WO2024047931A1 - Optical path control device, display device, and optical path control method - Google Patents

Optical path control device, display device, and optical path control method Download PDF

Info

Publication number
WO2024047931A1
WO2024047931A1 PCT/JP2023/015470 JP2023015470W WO2024047931A1 WO 2024047931 A1 WO2024047931 A1 WO 2024047931A1 JP 2023015470 W JP2023015470 W JP 2023015470W WO 2024047931 A1 WO2024047931 A1 WO 2024047931A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
current value
frame
swinging
image
Prior art date
Application number
PCT/JP2023/015470
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 ▲高▼田
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2024047931A1 publication Critical patent/WO2024047931A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to an optical path control device, a display device, and an optical path control method.
  • one frame display period is divided into multiple subframe display periods, and each subframe display period is projected onto a screen.
  • Patent Document 1 such a technique is described in Patent Document 1 below.
  • the projection position may be shifted by swinging the optical member using the optical path control device. In this case, it is required to appropriately display a moving image while appropriately swinging the swinging section.
  • the present embodiment aims to provide an optical path control device, a display device, and an optical path control method that can appropriately display a moving image while appropriately swinging a swinging section.
  • An optical path control device includes: a swinging section having an optical section into which light enters; an actuator capable of swinging the swinging section; and applying a drive signal to the actuator.
  • the number of subframes for displaying some of the pixels included in the subframe is set, and the swinging speed of the swinging unit is set based on the number of subclaims.
  • An optical path control method is an optical path control method for controlling an optical path by applying a drive signal to an actuator capable of swinging a swinging section having an optical section into which light enters, a step of setting the number of sub-frames for displaying some of the pixels included in the image data of the frame for each frame displaying the image data of the oscillating portion based on the number of the sub-claims; and setting a rocking speed.
  • a moving image can be appropriately displayed while appropriately swinging the swinging section.
  • FIG. 1 is a schematic diagram showing a display device according to a first embodiment.
  • FIG. 2 is a block diagram schematically showing the circuit configuration of the display device.
  • FIG. 3 is a plan view showing the optical path control mechanism.
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3.
  • FIG. 5 is a sectional view taken along the line VV in FIG. 3.
  • FIG. 6 is an explanatory diagram illustrating a biaxial swing pattern of the optical section according to the first embodiment.
  • FIG. 7 is an explanatory diagram showing a frame division configuration by the processing unit.
  • FIG. 8 is an explanatory diagram for explaining an example of a drive signal setting method according to the first embodiment.
  • FIG. 1 is a schematic diagram showing a display device according to a first embodiment.
  • FIG. 2 is a block diagram schematically showing the circuit configuration of the display device.
  • FIG. 3 is a plan view showing the optical path control mechanism.
  • FIG. 4 is a sectional view taken along the
  • FIG. 9 is a graph showing an example of the waveform of the drive signal when the motion vector is less than or equal to the threshold value.
  • FIG. 10 is a graph showing an example of the swinging pattern of the swinging section when the motion vector is less than or equal to the threshold value.
  • FIG. 11 is a graph showing an example of the waveform of the drive signal when the motion vector is larger than the threshold value.
  • FIG. 12 is a graph showing an example of the swinging pattern of the swinging section when the motion vector is larger than the threshold value.
  • FIG. 13 is a schematic diagram showing an example of image display when the motion vector is larger than the threshold value.
  • FIG. 14 is a schematic diagram showing an example of image display when the motion vector is less than or equal to the threshold value.
  • FIG. 15 is a schematic diagram showing an example of image display when the motion vector is less than or equal to the threshold value.
  • FIG. 16 is a graph showing another example of the waveform of the drive signal.
  • FIG. 17 is a graph showing another example of the swing pattern of the swing section.
  • FIG. 18 is a schematic diagram showing another example of the order of displayed pixels.
  • FIG. 19 is a block diagram schematically showing the circuit configuration of the display device according to the third embodiment.
  • FIG. 1 is a schematic diagram of a display device according to a first embodiment.
  • the display device 1 includes an optical path control device 10, an irradiation device 100, a video signal processing circuit (processing section) 160, and a control section 170 that controls the video signal processing circuit 160. and has.
  • the irradiation device 100 is a device that irradiates light L for images.
  • the optical path control device 10 is a device that controls the optical path of the light L. By shifting the optical axis of the light L, the optical path control device 10 shifts the position of the image displayed by the light L so that the resolution of the image by the irradiation device 100 (i.e., the number of pixels of the display element 106 described later) is higher than that of the image displayed by the light L. , increase the resolution of the projected image.
  • the irradiation device 100 includes a light source 101, polarizing plates 105R, 105G, 105B, display elements 106R, 106G, 106B, polarizing plates 107R, 107G, 107B, a color synthesis prism 108, a projection lens 109, and a dichroic mirror 120. , 121, reflective mirrors 130, 131, lenses 140, 141, 142, 143, 144, 145, a polarization conversion element 150, and a video signal processing circuit 160.
  • the display element 106R, the display element 106G, and the display element 106B are not distinguished from each other, they are referred to as the display element 106.
  • the light source 101 is a light source that generates and irradiates light.
  • the light source 101 emits incident light L0.
  • one light source 101 will be used as an example of a light source that irradiates the incident light L0, but other optical devices may be included for generating the incident light L0.
  • Incident light L0 from the light source 101 enters the lens 140.
  • Lens 140 and lens 141 are, for example, fly-eye lenses.
  • the illumination distribution of the incident light L0 is made uniform by the lenses 140 and 141, and the incident light L0 is incident on the polarization conversion element 150.
  • the polarization conversion element 150 is an element that aligns the polarization of the incident light L0, and includes, for example, a polarization beam splitter and a retardation plate.
  • the polarization conversion element 150 for example, aligns the incident light L0 to p-polarized light.
  • Lens 142 is, for example, a condenser lens.
  • the dichroic mirror 120 separates the incident light L0 into yellow light LRG and blue light LB including components in the blue band.
  • the yellow illumination light LRG separated by the dichroic mirror 120 is reflected by the reflection mirror 130 and enters the dichroic mirror 121.
  • the dichroic mirror 121 separates the incident yellow light LRG into red light LR including components in the red band and green light LG including components in the green band.
  • the red light LR separated by the dichroic mirror 121 is irradiated onto the polarizing plate 105R via the lens 143.
  • the green light LG separated by the dichroic mirror 121 is irradiated onto the polarizing plate 105G via the lens 144.
  • the blue light LB separated by the dichroic mirror 120 is reflected by the reflection mirror 131 and irradiated onto the polarizing plate 105B via the lens 145.
  • the polarizing plates 105R, 105G, and 105B have a characteristic of reflecting either s-polarized light or p-polarized light and transmitting the other.
  • the polarizing plates 105R, 105G, and 105B reflect s-polarized light and transmit p-polarized light.
  • the polarizing plates 105R, 105G, and 105B are also referred to as reflective polarizing plates.
  • the red light LR which is p-polarized light, passes through the polarizing plate 105R and is irradiated onto the display element 106R.
  • the green light LG which is p-polarized light, passes through the polarizing plate 105G and is irradiated onto the display element 106G.
  • the blue light LB which is p-polarized light, passes through the polarizing plate 105B and is irradiated onto the display element 106B.
  • the display element 106R, display element 106G, and display element 106B are, for example, reflective liquid crystal display elements.
  • the display element 106R, the display element 106G, and the display element 106B are reflective liquid crystal display elements, but the structure is not limited to the reflective type and uses a transmissive liquid crystal display element. You can also use it as Furthermore, various configurations using other display elements instead of liquid crystal display elements are also possible.
  • the display element 106R is controlled by the video signal processing circuit 160.
  • the video signal processing circuit 160 drives and controls the display element 106R based on the red component image data.
  • the display element 106R optically modulates the p-polarized red light LR under the control of the video signal processing circuit 160 to generate s-polarized red light LR.
  • Display element 106G is controlled by video signal processing circuit 160.
  • the video signal processing circuit 160 drives and controls the display element 106G based on the green component image data.
  • the display element 106G optically modulates the p-polarized green light LG under the control of the video signal processing circuit 160 to generate s-polarized green light LG.
  • Display element 106B is controlled by video signal processing circuit 160.
  • the video signal processing circuit 160 drives and controls the display element 106B based on the blue component image data.
  • the display element 106B optically modulates the p-polarized blue light LB based on the image data of the blue component under the control of the video signal processing circuit 160, and generates the s-polarized blue light LB.
  • the polarizing plates 107R, 107G, and 107B have a characteristic of transmitting either s-polarized light or p-polarized light and reflecting or absorbing the other.
  • the polarizing plates 107R, 107G, and 107B transmit s-polarized light and absorb unnecessary p-polarized light.
  • the s-polarized red light LR generated by the display element 106R is reflected by the polarizing plate 105R, passes through the polarizing plate 107R, and is irradiated onto the color synthesis prism 108.
  • the s-polarized green light LG generated by the display element 106G is reflected by the polarizing plate 105G, passes through the polarizing plate 107G, and is irradiated onto the color synthesis prism 108.
  • the s-polarized blue light LB generated by the display element 106B is reflected by the polarizing plate 105B, transmitted through the polarizing plate 107B, and irradiated onto the color synthesis prism 108.
  • the color synthesis prism 108 synthesizes the incident red light LR, green light LG, and blue light LB and irradiates it onto the projection lens 109 as light L for image display.
  • the light L is projected onto a screen (not shown) or the like via the projection lens 109.
  • the configuration is not limited to the above description and may have any configuration.
  • the optical path control device 10 includes an optical path control mechanism 12, a control circuit (control section) 14, and a drive circuit (drive section) 16.
  • the optical path control mechanism 12 is a mechanism that is driven by a drive circuit 16 to swing.
  • the optical path control mechanism 12 is provided between the color synthesis prism 108 and the projection lens 109 in the direction along the optical path of the light L.
  • the optical path control mechanism 12 swings while receiving the light L from the color combining prism 108, thereby shifting the traveling direction (optical path) of the light L and outputting the light L toward the projection lens 109. In this way, the optical path control device 10 controls the optical path of the light L so that the optical path of the light L is shifted.
  • the position where the optical path control mechanism 12 is provided is not limited to between the color combining prism 108 and the projection lens 109, and may be provided at any position.
  • FIG. 2 is a block diagram schematically showing the circuit configuration of the display device.
  • the video signal processing circuit 160 controls the display elements 106R, 106B, and 106G.
  • a video signal including image data for controlling the display elements 106R, 106B, and 106G and a synchronization signal is input to the video signal processing circuit 160.
  • the video signal processing circuit 160 synchronizes the timing based on the synchronization signal and controls the display elements 106R, 106B, and 106G based on the image data.
  • Control circuit 14 has digital circuit 14A and converter 14B.
  • a synchronization signal from the video signal processing circuit 160 is input to the digital circuit 14A.
  • the digital circuit 14A generates a digital drive signal for driving the optical path control mechanism 12 while synchronizing the timing based on the synchronization signal.
  • Converter 14B is a DA converter that converts a digital signal into an analog signal.
  • the converter 14B converts the digital drive signal generated by the digital circuit 14A into an analog drive signal.
  • the drive circuit 16 receives an analog drive signal from the converter 14B, amplifies the analog drive signal, and outputs it to the actuator 12B of the optical path control mechanism 12, which will be described later.
  • the actuator 12B is driven according to a drive signal to swing a swinging section 12A (see FIG. 3), which will be described later.
  • the control unit 170 is a device that controls the drive circuit (drive unit) 16, and in this embodiment also controls the video signal processing circuit 160.
  • the control unit 170 is, for example, a computer, and includes a storage unit and a processing unit (not shown).
  • the storage unit included in the control unit 170 is a memory that stores various information such as calculation contents and programs of the processing unit, and includes, for example, a main storage device such as RAM (Random Access Memory) and ROM (Read Only Memory). , and an external storage device such as an HDD (Hard Disk Drive).
  • the program for the processing unit stored in the storage unit may be stored in a recording medium readable by the control unit 170.
  • the processing unit included in the control unit 170 is a processing device that executes calculations, and includes a calculation circuit such as a CPU (Central Processing Unit), for example.
  • the processing unit executes processing by the control unit 170 by reading and executing a program (software) from the storage unit.
  • the control unit 170 may execute the process using one CPU, or may include a plurality of CPUs and execute the process using the plurality of CPUs. Further, at least a part of the processing performed by the control unit 170 may be realized by a hardware circuit. The processing performed by the control unit 170 will be described later.
  • FIG. 3 is a plan view showing the optical path control mechanism
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3
  • FIG. 5 is a sectional view taken along the line V-V in FIG. 3.
  • the optical path control mechanism 12 includes a swinging section 12A that includes an optical member (optical section) 20 into which the light L enters, and an actuator 12B that swings the swinging section 12A.
  • the actuator 12B swings around a first swing axis AX and a second swing axis BX along two directions intersecting (preferably orthogonal to) the direction in which the light L enters the optical member 20. 12A is rocked.
  • the first swing axis AX and the second swing axis BX are preferably perpendicular to each other. Therefore, the optical path control mechanism 12 includes a first swing section 21 and a second swing section 22 as the swing section 12A, a first shaft section 23 along the first swing axis AX and a second swing axis BX, It has a second shaft portion 24, a first actuator 25 and a second actuator 26 as the actuator 12B, and a support portion 27.
  • the optical member 20 is a member that transmits the incident light L.
  • the optical member 20 receives the light L from one surface, transmits the incident light L, and emits the light L from the other surface.
  • the optical member 20 is a glass plate, but the material and shape may be arbitrary.
  • the first swinging section 21 has an optical member 20 and a first movable section 31.
  • the first movable part 31 is a member that supports the optical member 20.
  • the first movable part 31 is fixed to the optical member 20.
  • the first movable part 31 is a frame-shaped member made of a plate material with a through hole 31a formed in the center.
  • the optical member 20 is fixed to the first movable part 31 while being fitted into the through hole 31 a of the first movable part 31 .
  • the optical member 20 is fixed to the first movable part 31 via a fixing member or an adhesive to be fixed to the first movable part 31; Any method may be used.
  • the second swinging section 22 is arranged outside the first swinging section 21.
  • the second swinging section 22 has a second movable section 32 .
  • the second movable part 32 is a member that supports the first movable part 31.
  • the first movable part 31 is supported by the second movable part 32 so as to be swingable about the first swing axis AX.
  • the second movable part 32 is a frame-shaped member made of a plate material with a through hole 32a formed in the center.
  • the first movable part 31 is swingably supported by the second movable part 32 while being disposed in the through hole 32a of the second movable part 32 with a predetermined gap therebetween.
  • the first movable part 31 and the second movable part 32 are connected by a pair of first shaft parts 23 along the first swing axis AX.
  • the first movable portion 31 swings about the first swing axis AX by elastically deforming the pair of second shaft portions 24 with respect to the second movable portion 32 so as to be twisted.
  • the support part 27 is arranged outside the second swing part 22.
  • the support part 27 is a member that supports the second movable part 32.
  • the second movable part 32 is supported by the support part 27 so as to be swingable about the second swing axis BX.
  • the support portion 27 is a frame-shaped member made of a plate material with a through hole 27a formed in the center.
  • the second movable portion 32 is swingably supported by the support portion 27 while being disposed in the through hole 27a of the support portion 27 with a predetermined gap therebetween.
  • the second movable part 32 and the support part 27 are connected by a pair of second shaft parts 24 along the second swing axis BX.
  • the second movable portion 32 swings about the second swing axis BX by elastically deforming the pair of second shaft portions 24 with respect to the support portion 27 so as to be twisted.
  • the second movable part 32 (second swing part 22) swings about the second swing axis BX with the pair of second shaft parts 24 as fulcrums with respect to the support part 27.
  • the first movable part 31 (first swing part 21) swings about the first swing axis AX with the pair of first shaft parts 23 as fulcrums relative to the second movable part 32. Therefore, the optical member 20 fixed to the second movable part 32 can swing around the first swing axis AX and the second swing axis BX.
  • the optical path of the light L passing through the optical member 20 can be shifted due to a change in the attitude of the optical member 20. can.
  • the first movable part 31, the second movable part 32, the first shaft part 23, and the second shaft part 24 are integrally formed. Therefore, the first movable part 31 swings relative to the second movable part 32 by elastically deforming the first shaft part 23 so as to be twisted in the circumferential direction.
  • the first movable part 31, the second movable part 32, and the first shaft part 23 may be formed separately and connected. Further, one end and the other end in the axial direction of the second swing axis BX in the second movable part 32 are fixed so as to be connected to the support part 27, and the second shaft part is connected to each end of the second movable part 32. 24 respectively.
  • the second shaft portions 24 may be provided at each end of the second movable portion 32, and each second shaft portion 24 may be fixed so as to be directly connected to the support portion 27. Furthermore, the second movable part 32, the second shaft part 24, and the support part 27 may be formed integrally.
  • the first actuator 25 swings the first movable part 31 (first swinging part 21) about the first swing axis AX with respect to the support part 27 using the pair of first shaft parts 23 as fulcrums.
  • the first actuator 25 is arranged on both one side and the other side of the first swing axis AX in the radial direction (the axial direction of the second swing axis BX).
  • the first actuator 25 includes a coil 41, a yoke 42, and a magnet 43.
  • the coil 41 is attached to the first movable part 31 and fixed to a coil attachment part 31b provided on the first movable part 31.
  • the coils 41 are provided at both ends of the first movable portion 31 in the radial direction of the first swing axis AX (one side and the other side in the axial direction of the second swing axis BX).
  • the yoke 42 is a member that forms a magnetic path.
  • the yoke 42 is attached to the support part 27 and fixed to the support part 27.
  • the yokes 42 are arranged at both ends of the first movable section 31 in correspondence with the coils 41, respectively.
  • Magnet 43 is a permanent magnet.
  • the magnet 43 is attached to the yoke 42 and fixed to the yoke 42.
  • the magnets 43 are arranged adjacent to each coil 41 .
  • a drive signal from the drive circuit 16 is input to the coil 41.
  • a magnet 43 is bonded to one side of a U-shaped yoke 42, and there is an air gap between the surface of the magnet 43 that is not bonded and the opposing U-shaped surface of the yoke 42. is formed.
  • Coil 41 is placed within the air gap.
  • the second actuator 26 swings the second movable part 32 (second swinging part 22) about the second swing axis BX with the pair of second shaft parts 24 as fulcrums relative to the support part 27.
  • the second actuator 26 is arranged on both sides of the second swing axis BX in one direction and the other direction in the radial direction (the axial direction in the first swing axis AX).
  • the second actuator 26 includes a coil 44, a yoke 45, and a magnet 46.
  • the coil 44 is attached to the second movable part 32 and fixed to a coil attachment part 32b provided on the second movable part 32.
  • the coils 44 are provided at both ends of the second movable portion 32 in the radial direction of the second swing axis BX (one side and the other side in the axial direction of the first swing axis AX).
  • the yoke 45 is a member that forms a magnetic path.
  • the yoke 45 is attached to the support part 27 and fixed to the support part 27.
  • the yoke 45 is arranged at both ends of the second movable section 32 in correspondence with the coil 44 .
  • Magnet 46 is a permanent magnet.
  • the magnet 46 is attached to the yoke 45 and fixed to the yoke 45.
  • the magnets 46 are arranged adjacent to each coil 44 .
  • a drive signal from the drive circuit 16 is input to the coil 44.
  • a magnet 46 is bonded to one side of a U-shaped yoke 45, and there is an air gap between the surface of the magnet 46 that is not bonded and the opposing U-shaped surface of the yoke 45. is formed.
  • Coil 44 is placed within the air gap.
  • the first movable part 31 provided with the optical member 20 swings, and the second movable part 32 supporting the first movable part 31 swings.
  • the movable part 31, the second movable part 32, and the coils 41 and 44 constitute the swinging part 12A. That is, it can be said that the part of the optical path control mechanism 12 that swings with respect to the support section 27 refers to the swing section 12A.
  • the first shaft portion 23 also swings together with the second movable portion 32, and therefore is included in the swinging portion 12A.
  • a fixing member or adhesive for fixing the optical member 20 to the first movable part 31, a base or lead wire for passing current through the coils 41, 44, etc. are provided, these are also attached to the support part. Since it swings with respect to 27, it is included in the swinging section 12A.
  • the first actuator 25 swings the first movable part 31, and the second actuator 26 swings the second movable part 32.
  • the yokes 42 and 45 constituting each actuator 25 and 26 are fixed to the support portion 27. Therefore, when the second movable part 32 is swung by the second actuator 26, a gap is ensured between the first actuator 25 and the second movable part 32 so that they do not interfere with each other.
  • the first actuator 25 may be provided in the second movable part 32.
  • the actuators 25 and 26 are of the so-called moving coil type in which the coils 41 and 44 are arranged in the movable parts 31 and 32, the actuators 25 and 26 are not limited thereto. It may be of a so-called moving magnet type in which the coils 41 and 44 are arranged on the support portion 27. In this case, since the magnets 43 and 46 are oscillated together with the optical member 20, the magnets 43 and 46 are included in the oscillating portion 12A instead of the coils 41 and 44.
  • the optical path control mechanism 12 has the above-mentioned configuration, but is not limited to this, and can be any arbitrary structure that can shift the optical path of the light L by the optical section by swinging the optical section by an actuator to which a drive signal is applied.
  • the configuration may be as follows.
  • FIG. 6 is an explanatory diagram illustrating a biaxial swing pattern of the optical section according to the first embodiment.
  • the optical path control mechanism 12 of this embodiment causes the first swinging section 21 and the second swinging section 22 to swing using the actuator 12B according to the applied drive signal.
  • the first actuator 25 and the second actuator 26 constituting the actuator 12B move from the first angle D1 to the second angle around the first shaft portion AX and the second shaft portion BX, respectively, according to the drive signal.
  • the first swing section 21 and the second swing section 22 are rocked so as to repeat the posture change to D2 and the posture change from the second angle D2 to the first angle D1. Due to the combination, the optical axis of the light L is repeatedly shifted from the first position to the second position, from the second position to the third position, from the third position to the fourth position, and from the fourth position to the first position. Note that the drive signal to be applied will be described later.
  • the image projected onto the screen by light L when the optical axis is in the first position and the image projected onto the screen by light L when the optical axis is in the second position are shifted by half a pixel.
  • the optical axis is at the third and fourth positions, they are shifted by half a pixel. That is, the image projected onto the screen is always displayed shifted by half a pixel in either the upper, lower, left, or right diagonal. This increases the apparent number of pixels, making it possible to increase the resolution of the image projected onto the screen. Since the amount of shift of the optical axis is half a pixel of the image, the first angle D1 and the second angle D2 are set to angles that can shift the image by half a pixel.
  • the amount of shift of the image is not limited to half a pixel, but may be arbitrary, such as 1/4 or 1/8 of a pixel, for example.
  • the first angle D1 and the second angle D2 may also be set appropriately according to the amount of shift of the image.
  • the first swing axis AX direction and the second swing axis BX direction intersect orthogonally and are parallel to the pixel arrangement direction.
  • the image position P0 is the display position when the current value applied to the first actuator 25 and the second actuator 26 is 0, that is, when the displacement angle of the optical member 20 is 0. .
  • the optical member 20 is oscillated by a predetermined angle around the first oscillation axis AX by the first actuator 25, the image position P0 is shifted by 1/4 pixel in the direction of the second oscillation axis BX, and the second This is a state in which the optical member 20 is oscillated by a predetermined angle around the second oscillation axis BX by the actuator 26, and the image position P0 is shifted by 1/4 pixel in the direction of the first oscillation axis AX.
  • the A operation state is an image in which the image position P0 is shifted to one side ABXa in the ABX direction, which is a combination of a vector directed in one direction in the first swing axis AX direction and a vector directed in one direction in the second swing axis BX direction. This is a state in which an image is displayed at position P1.
  • the image position P0 is shifted to one side ABXb in the ABX direction, which is a combination of a vector directed to one side in the first swing axis AX direction and a vector directed to one side in the second swing axis BX direction. This is a state in which an image is displayed at image position P2.
  • the image position P0 is shifted to one side ABXc in the ABX direction, which is a combination of a vector directed to one side in the first swing axis AX direction and a vector directed to one side in the second swing axis BX direction. This is a state in which an image is displayed at image position P3.
  • the image position P0 is shifted to one side ABXd in the ABX direction, which is a combination of a vector directed to one side in the first swing axis AX direction and a vector directed to one side in the second swing axis BX direction.
  • This is a state in which an image is displayed at image position P4.
  • FIG. 7 is an explanatory diagram showing a frame division configuration by the processing unit.
  • the display period of one frame is divided into the display period of a plurality of subframes, and the plurality of subframes are displayed in the display period of one frame.
  • the resolution of the display device is artificially increased, such as displaying image data with 8K resolution on a display device with 4K resolution, for example.
  • division into subframes will be described using as an example a case where image data having a resolution of 8K is displayed on a display device having a resolution of 4K.
  • a subframe is a divided frame that includes some of the pixels included in one frame.
  • a subframe is a divided frame that displays image data of some pixels out of the image data of each pixel displayed in the display period of one frame. Note that the pixels included in each subframe in one frame do not overlap, and the subframes in one frame contain different pixels. In other words, image data of different pixels are displayed. do.
  • one frame constituting image data having a resolution of 8K is composed of a plurality of combinations of four pixels A, B, C, and D arranged in columns and rows.
  • Each subframe is composed of image data to be displayed on a display device having 4K resolution.
  • a plurality of pixels A, B, C, and D constituting one frame are divided into four subframes A, B, C, and D.
  • sub-frame A is obtained by extracting only a plurality of pixels A that constitute one frame.
  • subframe A displays only one pixel A at the positions of four pixels A, B, C, and D of the frame.
  • subframe B is obtained by extracting only the plurality of pixels B that constitute one frame.
  • Sub-frame C is obtained by extracting only a plurality of pixels C constituting one frame.
  • Sub-frame D is obtained by extracting only a plurality of pixels D constituting one frame. In this way, frame image data having 8K resolution is displayed as subframe image data having 4K resolution.
  • control unit 170 sets a subframe for each frame, and displays the image data included in the subframe set for that frame within the time to display that frame.
  • the display element 106 is controlled by the video signal processing circuit 160. That is, in this embodiment, the display period of one frame is divided into the display period of a plurality of subframes, and the plurality of subframes are displayed in the display period of one frame.
  • the method for setting the number of subframes for each frame may be arbitrary, in the first embodiment, the number of subframes is set based on the motion vector V of the motion area. Further, the method of controlling the swing speed of the swing unit 12A may be arbitrary, but in the first embodiment, the method is based on the motion vector V of the motion area (in other words, based on the number of subframes set from the motion vector V). ), the swinging speed of the swinging section 12A is set, and a drive signal that can realize the set swinging speed is set. This will be explained in detail below.
  • FIG. 8 is an explanatory diagram for explaining an example of a method of setting a drive signal according to the first embodiment.
  • frames F1 to F4 show a state in which an object 200 (an airplane) passes through a space in which an object 202 (building) is shown
  • frames F5 to F6 show A group of images showing the state after the object 200 has passed is shown.
  • the objects 200 and 202 such as airplanes and buildings, are exemplified as objects that are determined to be motion areas, but the objects are not limited thereto and may be arbitrary.
  • the target object is a previously learned object that can move or change shape.
  • the data of the object is stored in a storage section included in the control section 170.
  • the control unit 170 acquires image data included in the frame when setting the drive signal. Specifically, if the frame to be displayed is the second frame, and the frame displayed before the second frame in time series is the first frame, the control unit 170 controls the image data (the first frame) included in the first frame. Image data for each pixel displayed in the display period of one frame) and image data included in the second frame (image data for each pixel displayed in the display period of the second frame) are acquired.
  • the first frame is a frame immediately before the second frame in chronological order, but is not limited to this, and is a frame displayed at an arbitrary timing before the second frame (for example, a frame displayed several frames earlier than the second frame). frame). Further, a plurality of frames before the second frame may be used as the first frame. In the example of FIG. 8, when frame F2 is to be displayed (second frame), the control unit 170 acquires image data of frame F2 and image data of frame F1 immediately before frame F2.
  • the control unit 170 extracts a target area from the image data in the first frame and the image data in the second frame, and obtains a motion vector between the target area in the first frame and the target area in the second frame. .
  • the method of extracting the target area and the method of acquiring the motion vector may be arbitrary, in this embodiment, the control unit 170 extracts a common target from the image data in the first frame and the image data in the second frame. Extract the target area to be shown.
  • the target area refers to an area where the same target object is shown in the first frame image and the second frame image.
  • the target area in the first frame image refers to an area (pixel group) in the first frame image in which the target that is also included in the second frame image is captured;
  • the target area in an image refers to an area (pixel group) in the second frame image in which an object that is also included in the first frame image is captured.
  • objects 200 and 202 are included in both the image of frame F1 and the image of frame F2. Therefore, in the example of FIG.
  • the control unit 170 extracts a region (pixel group) in which the target object 200 is included in the image data of the frame F1 as a target region for the target object 200 in the frame F1, and A region (pixel group) in which the target object 200 is included in the image data is extracted as a target region for the target object 200 in frame F2.
  • the control unit 170 extracts a region (pixel group) including the target object 202 from the image data of the frame F1 as a target region for the target object 202 in the frame F1, and A region (pixel group) in which the target object 202 is included in the image data of F2 is extracted as a target region for the target object 202 in frame F2.
  • the method for extracting the target area from each image data may be arbitrary, and for example, a known image matching technique for extracting the same target from a plurality of images may be used. Note that when comparing the divided frames, if the entire angle of view is moving, the entire angle of view is determined as a moving area.
  • the control unit 170 calculates the motion vector V of the target area based on the target area in the first frame and the target area in the second frame.
  • the target area where the motion vector V is generated is treated as a motion area where the motion vector V (amount of motion) is generated.
  • the motion vector V is an index indicating the amount of movement of the motion area (the amount of movement of the motion area) during the period from the first frame to the second frame.
  • the control unit 170 calculates a motion vector V of the target area (motion area) from the position of the target area in the first frame image and the position of the target area in the second frame image.
  • the control unit 170 calculates the difference between the position of the target area in the first frame image and the position of the target area in the second frame image in the image-based coordinate system based on the target area (movement). area) as the amount of movement (movement vector).
  • the control unit 170 calculates the motion vector V for each target area (motion area).
  • the control unit 170 calculates the motion vector V of the motion area of the target object 200 based on the position of the target object 200 in the first frame and the second frame.
  • the control unit 170 calculates the motion vector V of the motion area of the target object 202 based on the position of the target object 202 in the first frame and the second frame.
  • control unit 170 may also calculate the movement direction of the motion area as a movement vector. That is, the motion vector V may indicate only the amount of motion of the motion region, or may indicate both the amount of motion of the motion region and the direction in which it moves (movement direction).
  • the moving direction can be calculated from the position of the moving area within the first frame image and the position of the moving area within the second frame image in a coordinate system based on the image.
  • the control unit 170 sets the swinging speed of the swinging unit 12A in the second frame, that is, the waveform of the drive signal applied in the second frame in the first embodiment, based on the calculated motion vector of the motion area.
  • the control unit 170 sets the waveform of the drive signal to be applied to the actuator 12B in the second frame based on the motion vector (movement amount) V of the motion area in the period from the first frame to the second frame. In this embodiment, the control unit 170 determines whether the motion vector (movement amount) V of the motion area is larger than a predetermined threshold value.
  • control unit 170 controls the swinging speed of the swinging unit 12A due to the application of the drive signal when the motion vector V is larger than the threshold value, and the swing speed of the swinging unit 12A due to the application of the drive signal when the motion vector V is less than or equal to the threshold value.
  • the waveform of the drive signal is set to be higher than the swinging speed of the swinging section 12A.
  • the control unit 170 controls the current value ( It can also be said that the waveform of the drive signal is set so that the rate of change of the current value (voltage value) is higher than the rate of change of the current value (voltage value) of the drive signal when the motion vector V is less than or equal to the threshold value. In other words, when the motion vector V is larger than the threshold value, the control unit 170 sets the waveform of the drive signal in the second frame to the first waveform to display a moving image.
  • the control unit 170 determines that a still image is to be displayed, and changes the waveform of the drive signal in the second frame so that the swinging speed of the swinging unit 12A is lower than the first waveform. (the rate of change of the current value is lower than the first waveform).
  • the threshold value here may be set arbitrarily. In the example of FIG. 8, when the frame F2 is the display target (second frame), the motion vector V of the target object 200 is larger than the threshold value.
  • the motion vector V of the object 200 is larger than the threshold value.
  • the object 200 is not photographed, and the motion vector V of the photographed object 202 is less than or equal to the threshold value. Therefore, in the example of FIG. 8, the rate of change of the current value in the drive signal in frames F2 to F4 is higher than the rate of change in the current value in the drive signal in frames F5 to F6.
  • control unit 170 can also be said to set the swinging speed of the swinging unit 12A based on the number of subframes set based on the motion vector.
  • the control unit 170 controls the swinging speed of the swinging unit 12A when the motion vector V is greater than the threshold (that is, when the number of subframes is greater than a predetermined threshold), such that the motion vector V is less than or equal to the threshold.
  • the swinging speed of the swinging section 12A is set so as to be higher than the swinging speed of the swinging section 12A in the case (that is, when the number of subframes is less than or equal to a predetermined threshold value).
  • FIG. 9 is a graph showing an example of the waveform of the drive signal when the motion vector is below the threshold value
  • FIG. 10 is a graph showing an example of the swinging pattern of the swinging section when the motion vector is below the threshold value. It is.
  • the drive signal applied from the drive circuit 16 to the first actuator 25 is an electrical signal, and the current value changes over time.
  • the waveform representing the change in the current value of the drive signal over time can be said to be the waveform of the drive signal.
  • the waveform of the drive signal is shown by a solid line in FIG.
  • the drive signal has the same waveform repeated every period T.
  • the period T includes a period T1 and a period T2 that is subsequent to the period T1 and continuous with the period T1.
  • Period T1 corresponds to a period in which an image (image not shifted by half a pixel) is displayed when the optical axis of light L is at the first position
  • period T2 corresponds to a period when the optical axis of light L is at the second position. This corresponds to the period in which the image (image shifted by half a pixel) is displayed when the image is in the correct position.
  • the period T1 and the period T2 each correspond to the display period of one frame, in other words, the period T corresponds to the display period of two frames.
  • the waveform (second waveform) of the drive signal is set.
  • period T1 corresponds to frame F5
  • period T2 corresponds to frame F6.
  • the current value changes from the first current value A1 to the second current value A2 in the first period TA1 of the period T1.
  • the intermediate position 0 between the first current value A1 and the second current value A2 is a position where the current value is zero.
  • the current value changes linearly over time from the first current value A1 to the second current value A2 in the first period TA1. That is, in the second waveform, the current value is the first current value A1 at the start timing of the first period TA1, and then the current value changes linearly from the first current value A1 until the end of the first period TA1. At the timing, the current value becomes the second current value A2.
  • the first current value A1 is a current value that can hold the first swinging portion 21 at the first angle D1, and is set according to the numerical value of the first angle D1.
  • the second current value A2 is a current value that can hold the first swinging portion 21 at the second angle D2, and is set according to the value of the second angle D2.
  • the first current value A1 and the second current value A2 are current values with opposite signs, and may have the same absolute value. In FIG. 9, it is illustrated that the first current value A1 is negative and the second current value A2 is positive.
  • the length of the first period TA1 is preferably a value corresponding to the natural frequency of the first swinging section 21.
  • the first swinging section 21 refers to a portion of the optical path control mechanism 12 that swings relative to the support section 27 (in this embodiment, the optical member 20, the first movable section 31, and the coil 41). That is, it can be said that the length of the first period TA1 has a value corresponding to the natural frequency of the portion that swings with respect to the support portion 27. More specifically, the length of the first period TA1 is preferably approximately the same value as the natural period of the first swinging portion 21, and more preferably the same value as the natural period.
  • the natural period is the reciprocal of the natural frequency.
  • substantially the same value means that a value that is slightly different from the natural period within the error range is also allowed. For example, even if the deviation from the natural period is within 5% of the value of the natural period, it may be determined as “approximately the same value.”
  • the expression “substantially the same value” refers to the same meaning. Note that the value of the natural period (reciprocal of the natural frequency) is expressed as "1/f" [s] when the natural frequency is f [Hz].
  • the current value is held at the second current value A2 in the second period TB1 of the period T1.
  • the second period TB1 is a period subsequent to the first period TA1 and continuous with the first period TA1. Note that being held at the second current value A2 does not mean that the current value does not strictly change from the second current value A2, but may also deviate from the second current value A2 within a predetermined value range. May be included.
  • the predetermined value here may be set arbitrarily, and may be, for example, a value of 10% of the second current value A2.
  • the current value gradually changes from the first current value A1 to the second current value A2 in the period T1, and when the current value reaches the second current value A2, the current value changes to the second current value A2. 2 current value A2 is maintained.
  • the current value changes from the second current value A2 to the first current value A1 in the third period TA2 of the period T2.
  • the third period TA2 can be said to be a period subsequent to the second period TB1 and continuous to the second period TB1. More specifically, in the second waveform, the current value changes linearly over time from the second current value A2 to the first current value A1 in the third period TA2. That is, in the second waveform, the current value is the second current value A3 at the start timing of the third period TA2, and then the current value changes linearly from the second current value A2 to reach the second current value A3 in the third period TA2. At the end timing, the current value becomes the first current value A1.
  • the length of the third period TA2 is preferably a value corresponding to the natural frequency of the first swinging section 21. More specifically, the length of the third period TA2 is preferably approximately the same value as the natural period (reciprocal of the natural frequency) of the first swinging portion 21, and more preferably the same value as the natural period. . In the third period TA2, the length of the third period TA2 is equal to the length of the first period TA1.
  • the current value is held at the first current value A1 in the fourth period TB2 of the period T2.
  • the fourth period TB2 is a period after the third period TA2 and continuous with the third period TA2. Further, the fourth period TB2 is a period that precedes the first period TA1 and is continuous with the first period TA1.
  • the fourth period TB2 is equal to the second period TB1. Note that being held at the first current value A1 does not mean that the current value does not strictly change from the first current value A1, but may also deviate from the first current value A1 within a predetermined value range. May be included.
  • the predetermined value here may be set arbitrarily, and may be, for example, a value of 10% of the first current value A1.
  • the current value gradually changes from the second current value A2 to the first current value A1 in the period T2, and when the current value reaches the first current value A1, the current value changes to the first current value A1. 1 current value A1.
  • the second waveform of the drive signal is trapezoidal, and the first period TA1 and third period TA2 in which the current value changes correspond to the natural frequency of the swinging section 12A. value.
  • the broken line shown in FIG. 9 indicates the period during which the light L is irradiated. It is preferable that the irradiation device 100 does not irradiate the light L during the first period TA1 and irradiates the light L during the second period TB1. Further, it is preferable that the irradiation device 100 does not irradiate the light L during the third period TA2 and irradiates the light L during the fourth period TB2.
  • the swing pattern of the first swing section 21 refers to the displacement angle (first swing) of the first swing section 21 for each time when a drive signal is applied to the first actuator 25. Angle around the moving axis AX). In FIG. 10, the swing pattern is shown by a solid line.
  • the current value of the drive signal changes from the first current value A1 to the second current value A2 in the first period TA1.
  • the displacement angle of the first swinging portion 21 changes from the first angle D1 to the second angle D2 in the first period TA1.
  • the intermediate position 0 between the first angle D1 and the second angle D2 is a position where the displacement angle of the first swinging portion 21 is zero.
  • the current value of the drive signal is held at the second current value A2.
  • the displacement angle of the first swinging portion 21 is maintained at the second angle D2 during the second period TB1.
  • the predetermined value here may be set arbitrarily, and may be, for example, a value of 10% of the second angle D2.
  • the current value of the drive signal changes from the second current value A2 to the first current value A1.
  • the displacement angle of the first swinging section 21 changes from the second angle D2 to the first angle D1 in the third period TA2.
  • the current value of the drive signal is held at the first current value A1.
  • the displacement angle of the first swinging portion 21 is maintained at the first angle D1 during the fourth period TB2.
  • the predetermined value here may be set arbitrarily, and may be, for example, a value of 10% of the first angle D1.
  • the light L is irradiated during the second period TB1 and the fourth period TB2. Therefore, in the second period TB1, the first swinging portion 21 held at the second angle D2 is irradiated with the light L, and the optical path of the light L becomes the first position. In the fourth period TB2, the first swinging section 21 held at the first angle D1 is irradiated with the light L, the optical path of the light L is shifted to the second position, and the image is shifted by half a pixel.
  • the drive signal applied to the first actuator 25 has been described as the drive signal applied from the drive circuit 16 to the actuator 12B. The same applies to the drive signal applied to the second actuator 26, so a description thereof will be omitted.
  • FIG. 11 is a graph showing an example of the waveform of the drive signal when the motion vector is larger than the threshold value
  • FIG. 12 is a graph showing an example of the swinging pattern of the swinging part when the motion vector is larger than the threshold value.
  • the waveform (first waveform) of the drive signal is set so that the period T corresponds to the display period of one frame.
  • period T corresponds to frame F2.
  • the current value is held at zero during the first period TA1.
  • the digital circuit 14A and the like include a digital switching circuit, the supply of current to the actuator 12B can be stopped, and the period in which the supply of current is stopped is the period in which the current value is zero.
  • the length of the first period TA1 is a value corresponding to the natural frequency of the swinging section 12A.
  • the length of the first period TA1 is preferably approximately the same as half the natural period (reciprocal of the natural frequency) of the swinging portion 12A; It is more preferable that the value is the same as half of the value of . Note that the half value of the natural period is expressed as "1/(2 ⁇ f)" [s] when the natural frequency is f [Hz].
  • the current value is held at the second current value A2 in the second period TB1.
  • the second period TB1 is a period subsequent to the first period TA1 and continuous with the first period TA1. That is, at the start timing of the second period TB1 (the timing at which the first period TA1 switches to the second period TB1), the current value switches from zero to the second current value A2, and the current value changes until the end timing of the second period TB1. is held at the second current value A2.
  • the current value of the drive signal in the period T1 is held at zero in the first period TA1, the current value is switched to the second current value A2 at the start timing of the second period TB1, and the current value is maintained at zero in the first period TA1.
  • the current value is held at the second current value A2 during the second period TB1.
  • the current value is held at zero in the third period TA2.
  • the third period TA2 can be said to be a period subsequent to the second period TB1 and continuous to the second period TB1. That is, at the start timing of the third period TA2 (timing when switching from the second period TB1 to the third period TA2), the current value switches from the second current value A2 to zero, and until the end timing of the third period TA2, the current value is held at zero.
  • the length of the third period TA2 has a value corresponding to the natural frequency of the swinging section 12A.
  • the length of the third period TA2 is preferably approximately the same as half the natural period (reciprocal of the natural frequency) of the swinging portion 12A; It is more preferable that the value is the same as half of the value of . In this embodiment, the length of the third period TA2 is equal to the length of the first period TA1.
  • the current value is held at the first current value A1 in the fourth period TB2.
  • the fourth period TB2 is a period after the third period TA2 and continuous with the third period TA2. That is, at the start timing of the fourth period TB2 (the timing at which the third period TA2 switches to the fourth period TB2), the current value switches from zero to the first current value A1, and the current value changes until the end timing of the fourth period TB2. is held at the first current value A1.
  • the current value of the drive signal in the period T2 is held at zero in the third period TA2, and the current value is switched to the first current value A1 at the start timing of the fourth period TB2.
  • the current value is held at the first current value A1.
  • the current value is held at zero in the first period TA1 following the fourth period TB2, as described above. That is, at the start timing of the first period TA1 (the timing at which the fourth period TB2 switches to the first period TA1), the current value switches from the first current value A1 to zero, and the current value changes until the end timing of the first period TA1. is held at zero.
  • the broken line in FIG. 11 indicates the period during which the light L is irradiated. It is preferable that the irradiation device 100 does not irradiate the light L during the first period TA1 and irradiates the light L during the second period TB1. Further, it is preferable that the irradiation device 100 does not irradiate the light L during the third period TA2 and irradiates the light L during the fourth period TB2.
  • the current value switches from the first current value A1 to zero, and the current value is maintained at zero until the end timing of the first period TA1.
  • the displacement angle of the swinging portion 12A changes from the first angle D1 to the second angle D2 in the first period TA1. More specifically, the swinging part 12A, which has been twisted to the first angle D1 and held at the first current value A1, is untwisted and returns to the neutral position when the current becomes zero, and further inertial force is applied. , the second angle D2 is reached by being twisted to the second angle D2 on the opposite side.
  • the current value of the first waveform switches from zero to the second current value A2, and the current value is maintained at the second current value A2 until the end timing of the second period TB1.
  • the displacement angle of the swinging portion 12A is maintained at the second angle D2 during the second period TB1. That is, the swinging portion 12A that has been twisted to the second angle D2 is held at the second angle D2 because the force of returning to the neutral position and the force due to the second current value A2 are balanced.
  • the current value switches from the second current value A2 to zero, and the current value is maintained at zero until the end timing of the third period TA2.
  • the displacement angle of the swinging portion 12A changes from the second angle D2 to the first angle D1 in the third period TA2.
  • the current value switches from zero to the first current value A1, and the current value is maintained at the first current value A1 until the end timing of the fourth period TB2.
  • the displacement angle of the swinging portion 12A is maintained at the first angle D1 during the fourth period TB2.
  • a stepped first waveform drive signal is applied, and when the motion vector V is less than or equal to the threshold, a trapezoidal drive signal is applied.
  • a drive signal of a second waveform is applied.
  • the current value changes in periods TA1 and TA2
  • the periods TA1 and TA2 in the first waveform are shorter than the periods TA1 and TA2 in the second waveform. Therefore, it can be seen that in the first waveform shown in the example of this embodiment, the rate of change in the current value, in other words, the swinging speed of the swinging portion 12A is higher than the second waveform.
  • the waveform of the drive signal set according to the motion vector V is not limited to those shown in the examples of FIGS. 8 to 12, and may be arbitrary. Further, in the above description, there are two types of waveforms of the drive signal that are set according to the motion vector V, but the present invention is not limited thereto. For example, three or more types of waveforms of the drive signal may be set depending on the motion vector V. In this case, the control unit 170 controls the swinging speed of the swinging unit to increase (the rate of change of the current value to ), it is preferable to set the waveform of the drive signal.
  • the threshold value for the motion vector V is a constant value fixed for each frame or motion region, but is not limited to this, and may be set for each motion region.
  • the control unit 170 may set the threshold based on the area of the motion region. More preferably, the control unit 170 may set the threshold value to be smaller as the area of the motion region becomes larger. Thereby, the larger the movement area, the higher the swing speed can be set even if the amount of movement is small.
  • the control unit 170 When setting a subframe, the control unit 170 extracts a target region (motion region) and calculates a motion vector V of the motion region.
  • the method for extracting the motion area and calculating the motion vector V is the same as that for setting the waveform of the drive signal, so the explanation will be omitted.
  • the control unit 170 sets the number of subframes for the second frame based on the calculated motion vector V of the motion area. That is, the control unit 170 sets the number of subframes of the second frame based on the motion vector (movement amount) V of the motion area in the period from the first frame to the second frame. In this embodiment, the control unit 170 determines whether the motion vector (movement amount) V of the motion area is larger than a predetermined threshold value. More specifically, the control unit 170 determines the number of subframes of the second frame when the motion vector V is larger than the threshold value from the number of subframes of the second frame when the motion vector V is less than or equal to the threshold value. Do more.
  • the control unit 170 sets the number of subframes of the second frame to the first predetermined number to display the moving image. Then, when the motion vector V is less than or equal to the threshold value, the control unit 170 sets the number of subframes of the second frame to a second predetermined number smaller than the first predetermined number to display a still image.
  • the threshold value here may be set arbitrarily. In the example of FIG. 8, the number of subframes of frames F2 to F4 in which the motion vector V is greater than the threshold value is greater than the number of subframes in frames F5 to F6 in which the motion vector V is less than or equal to the threshold value.
  • the control unit 170 can set the subframes so that all pixels included in the second frame are included in one of the respective subframes. preferable.
  • four subframes 2A, 2B, 2D, and 2C are set in frame F2, and among the plurality of pixels A, B, C, and D that constitute frame F2, pixel A is Pixel B is included in subframe B, pixel C is included in subframe 2C, and pixel D is included in subframe 2D.
  • frames F3 and F4 so the explanation will be omitted.
  • the control unit 170 sets the subframes so that only some pixels included in the second frame are included in each subframe. is preferred.
  • the control unit 170 controls whether a pixel different from a pixel not included in a subframe of the second frame is included in one of the subframes in the frame (third frame) subsequent to the second frame. It is preferable to set the subframe so that the subframe is included. That is, in the example of FIG. 8, two subframes 5A and 5B are set in frame F5, and among the plurality of pixels A, B, C, and D that constitute frame F5, pixel A is set in subframe 5A.
  • pixel B is included in subframe 5B
  • pixel C is included in subframe 2C
  • subframes 6D and 6C are set, and among the plurality of pixels A, B, C, and D that constitute frame F5, pixel D that was not included in subframes 5A and 5B is set in subframe 6D.
  • pixel C is included in subframe 6C. Note that the pixel A and the pixel D, or the pixel B and the pixel C may be combined without being limited to being on the same line (side-by-side).
  • the number of subframes (first predetermined number) when the motion vector V is greater than the threshold is 4, and the number of subframes (second predetermined number) when the motion vector V is less than or equal to the threshold is 2.
  • the first predetermined number and the second predetermined number are not limited to this and may be arbitrary numbers. However, it is preferable that the first predetermined number and the second predetermined number are set according to the number of swing axes. Further, in the example of this embodiment, the number of subframes is set to one of two types of numbers, the first predetermined number and the second predetermined number, but the number is not limited thereto. For example, the number of subframes to be set may be set to any three or more types of numbers depending on the motion vector V.
  • control unit 170 increases the number of subframes as the motion vector (movement amount) V increases. For example, if the motion vector V is less than or equal to the first threshold, the number of subframes is one, and the motion vector V is greater than the first threshold and less than or equal to a second threshold that is higher than the first threshold. In this case, the number of subframes may be two, and if the motion vector V is larger than the second threshold, the number of subframes may be four.
  • the threshold value for the motion vector V is a constant value fixed for each frame or motion region, but is not limited to this, and may be set for each motion region.
  • the control unit 170 may set the threshold based on the area of the motion region. More preferably, the control unit 170 may set the threshold value to be smaller as the area of the motion region becomes larger. As a result, the larger the motion area, the greater the number of subframes even if the amount of movement is small.
  • control unit 170 determines the pixels to be included in the set subframe, in other words, the pixels on which an image based on the image data is to be displayed during the display period of the subframe. is set for each subframe.
  • the control unit 170 After setting the subframe for the second frame, the control unit 170 outputs information on the set subframe to the video signal processing circuit 160. Thereby, the control unit 170 causes the video signal processing circuit 160 to cause the video signal processing circuit 160 to display the image of the image data included in the subframe set for the second frame within the time to display the second frame.
  • the display element 106 is controlled. Furthermore, the control unit 170 causes the video signal processing circuit 160 to control the display element 106 so that each subframe set for the second frame is sequentially displayed within the time for displaying the second frame. be controlled.
  • the display of images for each subframe will be described in more detail below.
  • FIG. 13 is a schematic diagram showing an example of image display when the motion vector is larger than the threshold value.
  • the subframes are arranged such that all pixels included in the second frame are included in one of the respective subframes.
  • the video signal processing circuit 160 controls the display elements 106R, 106G, and 106B so that the subframes set for the second frame are sequentially displayed during the time when the second frame is displayed.
  • the control circuit 14 generates a drive signal of the first waveform based on the synchronization signal input from the video signal processing circuit 160.
  • the drive circuit 16 drives the actuator 12B based on this first waveform drive signal to swing the swinging section 12A. This will be explained in detail below.
  • the video signal processing circuit 160 sequentially displays subframes 2A, 2B, 2D, and 2C divided into four parts within the time (60 Hz) for displaying the second frame (here, frame F2).
  • the display elements 106R, 106G, and 106B are controlled so that the display is displayed.
  • the time for displaying each subframe 2A, 2B, 2D, and 2C is 1/4 the time (240 Hz) for displaying the second frame (60 Hz).
  • the control circuit 14 generates a first waveform drive signal based on the synchronization signal input from the video signal processing circuit 160, and the drive circuit 16 Actuators 25 and 26 are driven based on the drive signal. That is, as shown in FIG. 8, when displaying the subframe 2A, the drive circuit 16 applies a drive signal (see FIG. 11) corresponding to the first waveform in the period T1. Then, as shown in FIG. 13, the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P0 by 1/2 pixel in the direction of the first swing axis AX. Put into working condition. That is, the image is displayed at an image position P1 where the image position P0 is shifted to one ABXa in the ABX direction.
  • the drive circuit 16 continues to apply the drive signal (see FIG. 11) corresponding to the first waveform in period T1.
  • the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P1 by 1/2 pixel in the first swing axis AX direction. Put into working condition. That is, the image is displayed at an image position P2 where the image position P0 is shifted to one ABXb in the ABX direction.
  • the drive circuit 16 applies a drive signal (see FIG. 11) corresponding to the first waveform in period T2.
  • the first actuator 25 swings the optical member 20 (see FIG. 3) around the first swing axis AX, and moves the image position P2 by 1/2 in the direction of the second swing axis BX. Shift 2 pixels and enter D operation state. That is, the image is displayed at an image position P3 where the image position P0 is shifted to one side ABXd in the ABX direction.
  • the drive circuit 16 continues applying the drive signal (see FIG. 11) corresponding to the first waveform in the period T2. Then, as shown in FIG. 13, the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P3 by 1/2 pixel in the direction of the first swing axis AX. Put into working condition. That is, the image is displayed at an image position P4 where the image position P0 is shifted to one side ABXc in the ABX direction.
  • FIG. 14 and 15 are schematic diagrams showing examples of image display when the motion vector is less than or equal to the threshold value.
  • the motion vector V when the motion vector V is less than or equal to the threshold value, in the second frame to be displayed, only some pixels included in the second frame are included in one of the respective subframes, and , in the frame (third frame) that follows the second frame, the subframes are divided so that pixels that are different from the pixels that were not included in the subframes of the second frame are included in one of the respective subframes.
  • the video signal processing circuit 160 controls the display elements 106R, 106G, and 106B so that the subframes set for the second frame are sequentially displayed during the time when the second frame is displayed, and the third frame is displayed. During the display time, the display elements 106R, 106G, and 106B are controlled so that the subframes set for the third frame are sequentially displayed.
  • the control circuit 14 then generates a second waveform drive signal based on the synchronization signal input from the video signal processing circuit 160.
  • the drive circuit 16 drives the actuator 12B based on this second waveform drive signal to swing the swinging section 12A. This will be explained in detail below.
  • the video signal processing circuit 160 divides subframes 5A, 5B, 5C, and 5D into four parts within the time (60 Hz) for displaying the second frame (here, frame F5).
  • display elements 106R, 106G, and 106B are controlled so that two subframes 5A and 5B (first subframe group) are displayed sequentially.
  • the time for displaying each subframe 5A, 5B is 1/2 the time (120 Hz) for displaying frame F5 (60 Hz). Subsequently, as shown in FIGS.
  • the video signal processing circuit 160 divides the third frame (frame F6 in this case) into four subframes 6A, 6B, and Display elements 106R, 106G, and 106B are controlled so that two subframes 6D and 6C (second subframe group) out of 6C and 6D are sequentially displayed.
  • the time for displaying each subframe 6D, 2C is 1/2 the time (120 Hz) for displaying the second frame (60 Hz).
  • the control circuit 14 generates a second waveform drive signal based on the synchronization signal input from the video signal processing circuit 160, and the drive circuit 16 Actuators 25 and 26 are driven based on the drive signal. That is, as shown in FIG. 8, when displaying the subframe 5A, the drive circuit 16 sends a drive signal (see FIG. 9) corresponding to the second waveform in the period T1 to the first actuator 25 and the second actuator 26. Apply. Then, as shown in FIG. 14, the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P0 by 1/2 pixel in the direction of the first swing axis AX. Put into working condition. That is, the image is displayed at an image position P1 where the image position P0 is shifted to one ABXa in the ABX direction.
  • the drive circuit 16 continues to apply the drive signal (see FIG. 9) corresponding to the second waveform in period T1.
  • the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P1 by 1/2 pixel in the first swing axis AX direction. Put into working condition. That is, the image is displayed at an image position P2 where the image position P0 is shifted to one ABXb in the ABX direction.
  • the drive circuit 16 applies a drive signal (see FIG. 9) corresponding to the second waveform in period T2.
  • the first actuator 25 swings the optical member 20 (see FIG. 3) around the first swing axis AX, and moves the image position P2 by 1/2 in the direction of the second swing axis BX. Shift 2 pixels and enter D operation state. That is, the image is displayed at an image position P3 where the image position P0 is shifted to one side ABXd in the ABX direction.
  • the drive circuit 16 continues to apply the drive signal (see FIG. 9) corresponding to the second waveform in the period T2.
  • the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P3 by 1/2 pixel in the direction of the first swing axis AX. Put into working condition. That is, the image is displayed at an image position P4 where the image position P0 is shifted to one side ABXc in the ABX direction.
  • the waveform of the drive signal in that frame is set based on the motion vector V of the motion area.
  • the waveform of the drive signal can be set according to the motion vector V, that is, based on the determination result of whether the image is a moving image.
  • a moving image can be appropriately displayed while appropriately swinging the moving part 12A.
  • the drive is performed such that the swinging speed of the swinging section 12A when the motion vector V is larger than the threshold value is higher than the swinging speed when the motion vector V is below the threshold value. Set the signal waveform.
  • FIG. 16 is a graph showing another example of the waveform of the drive signal
  • FIG. 17 is a graph showing another example of the swinging pattern of the swinging section.
  • the waveform of the drive signal as shown in FIG. 16 may be set as the first waveform.
  • the current value is held at the second current value A2, and then the current value is held at the first current value A1. That is, in the period TA1a of the first period TA1, the current value is held at the second current value A2, and in the period TA1b of the first period TA1, the current value is held at the first current value A1. .
  • the period TA1b is a period subsequent to the period TA1a and continuous with the period TA1a. That is, at the start timing of the period TA1b (timing when switching from the period TA1a to the period TA1b), the current value switches from the second current value A2 to the first current value A1, and until the end timing of the period TA1b, the current value changes to the first current value. It is held at the value A1.
  • the length of the first period TA1 is preferably a value corresponding to the natural frequency of the swinging section 12A.
  • the length of the first period TA1 is preferably approximately the same value as one-third of the natural period (reciprocal of the natural frequency) of the swinging portion 12A; More preferably, they are the same value. Note that the value of one-third of the natural period (reciprocal of the natural frequency) is expressed as "1/(3 ⁇ f)" [s] when the natural frequency is f [Hz].
  • the length of the period TA1a and the length of the period TA1b have values corresponding to the natural frequency of the swinging portion 12A. It is preferable that the length of the period TA1a and the length of the period TA1b be the same. More specifically, the length of the period TA1a and the length of the period TA1b are preferably approximately the same value as one-sixth of the natural period (reciprocal of the natural frequency) of the swinging portion 12A, and the natural period More preferably, the value is the same as one-sixth of the value. Note that the value of one-sixth of the reciprocal of the natural frequency is expressed as "1/(6 ⁇ f)" [s] when the natural frequency is f [Hz].
  • the current value is held at the second current value A2 in the second period TB1.
  • the second period TB1 is a period subsequent to the first period TA1 (period TA1b) and continuous with the first period TA1 (period TA1b). That is, at the start timing of the second period TB1 (timing when switching from period TA1b to second period TB1), the current value switches from the first current value A1 to the second current value A2, and until the end timing of the second period TB1, The current value is held at the second current value A2.
  • the drive signal in period T1 has a current value held at the second current value A2 during period TA1a, a current value switched to and held at the first current value A1 during period TA1b, and a current value switched to and held at the first current value A1 during period TA1b.
  • the current value is switched to and held at the second current value A2.
  • the current value is held at the first current value A1, and then the current value is held at the second current value A2. That is, at the start timing of the period TA2a of the third period TA2 (the timing at which the second period TB1 switches to the period TA2a), the current value switches from the second current value A2 to the first current value A1, and at the end timing of the period TA2a. The current value is maintained at the first current value A1 until then.
  • Period TA2b is a period subsequent to period TA2a and continuous with period TA2a.
  • the current value switches from the first current value A1 to the second current value A2, and until the end timing of the period TA2b, the current value changes to the second current value. It is held at the value A2.
  • the length of the third period TA2 is preferably a value corresponding to the natural frequency of the swinging section 12A.
  • the length of the third period TA2 is preferably approximately the same value as one-third of the natural period (reciprocal of the natural frequency) of the swinging portion 12A, and is equal to or equal to one-third of the natural period. More preferably, they are the same value. In this embodiment, the length of the third period TA2 is equal to the length of the first period TA1.
  • the length of the period TA2a and the length of the period TA2b have values corresponding to the natural frequency of the swinging section 12A. It is preferable that the length of period TA2a and the length of period TA2b be the same. More specifically, the length of the period TA2a and the length of the period TA2b are preferably approximately the same value as one-sixth of the reciprocal of the natural frequency of the swinging portion 12A, It is more preferable that the value is the same as the value of 1. In this embodiment, the length of period TA2a is equal to the length of period TA1a, and the length of period TA2b is equal to the length of period TA1b.
  • the current value is held at the first current value A1 in the fourth period TB2.
  • the fourth period TB2 is a period after the third period TA2 (period TA2b) and continuous with the third period TA2 (period TA2b). That is, at the start timing of the fourth period TB2 (the timing at which period TA2b switches to the fourth period TB2), the current value switches from the second current value A2 to the first current value A1, and until the end timing of the fourth period TB2, The current value is held at the first current value A1.
  • the drive signal in period T2 has a current value held at the first current value A1 during period TA2a, a current value switched to and held at the second current value A2 during period TA2b, and a current value switched to and held at the second current value A2 during period TA2b.
  • the current value is switched to and held at the first current value A1.
  • the current value is held at the second current value A2 as described above. That is, at the start timing of the period TA1a (the timing at which the fourth period TB2 switches to the period TA1a), the current value switches from the first current value A1 to the second current value A2, and until the end timing of the period TA1a, the current value changes to the second current value A2. 2 is held at the current value A2.
  • the drive signal having the above waveform is applied, as shown in FIG. to the second angle D2. More specifically, in response to the force that tries to twist back at the first angle D1, a further force is applied in the direction that the second current value A2 tries to return, thereby accelerating the swinging section 12A in the direction of the second angle D2. If left as is, it will be twisted further than the second angle D2 due to inertia, so in this embodiment, the brake is applied by subsequently flowing the first current value A1. Therefore, the swinging portion 12A can be swinged at high speed.
  • the current value of the drive signal switches from the first current value A1 to the second current value A2, and the current value is maintained at the second current value A2 until the end timing of the second period TB1. Ru. As a result, the displacement angle of the swinging portion 12A is maintained at the second angle D2 during the second period TB1.
  • the current value switches from the second current value A2 to the first current value A1 at the start timing of the period TA2a, the current value is maintained at the first current value A1 until the end timing of the period TA2a, and the current value switches from the second current value A2 to the first current value A1 at the start timing of the period TA2b.
  • the current value switches from the first current value A1 to the second current value A2, and the current value is held at the second current value A2 until the end timing of the period TA2b.
  • the displacement angle of the swinging portion 12A changes from the second angle D2 to the first angle D1 in the third period TA2 (periods TA2a, TA2b).
  • the current value of the drive signal switches from the second current value A2 to the first current value A1, and the current value is maintained at the first current value A1 until the end timing of the fourth period TB2. Ru. As a result, the displacement angle of the swinging portion 12A is maintained at the first angle D1 during the fourth period TB2.
  • these waveforms may be set according to the motion vector V as follows. That is, for example, as explained in the above embodiment, when the motion vector V is less than or equal to the threshold, the trapezoid shape shown in FIG. 9 is formed, and when the motion vector V is larger than the threshold, the trapezoid shape shown in FIG. It may also be shaped like a staircase. For example, as explained in the other example above, when the motion vector V is less than or equal to the threshold, the trapezoid shape shown in FIG. 9 is formed, and when the motion vector V is larger than the threshold, the trapezoid shape shown in FIG. It may also have a shape like this.
  • the shape when the motion vector V is less than or equal to the threshold value, the shape may be a stepped shape as shown in FIG. 11, and when the motion vector V is greater than the threshold value, the shape may be formed as shown in FIG. 16.
  • the shape if the motion vector V is less than or equal to the first threshold, the trapezoidal shape shown in FIG. If the motion vector V is larger than the second threshold, the shape may be a step shape as shown in FIG. 11, and if the motion vector V is larger than the second threshold, the shape may be a step shape as shown in FIG.
  • FIG. 18 is a schematic diagram showing another example of the order of displayed pixels.
  • subframes may be set so that pixels A, D, B, and C are displayed in this order.
  • the control unit 170 obtains the first frame of image data and the second frame of image data. Then, the control unit 170 determines the motion vector V and the motion area based on the image data of the first frame and the image data of the second frame (by comparing the image data of the first frame and the image data of the second frame). Calculate. Specifically, the control unit 170 determines a moving area of the image data, that is, an area where the motion vector V is generated, based on the image data of the first frame and the image data of the second frame. Extract as a motion area.
  • the control unit 170 calculates the motion vector V based on the image data of the first frame and the image data of the second frame, and calculates the motion vector V when the motion vector V is larger than a predetermined value (for example, less than zero). (large) area is extracted as a motion area.
  • a predetermined value for example, less than zero
  • the setting of subframes is not limited to using a motion vector V that includes both the amount of motion and the direction of motion, and only the magnitude of the motion (amount of motion) between the first frame and the second frame is used to determine the number of subframes. It may be used for setting.
  • the method of calculating the motion vector V in the second embodiment may be arbitrary, and a known method may be used.
  • a block matching method may be used to calculate the motion vector V.
  • the block matching method for example, an image is divided into a plurality of blocks, a correlation calculation between the first frame and the second frame is performed for each block, and a motion vector V is calculated from the correlation value in the correlation calculation. Then, a block whose motion vector V is larger than a predetermined value may be calculated as a motion area.
  • the motion area, motion vector V, and motion amount in the second embodiment may be acquired from an external device via a communication unit (not shown). Further, the motion area is not limited to the area where the motion vector V occurs, but may be an area where the amount of motion occurs.
  • Embodiment 3 differs from the above embodiments in that the swinging speed of the swinging section is set based on the number of subframes. In Embodiment 3, descriptions of the same configurations and processes as in the above embodiments will be omitted.
  • FIG. 19 is a block diagram schematically showing the circuit configuration of the display device according to the third embodiment.
  • the control section 170 includes a subframe setting section 172.
  • the subframe setting unit 172 sets the number of subframes for each frame.
  • the subframe setting unit 172 may set the number of subframes using any method.
  • the subframe setting unit 172 may set the number of subframes based on the motion area and motion vector V calculated as in the first embodiment or the second embodiment.
  • the subframe setting unit 172 may obtain information on the category (type) of the program (content) displayed by the display device, and set the number of subframes according to the category of the program.
  • the subframe setting unit 172 may acquire the information on the program category using any method.
  • the subframe setting unit 172 may acquire the program category information stored in the storage unit of the control unit 170, or the subframe setting unit 172
  • the program category may be acquired by communicating with a server in which the program category is stored via a communication unit provided with the program, or the category may be classified using a known method from the image data.
  • the subframe setting unit 172 may set the number of subframes based on any criteria depending on the category of the program. For example, when playing a program in a category that is expected to have a lot of movement or a high resolution, such as sports or movies, a large number of subframes may be set. Furthermore, for example, in the case of a category of programs such as information programs that have little movement or are expected to require low resolution, the number of subframes may be set to be small, giving priority to the lifespan of the device.
  • the control unit 170 sets the swinging speed of the swinging unit 12A based on the number of subframes. For example, the control unit 170 controls the swinging speed of the swinging unit 12A when the number of subframes is greater than a predetermined threshold, and the swinging speed of the swinging unit 12A when the number of subframes is less than or equal to a predetermined threshold.
  • the swing speed of the swing section 12A is set so as to be higher than the speed.
  • the control unit 170 selects a drive signal waveform suitable for the rocking speed, that is, a drive signal waveform that can realize the set rocking speed, and applies the drive signal with the selected waveform.
  • the optical path control device 10 includes a swinging section 12A having an optical member (optical section) 20 into which light enters, an actuator 12B capable of swinging the swinging section 12A, and a drive
  • the control device includes a drive circuit (drive unit) 16 that controls the optical path by causing the actuator 12B to swing the swing unit 12A by applying a signal to the actuator 12B, and a control unit 170 that controls the drive circuit 16.
  • the unit 170 sets, for each frame in which an image is displayed, the number of subframes for displaying some of the pixels included in the image data of the frame, and based on the number of subclaims, the swinging unit 12A Set the rocking speed. As a result, a moving image can be appropriately displayed while the swinging section 12A is swinging appropriately.
  • the control unit 170 controls the swinging speed of the swinging unit 12A according to the drive signal when the number of subframes is greater than a predetermined threshold, and when the number of subframes is less than or equal to a predetermined threshold.
  • the swinging speed of the swinging section 12A is set higher than the swinging speed of the swinging section 12A caused by the drive signal.
  • control unit 170 extracts a motion area indicating a common object from the image data in the first frame and the image data in the second frame after the first frame, and A motion vector with respect to the motion area in two frames is obtained, and based on the motion vector, the number of subframes in the second frame and the swing speed of the swing unit 12A are set. By setting the swinging speed based on the motion vector, the moving image can be displayed appropriately while swinging the swinging section 12A appropriately.
  • the display device 1 includes an optical path control device 10 and a video signal processing circuit (processing unit) 160 that controls the display element 106 based on image data, and the control unit 170
  • the video signal processing circuit 160 controls the display element 106 so that the subframe set for the frame is displayed within the time period for displaying the frame.
  • first periods TA1 and TA2 which are periods in which images are displayed when the optical axis of the light is at the first position, and during periods when the optical axis of the light is at the second position.
  • the current value is gradually changed from the first current value to the second current value, and in the second period TB1 and TB2, a drive signal with a waveform that maintains the current value at the second current value is applied to the actuator 12B.
  • the current value is switched from the first current value to zero at the start timing of the first periods TA1 and TA2, and the current value is set to zero until the end timing of the first periods TA1 and TA2.
  • a signal is applied to actuator 12B.
  • first periods TA1 and TA2 which are periods in which images are displayed when the optical axis of the light is at the first position, and when the optical axis of the light is at the second position.
  • the current value is held at the first current value in the first period TA1, TA2, and then the current value is held at the second current value, and the current value is held at the second current value in the second period TB1, TB2.
  • a drive signal having a waveform held at the first current value is applied to the actuator 12B.
  • control unit 170 obtains information on the type of content to be displayed, and sets the number of subframes according to the type of content. As a result, the swinging speed can be changed depending on the type of content, so fatigue can be suppressed and the lifespan can be prevented from being shortened.
  • the optical path control method includes controlling an optical path by applying a drive signal to an actuator 12B that can swing a swinging section 12A having an optical member (optical section) 20 into which the light L is incident.
  • a control method comprising the steps of setting, for each frame in which an image is displayed, the number of subframes for displaying some of the pixels included in the image data of the frame, based on the number of subclaims, The method includes a step of setting the swinging speed of the swinging section 12A. As a result, a moving image can be appropriately displayed while the swinging section 12A is swinging appropriately.
  • the optical member 20 is swingably supported by the first shaft section 23 along the first swing axis AX, and supported swingably by the second shaft section 24 along the second swing axis BX.
  • the structure is such that it can be supported freely, the structure is not limited to this.
  • Each component of the illustrated display device 1 is functionally conceptual, and does not necessarily have to be physically configured as illustrated.
  • the specific form of each device is not limited to what is shown in the diagram, and all or part of it may be functionally or physically distributed or integrated into arbitrary units depending on the processing load and usage status of each device. It's okay.
  • the configuration of the display device 1 is realized by, for example, a program loaded into a memory as software.
  • the above embodiments have been described as functional blocks realized by cooperation of these hardware or software. That is, these functional blocks can be implemented in various forms using only hardware, only software, or a combination thereof.
  • optical path control device for example, for image display.
  • Display device 10 Optical path control device 12 Optical path control mechanism 12A Swing section 12B Actuator 14 Control circuit 16 Drive circuit (drive section) 20 Optical member (optical part) 21 First swinging section 22 Second swinging section 23 First shaft section 24 Second shaft section 25 First actuator 26 Second actuator 27 Support section 31 First movable section 32 Second movable section 100 Irradiation device 106 Display element 160 Video signal processing circuit (processing section) 170 Control unit A1 First current value A2 Second current value AX First swing axis BX Second swing axis D1 First angle D2 Second angle L Light TA1, TA2 First period TB1, TB2 Second period V Motion vector

Abstract

The present invention suitably displays a moving image while suitably oscillating an oscillation part. The present invention comprises: an oscillation part that has an optical part on which light is incident; an actuator that is capable of oscillating the oscillation part; a driving part that applies a drive signal to the actuator, thereby causing the actuator to oscillate the oscillation part and controlling an optical path; and a control part that controls the driving part, wherein the control part sets, for each frame in which an image is displayed, the number of subframes in which some of pixels included in image data of a frame are displayed, and sets the oscillation speed of the oscillation part on the basis of the number of subframes.

Description

光路制御装置、表示装置及び光路制御方法Optical path control device, display device, and optical path control method
 本発明は、光路制御装置、表示装置及び光路制御方法に関するものである。 The present invention relates to an optical path control device, a display device, and an optical path control method.
 例えば、液晶表示素子を用いた画像表示装置として、擬似的に解像度を高めるために、1フレームの表示期間を複数のサブフレームの表示期間に分割し、各サブフレームの表示期間ごとにスクリーンに投射されるがその位置がシフトするように光路制御装置を制御することで、光変調素子の画素数よりも多くの画素が投射されたかのように見せる技術がある。例えば、下記特許文献1に、このような技術が記載されている。 For example, in an image display device using a liquid crystal display element, in order to increase the resolution in a pseudo manner, one frame display period is divided into multiple subframe display periods, and each subframe display period is projected onto a screen. However, there is a technique that makes it appear as if more pixels than the number of pixels of the light modulation element are projected by controlling the light path control device so that the position of the light is shifted. For example, such a technique is described in Patent Document 1 below.
特許第3863445号公報Patent No. 3863445
 このように、1フレームの表示期間を複数のサブフレームの表示期間に分割する方式においては、光路制御装置により光学部材を揺動させることで、投射位置をシフトさせる場合がある。この場合、揺動部を適切に揺動させつつ、動画像を適切に表示することが求められている。 In this way, in a method in which one frame display period is divided into a plurality of subframe display periods, the projection position may be shifted by swinging the optical member using the optical path control device. In this case, it is required to appropriately display a moving image while appropriately swinging the swinging section.
 本実施形態は、上記課題に鑑み、揺動部を適切に揺動させつつ、動画像を適切に表示可能な光路制御装置、表示装置及び光路制御方法を提供することを目的とする。 In view of the above-mentioned problems, the present embodiment aims to provide an optical path control device, a display device, and an optical path control method that can appropriately display a moving image while appropriately swinging a swinging section.
 本実施形態の一態様にかかる光路制御装置は、光が入射する光学部を有する揺動部と、前記揺動部を揺動可能なアクチュエータと、駆動信号を前記アクチュエータに印加することで、前記アクチュエータに前記揺動部を揺動させて光路を制御する駆動部と、前記駆動部を制御する制御部と、を備え、前記制御部は、画像を表示するフレーム毎に、前記フレームの画像データに含まれる画素のうちの一部の画素を表示するサブフレームの数を設定し、前記サブクレームの数に基づいて、前記揺動部の揺動速度を設定する。 An optical path control device according to an aspect of the present embodiment includes: a swinging section having an optical section into which light enters; an actuator capable of swinging the swinging section; and applying a drive signal to the actuator. A drive unit that controls an optical path by causing an actuator to swing the swing unit, and a control unit that controls the drive unit, and the control unit controls image data of the frame for each frame in which an image is displayed. The number of subframes for displaying some of the pixels included in the subframe is set, and the swinging speed of the swinging unit is set based on the number of subclaims.
 本実施形態の一態様にかかる光路制御方法は、光が入射する光学部を有する揺動部を揺動可能なアクチュエータに駆動信号を印加することで光路を制御する光路制御方法であって、画像を表示するフレーム毎に、前記フレームの画像データに含まれる画素のうちの一部の画素を表示するサブフレームの数を設定するステップと、前記サブクレームの数に基づいて、前記揺動部の揺動速度を設定するステップと、を含む。 An optical path control method according to an aspect of the present embodiment is an optical path control method for controlling an optical path by applying a drive signal to an actuator capable of swinging a swinging section having an optical section into which light enters, a step of setting the number of sub-frames for displaying some of the pixels included in the image data of the frame for each frame displaying the image data of the oscillating portion based on the number of the sub-claims; and setting a rocking speed.
 本実施形態によれば、揺動部を適切に揺動させつつ、動画像を適切に表示できる。 According to the present embodiment, a moving image can be appropriately displayed while appropriately swinging the swinging section.
図1は、実施形態1に係る表示装置を表す模式図である。FIG. 1 is a schematic diagram showing a display device according to a first embodiment. 図2は、表示装置の回路構成を模式的に表すブロック図である。FIG. 2 is a block diagram schematically showing the circuit configuration of the display device. 図3は、光路制御機構を表す平面図である。FIG. 3 is a plan view showing the optical path control mechanism. 図4は、図3のIV-IV断面図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3. 図5は、図3のV-V断面図である。FIG. 5 is a sectional view taken along the line VV in FIG. 3. 図6は、実施形態1に係る光学部の2軸揺動パターンを説明する説明図である。FIG. 6 is an explanatory diagram illustrating a biaxial swing pattern of the optical section according to the first embodiment. 図7は、処理部によるフレームの分割構成を表す説明図である。FIG. 7 is an explanatory diagram showing a frame division configuration by the processing unit. 図8は、実施形態1に係る駆動信号の設定方法の一例を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining an example of a drive signal setting method according to the first embodiment. 図9は、動きベクトルが閾値以下である場合の駆動信号の波形の一例を示すグラフである。FIG. 9 is a graph showing an example of the waveform of the drive signal when the motion vector is less than or equal to the threshold value. 図10は、動きベクトルが閾値以下である場合の揺動部の揺動パターンの一例を示すグラフである。FIG. 10 is a graph showing an example of the swinging pattern of the swinging section when the motion vector is less than or equal to the threshold value. 図11は、動きベクトルが閾値より大きい場合の駆動信号の波形の一例を示すグラフである。FIG. 11 is a graph showing an example of the waveform of the drive signal when the motion vector is larger than the threshold value. 図12は、動きベクトルが閾値より大きい場合の揺動部の揺動パターンの一例を示すグラフである。FIG. 12 is a graph showing an example of the swinging pattern of the swinging section when the motion vector is larger than the threshold value. 図13は、動きベクトルが閾値より大きい場合の画像表示の例を示す模式図である。FIG. 13 is a schematic diagram showing an example of image display when the motion vector is larger than the threshold value. 図14は、動きベクトルが閾値以下の場合の画像表示の例を示す模式図である。FIG. 14 is a schematic diagram showing an example of image display when the motion vector is less than or equal to the threshold value. 図15は、動きベクトルが閾値以下の場合の画像表示の例を示す模式図である。FIG. 15 is a schematic diagram showing an example of image display when the motion vector is less than or equal to the threshold value. 図16は、駆動信号の波形の他の例を示すグラフである。FIG. 16 is a graph showing another example of the waveform of the drive signal. 図17は、揺動部の揺動パターンの他の例を示すグラフである。FIG. 17 is a graph showing another example of the swing pattern of the swing section. 図18は、表示される画素の順番の他の例を示す模式図である。FIG. 18 is a schematic diagram showing another example of the order of displayed pixels. 図19は、実施形態3に係る表示装置の回路構成を模式的に表すブロック図である。FIG. 19 is a block diagram schematically showing the circuit configuration of the display device according to the third embodiment.
 以下に添付図面を参照して、本実施形態を詳細に説明する。なお、以下の実施形態により本実施形態が限定されるものではない。 The present embodiment will be described in detail below with reference to the accompanying drawings. Note that this embodiment is not limited to the following embodiment.
 [実施形態1]
 [表示装置の概略構成]
 図1は、実施形態1に係る表示装置の模式図である。
[Embodiment 1]
[Schematic configuration of display device]
FIG. 1 is a schematic diagram of a display device according to a first embodiment.
 本実施形態において、図1に示すように、表示装置1は、光路制御装置10と、照射装置100と、映像信号処理回路(処理部)160と、映像信号処理回路160を制御する制御部170とを有する。照射装置100は、画像用の光Lを照射する装置である。光路制御装置10は、光Lの光路を制御する装置である。光路制御装置10は、光Lの光軸をずらすことにより、光Lによって表示される画像の位置をずらして、照射装置100による画像の解像度(すなわち、後述する表示素子106の画素数)よりも、投影される画像の解像度を高くする。 In this embodiment, as shown in FIG. 1, the display device 1 includes an optical path control device 10, an irradiation device 100, a video signal processing circuit (processing section) 160, and a control section 170 that controls the video signal processing circuit 160. and has. The irradiation device 100 is a device that irradiates light L for images. The optical path control device 10 is a device that controls the optical path of the light L. By shifting the optical axis of the light L, the optical path control device 10 shifts the position of the image displayed by the light L so that the resolution of the image by the irradiation device 100 (i.e., the number of pixels of the display element 106 described later) is higher than that of the image displayed by the light L. , increase the resolution of the projected image.
 照射装置100は、光源101と、偏光板105R、105G、105Bと、表示素子106R、106G、106Bと、偏光板107R、107G、107Bと、色合成プリズム108と、投射レンズ109と、ダイクロイックミラー120、121と、反射ミラー130、131と、レンズ140、141、142、143、144、145と、偏光変換素子150と、映像信号処理回路160とを備える。表示素子106Rと表示素子106Gと表示素子106Bを区別しない場合は、表示素子106として記載する。 The irradiation device 100 includes a light source 101, polarizing plates 105R, 105G, 105B, display elements 106R, 106G, 106B, polarizing plates 107R, 107G, 107B, a color synthesis prism 108, a projection lens 109, and a dichroic mirror 120. , 121, reflective mirrors 130, 131, lenses 140, 141, 142, 143, 144, 145, a polarization conversion element 150, and a video signal processing circuit 160. When the display element 106R, the display element 106G, and the display element 106B are not distinguished from each other, they are referred to as the display element 106.
 光源101は、光を発生させて照射する光源である。光源101は、入射光L0を照射する。以下の説明では、入射光L0を照射する光源として、1つの光源101を用いることを例に挙げて説明するが、入射光L0を生成するための他の光学装置を有していてもよい。 The light source 101 is a light source that generates and irradiates light. The light source 101 emits incident light L0. In the following description, one light source 101 will be used as an example of a light source that irradiates the incident light L0, but other optical devices may be included for generating the incident light L0.
 光源101からの入射光L0は、レンズ140に入射する。レンズ140およびレンズ141は、例えば、フライアイレンズである。入射光L0は、レンズ140および141によって照明分布が均一化され、偏光変換素子150に入射される。偏光変換素子150は、入射光L0の偏光を揃える素子であり、例えば、偏光ビームスプリッタと位相差板とを有する。偏光変換素子150は、例えば、入射光L0をp偏光に揃える。 Incident light L0 from the light source 101 enters the lens 140. Lens 140 and lens 141 are, for example, fly-eye lenses. The illumination distribution of the incident light L0 is made uniform by the lenses 140 and 141, and the incident light L0 is incident on the polarization conversion element 150. The polarization conversion element 150 is an element that aligns the polarization of the incident light L0, and includes, for example, a polarization beam splitter and a retardation plate. The polarization conversion element 150, for example, aligns the incident light L0 to p-polarized light.
 偏光変換素子150によって偏光が揃えられた入射光L0は、レンズ142を介してダイクロイックミラー120に照射される。レンズ142は例えば集光レンズである。 The incident light L0 whose polarization has been aligned by the polarization conversion element 150 is irradiated onto the dichroic mirror 120 via the lens 142. Lens 142 is, for example, a condenser lens.
 ダイクロイックミラー120は、入射した入射光L0を、黄色光LRGと、青色帯域の成分を含む青色光LBとに分離する。ダイクロイックミラー120によって分離された黄色照明光LRGは、反射ミラー130を反射し、ダイクロイックミラー121に入射する。 The dichroic mirror 120 separates the incident light L0 into yellow light LRG and blue light LB including components in the blue band. The yellow illumination light LRG separated by the dichroic mirror 120 is reflected by the reflection mirror 130 and enters the dichroic mirror 121.
 ダイクロイックミラー121は、入射した黄色光LRGを、赤色帯域の成分を含む赤色光LRと、緑色帯域の成分を含む緑色光LGとに分離する。 The dichroic mirror 121 separates the incident yellow light LRG into red light LR including components in the red band and green light LG including components in the green band.
 ダイクロイックミラー121によって分離された赤色光LRは、レンズ143を介して偏光板105Rに照射される。ダイクロイックミラー121によって分離された緑色光LGは、レンズ144を介して偏光板105Gに照射される。ダイクロイックミラー120によって分離された青色光LBは、反射ミラー131により反射し、レンズ145を介して偏光板105Bに照射される。 The red light LR separated by the dichroic mirror 121 is irradiated onto the polarizing plate 105R via the lens 143. The green light LG separated by the dichroic mirror 121 is irradiated onto the polarizing plate 105G via the lens 144. The blue light LB separated by the dichroic mirror 120 is reflected by the reflection mirror 131 and irradiated onto the polarizing plate 105B via the lens 145.
 偏光板105R、105G、105Bは、s偏光およびp偏光のいずれか一方を反射し、他方を透過させる特性を有する。例えば、偏光板105R、105G、105Bがs偏光を反射し、p偏光を透過させる。偏光板105R、105G、105Bを反射型偏光板とも称する。 The polarizing plates 105R, 105G, and 105B have a characteristic of reflecting either s-polarized light or p-polarized light and transmitting the other. For example, the polarizing plates 105R, 105G, and 105B reflect s-polarized light and transmit p-polarized light. The polarizing plates 105R, 105G, and 105B are also referred to as reflective polarizing plates.
 p偏光である赤色光LRは、偏光板105Rを透過して表示素子106Rに照射される。p偏光である緑色光LGは、偏光板105Gを透過して、表示素子106Gに照射される。p偏光である青色光LBは、偏光板105Bを透過して、表示素子106Bに照射される。 The red light LR, which is p-polarized light, passes through the polarizing plate 105R and is irradiated onto the display element 106R. The green light LG, which is p-polarized light, passes through the polarizing plate 105G and is irradiated onto the display element 106G. The blue light LB, which is p-polarized light, passes through the polarizing plate 105B and is irradiated onto the display element 106B.
 表示素子106Rと表示素子106Gと表示素子106Bは、例えば、反射型液晶表示素子である。以下の説明では、表示素子106Rと表示素子106Gと表示素子106Bが反射型液晶表示素子である場合を例に挙げて説明するが、反射型に限定されず、透過型液晶表示素子を使用する構成としてもよい。また、液晶表示素子ではなく、他の表示素子を使用する構成にも種々対応可能である。 The display element 106R, display element 106G, and display element 106B are, for example, reflective liquid crystal display elements. In the following description, an example will be given in which the display element 106R, the display element 106G, and the display element 106B are reflective liquid crystal display elements, but the structure is not limited to the reflective type and uses a transmissive liquid crystal display element. You can also use it as Furthermore, various configurations using other display elements instead of liquid crystal display elements are also possible.
 表示素子106Rは、映像信号処理回路160によって制御される。映像信号処理回路160は、赤色の成分の画像データに基づいて表示素子106Rを駆動制御する。表示素子106Rは、映像信号処理回路160の制御に応じてp偏光の赤色光LRを光変調し、s偏光の赤色光LRを生成する。表示素子106Gは、映像信号処理回路160によって制御される。映像信号処理回路160は、緑色の成分の画像データに基づいて表示素子106Gを駆動制御する。表示素子106Gは、映像信号処理回路160の制御に応じてp偏光の緑色光LGを光変調し、s偏光の緑色光LGを生成する。表示素子106Bは、映像信号処理回路160によって制御される。映像信号処理回路160は、青色の成分の画像データに基づいて表示素子106Bを駆動制御する。表示素子106Bは、映像信号処理回路160の制御に応じて青色の成分の画像データに基づいてp偏光の青色光LBを光変調し、s偏光の青色光LBを生成する。 The display element 106R is controlled by the video signal processing circuit 160. The video signal processing circuit 160 drives and controls the display element 106R based on the red component image data. The display element 106R optically modulates the p-polarized red light LR under the control of the video signal processing circuit 160 to generate s-polarized red light LR. Display element 106G is controlled by video signal processing circuit 160. The video signal processing circuit 160 drives and controls the display element 106G based on the green component image data. The display element 106G optically modulates the p-polarized green light LG under the control of the video signal processing circuit 160 to generate s-polarized green light LG. Display element 106B is controlled by video signal processing circuit 160. The video signal processing circuit 160 drives and controls the display element 106B based on the blue component image data. The display element 106B optically modulates the p-polarized blue light LB based on the image data of the blue component under the control of the video signal processing circuit 160, and generates the s-polarized blue light LB.
 偏光板107R、107G、107Bは、s偏光およびp偏光のいずれか一方を透過し、他方を反射又は吸収する特性を有する。例えば、偏光板107R、107G、107Bがs偏光を透過し、不要なp偏光を吸収する。 The polarizing plates 107R, 107G, and 107B have a characteristic of transmitting either s-polarized light or p-polarized light and reflecting or absorbing the other. For example, the polarizing plates 107R, 107G, and 107B transmit s-polarized light and absorb unnecessary p-polarized light.
 表示素子106Rによって生成されたs偏光の赤色光LRは、偏光板105Rに反射され、偏光板107Rを透過して、色合成プリズム108に照射される。表示素子106Gによって生成されたs偏光の緑色光LGは、偏光板105Gに反射され、偏光板107Gを透過して、色合成プリズム108に照射される。表示素子106Bによって生成されたs偏光の青色光LBは、偏光板105Bに反射され、偏光板107Bを透過して、色合成プリズム108に照射される。 The s-polarized red light LR generated by the display element 106R is reflected by the polarizing plate 105R, passes through the polarizing plate 107R, and is irradiated onto the color synthesis prism 108. The s-polarized green light LG generated by the display element 106G is reflected by the polarizing plate 105G, passes through the polarizing plate 107G, and is irradiated onto the color synthesis prism 108. The s-polarized blue light LB generated by the display element 106B is reflected by the polarizing plate 105B, transmitted through the polarizing plate 107B, and irradiated onto the color synthesis prism 108.
 色合成プリズム108は、入射した赤色光LRと緑色光LGと青色光LBを合成して、画像表示用の光Lとして、投射レンズ109に照射する。光Lは、投射レンズ109を介して、図示しないスクリーン等へ投射される。 The color synthesis prism 108 synthesizes the incident red light LR, green light LG, and blue light LB and irradiates it onto the projection lens 109 as light L for image display. The light L is projected onto a screen (not shown) or the like via the projection lens 109.
 なお、照射装置100は、以上のような構成となっているが、その構成は以上の説明に限られず、任意の構成となっていてよい。 Although the irradiation device 100 has the above configuration, the configuration is not limited to the above description and may have any configuration.
 光路制御装置10は、光路制御機構12と、制御回路(制御部)14と、駆動回路(駆動部)16とを有する。光路制御機構12は、駆動回路16によって駆動されることで揺動する機構である。光路制御機構12は、光Lの光路に沿った方向における、色合成プリズム108と投射レンズ109との間に設けられる。光路制御機構12は、色合成プリズム108からの光Lが入射しつつ揺動することで、光Lの進行方向(光路)をシフトさせて投射レンズ109に向けて出射する。このように、光路制御装置10は、光Lの光路がシフトするように、光Lの光路を制御する。なお、光路制御機構12の設けられる位置は、色合成プリズム108と投射レンズ109との間に限られず、任意であってよい。 The optical path control device 10 includes an optical path control mechanism 12, a control circuit (control section) 14, and a drive circuit (drive section) 16. The optical path control mechanism 12 is a mechanism that is driven by a drive circuit 16 to swing. The optical path control mechanism 12 is provided between the color synthesis prism 108 and the projection lens 109 in the direction along the optical path of the light L. The optical path control mechanism 12 swings while receiving the light L from the color combining prism 108, thereby shifting the traveling direction (optical path) of the light L and outputting the light L toward the projection lens 109. In this way, the optical path control device 10 controls the optical path of the light L so that the optical path of the light L is shifted. Note that the position where the optical path control mechanism 12 is provided is not limited to between the color combining prism 108 and the projection lens 109, and may be provided at any position.
 [表示装置の機能構成]
 図2は、表示装置の回路構成を模式的に示すブロック図である。
[Functional configuration of display device]
FIG. 2 is a block diagram schematically showing the circuit configuration of the display device.
 図2に示すように、映像信号処理回路160は、表示素子106R、106B、106Gを制御する。映像信号処理回路160には、表示素子106R、106B、106Gを制御するための画像データと、同期信号とを含む映像信号とが入力される。映像信号処理回路160は、同期信号に基づいてタイミングを同期させつつ、画像データに基づいて表示素子106R、106B、106Gを制御する。制御回路14は、デジタル回路14Aおよび変換器14Bを有する。デジタル回路14Aには、映像信号処理回路160からの同期信号が入力される。デジタル回路14Aは、同期信号に基づいてタイミングを同期させつつ、光路制御機構12を駆動するためのデジタルの駆動信号を生成する。変換器14Bは、デジタル信号をアナログ信号に変換するDA変換器である。変換器14Bは、デジタル回路14Aで生成されたデジタルの駆動信号をアナログの駆動信号に変換する。駆動回路16は、変換器14Bからのアナログの駆動信号が入力され、アナログの駆動信号を増幅して、後述する光路制御機構12のアクチュエータ12Bに出力する。アクチュエータ12Bは、駆動信号に応じて駆動されて、後述する揺動部12A(図3参照)を揺動させる。 As shown in FIG. 2, the video signal processing circuit 160 controls the display elements 106R, 106B, and 106G. A video signal including image data for controlling the display elements 106R, 106B, and 106G and a synchronization signal is input to the video signal processing circuit 160. The video signal processing circuit 160 synchronizes the timing based on the synchronization signal and controls the display elements 106R, 106B, and 106G based on the image data. Control circuit 14 has digital circuit 14A and converter 14B. A synchronization signal from the video signal processing circuit 160 is input to the digital circuit 14A. The digital circuit 14A generates a digital drive signal for driving the optical path control mechanism 12 while synchronizing the timing based on the synchronization signal. Converter 14B is a DA converter that converts a digital signal into an analog signal. The converter 14B converts the digital drive signal generated by the digital circuit 14A into an analog drive signal. The drive circuit 16 receives an analog drive signal from the converter 14B, amplifies the analog drive signal, and outputs it to the actuator 12B of the optical path control mechanism 12, which will be described later. The actuator 12B is driven according to a drive signal to swing a swinging section 12A (see FIG. 3), which will be described later.
 制御部170は、駆動回路(駆動部)16を制御する装置であり、本実施形態では映像信号処理回路160も制御する。制御部170は、例えばコンピュータであり、図示しない記憶部及び処理部を有する。制御部170が有する記憶部は、処理部の演算内容やプログラムなどの各種情報を記憶するメモリであり、例えば、RAM(Random Access Memory)と、ROM(Read Only Memory)のような主記憶装置と、HDD(Hard Disk Drive)などの外部記憶装置とのうち、少なくとも1つ含んでよい。記憶部が記憶する処理部用のプログラムは、制御部170が読み取り可能な記録媒体に記憶されていてもよい。また、制御部170が有する処理部は、演算を実行する処理装置であり、例えばCPU(Central Processing Unit)などの演算回路を含む。処理部は、記憶部からプログラム(ソフトウェア)を読み出して実行することで、制御部170による処理を実行する。なお、制御部170は、1つのCPUによって処理を実行してもよいし、複数のCPUを備えて、それらの複数のCPUで、処理を実行してもよい。また、制御部170が行う処理の少なくとも一部を、ハードウェア回路で実現してもよい。制御部170が行う処理については後述する。 The control unit 170 is a device that controls the drive circuit (drive unit) 16, and in this embodiment also controls the video signal processing circuit 160. The control unit 170 is, for example, a computer, and includes a storage unit and a processing unit (not shown). The storage unit included in the control unit 170 is a memory that stores various information such as calculation contents and programs of the processing unit, and includes, for example, a main storage device such as RAM (Random Access Memory) and ROM (Read Only Memory). , and an external storage device such as an HDD (Hard Disk Drive). The program for the processing unit stored in the storage unit may be stored in a recording medium readable by the control unit 170. Further, the processing unit included in the control unit 170 is a processing device that executes calculations, and includes a calculation circuit such as a CPU (Central Processing Unit), for example. The processing unit executes processing by the control unit 170 by reading and executing a program (software) from the storage unit. Note that the control unit 170 may execute the process using one CPU, or may include a plurality of CPUs and execute the process using the plurality of CPUs. Further, at least a part of the processing performed by the control unit 170 may be realized by a hardware circuit. The processing performed by the control unit 170 will be described later.
 [光路制御機構]
 図3は、光路制御機構を表す平面図、図4は、図3のIV-IV断面図、図5は、図3のV-V断面図である。
[Optical path control mechanism]
3 is a plan view showing the optical path control mechanism, FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3, and FIG. 5 is a sectional view taken along the line V-V in FIG. 3.
 図3から図5に示すように、光路制御機構12は、光Lが入射する光学部材(光学部)20を含む揺動部12Aと、揺動部12Aを揺動させるアクチュエータ12Bとを有する。 As shown in FIGS. 3 to 5, the optical path control mechanism 12 includes a swinging section 12A that includes an optical member (optical section) 20 into which the light L enters, and an actuator 12B that swings the swinging section 12A.
 アクチュエータ12Bは、光学部材20への光Lが入射する方向に対して、交差(好ましくは、直交)する2方向に沿う第1揺動軸AXおよび第2揺動軸BXを中心に揺動部12Aを揺動させる。第1揺動軸AXと第2揺動軸BXは、好ましくは、直交する。そのため、光路制御機構12は、揺動部12Aとしての第1揺動部21および第2揺動部22と、第1揺動軸AXおよび第2揺動軸BXに沿う第1軸部23および第2軸部24と、アクチュエータ12Bとしての第1アクチュエータ25および第2アクチュエータ26と、支持部27とを有する。 The actuator 12B swings around a first swing axis AX and a second swing axis BX along two directions intersecting (preferably orthogonal to) the direction in which the light L enters the optical member 20. 12A is rocked. The first swing axis AX and the second swing axis BX are preferably perpendicular to each other. Therefore, the optical path control mechanism 12 includes a first swing section 21 and a second swing section 22 as the swing section 12A, a first shaft section 23 along the first swing axis AX and a second swing axis BX, It has a second shaft portion 24, a first actuator 25 and a second actuator 26 as the actuator 12B, and a support portion 27.
 光学部材20は、入射した光Lを透過する部材である。光学部材20は、一方の表面から光Lが入射して、入射した光Lを透過して、他方の表面から光Lを出射する。光学部材20は、ガラス板であるが、材料および形状は任意であってよい。 The optical member 20 is a member that transmits the incident light L. The optical member 20 receives the light L from one surface, transmits the incident light L, and emits the light L from the other surface. The optical member 20 is a glass plate, but the material and shape may be arbitrary.
 第1揺動部21は、光学部材20と第1可動部31とを有する。第1可動部31は、光学部材20を支持する部材である。第1可動部31は、光学部材20に対して固定される。具体的に、第1可動部31は、中央に貫通孔31aが形成される板材の枠形状をなす部材である。光学部材20は、第1可動部31の貫通孔31aに嵌め込まれた状態で、第1可動部31に固定される。なお、光学部材20は、第1可動部31と固定されるための固定部材や接着剤を介して、第1可動部31に固定されるが、光学部材20の第1可動部31への固定方法は任意であってよい。 The first swinging section 21 has an optical member 20 and a first movable section 31. The first movable part 31 is a member that supports the optical member 20. The first movable part 31 is fixed to the optical member 20. Specifically, the first movable part 31 is a frame-shaped member made of a plate material with a through hole 31a formed in the center. The optical member 20 is fixed to the first movable part 31 while being fitted into the through hole 31 a of the first movable part 31 . Note that the optical member 20 is fixed to the first movable part 31 via a fixing member or an adhesive to be fixed to the first movable part 31; Any method may be used.
 第2揺動部22は、第1揺動部21の外側に配置される。第2揺動部22は、第2可動部32を有する。第2可動部32は、第1可動部31を支持する部材である。第1可動部31は、第2可動部32に対して第1揺動軸AXを中心に揺動自在に支持される。具体的に、第2可動部32は、中央に貫通孔32aが形成される板材の枠形状をなす部材である。第1可動部31は、第2可動部32の貫通孔32aに所定隙間を空けて配置された状態で、第2可動部32に揺動自在に支持される。第1可動部31と第2可動部32とは、第1揺動軸AXに沿う一対の第1軸部23により連結される。第1可動部31は、第2可動部32に対して一対の第2軸部24がねじられるように弾性変形することで、第1揺動軸AXを中心に揺動する。 The second swinging section 22 is arranged outside the first swinging section 21. The second swinging section 22 has a second movable section 32 . The second movable part 32 is a member that supports the first movable part 31. The first movable part 31 is supported by the second movable part 32 so as to be swingable about the first swing axis AX. Specifically, the second movable part 32 is a frame-shaped member made of a plate material with a through hole 32a formed in the center. The first movable part 31 is swingably supported by the second movable part 32 while being disposed in the through hole 32a of the second movable part 32 with a predetermined gap therebetween. The first movable part 31 and the second movable part 32 are connected by a pair of first shaft parts 23 along the first swing axis AX. The first movable portion 31 swings about the first swing axis AX by elastically deforming the pair of second shaft portions 24 with respect to the second movable portion 32 so as to be twisted.
 支持部27は、第2揺動部22の外側に配置される。支持部27は、第2可動部32を支持する部材である。第2可動部32は、支持部27に対して第2揺動軸BXを中心に揺動自在に支持される。具体的に、支持部27は、中央に貫通孔27aが形成される板材の枠形状をなす部材である。第2可動部32は、支持部27の貫通孔27aに所定隙間を空けて配置された状態で、支持部27に揺動自在に支持される。第2可動部32と支持部27とは、第2揺動軸BXに沿う一対の第2軸部24により連結される。第2可動部32は、支持部27に対して一対の第2軸部24がねじられるように弾性変形することで、第2揺動軸BXを中心に揺動する。 The support part 27 is arranged outside the second swing part 22. The support part 27 is a member that supports the second movable part 32. The second movable part 32 is supported by the support part 27 so as to be swingable about the second swing axis BX. Specifically, the support portion 27 is a frame-shaped member made of a plate material with a through hole 27a formed in the center. The second movable portion 32 is swingably supported by the support portion 27 while being disposed in the through hole 27a of the support portion 27 with a predetermined gap therebetween. The second movable part 32 and the support part 27 are connected by a pair of second shaft parts 24 along the second swing axis BX. The second movable portion 32 swings about the second swing axis BX by elastically deforming the pair of second shaft portions 24 with respect to the support portion 27 so as to be twisted.
 第2可動部32(第2揺動部22)は、支持部27に対して一対の第2軸部24を支点として第2揺動軸BXを中心に揺動する。第1可動部31(第1揺動部21)は、第2可動部32に対して一対の第1軸部23を支点として第1揺動軸AXを中心に揺動する。そのため、第2可動部32に固定された光学部材20は、第1揺動軸AXおよび第2揺動軸BXを中心に揺動することができる。光学部材20が第1揺動軸AXおよび第2揺動軸BXを中心に揺動することで、光学部材20の姿勢の変化により、光学部材20を透過する光Lの光路をシフトさせることができる。 The second movable part 32 (second swing part 22) swings about the second swing axis BX with the pair of second shaft parts 24 as fulcrums with respect to the support part 27. The first movable part 31 (first swing part 21) swings about the first swing axis AX with the pair of first shaft parts 23 as fulcrums relative to the second movable part 32. Therefore, the optical member 20 fixed to the second movable part 32 can swing around the first swing axis AX and the second swing axis BX. By swinging the optical member 20 around the first swing axis AX and the second swing axis BX, the optical path of the light L passing through the optical member 20 can be shifted due to a change in the attitude of the optical member 20. can.
 本実施形態では、第1可動部31と第2可動部32と第1軸部23と第2軸部24とが一体に形成される。そのため、第1可動部31は、第1軸部23が周方向にねじられるように弾性変形することで、第2可動部32に対して揺動する。ただし、第1可動部31と第2可動部32と第1軸部23を別体に形成して連結してもよい。また、第2可動部32における第2揺動軸BXの軸方向の一端部と他端部を支持部27に連結するように固定し、第2可動部32の各端部に第2軸部24をそれぞれ形成している。ただし、第2可動部32の各端部に第2軸部24をそれぞれ設け、各第2軸部24を支持部27に直接連結するように固定してもよい。さらに、第2可動部32と第2軸部24と支持部27を一体に形成してもよい。 In this embodiment, the first movable part 31, the second movable part 32, the first shaft part 23, and the second shaft part 24 are integrally formed. Therefore, the first movable part 31 swings relative to the second movable part 32 by elastically deforming the first shaft part 23 so as to be twisted in the circumferential direction. However, the first movable part 31, the second movable part 32, and the first shaft part 23 may be formed separately and connected. Further, one end and the other end in the axial direction of the second swing axis BX in the second movable part 32 are fixed so as to be connected to the support part 27, and the second shaft part is connected to each end of the second movable part 32. 24 respectively. However, the second shaft portions 24 may be provided at each end of the second movable portion 32, and each second shaft portion 24 may be fixed so as to be directly connected to the support portion 27. Furthermore, the second movable part 32, the second shaft part 24, and the support part 27 may be formed integrally.
 第1アクチュエータ25は、支持部27に対して一対の第1軸部23を支点として、第1可動部31(第1揺動部21)を第1揺動軸AXを中心に揺動する。第1アクチュエータ25は、第1揺動軸AXより径方向(第2揺動軸BXにおける軸方向)の一方側と他方側の両方に配置される。第1アクチュエータ25は、コイル41と、ヨーク42と、磁石43とを有する。 The first actuator 25 swings the first movable part 31 (first swinging part 21) about the first swing axis AX with respect to the support part 27 using the pair of first shaft parts 23 as fulcrums. The first actuator 25 is arranged on both one side and the other side of the first swing axis AX in the radial direction (the axial direction of the second swing axis BX). The first actuator 25 includes a coil 41, a yoke 42, and a magnet 43.
 コイル41は、第1可動部31に取付けられており、第1可動部31に設けられたコイル取付部31bに固定される。コイル41は、第1可動部31の第1揺動軸AXの径方向における両端部(第2揺動軸BXにおける軸方向の一方側と他方側)にそれぞれ設けられる。ヨーク42は、磁路を形成する部材である。ヨーク42は、支持部27に取付けられており、支持部27に対して固定される。ヨーク42は、コイル41に対応して、第1可動部31の両端部にそれぞれ配置される。磁石43は、永久磁石である。磁石43は、ヨーク42に取付けられており、ヨーク42に対して固定される。磁石43は、それぞれのコイル41と隣り合う位置に配置される。 The coil 41 is attached to the first movable part 31 and fixed to a coil attachment part 31b provided on the first movable part 31. The coils 41 are provided at both ends of the first movable portion 31 in the radial direction of the first swing axis AX (one side and the other side in the axial direction of the second swing axis BX). The yoke 42 is a member that forms a magnetic path. The yoke 42 is attached to the support part 27 and fixed to the support part 27. The yokes 42 are arranged at both ends of the first movable section 31 in correspondence with the coils 41, respectively. Magnet 43 is a permanent magnet. The magnet 43 is attached to the yoke 42 and fixed to the yoke 42. The magnets 43 are arranged adjacent to each coil 41 .
 コイル41には、駆動回路16(図2参照)からの駆動信号が入力される。図5に示す例では、U字形状をなすヨーク42の一辺に磁石43が接着され、接着されていない磁石43の面と、ヨーク42のU字形状をなす対向する面との間にエアギャップが形成される。コイル41は、エアギャップ内に配置される。コイル41に、駆動信号が入力されると、磁石43とヨーク42によるエアギャップ(磁界)内にある導電体であるコイル41に電流が流れてコイル41に力が発生して、この力により、コイル41に固定された第1可動部31(第1揺動部21)を揺動させる。すなわち、第1アクチュエータ25は、コイル41とヨーク42と磁石43とにより構成された、電磁アクチュエータであるといえる。 A drive signal from the drive circuit 16 (see FIG. 2) is input to the coil 41. In the example shown in FIG. 5, a magnet 43 is bonded to one side of a U-shaped yoke 42, and there is an air gap between the surface of the magnet 43 that is not bonded and the opposing U-shaped surface of the yoke 42. is formed. Coil 41 is placed within the air gap. When a drive signal is input to the coil 41, a current flows through the coil 41, which is a conductor located within the air gap (magnetic field) between the magnet 43 and the yoke 42, and force is generated in the coil 41. This force causes The first movable part 31 (first swing part 21) fixed to the coil 41 is caused to swing. That is, it can be said that the first actuator 25 is an electromagnetic actuator that includes a coil 41, a yoke 42, and a magnet 43.
 第2アクチュエータ26は、支持部27に対して一対の第2軸部24を支点として、第2可動部32(第2揺動部22)を第2揺動軸BXを中心に揺動する。第2アクチュエータ26は、第2揺動軸BXより径方向(第1揺動軸AXにおける軸方向)の一方向と他方向の両側に配置される。第2アクチュエータ26は、コイル44と、ヨーク45と、磁石46とを有する。 The second actuator 26 swings the second movable part 32 (second swinging part 22) about the second swing axis BX with the pair of second shaft parts 24 as fulcrums relative to the support part 27. The second actuator 26 is arranged on both sides of the second swing axis BX in one direction and the other direction in the radial direction (the axial direction in the first swing axis AX). The second actuator 26 includes a coil 44, a yoke 45, and a magnet 46.
 コイル44は、第2可動部32に取付けられており、第2可動部32に設けられたコイル取付部32bに固定される。コイル44は、第2可動部32の第2揺動軸BXの径方向における両端部(第1揺動軸AXにおける軸方向の一方側と他方側)にそれぞれ設けられる。ヨーク45は、磁路を形成する部材である。ヨーク45は、支持部27に取付けられており、支持部27に対して固定される。ヨーク45は、コイル44に対応して、第2可動部32の両端部にそれぞれ配置される。磁石46は、永久磁石である。磁石46は、ヨーク45に取付けられており、ヨーク45に対して固定される。磁石46は、それぞれのコイル44と隣り合う位置に配置される。 The coil 44 is attached to the second movable part 32 and fixed to a coil attachment part 32b provided on the second movable part 32. The coils 44 are provided at both ends of the second movable portion 32 in the radial direction of the second swing axis BX (one side and the other side in the axial direction of the first swing axis AX). The yoke 45 is a member that forms a magnetic path. The yoke 45 is attached to the support part 27 and fixed to the support part 27. The yoke 45 is arranged at both ends of the second movable section 32 in correspondence with the coil 44 . Magnet 46 is a permanent magnet. The magnet 46 is attached to the yoke 45 and fixed to the yoke 45. The magnets 46 are arranged adjacent to each coil 44 .
 コイル44には、駆動回路16(図2参照)からの駆動信号が入力される。図4に示す例では、U字形状をなすヨーク45の一辺に磁石46が接着され、接着されていない磁石46の面と、ヨーク45のU字形状をなす対向する面との間にエアギャップが形成される。コイル44は、エアギャップ内に配置される。コイル44に、駆動信号が入力されると、磁石46とヨーク45によるエアギャップ(磁界)内にある導電体であるコイル44に電流が流れてコイル44に力が発生して、この力により、コイル44に固定された第2可動部32(第2揺動部22)を揺動させる。すなわち、第2アクチュエータ26は、コイル44とヨーク45と磁石46とにより構成された、電磁アクチュエータであるといえる。 A drive signal from the drive circuit 16 (see FIG. 2) is input to the coil 44. In the example shown in FIG. 4, a magnet 46 is bonded to one side of a U-shaped yoke 45, and there is an air gap between the surface of the magnet 46 that is not bonded and the opposing U-shaped surface of the yoke 45. is formed. Coil 44 is placed within the air gap. When a drive signal is input to the coil 44, a current flows through the coil 44, which is a conductor located within the air gap (magnetic field) between the magnet 46 and the yoke 45, and force is generated in the coil 44, and this force causes The second movable part 32 (second swing part 22) fixed to the coil 44 is caused to swing. That is, it can be said that the second actuator 26 is an electromagnetic actuator that includes the coil 44, the yoke 45, and the magnet 46.
 光路制御機構12は、光学部材20が設けられた第1可動部31が揺動すると共に、第1可動部31が支持された第2可動部32が揺動するため、光学部材20と第1可動部31と第2可動部32とコイル41、44とが揺動部12Aを構成するといえる。すなわち、光路制御機構12のうち、支持部27に対して揺動する部分が、揺動部12Aを指すといえる。なお、第1軸部23も、第2可動部32と共に揺動するため、揺動部12Aに含まれる。また、光学部材20を第1可動部31に固定するための固定部材や接着剤、コイル41、44に電流を流すための基盤やリード線などが設けられている場合には、これらも支持部27に対して揺動するため、揺動部12Aに含まれる。 In the optical path control mechanism 12, the first movable part 31 provided with the optical member 20 swings, and the second movable part 32 supporting the first movable part 31 swings. It can be said that the movable part 31, the second movable part 32, and the coils 41 and 44 constitute the swinging part 12A. That is, it can be said that the part of the optical path control mechanism 12 that swings with respect to the support section 27 refers to the swing section 12A. Note that the first shaft portion 23 also swings together with the second movable portion 32, and therefore is included in the swinging portion 12A. In addition, if a fixing member or adhesive for fixing the optical member 20 to the first movable part 31, a base or lead wire for passing current through the coils 41, 44, etc. are provided, these are also attached to the support part. Since it swings with respect to 27, it is included in the swinging section 12A.
 本実施形態では、第1アクチュエータ25により第1可動部31を揺動し、第2アクチュエータ26により第2可動部32を揺動する。この場合、各アクチュエータ25、26を構成するヨーク42、45を支持部27に固定している。そのため、第2アクチュエータ26により第2可動部32を揺動するとき、第1アクチュエータ25と第2可動部32とが干渉しないように、両者の間に隙間が確保されている。なお、第1アクチュエータ25を第2可動部32に設けてもよい。 In this embodiment, the first actuator 25 swings the first movable part 31, and the second actuator 26 swings the second movable part 32. In this case, the yokes 42 and 45 constituting each actuator 25 and 26 are fixed to the support portion 27. Therefore, when the second movable part 32 is swung by the second actuator 26, a gap is ensured between the first actuator 25 and the second movable part 32 so that they do not interfere with each other. Note that the first actuator 25 may be provided in the second movable part 32.
 なお、アクチュエータ25、26は、可動部31、32にコイル41、44を配置した、いわゆる、ムービングコイル型であったが、それに限られず、例えば、可動部31、32に磁石43、46を配置して支持部27にコイル41、44を配置した、いわゆる、ムービングマグネット型であってもよい。この場合、磁石43、46が光学部材20と共に揺動されるため、コイル41、44の代わりに磁石43、46が揺動部12Aに含まれることになる。 Although the actuators 25 and 26 are of the so-called moving coil type in which the coils 41 and 44 are arranged in the movable parts 31 and 32, the actuators 25 and 26 are not limited thereto. It may be of a so-called moving magnet type in which the coils 41 and 44 are arranged on the support portion 27. In this case, since the magnets 43 and 46 are oscillated together with the optical member 20, the magnets 43 and 46 are included in the oscillating portion 12A instead of the coils 41 and 44.
 光路制御機構12は、以上のような構成であるが、それに限られず、駆動信号が印加されたアクチュエータによって光学部が揺動することで、光学部による光Lの光路のシフトが可能な、任意の構成であってよい。 The optical path control mechanism 12 has the above-mentioned configuration, but is not limited to this, and can be any arbitrary structure that can shift the optical path of the light L by the optical section by swinging the optical section by an actuator to which a drive signal is applied. The configuration may be as follows.
 [光路制御機構による画素の動作]
 以下、第1揺動部21および第2揺動部22を揺動したときの作動について説明する。図6は、実施形態1に係る光学部の2軸揺動パターンを説明する説明図である。
[Pixel operation by optical path control mechanism]
Hereinafter, the operation when the first swinging section 21 and the second swinging section 22 are rocked will be explained. FIG. 6 is an explanatory diagram illustrating a biaxial swing pattern of the optical section according to the first embodiment.
 本実施形態の光路制御機構12は、アクチュエータ12Bにより、印加された駆動信号に応じて第1揺動部21及び第2揺動部22を揺動させる。本実施形態においては、アクチュエータ12Bを構成する第1アクチュエータ25および第2アクチュエータ26は、それぞれ駆動信号に応じて、第1軸部AXおよび第2軸部BXまわりの第1角度D1から第2角度D2への姿勢変化と、第2角度D2から第1角度D1への姿勢変化とを繰り返すように、第1揺動部21および第2揺動部22を揺動させる。その組み合わせにより、光Lの光軸は、第1位置から第2位置、第2位置から第3位置、第3位置から第4位置、第4位置から第1位置へのシフトが繰り返される。なお、印加する駆動信号については後述する。 The optical path control mechanism 12 of this embodiment causes the first swinging section 21 and the second swinging section 22 to swing using the actuator 12B according to the applied drive signal. In this embodiment, the first actuator 25 and the second actuator 26 constituting the actuator 12B move from the first angle D1 to the second angle around the first shaft portion AX and the second shaft portion BX, respectively, according to the drive signal. The first swing section 21 and the second swing section 22 are rocked so as to repeat the posture change to D2 and the posture change from the second angle D2 to the first angle D1. Due to the combination, the optical axis of the light L is repeatedly shifted from the first position to the second position, from the second position to the third position, from the third position to the fourth position, and from the fourth position to the first position. Note that the drive signal to be applied will be described later.
 すなわち、光軸が第1位置であるときに光Lによってスクリーンに投影される画像と、光軸が第2位置であるときに光Lによってスクリーンに投影される画像とは、半画素分だけずれたものになり、光軸が第3位置、第4位置にあるときも同様にそれぞれが半画素分だけずれたものになる。すなわち、スクリーンに投影される画像は、常に上下左右対角のいずれかに半画素分ずれて表示される。これにより、見かけ上の画素数が増加して、スクリーンに投影される画像を高解像度化することができる。光軸のシフト量は、画像の半画素分であるため、第1角度D1および第2角度D2は、画像を半画素分シフト可能な角度に設定される。なお、画像のシフト量は、半画素分に限られず、例えば、画素の1/4や1/8など、任意であってよい。第1角度D1および第2角度D2も、画像のシフト量に合わせて適宜設定されてよい。 In other words, the image projected onto the screen by light L when the optical axis is in the first position and the image projected onto the screen by light L when the optical axis is in the second position are shifted by half a pixel. Similarly, when the optical axis is at the third and fourth positions, they are shifted by half a pixel. That is, the image projected onto the screen is always displayed shifted by half a pixel in either the upper, lower, left, or right diagonal. This increases the apparent number of pixels, making it possible to increase the resolution of the image projected onto the screen. Since the amount of shift of the optical axis is half a pixel of the image, the first angle D1 and the second angle D2 are set to angles that can shift the image by half a pixel. Note that the amount of shift of the image is not limited to half a pixel, but may be arbitrary, such as 1/4 or 1/8 of a pixel, for example. The first angle D1 and the second angle D2 may also be set appropriately according to the amount of shift of the image.
 以下、具体的に説明する。ここで、第1揺動軸AX方向と第2揺動軸BX方向は、直交方向に交差し、画素の配列方向に平行をなす。図6に示すように、画像位置P0は、第1アクチュエータ25および第2アクチュエータ26に印加する電流値を0としたとき、つまり、光学部材20の変位角が0であるときの表示位置である。A動作状態は、第1アクチュエータ25により光学部材20を第1揺動軸AXまわりに所定角度だけ揺動し、画像位置P0を第2揺動軸BX方向に1/4画素ずらすと共に、第2アクチュエータ26により光学部材20を第2揺動軸BXまわりに所定角度だけ揺動し、画像位置P0を第1揺動軸AX方向に1/4画素ずらした状態である。すなわち、A動作状態は、画像位置P0が、第1揺動軸AX方向における一方へ向かうベクトルと第2揺動軸BX方向における一方へ向かうベクトルとを合成したABX方向における一方ABXaにずれた画像位置P1に画像を表示する状態である。 This will be explained in detail below. Here, the first swing axis AX direction and the second swing axis BX direction intersect orthogonally and are parallel to the pixel arrangement direction. As shown in FIG. 6, the image position P0 is the display position when the current value applied to the first actuator 25 and the second actuator 26 is 0, that is, when the displacement angle of the optical member 20 is 0. . In the A operation state, the optical member 20 is oscillated by a predetermined angle around the first oscillation axis AX by the first actuator 25, the image position P0 is shifted by 1/4 pixel in the direction of the second oscillation axis BX, and the second This is a state in which the optical member 20 is oscillated by a predetermined angle around the second oscillation axis BX by the actuator 26, and the image position P0 is shifted by 1/4 pixel in the direction of the first oscillation axis AX. In other words, the A operation state is an image in which the image position P0 is shifted to one side ABXa in the ABX direction, which is a combination of a vector directed in one direction in the first swing axis AX direction and a vector directed in one direction in the second swing axis BX direction. This is a state in which an image is displayed at position P1.
 同様に、B動作状態は、画像位置P0が、第1揺動軸AX方向における一方へ向かうベクトルと第2揺動軸BX方向における一方へ向かうベクトルとを合成したABX方向における一方ABXbにずれた画像位置P2に画像を表示する状態である。同様に、C動作状態は、画像位置P0が、第1揺動軸AX方向における一方へ向かうベクトルと第2揺動軸BX方向における一方へ向かうベクトルとを合成したABX方向における一方ABXcにずれた画像位置P3に画像を表示する状態である。同様に、D動作状態は、画像位置P0が、第1揺動軸AX方向における一方へ向かうベクトルと第2揺動軸BX方向における一方へ向かうベクトルとを合成したABX方向における一方ABXdにずれた画像位置P4に画像を表示する状態である。 Similarly, in the B operation state, the image position P0 is shifted to one side ABXb in the ABX direction, which is a combination of a vector directed to one side in the first swing axis AX direction and a vector directed to one side in the second swing axis BX direction. This is a state in which an image is displayed at image position P2. Similarly, in the C operation state, the image position P0 is shifted to one side ABXc in the ABX direction, which is a combination of a vector directed to one side in the first swing axis AX direction and a vector directed to one side in the second swing axis BX direction. This is a state in which an image is displayed at image position P3. Similarly, in the D operation state, the image position P0 is shifted to one side ABXd in the ABX direction, which is a combination of a vector directed to one side in the first swing axis AX direction and a vector directed to one side in the second swing axis BX direction. This is a state in which an image is displayed at image position P4.
 <フレームの分割構成>
 図7は、処理部によるフレームの分割構成を表す説明図である。本実施形態においては、1個のフレームの表示期間を複数のサブフレームの表示期間に分割し、1個のフレームの表示期間に複数のサブフレームを表示させる。これにより、例えば、8Kの解像度を有する画像データを、4Kの解像度を有する表示装置に表示させるなど、表示装置の解像度を擬似的に高くする。以下、8Kの解像度を有する画像データを、4Kの解像度を有する表示装置に表示させる場合を例にして、サブフレームへの分割について説明する。
<Frame division configuration>
FIG. 7 is an explanatory diagram showing a frame division configuration by the processing unit. In this embodiment, the display period of one frame is divided into the display period of a plurality of subframes, and the plurality of subframes are displayed in the display period of one frame. As a result, the resolution of the display device is artificially increased, such as displaying image data with 8K resolution on a display device with 4K resolution, for example. Hereinafter, division into subframes will be described using as an example a case where image data having a resolution of 8K is displayed on a display device having a resolution of 4K.
 サブフレームは、1つのフレームに含まれる画素のうちの一部の画素を含む、分割されたフレームである。言い換えれば、サブフレームは、1つのフレームの表示期間で表示される画素毎の画像データのうちの一部の画素の画像データを表示する、分割されたフレームである。なお、1つのフレームにおけるそれぞれのサブフレームに含まれる画素同士は重複しておらず、1つのフレームにおけるサブフレーム同士は、互いに異なる画素を含んでおり、言い換えれば、互いに異なる画素の画像データを表示する。図7の例では、8Kの解像度を有する画像データを構成する1個のフレームは、4個の画素A、B、C、Dの組合せが縦列と横列に複数配置されて構成される。各サブフレームは、4Kの解像度を有する表示装置に表示するための画像データにより構成される。1個のフレームを構成する複数の画素A、B、C、Dを4個のサブフレームA、B、C、Dに分割する。この場合、サブフレームAは、1個のフレームを構成する複数の画素Aだけを抜き出したものである。この場合、サブフレームAは、フレームの4個の画素A、B、C、Dの位置に、1個の画素Aだけを表示するものである。同様に、サブフレームBは、1個のフレームを構成する複数の画素Bだけを抜き出したものである。サブフレームCは、1個のフレームを構成する複数の画素Cだけを抜き出したものである。サブフレームDは、1個のフレームを構成する複数の画素Dだけを抜き出したものである。このようにして、8Kの解像度を有するフレームの画像データを4Kの解像度を有するサブフレームの画像データとして表示する。 A subframe is a divided frame that includes some of the pixels included in one frame. In other words, a subframe is a divided frame that displays image data of some pixels out of the image data of each pixel displayed in the display period of one frame. Note that the pixels included in each subframe in one frame do not overlap, and the subframes in one frame contain different pixels. In other words, image data of different pixels are displayed. do. In the example of FIG. 7, one frame constituting image data having a resolution of 8K is composed of a plurality of combinations of four pixels A, B, C, and D arranged in columns and rows. Each subframe is composed of image data to be displayed on a display device having 4K resolution. A plurality of pixels A, B, C, and D constituting one frame are divided into four subframes A, B, C, and D. In this case, sub-frame A is obtained by extracting only a plurality of pixels A that constitute one frame. In this case, subframe A displays only one pixel A at the positions of four pixels A, B, C, and D of the frame. Similarly, subframe B is obtained by extracting only the plurality of pixels B that constitute one frame. Sub-frame C is obtained by extracting only a plurality of pixels C constituting one frame. Sub-frame D is obtained by extracting only a plurality of pixels D constituting one frame. In this way, frame image data having 8K resolution is displayed as subframe image data having 4K resolution.
 本実施形態においては、制御部170が、フレーム毎にサブフレームを設定して、そのフレームを表示する時間内に、そのフレームに対して設定されたサブフレームに含まれる画像データを表示させるように、映像信号処理回路160によって表示素子106を制御させる。すなわち、本実施形態では、1個のフレームの表示期間を複数のサブフレームの表示期間に分割し、1フレームの表示期間に複数のサブフレームを表示させる。 In this embodiment, the control unit 170 sets a subframe for each frame, and displays the image data included in the subframe set for that frame within the time to display that frame. , the display element 106 is controlled by the video signal processing circuit 160. That is, in this embodiment, the display period of one frame is divided into the display period of a plurality of subframes, and the plurality of subframes are displayed in the display period of one frame.
 <フレーム毎の揺動速度の設定>
 このように、本実施形態においては、揺動部12Aを揺動させつつ、1フレームの表示期間に複数のサブフレームを表示させることで、例えば4Kの解像度を有するサブフレームの画像データを、画像位置P1~P4において順次表示するため、擬似的に8Kの解像度となった画像を、ユーザに視認させることができる。このようにサブフレームに分割して画像を表示する方式においては、揺動部12Aを適切に揺動させつつ、動画像を適切に表示することが求められている。それに対し、本実施形態においては、フレーム毎にサブフレームの数を設定して、サブフレームの数に基づいて、揺動部12Aの揺動速度を設定することで、サブフレーム数に応じて揺動部12Aを適切に揺動させつつ、動画像を適切に表示することが可能となる。
<Setting the swing speed for each frame>
In this way, in this embodiment, by displaying a plurality of subframes in one frame display period while swinging the swinging unit 12A, image data of subframes having a resolution of 4K, for example, can be changed into an image. Since the images are sequentially displayed at positions P1 to P4, the user can view an image with a pseudo 8K resolution. In this method of displaying an image by dividing it into subframes, it is required to appropriately display a moving image while appropriately swinging the swinging section 12A. On the other hand, in the present embodiment, the number of subframes is set for each frame, and the swinging speed of the swinging section 12A is set based on the number of subframes. It becomes possible to appropriately display a moving image while appropriately swinging the moving part 12A.
 フレーム毎のサブフレーム数の設定方法は任意であってよいが、実施形態1では、動き領域の動きベクトルVに基づいて、サブフレーム数を設定する。また、揺動部12Aの揺動速度を制御する方法も任意であってよいが、実施形態1では、動き領域の動きベクトルVに基づいて(言い換えれば動きベクトルVから設定したサブフレーム数に基づいて)、揺動部12Aの揺動速度を設定して、設定した揺動速度を実現可能な駆動信号を設定する。以下、具体的に説明する。 Although the method for setting the number of subframes for each frame may be arbitrary, in the first embodiment, the number of subframes is set based on the motion vector V of the motion area. Further, the method of controlling the swing speed of the swing unit 12A may be arbitrary, but in the first embodiment, the method is based on the motion vector V of the motion area (in other words, based on the number of subframes set from the motion vector V). ), the swinging speed of the swinging section 12A is set, and a drive signal that can realize the set swinging speed is set. This will be explained in detail below.
 図8は、実施形態1に係る駆動信号の設定方法の一例を説明するための説明図である。図8においては、動画像の例として、フレームF1からフレームF4まで、対象物202(建物)が写っている空間を対象物200(飛行機)が通過する状態を示し、フレームF5からフレームF6まで、対象物200が通過した後の状態を示す画像群が示されている。本例では、動き領域であると判断される対象となる対象物として、飛行機や建物などの対象物200、202を例示したが、対象物はそれに限らず任意であってよい。本実施形態において、対象物は、あらかじめ学習した、移動又は形状が変化し得るものである。また、対象物のデータは、制御部170が有する記憶部に記憶されている。 FIG. 8 is an explanatory diagram for explaining an example of a method of setting a drive signal according to the first embodiment. In FIG. 8, as an example of a moving image, frames F1 to F4 show a state in which an object 200 (an airplane) passes through a space in which an object 202 (building) is shown, and frames F5 to F6 show A group of images showing the state after the object 200 has passed is shown. In this example, the objects 200 and 202, such as airplanes and buildings, are exemplified as objects that are determined to be motion areas, but the objects are not limited thereto and may be arbitrary. In this embodiment, the target object is a previously learned object that can move or change shape. Further, the data of the object is stored in a storage section included in the control section 170.
 制御部170は、駆動信号を設定する際に、フレームに含まれる画像データを取得する。具体的には、表示対象となるフレームを第2フレーム、第2フレームより時系列で前に表示されるフレームを第1フレームとすると、制御部170は、第1フレームに含まれる画像データ(第1フレームの表示期間で表示される画素毎の画像データ)と、第2フレームに含まれる画像データ(第2フレームの表示期間で表示される画素毎の画像データ)とを取得する。なお、第1フレームは、時系列において第2フレームの直前のフレームであるが、それに限られず、第2フレームより前の任意のタイミングで表示されるフレーム(例えば第2フレームよりも、複数フレーム前のフレーム)であってもよい。また、第2フレームよりも前の複数のフレームを、第1フレームとしてもよい。図8の例では、フレームF2を表示対象(第2フレーム)とする場合、制御部170は、フレームF2の画像データと、フレームF2の直前のフレームF1の画像データとを取得する。 The control unit 170 acquires image data included in the frame when setting the drive signal. Specifically, if the frame to be displayed is the second frame, and the frame displayed before the second frame in time series is the first frame, the control unit 170 controls the image data (the first frame) included in the first frame. Image data for each pixel displayed in the display period of one frame) and image data included in the second frame (image data for each pixel displayed in the display period of the second frame) are acquired. Note that the first frame is a frame immediately before the second frame in chronological order, but is not limited to this, and is a frame displayed at an arbitrary timing before the second frame (for example, a frame displayed several frames earlier than the second frame). frame). Further, a plurality of frames before the second frame may be used as the first frame. In the example of FIG. 8, when frame F2 is to be displayed (second frame), the control unit 170 acquires image data of frame F2 and image data of frame F1 immediately before frame F2.
 制御部170は、第1フレームにおける画像データと第2フレームにおける画像データとから、対象領域を抽出して、第1フレームでの対象領域と第2フレームでの対象領域との動きベクトルを取得する。対象領域の抽出方法と、動きベクトルの取得方法は任意であってよいが、本実施形態では、制御部170は、第1フレームにおける画像データと第2フレームにおける画像データとから、共通する対象を示す対象領域を抽出する。対象領域は、第1フレームの画像と第2フレームの画像とで同じ対象物が写っている領域を指す。すなわち、第1フレームの画像における対象領域とは、第1フレームの画像のうちで、第2フレームの画像にも含まれている対象が写っている領域(画素群)を指し、第2フレームの画像における対象領域とは、第2フレームの画像のうちで、第1フレームの画像にも含まれている対象が写っている領域(画素群)を指す。図8の例では、フレームF1の画像とフレームF2の画像の両方に、対象物200、202が含まれる。そのため、図8の例では、制御部170は、フレームF1の画像データのうちで対象物200が含まれる領域(画素群)を、フレームF1における対象物200についての対象領域として抽出し、フレームF2の画像データのうちで対象物200が含まれる領域(画素群)を、フレームF2における対象物200についての対象領域として抽出する。同様に、図8の例では、制御部170は、フレームF1の画像データのうちで対象物202が含まれる領域(画素群)を、フレームF1における対象物202についての対象領域として抽出し、フレームF2の画像データのうちで対象物202が含まれる領域(画素群)を、フレームF2における対象物202についての対象領域として抽出する。なお、それぞれの画像データから対象領域を抽出する方法は任意であってよく、例えば複数の画像から同じ対象を抽出する既知の画像マッチング技術を用いてよい。なお、分割したフレーム間を比較して、画角全体が動いている場合には、画角全体を動き領域とする。 The control unit 170 extracts a target area from the image data in the first frame and the image data in the second frame, and obtains a motion vector between the target area in the first frame and the target area in the second frame. . Although the method of extracting the target area and the method of acquiring the motion vector may be arbitrary, in this embodiment, the control unit 170 extracts a common target from the image data in the first frame and the image data in the second frame. Extract the target area to be shown. The target area refers to an area where the same target object is shown in the first frame image and the second frame image. In other words, the target area in the first frame image refers to an area (pixel group) in the first frame image in which the target that is also included in the second frame image is captured; The target area in an image refers to an area (pixel group) in the second frame image in which an object that is also included in the first frame image is captured. In the example of FIG. 8, objects 200 and 202 are included in both the image of frame F1 and the image of frame F2. Therefore, in the example of FIG. 8, the control unit 170 extracts a region (pixel group) in which the target object 200 is included in the image data of the frame F1 as a target region for the target object 200 in the frame F1, and A region (pixel group) in which the target object 200 is included in the image data is extracted as a target region for the target object 200 in frame F2. Similarly, in the example of FIG. 8, the control unit 170 extracts a region (pixel group) including the target object 202 from the image data of the frame F1 as a target region for the target object 202 in the frame F1, and A region (pixel group) in which the target object 202 is included in the image data of F2 is extracted as a target region for the target object 202 in frame F2. Note that the method for extracting the target area from each image data may be arbitrary, and for example, a known image matching technique for extracting the same target from a plurality of images may be used. Note that when comparing the divided frames, if the entire angle of view is moving, the entire angle of view is determined as a moving area.
 制御部170は、対象領域を抽出したら、第1フレームでの対象領域と第2フレームでの対象領域とに基づいて、対象領域の動きベクトルVを算出する。本実施形態では、動きベクトルVが発生している対象領域を、動きベクトルV(動き量)が発生している領域である動き領域として取り扱う。動きベクトルVとは、動き領域が、第1フレームから第2フレームまでの期間に移動する移動量(動き領域の動き量)を示す指標である。制御部170は、第1フレームの画像内における対象領域の位置と、第2フレームの画像内における対象領域の位置とから、その対象領域(動き領域)の動きベクトルVを算出する。すなわち例えば、制御部170は、画像を基準とした座標系における、第1フレームの画像内における対象領域の位置と第2フレームの画像内における対象領域の位置との差分を、その対象領域(動き領域)の移動量(移動ベクトル)として算出する。対象領域(動き領域)が複数ある場合には、制御部170は、対象領域(動き領域)毎に、動きベクトルVを算出する。図8の例では、制御部170は、第1フレーム及び第2フレームでの対象物200の位置に基づき、対象物200についての動き領域の、動きベクトルVを算出する。同様に、制御部170は、第1フレーム及び第2フレームでの対象物202の位置に基づき、対象物202についての動き領域の、動きベクトルVを算出する。なお、制御部170は、動き領域の移動量に加えて、動き領域の移動方向も、移動ベクトルとして算出してよい。すなわち、動きベクトルVは、動き領域の動き量のみを指してもよいし、動き領域の動き量とその動く方向(移動方向)の両方を指すものであってもよい。移動方向は、画像を基準とした座標系における、第1フレームの画像内における動き領域の位置と第2フレームの画像内における動き領域の位置とから算出できる。 After extracting the target area, the control unit 170 calculates the motion vector V of the target area based on the target area in the first frame and the target area in the second frame. In this embodiment, the target area where the motion vector V is generated is treated as a motion area where the motion vector V (amount of motion) is generated. The motion vector V is an index indicating the amount of movement of the motion area (the amount of movement of the motion area) during the period from the first frame to the second frame. The control unit 170 calculates a motion vector V of the target area (motion area) from the position of the target area in the first frame image and the position of the target area in the second frame image. That is, for example, the control unit 170 calculates the difference between the position of the target area in the first frame image and the position of the target area in the second frame image in the image-based coordinate system based on the target area (movement). area) as the amount of movement (movement vector). When there are multiple target areas (motion areas), the control unit 170 calculates the motion vector V for each target area (motion area). In the example of FIG. 8, the control unit 170 calculates the motion vector V of the motion area of the target object 200 based on the position of the target object 200 in the first frame and the second frame. Similarly, the control unit 170 calculates the motion vector V of the motion area of the target object 202 based on the position of the target object 202 in the first frame and the second frame. Note that in addition to the amount of movement of the motion area, the control unit 170 may also calculate the movement direction of the motion area as a movement vector. That is, the motion vector V may indicate only the amount of motion of the motion region, or may indicate both the amount of motion of the motion region and the direction in which it moves (movement direction). The moving direction can be calculated from the position of the moving area within the first frame image and the position of the moving area within the second frame image in a coordinate system based on the image.
 制御部170は、算出した動き領域の動きベクトルに基づいて、第2フレームにおける揺動部12Aの揺動速度を、すなわち実施形態1では第2フレームにおいて印加する駆動信号の波形を、設定する。制御部170は、第1フレームから第2フレームまでの期間における動き領域の動きベクトル(移動量)Vに基づいて、第2フレームでアクチュエータ12Bに印加する駆動信号の波形を設定する。本実施形態においては、制御部170は、動き領域の動きベクトル(移動量)Vが、所定の閾値より大きいかを判断する。より詳しくは、制御部170は、動きベクトルVが閾値より大きい場合の、駆動信号の印加による揺動部12Aの揺動速度が、動きベクトルVが閾値以下である場合の、駆動信号の印加による揺動部12Aの揺動速度よりも高くなるように、駆動信号の波形を設定する。なお、揺動速度は、駆動信号の波形における電流値(電圧値)の変化速度に比例して変化するので、制御部170は、動きベクトルVが閾値より大きい場合の、駆動信号の電流値(電圧値)の変化速度が、動きベクトルVが閾値以下である場合の、駆動信号の電流値(電圧値)の変化速度よりも高くなるように、駆動信号の波形を設定するともいえる。言い換えれば、制御部170は、動きベクトルVが閾値より大きい場合には、動画像を表示するとして、第2フレームにおける駆動信号の波形を第1波形に設定する。そして、制御部170は、動きベクトルVが閾値以下である場合には、静止画像を表示するとして、第2フレームにおける駆動信号の波形を、揺動部12Aの揺動速度が第1波形より低くなる(電流値の変化速度が第1波形より低くなる)第2波形に設定する。なお、動き領域が複数ある場合には、それぞれの動き領域のうちで動きベクトル(移動量)Vが最大となる動きベクトルVを用いて、上記の判断を行う。また、ここでの閾値は任意に設定されてよい。図8の例では、フレームF2を表示対象(第2フレーム)とした場合には、対象物200の動きベクトルVが閾値より大きい。同様に、フレームF3、F4についても、対象物200の動きベクトルVが閾値より大きい。一方、フレームF5、F6においては、対象物200は写っておらず、写っている対象物202の動きベクトルVが閾値以下である。そのため、図8の例では、フレームF2~F4における駆動信号での電流値の変化速度が、フレームF5~F6における駆動信号での電流値の変化速度よりも高くなっている。 The control unit 170 sets the swinging speed of the swinging unit 12A in the second frame, that is, the waveform of the drive signal applied in the second frame in the first embodiment, based on the calculated motion vector of the motion area. The control unit 170 sets the waveform of the drive signal to be applied to the actuator 12B in the second frame based on the motion vector (movement amount) V of the motion area in the period from the first frame to the second frame. In this embodiment, the control unit 170 determines whether the motion vector (movement amount) V of the motion area is larger than a predetermined threshold value. More specifically, the control unit 170 controls the swinging speed of the swinging unit 12A due to the application of the drive signal when the motion vector V is larger than the threshold value, and the swing speed of the swinging unit 12A due to the application of the drive signal when the motion vector V is less than or equal to the threshold value. The waveform of the drive signal is set to be higher than the swinging speed of the swinging section 12A. Note that since the swing speed changes in proportion to the rate of change of the current value (voltage value) in the waveform of the drive signal, the control unit 170 controls the current value ( It can also be said that the waveform of the drive signal is set so that the rate of change of the current value (voltage value) is higher than the rate of change of the current value (voltage value) of the drive signal when the motion vector V is less than or equal to the threshold value. In other words, when the motion vector V is larger than the threshold value, the control unit 170 sets the waveform of the drive signal in the second frame to the first waveform to display a moving image. Then, when the motion vector V is less than or equal to the threshold value, the control unit 170 determines that a still image is to be displayed, and changes the waveform of the drive signal in the second frame so that the swinging speed of the swinging unit 12A is lower than the first waveform. (the rate of change of the current value is lower than the first waveform). Note that when there are multiple motion regions, the above determination is made using the motion vector V with the largest motion vector (movement amount) V among the motion regions. Further, the threshold value here may be set arbitrarily. In the example of FIG. 8, when the frame F2 is the display target (second frame), the motion vector V of the target object 200 is larger than the threshold value. Similarly, for frames F3 and F4, the motion vector V of the object 200 is larger than the threshold value. On the other hand, in frames F5 and F6, the object 200 is not photographed, and the motion vector V of the photographed object 202 is less than or equal to the threshold value. Therefore, in the example of FIG. 8, the rate of change of the current value in the drive signal in frames F2 to F4 is higher than the rate of change in the current value in the drive signal in frames F5 to F6.
 なお、上述のように、制御部170は、動きベクトルに基づいて設定されたサブフレーム数に基づいて、揺動部12Aの揺動速度を設定するともいえる。この場合、制御部170は、動きベクトルVが閾値より大きい場合の(すなわちサブフレーム数が所定の閾値より多い場合の)、揺動部12Aの揺動速度が、動きベクトルVが閾値以下である場合の(すなわちサブフレーム数が所定の閾値以下である場合の)、揺動部12Aの揺動速度よりも高くなるように、揺動部12Aの揺動速度を設定する。 Note that, as described above, the control unit 170 can also be said to set the swinging speed of the swinging unit 12A based on the number of subframes set based on the motion vector. In this case, the control unit 170 controls the swinging speed of the swinging unit 12A when the motion vector V is greater than the threshold (that is, when the number of subframes is greater than a predetermined threshold), such that the motion vector V is less than or equal to the threshold. The swinging speed of the swinging section 12A is set so as to be higher than the swinging speed of the swinging section 12A in the case (that is, when the number of subframes is less than or equal to a predetermined threshold value).
 以下、駆動信号の波形と、その駆動信号による揺動部12Aの揺動パターンとの例を説明する。 Hereinafter, examples of the waveform of the drive signal and the swing pattern of the swing section 12A based on the drive signal will be explained.
 (動きベクトルが閾値以下である場合の駆動信号の波形)
 図9は、動きベクトルが閾値以下である場合の駆動信号の波形の一例を示すグラフであり、図10は、動きベクトルが閾値以下である場合の揺動部の揺動パターンの一例を示すグラフである。
(Waveform of drive signal when motion vector is below threshold)
FIG. 9 is a graph showing an example of the waveform of the drive signal when the motion vector is below the threshold value, and FIG. 10 is a graph showing an example of the swinging pattern of the swinging section when the motion vector is below the threshold value. It is.
 図9に示すように、駆動回路16から第1アクチュエータ25に印加される駆動信号は、電気信号であり、時間経過に従って電流値が変化する。すなわち、駆動信号の時間毎の電流値の変化を表す波形が、駆動信号の波形といえる。駆動信号の波形は、図9に実線で示される。駆動信号は、周期T毎に同じ波形が繰り返されるものである。周期Tは、期間T1と、期間T1より後であって期間T1と連続する期間T2とを含む。期間T1は、光Lの光軸が第1位置となっているときの画像(半画素分ずれていない画像)が表示される期間に対応し、期間T2は、光Lの光軸が第2位置となっているときの画像(半画素分ずれた画像)が表示される期間に対応する。 As shown in FIG. 9, the drive signal applied from the drive circuit 16 to the first actuator 25 is an electrical signal, and the current value changes over time. In other words, the waveform representing the change in the current value of the drive signal over time can be said to be the waveform of the drive signal. The waveform of the drive signal is shown by a solid line in FIG. The drive signal has the same waveform repeated every period T. The period T includes a period T1 and a period T2 that is subsequent to the period T1 and continuous with the period T1. Period T1 corresponds to a period in which an image (image not shifted by half a pixel) is displayed when the optical axis of light L is at the first position, and period T2 corresponds to a period when the optical axis of light L is at the second position. This corresponds to the period in which the image (image shifted by half a pixel) is displayed when the image is in the correct position.
 動きベクトルVが閾値以下となる場合には、期間T1及び期間T2のそれぞれが1つのフレームの表示期間に対応するように、言い換えれば、周期Tが2フレーム分の表示期間に対応するように、駆動信号の波形(第2波形)が設定される。図9の例では、期間T1がフレームF5に対応し、期間T2がフレームF6に対応する。第2波形においては、期間T1のうちの第1期間TA1で、電流値が第1電流値A1から第2電流値A2まで変化する。ここで、第1電流値A1と第2電流値A2との中間位置0は、電流値が0となる位置である。第2波形においては、第1期間TA1で、電流値が第1電流値A1から第2電流値A2まで、時間の経過に従って直線状に変化する。すなわち、第2波形では、第1期間TA1の開始タイミングにおいて、電流値が第1電流値A1であり、その後電流値が第1電流値A1から直線状に変化して、第1期間TA1の終了タイミングにおいて、電流値が第2電流値A2となる。第1電流値A1は、第1揺動部21を第1角度D1に保持可能な電流値であり、第1角度D1の数値に応じて設定される。第2電流値A2は、第1揺動部21を第2角度D2に保持可能な電流値であり、第2角度D2の数値に応じて設定される。第1電流値A1と第2電流値A2とは、正負が逆となる電流値であり、その絶対値は等しくてよい。図9では、第1電流値A1が負であり、第2電流値A2が正であることが例示されている。 When the motion vector V is less than or equal to the threshold, the period T1 and the period T2 each correspond to the display period of one frame, in other words, the period T corresponds to the display period of two frames. The waveform (second waveform) of the drive signal is set. In the example of FIG. 9, period T1 corresponds to frame F5, and period T2 corresponds to frame F6. In the second waveform, the current value changes from the first current value A1 to the second current value A2 in the first period TA1 of the period T1. Here, the intermediate position 0 between the first current value A1 and the second current value A2 is a position where the current value is zero. In the second waveform, the current value changes linearly over time from the first current value A1 to the second current value A2 in the first period TA1. That is, in the second waveform, the current value is the first current value A1 at the start timing of the first period TA1, and then the current value changes linearly from the first current value A1 until the end of the first period TA1. At the timing, the current value becomes the second current value A2. The first current value A1 is a current value that can hold the first swinging portion 21 at the first angle D1, and is set according to the numerical value of the first angle D1. The second current value A2 is a current value that can hold the first swinging portion 21 at the second angle D2, and is set according to the value of the second angle D2. The first current value A1 and the second current value A2 are current values with opposite signs, and may have the same absolute value. In FIG. 9, it is illustrated that the first current value A1 is negative and the second current value A2 is positive.
 第2波形においては、第1期間TA1の長さは、第1揺動部21の固有振動数に対応する値であることが好ましい。第1揺動部21は、光路制御機構12のうちの、支持部27に対して揺動する部分(本実施形態では、光学部材20、第1可動部31、コイル41)を指す。すなわち、第1期間TA1の長さは、支持部27に対して揺動する部分の固有振動数に対応する値になっているといえる。より詳しくは、第1期間TA1の長さは、第1揺動部21の固有周期と略同じ値であることが好ましく、固有周期と同じ値であることがより好ましい。ここで、固有周期は、固有振動数の逆数である。また、「略同じ値」とは、固有周期に対して誤差範囲の程度ずれた値も許容することを意味する。例えば、固有周期に対してのずれが、固有周期の値に対して5%以内である場合にも、「略同じ値」としてよい。以降でも、「略同じ値」という記載は、同様の意味を指す。なお、固有周期(固有振動数の逆数)の値とは、固有振動数をf[Hz]とした場合、「1/f」[s]として表される。 In the second waveform, the length of the first period TA1 is preferably a value corresponding to the natural frequency of the first swinging section 21. The first swinging section 21 refers to a portion of the optical path control mechanism 12 that swings relative to the support section 27 (in this embodiment, the optical member 20, the first movable section 31, and the coil 41). That is, it can be said that the length of the first period TA1 has a value corresponding to the natural frequency of the portion that swings with respect to the support portion 27. More specifically, the length of the first period TA1 is preferably approximately the same value as the natural period of the first swinging portion 21, and more preferably the same value as the natural period. Here, the natural period is the reciprocal of the natural frequency. Furthermore, "substantially the same value" means that a value that is slightly different from the natural period within the error range is also allowed. For example, even if the deviation from the natural period is within 5% of the value of the natural period, it may be determined as "approximately the same value." Hereinafter, the expression "substantially the same value" refers to the same meaning. Note that the value of the natural period (reciprocal of the natural frequency) is expressed as "1/f" [s] when the natural frequency is f [Hz].
 第2波形においては、期間T1のうちの第2期間TB1において、電流値が第2電流値A2で保持される。第2期間TB1は、第1期間TA1より後であって第1期間TA1に連続する期間である。なお、第2電流値A2に保持されるとは、電流値が第2電流値A2から厳密に変化しないことに限定されず、電流値が第2電流値A2から所定値の範囲でずれることも含まれてよい。ここでの所定値は、任意に設定されてよいが、例えば第2電流値A2の10%の値であってよい。 In the second waveform, the current value is held at the second current value A2 in the second period TB1 of the period T1. The second period TB1 is a period subsequent to the first period TA1 and continuous with the first period TA1. Note that being held at the second current value A2 does not mean that the current value does not strictly change from the second current value A2, but may also deviate from the second current value A2 within a predetermined value range. May be included. The predetermined value here may be set arbitrarily, and may be, for example, a value of 10% of the second current value A2.
 このように、第2波形においては、期間T1で、電流値が第1電流値A1から第2電流値A2に徐々に変化し、電流値が第2電流値A2に到達したら、電流値が第2電流値A2に保持される。 In this way, in the second waveform, the current value gradually changes from the first current value A1 to the second current value A2 in the period T1, and when the current value reaches the second current value A2, the current value changes to the second current value A2. 2 current value A2 is maintained.
 第2波形においては、期間T2のうちの第3期間TA2で、電流値が、第2電流値A2から第1電流値A1まで変化する。第3期間TA2は、第2期間TB1より後であって第2期間TB1に連続する期間といえる。さらに言えば、第2波形においては、第3期間TA2で、電流値が第2電流値A2から第1電流値A1まで、時間の経過に従って直線状に変化する。すなわち、第2波形においては、第3期間TA2の開始タイミングで、電流値が第2電流値A3であり、その後電流値が第2電流値A2から直線状に変化して、第3期間TA2の終了タイミングで、電流値が第1電流値A1となる。 In the second waveform, the current value changes from the second current value A2 to the first current value A1 in the third period TA2 of the period T2. The third period TA2 can be said to be a period subsequent to the second period TB1 and continuous to the second period TB1. More specifically, in the second waveform, the current value changes linearly over time from the second current value A2 to the first current value A1 in the third period TA2. That is, in the second waveform, the current value is the second current value A3 at the start timing of the third period TA2, and then the current value changes linearly from the second current value A2 to reach the second current value A3 in the third period TA2. At the end timing, the current value becomes the first current value A1.
 第2波形においては、第3期間TA2の長さは、第1揺動部21の固有振動数に対応する値であることが好ましい。より詳しくは、第3期間TA2の長さは、第1揺動部21の固有周期(固有振動数の逆数)と略同じ値であることが好ましく、固有周期と同じ値であることがより好ましい。第3期間TA2では、第3期間TA2の長さは、第1期間TA1の長さと等しい。 In the second waveform, the length of the third period TA2 is preferably a value corresponding to the natural frequency of the first swinging section 21. More specifically, the length of the third period TA2 is preferably approximately the same value as the natural period (reciprocal of the natural frequency) of the first swinging portion 21, and more preferably the same value as the natural period. . In the third period TA2, the length of the third period TA2 is equal to the length of the first period TA1.
 第2波形においては、期間T2のうちの第4期間TB2で、電流値が第1電流値A1で保持される。第4期間TB2は、第3期間TA2より後であって第3期間TA2に連続する期間である。また、第4期間TB2は、第1期間TA1より前であって第1期間TA1に連続する期間である。第4期間TB2は、第2期間TB1と等しい。なお、第1電流値A1に保持されるとは、電流値が第1電流値A1から厳密に変化しないことに限定されず、電流値が第1電流値A1から所定値の範囲でずれることも含まれてよい。ここでの所定値は、任意に設定されてよいが、例えば第1電流値A1の10%の値であってよい。 In the second waveform, the current value is held at the first current value A1 in the fourth period TB2 of the period T2. The fourth period TB2 is a period after the third period TA2 and continuous with the third period TA2. Further, the fourth period TB2 is a period that precedes the first period TA1 and is continuous with the first period TA1. The fourth period TB2 is equal to the second period TB1. Note that being held at the first current value A1 does not mean that the current value does not strictly change from the first current value A1, but may also deviate from the first current value A1 within a predetermined value range. May be included. The predetermined value here may be set arbitrarily, and may be, for example, a value of 10% of the first current value A1.
 このように、第2波形においては、期間T2で、電流値が第2電流値A2から第1電流値A1に徐々に変化し、電流値が第1電流値A1に到達したら、電流値が第1電流値A1に保持される。 In this way, in the second waveform, the current value gradually changes from the second current value A2 to the first current value A1 in the period T2, and when the current value reaches the first current value A1, the current value changes to the first current value A1. 1 current value A1.
 以上のように、本実施形態においては、駆動信号の第2波形は台形状であり、電流値が変化する第1期間TA1、第3期間TA2が、揺動部12Aの固有振動数に対応する値となっている。 As described above, in this embodiment, the second waveform of the drive signal is trapezoidal, and the first period TA1 and third period TA2 in which the current value changes correspond to the natural frequency of the swinging section 12A. value.
 なお、図9に示す破線は、光Lが照射される期間を示している。照射装置100は、第1期間TA1において光Lを照射せず、第2期間TB1において光Lを照射することが好ましい。また、照射装置100は、第3期間TA2において光Lを照射せず、第4期間TB2において光Lを照射することが好ましい。 Note that the broken line shown in FIG. 9 indicates the period during which the light L is irradiated. It is preferable that the irradiation device 100 does not irradiate the light L during the first period TA1 and irradiates the light L during the second period TB1. Further, it is preferable that the irradiation device 100 does not irradiate the light L during the third period TA2 and irradiates the light L during the fourth period TB2.
 (動きベクトルが閾値以下である場合の揺動パターン)
 図10に示すように、第1揺動部21の揺動パターンとは、第1アクチュエータ25に駆動信号が印加されたときの、時間毎の第1揺動部21の変位角(第1揺動軸AXまわりの角度)を指す。図10では、揺動パターンが実線で示されている。
(Swinging pattern when the motion vector is below the threshold)
As shown in FIG. 10, the swing pattern of the first swing section 21 refers to the displacement angle (first swing) of the first swing section 21 for each time when a drive signal is applied to the first actuator 25. angle around the moving axis AX). In FIG. 10, the swing pattern is shown by a solid line.
 第2波形においては、第1期間TA1で、駆動信号の電流値が第1電流値A1から第2電流値A2まで変化する。これにより、第1揺動部21は、第1期間TA1において、変位角が、第1角度D1から第2角度D2まで変化する。ここで、第1角度D1と第2角度D2との中間位置0は、第1揺動部21の変位角が0となる位置である。 In the second waveform, the current value of the drive signal changes from the first current value A1 to the second current value A2 in the first period TA1. Thereby, the displacement angle of the first swinging portion 21 changes from the first angle D1 to the second angle D2 in the first period TA1. Here, the intermediate position 0 between the first angle D1 and the second angle D2 is a position where the displacement angle of the first swinging portion 21 is zero.
 第2波形においては、第2期間TB1で、駆動信号は、電流値が第2電流値A2に保持される。これにより、第1揺動部21は、第2期間TB1において、変位角が、第2角度D2に保持される。なお、第2角度D2に保持されるとは、変位角が第2角度D2から厳密に変化しないことに限定されず、変位角が第2角度D2から所定値の範囲でずれることも含まれてよい。ここでの所定値は、任意に設定されてよいが、例えば、第2角度D2の10%の値であってよい。 In the second waveform, in the second period TB1, the current value of the drive signal is held at the second current value A2. As a result, the displacement angle of the first swinging portion 21 is maintained at the second angle D2 during the second period TB1. Note that being held at the second angle D2 does not mean that the displacement angle does not strictly change from the second angle D2, but also includes that the displacement angle deviates from the second angle D2 within a predetermined range. good. The predetermined value here may be set arbitrarily, and may be, for example, a value of 10% of the second angle D2.
 第2波形においては、第3期間TA2で、駆動信号は、電流値が第2電流値A2から第1電流値A1まで変化する。これにより、第1揺動部21は、第3期間TA2において、変位角が、第2角度D2から第1角度D1まで変化する。 In the second waveform, in the third period TA2, the current value of the drive signal changes from the second current value A2 to the first current value A1. As a result, the displacement angle of the first swinging section 21 changes from the second angle D2 to the first angle D1 in the third period TA2.
 第2波形においては、第4期間TB2で、駆動信号は、電流値が第1電流値A1に保持される。これにより、第1揺動部21は、第4期間TB2において、変位角が、第1角度D1に保持される。なお、第1角度D1に保持されるとは、変位角が第1角度D1から厳密に変化しないことに限定されず、変位角が第1角度D1から所定値の範囲でずれることも含まれてよい。ここでの所定値は、任意に設定されてよいが、例えば第1角度D1の10%の値であってよい。 In the second waveform, in the fourth period TB2, the current value of the drive signal is held at the first current value A1. As a result, the displacement angle of the first swinging portion 21 is maintained at the first angle D1 during the fourth period TB2. Note that being held at the first angle D1 does not mean that the displacement angle does not strictly change from the first angle D1, but also includes that the displacement angle deviates from the first angle D1 within a predetermined range. good. The predetermined value here may be set arbitrarily, and may be, for example, a value of 10% of the first angle D1.
 なお、光Lは、第2期間TB1、第4期間TB2において照射される。従って、第2期間TB1において、第2角度D2に保持された第1揺動部21に光Lが照射されて、光Lの光路が第1位置となる。第4期間TB2においては、第1角度D1に保持された第1揺動部21に光Lが照射されて、光Lの光路が第2位置にシフトして、画像が半画素分ずれる。 Note that the light L is irradiated during the second period TB1 and the fourth period TB2. Therefore, in the second period TB1, the first swinging portion 21 held at the second angle D2 is irradiated with the light L, and the optical path of the light L becomes the first position. In the fourth period TB2, the first swinging section 21 held at the first angle D1 is irradiated with the light L, the optical path of the light L is shifted to the second position, and the image is shifted by half a pixel.
 ここでは、駆動回路16からアクチュエータ12Bに印加される駆動信号として、第1アクチュエータ25に印加される駆動信号について説明した。第2アクチュエータ26に印加される駆動信号についても同様であることから説明は省略する。 Here, the drive signal applied to the first actuator 25 has been described as the drive signal applied from the drive circuit 16 to the actuator 12B. The same applies to the drive signal applied to the second actuator 26, so a description thereof will be omitted.
 (動きベクトルが閾値より大きい場合の駆動信号の波形)
 図11は、動きベクトルが閾値より大きい場合の駆動信号の波形の一例を示すグラフであり、図12は、動きベクトルが閾値より大きい場合の揺動部の揺動パターンの一例を示すグラフである。
(Waveform of drive signal when motion vector is larger than threshold)
FIG. 11 is a graph showing an example of the waveform of the drive signal when the motion vector is larger than the threshold value, and FIG. 12 is a graph showing an example of the swinging pattern of the swinging part when the motion vector is larger than the threshold value. .
 動きベクトルVが閾値より大きくなる場合には、周期Tが1フレーム分の表示期間に対応するように、駆動信号の波形(第1波形)が設定される。図11の例では、周期TがフレームF2に対応する。第1波形においては、第1期間TA1で、電流値がゼロに保持される。本実施形態では、デジタル回路14Aなどがデジタルのスイッチング回路を含むため、アクチュエータ12Bへの電流の供給を停止でき、電流の供給が停止されている期間が、電流値がゼロとされる期間となる。第1波形においては、第1期間TA1の長さが、揺動部12Aの固有振動数に対応する値となることが好ましい。より詳しくは、第1期間TA1の長さは、揺動部12Aの固有周期(固有振動数の逆数)の半分の値と略同じ値であることが好ましく、固有周期(固有振動数の逆数)の半分の値と同じ値であることがより好ましい。なお、固有周期の半分の値とは、固有振動数をf[Hz]とした場合、「1/(2・f)」[s]として表される。 When the motion vector V becomes larger than the threshold value, the waveform (first waveform) of the drive signal is set so that the period T corresponds to the display period of one frame. In the example of FIG. 11, period T corresponds to frame F2. In the first waveform, the current value is held at zero during the first period TA1. In this embodiment, since the digital circuit 14A and the like include a digital switching circuit, the supply of current to the actuator 12B can be stopped, and the period in which the supply of current is stopped is the period in which the current value is zero. . In the first waveform, it is preferable that the length of the first period TA1 is a value corresponding to the natural frequency of the swinging section 12A. More specifically, the length of the first period TA1 is preferably approximately the same as half the natural period (reciprocal of the natural frequency) of the swinging portion 12A; It is more preferable that the value is the same as half of the value of . Note that the half value of the natural period is expressed as "1/(2·f)" [s] when the natural frequency is f [Hz].
 第1波形では、第2期間TB1において、電流値が、第2電流値A2で保持される。第2期間TB1は、第1期間TA1より後であって第1期間TA1に連続する期間である。すなわち、第2期間TB1の開始タイミング(第1期間TA1から第2期間TB1へ切り替わるタイミング)において、電流値が、ゼロから第2電流値A2に切り替わり、第2期間TB1の終了タイミングまで、電流値が第2電流値A2で保持される。 In the first waveform, the current value is held at the second current value A2 in the second period TB1. The second period TB1 is a period subsequent to the first period TA1 and continuous with the first period TA1. That is, at the start timing of the second period TB1 (the timing at which the first period TA1 switches to the second period TB1), the current value switches from zero to the second current value A2, and the current value changes until the end timing of the second period TB1. is held at the second current value A2.
 このように、第1波形では、期間T1における駆動信号は、第1期間TA1において電流値がゼロに保持されて、第2期間TB1の開始タイミングで電流値が第2電流値A2に切り替わり、第2期間TB1において電流値が第2電流値A2に保持される。 In this way, in the first waveform, the current value of the drive signal in the period T1 is held at zero in the first period TA1, the current value is switched to the second current value A2 at the start timing of the second period TB1, and the current value is maintained at zero in the first period TA1. The current value is held at the second current value A2 during the second period TB1.
 第1波形では、第3期間TA2においては、電流値がゼロに保持される。第3期間TA2は、第2期間TB1より後であって第2期間TB1に連続する期間といえる。すなわち、第3期間TA2の開始タイミング(第2期間TB1から第3期間TA2へ切り替わるタイミング)において、電流値が、第2電流値A2からゼロに切り替わり、第3期間TA2の終了タイミングまで、電流値がゼロで保持される。第1波形では、第3期間TA2の長さが、揺動部12Aの固有振動数に対応する値となることが好ましい。より詳しくは、第3期間TA2の長さは、揺動部12Aの固有周期(固有振動数の逆数)の半分の値と略同じ値であることが好ましく、固有周期(固有振動数の逆数)の半分の値と同じ値であることがより好ましい。本実施形態では、第3期間TA2の長さは、第1期間TA1の長さと等しい。 In the first waveform, the current value is held at zero in the third period TA2. The third period TA2 can be said to be a period subsequent to the second period TB1 and continuous to the second period TB1. That is, at the start timing of the third period TA2 (timing when switching from the second period TB1 to the third period TA2), the current value switches from the second current value A2 to zero, and until the end timing of the third period TA2, the current value is held at zero. In the first waveform, it is preferable that the length of the third period TA2 has a value corresponding to the natural frequency of the swinging section 12A. More specifically, the length of the third period TA2 is preferably approximately the same as half the natural period (reciprocal of the natural frequency) of the swinging portion 12A; It is more preferable that the value is the same as half of the value of . In this embodiment, the length of the third period TA2 is equal to the length of the first period TA1.
 第1波形では、第4期間TB2においては、電流値が、第1電流値A1で保持される。第4期間TB2は、第3期間TA2より後であって第3期間TA2に連続する期間である。すなわち、第4期間TB2の開始タイミング(第3期間TA2から第4期間TB2へ切り替わるタイミング)において、電流値が、ゼロから第1電流値A1に切り替わり、第4期間TB2の終了タイミングまで、電流値が第1電流値A1で保持される。 In the first waveform, the current value is held at the first current value A1 in the fourth period TB2. The fourth period TB2 is a period after the third period TA2 and continuous with the third period TA2. That is, at the start timing of the fourth period TB2 (the timing at which the third period TA2 switches to the fourth period TB2), the current value switches from zero to the first current value A1, and the current value changes until the end timing of the fourth period TB2. is held at the first current value A1.
 このように、第1波形では、期間T2における駆動信号は、第3期間TA2において電流値がゼロに保持されて、第4期間TB2の開始タイミングで電流値が第1電流値A1に切り替わり、第4期間TB2において電流値が第1電流値A1に保持される。 In this way, in the first waveform, the current value of the drive signal in the period T2 is held at zero in the third period TA2, and the current value is switched to the first current value A1 at the start timing of the fourth period TB2. During the fourth period TB2, the current value is held at the first current value A1.
 なお、第1波形では、第4期間TB2に後続する第1期間TA1においては、上述のように電流値がゼロに保持される。すなわち、第1期間TA1の開始タイミング(第4期間TB2から第1期間TA1へ切り替わるタイミング)において、電流値が、第1電流値A1からゼロに切り替わり、第1期間TA1の終了タイミングまで、電流値がゼロで保持される。 Note that in the first waveform, the current value is held at zero in the first period TA1 following the fourth period TB2, as described above. That is, at the start timing of the first period TA1 (the timing at which the fourth period TB2 switches to the first period TA1), the current value switches from the first current value A1 to zero, and the current value changes until the end timing of the first period TA1. is held at zero.
 図11の破線は、光Lが照射される期間を示している。照射装置100は、第1期間TA1において光Lを照射せず、第2期間TB1において光Lを照射することが好ましい。また、照射装置100は、第3期間TA2において光Lを照射せず、第4期間TB2において光Lを照射することが好ましい。 The broken line in FIG. 11 indicates the period during which the light L is irradiated. It is preferable that the irradiation device 100 does not irradiate the light L during the first period TA1 and irradiates the light L during the second period TB1. Further, it is preferable that the irradiation device 100 does not irradiate the light L during the third period TA2 and irradiates the light L during the fourth period TB2.
 (動きベクトルが閾値より大きい場合の揺動パターン)
 第1期間TA1の開始タイミングにおいて、第1波形では、電流値が第1電流値A1からゼロに切り替わり、第1期間TA1の終了タイミングまで、電流値がゼロに保持される。これにより、揺動部12Aは、第1期間TA1において、変位角が、第1角度D1から第2角度D2まで変化する。より詳しくは、第1角度D1まで捩られ第1電流値A1で保持されていた揺動部12Aは、電流がゼロになることで、捩りが解放されニュートラルの位置に戻り、さらに慣性力が働き、反対側の第2角度D2まで捩られることで、第2角度D2に到達する。
(oscillation pattern when the motion vector is larger than the threshold)
At the start timing of the first period TA1, in the first waveform, the current value switches from the first current value A1 to zero, and the current value is maintained at zero until the end timing of the first period TA1. As a result, the displacement angle of the swinging portion 12A changes from the first angle D1 to the second angle D2 in the first period TA1. More specifically, the swinging part 12A, which has been twisted to the first angle D1 and held at the first current value A1, is untwisted and returns to the neutral position when the current becomes zero, and further inertial force is applied. , the second angle D2 is reached by being twisted to the second angle D2 on the opposite side.
 第2期間TB1の開始タイミングにおいて、第1波形は、電流値がゼロから第2電流値A2に切り替わり、第2期間TB1の終了タイミングまで、電流値が第2電流値A2に保持される。これにより、揺動部12Aは、第2期間TB1において、変位角が、第2角度D2に保持される。すなわち、第2角度D2まで捩られた揺動部12Aは、ニュートラルに位置に戻ろうとする力と第2電流値A2による力が釣りあい、第2角度D2に保持される。 At the start timing of the second period TB1, the current value of the first waveform switches from zero to the second current value A2, and the current value is maintained at the second current value A2 until the end timing of the second period TB1. As a result, the displacement angle of the swinging portion 12A is maintained at the second angle D2 during the second period TB1. That is, the swinging portion 12A that has been twisted to the second angle D2 is held at the second angle D2 because the force of returning to the neutral position and the force due to the second current value A2 are balanced.
 第3期間TA2の開始タイミングにおいて、第1波形では、電流値が第2電流値A2からゼロに切り替わり、第3期間TA2の終了タイミングまで、電流値がゼロに保持される。これにより、揺動部12Aは、第3期間TA2において、変位角が、第2角度D2から第1角度D1まで変化する。 At the start timing of the third period TA2, in the first waveform, the current value switches from the second current value A2 to zero, and the current value is maintained at zero until the end timing of the third period TA2. As a result, the displacement angle of the swinging portion 12A changes from the second angle D2 to the first angle D1 in the third period TA2.
 第4期間TB2の開始タイミングにおいて、第1波形では、電流値がゼロから第1電流値A1に切り替わり、第4期間TB2の終了タイミングまで、電流値が第1電流値A1に保持される。これにより、揺動部12Aは、第4期間TB2において、変位角が、第1角度D1に保持される。 At the start timing of the fourth period TB2, in the first waveform, the current value switches from zero to the first current value A1, and the current value is maintained at the first current value A1 until the end timing of the fourth period TB2. As a result, the displacement angle of the swinging portion 12A is maintained at the first angle D1 during the fourth period TB2.
 以上のように、本実施形態の例では、動きベクトルVが閾値より大きい場合には、階段状の第1波形の駆動信号が印加され、動きベクトルVが閾値以下の場合には、台形状の第2波形の駆動信号が印加される。第1波形及び第2波形のいずれにおいても、期間TA1、TA2で電流値が変化し、第2波形における期間TA1、TA2よりも、第1波形における期間TA1、TA2の方が短い。そのため、本実施形態の例で示した第1波形は、電流値の変化速度が、言い換えれば揺動部12Aの揺動速度が、第2波形よりも高いことが分かる。 As described above, in the example of the present embodiment, when the motion vector V is larger than the threshold, a stepped first waveform drive signal is applied, and when the motion vector V is less than or equal to the threshold, a trapezoidal drive signal is applied. A drive signal of a second waveform is applied. In both the first waveform and the second waveform, the current value changes in periods TA1 and TA2, and the periods TA1 and TA2 in the first waveform are shorter than the periods TA1 and TA2 in the second waveform. Therefore, it can be seen that in the first waveform shown in the example of this embodiment, the rate of change in the current value, in other words, the swinging speed of the swinging portion 12A is higher than the second waveform.
 なお、動きベクトルVに応じて設定される駆動信号の波形は、図8~図12の例に示したものに限られず、任意であってよい。また、上記の説明では、動きベクトルVに応じて設定される駆動信号の波形の種類が、2種類であったが、それに限られない。例えば、設定する駆動信号の波形の種類を、動きベクトルVに応じて、3種類以上としてもよい設定してもよい。この場合、制御部170は、動きベクトル(移動量)Vが大きいほど(サブフレーム数が多いほど)、揺動部の揺動速度が高くなるように(電流値の変化速度が高くなるように)、駆動信号の波形を設定することが好ましい。 Note that the waveform of the drive signal set according to the motion vector V is not limited to those shown in the examples of FIGS. 8 to 12, and may be arbitrary. Further, in the above description, there are two types of waveforms of the drive signal that are set according to the motion vector V, but the present invention is not limited thereto. For example, three or more types of waveforms of the drive signal may be set depending on the motion vector V. In this case, the control unit 170 controls the swinging speed of the swinging unit to increase (the rate of change of the current value to ), it is preferable to set the waveform of the drive signal.
 また、本実施形態の例では、動きベクトルVについての閾値は、フレームや動き領域毎に固定された一定値であるが、それに限られず、動き領域毎に設定されてもよい。この場合例えば、制御部170は、動き領域の面積に基づいて、閾値を設定してよい。より好ましくは、制御部170は、動き領域の面積が大きい程、閾値を小さくしてもよい。これにより、動き領域が大きいほど、移動量が小さくても、揺動速度を高く設定できる。 Further, in the example of this embodiment, the threshold value for the motion vector V is a constant value fixed for each frame or motion region, but is not limited to this, and may be set for each motion region. In this case, for example, the control unit 170 may set the threshold based on the area of the motion region. More preferably, the control unit 170 may set the threshold value to be smaller as the area of the motion region becomes larger. Thereby, the larger the movement area, the higher the swing speed can be set even if the amount of movement is small.
 (動きベクトルに応じたサブフレームの設定)
 本実施形態においては、以上説明したようにフレーム毎に駆動信号の波形を設定しつつ、フレーム毎にサブフレーム数も設定することが好ましい。サブフレーム数の設定方法は任意であってよいが、本実施形態では、動きベクトルVに基づいて、サブフレーム数を設定する。以下、具体的に説明する。
(Setting subframes according to motion vector)
In this embodiment, as described above, it is preferable to set the waveform of the drive signal for each frame and also set the number of subframes for each frame. Although the method for setting the number of subframes may be arbitrary, in this embodiment, the number of subframes is set based on the motion vector V. This will be explained in detail below.
 サブフレームを設定する際に、制御部170は、対象領域(動き領域)を抽出して、動き領域の動きベクトルVを算出する。動き領域の抽出及び動きベクトルVの算出方法は、駆動信号の波形の設定の際と同様であるため、説明を省略する。 When setting a subframe, the control unit 170 extracts a target region (motion region) and calculates a motion vector V of the motion region. The method for extracting the motion area and calculating the motion vector V is the same as that for setting the waveform of the drive signal, so the explanation will be omitted.
 制御部170は、算出した動き領域の動きベクトルVに基づいて、第2フレームに対して、サブフレームの数を設定する。すなわち、制御部170は、第1フレームから第2フレームまでの期間における動き領域の動きベクトル(移動量)Vに基づいて、第2フレームのサブフレーム数を設定する。本実施形態においては、制御部170は、動き領域の動きベクトル(移動量)Vが、所定の閾値より大きいかを判断する。より詳しくは、制御部170は、動きベクトルVが閾値より大きい場合の、第2フレームのサブフレームの数を、動きベクトルVが閾値以下である場合の、第2フレームのサブフレームの数より、多くする。言い換えれば、制御部170は、動きベクトルVが閾値より大きい場合には、動画像を表示するとして、第2フレームのサブフレーム数を第1所定数に設定する。そして、制御部170は、動きベクトルVが閾値以下である場合には、静止画像を表示するとして、第2フレームのサブフレーム数を第1所定数よりも少ない第2所定数に設定する。なお、動き領域が複数ある場合には、それぞれの動き領域のうちで動きベクトル(移動量)Vが最大となる動きベクトルVを用いて、上記の判断を行う。また、ここでの閾値は任意に設定されてよい。図8の例では、動きベクトルVが閾値より大きいフレームF2~F4のサブフレームの数が、動きベクトルVが閾値以下となるフレームF5~F6のサブフレームの数より多くなっている。 The control unit 170 sets the number of subframes for the second frame based on the calculated motion vector V of the motion area. That is, the control unit 170 sets the number of subframes of the second frame based on the motion vector (movement amount) V of the motion area in the period from the first frame to the second frame. In this embodiment, the control unit 170 determines whether the motion vector (movement amount) V of the motion area is larger than a predetermined threshold value. More specifically, the control unit 170 determines the number of subframes of the second frame when the motion vector V is larger than the threshold value from the number of subframes of the second frame when the motion vector V is less than or equal to the threshold value. Do more. In other words, when the motion vector V is larger than the threshold value, the control unit 170 sets the number of subframes of the second frame to the first predetermined number to display the moving image. Then, when the motion vector V is less than or equal to the threshold value, the control unit 170 sets the number of subframes of the second frame to a second predetermined number smaller than the first predetermined number to display a still image. Note that when there are multiple motion regions, the above determination is made using the motion vector V with the largest motion vector (movement amount) V among the motion regions. Further, the threshold value here may be set arbitrarily. In the example of FIG. 8, the number of subframes of frames F2 to F4 in which the motion vector V is greater than the threshold value is greater than the number of subframes in frames F5 to F6 in which the motion vector V is less than or equal to the threshold value.
 さらに言えば、制御部170は、動きベクトルVが閾値より大きい場合には、第2フレームに含まれる全ての画素がそれぞれのサブフレームのいずれかに含まれるように、サブフレームを設定することが好ましい。すなわち図8の例では、フレームF2においては、4つのサブフレーム2A、2B、2D、2Cが設定されており、フレームF2を構成する複数の画素A、B、C、Dのうち、画素Aがサブフレーム2Aに含まれ、画素BがサブフレームBに含まれ、画素Cがサブフレーム2Cに含まれ、画素Dがサブフレーム2Dに含まれることになる。フレームF3、F4についても同様であるため説明を省略する。 Furthermore, when the motion vector V is larger than the threshold value, the control unit 170 can set the subframes so that all pixels included in the second frame are included in one of the respective subframes. preferable. In other words, in the example of FIG. 8, four subframes 2A, 2B, 2D, and 2C are set in frame F2, and among the plurality of pixels A, B, C, and D that constitute frame F2, pixel A is Pixel B is included in subframe B, pixel C is included in subframe 2C, and pixel D is included in subframe 2D. The same applies to frames F3 and F4, so the explanation will be omitted.
 また、制御部170は、動きベクトルVが閾値以下である場合には、第2フレームに含まれる一部の画素のみがそれぞれのサブフレームのいずれかに含まれるように、サブフレームを設定することが好ましい。またこの場合、制御部170は、その第2フレームに後続するフレーム(第3フレーム)において、第2フレームのサブフレームに含まれなかった画素とは異なる画素が、それぞれのサブフレームのいずれかに含まれるように、サブフレームを設定することが好ましい。すなわち図8の例では、フレームF5においては、2つのサブフレーム5A、5Bが設定されており、フレームF5を構成する複数の画素A、B、C、Dのうち、画素Aがサブフレーム5Aに含まれ、画素Bがサブフレーム5Bに含まれ、画素Cがサブフレーム2Cに含まれる。そして、フレームF6においては、サブフレーム6D、6Cが設定され、フレームF5を構成する複数の画素A、B、C、Dのうち、サブフレーム5A、5Bに含まれなかった画素Dがサブフレーム6Dに含まれ、画素Cがサブフレーム6Cに含まれる。なお、同一ライン上(横並び)に限られず、画素Aと画素D、画素Bと画素Cの組合せであってもよい。 Furthermore, when the motion vector V is less than or equal to the threshold, the control unit 170 sets the subframes so that only some pixels included in the second frame are included in each subframe. is preferred. In addition, in this case, the control unit 170 controls whether a pixel different from a pixel not included in a subframe of the second frame is included in one of the subframes in the frame (third frame) subsequent to the second frame. It is preferable to set the subframe so that the subframe is included. That is, in the example of FIG. 8, two subframes 5A and 5B are set in frame F5, and among the plurality of pixels A, B, C, and D that constitute frame F5, pixel A is set in subframe 5A. pixel B is included in subframe 5B, and pixel C is included in subframe 2C. In frame F6, subframes 6D and 6C are set, and among the plurality of pixels A, B, C, and D that constitute frame F5, pixel D that was not included in subframes 5A and 5B is set in subframe 6D. , and pixel C is included in subframe 6C. Note that the pixel A and the pixel D, or the pixel B and the pixel C may be combined without being limited to being on the same line (side-by-side).
 なお、図8の例では、動きベクトルVが閾値より大きい場合のサブフレーム数(第1所定数)が4つ、動きベクトルVが閾値以下の場合のサブフレーム数(第2所定数)が2つであったが、第1所定数及び第2所定数は、これに限られず任意の数であってよい。ただし、第1所定数及び第2所定数は、揺動軸の数に応じて設定されることが好ましい。また、本実施形態の例では、サブフレームの数が、第1所定数又は第2所定数の2種類の数のいずれかに設定されるが、それに限られない。例えば、設定するサブフレームの数を、動きベクトルVに応じて、任意の3種類以上の数のいずれかに設定してもよい。この場合、制御部170は、動きベクトル(移動量)Vが大きいほど、サブフレームの数を大きくすることが好ましい。例えば、動きベクトルVが第1閾値以下である場合には、サブフレームの数を1個とし、動きベクトルVが第1閾値より大きく、かつ、第1閾値より高い値の第2閾値以下である場合には、サブフレームの数を2個とし、動きベクトルVが第2閾値より大きい場合には、サブフレームの数を4個としてよい。 In the example of FIG. 8, the number of subframes (first predetermined number) when the motion vector V is greater than the threshold is 4, and the number of subframes (second predetermined number) when the motion vector V is less than or equal to the threshold is 2. However, the first predetermined number and the second predetermined number are not limited to this and may be arbitrary numbers. However, it is preferable that the first predetermined number and the second predetermined number are set according to the number of swing axes. Further, in the example of this embodiment, the number of subframes is set to one of two types of numbers, the first predetermined number and the second predetermined number, but the number is not limited thereto. For example, the number of subframes to be set may be set to any three or more types of numbers depending on the motion vector V. In this case, it is preferable that the control unit 170 increases the number of subframes as the motion vector (movement amount) V increases. For example, if the motion vector V is less than or equal to the first threshold, the number of subframes is one, and the motion vector V is greater than the first threshold and less than or equal to a second threshold that is higher than the first threshold. In this case, the number of subframes may be two, and if the motion vector V is larger than the second threshold, the number of subframes may be four.
 また、本実施形態の例では、動きベクトルVについての閾値は、フレームや動き領域毎に固定された一定値であるが、それに限られず、動き領域毎に設定されてもよい。この場合例えば、制御部170は、動き領域の面積に基づいて、閾値を設定してよい。より好ましくは、制御部170は、動き領域の面積が大きい程、閾値を小さくしてもよい。これにより、動き領域が大きいほど、移動量が小さくてもサブフレームの数が多くされることとなる。 Further, in the example of this embodiment, the threshold value for the motion vector V is a constant value fixed for each frame or motion region, but is not limited to this, and may be set for each motion region. In this case, for example, the control unit 170 may set the threshold based on the area of the motion region. More preferably, the control unit 170 may set the threshold value to be smaller as the area of the motion region becomes larger. As a result, the larger the motion area, the greater the number of subframes even if the amount of movement is small.
 制御部170は、第2フレームについてのサブフレームの数を設定したら、設定したサブフレームに含ませる画素を、言い換えれば、サブフレームの表示期間において画像データに基づいた画像を表示させる対象となる画素を、サブフレーム毎に設定する。 After setting the number of subframes for the second frame, the control unit 170 determines the pixels to be included in the set subframe, in other words, the pixels on which an image based on the image data is to be displayed during the display period of the subframe. is set for each subframe.
 (サブフレーム毎の画像の表示)
 第2フレームについてのサブフレームを設定したら、制御部170は、設定したサブフレームの情報を、映像信号処理回路160に出力する。これにより、制御部170は、第2フレームを表示する時間内に、第2フレームに対して設定されたサブフレームに含まれる画像データの画像が表示されるように、映像信号処理回路160に、表示素子106を制御させる。さらに言えば、制御部170は、第2フレームを表示する時間内に、第2フレームに対して設定されたそれぞれのサブフレームが順次表示されるように、映像信号処理回路160に、表示素子106を制御させる。以下、サブフレーム毎の画像の表示について、より詳細に説明する。
(Displaying images for each subframe)
After setting the subframe for the second frame, the control unit 170 outputs information on the set subframe to the video signal processing circuit 160. Thereby, the control unit 170 causes the video signal processing circuit 160 to cause the video signal processing circuit 160 to display the image of the image data included in the subframe set for the second frame within the time to display the second frame. The display element 106 is controlled. Furthermore, the control unit 170 causes the video signal processing circuit 160 to control the display element 106 so that each subframe set for the second frame is sequentially displayed within the time for displaying the second frame. be controlled. The display of images for each subframe will be described in more detail below.
 (動きベクトルが閾値より大きい場合の画像表示)
 図13は、動きベクトルが閾値より大きい場合の画像表示の例を示す模式図である。本実施形態では、動きベクトルVが閾値より大きい場合、表示対象となる第2フレームにおいては、第2フレームに含まれる全ての画素がそれぞれのサブフレームのいずれかに含まれるように、サブフレームが設定される。そして、映像信号処理回路160は、第2フレームが表示される時間において、第2フレームについて設定されたサブフレームが順次表示されるように表示素子106R、106G、106Bを制御する。そして、制御回路14は、映像信号処理回路160から入力された同期信号に基づいて、第1波形の駆動信号を生成する。駆動回路16は、この第1波形の駆動信号に基づいてアクチュエータ12Bを駆動し、揺動部12Aを揺動させる。以下、具体的に説明する。
(Image display when the motion vector is larger than the threshold)
FIG. 13 is a schematic diagram showing an example of image display when the motion vector is larger than the threshold value. In this embodiment, when the motion vector V is larger than the threshold value, in the second frame to be displayed, the subframes are arranged such that all pixels included in the second frame are included in one of the respective subframes. Set. Then, the video signal processing circuit 160 controls the display elements 106R, 106G, and 106B so that the subframes set for the second frame are sequentially displayed during the time when the second frame is displayed. Then, the control circuit 14 generates a drive signal of the first waveform based on the synchronization signal input from the video signal processing circuit 160. The drive circuit 16 drives the actuator 12B based on this first waveform drive signal to swing the swinging section 12A. This will be explained in detail below.
 図8及び13の例では、映像信号処理回路160は、第2フレーム(ここではフレームF2)を表示する時間(60Hz)内に、4個に分割したサブフレーム2A、2B、2D、2Cが順次表示されるように、表示素子106R、106G、106Bを制御する。このとき、各サブフレーム2A、2B、2D、2Cを表示する時間は、第2フレームを表示する時間(60Hz)の1/4の時間(240Hz)である。 In the examples shown in FIGS. 8 and 13, the video signal processing circuit 160 sequentially displays subframes 2A, 2B, 2D, and 2C divided into four parts within the time (60 Hz) for displaying the second frame (here, frame F2). The display elements 106R, 106G, and 106B are controlled so that the display is displayed. At this time, the time for displaying each subframe 2A, 2B, 2D, and 2C is 1/4 the time (240 Hz) for displaying the second frame (60 Hz).
 このとき、図2、図8、図13に示すように、制御回路14は、映像信号処理回路160から入力された同期信号に基づいて第1波形の駆動信号を生成し、駆動回路16は、駆動信号に基づいてアクチュエータ25、26を駆動する。つまり、図8に示すように、サブフレーム2Aを表示するとき、駆動回路16は、期間T1における第1波形に対応する駆動信号(図11参照)を印加する。すると、図13に示すように、第2アクチュエータ26は、光学部材20を第2揺動軸BXまわりに揺動し、画像位置P0を第1揺動軸AX方向に1/2画素ずらしたA動作状態とする。すなわち、画像位置P0がABX方向における一方ABXaにずれた画像位置P1に画像を表示する。 At this time, as shown in FIGS. 2, 8, and 13, the control circuit 14 generates a first waveform drive signal based on the synchronization signal input from the video signal processing circuit 160, and the drive circuit 16 Actuators 25 and 26 are driven based on the drive signal. That is, as shown in FIG. 8, when displaying the subframe 2A, the drive circuit 16 applies a drive signal (see FIG. 11) corresponding to the first waveform in the period T1. Then, as shown in FIG. 13, the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P0 by 1/2 pixel in the direction of the first swing axis AX. Put into working condition. That is, the image is displayed at an image position P1 where the image position P0 is shifted to one ABXa in the ABX direction.
 その後、図8に示すように、サブフレーム2Bを表示するとき、駆動回路16は、期間T1における第1波形に対応する駆動信号(図11参照)の印加を続ける。すると、図13に示すように、第2アクチュエータ26は、光学部材20を第2揺動軸BXまわりに揺動し、画像位置P1を第1揺動軸AX方向に1/2画素ずらしたB動作状態とする。すなわち、画像位置P0がABX方向における一方ABXbにずれた画像位置P2に画像を表示する。 Thereafter, as shown in FIG. 8, when displaying subframe 2B, the drive circuit 16 continues to apply the drive signal (see FIG. 11) corresponding to the first waveform in period T1. Then, as shown in FIG. 13, the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P1 by 1/2 pixel in the first swing axis AX direction. Put into working condition. That is, the image is displayed at an image position P2 where the image position P0 is shifted to one ABXb in the ABX direction.
 その後、図8に示すように、サブフレーム2Dを表示するとき、駆動回路16は、期間T2における第1波形に対応する駆動信号(図11参照)を印加する。すると、図13に示すように、第1アクチュエータ25は、光学部材20(図3参照)を第1揺動軸AXまわりに揺動し、画像位置P2を第2揺動軸BX方向に1/2画素ずらし、D動作状態とする。すなわち、画像位置P0がABX方向における一方ABXdにずれた画像位置P3に画像を表示する。 Thereafter, as shown in FIG. 8, when displaying subframe 2D, the drive circuit 16 applies a drive signal (see FIG. 11) corresponding to the first waveform in period T2. Then, as shown in FIG. 13, the first actuator 25 swings the optical member 20 (see FIG. 3) around the first swing axis AX, and moves the image position P2 by 1/2 in the direction of the second swing axis BX. Shift 2 pixels and enter D operation state. That is, the image is displayed at an image position P3 where the image position P0 is shifted to one side ABXd in the ABX direction.
 その後、図8に示すように、サブフレーム2Cを表示するとき、駆動回路16は、期間T2における第1波形に対応する駆動信号(図11参照)の印加を続ける。すると、図13に示すように、第2アクチュエータ26は、光学部材20を第2揺動軸BXまわりに揺動し、画像位置P3を第1揺動軸AX方向に1/2画素ずらしたC動作状態とする。すなわち、画像位置P0がABX方向における一方ABXcにずれた画像位置P4に画像を表示する。 Thereafter, as shown in FIG. 8, when displaying the subframe 2C, the drive circuit 16 continues applying the drive signal (see FIG. 11) corresponding to the first waveform in the period T2. Then, as shown in FIG. 13, the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P3 by 1/2 pixel in the direction of the first swing axis AX. Put into working condition. That is, the image is displayed at an image position P4 where the image position P0 is shifted to one side ABXc in the ABX direction.
 (動きベクトルが閾値以下の場合の画像表示)
 図14及び図15は、動きベクトルが閾値以下の場合の画像表示の例を示す模式図である。本実施形態では、動きベクトルVが閾値以下の場合、表示対象となる第2フレームにおいては、第2フレームに含まれる一部のみの画素がそれぞれのサブフレームのいずれかに含まれるように、かつ、その第2フレームに後続するフレーム(第3フレーム)において、第2フレームのサブフレームに含まれなかった画素とは異なる画素が、それぞれのサブフレームのいずれかに含まれるように、サブフレームを設定する。そして、映像信号処理回路160は、第2フレームが表示される時間において、第2フレームについて設定されたサブフレームが順次表示されるように表示素子106R、106G、106Bを制御し、第3フレームが表示される時間において、第3フレームについて設定されたサブフレームが順次表示されるように表示素子106R、106G、106Bを制御する。そして、制御回路14は、映像信号処理回路160から入力された同期信号に基づいて、第2波形の駆動信号を生成する。駆動回路16は、この第2波形の駆動信号に基づいてアクチュエータ12Bを駆動し、揺動部12Aを揺動させる。以下、具体的に説明する。
(Image display when the motion vector is less than the threshold)
14 and 15 are schematic diagrams showing examples of image display when the motion vector is less than or equal to the threshold value. In this embodiment, when the motion vector V is less than or equal to the threshold value, in the second frame to be displayed, only some pixels included in the second frame are included in one of the respective subframes, and , in the frame (third frame) that follows the second frame, the subframes are divided so that pixels that are different from the pixels that were not included in the subframes of the second frame are included in one of the respective subframes. Set. Then, the video signal processing circuit 160 controls the display elements 106R, 106G, and 106B so that the subframes set for the second frame are sequentially displayed during the time when the second frame is displayed, and the third frame is displayed. During the display time, the display elements 106R, 106G, and 106B are controlled so that the subframes set for the third frame are sequentially displayed. The control circuit 14 then generates a second waveform drive signal based on the synchronization signal input from the video signal processing circuit 160. The drive circuit 16 drives the actuator 12B based on this second waveform drive signal to swing the swinging section 12A. This will be explained in detail below.
 図8及び図14に示すように、映像信号処理回路160は、第2フレーム(ここではフレームF5)を表示する時間(60Hz)内に、4個に分割したサブフレーム5A,5B,5C,5Dのうち、2個のサブフレーム5A,5B(第1サブフレーム群)が順次表示されるように表示素子106R,106G,106Bを制御する。このとき、各サブフレーム5A,5Bを表示する時間は、フレームF5を表示する時間(60Hz)の1/2の時間(120Hz)である。続いて、図8及び図15に示すように、映像信号処理回路160は、第3フレーム(ここではフレームF6)を表示する時間(60Hz)内に、4個に分割したサブフレーム6A,6B,6C,6Dのうち、2個のサブフレーム6D,6C(第2サブフレーム群)が順次表示されるように表示素子106R,106G,106Bを制御する。このとき、各サブフレーム6D,2Cを表示する時間は、第2フレームを表示する時間(60Hz)の1/2の時間(120Hz)である。 As shown in FIGS. 8 and 14, the video signal processing circuit 160 divides subframes 5A, 5B, 5C, and 5D into four parts within the time (60 Hz) for displaying the second frame (here, frame F5). Among them, display elements 106R, 106G, and 106B are controlled so that two subframes 5A and 5B (first subframe group) are displayed sequentially. At this time, the time for displaying each subframe 5A, 5B is 1/2 the time (120 Hz) for displaying frame F5 (60 Hz). Subsequently, as shown in FIGS. 8 and 15, the video signal processing circuit 160 divides the third frame (frame F6 in this case) into four subframes 6A, 6B, and Display elements 106R, 106G, and 106B are controlled so that two subframes 6D and 6C (second subframe group) out of 6C and 6D are sequentially displayed. At this time, the time for displaying each subframe 6D, 2C is 1/2 the time (120 Hz) for displaying the second frame (60 Hz).
 このとき、図2、図8、図14に示すように、制御回路14は、映像信号処理回路160から入力された同期信号に基づいて第2波形の駆動信号を生成し、駆動回路16は、駆動信号に基づいてアクチュエータ25、26を駆動する。つまり、図8に示すように、サブフレーム5Aを表示するとき、駆動回路16は、第1アクチュエータ25および第2アクチュエータ26に、期間T1における第2波形に対応する駆動信号(図9参照)を印加する。すると、図14に示すように、第2アクチュエータ26は、光学部材20を第2揺動軸BXまわりに揺動し、画像位置P0を第1揺動軸AX方向に1/2画素ずらしたA動作状態とする。すなわち、画像位置P0がABX方向における一方ABXaにずれた画像位置P1に画像を表示する。 At this time, as shown in FIGS. 2, 8, and 14, the control circuit 14 generates a second waveform drive signal based on the synchronization signal input from the video signal processing circuit 160, and the drive circuit 16 Actuators 25 and 26 are driven based on the drive signal. That is, as shown in FIG. 8, when displaying the subframe 5A, the drive circuit 16 sends a drive signal (see FIG. 9) corresponding to the second waveform in the period T1 to the first actuator 25 and the second actuator 26. Apply. Then, as shown in FIG. 14, the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P0 by 1/2 pixel in the direction of the first swing axis AX. Put into working condition. That is, the image is displayed at an image position P1 where the image position P0 is shifted to one ABXa in the ABX direction.
 その後、図8に示すように、サブフレーム5Bを表示するとき、駆動回路16は、期間T1における第2波形に対応する駆動信号(図9参照)の印加を続ける。すると、図14に示すように、第2アクチュエータ26は、光学部材20を第2揺動軸BXまわりに揺動し、画像位置P1を第1揺動軸AX方向に1/2画素ずらしたB動作状態とする。すなわち、画像位置P0がABX方向における一方ABXbにずれた画像位置P2に画像を表示する。 Thereafter, as shown in FIG. 8, when displaying subframe 5B, the drive circuit 16 continues to apply the drive signal (see FIG. 9) corresponding to the second waveform in period T1. Then, as shown in FIG. 14, the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P1 by 1/2 pixel in the first swing axis AX direction. Put into working condition. That is, the image is displayed at an image position P2 where the image position P0 is shifted to one ABXb in the ABX direction.
 その後、図8に示すように、サブフレーム6Dを表示するとき、駆動回路16は、期間T2における第2波形に対応する駆動信号(図9参照)を印加する。すると、図15に示すように、第1アクチュエータ25は、光学部材20(図3参照)を第1揺動軸AXまわりに揺動し、画像位置P2を第2揺動軸BX方向に1/2画素ずらし、D動作状態とする。すなわち、画像位置P0がABX方向における一方ABXdにずれた画像位置P3に画像を表示する。 Thereafter, as shown in FIG. 8, when displaying the subframe 6D, the drive circuit 16 applies a drive signal (see FIG. 9) corresponding to the second waveform in period T2. Then, as shown in FIG. 15, the first actuator 25 swings the optical member 20 (see FIG. 3) around the first swing axis AX, and moves the image position P2 by 1/2 in the direction of the second swing axis BX. Shift 2 pixels and enter D operation state. That is, the image is displayed at an image position P3 where the image position P0 is shifted to one side ABXd in the ABX direction.
 その後、図8に示すように、サブフレーム6Cを表示するとき、駆動回路16は、期間T2における第2波形に対応する駆動信号(図9参照)の印加を続ける。すると、図14に示すように、第2アクチュエータ26は、光学部材20を第2揺動軸BXまわりに揺動し、画像位置P3を第1揺動軸AX方向に1/2画素ずらしたC動作状態とする。すなわち、画像位置P0がABX方向における一方ABXcにずれた画像位置P4に画像を表示する。 Thereafter, as shown in FIG. 8, when displaying the subframe 6C, the drive circuit 16 continues to apply the drive signal (see FIG. 9) corresponding to the second waveform in the period T2. Then, as shown in FIG. 14, the second actuator 26 swings the optical member 20 around the second swing axis BX, and shifts the image position P3 by 1/2 pixel in the direction of the first swing axis AX. Put into working condition. That is, the image is displayed at an image position P4 where the image position P0 is shifted to one side ABXc in the ABX direction.
 以上説明したように、本実施形態においては、動き領域の動きベクトルVに基づいて、そのフレームにおける駆動信号の波形を設定する。このように、動き領域の動きベクトルVから駆動信号の波形を設定するため、動きベクトルVに応じて、すなわち動画像であるかの判定結果に基づいて、駆動信号の波形を設定できるため、揺動部12Aを適切に揺動しつつ、動画像を適切に表示できる。さらに言えば、本実施形態においては、動きベクトルVが閾値より大きい場合の揺動部12Aの揺動速度が、動きベクトルVが閾値以下である場合の揺動速度よりも高くなるように、駆動信号の波形を設定する。そのため、例えば動きベクトルVが大きい動画像である場合には、揺動速度を高くして、フレームレートを高くしつつ階調値を擬似的に向上させて、動画像を滑らかに表示させることができる。一方、サブフレーム数が多い場合には、1つのサブフレームの期間が短くなるため、揺動部12Aの揺動速度を速くする必要が生じ、疲労により光路制御装置10の機械的な寿命が短くなるおそれがある。それに対して、本実施形態においては、動きベクトルVが低い静止画像である場合には、揺動速度を低くすることで、疲労を抑制して、寿命を短くすることを抑制できる。 As explained above, in this embodiment, the waveform of the drive signal in that frame is set based on the motion vector V of the motion area. In this way, since the waveform of the drive signal is set from the motion vector V of the motion area, the waveform of the drive signal can be set according to the motion vector V, that is, based on the determination result of whether the image is a moving image. A moving image can be appropriately displayed while appropriately swinging the moving part 12A. Furthermore, in this embodiment, the drive is performed such that the swinging speed of the swinging section 12A when the motion vector V is larger than the threshold value is higher than the swinging speed when the motion vector V is below the threshold value. Set the signal waveform. Therefore, for example, in the case of a moving image with a large motion vector V, it is possible to display the moving image smoothly by increasing the swing speed and increasing the frame rate while pseudo-improving the gradation value. can. On the other hand, when the number of subframes is large, the period of one subframe is shortened, so it is necessary to increase the swinging speed of the swinging section 12A, and the mechanical life of the optical path control device 10 is shortened due to fatigue. There is a risk that this may occur. In contrast, in the present embodiment, when the motion vector V is a still image with a low value, by lowering the rocking speed, fatigue can be suppressed and the lifespan can be prevented from being shortened.
 (他の例)
 以上の説明では、動きベクトルVが閾値より大きい場合には、駆動信号の波形を、図11に示したような階段状とし、動きベクトルVが閾値以下である場合には、駆動信号の波形を、図9で示したような台形状としたが、これらの駆動信号の波形は一例である。以下、駆動信号の波形の他の例を説明する。
(other examples)
In the above explanation, when the motion vector V is larger than the threshold value, the waveform of the drive signal is made stepwise as shown in FIG. 11, and when the motion vector V is less than the threshold value, the waveform of the drive signal is made stepwise. , a trapezoidal shape as shown in FIG. 9, but the waveforms of these drive signals are merely examples. Hereinafter, other examples of the waveform of the drive signal will be explained.
 図16は、駆動信号の波形の他の例を示すグラフであり、図17は、揺動部の揺動パターンの他の例を示すグラフである。例えば、動きベクトルVが閾値より大きい場合には、図16に示すような駆動信号の波形を、第1波形として設定してもよい。図16に示すように、本例の駆動信号の波形では、第1期間TA1において、電流値を第2電流値A2に保持した後、電流値を第1電流値A1に保持する。すなわち、第1期間TA1のうちの期間TA1aにおいては、電流値が第2電流値A2に保持され、第1期間TA1のうちの期間TA1bにおいては、電流値が第1電流値A1に保持される。期間TA1bは、期間TA1aより後であって期間TA1aに連続する期間である。すなわち、期間TA1bの開始タイミング(期間TA1aから期間TA1bへ切り替わるタイミング)において、電流値が、第2電流値A2から第1電流値A1に切り替わり、期間TA1bの終了タイミングまで、電流値が第1電流値A1で保持される。 FIG. 16 is a graph showing another example of the waveform of the drive signal, and FIG. 17 is a graph showing another example of the swinging pattern of the swinging section. For example, when the motion vector V is larger than the threshold value, the waveform of the drive signal as shown in FIG. 16 may be set as the first waveform. As shown in FIG. 16, in the waveform of the drive signal of this example, in the first period TA1, the current value is held at the second current value A2, and then the current value is held at the first current value A1. That is, in the period TA1a of the first period TA1, the current value is held at the second current value A2, and in the period TA1b of the first period TA1, the current value is held at the first current value A1. . The period TA1b is a period subsequent to the period TA1a and continuous with the period TA1a. That is, at the start timing of the period TA1b (timing when switching from the period TA1a to the period TA1b), the current value switches from the second current value A2 to the first current value A1, and until the end timing of the period TA1b, the current value changes to the first current value. It is held at the value A1.
 第1期間TA1の長さは、揺動部12Aの固有振動数に対応する値であることが好ましい。第1期間TA1の長さは、揺動部12Aの固有周期(固有振動数の逆数)の三分の一の値と略同じ値であることが好ましく、固有周期の三分の一の値と同じ値であることがより好ましい。なお、固有周期(固有振動数の逆数)の三分の一の値とは、固有振動数をf[Hz]とした場合、「1/(3・f)」[s]として表される。 The length of the first period TA1 is preferably a value corresponding to the natural frequency of the swinging section 12A. The length of the first period TA1 is preferably approximately the same value as one-third of the natural period (reciprocal of the natural frequency) of the swinging portion 12A; More preferably, they are the same value. Note that the value of one-third of the natural period (reciprocal of the natural frequency) is expressed as "1/(3·f)" [s] when the natural frequency is f [Hz].
 さらに言えば、第1期間TA1のうちの、期間TA1aの長さと、期間TA1bの長さとは、揺動部12Aの固有振動数に対応する値となっている。期間TA1aの長さと、期間TA1bの長さとは、同じであることが好ましい。より詳しくは、期間TA1aの長さと、期間TA1bの長さとは、揺動部12Aの固有周期(固有振動数の逆数)の六分の一の値と略同じ値であることが好ましく、固有周期の六分の一の値と同じ値であることがより好ましい。なお、固有振動数の逆数の六分の一の値とは、固有振動数をf[Hz]とした場合、「1/(6・f)」[s]として表される。 Furthermore, in the first period TA1, the length of the period TA1a and the length of the period TA1b have values corresponding to the natural frequency of the swinging portion 12A. It is preferable that the length of the period TA1a and the length of the period TA1b be the same. More specifically, the length of the period TA1a and the length of the period TA1b are preferably approximately the same value as one-sixth of the natural period (reciprocal of the natural frequency) of the swinging portion 12A, and the natural period More preferably, the value is the same as one-sixth of the value. Note that the value of one-sixth of the reciprocal of the natural frequency is expressed as "1/(6·f)" [s] when the natural frequency is f [Hz].
 本例の駆動信号の波形では、第2期間TB1において、電流値が、第2電流値A2で保持される。第2期間TB1は、第1期間TA1(期間TA1b)より後であって第1期間TA1(期間TA1b)に連続する期間である。すなわち、第2期間TB1の開始タイミング(期間TA1bから第2期間TB1へ切り替わるタイミング)において、電流値が、第1電流値A1から第2電流値A2に切り替わり、第2期間TB1の終了タイミングまで、電流値が第2電流値A2で保持される。 In the waveform of the drive signal in this example, the current value is held at the second current value A2 in the second period TB1. The second period TB1 is a period subsequent to the first period TA1 (period TA1b) and continuous with the first period TA1 (period TA1b). That is, at the start timing of the second period TB1 (timing when switching from period TA1b to second period TB1), the current value switches from the first current value A1 to the second current value A2, and until the end timing of the second period TB1, The current value is held at the second current value A2.
 このように、本例では、期間T1における駆動信号は、期間TA1aにおいて電流値が第2電流値A2に保持され、期間TA1bにおいて電流値が第1電流値A1に切り替わって保持され、第2期間TB1において電流値が第2電流値A2に切り替わって保持される。 In this way, in this example, the drive signal in period T1 has a current value held at the second current value A2 during period TA1a, a current value switched to and held at the first current value A1 during period TA1b, and a current value switched to and held at the first current value A1 during period TA1b. At TB1, the current value is switched to and held at the second current value A2.
 本例の駆動信号の波形では、第3期間TA2において、電流値を第1電流値A1に保持した後、電流値を第2電流値A2に保持する。すなわち、第3期間TA2のうちの期間TA2aの開始タイミング(第2期間TB1から期間TA2aへ切り替わるタイミング)で、電流値が第2電流値A2から第1電流値A1に切り替わり、期間TA2aの終了タイミングまで、第1電流値A1に保持される。期間TA2bは、期間TA2aより後であって期間TA2aに連続する期間である。すなわち、期間TA2bの開始タイミング(期間TA2aから期間TA2bへ切り替わるタイミング)において、電流値が、第1電流値A1から第2電流値A2に切り替わり、期間TA2bの終了タイミングまで、電流値が第2電流値A2で保持される。 In the waveform of the drive signal of this example, in the third period TA2, the current value is held at the first current value A1, and then the current value is held at the second current value A2. That is, at the start timing of the period TA2a of the third period TA2 (the timing at which the second period TB1 switches to the period TA2a), the current value switches from the second current value A2 to the first current value A1, and at the end timing of the period TA2a. The current value is maintained at the first current value A1 until then. Period TA2b is a period subsequent to period TA2a and continuous with period TA2a. That is, at the start timing of the period TA2b (timing when switching from the period TA2a to the period TA2b), the current value switches from the first current value A1 to the second current value A2, and until the end timing of the period TA2b, the current value changes to the second current value. It is held at the value A2.
 第3期間TA2の長さは、揺動部12Aの固有振動数に対応する値であることが好ましい。第3期間TA2の長さは、揺動部12Aの固有周期(固有振動数の逆数)の三分の一の値と略同じ値であることが好ましく、固有周期の三分の一の値と同じ値であることがより好ましい。本実施形態では、第3期間TA2の長さは、第1期間TA1の長さと等しい。 The length of the third period TA2 is preferably a value corresponding to the natural frequency of the swinging section 12A. The length of the third period TA2 is preferably approximately the same value as one-third of the natural period (reciprocal of the natural frequency) of the swinging portion 12A, and is equal to or equal to one-third of the natural period. More preferably, they are the same value. In this embodiment, the length of the third period TA2 is equal to the length of the first period TA1.
 さらに言えば、第3期間TA2のうちの、期間TA2aの長さと、期間TA2bの長さとは、揺動部12Aの固有振動数に対応する値となっている。期間TA2aの長さと、期間TA2bの長さとは、同じであることが好ましい。より詳しくは、期間TA2aの長さと、期間TA2bの長さとは、揺動部12Aの固有振動数の逆数の六分の一の値と略同じ値であることが好ましく、固有周期の六分の一の値と同じ値であることがより好ましい。本実施形態では、期間TA2aの長さは、期間TA1aの長さと等しく、期間TA2bの長さは、期間TA1bの長さと等しい。 Furthermore, in the third period TA2, the length of the period TA2a and the length of the period TA2b have values corresponding to the natural frequency of the swinging section 12A. It is preferable that the length of period TA2a and the length of period TA2b be the same. More specifically, the length of the period TA2a and the length of the period TA2b are preferably approximately the same value as one-sixth of the reciprocal of the natural frequency of the swinging portion 12A, It is more preferable that the value is the same as the value of 1. In this embodiment, the length of period TA2a is equal to the length of period TA1a, and the length of period TA2b is equal to the length of period TA1b.
 本例の駆動信号の波形では、第4期間TB2において、電流値が、第1電流値A1で保持される。第4期間TB2は、第3期間TA2(期間TA2b)より後であって第3期間TA2(期間TA2b)に連続する期間である。すなわち、第4期間TB2の開始タイミング(期間TA2bから第4期間TB2へ切り替わるタイミング)において、電流値が、第2電流値A2から第1電流値A1に切り替わり、第4期間TB2の終了タイミングまで、電流値が第1電流値A1で保持される。 In the waveform of the drive signal of this example, the current value is held at the first current value A1 in the fourth period TB2. The fourth period TB2 is a period after the third period TA2 (period TA2b) and continuous with the third period TA2 (period TA2b). That is, at the start timing of the fourth period TB2 (the timing at which period TA2b switches to the fourth period TB2), the current value switches from the second current value A2 to the first current value A1, and until the end timing of the fourth period TB2, The current value is held at the first current value A1.
 このように、本例では、期間T2における駆動信号は、期間TA2aにおいて電流値が第1電流値A1に保持され、期間TA2bにおいて電流値が第2電流値A2に切り替わって保持され、第4期間TB2において電流値が第1電流値A1に切り替わって保持される。 In this way, in this example, the drive signal in period T2 has a current value held at the first current value A1 during period TA2a, a current value switched to and held at the second current value A2 during period TA2b, and a current value switched to and held at the second current value A2 during period TA2b. At TB2, the current value is switched to and held at the first current value A1.
 なお、第4期間TB2に後続する期間TA1aにおいては、上述のように電流値が第2電流値A2に保持される。すなわち、期間TA1aの開始タイミング(第4期間TB2から期間TA1aへ切り替わるタイミング)において、電流値が、第1電流値A1から第2電流値A2に切り替わり、期間TA1aの終了タイミングまで、電流値が第2電流値A2で保持される。 Note that in the period TA1a following the fourth period TB2, the current value is held at the second current value A2 as described above. That is, at the start timing of the period TA1a (the timing at which the fourth period TB2 switches to the period TA1a), the current value switches from the first current value A1 to the second current value A2, and until the end timing of the period TA1a, the current value changes to the second current value A2. 2 is held at the current value A2.
 本例では以上のような波形の駆動信号が印加されるため、図17に示すように、揺動部12Aは、第1期間TA1(期間TA1a、TA1b)において、変位角が、第1角度D1から第2角度D2まで変化する。より詳しくは、第1角度D1で捩り戻ろうとする力に対して、第2電流値A2で戻ろうとする方向に更に力を加えて、揺動部12Aを、第2角度D2方向に加速する。そのままだと慣性により第2角度D2より更に捩られてしまうため、本実施形態ではその後に第1電流値A1を流すことでブレーキを掛ける。このため、揺動部12Aを高速に揺動させることができる。 In this example, since the drive signal having the above waveform is applied, as shown in FIG. to the second angle D2. More specifically, in response to the force that tries to twist back at the first angle D1, a further force is applied in the direction that the second current value A2 tries to return, thereby accelerating the swinging section 12A in the direction of the second angle D2. If left as is, it will be twisted further than the second angle D2 due to inertia, so in this embodiment, the brake is applied by subsequently flowing the first current value A1. Therefore, the swinging portion 12A can be swinged at high speed.
 第2期間TB1の開始タイミングにおいて、駆動信号は、電流値が第1電流値A1から第2電流値A2に切り替わり、第2期間TB1の終了タイミングまで、電流値が第2電流値A2に保持される。これにより、揺動部12Aは、第2期間TB1において、変位角が、第2角度D2に保持される。 At the start timing of the second period TB1, the current value of the drive signal switches from the first current value A1 to the second current value A2, and the current value is maintained at the second current value A2 until the end timing of the second period TB1. Ru. As a result, the displacement angle of the swinging portion 12A is maintained at the second angle D2 during the second period TB1.
 駆動信号は、期間TA2aの開始タイミングにおいて、電流値が第2電流値A2から第1電流値A1に切り替わり、期間TA2aの終了タイミングまで電流値が第1電流値A1に保持され、期間TA2bの開始タイミングにおいて、電流値が第1電流値A1から第2電流値A2に切り替わり、期間TA2bの終了タイミングまで電流値が第2電流値A2に保持される。これにより、揺動部12Aは、第3期間TA2(期間TA2a、TA2b)において、変位角が、第2角度D2から第1角度D1まで変化する。 In the drive signal, the current value switches from the second current value A2 to the first current value A1 at the start timing of the period TA2a, the current value is maintained at the first current value A1 until the end timing of the period TA2a, and the current value switches from the second current value A2 to the first current value A1 at the start timing of the period TA2b. At the timing, the current value switches from the first current value A1 to the second current value A2, and the current value is held at the second current value A2 until the end timing of the period TA2b. As a result, the displacement angle of the swinging portion 12A changes from the second angle D2 to the first angle D1 in the third period TA2 (periods TA2a, TA2b).
 第4期間TB2の開始タイミングにおいて、駆動信号は、電流値が第2電流値A2から第1電流値A1に切り替わり、第4期間TB2の終了タイミングまで、電流値が第1電流値A1に保持される。これにより、揺動部12Aは、第4期間TB2において、変位角が、第1角度D1に保持される。 At the start timing of the fourth period TB2, the current value of the drive signal switches from the second current value A2 to the first current value A1, and the current value is maintained at the first current value A1 until the end timing of the fourth period TB2. Ru. As a result, the displacement angle of the swinging portion 12A is maintained at the first angle D1 during the fourth period TB2.
 なお、これまでで、駆動信号の波形の例を3種類説明したが、これらの波形を、動きベクトルVに応じて、次のように設定してよい。すなわち例えば、上述の実施形態で説明したように、動きベクトルVが閾値以下である場合に、図9に示したような台形状とし、動きベクトルVが閾値より大きい場合に、図11に示したような階段状としてもよい。また例えば、上述の別例で説明したように、動きベクトルVが閾値以下である場合に、図9に示したような台形状とし、動きベクトルVが閾値より大きい場合に、図16に示したような形状としてもよい。また例えば、動きベクトルVが閾値以下である場合に、図11に示したような階段状とし、動きベクトルVが閾値より大きい場合に、図16に示したような形状としてもよい。また例えば、動きベクトルVが第1閾値以下である場合には、図9に示したような台形状とし、動きベクトルVが第1閾値より大きく、かつ、第1閾値より高い値の第2閾値以下である場合には、図11に示したような階段状とし、動きベクトルVが第2閾値より大きい場合には、図16に示したような形状としてよい。 Although three types of examples of the waveform of the drive signal have been described so far, these waveforms may be set according to the motion vector V as follows. That is, for example, as explained in the above embodiment, when the motion vector V is less than or equal to the threshold, the trapezoid shape shown in FIG. 9 is formed, and when the motion vector V is larger than the threshold, the trapezoid shape shown in FIG. It may also be shaped like a staircase. For example, as explained in the other example above, when the motion vector V is less than or equal to the threshold, the trapezoid shape shown in FIG. 9 is formed, and when the motion vector V is larger than the threshold, the trapezoid shape shown in FIG. It may also have a shape like this. Further, for example, when the motion vector V is less than or equal to the threshold value, the shape may be a stepped shape as shown in FIG. 11, and when the motion vector V is greater than the threshold value, the shape may be formed as shown in FIG. 16. For example, if the motion vector V is less than or equal to the first threshold, the trapezoidal shape shown in FIG. If the motion vector V is larger than the second threshold, the shape may be a step shape as shown in FIG. 11, and if the motion vector V is larger than the second threshold, the shape may be a step shape as shown in FIG.
 また、以上の説明では、画素A、B、D、Cの順で表示されるようにサブフレームを設定していたが、表示される画素の順番はそれに限られず任意であってよい。図18は、表示される画素の順番の他の例を示す模式図である。例えば図18のように、画素A、D、B、Cの順で表示されるように、サブフレームを設定してもよい。 Furthermore, in the above description, the subframes were set so that the pixels A, B, D, and C were displayed in that order, but the order of the pixels to be displayed is not limited to this and may be arbitrary. FIG. 18 is a schematic diagram showing another example of the order of displayed pixels. For example, as shown in FIG. 18, subframes may be set so that pixels A, D, B, and C are displayed in this order.
 [実施形態2]
 実施形態2では、動き領域の抽出方法と、動きベクトルVの取得方法が、実施形態1とは異なる。実施形態2において、実施形態1と同様の構成及び処理は、説明を省略する。
[Embodiment 2]
In the second embodiment, the method of extracting a motion area and the method of obtaining a motion vector V are different from those in the first embodiment. In the second embodiment, descriptions of the same configuration and processing as in the first embodiment will be omitted.
 実施形態2においては、制御部170は、第1フレームの画像データと第2フレームの画像データとを取得する。そして、制御部170は、第1フレームの画像データと第2フレームの画像データとに基づき(第1フレームの画像データと第2フレームの画像データとを比較して)、動きベクトルV及び動き領域を算出する。具体的には、制御部170は、第1フレームの画像データと第2フレームの画像データとに基づき、画像データのうちで動いている領域を、すなわち動きベクトルVが発生している領域を、動き領域として抽出する。すなわち、実施形態2においては、制御部170は、第1フレームの画像データと第2フレームの画像データとに基づいて動きベクトルVを算出して、動きベクトルVが所定値より大きい(例えばゼロより大きい)領域を、動き領域として抽出する。なお、サブフレームの設定に、動き量と動き方向との両方を含む動きベクトルVを用いることに限られず、第1フレームと第2フレーム間の動きの大きさ(動き量)だけをサブフレーム数の設定に使用してもよい。実施形態2における動きベクトルVの算出方法は任意であってよく、既知の手法を用いてもよい。例えば、動きベクトルVの算出に、ブロックマッチング法を用いてよい。ブロックマッチング法では、例えば画像を複数のブロックに区分して、第1フレームと第2フレームとの相関演算をブロック毎に行って、その相関演算における相関値から、動きベクトルVを算出する。そして、動きベクトルVが所定値より大きいブロックを、動き領域として算出してよい。また、実施例2における動き領域、動きベクトルV及び動き量は、図示しない通信部を介して外部の装置から取得してもよい。また、動き領域は、動きベクトルVが発生している領域に限らず、動き量が発生している領域を動き領域としてもよい。 In the second embodiment, the control unit 170 obtains the first frame of image data and the second frame of image data. Then, the control unit 170 determines the motion vector V and the motion area based on the image data of the first frame and the image data of the second frame (by comparing the image data of the first frame and the image data of the second frame). Calculate. Specifically, the control unit 170 determines a moving area of the image data, that is, an area where the motion vector V is generated, based on the image data of the first frame and the image data of the second frame. Extract as a motion area. That is, in the second embodiment, the control unit 170 calculates the motion vector V based on the image data of the first frame and the image data of the second frame, and calculates the motion vector V when the motion vector V is larger than a predetermined value (for example, less than zero). (large) area is extracted as a motion area. Note that the setting of subframes is not limited to using a motion vector V that includes both the amount of motion and the direction of motion, and only the magnitude of the motion (amount of motion) between the first frame and the second frame is used to determine the number of subframes. It may be used for setting. The method of calculating the motion vector V in the second embodiment may be arbitrary, and a known method may be used. For example, a block matching method may be used to calculate the motion vector V. In the block matching method, for example, an image is divided into a plurality of blocks, a correlation calculation between the first frame and the second frame is performed for each block, and a motion vector V is calculated from the correlation value in the correlation calculation. Then, a block whose motion vector V is larger than a predetermined value may be calculated as a motion area. Furthermore, the motion area, motion vector V, and motion amount in the second embodiment may be acquired from an external device via a communication unit (not shown). Further, the motion area is not limited to the area where the motion vector V occurs, but may be an area where the amount of motion occurs.
 [実施形態3]
 実施形態3では、サブフレームの数に基づいて、揺動部の揺動速度を設定する点が、上記実施形態とは異なる。実施形態3において、上記実施形態と同様の構成及び処理は、説明を省略する。
[Embodiment 3]
Embodiment 3 differs from the above embodiments in that the swinging speed of the swinging section is set based on the number of subframes. In Embodiment 3, descriptions of the same configurations and processes as in the above embodiments will be omitted.
 図19は、実施形態3に係る表示装置の回路構成を模式的に示すブロック図である。制御部170は、サブフレーム設定部172を有する。 FIG. 19 is a block diagram schematically showing the circuit configuration of the display device according to the third embodiment. The control section 170 includes a subframe setting section 172.
 サブフレーム設定部172は、フレーム毎のサブフレームの数を設定する。サブフレーム設定部172は、任意の方法でサブフレーム数を設定してよい。例えば、サブフレーム設定部172は、実施形態1又は実施形態2のように算出された動き領域及び動きベクトルVに基づいて、サブフレーム数を設定してよい。また例えば、サブフレーム設定部172は、表示装置によって表示される番組(コンテンツ)のカテゴリー(種類)の情報を取得して、番組のカテゴリーに応じて、サブフレーム数を設定してよい。サブフレーム設定部172は、任意の方法で番組のカテゴリーの情報を取得してよく、例えば、制御部170が有する記憶部に記憶されている番組のカテゴリーを読み出してもよいし、制御部170が有する通信部を介して、番組のカテゴリーが記憶されているサーバと通信して番組のカテゴリーを取得してもよいし、画像データから、公知の方法でカテゴリーを分類してもよい。 The subframe setting unit 172 sets the number of subframes for each frame. The subframe setting unit 172 may set the number of subframes using any method. For example, the subframe setting unit 172 may set the number of subframes based on the motion area and motion vector V calculated as in the first embodiment or the second embodiment. For example, the subframe setting unit 172 may obtain information on the category (type) of the program (content) displayed by the display device, and set the number of subframes according to the category of the program. The subframe setting unit 172 may acquire the information on the program category using any method. For example, the subframe setting unit 172 may acquire the program category information stored in the storage unit of the control unit 170, or the subframe setting unit 172 The program category may be acquired by communicating with a server in which the program category is stored via a communication unit provided with the program, or the category may be classified using a known method from the image data.
 サブフレーム設定部172は、番組のカテゴリーに応じて、任意の基準でサブフレーム数を設定してよい。例えば、スポーツや映画等動きが多い又は高解像度が良いと予想されるカテゴリーの番組を再生する際は、サブフレーム数を多く設定してよい。また例えば、情報番組等動きが少ない又は低解像度でも良いと予想されるカテゴリーの番組の場合は、デバイスの寿命を優先して、サブフレーム数を少なく設定してよい。 The subframe setting unit 172 may set the number of subframes based on any criteria depending on the category of the program. For example, when playing a program in a category that is expected to have a lot of movement or a high resolution, such as sports or movies, a large number of subframes may be set. Furthermore, for example, in the case of a category of programs such as information programs that have little movement or are expected to require low resolution, the number of subframes may be set to be small, giving priority to the lifespan of the device.
 制御部170は、サブフレームの数に基づいて、揺動部12Aの揺動速度を設定する。例えば、制御部170は、すなわちサブフレーム数が所定の閾値より多い場合の、揺動部12Aの揺動速度が、サブフレーム数が所定の閾値以下である場合の、揺動部12Aの揺動速度よりも高くなるように、揺動部12Aの揺動速度を設定する。そして、制御部170は、揺動速度に適した駆動信号の波形を、すなわち設定した揺動速度を実現できる駆動信号の波形を選択して、その波形の駆動信号を印加する。 The control unit 170 sets the swinging speed of the swinging unit 12A based on the number of subframes. For example, the control unit 170 controls the swinging speed of the swinging unit 12A when the number of subframes is greater than a predetermined threshold, and the swinging speed of the swinging unit 12A when the number of subframes is less than or equal to a predetermined threshold. The swing speed of the swing section 12A is set so as to be higher than the speed. Then, the control unit 170 selects a drive signal waveform suitable for the rocking speed, that is, a drive signal waveform that can realize the set rocking speed, and applies the drive signal with the selected waveform.
 (効果)
 以上説明したように、本実施形態に係る光路制御装置10は、光が入射する光学部材(光学部)20を有する揺動部12Aと、揺動部12Aを揺動可能なアクチュエータ12Bと、駆動信号をアクチュエータ12Bに印加することで、アクチュエータ12Bに揺動部12Aを揺動させて光路を制御する駆動回路(駆動部)16と、駆動回路16を制御する制御部170と、を備え、制御部170は、画像を表示するフレーム毎に、フレームの画像データに含まれる画素のうちの一部の画素を表示するサブフレームの数を設定し、サブクレームの数に基づいて、揺動部12Aの揺動速度を設定する。その結果、揺動部12Aを適切に揺動させつつ、動画像を適切に表示できる。
(effect)
As described above, the optical path control device 10 according to the present embodiment includes a swinging section 12A having an optical member (optical section) 20 into which light enters, an actuator 12B capable of swinging the swinging section 12A, and a drive The control device includes a drive circuit (drive unit) 16 that controls the optical path by causing the actuator 12B to swing the swing unit 12A by applying a signal to the actuator 12B, and a control unit 170 that controls the drive circuit 16. The unit 170 sets, for each frame in which an image is displayed, the number of subframes for displaying some of the pixels included in the image data of the frame, and based on the number of subclaims, the swinging unit 12A Set the rocking speed. As a result, a moving image can be appropriately displayed while the swinging section 12A is swinging appropriately.
 本実施形態の光路制御装置10によれば、制御部170は、サブフレームが所定の閾値より多い場合の、駆動信号による揺動部12Aの揺動速度が、サブフレームが所定の閾値以下の場合の、駆動信号による揺動部12Aの揺動速度より高くする。その結果、サブフレーム数が多い動画像である場合には、揺動速度を高くして、フレームレートを高くしつつ階調値を擬似的に向上させて、動画像を滑らかに表示させることができる。また、サブフレーム数が少ない画像においては、揺動速度を低くして、デバイスの寿命を向上できる。 According to the optical path control device 10 of the present embodiment, the control unit 170 controls the swinging speed of the swinging unit 12A according to the drive signal when the number of subframes is greater than a predetermined threshold, and when the number of subframes is less than or equal to a predetermined threshold. The swinging speed of the swinging section 12A is set higher than the swinging speed of the swinging section 12A caused by the drive signal. As a result, in the case of a moving image with a large number of subframes, it is possible to display the moving image smoothly by increasing the swing speed and increasing the frame rate while pseudo-improving the gradation value. can. Furthermore, in an image with a small number of subframes, the swing speed can be lowered to improve the life of the device.
 また、制御部170は、第1フレームにおける画像データと、第1フレームより後の第2フレームにおける画像データとから、共通する対象を示す動き領域を抽出し、第1フレームでの動き領域と第2フレームでの動き領域との動きベクトルを取得し、動きベクトルに基づいて、第2フレームにおけるサブフレームの数と、揺動部12Aの揺動速度とを設定する。動きベクトルに基づいて揺動速度を設定することで、揺動部12Aを適切に揺動させつつ、動画像を適切に表示できる。 Further, the control unit 170 extracts a motion area indicating a common object from the image data in the first frame and the image data in the second frame after the first frame, and A motion vector with respect to the motion area in two frames is obtained, and based on the motion vector, the number of subframes in the second frame and the swing speed of the swing unit 12A are set. By setting the swinging speed based on the motion vector, the moving image can be displayed appropriately while swinging the swinging section 12A appropriately.
 また、本実施形態に係る表示装置1は、光路制御装置10と、画像データに基づいて表示素子106を制御する映像信号処理回路(処理部)160と、を有し、制御部170は、フレームを表示する時間内に、そのフレームに対して設定されたサブフレームが表示されるように映像信号処理回路160に表示素子106を制御させる。その結果、動きベクトルVが低い静止画像である場合には、揺動速度を低くすることで、疲労を抑制して、寿命を短くすることを抑制できる。 Further, the display device 1 according to the present embodiment includes an optical path control device 10 and a video signal processing circuit (processing unit) 160 that controls the display element 106 based on image data, and the control unit 170 The video signal processing circuit 160 controls the display element 106 so that the subframe set for the frame is displayed within the time period for displaying the frame. As a result, in the case of a still image with a low motion vector V, by lowering the rocking speed, fatigue can be suppressed and shortening of the life span can be suppressed.
 また、駆動部16は、光の光軸が第1位置となっているときの画像が表示される期間である第1期間TA1,TA2と、光の光軸が第2位置となっているときの画像が表示される第1期間TA1,TA2と連続する期間である第2期間TB1,TB2を含む波形の駆動信号をアクチュエータ12Bに印加し、動き量が閾値以下である場合に、第1期間TA1,TA2において、電流値を第1電流値から第2電流値に徐々に変化させ、第2期間TB1,TB2において、電流値を第2電流値に保持する波形の駆動信号をアクチュエータ12Bに印加し、動き量が閾値より大きい場合に、第1期間TA1,TA2の開始タイミングにおいて、電流値を第1電流値からゼロに切り替え、第1期間TA1,TA2の終了タイミングまで、電流値をゼロに保持し、第2期間TB1,TB2の開始タイミングにおいて、電流値がゼロから第2電流値に切り替え、第2期間TB1,TB2の終了タイミングまで、電流値を第2電流値に保持する波形の駆動信号をアクチュエータ12Bに印加する。その結果、揺動部12Aを適切に揺動させつつ、動画像を適切に表示することが可能となる。 Further, the driving unit 16 operates during first periods TA1 and TA2, which are periods in which images are displayed when the optical axis of the light is at the first position, and during periods when the optical axis of the light is at the second position. A drive signal with a waveform including second periods TB1 and TB2, which are continuous periods with the first periods TA1 and TA2 in which the images of , are displayed, is applied to the actuator 12B, and if the amount of movement is less than the threshold value, the first period TA1 and TA2 are displayed. In TA1 and TA2, the current value is gradually changed from the first current value to the second current value, and in the second period TB1 and TB2, a drive signal with a waveform that maintains the current value at the second current value is applied to the actuator 12B. However, when the amount of movement is larger than the threshold, the current value is switched from the first current value to zero at the start timing of the first periods TA1 and TA2, and the current value is set to zero until the end timing of the first periods TA1 and TA2. Driving a waveform in which the current value is switched from zero to the second current value at the start timing of the second periods TB1 and TB2, and the current value is held at the second current value until the end timing of the second periods TB1 and TB2. A signal is applied to actuator 12B. As a result, it becomes possible to appropriately display a moving image while appropriately swinging the swinging section 12A.
 また、駆動部16は、光の光軸が第1位置となっているときの画像が表示される期間である第1期間TA1、TA2と、光の光軸が第2位置となっているときの画像が表示される第1期間と連続する期間である第2期間TB1,TB2を含む波形の駆動信号をアクチュエータ12Bに印加し、動き量が閾値以下である場合に、第1期間TA1、TA2において、電流値を第1電流値から第2電流値に徐々に変化させ、第2期間TB1、TB2において、電流値を第2電流値に保持する波形の駆動信号をアクチュエータ12Bに印加し、動き量が閾値より大きい場合に、第1期間TA1、TA2において、電流値を第1電流値に保持した後、電流値を第2電流値に保持し、第2期間TB1,TB2において、電流値を第1電流値に保持する波形の駆動信号をアクチュエータ12Bに印加する。その結果、揺動部12Aを適切に揺動させつつ、動画像を適切に表示することが可能となる。 In addition, the drive unit 16 operates during first periods TA1 and TA2, which are periods in which images are displayed when the optical axis of the light is at the first position, and when the optical axis of the light is at the second position. A drive signal with a waveform including second periods TB1 and TB2, which are continuous periods with the first period in which the image of , the current value is gradually changed from the first current value to the second current value, and in the second periods TB1 and TB2, a drive signal with a waveform that maintains the current value at the second current value is applied to the actuator 12B to cause the actuator 12B to move. When the amount is larger than the threshold value, the current value is held at the first current value in the first period TA1, TA2, and then the current value is held at the second current value, and the current value is held at the second current value in the second period TB1, TB2. A drive signal having a waveform held at the first current value is applied to the actuator 12B. As a result, it becomes possible to appropriately display a moving image while appropriately swinging the swinging section 12A.
 また、制御部170は、表示されるコンテンツの種類の情報を取得し、コンテンツの種類に応じて、サブフレームの数を設定する。その結果、コンテンツの種類に応じて、揺動速度を変更できるので、疲労を抑制して、寿命を短くすることを抑制できる。 Furthermore, the control unit 170 obtains information on the type of content to be displayed, and sets the number of subframes according to the type of content. As a result, the swinging speed can be changed depending on the type of content, so fatigue can be suppressed and the lifespan can be prevented from being shortened.
 また、本実施形態に係る光路制御方法は、光Lが入射する光学部材(光学部)20を有する揺動部12Aを揺動可能なアクチュエータ12Bに駆動信号を印加することで光路を制御する光路制御方法であって、画像を表示するフレーム毎に、フレームの画像データに含まれる画素のうちの一部の画素を表示するサブフレームの数を設定するステップと、サブクレームの数に基づいて、揺動部12Aの揺動速度を設定するステップと、を含む。その結果、揺動部12Aを適切に揺動させつつ、動画像を適切に表示できる。 Further, the optical path control method according to the present embodiment includes controlling an optical path by applying a drive signal to an actuator 12B that can swing a swinging section 12A having an optical member (optical section) 20 into which the light L is incident. A control method, comprising the steps of setting, for each frame in which an image is displayed, the number of subframes for displaying some of the pixels included in the image data of the frame, based on the number of subclaims, The method includes a step of setting the swinging speed of the swinging section 12A. As a result, a moving image can be appropriately displayed while the swinging section 12A is swinging appropriately.
 なお、上述した実施形態では、光学部材20を第1揺動軸AXに沿う第1軸部23により揺動自在に支持すると共に、第2揺動軸BXに沿う第2軸部24により揺動自在に支持する構成としたが、構成に限定されるものではない。 In the embodiment described above, the optical member 20 is swingably supported by the first shaft section 23 along the first swing axis AX, and supported swingably by the second shaft section 24 along the second swing axis BX. Although the structure is such that it can be supported freely, the structure is not limited to this.
 これまで本実施形態に係る表示装置1について説明したが、上述した実施形態以外にも種々の異なる形態にて実施されてよい。 Although the display device 1 according to the present embodiment has been described so far, it may be implemented in various different forms other than the embodiment described above.
 図示した表示装置1の各構成要素は、機能概念的なものであり、必ずしも物理的に図示の如く構成されていなくてもよい。すなわち、各装置の具体的形態は、図示のものに限られず、各装置の処理負担や使用状況などに応じて、その全部または一部を任意の単位で機能的または物理的に分散または統合してもよい。 Each component of the illustrated display device 1 is functionally conceptual, and does not necessarily have to be physically configured as illustrated. In other words, the specific form of each device is not limited to what is shown in the diagram, and all or part of it may be functionally or physically distributed or integrated into arbitrary units depending on the processing load and usage status of each device. It's okay.
 表示装置1の構成は、例えば、ソフトウェアとして、メモリにロードされたプログラムなどによって実現される。上記実施形態では、これらのハードウェアまたはソフトウェアの連携によって実現される機能ブロックとして説明した。すなわち、これらの機能ブロックについては、ハードウェアのみ、ソフトウェアのみ、または、それらの組合せによって種々の形で実現できる。 The configuration of the display device 1 is realized by, for example, a program loaded into a memory as software. The above embodiments have been described as functional blocks realized by cooperation of these hardware or software. That is, these functional blocks can be implemented in various forms using only hardware, only software, or a combination thereof.
 上記した構成要素には、当業者が容易に想定できるもの、実質的に同一のものを含む。さらに、上記した構成は適宜組み合わせが可能である。また、本実施形態の要旨を逸脱しない範囲において構成の種々の省略、置換または変更が可能である。 The above-mentioned components include those that can be easily imagined by those skilled in the art and those that are substantially the same. Furthermore, the above configurations can be combined as appropriate. Furthermore, various omissions, substitutions, or changes in the configuration are possible without departing from the gist of the present embodiment.
 本実施形態の光路制御装置、表示装置及び光路制御方法は、例えば画像表示に利用することができる。 The optical path control device, display device, and optical path control method of this embodiment can be used, for example, for image display.
 1 表示装置
 10 光路制御装置
 12 光路制御機構
 12A 揺動部
 12B アクチュエータ
 14 制御回路
 16 駆動回路(駆動部)
 20 光学部材(光学部)
 21 第1揺動部
 22 第2揺動部
 23 第1軸部
 24 第2軸部
 25 第1アクチュエータ
 26 第2アクチュエータ
 27 支持部
 31 第1可動部
 32 第2可動部
 100 照射装置
 106 表示素子
 160 映像信号処理回路(処理部)
 170 制御部
 A1 第1電流値
 A2 第2電流値
 AX 第1揺動軸
 BX 第2揺動軸
 D1 第1角度
 D2 第2角度
 L 光
 TA1、TA2 第1期間
 TB1、TB2 第2期間
 V 動きベクトル
1 Display device 10 Optical path control device 12 Optical path control mechanism 12A Swing section 12B Actuator 14 Control circuit 16 Drive circuit (drive section)
20 Optical member (optical part)
21 First swinging section 22 Second swinging section 23 First shaft section 24 Second shaft section 25 First actuator 26 Second actuator 27 Support section 31 First movable section 32 Second movable section 100 Irradiation device 106 Display element 160 Video signal processing circuit (processing section)
170 Control unit A1 First current value A2 Second current value AX First swing axis BX Second swing axis D1 First angle D2 Second angle L Light TA1, TA2 First period TB1, TB2 Second period V Motion vector

Claims (8)

  1.  光が入射する光学部を有する揺動部と、
     前記揺動部を揺動可能なアクチュエータと、
     駆動信号を前記アクチュエータに印加することで、前記アクチュエータに前記揺動部を揺動させて光路を制御する駆動部と、
     前記駆動部を制御する制御部と、
     を備え、
     前記制御部は、
     画像を表示するフレーム毎に、前記フレームの画像データに含まれる画素のうちの一部の画素を表示するサブフレームの数を設定し、
     前記サブフレームの数に基づいて、前記揺動部の揺動速度を設定する、
     光路制御装置。
    a swinging section having an optical section into which light enters;
    an actuator capable of swinging the swinging section;
    a drive unit that controls the optical path by applying a drive signal to the actuator to cause the actuator to swing the swing unit;
    a control unit that controls the drive unit;
    Equipped with
    The control unit includes:
    For each frame in which an image is displayed, the number of subframes for displaying some of the pixels included in the image data of the frame is set,
    setting a swinging speed of the swinging unit based on the number of subframes;
    Optical path control device.
  2.  前記制御部は、前記サブフレームが所定の閾値より大きい場合の、前記揺動部の揺動速度を、前記サブフレームが前記閾値以下の場合の、前記揺動部の揺動速度より高くする
     請求項1に記載の光路制御装置。
    The control unit makes the swinging speed of the swinging unit higher when the subframe is larger than a predetermined threshold than the swinging speed of the swinging unit when the subframe is less than or equal to the threshold. Item 1. The optical path control device according to item 1.
  3.  前記制御部は、
     第1フレームにおける前記画像データと、前記第1フレームより後の第2フレームにおける前記画像データとから動き量を取得し、
     前記動き量に基づいて、前記第2フレームにおける前記サブフレームの数を設定する、
     請求項1又は請求項2に記載の光路制御装置。
    The control unit includes:
    Obtaining the amount of motion from the image data in a first frame and the image data in a second frame after the first frame,
    setting the number of subframes in the second frame based on the amount of motion;
    The optical path control device according to claim 1 or claim 2.
  4.  請求項1又は請求項2に記載の光路制御装置と、
     前記画像データに基づいて表示素子を制御する処理部と、を有し、
     前記制御部は、
     前記フレームを表示する時間内に、前記フレームに対して設定された前記サブフレームが表示されるように前記処理部に前記表示素子を制御させる、
     表示装置。
    An optical path control device according to claim 1 or claim 2,
    a processing unit that controls a display element based on the image data,
    The control unit includes:
    causing the processing unit to control the display element so that the subframe set for the frame is displayed within the time for displaying the frame;
    Display device.
  5.  前記駆動部は、
     光の光軸が第1位置となっているときの画像が表示される期間である第1期間と、光の光軸が第2位置となっているときの画像が表示される前記第1期間と連続する期間である第2期間を含む波形の駆動信号を前記アクチュエータに印加し、
     前記動き量が閾値以下である場合に、前記第1期間において、電流値を第1電流値から第2電流値に徐々に変化させ、前記第2期間において、電流値を第2電流値に保持する波形の駆動信号を前記アクチュエータに印加し、動き量が閾値より大きい場合に、前記第1期間の開始タイミングにおいて、電流値を前記第1電流値からゼロに切り替え、前記第1期間の終了タイミングまで、電流値をゼロに保持し、前記第2期間の開始タイミングにおいて、電流値がゼロから前記第2電流値に切り替え、前記第2期間の終了タイミングまで、電流値を前記第2電流値に保持する波形の駆動信号を前記アクチュエータに印加する、
     請求項3に記載の光路制御装置。
    The drive unit includes:
    A first period in which an image is displayed when the optical axis of light is in the first position, and the first period in which an image is displayed when the optical axis of light is in the second position. Applying to the actuator a drive signal having a waveform including a second period that is a continuous period,
    When the amount of movement is less than or equal to a threshold, the current value is gradually changed from a first current value to a second current value during the first period, and the current value is maintained at the second current value during the second period. Applying a drive signal having a waveform of The current value is maintained at zero until the start timing of the second period, the current value is switched from zero to the second current value, and the current value is changed to the second current value until the end timing of the second period. applying a drive signal of a waveform to be held to the actuator;
    The optical path control device according to claim 3.
  6.  前記駆動部は、
     光の光軸が第1位置となっているときの画像が表示される期間である第1期間と、光の光軸が第2位置となっているときの画像が表示される前記第1期間と連続する期間である第2期間を含む波形の駆動信号を前記アクチュエータに印加し、
     前記動き量が閾値以下である場合に、前記第1期間において、電流値を第1電流値から第2電流値に徐々に変化させ、前記第2期間において、電流値を第2電流値に保持する波形の駆動信号を前記アクチュエータに印加し、動き量が閾値より大きい場合に、前記第1期間において、電流値を前記第1電流値に保持した後、電流値を前記第2電流値に保持し、前記第2期間において、電流値を前記第1電流値に保持する波形の駆動信号を前記アクチュエータに印加する、
     請求項3に記載の光路制御装置。
    The drive unit includes:
    A first period in which an image is displayed when the optical axis of light is in the first position, and the first period in which an image is displayed when the optical axis of light is in the second position. Applying to the actuator a drive signal having a waveform including a second period that is a continuous period,
    When the movement amount is less than or equal to a threshold value, the current value is gradually changed from a first current value to a second current value during the first period, and the current value is maintained at the second current value during the second period. applying a drive signal having a waveform to the actuator, and when the amount of movement is larger than a threshold value, in the first period, the current value is held at the first current value, and then the current value is held at the second current value. and applying a waveform drive signal to the actuator to maintain the current value at the first current value during the second period;
    The optical path control device according to claim 3.
  7.  前記制御部は、
     表示されるコンテンツの種類の情報を取得し、
     コンテンツの種類に応じて、前記サブフレームの数を設定する、
     請求項1に記載の光路制御装置。
    The control unit includes:
    Get information about the type of content displayed,
    setting the number of subframes according to the type of content;
    The optical path control device according to claim 1.
  8.  光が入射する光学部を有する揺動部を揺動可能なアクチュエータに駆動信号を印加することで光路を制御する光路制御方法であって、
     画像を表示するフレーム毎に、前記フレームの画像データに含まれる画素のうちの一部の画素を表示するサブフレームの数を設定するステップと、
     前記サブフレームの数に基づいて、前記揺動部の揺動速度を設定するステップと、
     を含む、
     光路制御方法。
    An optical path control method for controlling an optical path by applying a drive signal to an actuator capable of swinging a swinging section having an optical section into which light enters, the method comprising:
    setting, for each frame in which an image is displayed, the number of subframes in which some of the pixels included in the image data of the frame are displayed;
    setting a swinging speed of the swinging section based on the number of subframes;
    including,
    Optical path control method.
PCT/JP2023/015470 2022-08-31 2023-04-18 Optical path control device, display device, and optical path control method WO2024047931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022138432A JP2024034291A (en) 2022-08-31 2022-08-31 Optical path control device, display device, and optical path control method
JP2022-138432 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024047931A1 true WO2024047931A1 (en) 2024-03-07

Family

ID=90099208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015470 WO2024047931A1 (en) 2022-08-31 2023-04-18 Optical path control device, display device, and optical path control method

Country Status (2)

Country Link
JP (1) JP2024034291A (en)
WO (1) WO2024047931A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177876A (en) * 2002-11-29 2004-06-24 Optrex Corp Liquid crystal display
US20060279702A1 (en) * 2005-06-09 2006-12-14 Kettle Wiatt E Projection assembly
US20070018934A1 (en) * 2005-07-22 2007-01-25 Samsung Electronics Co., Ltd. Liquid crystal display apparatus
KR20070067815A (en) * 2005-12-23 2007-06-29 엘지전자 주식회사 Video handling apparatus for liquid crystal display and method thereof
JP2008271413A (en) * 2007-04-24 2008-11-06 Olympus Corp Image display device, imaging apparatus, processing program, and control method of image display device
JP2008286908A (en) * 2007-05-16 2008-11-27 Mitsubishi Electric Corp Image display device and method, and image generating device and method
JP2010197785A (en) * 2009-02-26 2010-09-09 Seiko Epson Corp Image display device, electronic apparatus, and image display method
JP2017027024A (en) * 2015-07-16 2017-02-02 パナソニックIpマネジメント株式会社 Projection display
JP2022093047A (en) * 2020-12-11 2022-06-23 キヤノン株式会社 Projection device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177876A (en) * 2002-11-29 2004-06-24 Optrex Corp Liquid crystal display
US20060279702A1 (en) * 2005-06-09 2006-12-14 Kettle Wiatt E Projection assembly
US20070018934A1 (en) * 2005-07-22 2007-01-25 Samsung Electronics Co., Ltd. Liquid crystal display apparatus
KR20070067815A (en) * 2005-12-23 2007-06-29 엘지전자 주식회사 Video handling apparatus for liquid crystal display and method thereof
JP2008271413A (en) * 2007-04-24 2008-11-06 Olympus Corp Image display device, imaging apparatus, processing program, and control method of image display device
JP2008286908A (en) * 2007-05-16 2008-11-27 Mitsubishi Electric Corp Image display device and method, and image generating device and method
JP2010197785A (en) * 2009-02-26 2010-09-09 Seiko Epson Corp Image display device, electronic apparatus, and image display method
JP2017027024A (en) * 2015-07-16 2017-02-02 パナソニックIpマネジメント株式会社 Projection display
JP2022093047A (en) * 2020-12-11 2022-06-23 キヤノン株式会社 Projection device

Also Published As

Publication number Publication date
JP2024034291A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
US10205923B2 (en) Apparatus and method for processing a projected image, and projection display system
US9743056B2 (en) Method and device for processing a projection image, and projection display system
WO2021051814A1 (en) Projection display system and control method therefor, and projection display device
JP6364609B2 (en) Projection-type image display device and image signal generation device
CN102016691A (en) Display using bidirectionally scanned linear modulator
JP6793297B2 (en) Projection type image display device
US11057596B2 (en) Image projection apparatus and its control method
TW201611572A (en) Coded illuminator and light field projection device using the same
JP2015099323A (en) Projector
US20220011660A1 (en) Image projection device
WO2024047931A1 (en) Optical path control device, display device, and optical path control method
US11044447B2 (en) Projection display system, controlling method thereof, and projection display device
WO2024047932A1 (en) Display device and display method
US20180143435A1 (en) Displaying device and method thereof
CN214409554U (en) Resolution-multiplied projection system without any relative mechanical motion between components
WO2023048010A1 (en) Display device and display method
WO2023048246A1 (en) Optical path control device, display device, and optical path control method
JP6244542B2 (en) Projection-type image display device and control method for projection-type image display device
EP4109167A1 (en) Optical path control apparatus, display apparatus, and method of contorlling optical path
JP2023048528A (en) Optical Path Control Device, Display Device, and Optical Path Control Method
JP2023002239A (en) Optical path control device, display device, and optical path control method
JP2023002195A (en) Optical path control device, display device, and optical path control method
JP2023002005A (en) Optical path control device, display device, and optical path control method
JP2023049013A (en) Optical path control device, display device and optical path control method
JP7267713B2 (en) PROJECTION DEVICE, CONTROL METHOD THEREOF, AND PROGRAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859702

Country of ref document: EP

Kind code of ref document: A1