WO2024047840A1 - Determination device and determination method - Google Patents

Determination device and determination method Download PDF

Info

Publication number
WO2024047840A1
WO2024047840A1 PCT/JP2022/032943 JP2022032943W WO2024047840A1 WO 2024047840 A1 WO2024047840 A1 WO 2024047840A1 JP 2022032943 W JP2022032943 W JP 2022032943W WO 2024047840 A1 WO2024047840 A1 WO 2024047840A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
tank
pressure
temperature
partial discharge
Prior art date
Application number
PCT/JP2022/032943
Other languages
French (fr)
Japanese (ja)
Inventor
健 岩城
寿樹 林
秀人 大木
坂本 千秋
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to PCT/JP2022/032943 priority Critical patent/WO2024047840A1/en
Publication of WO2024047840A1 publication Critical patent/WO2024047840A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/668Means for obtaining or monitoring the vacuum
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects

Definitions

  • One aspect of the present invention relates to a determination device that determines vacuum deterioration of a vacuum valve.
  • a vacuum valve vacuum interrupter
  • the vacuum valve is installed, for example, in a vacuum circuit breaker provided in power cutoff equipment to cut off an electric circuit.
  • a vacuum valve when the degree of vacuum inside the vacuum container decreases, the insulation performance, that is, the shutoff performance decreases. Therefore, there is a need for a technique for determining a decrease in the degree of vacuum inside a vacuum container.
  • Patent Document 1 discloses a vacuum deterioration monitoring device that includes a pressure measurement container (insulating holder) with an airtight structure that houses a vacuum valve, and pressure detection means that detects pressure changes within the pressure measurement container. There is.
  • a vacuum leak occurs in the vacuum valve
  • the insulating gas in the pressure measurement container flows into the vacuum valve, and the pressure in the pressure measurement container decreases.
  • the pressure detection means detects vacuum deterioration of the vacuum valve by detecting such a decrease in pressure within the pressure measurement container.
  • Patent Document 1 there is a possibility that a decrease in the pressure inside the pressure measurement container due to pressure leakage in the pressure measurement container may be mistakenly determined as vacuum deterioration of the vacuum valve. Furthermore, if the vacuum valve deteriorates due to shock caused by an arc generated during normal operation (opening operation), the arc continues within the vacuum valve even after the pair of contacts are separated. As a result, the temperature of the gas within the pressure measurement container increases, and the pressure within the pressure measurement container also increases. In this case, there is a problem that a decrease in pressure within the pressure measurement container cannot be detected, and vacuum deterioration of the vacuum valve cannot be detected.
  • One aspect of the present invention has been made in view of the above problems, and its purpose is to appropriately determine vacuum deterioration of a vacuum valve.
  • a determination device includes an acquisition unit that acquires the temperature or pressure in a first tank of a circuit breaker, and based on the temperature or pressure in the first tank, and a determination unit that determines the presence or absence of an arc that occurs due to vacuum deterioration of the vacuum valve housed in the first tank.
  • a determination method includes an acquisition step of acquiring the temperature or pressure in a first tank of a circuit breaker, and based on the temperature or pressure in the first tank, The method further includes a determination step of determining the presence or absence of an arc that occurs due to vacuum deterioration of the vacuum valve housed in the first tank.
  • a change in the degree of vacuum of a vacuum container can be appropriately determined.
  • FIG. 1 is a schematic diagram showing the configuration of main parts of a determination system according to an embodiment of the present invention. It is a block diagram showing the composition of the judgment device of the above-mentioned judgment system. It is a figure showing the change of the pressure in a vacuum valve. 2 is a flowchart illustrating an example of a process in which the determination device determines vacuum deterioration of a vacuum valve.
  • FIG. 1 is a schematic diagram showing the main configuration of a determination system 1000.
  • the determination system 1000 includes a detection device 100 and a circuit breaker 5.
  • the configuration of the circuit breaker 5 will be described below.
  • the circuit breaker 5 (switching device) includes a tank 50 (first tank), a first electrical circuit 51, and a second electrical circuit 52.
  • FIG. 1 is a schematic diagram, and illustration of a part of the second electric circuit 52 is omitted.
  • the circuit breaker 5 is used, for example, to cut off an electric circuit in power cutoff equipment.
  • the circuit breaker 5 is, for example, a vacuum circuit breaker (VCB).
  • the tank 50 is a closed tank that accommodates a vacuum valve 60, which will be described later.
  • the tank 50 is filled with an insulating gas (eg, dry air).
  • the pressure of the insulating gas in the tank 50 is higher than atmospheric pressure, thereby improving the insulation of the vacuum valve 60.
  • the first electrical circuit 51 is one (upper side in FIG. 1) of the electrical circuit in the power cutoff equipment.
  • the second electrical circuit 52 is the other electrical circuit (on the right side in FIG. 1) in the power cutoff facility.
  • the first electric path 51 and the second electric path 52 penetrate the tank 50 and are introduced into the tank 50.
  • a tank 50A (second tank) different from the tank 50 is provided above the tank 50.
  • the tank 50A is also a closed tank, and is filled with gas at a predetermined pressure.
  • the first electric circuit 51 penetrates the interface between the tank 50 and the tank 50A while maintaining the airtightness of the tank 50 and the tank 50A. That is, the tank 50 and the tank 50A are electrically connected through the first electric circuit 51. Note that in FIG. 1, illustration of the first electric circuit 51 in the tank 50A is omitted.
  • a tank 50B (not shown) different from the tank 50 is provided on the side of the tank 50, and the tank 50 and the tank 50B are electrically connected through a second electric circuit 52.
  • the vacuum valve 60 includes a vacuum container 61 and a pair of contacts (not shown).
  • the vacuum container 61 is maintained at a predetermined degree of vacuum and accommodates a pair of contacts connected to the first electric circuit 51 and the second electric circuit 52, respectively.
  • the pair of contacts is configured to be connected or disconnected (opening/closing operation of the vacuum valve 60) by the operation of an operating section (not shown).
  • the determination system 1000 determines a decrease (change) in the degree of vacuum in the vacuum container 61.
  • a detection device 100 is provided for this purpose.
  • the detection device 100 includes a determination device 1, a coaxial cable 2, a partial discharge sensor 4, a temperature sensor 3a, and a pressure sensor 3b.
  • the partial discharge sensor 4, temperature sensor 3a, and pressure sensor 3b will be collectively referred to as sensors.
  • the determination device 1 is connected to a sensor by a coaxial cable 2.
  • the sensor is provided inside the tank 50 while ensuring insulation from the vacuum valve 60.
  • the determination device 1 determines vacuum deterioration of the vacuum valve 60 using physical information detected by the sensor.
  • the partial discharge sensor 4 is a sensor that detects such partial discharge. Specifically, the partial discharge sensor 4 is a sensor that detects a partial discharge signal (for example, electromagnetic waves, ground line current, or TEV (Transition Earth Voltage)) accompanying partial discharge. When the partial discharge sensor 4 detects partial discharge, the determination device 1 determines that the degree of vacuum in the vacuum container 61 has decreased.
  • a partial discharge signal for example, electromagnetic waves, ground line current, or TEV (Transition Earth Voltage)
  • the pressure within the vacuum container 61 eventually reaches pressure equilibrium near the original pressure within the tank 50. It is known that when the pressure inside the vacuum container 61 becomes equal to or higher than a predetermined pressure, the partial discharge that was occurring up to that point will no longer occur. Therefore, if vacuum deterioration rapidly progresses from the normal vacuum state of the vacuum vessel 61 to a state where the pressure is balanced to near the original pressure inside the tank 50, the partial discharge sensor 4 may not be able to detect partial discharge. be.
  • the temperature and pressure of the gas inside and in the tank 50 increase over time.
  • the temperature sensor 3a and the pressure sensor 3b are sensors that detect increases in the temperature and pressure of the gas in the tank 50, respectively.
  • the determination device 1 determines that an overheating abnormality has occurred in the tank 50 due to the vacuum deterioration state of the vacuum valve 60 or other factors. .
  • the determination device 1 determines the vacuum deterioration state of the vacuum valve 60.
  • FIG. 1 shows an example in which the temperature sensor 3a is installed inside the tank 50, the temperature sensor 3a may be installed on the outer wall of the tank 50.
  • FIG. 2 is a block diagram showing the configuration of the determination device 1.
  • the determination device 1 includes an acquisition section 10, a determination section 20, an alarm section 30, and a storage section 40.
  • the determination device 1 determines vacuum deterioration of the vacuum valve 60 in the circuit breaker 5.
  • the vacuum valve 60 in which the vacuum state is maintained and the tank 50 that accommodates the vacuum valve 60 will be referred to as a normal vacuum container 61 and a normal tank 50, respectively.
  • the acquisition unit 10 includes a partial discharge detection circuit 11, a temperature detection circuit 12a, and a pressure detection circuit 12b.
  • the acquisition unit 10 acquires the output signal output by the sensor.
  • the acquisition unit 10 generates a processed signal by performing predetermined processing on the output signal.
  • the acquisition unit 10 outputs the processed signal to the determination unit 20.
  • the circuit breaker 5 only needs to be provided with either the temperature sensor 3a or the pressure sensor 3b. That is, the acquisition unit 10 may include either the temperature detection circuit 12a or the pressure detection circuit 12b in accordance with the sensor provided in the circuit breaker 5.
  • the partial discharge detection circuit 11 is a circuit for acquiring a partial discharge signal accompanying a partial discharge occurring within the vacuum bulb 60.
  • the partial discharge detection circuit 11 acquires the high frequency signal that the partial discharge sensor 4 receives.
  • the partial discharge detection circuit 11 applies a known filter to the high frequency signal to pass signal components in a predetermined frequency band (for example, a frequency band from the HF band to the VHF band). Thereby, the partial discharge detection circuit 11 can extract waveform data of electromagnetic waves accompanying partial discharge.
  • the partial discharge detection circuit 11 outputs a high frequency signal in a predetermined frequency band to the determination unit 20 as a processed signal. Further, the partial discharge detection circuit 11 may constantly monitor the presence or absence of a partial discharge signal and store a high frequency signal in a predetermined frequency band in the storage unit 40.
  • the temperature detection circuit 12a is a circuit for obtaining the temperature T inside the tank 50 of the circuit breaker 5.
  • the temperature detection circuit 12a acquires an output signal output by the temperature sensor 3a (for example, if the temperature sensor 3a is a resistance temperature sensor, the voltage across the resistance temperature sensor).
  • the temperature detection circuit 12a identifies the temperature T within the tank 50 sensed by the temperature sensor 3a based on the output signal.
  • the temperature detection circuit 12a outputs the identified temperature T inside the tank 50 to the determination unit 20 as a processed signal. Further, the temperature detection circuit 12a may always obtain the temperature T in the tank 50 and store it in the storage unit 40.
  • the temperature detection circuit 12a may acquire an output signal output by a temperature sensor (not shown) provided in a tank 50A different from the tank 50.
  • the temperature detection circuit 12a also specifies the temperature TA in the tank 50A and outputs it to the determination unit 20.
  • the pressure detection circuit 12b is a circuit for acquiring the pressure inside the tank 50 of the circuit breaker 5.
  • the temperature detection circuit 12a specifies the temperature T in the tank 50 of the circuit breaker 5 and outputs it to the determination section 20
  • the pressure detection circuit 12b specifies the pressure in the tank 50 of the circuit breaker 5 and outputs it to the determination section 20. output to section 20.
  • the determination unit 20 determines whether the partial discharge sensor 4 has detected a partial discharge. For example, the determination unit 20 determines whether the intensity I of the high frequency signal in a predetermined frequency band is equal to or greater than the threshold Th0, based on the waveform data output by the partial discharge detection circuit 11. If the intensity I is greater than or equal to the threshold Th0, it is determined that the partial discharge sensor 4 has detected a partial discharge (that is, the degree of vacuum of the vacuum valve 60 has decreased). Moreover, in addition to commercial synchronization as a determination condition, detection accuracy can be further improved.
  • the determination unit 20 determines vacuum deterioration of the vacuum valve 60 based on the temperature T inside the tank 50. For example, the determination unit 20 determines whether the temperature T in the tank 50 output by the temperature detection circuit 12a is equal to or higher than the threshold Th1. If the temperature T is equal to or higher than the threshold Th1, it is determined that an arc is occurring within the vacuum valve 60 (that is, the degree of vacuum in the vacuum valve 60 is decreasing). Note that the determination unit 20 may determine the threshold Th1 according to the surrounding environment (for example, the temperature of the outside air). Furthermore, the determination unit 20 determines whether or not an arc is occurring within the vacuum valve 60 by comparing the temperature T within the tank 50 and the temperature TA within the tank 50A, which is in the same environment as the tank 50.
  • the determination unit 20 determines that an arc is occurring within the vacuum valve 60. Thereby, even if the temperature T of the tank 50 during normal operation changes depending on the surrounding environment of the circuit breaker 5, it is possible to appropriately determine the increase in the temperature T within the vacuum valve 60 due to the arc.
  • the determination unit 20 determines vacuum deterioration of the vacuum valve 60 based on the pressure within the tank 50. For example, the determination unit 20 determines whether the pressure P in the tank 50 output by the pressure detection circuit 12b is equal to or higher than the threshold Th2. If the pressure P is equal to or greater than the threshold value Th2, it is determined that an arc is occurring within the vacuum valve 60 (that is, the degree of vacuum in the vacuum valve 60 is decreasing).
  • the alarm unit 30 Based on the determination result of the determination unit 20, the alarm unit 30 notifies the outside that the degree of vacuum in the vacuum valve 60 is decreasing. Further, the alarm unit 30 outputs an interlock indicating that the degree of vacuum of the vacuum valve 60 is decreasing.
  • the storage unit 40 stores various data used by the determination device 1.
  • the storage unit 40 stores, for example, a threshold value for determination by the determination unit 20 in advance.
  • the storage unit 40 also stores the temperature T and pressure P inside the tank 50 output by the temperature detection circuit 12a and the pressure detection circuit 12b.
  • FIG. 3 is a diagram showing changes in the pressure inside the vacuum valve 60 when the vacuum valve 60 deteriorates.
  • the pressure within the vacuum valve 60 increases over time as the insulating gas within the tank 50 flows into the vacuum valve 60.
  • the pressure inside the vacuum valve 60 becomes a predetermined first pressure P1 at time t1, a predetermined second pressure P2 (approximately atmospheric pressure) at time t2, and finally becomes equal to the pressure P3 inside the tank 50.
  • the determination device 1 When the pressure within the vacuum valve 60 is below the predetermined first pressure P1, no partial discharge occurs within the vacuum valve 60 even if a commercial voltage is applied to the pair of contacts. Therefore, the determination device 1 does not detect a partial discharge signal associated with partial discharge until time t1, and determines that the vacuum container 61 maintains a vacuum state.
  • the determination device 1 can detect a partial discharge signal associated with partial discharge between time t1 and time t2.
  • the partial discharge may disappear. Therefore, for example, when the pressure inside the vacuum bulb increases rapidly, the time during which the determination device 1 can detect a partial discharge signal is short, so there is a possibility that the partial discharge detection circuit 11 may miss the detection of the partial discharge signal. There is.
  • the determination unit 20 determines whether or not an arc is generated within the vacuum valve 60 based on the temperature and pressure within the tank 50. . That is, the determination device 1 determines the vacuum valve 60 based not only on the partial discharge detected by the partial discharge sensor 4 but also on the temperature T and pressure P of the gas in the tank 50 detected by the temperature sensor 3a and the pressure sensor 3b, respectively. Determine the vacuum deterioration of. This can serve as a backup in case the partial discharge sensor 4 is unable to detect partial discharge before the pressure of the gas in the vacuum container 61 reaches the predetermined second pressure P2.
  • FIG. 4 is a flowchart showing an example of a process in which the determination device 1 determines vacuum deterioration of the vacuum valve 60. Referring to FIG. 4, an operation example in which the determination device 1 determines vacuum deterioration of the vacuum valve 60 based on the temperature T in the tank 50, the pressure P in the tank 50, and the partial discharge signal will be described below.
  • the partial discharge detection circuit 11 acquires the partial discharge signal received by the partial discharge sensor 4 (S1).
  • the partial discharge detection circuit 11 performs predetermined processing on the partial discharge signal and outputs it to the determination section 20 .
  • the temperature detection circuit 12a and the pressure detection circuit 12b obtain output signals output from the temperature sensor 3a and the pressure sensor 3b, respectively (obtaining step S2).
  • the temperature detection circuit 12a and the pressure detection circuit 12b respectively specify the temperature T and pressure P in the tank 50 and output them to the determination section 20.
  • the determination unit 20 determines whether the partial discharge sensor 4 has detected a partial discharge (S3). If it is determined that the partial discharge sensor 4 has detected a partial discharge (YES in S3), the determination unit 20 determines that the degree of vacuum in the vacuum valve 60 is decreasing. Thereafter, the alarm unit 30 outputs an interlock indicating that the degree of vacuum in the vacuum valve 60 is decreasing (S5).
  • the determination unit 20 determines whether or not the arc continues based on the temperature T and pressure P in the tank 50. . That is, the determination unit 20 determines whether the temperature T in the tank 50 is greater than or equal to the threshold Th1, and whether the pressure in the tank 50 is greater than or equal to the threshold Th2 (determination step S4). If the temperature T in the tank 50 is greater than or equal to the threshold Th1, or if the pressure P in the tank 50 is greater than or equal to the threshold Th2 (YES in S4), the determination unit 20 determines that the arc is continuing. Thereafter, the alarm unit 30 outputs an interlock indicating that the arc is continuing (S5).
  • the determination unit 20 determines that the vacuum state of the vacuum valve 60 is maintained. do. After that, the process returns to S1. That is, the determination device 1 constantly monitors the presence or absence of a partial discharge signal and the temperature T and pressure P in the tank 50 during the monitoring period.
  • the determination device 1 can detect the occurrence of an arc in the vacuum valve 60 by monitoring the temperature T and pressure P inside the tank 50. Thereby, it is possible to appropriately determine the presence or absence of an arc that occurs due to vacuum deterioration of the vacuum valve 60.
  • the partial discharge detection circuit 11 misses detection of a partial discharge signal, by monitoring the temperature T and pressure P in the tank 50, it is possible to detect whether or not there is an arc occurring due to vacuum deterioration of the vacuum valve. can be appropriately determined. Further, the partial discharge signal can be detected immediately after the vacuum bulb deteriorates under vacuum (immediately after time t1 in FIG. 3). Therefore, by also detecting the partial discharge signal, it becomes possible to quickly diagnose vacuum deterioration of the vacuum valve.
  • the function of the determination device 1 (hereinafter referred to as the "device") is a program for making a computer function as the device, and makes the computer function as each control block (particularly the acquisition unit 10 and the determination unit 20) of the device. This can be realized by a program for
  • the device includes a computer having at least one control device (for example, a processor) and at least one storage device (for example, a memory) as hardware for executing the program.
  • control device for example, a processor
  • storage device for example, a memory
  • the above program may be recorded on one or more computer-readable recording media instead of temporary.
  • This recording medium may or may not be included in the above device. In the latter case, the program may be supplied to the device via any transmission medium, wired or wireless.
  • each of the control blocks described above can also be realized by a logic circuit.
  • a logic circuit for example, an integrated circuit in which a logic circuit functioning as each of the control blocks described above is formed is also included in the scope of the present invention.
  • each process described in each of the above embodiments may be executed by AI (Artificial Intelligence).
  • AI Artificial Intelligence
  • the AI may operate on the control device, or may operate on another device (for example, an edge computer or a cloud server).
  • the determination device includes an acquisition unit that acquires the temperature or pressure in a first tank of a circuit breaker, and a vacuum contained in the first tank based on the temperature or pressure in the first tank.
  • a determination unit that determines the presence or absence of an arc that occurs due to vacuum deterioration of the bulb.
  • the acquisition unit acquires a partial discharge signal accompanying a partial discharge occurring within the vacuum bulb
  • the determination unit determines vacuum deterioration of the vacuum bulb based on the partial discharge signal
  • the acquisition unit determines vacuum deterioration of the vacuum bulb based on the partial discharge signal.
  • the determination unit may determine whether an arc occurs due to vacuum deterioration of the vacuum valve based on the temperature or pressure within the first tank.
  • the determination unit may determine whether or not an arc occurs due to vacuum deterioration of the vacuum valve when the temperature or pressure within the first tank is equal to or higher than a threshold value.
  • the acquisition unit acquires a temperature or pressure in a second tank different from the first tank, and the determination unit determines the temperature or pressure in the first tank and the temperature or pressure in the second tank.
  • the presence or absence of an arc generated due to vacuum deterioration of the vacuum valve may be determined by comparing the above.
  • a determination method includes an acquisition step of acquiring the temperature or pressure in a first tank of a circuit breaker, and a vacuum contained in the first tank based on the temperature or pressure in the first tank.
  • the method includes a determination step of determining the presence or absence of an arc that occurs due to vacuum deterioration of the bulb.
  • Determination device 5 Circuit breaker 10 Acquisition unit 20 Determination unit 50 Tank (first tank) 50A tank (second tank) 60 Vacuum valve

Abstract

This determination device (1) comprises an acquiring unit (10) that acquires the temperature or pressure inside a tank (50) of a circuit breaker (5), and a determining unit (20) that determines, on the basis of the temperature or pressure inside the tank, the presence of an arc that is generated accompanying vacuum deterioration of a vacuum valve (60) housed inside the tank. The determination device (1) is capable of suitably determining a change in the degree of vacuum in a vacuum container.

Description

判定装置および判定方法Judgment device and method
 本発明の一態様は、真空バルブの真空劣化を判定する判定装置に関する。 One aspect of the present invention relates to a determination device that determines vacuum deterioration of a vacuum valve.
 真空容器の内部に相互に接触、離間が可能な一対の接点が設けられている真空バルブ(真空インタラプタ)が知られている。真空バルブは、例えば、電力遮断設備に設けられた真空遮断器に設置されて、電路の遮断を行う。このような真空バルブにおいて、真空容器の内部の真空度が低下すると絶縁性能、すなわち遮断性能が低下してしまう。そのため、真空容器の内部の真空度の低下を判定する技術が求められている。 A vacuum valve (vacuum interrupter) is known in which a pair of contacts that can come into contact with and separate from each other are provided inside a vacuum container. The vacuum valve is installed, for example, in a vacuum circuit breaker provided in power cutoff equipment to cut off an electric circuit. In such a vacuum valve, when the degree of vacuum inside the vacuum container decreases, the insulation performance, that is, the shutoff performance decreases. Therefore, there is a need for a technique for determining a decrease in the degree of vacuum inside a vacuum container.
 特許文献1には、真空バルブを収納する気密密閉構造の圧力測定用容器(絶縁ホルダ)と、圧力測定用容器内の圧力変化を検出する圧力検出手段とを備える真空劣化監視装置が開示されている。ここで、真空バルブの真空漏れが発生した場合、圧力測定用容器内の絶縁ガスが真空バルブに流入し、圧力測定用容器内の圧力は低下する。圧力検出手段は、このような圧力測定用容器内の圧力の低下を検出することで、真空バルブの真空劣化を検出する。 Patent Document 1 discloses a vacuum deterioration monitoring device that includes a pressure measurement container (insulating holder) with an airtight structure that houses a vacuum valve, and pressure detection means that detects pressure changes within the pressure measurement container. There is. Here, if a vacuum leak occurs in the vacuum valve, the insulating gas in the pressure measurement container flows into the vacuum valve, and the pressure in the pressure measurement container decreases. The pressure detection means detects vacuum deterioration of the vacuum valve by detecting such a decrease in pressure within the pressure measurement container.
 また、真空バルブの真空漏れが発生し、真空バルブに気体分子が流入した場合、真空バルブ内において部分放電が発生する。このような部分放電を検出することで真空容器の真空劣化を検出する技術も知られている。 Additionally, if a vacuum leak occurs in the vacuum valve and gas molecules flow into the vacuum valve, partial discharge will occur within the vacuum valve. A technique for detecting vacuum deterioration of a vacuum container by detecting such partial discharge is also known.
日本国特許第6207805号明細書Japanese Patent No. 6207805 Specification
 特許文献1の技術においては、圧力測定用容器の圧力漏れによる圧力測定用容器内の圧力の低下を、真空バルブの真空劣化と誤判定してしまう可能性がある。また、正常時の通常動作(開動作)において発生するアークによる衝撃等を原因として真空バルブの真空劣化に至った場合、一対の接点を切り離した後においても真空バルブ内でアークが継続する。これにより、圧力測定用容器内のガスの温度が上昇し、圧力測定用容器内の圧力も上昇する。この場合、圧力測定用容器内の圧力の低下を検出できず、真空バルブの真空劣化を検出できないといった問題がある。 In the technique of Patent Document 1, there is a possibility that a decrease in the pressure inside the pressure measurement container due to pressure leakage in the pressure measurement container may be mistakenly determined as vacuum deterioration of the vacuum valve. Furthermore, if the vacuum valve deteriorates due to shock caused by an arc generated during normal operation (opening operation), the arc continues within the vacuum valve even after the pair of contacts are separated. As a result, the temperature of the gas within the pressure measurement container increases, and the pressure within the pressure measurement container also increases. In this case, there is a problem that a decrease in pressure within the pressure measurement container cannot be detected, and vacuum deterioration of the vacuum valve cannot be detected.
 また、真空バルブの真空漏れがさらに進行し、真空容器内のガスの圧力が所定の圧力以上になると、部分放電は発生しなくなることが分かっている。そのため、部分放電を検出することで真空バルブの真空劣化を検出する技術においては、真空容器内のガスの圧力が所定の圧力以上となると、部分放電が検出できなくなるといった問題がある。 It is also known that partial discharge no longer occurs when the vacuum leakage of the vacuum valve progresses further and the pressure of the gas inside the vacuum container exceeds a predetermined pressure. Therefore, in the technique of detecting vacuum deterioration of a vacuum valve by detecting partial discharge, there is a problem that partial discharge cannot be detected when the pressure of the gas in the vacuum container exceeds a predetermined pressure.
 本発明の一態様は、上記の問題点を鑑みてなされたものであり、その目的は、真空バルブの真空劣化を適切に判定することである。 One aspect of the present invention has been made in view of the above problems, and its purpose is to appropriately determine vacuum deterioration of a vacuum valve.
 上記の課題を解決するために、本発明の一態様に係る判定装置は、遮断器の第1タンク内の温度または圧力を取得する取得部と、前記第1タンク内の温度または圧力に基づき、前記第1タンクに収容された真空バルブの真空劣化に伴い発生するアークの有無を判定する判定部と、を備える。 In order to solve the above problems, a determination device according to one aspect of the present invention includes an acquisition unit that acquires the temperature or pressure in a first tank of a circuit breaker, and based on the temperature or pressure in the first tank, and a determination unit that determines the presence or absence of an arc that occurs due to vacuum deterioration of the vacuum valve housed in the first tank.
 上記の課題を解決するために、本発明の一態様に係る判定方法は、遮断器の第1タンク内の温度または圧力を取得する取得ステップと、前記第1タンク内の温度または圧力に基づき、前記第1タンクに収容される真空バルブの真空劣化に伴い発生するアークの有無を判定する判定ステップと、を含む。 In order to solve the above problems, a determination method according to one aspect of the present invention includes an acquisition step of acquiring the temperature or pressure in a first tank of a circuit breaker, and based on the temperature or pressure in the first tank, The method further includes a determination step of determining the presence or absence of an arc that occurs due to vacuum deterioration of the vacuum valve housed in the first tank.
 本発明の一態様によれば、真空容器の真空度の変化を適切に判定することができる。 According to one aspect of the present invention, a change in the degree of vacuum of a vacuum container can be appropriately determined.
本発明の一実施形態に係る判定システムの要部構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of main parts of a determination system according to an embodiment of the present invention. 上記判定システムの判定装置の構成を示すブロック図である。It is a block diagram showing the composition of the judgment device of the above-mentioned judgment system. 真空バルブ内の圧力の変化を示す図である。It is a figure showing the change of the pressure in a vacuum valve. 判定装置が真空バルブの真空劣化を判定する処理の一例を示すフローチャートである。2 is a flowchart illustrating an example of a process in which the determination device determines vacuum deterioration of a vacuum valve.
 〔実施形態1〕
 図1は、判定システム1000の要部構成を示す模式図である。図1に示すように、判定システム1000は、検出装置100および遮断器5を備える。まず、検出装置100の構成に先立ち、遮断器5の構成について以下に説明する。
[Embodiment 1]
FIG. 1 is a schematic diagram showing the main configuration of a determination system 1000. As shown in FIG. 1, the determination system 1000 includes a detection device 100 and a circuit breaker 5. First, prior to the configuration of the detection device 100, the configuration of the circuit breaker 5 will be described below.
 (遮断器5の概略構成)
 遮断器5(開閉装置)は、タンク50(第1タンク)と、第1電路51と、第2電路52とを備える。図1は模式図であり、第2電路52の一部の図示は省略している。遮断器5は、例えば、電力遮断設備における電路の遮断を行うために用いられる。遮断器5は、例えば真空遮断器(VCB)である。
(Schematic configuration of circuit breaker 5)
The circuit breaker 5 (switching device) includes a tank 50 (first tank), a first electrical circuit 51, and a second electrical circuit 52. FIG. 1 is a schematic diagram, and illustration of a part of the second electric circuit 52 is omitted. The circuit breaker 5 is used, for example, to cut off an electric circuit in power cutoff equipment. The circuit breaker 5 is, for example, a vacuum circuit breaker (VCB).
 タンク50は後述する真空バルブ60を収容する密閉タンクである。タンク50には絶縁性ガス(例えばドライエア)が充填される。タンク50内の絶縁性ガスの圧力は大気圧より大きくなっており、これにより真空バルブ60の絶縁性を向上させている。 The tank 50 is a closed tank that accommodates a vacuum valve 60, which will be described later. The tank 50 is filled with an insulating gas (eg, dry air). The pressure of the insulating gas in the tank 50 is higher than atmospheric pressure, thereby improving the insulation of the vacuum valve 60.
 第1電路51は、電力遮断設備における一方(図1における上側)の電路である。第2電路52は、電力遮断設備における他方(図1における右側)の電路である。第1電路51および第2電路52は、タンク50を貫通し、タンク50の内部に導入される。 The first electrical circuit 51 is one (upper side in FIG. 1) of the electrical circuit in the power cutoff equipment. The second electrical circuit 52 is the other electrical circuit (on the right side in FIG. 1) in the power cutoff facility. The first electric path 51 and the second electric path 52 penetrate the tank 50 and are introduced into the tank 50.
 図1に示す一例では、タンク50の上部にタンク50とは異なるタンク50A(第2タンク)が設けられている。タンク50Aも密閉タンクであり、所定の圧力のガスが充填されている。第1電路51は、タンク50およびタンク50Aの気密を維持した状態で、タンク50とタンク50Aとの境界面を貫通している。すなわち、タンク50およびタンク50Aは第1電路51により導通している。なお、図1において、タンク50A内の第1電路51の図示は省略している。同様に、タンク50の側部にもタンク50とは異なるタンク50B(不図示)が設けられており、タンク50およびタンク50Bは第2電路52により導通している。 In the example shown in FIG. 1, a tank 50A (second tank) different from the tank 50 is provided above the tank 50. The tank 50A is also a closed tank, and is filled with gas at a predetermined pressure. The first electric circuit 51 penetrates the interface between the tank 50 and the tank 50A while maintaining the airtightness of the tank 50 and the tank 50A. That is, the tank 50 and the tank 50A are electrically connected through the first electric circuit 51. Note that in FIG. 1, illustration of the first electric circuit 51 in the tank 50A is omitted. Similarly, a tank 50B (not shown) different from the tank 50 is provided on the side of the tank 50, and the tank 50 and the tank 50B are electrically connected through a second electric circuit 52.
 真空バルブ60は、真空容器61と、一対の接点(不図示)とを備える。真空容器61は、所定の真空度に保たれており、第1電路51および第2電路52とそれぞれ接続される一対の接点を収容する。一対の接点は、操作部(不図示)の動作により接点の接続・切り離し(真空バルブ60の開閉動作)が行われる構成となっている。 The vacuum valve 60 includes a vacuum container 61 and a pair of contacts (not shown). The vacuum container 61 is maintained at a predetermined degree of vacuum and accommodates a pair of contacts connected to the first electric circuit 51 and the second electric circuit 52, respectively. The pair of contacts is configured to be connected or disconnected (opening/closing operation of the vacuum valve 60) by the operation of an operating section (not shown).
 ここで、真空容器61が真空状態を保っている限り、真空バルブ60の開動作時に一対の接点間に発生するアークは拡散し、消弧される。すなわち、電路の遮断が可能である。一方、真空容器61内の真空度が低下すると、真空バルブ60の絶縁性能、すなわち遮断性能が低下してしまう。このような真空容器61内の真空度の低下に伴う真空バルブ60の遮断性能の低下を防ぐために、本実施形態に係る判定システム1000では、真空容器61の真空度の低下(変化)を判定するための検出装置100を設ける。 Here, as long as the vacuum container 61 maintains a vacuum state, the arc generated between the pair of contacts during the opening operation of the vacuum valve 60 is diffused and extinguished. In other words, it is possible to interrupt the electrical circuit. On the other hand, when the degree of vacuum inside the vacuum container 61 decreases, the insulation performance, that is, the shutoff performance of the vacuum valve 60 decreases. In order to prevent such a decrease in the shutoff performance of the vacuum valve 60 due to a decrease in the degree of vacuum in the vacuum container 61, the determination system 1000 according to the present embodiment determines a decrease (change) in the degree of vacuum in the vacuum container 61. A detection device 100 is provided for this purpose.
 (検出装置100の概略構成)
 検出装置100は、判定装置1と、同軸ケーブル2と、部分放電センサ4と、測温センサ3aと、圧力センサ3bと、を備える。以下、部分放電センサ4、測温センサ3aおよび圧力センサ3bをセンサと総称する。判定装置1は、センサと同軸ケーブル2により接続されている。センサは、真空バルブ60との絶縁性を確保しつつタンク50の内部に設けられる。判定装置1は、センサが検出した物理情報を用いて真空バルブ60の真空劣化を判定する。
(Schematic configuration of detection device 100)
The detection device 100 includes a determination device 1, a coaxial cable 2, a partial discharge sensor 4, a temperature sensor 3a, and a pressure sensor 3b. Hereinafter, the partial discharge sensor 4, temperature sensor 3a, and pressure sensor 3b will be collectively referred to as sensors. The determination device 1 is connected to a sensor by a coaxial cable 2. The sensor is provided inside the tank 50 while ensuring insulation from the vacuum valve 60. The determination device 1 determines vacuum deterioration of the vacuum valve 60 using physical information detected by the sensor.
 真空容器61で真空漏れが発生すると、真空容器61の外部から気体分子が混入する。真空バルブ60が閉極状態においてこの真空漏れが発生すると、真空容器61の内部において部分放電が発生する。部分放電センサ4はこのような部分放電を検出するセンサである。具体的には、部分放電センサ4は、部分放電に伴う部分放電信号(例えば、電磁波、接地線電流、またはTEV(Transition Earth Voltage:過渡接地電圧))を検出するセンサである。部分放電センサ4が部分放電を検出したとき、判定装置1は、真空容器61の真空度が低下したと判定する。 When a vacuum leak occurs in the vacuum container 61, gas molecules enter from the outside of the vacuum container 61. When this vacuum leak occurs while the vacuum valve 60 is in the closed state, partial discharge occurs inside the vacuum container 61. The partial discharge sensor 4 is a sensor that detects such partial discharge. Specifically, the partial discharge sensor 4 is a sensor that detects a partial discharge signal (for example, electromagnetic waves, ground line current, or TEV (Transition Earth Voltage)) accompanying partial discharge. When the partial discharge sensor 4 detects partial discharge, the determination device 1 determines that the degree of vacuum in the vacuum container 61 has decreased.
 ここで、真空バルブ60が閉極状態において真空劣化が更に進展すると、やがて真空容器61内の圧力はタンク50内の元々の圧力付近で圧力平衡する。真空容器61内の圧力が所定の圧力以上になると、それまで発生していた部分放電は発生しなくなることが分かっている。そのため、真空容器61が正常な真空状態からタンク50内の元々の圧力付近まで圧力平衡するような状態まで急速に真空劣化が進展した場合は、部分放電センサ4によって部分放電が検出できない可能性がある。 Here, when the vacuum deterioration further progresses while the vacuum valve 60 is in the closed state, the pressure within the vacuum container 61 eventually reaches pressure equilibrium near the original pressure within the tank 50. It is known that when the pressure inside the vacuum container 61 becomes equal to or higher than a predetermined pressure, the partial discharge that was occurring up to that point will no longer occur. Therefore, if vacuum deterioration rapidly progresses from the normal vacuum state of the vacuum vessel 61 to a state where the pressure is balanced to near the original pressure inside the tank 50, the partial discharge sensor 4 may not be able to detect partial discharge. be.
 この時に、真空劣化状態で開極動作の指令が出された場合は、導通している一対の接点を切り離した後(事故電流遮断または負荷電流遮断の後)もアークが継続し、真空容器61内およびタンク50内のガスの温度および圧力は時間経過とともに上昇する。測温センサ3aおよび圧力センサ3bはそれぞれ、このようなタンク50内のガスの温度および圧力の上昇を検出するセンサである。測温センサ3aがタンク50内のガスの温度の上昇を検出したとき、判定装置1は、真空バルブ60の真空劣化状態あるいはその他の要因によりタンク50内で過熱異常が発生していると判定する。同様に、圧力センサ3bがタンク50内のガスの圧力の上昇を検出したとき、判定装置1は、真空バルブ60の真空劣化状態を判定する。なお、図1では、測温センサ3aがタンク50内に設置されている一例を示しているが、測温センサ3aはタンク50の外壁に設置されてもよい。 At this time, if an opening operation command is issued in a degraded vacuum state, the arc will continue even after the conducting pair of contacts is disconnected (after accidental current interruption or load current interruption), and the vacuum vessel 61 The temperature and pressure of the gas inside and in the tank 50 increase over time. The temperature sensor 3a and the pressure sensor 3b are sensors that detect increases in the temperature and pressure of the gas in the tank 50, respectively. When the temperature sensor 3a detects an increase in the temperature of the gas in the tank 50, the determination device 1 determines that an overheating abnormality has occurred in the tank 50 due to the vacuum deterioration state of the vacuum valve 60 or other factors. . Similarly, when the pressure sensor 3b detects an increase in the pressure of the gas in the tank 50, the determination device 1 determines the vacuum deterioration state of the vacuum valve 60. Although FIG. 1 shows an example in which the temperature sensor 3a is installed inside the tank 50, the temperature sensor 3a may be installed on the outer wall of the tank 50.
 また、真空バルブ60の一対の接点が切り離されている状態(開極静動作状態)において、真空容器61での真空漏れが発生すると、その真空劣化の進展に伴い、部分放電発生、アーク発生と遷移していくため、同様の異常検出動作を行う事が出来る。 Furthermore, if a vacuum leak occurs in the vacuum vessel 61 while the pair of contacts of the vacuum valve 60 are disconnected (open static operating state), partial discharge and arcing may occur as the vacuum deteriorates. Since the transition occurs, similar abnormality detection operations can be performed.
 (判定装置1の構成)
 図2は、判定装置1の構成を示すブロック図である。図2に示すように、判定装置1は、取得部10と、判定部20と、警報部30と、記憶部40とを備える。判定装置1は、遮断器5における真空バルブ60の真空劣化を判定する。以下、真空状態が保たれている真空バルブ60および当該真空バルブ60を収容するタンク50をそれぞれ正常時の真空容器61および正常時のタンク50と称する。
(Configuration of determination device 1)
FIG. 2 is a block diagram showing the configuration of the determination device 1. As shown in FIG. 2, the determination device 1 includes an acquisition section 10, a determination section 20, an alarm section 30, and a storage section 40. The determination device 1 determines vacuum deterioration of the vacuum valve 60 in the circuit breaker 5. Hereinafter, the vacuum valve 60 in which the vacuum state is maintained and the tank 50 that accommodates the vacuum valve 60 will be referred to as a normal vacuum container 61 and a normal tank 50, respectively.
 取得部10は、部分放電検出回路11と、温度検出回路12aと、圧力検出回路12bとを備える。取得部10は、センサが出力する出力信号を取得する。取得部10は、当該出力信号に所定の処理を施した処理信号を生成する。取得部10は、当該処理信号を判定部20に出力する。なお、遮断器5には測温センサ3aおよび圧力センサ3bのいずれか一方が設けられていればよい。すなわち、取得部10は、遮断器5に設けられるセンサに合わせて、温度検出回路12aおよび圧力検出回路12bのうちいずれか一方を備えていればよい。 The acquisition unit 10 includes a partial discharge detection circuit 11, a temperature detection circuit 12a, and a pressure detection circuit 12b. The acquisition unit 10 acquires the output signal output by the sensor. The acquisition unit 10 generates a processed signal by performing predetermined processing on the output signal. The acquisition unit 10 outputs the processed signal to the determination unit 20. Note that the circuit breaker 5 only needs to be provided with either the temperature sensor 3a or the pressure sensor 3b. That is, the acquisition unit 10 may include either the temperature detection circuit 12a or the pressure detection circuit 12b in accordance with the sensor provided in the circuit breaker 5.
 部分放電検出回路11は、真空バルブ60内において生じる部分放電に伴う部分放電信号を取得するための回路である。部分放電センサ4が部分放電信号として部分放電に伴う電磁波を検出する場合、部分放電検出回路11は、部分放電センサ4が受信する高周波信号を取得する。部分放電検出回路11は、当該高周波信号に公知のフィルタをかけて所定の周波数帯域(例えば、HF帯からVHF帯の周波数帯域)の信号成分を通過させる。これにより、部分放電検出回路11は、部分放電に伴う電磁波の波形データを抽出することができる。部分放電検出回路11は、所定の周波数帯域の高周波信号を処理信号として判定部20に出力する。また、部分放電検出回路11は、部分放電信号の有無を常に監視し、所定の周波数帯域の高周波信号を記憶部40に格納してもよい。 The partial discharge detection circuit 11 is a circuit for acquiring a partial discharge signal accompanying a partial discharge occurring within the vacuum bulb 60. When the partial discharge sensor 4 detects electromagnetic waves associated with partial discharge as a partial discharge signal, the partial discharge detection circuit 11 acquires the high frequency signal that the partial discharge sensor 4 receives. The partial discharge detection circuit 11 applies a known filter to the high frequency signal to pass signal components in a predetermined frequency band (for example, a frequency band from the HF band to the VHF band). Thereby, the partial discharge detection circuit 11 can extract waveform data of electromagnetic waves accompanying partial discharge. The partial discharge detection circuit 11 outputs a high frequency signal in a predetermined frequency band to the determination unit 20 as a processed signal. Further, the partial discharge detection circuit 11 may constantly monitor the presence or absence of a partial discharge signal and store a high frequency signal in a predetermined frequency band in the storage unit 40.
 温度検出回路12aは、遮断器5のタンク50内の温度Tを取得するための回路である。温度検出回路12aは、測温センサ3aが出力する出力信号(例えば測温センサ3aが測温抵抗体である場合、測温抵抗体の両端電圧)を取得する。温度検出回路12aは、当該出力信号に基づき測温センサ3aが感知したタンク50内の温度Tを特定する。温度検出回路12aは、特定したタンク50内の温度Tを処理信号として判定部20に出力する。また、温度検出回路12aは、タンク50内の温度Tを常に取得し、記憶部40に格納してもよい。さらに、温度検出回路12aは、タンク50とは異なるタンク50A内に設けられた測温センサ(不図示)が出力する出力信号を取得してもよい。温度検出回路12aは、タンク50A内の温度TAも特定して判定部20に出力する。 The temperature detection circuit 12a is a circuit for obtaining the temperature T inside the tank 50 of the circuit breaker 5. The temperature detection circuit 12a acquires an output signal output by the temperature sensor 3a (for example, if the temperature sensor 3a is a resistance temperature sensor, the voltage across the resistance temperature sensor). The temperature detection circuit 12a identifies the temperature T within the tank 50 sensed by the temperature sensor 3a based on the output signal. The temperature detection circuit 12a outputs the identified temperature T inside the tank 50 to the determination unit 20 as a processed signal. Further, the temperature detection circuit 12a may always obtain the temperature T in the tank 50 and store it in the storage unit 40. Furthermore, the temperature detection circuit 12a may acquire an output signal output by a temperature sensor (not shown) provided in a tank 50A different from the tank 50. The temperature detection circuit 12a also specifies the temperature TA in the tank 50A and outputs it to the determination unit 20.
 圧力検出回路12bは、遮断器5のタンク50内の圧力を取得するための回路である。温度検出回路12aが遮断器5のタンク50内の温度Tを特定して判定部20に出力するのと同様に、圧力検出回路12bは、遮断器5のタンク50内の圧力を特定して判定部20に出力する。 The pressure detection circuit 12b is a circuit for acquiring the pressure inside the tank 50 of the circuit breaker 5. In the same way that the temperature detection circuit 12a specifies the temperature T in the tank 50 of the circuit breaker 5 and outputs it to the determination section 20, the pressure detection circuit 12b specifies the pressure in the tank 50 of the circuit breaker 5 and outputs it to the determination section 20. output to section 20.
 判定部20は、部分放電センサ4が部分放電を検出したか否かを判定する。例えば、判定部20は、部分放電検出回路11が出力する波形データに基づき、所定の周波数帯域の高周波信号の強度Iが閾値Th0以上か否かを判定する。強度Iが閾値Th0以上であった場合、部分放電センサ4が部分放電を検出した(すなわち、真空バルブ60の真空度は低下している)と判定する。また、商用同期性も判定条件に加えて、さらに検出確度を高めることができる。 The determination unit 20 determines whether the partial discharge sensor 4 has detected a partial discharge. For example, the determination unit 20 determines whether the intensity I of the high frequency signal in a predetermined frequency band is equal to or greater than the threshold Th0, based on the waveform data output by the partial discharge detection circuit 11. If the intensity I is greater than or equal to the threshold Th0, it is determined that the partial discharge sensor 4 has detected a partial discharge (that is, the degree of vacuum of the vacuum valve 60 has decreased). Moreover, in addition to commercial synchronization as a determination condition, detection accuracy can be further improved.
 また、判定部20は、タンク50内の温度Tに基づき、真空バルブ60の真空劣化を判定する。例えば、判定部20は、温度検出回路12aが出力するタンク50内の温度Tが閾値Th1以上か否かを判定する。温度Tが閾値Th1以上であった場合、真空バルブ60内にアークが発生している(すなわち、真空バルブ60の真空度は低下している)と判定する。なお、判定部20は、周囲環境(例えば外気の温度)に応じて閾値Th1を決定してもよい。また、判定部20は、タンク50内の温度Tと、タンク50と同じ環境下にあるタンク50A内の温度TAとを比較することにより、真空バルブ60内にアークが発生しているか否かを判定してもよい。例えば、T-TAが所定の閾値以上であった場合、またはT/TAが所定の閾値以上であった場合、判定部20は真空バルブ60内にアークが発生していると判定する。これにより、遮断器5の周囲環境に応じて正常時のタンク50の温度Tが変化する場合においても、アークによる真空バルブ60内の温度Tの上昇を適切に判定することができる。 Further, the determination unit 20 determines vacuum deterioration of the vacuum valve 60 based on the temperature T inside the tank 50. For example, the determination unit 20 determines whether the temperature T in the tank 50 output by the temperature detection circuit 12a is equal to or higher than the threshold Th1. If the temperature T is equal to or higher than the threshold Th1, it is determined that an arc is occurring within the vacuum valve 60 (that is, the degree of vacuum in the vacuum valve 60 is decreasing). Note that the determination unit 20 may determine the threshold Th1 according to the surrounding environment (for example, the temperature of the outside air). Furthermore, the determination unit 20 determines whether or not an arc is occurring within the vacuum valve 60 by comparing the temperature T within the tank 50 and the temperature TA within the tank 50A, which is in the same environment as the tank 50. You may judge. For example, if T-TA is greater than or equal to a predetermined threshold, or if T/TA is greater than or equal to a predetermined threshold, the determination unit 20 determines that an arc is occurring within the vacuum valve 60. Thereby, even if the temperature T of the tank 50 during normal operation changes depending on the surrounding environment of the circuit breaker 5, it is possible to appropriately determine the increase in the temperature T within the vacuum valve 60 due to the arc.
 同様に、判定部20は、タンク50内の圧力に基づき、真空バルブ60の真空劣化を判定する。例えば、判定部20は、圧力検出回路12bが出力するタンク50内の圧力Pが閾値Th2以上か否かを判定する。圧力Pが閾値Th2以上であった場合、真空バルブ60内にアークが発生している(すなわち、真空バルブ60の真空度は低下している)と判定する。 Similarly, the determination unit 20 determines vacuum deterioration of the vacuum valve 60 based on the pressure within the tank 50. For example, the determination unit 20 determines whether the pressure P in the tank 50 output by the pressure detection circuit 12b is equal to or higher than the threshold Th2. If the pressure P is equal to or greater than the threshold value Th2, it is determined that an arc is occurring within the vacuum valve 60 (that is, the degree of vacuum in the vacuum valve 60 is decreasing).
 警報部30は、判定部20の判定結果に基づき、真空バルブ60の真空度が低下している旨を外部に報知する。また、警報部30は、真空バルブ60の真空度が低下している旨のインターロックを出力する。 Based on the determination result of the determination unit 20, the alarm unit 30 notifies the outside that the degree of vacuum in the vacuum valve 60 is decreasing. Further, the alarm unit 30 outputs an interlock indicating that the degree of vacuum of the vacuum valve 60 is decreasing.
 記憶部40は、判定装置1で用いられる各種データを記憶する。記憶部40は、例えば、判定部20の判定のための閾値を予め記憶する。また、記憶部40は、温度検出回路12aおよび圧力検出回路12bが出力するタンク50内の温度Tおよび圧力Pを記憶する。 The storage unit 40 stores various data used by the determination device 1. The storage unit 40 stores, for example, a threshold value for determination by the determination unit 20 in advance. The storage unit 40 also stores the temperature T and pressure P inside the tank 50 output by the temperature detection circuit 12a and the pressure detection circuit 12b.
 図3は、真空バルブ60の真空劣化時における、真空バルブ60内の圧力の変化を示す図である。図3に示すように、真空バルブ60内の圧力は、真空バルブ60にタンク50内の絶縁性ガスが流入することに伴い経時的に増加する。真空バルブ60内の圧力は、時刻t1で所定の第1圧力P1、時刻t2で所定の第2圧力P2(大気圧程度の圧力)となり、最終的にタンク50内の圧力P3と等しくなる。 FIG. 3 is a diagram showing changes in the pressure inside the vacuum valve 60 when the vacuum valve 60 deteriorates. As shown in FIG. 3, the pressure within the vacuum valve 60 increases over time as the insulating gas within the tank 50 flows into the vacuum valve 60. The pressure inside the vacuum valve 60 becomes a predetermined first pressure P1 at time t1, a predetermined second pressure P2 (approximately atmospheric pressure) at time t2, and finally becomes equal to the pressure P3 inside the tank 50.
 真空バルブ60内の圧力が所定の第1圧力P1以下のとき、一対の接点に商用電圧を印加しても真空バルブ60内に部分放電は発生しない。そのため、判定装置1は、時刻t1まで部分放電に伴う部分放電信号を検出せず、真空容器61は真空状態を保っていると判定する。 When the pressure within the vacuum valve 60 is below the predetermined first pressure P1, no partial discharge occurs within the vacuum valve 60 even if a commercial voltage is applied to the pair of contacts. Therefore, the determination device 1 does not detect a partial discharge signal associated with partial discharge until time t1, and determines that the vacuum container 61 maintains a vacuum state.
 一方、真空バルブ60内の圧力が所定の第1圧力P1から所定の第2圧力P2までの間のとき、商用電圧の印加により真空バルブ60内に部分放電が発生する。そのため、判定装置1は、時刻t1から時刻t2までの間に部分放電に伴う部分放電信号を検出し得る。 On the other hand, when the pressure within the vacuum valve 60 is between a predetermined first pressure P1 and a predetermined second pressure P2, a partial discharge occurs within the vacuum valve 60 due to the application of the commercial voltage. Therefore, the determination device 1 can detect a partial discharge signal associated with partial discharge between time t1 and time t2.
 しかしながら、真空バルブ60内の圧力が所定の第2圧力P2以上となると、当該部分放電は消滅することがある。そのため、例えば真空バルブ内の圧力が急激に上昇するような場合、判定装置1が部分放電信号を検出し得る時間が短いため、部分放電検出回路11が部分放電信号の検出を逃してしまう可能性がある。 However, when the pressure inside the vacuum valve 60 becomes equal to or higher than the predetermined second pressure P2, the partial discharge may disappear. Therefore, for example, when the pressure inside the vacuum bulb increases rapidly, the time during which the determination device 1 can detect a partial discharge signal is short, so there is a possibility that the partial discharge detection circuit 11 may miss the detection of the partial discharge signal. There is.
 そこで、部分放電検出回路11が部分放電信号を取得しなかった場合も、判定部20は、タンク50内の温度および圧力に基づき、真空バルブ60内にアークが発生しているか否かを判定する。すなわち、判定装置1は、部分放電センサ4が検出した部分放電だけでなく測温センサ3aおよび圧力センサ3bがそれぞれ検出したタンク50内のガスの温度Tおよび圧力Pにも基づいて、真空バルブ60の真空劣化を判定する。これは、真空容器61内のガスの圧力が所定の第2圧力P2となるまでに部分放電センサ4が部分放電を検出できなかった場合におけるバックアップとなり得る。 Therefore, even if the partial discharge detection circuit 11 does not acquire a partial discharge signal, the determination unit 20 determines whether or not an arc is generated within the vacuum valve 60 based on the temperature and pressure within the tank 50. . That is, the determination device 1 determines the vacuum valve 60 based not only on the partial discharge detected by the partial discharge sensor 4 but also on the temperature T and pressure P of the gas in the tank 50 detected by the temperature sensor 3a and the pressure sensor 3b, respectively. Determine the vacuum deterioration of. This can serve as a backup in case the partial discharge sensor 4 is unable to detect partial discharge before the pressure of the gas in the vacuum container 61 reaches the predetermined second pressure P2.
 (判定装置1の動作例)
 図4は、判定装置1が真空バルブ60の真空劣化を判定する処理の一例を示すフローチャートである。図4を参照して、判定装置1がタンク50内の温度T、タンク50内の圧力P、および部分放電信号に基づき、真空バルブ60の真空劣化を判定する動作例について、以下に説明する。
(Example of operation of determination device 1)
FIG. 4 is a flowchart showing an example of a process in which the determination device 1 determines vacuum deterioration of the vacuum valve 60. Referring to FIG. 4, an operation example in which the determination device 1 determines vacuum deterioration of the vacuum valve 60 based on the temperature T in the tank 50, the pressure P in the tank 50, and the partial discharge signal will be described below.
 図4に示すように、まず、部分放電検出回路11は、部分放電センサ4が受信した部分放電信号を取得する(S1)。部分放電検出回路11は、部分放電信号に所定の処理を施して判定部20に出力する。次に、温度検出回路12aおよび圧力検出回路12bは、それぞれ測温センサ3aおよび圧力センサ3bが出力する出力信号を取得する(取得ステップS2)。温度検出回路12aおよび圧力検出回路12bは、それぞれタンク50内の温度Tおよび圧力Pを特定して判定部20に出力する。 As shown in FIG. 4, first, the partial discharge detection circuit 11 acquires the partial discharge signal received by the partial discharge sensor 4 (S1). The partial discharge detection circuit 11 performs predetermined processing on the partial discharge signal and outputs it to the determination section 20 . Next, the temperature detection circuit 12a and the pressure detection circuit 12b obtain output signals output from the temperature sensor 3a and the pressure sensor 3b, respectively (obtaining step S2). The temperature detection circuit 12a and the pressure detection circuit 12b respectively specify the temperature T and pressure P in the tank 50 and output them to the determination section 20.
 次に、判定部20は、部分放電センサ4が部分放電を検出したか否かを判定する(S3)。部分放電センサ4が部分放電を検出したと判定した場合(S3におけるYES)、判定部20は、真空バルブ60の真空度が低下していると判定する。その後、警報部30は、真空バルブ60の真空度が低下している旨のインターロックを出力する(S5)。 Next, the determination unit 20 determines whether the partial discharge sensor 4 has detected a partial discharge (S3). If it is determined that the partial discharge sensor 4 has detected a partial discharge (YES in S3), the determination unit 20 determines that the degree of vacuum in the vacuum valve 60 is decreasing. Thereafter, the alarm unit 30 outputs an interlock indicating that the degree of vacuum in the vacuum valve 60 is decreasing (S5).
 部分放電センサ4が部分放電を検出していないと判定した場合(S3におけるNO)、判定部20は、タンク50内の温度Tおよび圧力Pに基づき、アークが継続しているか否かを判定する。すなわち、判定部20は、タンク50内の温度Tが閾値Th1以上か否か、およびタンク50内の圧力が閾値Th2以上か否かを判定する(判定ステップS4)。タンク50内の温度Tが閾値Th1以上である場合、またはタンク50内の圧力Pが閾値Th2以上である場合(S4におけるYES)、判定部20は、アークが継続していると判定する。その後、警報部30は、アークが継続している旨のインターロックを出力する(S5)。タンク50内の温度Tが閾値Th1以上でなく、かつタンク50内の圧力Pが閾値Th2以上でない場合(S4におけるYES)、判定部20は、真空バルブ60の真空状態は保たれていると判定する。その後、S1に戻る。すなわち、判定装置1は、監視期間中において、部分放電信号の有無およびタンク50内の温度Tおよび圧力Pを常に監視する。 If it is determined that the partial discharge sensor 4 has not detected a partial discharge (NO in S3), the determination unit 20 determines whether or not the arc continues based on the temperature T and pressure P in the tank 50. . That is, the determination unit 20 determines whether the temperature T in the tank 50 is greater than or equal to the threshold Th1, and whether the pressure in the tank 50 is greater than or equal to the threshold Th2 (determination step S4). If the temperature T in the tank 50 is greater than or equal to the threshold Th1, or if the pressure P in the tank 50 is greater than or equal to the threshold Th2 (YES in S4), the determination unit 20 determines that the arc is continuing. Thereafter, the alarm unit 30 outputs an interlock indicating that the arc is continuing (S5). If the temperature T in the tank 50 is not greater than or equal to the threshold Th1 and the pressure P in the tank 50 is not greater than or equal to the threshold Th2 (YES in S4), the determination unit 20 determines that the vacuum state of the vacuum valve 60 is maintained. do. After that, the process returns to S1. That is, the determination device 1 constantly monitors the presence or absence of a partial discharge signal and the temperature T and pressure P in the tank 50 during the monitoring period.
 以上のように、判定装置1は、タンク50内の温度Tおよび圧力Pを監視することにより、真空バルブ60のアークの発生を検出することができる。これにより、真空バルブ60の真空劣化に伴い発生するアークの有無を適切に判定することができる。 As described above, the determination device 1 can detect the occurrence of an arc in the vacuum valve 60 by monitoring the temperature T and pressure P inside the tank 50. Thereby, it is possible to appropriately determine the presence or absence of an arc that occurs due to vacuum deterioration of the vacuum valve 60.
 また、上述のようなアークの発生の検出は、部分放電信号の検出と共に行われる。そのため、仮に部分放電検出回路11が部分放電信号の検出を逃してしまった場合においても、タンク50内の温度Tおよび圧力Pを監視することにより、真空バルブの真空劣化に伴い発生するアークの有無を適切に判定することができる。また、部分放電信号は、真空バルブが真空劣化した直後(図3における時刻t1の直後)に検出することができる。そのため、部分放電信号の検出も行うことにより、真空バルブの真空劣化の高速診断が可能となる。 Further, detection of the occurrence of an arc as described above is performed together with detection of a partial discharge signal. Therefore, even if the partial discharge detection circuit 11 misses detection of a partial discharge signal, by monitoring the temperature T and pressure P in the tank 50, it is possible to detect whether or not there is an arc occurring due to vacuum deterioration of the vacuum valve. can be appropriately determined. Further, the partial discharge signal can be detected immediately after the vacuum bulb deteriorates under vacuum (immediately after time t1 in FIG. 3). Therefore, by also detecting the partial discharge signal, it becomes possible to quickly diagnose vacuum deterioration of the vacuum valve.
 〔ソフトウェアによる実現例〕
 判定装置1(以下、「装置」と呼ぶ)の機能は、当該装置としてコンピュータを機能させるためのプログラムであって、当該装置の各制御ブロック(特に取得部10および判定部20)としてコンピュータを機能させるためのプログラムにより実現することができる。
[Example of implementation using software]
The function of the determination device 1 (hereinafter referred to as the "device") is a program for making a computer function as the device, and makes the computer function as each control block (particularly the acquisition unit 10 and the determination unit 20) of the device. This can be realized by a program for
 この場合、上記装置は、上記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により上記プログラムを実行することにより、上記各実施形態で説明した各機能が実現される。 In this case, the device includes a computer having at least one control device (for example, a processor) and at least one storage device (for example, a memory) as hardware for executing the program. By executing the above program using this control device and storage device, each function described in each of the above embodiments is realized.
 上記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1または複数の記録媒体に記録されていてもよい。この記録媒体は、上記装置が備えていてもよいし、備えていなくてもよい。後者の場合、上記プログラムは、有線または無線の任意の伝送媒体を介して上記装置に供給されてもよい。 The above program may be recorded on one or more computer-readable recording media instead of temporary. This recording medium may or may not be included in the above device. In the latter case, the program may be supplied to the device via any transmission medium, wired or wireless.
 また、上記各制御ブロックの機能の一部または全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本発明の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。 Furthermore, part or all of the functions of each of the control blocks described above can also be realized by a logic circuit. For example, an integrated circuit in which a logic circuit functioning as each of the control blocks described above is formed is also included in the scope of the present invention. In addition to this, it is also possible to realize the functions of each of the control blocks described above using, for example, a quantum computer.
 また、上記各実施形態で説明した各処理は、AI(Artificial Intelligence:人工知能)に実行させてもよい。この場合、AIは上記制御装置で動作するものであってもよいし、他の装置(例えばエッジコンピュータまたはクラウドサーバ等)で動作するものであってもよい。 Furthermore, each process described in each of the above embodiments may be executed by AI (Artificial Intelligence). In this case, the AI may operate on the control device, or may operate on another device (for example, an edge computer or a cloud server).
 (まとめ)
 本発明の一態様に係る判定装置は、遮断器の第1タンク内の温度または圧力を取得する取得部と、前記第1タンク内の温度または圧力に基づき、前記第1タンクに収容された真空バルブの真空劣化に伴い発生するアークの有無を判定する判定部と、を備える。
(summary)
The determination device according to one aspect of the present invention includes an acquisition unit that acquires the temperature or pressure in a first tank of a circuit breaker, and a vacuum contained in the first tank based on the temperature or pressure in the first tank. A determination unit that determines the presence or absence of an arc that occurs due to vacuum deterioration of the bulb.
 また、前記取得部は、真空バルブ内において生じる部分放電に伴う部分放電信号を取得し、前記判定部は、前記部分放電信号に基づき、前記真空バルブの真空劣化を判定し、前記取得部が前記部分放電信号を取得しなかった場合、前記判定部は、前記第1タンク内の温度または圧力に基づき、前記真空バルブの真空劣化に伴い発生するアークの有無を判定してもよい。 Further, the acquisition unit acquires a partial discharge signal accompanying a partial discharge occurring within the vacuum bulb, the determination unit determines vacuum deterioration of the vacuum bulb based on the partial discharge signal, and the acquisition unit determines vacuum deterioration of the vacuum bulb based on the partial discharge signal. When the partial discharge signal is not acquired, the determination unit may determine whether an arc occurs due to vacuum deterioration of the vacuum valve based on the temperature or pressure within the first tank.
 また、前記判定部は、前記第1タンク内の温度または圧力が閾値以上であるとき、前記真空バルブの真空劣化に伴い発生するアークの有無を判定してもよい。 Furthermore, the determination unit may determine whether or not an arc occurs due to vacuum deterioration of the vacuum valve when the temperature or pressure within the first tank is equal to or higher than a threshold value.
 また、前記取得部は、前記第1タンクとは異なる第2タンク内の温度または圧力を取得し、前記判定部は、前記第1タンク内の温度または圧力と前記第2タンク内の温度または圧力とを比較することにより、前記真空バルブの真空劣化に伴い発生するアークの有無を判定してもよい。 Further, the acquisition unit acquires a temperature or pressure in a second tank different from the first tank, and the determination unit determines the temperature or pressure in the first tank and the temperature or pressure in the second tank. The presence or absence of an arc generated due to vacuum deterioration of the vacuum valve may be determined by comparing the above.
 本発明の一態様に係る判定方法は、遮断器の第1タンク内の温度または圧力を取得する取得ステップと、前記第1タンク内の温度または圧力に基づき、前記第1タンクに収容される真空バルブの真空劣化に伴い発生するアークの有無を判定する判定ステップと、を含む。 A determination method according to one aspect of the present invention includes an acquisition step of acquiring the temperature or pressure in a first tank of a circuit breaker, and a vacuum contained in the first tank based on the temperature or pressure in the first tank. The method includes a determination step of determining the presence or absence of an arc that occurs due to vacuum deterioration of the bulb.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.
1 判定装置
5 遮断器
10 取得部
20 判定部
50 タンク(第1タンク)
50A タンク(第2タンク)
60 真空バルブ
1 Determination device 5 Circuit breaker 10 Acquisition unit 20 Determination unit 50 Tank (first tank)
50A tank (second tank)
60 Vacuum valve

Claims (5)

  1.  遮断器の第1タンク内の温度または圧力を取得する取得部と、
     前記第1タンク内の温度または圧力に基づき、前記第1タンクに収容された真空バルブの真空劣化に伴い発生するアークの有無を判定する判定部と、を備える判定装置。
    an acquisition unit that acquires the temperature or pressure in the first tank of the circuit breaker;
    A determination device comprising: a determination unit that determines the presence or absence of an arc that occurs due to vacuum deterioration of a vacuum valve housed in the first tank, based on the temperature or pressure in the first tank.
  2.  前記取得部は、真空バルブ内において生じる部分放電に伴う部分放電信号を取得し、
     前記判定部は、前記部分放電信号に基づき、前記真空バルブの真空劣化を判定し、
     前記取得部が前記部分放電信号を取得しなかった場合、前記判定部は、前記第1タンク内の温度または圧力に基づき、前記真空バルブの真空劣化に伴い発生するアークの有無を判定する、請求項1に記載の判定装置。
    The acquisition unit acquires a partial discharge signal associated with partial discharge occurring within the vacuum bulb,
    The determination unit determines vacuum deterioration of the vacuum valve based on the partial discharge signal,
    If the acquisition unit does not acquire the partial discharge signal, the determination unit determines the presence or absence of an arc that occurs due to vacuum deterioration of the vacuum valve based on the temperature or pressure in the first tank. The determination device according to item 1.
  3.  前記判定部は、前記第1タンク内の温度または圧力が閾値以上であるとき、前記真空バルブの真空劣化に伴い発生するアークの有無を判定する、請求項1または2に記載の判定装置。 The determination device according to claim 1 or 2, wherein the determination unit determines the presence or absence of an arc that occurs due to vacuum deterioration of the vacuum valve when the temperature or pressure in the first tank is equal to or higher than a threshold value.
  4.  前記取得部は、前記第1タンクとは異なる第2タンク内の温度または圧力を取得し、
     前記判定部は、前記第1タンク内の温度または圧力と前記第2タンク内の温度または圧力とを比較することにより、前記真空バルブの真空劣化に伴い発生するアークの有無を判定する、請求項1または2に記載の判定装置。
    The acquisition unit acquires a temperature or pressure in a second tank different from the first tank,
    The determination unit determines whether or not an arc occurs due to vacuum deterioration of the vacuum valve by comparing the temperature or pressure in the first tank and the temperature or pressure in the second tank. 3. The determination device according to 1 or 2.
  5.  遮断器の第1タンク内の温度または圧力を取得する取得ステップと、
     前記第1タンク内の温度または圧力に基づき、前記第1タンクに収容される真空バルブの真空劣化に伴い発生するアークの有無を判定する判定ステップと、を含む判定方法。
    an acquisition step of acquiring the temperature or pressure in the first tank of the circuit breaker;
    A determination method comprising: determining the presence or absence of an arc that occurs due to vacuum deterioration of a vacuum valve housed in the first tank, based on the temperature or pressure in the first tank.
PCT/JP2022/032943 2022-09-01 2022-09-01 Determination device and determination method WO2024047840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032943 WO2024047840A1 (en) 2022-09-01 2022-09-01 Determination device and determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032943 WO2024047840A1 (en) 2022-09-01 2022-09-01 Determination device and determination method

Publications (1)

Publication Number Publication Date
WO2024047840A1 true WO2024047840A1 (en) 2024-03-07

Family

ID=90099008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032943 WO2024047840A1 (en) 2022-09-01 2022-09-01 Determination device and determination method

Country Status (1)

Country Link
WO (1) WO2024047840A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318034A (en) * 1987-06-18 1988-12-26 Hitachi Ltd Vacuum deterioration detecting device for vacuum switch
CN202110032U (en) * 2011-05-05 2012-01-11 山东鲁亿通智能电气股份有限公司 Vacuum degree online monitoring device and vacuum degree online monitoring system
CN102426076A (en) * 2011-08-25 2012-04-25 遵义长征电器开关设备有限责任公司 Method for detecting vacuum degree and temperature on line by 12kV vacuum arc extinguishing chamber
JP2012150970A (en) * 2011-01-18 2012-08-09 Chugoku Electric Power Co Inc:The Vacuum valve and tank type vacuum breaker
WO2012157134A1 (en) * 2011-05-13 2012-11-22 三菱電機株式会社 Device for detecting deterioration in degree of vacuum of hermetic opening and closing device
WO2014091926A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Vacuum deterioration monitoring apparatus
US20150325394A1 (en) * 2014-05-12 2015-11-12 Cooper Technologies Company Vacuum loss detection
CN110491721A (en) * 2019-09-25 2019-11-22 辽宁工程技术大学 Contact type Vacuity of Vacuum Circuit Breakers on-Line Monitor Device and method built in a kind of

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318034A (en) * 1987-06-18 1988-12-26 Hitachi Ltd Vacuum deterioration detecting device for vacuum switch
JP2012150970A (en) * 2011-01-18 2012-08-09 Chugoku Electric Power Co Inc:The Vacuum valve and tank type vacuum breaker
CN202110032U (en) * 2011-05-05 2012-01-11 山东鲁亿通智能电气股份有限公司 Vacuum degree online monitoring device and vacuum degree online monitoring system
WO2012157134A1 (en) * 2011-05-13 2012-11-22 三菱電機株式会社 Device for detecting deterioration in degree of vacuum of hermetic opening and closing device
CN102426076A (en) * 2011-08-25 2012-04-25 遵义长征电器开关设备有限责任公司 Method for detecting vacuum degree and temperature on line by 12kV vacuum arc extinguishing chamber
WO2014091926A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Vacuum deterioration monitoring apparatus
US20150325394A1 (en) * 2014-05-12 2015-11-12 Cooper Technologies Company Vacuum loss detection
CN110491721A (en) * 2019-09-25 2019-11-22 辽宁工程技术大学 Contact type Vacuity of Vacuum Circuit Breakers on-Line Monitor Device and method built in a kind of

Similar Documents

Publication Publication Date Title
US7332906B2 (en) Vacuum circuit interrupter including circuit monitoring leakage or loss of vacuum and method of monitoring a vacuum interrupter for leakage or loss of vacuum
KR20090020219A (en) Control device of the cabinet-panel which has a remote monitoring
US9646785B2 (en) Vacuum monitoring device
JP2008281567A (en) Arc detector
CN105548867A (en) Diagnostic system and diagnostic method of contact state of high-voltage circuit breaker
JP2007080594A (en) Vacuum switching device
WO2024047840A1 (en) Determination device and determination method
CN106537546B (en) The vacuum insulated switch, switch block and test method of vacuum can be tested
WO2015175396A1 (en) Vacuum loss detection
KR101180250B1 (en) Partial Discharge Measuring Device for Superconducting Power Apparatus and Method thereof
KR20130063673A (en) Vacuum sensor and vacuum interrupter using the same
Schellekens Continuous vacuum monitoring in vacuum circuit breakers
JP2012159424A (en) Device and method for testing vacuum circuit breaker
CN205789703U (en) Vacuity of Vacuum Circuit Breakers on-line measuring device
CN104049211A (en) Fault detection device and breaker
JP2012150970A (en) Vacuum valve and tank type vacuum breaker
JP2023152497A (en) Determination device and determination method
CN208984769U (en) A kind of detection system of breaker
JPH08235976A (en) Failure detecting device of gas blast circuit-breaker
NZ769557A (en) Ground fault circuit breaker with remote testing capability
CN105609365B (en) The method and its detection means of Vacuity of Vacuum Circuit Breakers on-line checking
JP3774603B2 (en) Gas insulated electrical equipment
JPH1092277A (en) Vacuum-down detecting device for vacuum valve type opening/closing device
JPH08235974A (en) Failure detecting device for gas blast circuit-breaker
JP3172988B2 (en) Gas circuit breaker failure detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957435

Country of ref document: EP

Kind code of ref document: A1