高い樹脂材料により構成されることにより、ベローズ12a、12bの内部の空圧に応答して、図2に示す形状から図1に示す形状に容易に変形する。これにより、指部を開閉させる機構が簡単な構造となり、製造、メンテナンスが容易となる。 Since the finger portion 20a and the finger portion 20b are connected through the link 14, the bellows 12a, 12b is in a state where the air pressure inside the bellows 12a, 12b becomes negative pressure and the length of the bellows 12a, 12b is short, as shown in FIG. The angle between the bellows 12a, 12b and the shaft portion 19, and the angle between the bellows 12a, 12b and the shaft when the air pressure inside the bellows 12a, 12b becomes positive pressure and the length of the bellows 12a, 12b is long, as shown in FIG. The angles formed with the portion 19 are different from each other. When the mechanism for opening and closing the fingers is made of metal parts, as in conventional robot hands, the angle of the air cylinder and lever chuck changes as the fingers open and close, so sliding parts and link structures are required. Therefore, the mechanism for opening and closing the fingers has a complicated structure. The bellows 12a and 12b of the robot hand 1 according to the present embodiment are made of a highly flexible resin material, so that the bellows 12a and 12b change from the shape shown in FIG. 2 to the shape shown in FIG. Easily deforms into the shape shown. As a result, the mechanism for opening and closing the fingers has a simple structure, making manufacturing and maintenance easier.
 また、従来の金属部品を含むロボットハンドでは、エアシリンダの配管はロボットハンド構造の外側に配置されるため、配管したエアチューブが、ロボットハンドの動作を制限する。本実施形態におけるロボットハンド1によれば、ロボットハンド1の内側に配管を配置するため、配管がロボットハンド1の動作を制限しない。 Furthermore, in a conventional robot hand that includes metal parts, the piping of the air cylinder is placed outside the robot hand structure, so the piping air tube restricts the movement of the robot hand. According to the robot hand 1 in this embodiment, since the piping is arranged inside the robot hand 1, the piping does not restrict the operation of the robot hand 1.
 さらに、ロボットハンド1は、全ての部品が樹脂材料によって構成されており、従来の金属部品を含むロボットハンドと比較すると、非常に軽量である。従来の金属部品を含むロボットハンドにおいて、物品の把持、及び解放に伴う摺動部やリンク構造によるハンドの変形は、機構が複雑なため時間がかかるが、本実施形態に係るロボットハンド1においては、回転部分がリンク14の1箇所のみであり、ベローズ12a、12bによる簡単な構造のため、変形に時間がかからない。従って、従来の金属部品を含むロボットハンドの指の開閉動作と比較すると、指部20a、20bの開閉動作は、空圧制御システムの電磁弁のオン/オフに対して素早く応答する。 Furthermore, all parts of the robot hand 1 are made of resin material, and are extremely lightweight compared to conventional robot hands that include metal parts. In a conventional robot hand that includes metal parts, deformation of the hand due to the sliding part and link structure associated with gripping and releasing an object takes time due to the complicated mechanism, but in the robot hand 1 according to the present embodiment, it takes time. Since there is only one rotating part on the link 14, and the structure is simple with the bellows 12a and 12b, it does not take much time to deform. Therefore, compared to the opening/closing movements of the fingers of a conventional robot hand including metal parts, the opening/closing movements of the fingers 20a, 20b quickly respond to the on/off of the solenoid valve of the pneumatic control system.
 ベローズ12a、内側連結部13a、及び外側連結部18aの締結は、接着剤を使用して行われてもよく、又は、接着剤を使用せず、ベローズ12aを溝23a、及び溝24aに嵌める嵌め込み構造によってなされてもよいが、これらに限定されない。本実施形態においては、ベローズ12a、内側連結部13a、及び外側連結部18aの締結方法の一例として、嵌め込み構造による方法を示している。 The bellows 12a, the inner connecting part 13a, and the outer connecting part 18a may be fastened using an adhesive, or by fitting the bellows 12a into the grooves 23a and 24a without using an adhesive. Although it may be done by a structure, it is not limited to these. In this embodiment, a method using a fitting structure is shown as an example of a method of fastening the bellows 12a, the inner connecting portion 13a, and the outer connecting portion 18a.
 図3は、ベローズ12a、内側連結部13a、及び外側連結部18aの断面図である。内側連結部13a、及び外側連結部18aは、それぞれ、溝23a、溝24aを有する。図3の紙面手前方向からベローズ12aの端部を溝23aに嵌め、ベローズ12aをスライドさせることにより、ベローズ12aと、内側連結部13aとを締結させる。ベローズ12aと、外側連結部18aとを締結させる場合も、ベローズ12aと、内側連結部13aとを締結させる場合と同様、ベローズ12aの端部を溝24aに嵌め、ベローズ12aをスライドさせる。 FIG. 3 is a cross-sectional view of the bellows 12a, the inner connecting portion 13a, and the outer connecting portion 18a. The inner connecting portion 13a and the outer connecting portion 18a have a groove 23a and a groove 24a, respectively. By fitting the end of the bellows 12a into the groove 23a from the front side of the paper in FIG. 3 and sliding the bellows 12a, the bellows 12a and the inner connecting portion 13a are fastened together. When the bellows 12a and the outer connecting portion 18a are fastened together, the end of the bellows 12a is fitted into the groove 24a, and the bellows 12a is slid, as in the case where the bellows 12a and the inner connecting portion 13a are fastened together.
 先に述べたように、内部配管10の中空部分と、ベローズ12aの中空部分である空間22aは連続しており、内部配管10に接続された空圧制御システムの電磁弁のオン/オフ操作によって空間22aの空圧を制御する。空間22aの気密性を高めるため、ベローズ12aと内側連結部13aの間にパッキンを使用してもよい。本実施形態においては、一例として、パッキンを使用した例を示す。ベローズ12aと内側連結部13aの接続部に環状のゴム製、又は樹脂製のパッキン21aを設置し、空間22aからベローズ12aの外部への空気の漏れを防止する。 As mentioned above, the hollow part of the internal pipe 10 and the space 22a, which is the hollow part of the bellows 12a, are continuous, and are controlled by the on/off operation of the solenoid valve of the pneumatic control system connected to the internal pipe 10. The air pressure in the space 22a is controlled. In order to improve the airtightness of the space 22a, a packing may be used between the bellows 12a and the inner connecting portion 13a. In this embodiment, an example using packing is shown as an example. An annular rubber or resin packing 21a is installed at the connection between the bellows 12a and the inner connecting portion 13a to prevent air from leaking from the space 22a to the outside of the bellows 12a.
食品を扱う環境下において使用されるロボットハンドが、樹脂製の部品を含む場合、食品対応の接着剤は種類が少なく、入手が容易でない、高温・多湿の環境下において、接着剤の使用は推奨されない等の製造におけるリスクがある。これらの締結が嵌め込み構造によってなされることは、上述のリスクを低減するというメリットを有する。食品対応で入手が容易なベローズ、パッキンを使用することにより、製造におけるリスクを低減し、多様な環境で使用することが可能となる。 If a robot hand used in a food handling environment contains resin parts, the use of adhesives is recommended in environments with high temperature and humidity, where there are few types of food-compatible adhesives and it is not easy to obtain them. There are risks in manufacturing, such as failure to perform. The fact that these fastenings are made by a fitting structure has the advantage of reducing the above-mentioned risks. By using food-grade and easily available bellows and packing, risks in manufacturing can be reduced and it can be used in a variety of environments.
 なお、ベローズ12b、内側連結部13b、及び外側連結部18bの構成は、図3に示すベローズ12a、内側連結部13a、及び外側連結部18aと、鏡映対称である点を除いて、同様の構成である。 Note that the configurations of the bellows 12b, the inner connecting portion 13b, and the outer connecting portion 18b are similar to those of the bellows 12a, the inner connecting portion 13a, and the outer connecting portion 18a shown in FIG. 3, except that they are mirror symmetrical. It is the composition.
 図1、図2に示すように、本実施形態に係るロボットハンドの指部20a、20bの本数は2本であるが、指部20a、20bの本数は2本に限定されず、3本以上であってもよい。指部の本数が3本以上である場合においても、ロボットハンドは指部の本数と同数の、ベローズ、内側連結部、及び外側連結部を有する。それぞれの指部は、1又は複数のリンクによって軸部に接続され、さらに、外側連結部を介してベローズに接続される。それぞれの指部に接続されたベローズは、内側連結部を介して軸部に接続される。指部の本数が3本以上である場合においても、指部の開閉はベローズ内部の空圧の制御によってなされる。 As shown in FIGS. 1 and 2, the number of finger parts 20a and 20b of the robot hand according to the present embodiment is two, but the number of finger parts 20a and 20b is not limited to two, and can be three or more. It may be. Even when the number of fingers is three or more, the robot hand has the same number of bellows, inner coupling parts, and outer coupling parts as the number of fingers. Each finger is connected to the shaft by one or more links and further connected to the bellows via an outer connection. A bellows connected to each finger is connected to the shaft via an inner connection. Even when the number of fingers is three or more, the fingers are opened and closed by controlling the air pressure inside the bellows.
 従来の、金属部品によって構成されるロボットハンドの場合、指部を開閉させる機構が複雑であり、従って指部が3本以上である場合、ロボットハンドの重量が重くなり、体積が大きくなる等、問題点が多い。本発明に係るロボットハンドによれば、指部を改変させる機構が簡単な構造であるため、3本以上の指部を有するロボットハンドの製造、メンテナンスが、従来のロボットハンドと比較して容易である。 In the case of conventional robot hands made of metal parts, the mechanism for opening and closing the fingers is complicated. Therefore, if there are three or more fingers, the weight of the robot hand becomes heavy and the volume increases, etc. There are many problems. According to the robot hand according to the present invention, since the mechanism for modifying the finger portions has a simple structure, manufacturing and maintenance of the robot hand having three or more fingers is easier compared to conventional robot hands. be.
(ツールチェンジャ)
 ツールチェンジャ2について説明する。図4に、ツールチェンジャ2の断面図を、図5に、図4に示すツールチェンジャ2の上面図を示す。図4及び図5に示すツールチェンジャ2は、ロボットハンド本体56と、バヨネットリング55と、取付フランジ53と、パッキン57とから構成される。
(Tool changer)
The tool changer 2 will be explained. FIG. 4 shows a sectional view of the tool changer 2, and FIG. 5 shows a top view of the tool changer 2 shown in FIG. The tool changer 2 shown in FIGS. 4 and 5 includes a robot hand body 56, a bayonet ring 55, a mounting flange 53, and a packing 57.
 ロボットハンド本体56、及びエア接手52の中心に、内部配管10が配置されている。エア接手52と取付フランジ53とは互いに固定され、取り外されることはない。バヨネットリング55は、取付フランジ53に対して回転可能となっている。ハンド本体3を空圧制御システムから取り外す際は、バヨネットリング55を回転させ、ロボットハンド本体56を、取付フランジ53から取り外す。 An internal pipe 10 is arranged at the center of the robot hand body 56 and the air joint 52. The air joint 52 and the mounting flange 53 are fixed to each other and cannot be removed. The bayonet ring 55 is rotatable relative to the mounting flange 53. When removing the hand body 3 from the pneumatic control system, the bayonet ring 55 is rotated and the robot hand body 56 is removed from the mounting flange 53.
 取付フランジ53は、エア接手52に対して固定されており、バヨネットリング55を回転させても、取付フランジ53がエア接手52に対して回転することはない。又、ロボットハンド本体56を、取付フランジ53に取り付ける、又は、取り外す際、取付フランジ53に対してバヨネットリング55のみを回転させ、ロボットハンド本体56を回転させることはない。 The mounting flange 53 is fixed relative to the air joint 52, and even if the bayonet ring 55 is rotated, the mounting flange 53 will not rotate relative to the air joint 52. Further, when the robot hand body 56 is attached to or removed from the mounting flange 53, only the bayonet ring 55 is rotated with respect to the attachment flange 53, and the robot hand body 56 is not rotated.
 従来のロボットハンドは、フランジにロボットハンドを取り付ける際、フランジとロボットハンドの回転式締結機構が一般的であった。すなわち、フランジ及びロボットハンドの中心部分に締結機構があり、フランジに対して、ロボットハンドを回転させて締結する機構である。この機構によれば、フランジに対するロボットハンドの回転に合わせてロボットハンド側のエア接手、及び電気接点が回転し、フランジとロボットハンドのそれぞれのエア接手、及び電気接点が互いに離れてしまうという問題があった。また、フランジ及びロボットハンドの中心部分に締結機構があるため、フランジとロボットハンドの内部にエア接手、及び電気接点を組み込むための十分なスペースを確保することが困難であった。このため、エア接手、及び電気配線をフランジとロボットハンドの外部に設置する必要が生じ、エア接手、及び電気配線がロボットの動きを制限する恐れがあった。 In conventional robot hands, when attaching the robot hand to the flange, a rotary fastening mechanism between the flange and the robot hand was generally used. That is, there is a fastening mechanism at the center of the flange and the robot hand, and the robot hand is fastened to the flange by rotating it. This mechanism solves the problem that the air joints and electrical contacts on the robot hand rotate as the robot hand rotates with respect to the flange, causing the air joints and electrical contacts on the flange and robot hand to separate from each other. there were. Furthermore, since the fastening mechanism is located at the center of the flange and the robot hand, it is difficult to secure sufficient space inside the flange and the robot hand to incorporate the air joint and the electrical contact. Therefore, it becomes necessary to install the air joint and the electric wiring outside the flange and the robot hand, and there is a possibility that the air joint and the electric wiring may restrict the movement of the robot.
 本実施形態に係るツールチェンジャ2によれば、取付フランジ53とロボットハンド本体56は回転させず、バヨネットリング55のみを回転させて締結するため、取付フランジ53の中央にエア接手、及び電気接点を組み込むための十分なスペースを確保することができる。また、締結時に取付フランジ53とロボットハンド本体56は回転させないため、エア配管接点は擦れることがなく、電気接点は離れることがない。これにより、エア接手、及び電気接点を取付フランジ53とロボットハンド本体56の内部に組み込むことができ、これらによってロボットの動きが制限されることがない。 According to the tool changer 2 according to the present embodiment, the mounting flange 53 and the robot hand body 56 are not rotated, and only the bayonet ring 55 is rotated for fastening. Enough space can be secured for installation. Further, since the mounting flange 53 and the robot hand main body 56 are not rotated when they are fastened together, the air piping contacts do not rub and the electrical contacts do not separate. Thereby, the air joint and the electric contact can be incorporated into the mounting flange 53 and the robot hand body 56, and the movement of the robot is not restricted by these.
 従来の金属部品を含むロボットハンドをフランジに取り付ける際、エアロック、電磁石、又はネジ構造等によって強固に締結するため、従来のロボットハンドは締結機構に高強度の金属部材を使用する必要があった。こういった強固な金属部材を使用するため、従来のロボットハンドの締結機構は大型で重いものであった。これに対して、本実施形態に係るツールチェンジャ2は、全て樹脂材料によって構成される。これにより、従来のロボットハンドと比較して、本実施形態に係るロボットハンドは軽量とすることができる。また、バヨネットリング55のみを回転させて締結する機構であるため、小型化が可能である。 When attaching a conventional robot hand that includes metal parts to a flange, it is firmly fastened using an airlock, electromagnet, or screw structure, so conventional robot hands had to use high-strength metal members for the fastening mechanism. . Due to the use of such strong metal members, conventional robot hand fastening mechanisms were large and heavy. In contrast, the tool changer 2 according to this embodiment is entirely made of resin material. As a result, the robot hand according to this embodiment can be made lighter than a conventional robot hand. Furthermore, since the mechanism is such that only the bayonet ring 55 is rotated and fastened, it is possible to reduce the size.
 本実施形態に係るツールチェンジャ2は、取付フランジ53にロボットハンド本体56を締結する。エア接手52の中空部分と、取付フランジ53の中空部分と、ロボットハンド本体56の中空部分とは、連続しており、図1に示す内部配管10の中空部分を形成している。このため、取付フランジ53とロボットハンド本体56の接続部に環状のゴム製、又は樹脂製のパッキン57を設置し、内部配管10の中空部分からエア接手52の外部への空気の漏れを防止する。 The tool changer 2 according to this embodiment fastens the robot hand main body 56 to the mounting flange 53. The hollow portion of the air joint 52, the hollow portion of the mounting flange 53, and the hollow portion of the robot hand body 56 are continuous and form the hollow portion of the internal piping 10 shown in FIG. For this reason, an annular rubber or resin packing 57 is installed at the connection between the mounting flange 53 and the robot hand body 56 to prevent air from leaking from the hollow part of the internal pipe 10 to the outside of the air fitting 52. .
(凹凸勘合によるロック機構)
 本実施形態に係るツールチェンジャ2は、バヨネットリング55を回転させてロボットハンド本体56を取付フランジ53に締結する際、ロックされ、ロック時にスイッチを押したようなクリック音や手ごたえ(以下、クリック感と呼ぶ)を体感し、確認することができるロック機構を有する。本実施形態にかかるロック機構として、凹凸勘合によるロック機構について以下に説明する。
(Lock mechanism using uneven fitting)
The tool changer 2 according to the present embodiment is locked when the bayonet ring 55 is rotated to fasten the robot hand body 56 to the mounting flange 53, and when the tool changer 2 is locked, a click sound or a tactile response (hereinafter referred to as a click feeling) similar to pressing a switch is generated. It has a locking mechanism that allows you to experience and confirm the As a locking mechanism according to this embodiment, a locking mechanism based on a concave-convex fit will be described below.
 図6に、図4、及び図5に示す断面A―A’における断面図を示す。また、図7に、図4に示すロボットハンド本体56の上面図を示す。図6、及び図7は、本実施形態に係るツールチェンジャ2が凹凸勘合によるロック機能を有する場合の図である。図7に示すロボットハンド本体56の上面図は、図4に示すロボットハンド本体56から、取付フランジ53、及び、バヨネットリング55を取り除いた状態のものである。 FIG. 6 shows a sectional view taken along the section A-A' shown in FIGS. 4 and 5. Further, FIG. 7 shows a top view of the robot hand main body 56 shown in FIG. 4. FIG. 6 and FIG. 7 are diagrams in the case where the tool changer 2 according to the present embodiment has a locking function by concave-convex fitting. The top view of the robot hand main body 56 shown in FIG. 7 shows the robot hand main body 56 shown in FIG. 4 with the mounting flange 53 and bayonet ring 55 removed.
 図6に示すように、バヨネットリング55は勘合溝79を有し、図7に示すロボットハンド本体56は、外爪71を有する。ロボットハンド本体56と取付フランジ53の締結時、バヨネットリング55の回転とともに、外爪71は勘合溝79の中をスライドする。バヨネットリング55は、勘合溝79内部に、凸形状となっている勘合溝凸部122を有する。また、ロボット本体の外爪71は、凹形状となっている爪凹部121と、外爪71の先端から滑らかに傾斜する爪先端部123を有する。 As shown in FIG. 6, the bayonet ring 55 has a fitting groove 79, and the robot hand body 56 shown in FIG. 7 has an external claw 71. When the robot hand body 56 and the mounting flange 53 are fastened together, the outer claw 71 slides in the fitting groove 79 as the bayonet ring 55 rotates. The bayonet ring 55 has a fitting groove convex portion 122 having a convex shape inside the fitting groove 79 . Further, the outer claw 71 of the robot main body has a claw recess 121 having a concave shape and a claw tip end portion 123 that slopes smoothly from the tip of the outer claw 71.
 ロボットハンド本体56と取付フランジ53の締結時、図5に示すように、バヨネットリング55を締め付け方向である矢印Bの方向へ回転させると、図6に示すように、勘合溝79は外爪71に対して矢印B方向へスライドする。勘合溝79の矢印B方向へのスライドとともに、爪先端部123は、先端が傾斜する形状であるから、勘合溝凸部122を乗り越え、勘合溝凸部122と爪凹部121とが勘合する。その際、クリック感が生じるとともに、ロボットハンド本体56と取付フランジ53とがロックされる。 When the robot hand main body 56 and the mounting flange 53 are fastened together, as shown in FIG. 5, when the bayonet ring 55 is rotated in the direction of arrow B, which is the tightening direction, the fitting groove 79 aligns with the outer claw 71 as shown in FIG. Slide in the direction of arrow B. As the fitting groove 79 slides in the direction of arrow B, the claw tip end portion 123, which has an inclined tip, climbs over the fitting groove protrusion 122, and the fitting groove protrusion 122 and the claw recess 121 fit together. At this time, a click feeling is generated and the robot hand main body 56 and the mounting flange 53 are locked.
 従来の、ロボットハンドをロボットハンド制御システムから取り外し、また、取り付ける機構は、ネジ形状の、らせん構造の固定部品を強く締め付けることによって固定するものであった(例えば、再表2019/142709号参照)。こういった機構においては、締結時にクリック感がないため、ロック確認ができず、未締結で使用する、固定部品が締結位置で止まらないため、過度の締め付けにより破損する、等の恐れがある。 The conventional mechanism for removing and attaching the robot hand from the robot hand control system was to fix it by strongly tightening a screw-shaped, helical structure fixing part (for example, see Re-Table No. 2019/142709). . In such a mechanism, there is no click feeling when tightening, so it is impossible to confirm the lock, and there is a risk that it will be used without being tightened, or that the fixed parts will not stay in the tightened position, resulting in damage due to excessive tightening.
 本実施形態のツールチェンジャ2によれば、クリック感によってロボットハンド本体56が取付フランジ53に締結したことを確認することができ、固定部品の回しすぎによる部品の破損、摩耗等を防止することができる。また、勘合溝凸部122が爪凹部121と勘合し、固定されることによって、締結後に取付フランジ53に対してロボットハンド本体56が動くことなく、固定される。 According to the tool changer 2 of this embodiment, it is possible to confirm that the robot hand main body 56 has been fastened to the mounting flange 53 by a click feeling, and it is possible to prevent component damage, wear, etc. due to excessive rotation of the fixed component. can. In addition, the fitting groove convex portion 122 fits into the claw recess 121 and is fixed, so that the robot hand main body 56 is fixed without moving relative to the mounting flange 53 after fastening.
(スナップフィットによるロック機構)
 図8に、ツールチェンジャ2の下面図を示す。図8は、本実施形態に係るツールチェンジャ2がスナップフィットによるロック機能を有する場合の図である。ロボットハンド本体56は、弾性部72、及び弾性部72の先端に突起75を有する。弾性部72とロボットハンド本体56の本体部58との間には、間隙74が設けられ、突起75に本体部58の方向へ圧力を加えると、弾性部72は変形し、突起75は本体部58の方向へ変形する。バヨネットリング55の外周面には迎合孔78が設けられている。
(Lock mechanism using snap fit)
FIG. 8 shows a bottom view of the tool changer 2. FIG. 8 is a diagram showing a case where the tool changer 2 according to this embodiment has a snap-fit locking function. The robot hand main body 56 has an elastic portion 72 and a protrusion 75 at the tip of the elastic portion 72. A gap 74 is provided between the elastic part 72 and the main body part 58 of the robot hand main body 56, and when pressure is applied to the protrusion 75 in the direction of the main body part 58, the elastic part 72 deforms and the protrusion 75 It deforms in the direction of 58. A fitting hole 78 is provided on the outer peripheral surface of the bayonet ring 55.
 ロボットハンド本体56を取付フランジ53に締結する際、突起75に本体部58の方向へ押し込んだ状態でロボットハンド本体56をバヨネットリング55に取り付ける。バヨネットリング55を回転させると、バヨネットリング55によって突起75は本体部58の方向へ押され、弾性部72は変形した状態のままバヨネットリング55が回転し、バヨネットリング55に設けられた迎合孔78が突起75の位置に移動すると、突起75は弾性によって迎合孔78に入り、固定される。突起75が迎合孔78に入るとき、クリック感が生じ、このクリック感によって突起75と迎合孔78が勘合し、ロボットハンド本体56が取付フランジ53に締結したことを体感し、確認することができる。 When fastening the robot hand body 56 to the mounting flange 53, the robot hand body 56 is attached to the bayonet ring 55 while being pushed into the protrusion 75 in the direction of the body portion 58. When the bayonet ring 55 is rotated, the projection 75 is pushed toward the main body portion 58 by the bayonet ring 55, and the bayonet ring 55 rotates while the elastic portion 72 remains in a deformed state. When the is moved to the position of the protrusion 75, the protrusion 75 elastically enters the fitting hole 78 and is fixed. When the protrusion 75 enters the fitting hole 78, a click feeling occurs, and with this click feeling, the protrusion 75 and the fitting hole 78 are fitted, and it is possible to feel and confirm that the robot hand main body 56 is fastened to the mounting flange 53. .
 本実施形態に係るツールチェンジャ2がスナップフィットによるロック機能を有する場合、迎合孔78に入っている突起75の、バヨネットリング55の外周面から飛び出した部分を、本体部58の方向へ指等によって押すことでバヨネットリング55の内側に押し込み、その状態でバヨネットリング55を回転させて、ロボットハンド本体56を取付フランジ53から取り外すことができる。 When the tool changer 2 according to the present embodiment has a snap-fit locking function, the portion of the protrusion 75 in the fitting hole 78 that protrudes from the outer peripheral surface of the bayonet ring 55 is moved toward the main body 58 with a finger or the like. The robot hand main body 56 can be removed from the mounting flange 53 by pushing it into the inside of the bayonet ring 55 and rotating the bayonet ring 55 in this state.
 図9に、本実施形態に係るロボットハンド1の使用例を説明する図を示す。図9に示す使用例は、一例として、中食工場において、調理済みの食品81、82を、ベルトコンベアに乗って流れてくる食品容器84に入れる盛り付け作業である。図9において、ロボットハンド1は、ロボット本体85に、ロボットアーム86を介して接続されている。ロボットハンド1は、作業員83の隣に配置され、ロボットハンド1と作業員83とは、協同で盛り付け作業を行っている。 FIG. 9 shows a diagram illustrating an example of use of the robot hand 1 according to this embodiment. The example of use shown in FIG. 9 is, for example, a serving operation in which cooked foods 81 and 82 are put into a food container 84 flowing on a belt conveyor in a ready-made meal factory. In FIG. 9, the robot hand 1 is connected to a robot body 85 via a robot arm 86. The robot hand 1 is placed next to the worker 83, and the robot hand 1 and the worker 83 work together to perform the plating work.
 中食工場における盛り付け作業において容器に盛り付けられる食品は多様多種であり、盛り付ける食品の種類や量の変更等も頻繁に行われる、等の理由により、全ての盛り付け作業をロボットアームによって行うことは容易ではない。したがってロボットアームと作業員とが互いに近い位置で作業する場合があり得る。 During the plating work at a ready-to-eat food factory, there are many different types of food that are arranged in containers, and the types and amounts of food to be plated are frequently changed. For these reasons, it is easy to perform all the plating work using a robot arm. isn't it. Therefore, the robot arm and the worker may work in close proximity to each other.
 従来のロボットハンドは、エアシリンダにリンク機構を組み合わせたものであり、アクチュエータ、リンク摺動部は金属製部材のため硬く、例えばロボットハンドと作業員が接触したときに事故が起こりかねない等、受動的安全機能の提供が困難であった。 Conventional robot hands combine an air cylinder with a link mechanism, and the actuators and link sliding parts are made of metal and are hard, which can lead to accidents, for example, if the robot hand comes into contact with a worker. Passive safety features were difficult to provide.
 本実施形態に係るロボットハンド1は、全てが樹脂素材である。また、図10に示すロボットハンド1の一部の、破線によって囲まれた箇所は、所定の値を超える外力を受けると破壊される厚さ以下の樹脂によって構成される部分であり、ロボットハンドと作業員が接触する等、過負荷により、優先的に破壊される構造となっている。本実施形態においては、図10に示す破線によって囲まれた箇所の樹脂の厚さを5mm以下としている。さらに、ベローズ12は、柔軟性の高い樹脂材料により構成されており、過負荷によって変形する。これらの構成により、本実施形態に係るロボットハンド1は、ロボットハンドと作業員が接触した場合においても、事故が生じない等、受動的安全機能を提供することができる。 The robot hand 1 according to this embodiment is entirely made of resin material. In addition, a part of the robot hand 1 shown in FIG. 10 surrounded by a broken line is a part made of a resin whose thickness is less than that which will be destroyed if it receives an external force exceeding a predetermined value. The structure is designed to be destroyed preferentially due to overload, such as when workers come into contact with it. In this embodiment, the thickness of the resin in the area surrounded by the broken line shown in FIG. 10 is 5 mm or less. Further, the bellows 12 is made of a highly flexible resin material and deforms due to overload. With these configurations, the robot hand 1 according to the present embodiment can provide passive safety functions such as preventing accidents even if the robot hand and a worker come into contact with each other.
(爪)
 爪部4について説明する。爪部4を構成する爪4a、4bのそれぞれが、ハンド本体3の指部20a、20bのそれぞれに接続され、ハンド本体3が動作することによって爪部4において物品の把持、及び開放がなされる。以下に示すように、本実施形態にかかるロボットハンド1が中食工場において使用される場合、ハンド本体3には、調理済みの食品の種類、形状等に適した形状の爪を取り付けることができる。
(nail)
The claw portion 4 will be explained. Each of the claws 4a and 4b constituting the claw part 4 is connected to each of the finger parts 20a and 20b of the hand body 3, and when the hand body 3 moves, the claw part 4 grips and releases an object. . As shown below, when the robot hand 1 according to the present embodiment is used in a ready-to-eat food factory, the hand body 3 can be attached with a claw having a shape suitable for the type, shape, etc. of the cooked food. .
 図11に、本実施形態に係る爪120aを示す。図11(a)、図11(b)、及び図11(c)は、それぞれ爪120aの上面図、左側面図、正面図であり、ハンド本体3の指部20a、20bに取りつけていない状態の爪である。図12に示す爪120aは、接続部15a、支持部16a、把持部17aから構成される。接続部15aは、ツメ120aをハンド本体3の指部20a、20bと接続させる部位である。把持部17aは、物品を把持する部位である。支持部16aは、接続部15a、及び把持部17aを支持する。図11に示す爪120aの把持部17aは、3本の長爪123aで構成される。 FIG. 11 shows a claw 120a according to this embodiment. 11(a), FIG. 11(b), and FIG. 11(c) are a top view, a left side view, and a front view of the claw 120a, respectively, in a state where the claw 120a is not attached to the finger portions 20a, 20b of the hand body 3. It is the nail of. The claw 120a shown in FIG. 12 includes a connecting portion 15a, a supporting portion 16a, and a gripping portion 17a. The connecting portion 15a is a portion for connecting the claw 120a to the finger portions 20a, 20b of the hand body 3. The grip part 17a is a part that grips an article. The support portion 16a supports the connection portion 15a and the grip portion 17a. The grip portion 17a of the claw 120a shown in FIG. 11 is composed of three long claws 123a.
 図11に示す爪は、図1に示すロボットハンド1の2つの爪のうち、1つの爪であり、図11に示す爪を2つ用意し、2つの爪のそれぞれを、図1に示すロボットハンド1の2つの指部20a、20bのそれぞれに、図11(c)に示す爪の紙面左側が内側となるように取り付ける。ロボットハンド1の2つの指部20a、20bを開閉することにより、把持部17aにおいて物品を把持する。 The claw shown in FIG. 11 is one of the two claws of the robot hand 1 shown in FIG. 1. Two claws shown in FIG. The claws are attached to each of the two finger parts 20a and 20b of the hand 1 so that the left side of the claw shown in FIG. 11(c) is on the inside. By opening and closing the two finger parts 20a and 20b of the robot hand 1, the object is gripped by the grip part 17a.
 図12に、図1に示すロボットハンド1の接続部15aの、紙面水平方向から見たときの断面図を示す。爪4の支持部16が、爪4aの突起部90によってハンド本体3の指部20aに固定されている。ハンド本体3には、本体支柱91、92、93、94が設けられ、本体支柱91と本体支柱93との間には、支柱95が隙間なくはめ込まれる間隙が設けられ、本体支柱91と本体支柱92との間、及び本体支柱93と本体支柱94との間には、突起部90が通り抜けられる間隙が設けられ、突起部90がハンド本体3の外部に露出し、突起部90が引っ掛かり、弾性によって突起部90が固定され、外れない構造をなす迎合孔96が設けられている。 FIG. 12 shows a cross-sectional view of the connecting portion 15a of the robot hand 1 shown in FIG. 1, when viewed from the horizontal direction of the page. The support portion 16 of the claw 4 is fixed to the finger portion 20a of the hand body 3 by a protrusion 90 of the claw 4a. The hand main body 3 is provided with main support columns 91, 92, 93, and 94, and a gap is provided between the main support support 91 and the main support support 93 in which the support support 95 is fitted without any gap. 92 and between the main body support 93 and the main body support 94, a gap is provided through which the protrusion 90 can pass, the protrusion 90 is exposed to the outside of the hand main body 3, the protrusion 90 is caught, and the elastic A fitting hole 96 is provided in which the protrusion 90 is fixed and does not come off.
 爪4aを指部20aに取り付ける際には、爪4aの支柱95及び突起部90を図12の紙面下方からハンド本体3の本体支柱91と本体支柱93との間、本体支柱91と本体支柱92との間、及び本体支柱93と本体支柱94との間に差し込む。突起部90が迎合孔96に引っ掛かることで、爪4aは指部20aに取り付けられる。爪4aを指部20aから取り外す際には、指等によって、突起部90を迎合孔96に押し込み支柱97及び突起部90を変形させ、爪4aを図12の紙面下方へ引き抜く。 When attaching the claw 4a to the finger 20a, insert the support 95 and protrusion 90 of the claw 4a between the main support 91 and the main support 93 of the hand main body 3 from below in the paper of FIG. and between the main body support 93 and the main body support 94. The claw 4a is attached to the finger 20a by the protrusion 90 being caught in the receiving hole 96. When removing the claw 4a from the finger portion 20a, the protrusion 90 is pushed into the fitting hole 96 using a finger or the like to deform the support 97 and the protrusion 90, and the claw 4a is pulled out downward in the plane of FIG. 12.
 図1に示すロボットハンド1は、2つの指部20a、20bの間に隙間79が設けられている。この隙間79により、2つの指部20a、20bの間に物品が挟まるのを防ぐことができる。 The robot hand 1 shown in FIG. 1 has a gap 79 between the two finger parts 20a and 20b. This gap 79 can prevent an article from being caught between the two fingers 20a, 20b.
 図13に、本実施形態に係る爪140aを示す。図13(a)、図13(b)、及び図13(c)に、爪140aの上面図、左側面図、正面図を示す。図11に示す爪120aと比較すると、爪140aの把持部17aは5本の長爪141aから構成される。 FIG. 13 shows a claw 140a according to this embodiment. 13(a), 13(b), and 13(c) show a top view, a left side view, and a front view of the claw 140a. Compared to the claw 120a shown in FIG. 11, the gripping portion 17a of the claw 140a is composed of five long claws 141a.
 図14に、ハンド本体3の指部20に爪140aを取り付け、図1に示すように2つの指部20a、20bの間を閉じた状態としたときの爪部4の様子を示す。図14(a)は正面図、図14(b)は正面側斜視図である。図14に示すように、5本の長爪141aによって物品を挟むことで物品を把持する。 FIG. 14 shows the state of the claw portion 4 when the claw 140a is attached to the finger portion 20 of the hand body 3 and the two finger portions 20a and 20b are in a closed state as shown in FIG. FIG. 14(a) is a front view, and FIG. 14(b) is a front perspective view. As shown in FIG. 14, the article is gripped by pinching the article between the five long claws 141a.
 図11に示す爪120aの把持部を構成する長爪123aは3本、図13に示す爪140aの把持部を構成する長爪141aは5本であるが、長爪の数はこれらに限定されない。このように、把持部17aを構成する長爪の数によって、把持可能な物品の量や大きさを調整することができる。 There are three long claws 123a that make up the gripping part of the claw 120a shown in FIG. 11, and five long claws 141a that make up the gripping part of the claw 140a shown in FIG. 13, but the number of long claws is not limited to these. . In this way, the amount and size of articles that can be gripped can be adjusted by the number of long claws that make up the gripping portion 17a.
 図15に、本実施形態に係る爪160aを示す。図15(a)、図15(b)、及び図15(c)に、爪160aの上面図、左側面図、正面図を示す。図1及び図2に示す爪4a、4bは、図15に示す爪160aと同一のものである。 FIG. 15 shows a claw 160a according to this embodiment. 15(a), 15(b), and 15(c) show a top view, a left side view, and a front view of the claw 160a. The claws 4a and 4b shown in FIGS. 1 and 2 are the same as the claw 160a shown in FIG. 15.
 図16に、ハンド本体3の2つの指部20a、20bのそれぞれに爪160aを取り付け、図1に示すように2つの指部20a、20bの間を閉じた状態としたときの爪160aの様子を示す。図16は下面側斜視図である。図16に示すように、把持部17aはカップの形状をなし、2つのカップによって物品を挟むことで物品を把持する。 FIG. 16 shows the state of the claw 160a when the claw 160a is attached to each of the two finger parts 20a and 20b of the hand body 3 and the space between the two finger parts 20a and 20b is in a closed state as shown in FIG. shows. FIG. 16 is a bottom perspective view. As shown in FIG. 16, the gripping portion 17a has a cup shape, and grips the article by sandwiching the article between two cups.
 図17に、本実施形態に係る爪180aを示す。図17(a)、図17(b)、及び図17(c)に、爪180aの下面図、左側面図、正面図を示す。また、図18に、ハンド本体3の2つの指部20a、20bのそれぞれに爪180aを取り付け、図1に示すように2つの指部20a、20bの間を閉じた状態としたときの爪180aの様子を示す。図18は下面側斜視図である。図15(b)に示す爪160aの把持部17aのカップ形状の幅と、図17(b)に示す爪180aの把持部17aのカップ形状の幅が異なる。カップのサイズ、形状によって、把持可能な物品の量や大きさを調整することができる。 FIG. 17 shows a claw 180a according to this embodiment. 17(a), 17(b), and 17(c) show a bottom view, a left side view, and a front view of the claw 180a. Further, FIG. 18 shows the claw 180a when the claw 180a is attached to each of the two finger parts 20a, 20b of the hand main body 3, and the space between the two finger parts 20a, 20b is in a closed state as shown in FIG. The situation is shown below. FIG. 18 is a bottom perspective view. The width of the cup shape of the grip portion 17a of the claw 160a shown in FIG. 15(b) is different from the width of the cup shape of the grip portion 17a of the claw 180a shown in FIG. 17(b). Depending on the size and shape of the cup, the amount and size of objects that can be gripped can be adjusted.
 図19に、本実施形態に係る爪200aを示す。図19(a)、図19(b)、及び図19(c)に、爪200aの下面図、左側面図、正面図を示す。図19に示す爪200aの把持部17aは、3本の長爪201aで構成される。長爪201aは、図11に示す長爪121aと比較すると、形状は幅が広く、柔軟性の高い樹脂素材によって構成される。 FIG. 19 shows a claw 200a according to this embodiment. FIGS. 19(a), 19(b), and 19(c) show a bottom view, a left side view, and a front view of the claw 200a. The grip portion 17a of the claw 200a shown in FIG. 19 is composed of three long claws 201a. The long claw 201a has a wider shape than the long claw 121a shown in FIG. 11, and is made of a highly flexible resin material.
 図20に、2つの指部20a、20bのそれぞれに爪200aを取り付けたときの、実際に物品を把持する様子を説明する図を示す。図20(a)には、物品を把持せずに指部20a、20bを閉じた状態、図20(b)には、指部20a、20bを開き、物品110を把持する前段階、図20(c)には、指部20a、20bを閉じ、物品110を把持している状態を示す。 FIG. 20 shows a diagram illustrating how an article is actually gripped when a claw 200a is attached to each of the two finger parts 20a and 20b. 20(a) shows a state in which the fingers 20a and 20b are closed without gripping an article, and FIG. 20(b) shows a state before gripping the article 110 with the fingers 20a and 20b open. (c) shows a state in which the finger portions 20a and 20b are closed and the article 110 is being gripped.
 図20に示す物品110は、一例として、刻んだ状態の葱である。刻んだ葱は、柔らかく、強い力で挟むと形状が変形する等、破損しやすい。図20に示す爪200aは、柔軟性の高い樹脂素材によって構成されているため、図20(c)に示すように、爪200aがしなることによって、刻んだ葱に対して、破損しない程度の力で挟むことができる。従来の金属部品を含むロボットハンドにおいて、把持力制御は複雑な制御系が必要となり、高速動作が困難となる。本実施形態に係る爪200aによれば、爪200aを柔軟性の高い樹脂素材によって構成することにより、破損しやすい物品を把持することができる。また、爪200aの柔軟性の度合い、長さ等の形状を調整することにより、物品の柔らかさ、形状、重量等に適応することができる。 The article 110 shown in FIG. 20 is, for example, a chopped green onion. Chopped green onions are soft and can be easily damaged if pinched with too much force, such as deforming the shape. Since the claw 200a shown in FIG. 20 is made of a highly flexible resin material, as shown in FIG. It can be pinched with force. In conventional robot hands that include metal parts, gripping force control requires a complicated control system, making high-speed operation difficult. According to the claw 200a according to this embodiment, the claw 200a is made of a highly flexible resin material, so that it is possible to grip an article that is easily damaged. Further, by adjusting the degree of flexibility, length, and shape of the claw 200a, it is possible to adapt to the softness, shape, weight, etc. of the article.
 図21に、本実施形態に係る爪220aを示す。図21(a)、図21(b)、及び図21(c)に、爪220aの下面図、左側面図、正面図を示す。図21に示す爪220aの把持部17aは、押し当てプレート111を有する。 FIG. 21 shows a claw 220a according to this embodiment. 21(a), 21(b), and 21(c) show a bottom view, a left side view, and a front view of the claw 220a. The gripping portion 17a of the claw 220a shown in FIG. 21 has a pressing plate 111. As shown in FIG.
 図22に、2つの指部20a、20bのそれぞれに爪220aを取り付けたときの、実際に物品を把持する様子を説明する図を示す。図22(a)、及び図22(b)に示す物品は、一例として、刻んだ状態の葱である。刻んだ葱は、柔らかく、大量の刻んだ葱が積み上げられている場合、積み上げられた葱の上部に位置する葱は刻んだときの形状を保ち、密度が低くなっていると考えられる。積み上げられた葱の底部に位置する葱は、積まれた葱の重さにより圧迫され、密度が高くなっていると考えられる。積み上げられた葱の中間の深さに位置する葱は、上部に位置する葱と底部に位置する葱の間の密度になっていると考えられる。したがって、積まれた葱を取るタイミングによって、取れる葱の量が変わる。 FIG. 22 shows a diagram illustrating how an article is actually gripped when a claw 220a is attached to each of the two finger parts 20a and 20b. The articles shown in FIGS. 22(a) and 22(b) are, for example, chopped green onions. Chopped green onions are soft, and when a large amount of chopped green onions are piled up, it is thought that the green onions located at the top of the piled green onions retain their shape when chopped and have a lower density. It is thought that the green onions located at the bottom of the pile of green onions are compressed by the weight of the piled green onions and become denser. It is thought that the green onions located at the middle depth of the piled green onions have a density between that of the green onions located at the top and the green onions located at the bottom. Therefore, the amount of green onions that can be harvested varies depending on the timing of picking up the piled green onions.
 図22(a)では、爪220aの押し当てプレート111は葱に触れていないため、葱の密度が、積み上げられた葱の上部において低くなっている。図22(b)では、押し当てプレート111を葱に押し当て葱に圧力をかけることによって、上部に位置する葱の密度が、中間の深さに位置する葱の密度と同程度になっている。 In FIG. 22(a), the pressing plate 111 of the claw 220a does not touch the green onion, so the density of the green onion is low at the top of the stack of green onions. In FIG. 22(b), by pressing the pressing plate 111 against the green onion and applying pressure to the green onion, the density of the green onion located at the top becomes comparable to the density of the green onion located at the middle depth. .
 図22(a)、及び図22(b)に示す物品のように、バラ積みにされた物品に対して、押し当てプレートを使用することにより、表面状態を整えて把持量を安定化することができる。 By using a pressing plate for items stacked in bulk, such as the items shown in FIGS. 22(a) and 22(b), the surface condition is adjusted and the amount of grip is stabilized. Can be done.
 図11~図22に示した爪は、本実施例に係るロボットハンドに使用できる爪の一例であるが、爪はこれらに限定されず、物品の形状、大きさ、硬さ等に応じて、様々な形状の爪を使用することができる。また、指部20a、20bは、図1に示すロボットハンド1においては2本であるが、3本以上であってもよく、指部20a、20bの本数に応じて爪の形状は変わり得る。さらに、図11~図22に示した爪は、全て、形状等が同一の2本の爪を2つの指部20a、20bのそれぞれに取り付けて使用するものであるが、一つのロボットハンドの複数の指部のそれぞれに取り付ける複数の爪は互いに同一である必要はなく、物品の形状、大きさ、硬さ等に応じて、一つのロボットハンドの複数の指部のそれぞれに取り付ける複数の爪は、形状等が互いに異なる爪であってもよい。 The claws shown in FIGS. 11 to 22 are examples of claws that can be used in the robot hand according to this embodiment, but the claws are not limited to these, and may vary depending on the shape, size, hardness, etc. of the article. Nails of various shapes can be used. Furthermore, although there are two finger sections 20a and 20b in the robot hand 1 shown in FIG. 1, there may be three or more finger sections, and the shape of the claws can change depending on the number of finger sections 20a and 20b. Furthermore, all of the claws shown in FIGS. 11 to 22 are used by attaching two claws of the same shape to each of the two finger parts 20a and 20b, but multiple claws of one robot hand are used. The plurality of claws attached to each of the fingers of one robot hand do not have to be the same, and depending on the shape, size, hardness, etc. of the object, the plurality of claws attached to each of the plurality of fingers of one robot hand may be different. , the nails may have different shapes, etc.
 以上述べたように、本実施形態に係るロボットハンドは、安全性が高く、高速把持、解放動作が可能であり、洗浄時の作業負荷が低いロボットハンドを提供することができる。本実施形態において、本実施形態に係るロボットハンドが把持する物品は調理済み食品であるとしたが、これに限定されず、食品以外の物品にも対応可能である。 As described above, the robot hand according to the present embodiment is highly safe, capable of high-speed gripping and releasing operations, and can provide a robot hand with a low workload during cleaning. In this embodiment, the article gripped by the robot hand according to this embodiment is a cooked food, but the present invention is not limited to this, and it is also possible to handle articles other than food.
 以上、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As mentioned above, it goes without saying that the present invention includes various embodiments not described here. Therefore, the technical scope of the present invention is determined only by the matters specifying the invention in the claims that are reasonable from the above description.
1 ロボットハンド
2 ツールチェンジャ
3 ハンド本体
4 爪部
4a、4b 爪
10 内部配管
12a、12b ベローズ
13a、13b 内側連結部
14 リンク
16a、16b 支持部
17a、17b 把持部
18a、18b 外側連結部
19 軸部
20a、20b 指部
22a 空間
23a、24a 溝
25a、25b 上側指部
52 エア接手
53 取付フランジ
55 バヨネットリング
56 ロボットハンド本体
57 パッキン
58 本体部
71 外爪
72 弾性部
74 間隙
75 突起
78 迎合孔
79 勘合溝
81、82 食品
83 作業員
84 食品容器
85 ロボット本体
86 ロボットアーム
90 突起部
91、92、93、94 本体支柱
95 支柱
96 迎合孔
100 爪
110 物品
111 押し当てプレート
120a、140a、160a、180a、200a、220a 爪
121 爪凹部
122 勘合溝凸部
123 爪先端部
123a、141a、121a 長爪
1 Robot hand 2 Tool changer 3 Hand body 4 Claws 4a, 4b Claws 10 Internal piping 12a, 12b Bellows 13a, 13b Inner connection portion 14 Links 16a, 16b Support portions 17a, 17b Gripping portions 18a, 18b Outer connection portion 19 Shaft portion 20a, 20b Finger section 22a Space 23a, 24a Groove 25a, 25b Upper finger section 52 Air joint 53 Mounting flange 55 Bayonet ring 56 Robot hand body 57 Packing 58 Main body section 71 External claw 72 Elastic section 74 Gap 75 Projection 78 Fitting hole 79 Fitting Grooves 81, 82 Food 83 Worker 84 Food container 85 Robot body 86 Robot arm 90 Projections 91, 92, 93, 94 Main body support 95 Support 96 Fitting hole 100 Claw 110 Article 111 Pressing plate 120a, 140a, 160a, 180a, 200a, 220a Claw 121 Claw recess 122 Fitting groove convex portion 123 Claw tip 123a, 141a, 121a Long claw

Claims (12)

  1.  物品を把持するための2以上の爪と、
     2以上の前記爪のそれぞれが接続された前記爪と同数の指部であって、前記指部はリンクにおいて互いに回転可能に接続されている、前記指部と、
     前記指部が接続された前記指部と同数のベローズと
     を備え、
     前記ベローズは空圧制御システムに接続され、前記空圧制御システムによって前記ベローズの内部の空圧が制御されて前記ベローズの長さが制御されることによって、前記指部の間の距離が制御されて前記爪によって前記物品が把持され、前記爪と、前記指部と、前記ベローズとは、いずれも樹脂素材によって構成されることを特徴とするロボットハンド。
    two or more claws for gripping an article;
    the finger portions having the same number of finger portions as the claws to which each of the two or more claws is connected, the finger portions being rotatably connected to each other at a link;
    and the same number of bellows as the finger parts to which the finger parts are connected,
    The bellows is connected to a pneumatic control system, and the pneumatic control system controls air pressure inside the bellows to control the length of the bellows, thereby controlling the distance between the fingers. The robot hand is characterized in that the article is gripped by the claws, and the claws, the fingers, and the bellows are all made of a resin material.
  2.  前記爪は、前記指部に接続される位置に2つの突起部を有し、前記2つの突起部のそれぞれは、前記指部に設けられた2つの迎合孔に固定されることによって、前記爪は、前記指部に接続されることを特徴とする請求項1に記載のロボットハンド。 The claw has two protrusions at positions connected to the finger, and each of the two protrusions is fixed to two fitting holes provided in the finger, thereby connecting the claw to the finger. The robot hand according to claim 1, wherein is connected to the finger portion.
  3.  前記指部の間の距離が最も小さいときの前記距離が、前記物品の大きさより大きいことを特徴とする請求項1に記載のロボットハンド。 The robot hand according to claim 1, wherein the distance when the distance between the fingers is the smallest is larger than the size of the article.
  4.  前記ロボットハンドを構成する部品の少なくとも一部に、所定の値を超える外力によって破壊される樹脂が用いられ、前記ロボットハンドに対する過負荷により、優先的に前記部品が破壊されることを特徴とする請求項1に記載のロボットハンド。 A resin that is destroyed by an external force exceeding a predetermined value is used for at least some of the parts constituting the robot hand, and the parts are preferentially destroyed by an overload on the robot hand. The robot hand according to claim 1.
  5.  前記ベローズは、両端に連結部を備え、前記指部は前記ベローズに接続される位置に前記連結部を挟む溝を有し、前記空圧制御システムは、前記ベローズに接続される位置に前記連結部を挟む第2の溝を有し、前記空圧制御システムと前記ベローズの間に2つのパッキンを備えることを特徴とする請求項1に記載のロボットハンド。 The bellows includes a connecting portion at both ends, the finger portion has a groove sandwiching the connecting portion at a position connected to the bellows, and the pneumatic control system includes a connecting portion at a position connected to the bellows. 2. The robot hand according to claim 1, further comprising a second groove sandwiching a second groove therebetween, and two packings are provided between the pneumatic control system and the bellows.
  6.  バヨネットリングと、前記空圧制御システムに接続された取付フランジとをさらに備え、前記取付フランジと前記ロボットハンドとを接触させ、前記バヨネットリングを回転させることによって前記取付フランジと前記ロボットハンドとを固定することを特徴とする請求項1に記載のロボットハンド。 further comprising a bayonet ring and a mounting flange connected to the pneumatic control system, the mounting flange and the robot hand are brought into contact and the mounting flange and the robot hand are fixed by rotating the bayonet ring. The robot hand according to claim 1, characterized in that:
  7.  前記バヨネットリングは、勘合溝凸部を有する勘合溝を備え、
     前記ロボットハンドは、爪凹部を有する外爪を備え、
     前記バヨネットリングを回転させると、前記勘合溝は前記外爪対してスライドし、前記勘合溝凸部と前記爪凹部とが勘合することによって前記取付フランジと前記ロボットハンドとが固定されることを特徴とする請求項8に記載のロボットハンド。
    The bayonet ring includes a fitting groove having a fitting groove convex portion,
    The robot hand includes an outer claw having a claw recess,
    When the bayonet ring is rotated, the fitting groove slides against the outer claw, and the fitting groove protrusion and the claw recess are engaged, thereby fixing the mounting flange and the robot hand. The robot hand according to claim 8.
  8.  前記ロボットハンドは、弾性部と、前記弾性部の先端に突起を備え、
     前記バヨネットリングは、迎合孔を備え、
     前記バヨネットリングを回転させると、前記突起が前記迎合孔に入り、前記取付フランジと前記ロボットハンドとが固定されることを特徴とする請求項8に記載のロボットハンド。
    The robot hand includes an elastic part and a protrusion at the tip of the elastic part,
    The bayonet ring includes a mating hole,
    9. The robot hand according to claim 8, wherein when the bayonet ring is rotated, the protrusion enters the fitting hole, and the mounting flange and the robot hand are fixed.
  9.  第2のパッキンをさらに備え、前記第2のパッキンは前記取付フランジと前記ロボットハンドとの間に配置され、前記ロボットハンドの前記空圧制御システムのエア接手と、前記取付フランジの前記空圧制御システムのエア接手、及び、前記ロボットハンドの電気接点と、前記取付フランジの電気接点とは、前記取付フランジと前記ロボットハンドとが接触する位置において接続されることを特徴とする請求項8に記載のロボットハンド。 Further comprising a second packing, the second packing is disposed between the mounting flange and the robot hand, and connects the air joint of the pneumatic control system of the robot hand and the pneumatic control system of the mounting flange. 9. An air joint of the system, an electrical contact of the robot hand, and an electrical contact of the mounting flange are connected at a position where the mounting flange and the robot hand are in contact with each other. robot hand.
  10.  前記爪は把持部を有し、前記把持部は複数の長爪から成ることを特徴とする請求項1に記載のロボットハンド。 The robot hand according to claim 1, wherein the claw has a gripping part, and the gripping part is composed of a plurality of long claws.
  11.  前記爪は把持部を有し、前記把持部はカップ形状をなすことを特徴とする請求項1に記載のロボットハンド。 The robot hand according to claim 1, wherein the claw has a gripping portion, and the gripping portion has a cup shape.
  12.  前記爪は把持部を有し、前記把持部は押し当てプレートを有することを特徴とする請求項1に記載のロボットハンド。 The robot hand according to claim 1, wherein the claw has a gripping part, and the gripping part has a pressing plate.
PCT/JP2023/023414 2022-08-29 2023-06-23 Robot hand WO2024048038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-136293 2022-08-29
JP2022136293A JP2024032571A (en) 2022-08-29 2022-08-29 robot hand

Publications (1)

Publication Number Publication Date
WO2024048038A1 true WO2024048038A1 (en) 2024-03-07

Family

ID=90099340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023414 WO2024048038A1 (en) 2022-08-29 2023-06-23 Robot hand

Country Status (2)

Country Link
JP (1) JP2024032571A (en)
WO (1) WO2024048038A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323675A (en) * 1995-06-02 1996-12-10 Kubota Corp Finger for robot hand
JP2005333827A (en) * 2004-05-24 2005-12-08 Mayekawa Mfg Co Ltd Method and device for gripping and transferring food material
JP2018176368A (en) * 2017-04-14 2018-11-15 川崎重工業株式会社 Food product holding device and method for operation thereof
JP2020168694A (en) * 2019-04-04 2020-10-15 株式会社ダイフク Article holding device
JP2022015985A (en) * 2020-07-10 2022-01-21 圭治郎 山本 Robot hand

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323675A (en) * 1995-06-02 1996-12-10 Kubota Corp Finger for robot hand
JP2005333827A (en) * 2004-05-24 2005-12-08 Mayekawa Mfg Co Ltd Method and device for gripping and transferring food material
JP2018176368A (en) * 2017-04-14 2018-11-15 川崎重工業株式会社 Food product holding device and method for operation thereof
JP2020168694A (en) * 2019-04-04 2020-10-15 株式会社ダイフク Article holding device
JP2022015985A (en) * 2020-07-10 2022-01-21 圭治郎 山本 Robot hand

Also Published As

Publication number Publication date
JP2024032571A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
US10259122B2 (en) Compliant adaptive robot grasper
US8801068B2 (en) Apparatus and method for engaging and handling articles of manufacture
Birglen et al. On the force capability of underactuated fingers
JP6811267B2 (en) Flexible inferior drive gripper
EP0243393B1 (en) Aerosol valve actuator
WO2019165878A1 (en) Claw-like logistics packaging mechanical arm with electric-gas hybrid drive flexible fingers
US11059188B2 (en) Fasteners with reduced bacterial harborage points, sealing capabilities, and component protection features
WO2019210761A1 (en) Electric compound driving thickness irregularly shaped plate spring framework flexible manipulator
US10307913B2 (en) Robotic gripper
Gafer et al. The quad-spatula gripper: A novel soft-rigid gripper for food handling
JPH11245187A (en) Method of elaborate mechanical holding
GB2250262A (en) Mechanism for locking angular movement of suction pad.
Birglen et al. Optimal design of 2-phalanx underactuated fingers
Yamanaka et al. Development of a food handling soft robot hand considering a high-speed pick-and-place task
WO2024048038A1 (en) Robot hand
US11794337B2 (en) Gripping device for handling items or components of different shape and size
WO2018033716A1 (en) An Improved Gripper
Ma et al. In-hand manipulation primitives for a minimal, underactuated gripper with active surfaces
US11091355B1 (en) Mechanically intelligent end-of-arm tool
Nishimura et al. 1-degree-of-freedom robotic gripper with infinite self-twist function
Fumagalli et al. Analysis of an underactuated robotic finger with variable pinch and closure grasp stiffness
CA3153094A1 (en) Adaptive gripper finger, gripper device and method of using adaptive gripper device
WO2017044351A1 (en) Rigid temporary attachment device for a robotic gripper
Guo et al. Disturbance observer-based sliding mode control of series elastic actuators with unmatched disturbances
US20210197399A1 (en) Compliant Gripper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859808

Country of ref document: EP

Kind code of ref document: A1