WO2024047758A1 - 訓練データ分布推定プログラム、装置、及び方法 - Google Patents

訓練データ分布推定プログラム、装置、及び方法 Download PDF

Info

Publication number
WO2024047758A1
WO2024047758A1 PCT/JP2022/032622 JP2022032622W WO2024047758A1 WO 2024047758 A1 WO2024047758 A1 WO 2024047758A1 JP 2022032622 W JP2022032622 W JP 2022032622W WO 2024047758 A1 WO2024047758 A1 WO 2024047758A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
training data
labels
decision boundary
data distribution
Prior art date
Application number
PCT/JP2022/032622
Other languages
English (en)
French (fr)
Inventor
海斗 岸
郁也 森川
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2022/032622 priority Critical patent/WO2024047758A1/ja
Publication of WO2024047758A1 publication Critical patent/WO2024047758A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the disclosed technology relates to a training data distribution estimation program, a training data distribution estimation device, and a training data distribution estimation method.
  • a system for strengthening machine learning model decision boundaries uses the prediction results of a trained machine learning model and training data to expand the training data by focusing on features that contribute to classification by the machine learning model. The system then uses the initial training data and the expanded training data to further train the initial machine learning model.
  • a machine learning model that is a black box for the user is a machine learning model in which the distribution of training data used for training the machine learning model is unknown to the user.
  • the disclosed technology aims to highly accurately estimate the distribution of training data for a machine learning model that is a black box for users.
  • the disclosed technology provides a determination between the labels predicted using a plurality of sets of two points with different labels in a search space set in a data space of input data input to a machine learning model.
  • a plurality of decision boundaries between the labels are predicted based on a plurality of points on the boundaries.
  • the disclosed technique generates a set of points corresponding to intersections of the plurality of predicted decision boundaries, and updates the search space based on the points included in the set. Then, the disclosed technology repeats the prediction of the decision boundary, the generation of the set, and the update of the search space, and uses the set when the iterative processing satisfies a predetermined termination condition to train the machine learning model. Output as the distribution of the training data used.
  • One aspect is that the distribution of training data for a machine learning model, which is a black box for the user, can be estimated with high accuracy.
  • FIG. 2 is a diagram for explaining decision boundaries in machine learning.
  • FIG. 3 is a diagram for explaining the relationship between training data and decision boundaries.
  • FIG. 2 is a functional block diagram of a training data distribution estimation device.
  • FIG. 3 is a diagram for explaining prediction of points on a decision boundary.
  • FIG. 3 is a diagram for explaining prediction of points on a decision boundary.
  • FIG. 3 is a diagram for explaining prediction of a decision boundary.
  • FIG. 3 is a diagram for explaining prediction of a decision boundary.
  • FIG. 6 is a diagram for explaining generation of a set of points corresponding to intersections of decision boundaries.
  • FIG. 3 is a diagram for explaining updating of a search space.
  • FIG. 6 is a diagram for explaining generation of a set of points corresponding to intersections of decision boundaries.
  • 1 is a block diagram showing a schematic configuration of a computer that functions as a training data distribution estimation device.
  • 3 is a flowchart illustrating an example of training data distribution estimation processing. It is a flowchart which shows an example of update and prediction processing. It is a figure which shows an example of the experimental result which verified the effect of this embodiment.
  • machine learning involves finding boundaries that separate data points to be classified into different classes, that is, decision boundaries. Therefore, as shown in FIG. 2, the training data used for training the machine learning model is considered to be distributed in a region where there are many intersections of decision boundaries. Note that in FIGS. 1 and 2, the points represented by circles, crosses, and triangles are data points, and the different types of marks represent the different labels of each data.
  • multiple decision boundaries are predicted in the search space set in the data space of the input data input to the machine learning model, and the set of points corresponding to the intersections of the predicted decision boundaries is Estimated as the distribution of training data used to train the learning model.
  • the training data distribution estimation device will be described in detail below.
  • the training data distribution estimation device 10 functionally includes a prediction unit 12, a generation unit 14, an update unit 16, and an output unit 18. Further, a black box machine learning model 20 whose distribution of training data is to be estimated is stored in a predetermined storage area of the training data distribution estimation device 10.
  • the prediction unit 12 calculates a plurality of values on the decision boundary between labels predicted using a plurality of sets of two points with different labels in a search space set in the data space of input data input to the machine learning model 20. Predict multiple decision boundaries between labels based on points.
  • the search space is set to the maximum range assumed as the range of input data values to the machine learning model 20, and thereafter, a search space updated by the update unit 16, which will be described later, is set. .
  • the prediction unit 12 bisects each of two points in the search space whose number of pairs is greater than or equal to the number of dimensions of the input data, and where the two points are shifted by a predetermined distance. Perform a search to predict multiple points on the decision boundary. More specifically, the prediction unit 12 inputs data corresponding to points included in the search space to the machine learning model 20 and obtains a predicted label that is an output of the machine learning model 20. When two points with different predicted labels are searched, the prediction unit 12 generates data corresponding to the point specified by binary search between the two searched points (black circles in FIG. 4), as shown in FIG. is input into the machine learning model 20 to obtain a predicted label.
  • the prediction unit 12 predicts the point at which the acquired predicted label changes as a point on the decision boundary (white circle in FIG. 4). Note that since there may be a plurality of decision boundaries between two searched points, the prediction unit 12 re-predicts the decision boundary based on the labels of points around the predicted point on the decision boundary. You may also do so.
  • FIG. 4 illustrates the search space in two dimensions to simplify the explanation. Furthermore, in FIG. 4, the maximum range of the search space is -10 10 to 10 10 for each axis. Further, although FIG. 4 illustrates the original decision boundary of the machine learning model 20, the original decision boundary is unknown. The same applies to FIGS. 5 to 10 below.
  • the prediction unit 12 predicts points on the decision boundary in the same manner as described above for a pair of two points obtained by shifting each point of the previously searched pair of two points by a minute amount.
  • the prediction unit 12 predicts points on the decision boundary for each decision boundary by the number of dimensions of the input data.
  • the prediction unit 12 then predicts a decision boundary between labels based on the predicted plurality of points on the decision boundary and a predetermined function.
  • the predetermined function may be a function representing a hyperplane including a plurality of points on the decision boundary.
  • the prediction unit 12 predicts the decision boundary by linearly approximating two points predicted as points on the decision boundary. do. Note that the prediction unit 12 may predict the decision boundary by predicting more points on the decision boundary than the number of dimensions of the input data and using their average.
  • the prediction unit 12 repeats the process of predicting the decision boundaries described above a predetermined number of times, and predicts a predetermined number (for example, 10) of decision boundaries.
  • FIG. 7 shows an example in which three decision boundaries are predicted.
  • the generation unit 14 generates a set of points corresponding to the intersections of the plurality of decision boundaries predicted by the prediction unit 12. Specifically, the generation unit 14 calculates the intersection line between hyperplanes representing the decision boundary as the intersection of the decision boundary, and for each combination of intersection lines, calculates the two points on the intersection line that are closest in distance. Calculate. Note that when the search space is two-dimensional, as shown in FIG. 8, the intersection of straight lines indicating the decision boundary (stars in FIG. 8) is calculated. The generation unit 14 adds the calculated points to the set P.
  • the updating unit 16 updates the search space based on the points included in the set generated by the generating unit 14. Specifically, as shown in FIG. 9, the updating unit 16 selects one point from the points included in the set, and sets a predetermined point around the selected point (shaded star in FIG. 9). A temporary search space 30 of the minimum value is set. For example, as shown in FIG. 9, the updating unit 16 may set the temporary search space 30 as a rectangle with vertical and horizontal sizes of s centered on the selected point. The setting of the temporary search space 30 is not limited to this example; for example, the updating unit 16 may set the temporary search space 30 as a circle with a radius of s centered on the selected point. Hereinafter, this s will be referred to as the size of the search space.
  • the updating unit 16 performs a search when the prediction unit 12 is unable to search for a plurality of pairs of two points with different labels that can predict a plurality of points on the decision boundary between labels.
  • the temporary search space 30 is expanded by increasing s by a predetermined value or by increasing s by a predetermined times.
  • the updating unit 16 updates the temporary search space 30 in the case where the prediction unit 12 is able to search for a plurality of pairs of two points with different labels that can predict a plurality of points on the decision boundary between labels, for each iterative process described below. is updated as the search space 32.
  • the updating unit 16 repeats the process of selecting one point from the points included in the set generated by the generating unit 14 a predetermined number of times. This predetermined number of times is the same as the number of decision boundaries predicted by the prediction unit 12. As a result, as shown in FIG. 10, the prediction unit 12 predicts a predetermined number of boundary decisions based on a plurality of pairs of two points searched in the search space 32 set for each point, and the generation unit 14 As a result, a new set of points corresponding to the intersections of the decision boundaries is generated.
  • the output unit 18 causes the prediction unit 12, the generation unit 14, and the update unit 16 to repeatedly execute the processing, and when the repeated processing satisfies a predetermined termination condition, outputs the set of points generated by the generation unit 14 to the machine. It is output as an estimation result of the distribution of training data used for training the learning model 20.
  • the output unit 18 may set the predetermined end condition as a case in which the number of repetitions of the repetitive process reaches a predetermined number. Further, the output unit 18 may set the predetermined end condition as a case where the size s of the search space 32 set for each repeated process becomes equal to or less than a predetermined first threshold. Note that since the updating unit 16 sets a search space 32 for each point selected from the set generated by the generating unit 14, a plurality of search spaces 32 are set for each repetitive process. Therefore, the output unit 18 outputs the statistical value of the size s of each of the plurality of search spaces 32 set for each repetitive process, such as the average value, maximum value, minimum value, median value, etc. In this case, it may be determined that the termination condition is satisfied. In addition, in order to ensure the diversity of decision boundaries to be found, the output unit 18 sets the predetermined termination condition to a case where the average value of the angles at which the decision boundaries predicted by the prediction unit 12 intersect is equal to or greater than the second threshold value. good.
  • the training data distribution estimation device 10 may be realized, for example, by a computer 40 shown in FIG. 11.
  • the computer 40 includes a CPU (Central Processing Unit) 41, a memory 42 as a temporary storage area, and a nonvolatile storage device 43.
  • the computer 40 also includes an input/output device 44 such as an input device and a display device, and an R/W (Read/Write) device 45 that controls reading and writing of data to and from a storage medium 49 .
  • the computer 40 also includes a communication I/F (Interface) 46 connected to a network such as the Internet.
  • the CPU 41, memory 42, storage device 43, input/output device 44, R/W device 45, and communication I/F 46 are connected to each other via a bus 47.
  • the storage device 43 is, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), a flash memory, or the like.
  • a training data distribution estimation program 50 for causing the computer 40 to function as the training data distribution estimation device 10 is stored in the storage device 43 as a storage medium.
  • the training data distribution estimation program 50 includes prediction process control instructions 52 , generation process control instructions 54 , update process control instructions 56 , and output process control instructions 58 .
  • the storage device 43 has an information storage area 60 in which information constituting the machine learning model 20 is stored.
  • the CPU 41 reads the training data distribution estimation program 50 from the storage device 43, expands it into the memory 42, and sequentially executes the control commands included in the training data distribution estimation program 50.
  • the CPU 41 operates as the prediction unit 12 shown in FIG. 3 by executing the prediction process control instruction 52. Further, the CPU 41 operates as the generation unit 14 shown in FIG. 3 by executing the generation process control instruction 54. Further, the CPU 41 operates as the update unit 16 shown in FIG. 3 by executing the update process control instruction 56. Further, the CPU 41 operates as the output unit 18 shown in FIG. 3 by executing the output process control instruction 58. Further, the CPU 41 reads information from the information storage area 60 and develops the machine learning model 20 in the memory 42 . Thereby, the computer 40 that has executed the training data distribution estimation program 50 functions as the training data distribution estimation device 10. Note that the CPU 41 that executes the program is hardware.
  • the functions realized by the training data distribution estimation program 50 may be realized by, for example, a semiconductor integrated circuit, more specifically, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), etc.
  • the training data distribution estimation device 10 When the training data distribution estimation device 10 is instructed to estimate the distribution of training data with the black box machine learning model 20 stored, the training data distribution estimation device 10 performs the training data distribution estimation shown in FIG. Processing is executed. Note that the training data distribution estimation process is an example of the training data distribution estimation method of the disclosed technology.
  • step S10 the generation unit 14 adds the origin (0, 0, . . . ) of the initial search space 32 to the set P.
  • the initial search space 32 is the maximum range of values of input data to the machine learning model 20.
  • step S20 update and prediction processing is performed.
  • the update and prediction processing will be described in detail with reference to FIG. 13.
  • step S21 the updating unit 16 determines whether or not the only point included in the set P is the origin. If it is only the origin, the process moves to step S22, and if it is not the origin, the process moves to step S23.
  • step S22 the prediction unit 12 searches for a set of two points with different labels in the largest search space 32.
  • step S23 the updating unit 16 sets the minimum value s min as the size s of the search space.
  • step S24 the updating unit 16 selects one point from the points included in the set P, and sets a temporary search space 30 of size s centered on the selected point. Then, the prediction unit 12 searches for a set of two points with different labels in the temporary search space 30.
  • step S25 the updating unit 16 determines whether or not the prediction unit 12 has searched for a set of two points in step S24. If a pair of two points is found, the process moves to step S27; if not, the process moves to step S26.
  • step S26 the updating unit 16 increases s by a predetermined value or by a predetermined times to enlarge the temporary search space 30, and returns to step S24.
  • step S27 the updating unit 16 updates the currently set temporary search space 30 as the search space.
  • step S28 the prediction unit 12 adds a pair of two points obtained by shifting each point of the pair of two points searched in step S22 or S24 by a minute amount by one dimension minus the number of dimensions of the input data.
  • step S29 the prediction unit 12 predicts a point on the decision boundary by binary search for each pair of two points.
  • step S30 the prediction unit 12 predicts a hyperplane including a plurality of points on the predicted decision boundary as a decision boundary between labels.
  • step S31 the prediction unit 12 determines whether a predetermined number of decision boundaries have been predicted. If the predicted decision boundaries have not reached the predetermined number, the process returns to step S21, and if the predetermined number of decision boundaries have been predicted, the update and prediction process is terminated and the training data distribution estimation process (FIG. 12 ).
  • step S40 the generation unit 14 clears the set P, that is, makes it an empty set.
  • step S50 the generation unit 14 calculates the intersection line between the hyperplanes predicted in step S30.
  • step S60 the generation unit 14 calculates the two points on the intersection line that are closest in distance for each combination of the calculated intersection lines, and adds the calculated points to the set P.
  • step S70 the output unit 18 determines whether the repeated processing satisfies a predetermined termination condition. If the termination condition is not satisfied, the process returns to step S20, and if the termination condition is satisfied, the process proceeds to step S80.
  • step S80 the set P is output as the estimation result of the distribution of the training data used for training the machine learning model 20, and the training data distribution estimation process ends.
  • the training data distribution estimation device uses a plurality of sets of two points with different labels in the search space set in the data space of the input data input to the machine learning model. Predict multiple points on decision boundaries between labels.
  • the training data distribution estimation device predicts multiple decision boundaries between labels based on multiple points on the predicted decision boundaries, and generates a set of points corresponding to the intersections of the multiple predicted decision boundaries.
  • the search space is updated based on the points included in the set.
  • the training data distribution estimator then repeats prediction of decision boundaries, generation of sets, and updating of search space, and selects the sets when the iterative processing satisfies a predetermined termination condition to be used for training the machine learning model.
  • Output as a distribution of training data.
  • the distribution of training data for a machine learning model which is a black box for users, can be estimated with high accuracy.
  • the user can accurately confirm the difference from the data distribution that the user wants to input into the machine learning model.
  • the training data distribution estimation device sets the maximum range assumed as input data as the initial search space.
  • This allows training data to be used not only for data whose values are within a normalized range, such as image data, but also for data where there are scale differences in values between attributes, such as financial data and insurance data. distribution can be estimated with high accuracy. Therefore, by combining this method with conventional model extraction methods, it is possible to extract models in situations where training data is unknown and where scale differences exist between attributes, that is, data-free model extraction.
  • a model extraction method for example, Reference 1 that uses part of the training data as initial data and uses its adversarial samples as a query
  • a query output by a generator of DFME Data-Free Model Extraction, eg, reference document 2
  • DFME Data-Free Model Extraction
  • Reference 1 Juuti, Mika, et al., "PRADA: protecting against DNN model stealing attacks", 2019 IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, 2019.
  • Reference 2 J. Truong et al., “Data-Free Model Extraction”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 4771-4780.
  • the target machine learning model for estimating the distribution of training data was a three-layer ReLU neural network, and the training datasets were Haberman (3D) and IRIS (4D).
  • a target machine learning model was trained on a training data set, and the above embodiment was applied to the trained machine learning model to estimate the distribution of the training data. Note that the termination condition for the iterative process was determined based on whether the median value of the size s of the search space was less than or equal to a threshold value.
  • FIG. 14 shows the distribution of training data for each training data set.
  • the horizontal axis represents each dimension of the training data, and for each dimension, the left side is a boxplot showing the distribution of the original training data, and the right side is a boxplot showing the distribution of the training data estimated in this embodiment. represents. It can be seen that in any training data set, the distribution of training data can be estimated with high accuracy using the method of this embodiment with respect to the original training data set.
  • the training data distribution estimation program is stored (installed) in the storage device in advance, but the present invention is not limited to this.
  • the program according to the disclosed technology may be provided in a form stored in a storage medium such as a CD-ROM, DVD-ROM, or USB memory.
  • Training data distribution estimation device 10
  • Prediction unit 14
  • Generation unit 16
  • Update unit 18
  • Machine learning model 30
  • Temporary search space 32
  • Search space 40
  • Computer 41
  • Memory 43
  • Storage device 44
  • Input/output device 45
  • R/W device 46
  • Communication I/F 47
  • Bus 49
  • Training data distribution estimation program 52
  • Prediction process control instruction 54
  • Generation process control instruction 56
  • Update process control instruction 58
  • Output process control instruction 60
  • Information storage area 10

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

訓練データ分布推定装置は、機械学習モデルに入力される入力データのデータ空間に設定された探索空間において、ラベルの異なる2点の組を複数用いて予測された、ラベル間の決定境界上の複数の点に基づいて、ラベル間の決定境界を複数予測し、予測をした複数の決定境界の交差部分に対応する点の集合を生成し、集合に含まれる点を基準に探索空間(32)を更新し、決定境界の予測、集合の生成、及び探索空間の更新を繰り返し、繰り返し処理が所定の終了条件を満たした場合の集合を、機械学習モデルの訓練に用いられた訓練データの分布として出力する。

Description

訓練データ分布推定プログラム、装置、及び方法
 開示の技術は、訓練データ分布推定プログラム、訓練データ分布推定装置、及び訓練データ分布推定方法に関する。
 機械学習モデルを利用したシステムは、その機械学習モデルの訓練に用いた訓練データの分布から離れた入力データに対して、ユーザの期待するものとは異なる予測結果を返すことが多い。そのため、機械学習モデルの訓練に用いられた訓練データの分布は重要な情報である。
 機械学習モデル及び訓練データに関する技術として、例えば、機械学習モデル決定境界強化のためのシステムが提案されている。このシステムは、訓練済みの機械学習モデルの予測結果と訓練データとを用いて、機械学習モデルによる分類に寄与する特徴に着目して、訓練データを拡張する。そして、このシステムは、最初の訓練データと拡張された訓練データを使用して、初期の機械学習モデルをさらに訓練する。
米国特許出願公開第2020/0387760号
 システムで利用される機械学習モデルは、システムを使用するユーザ自身が直接訓練したものではない場合が多い。上述したように、機械学習モデルの訓練に用いられた訓練データの分布は重要な情報であるが、ユーザにとってブラックボックスな機械学習モデルの訓練データの分布を得ることは難しい。ここで、ユーザにとってブラックボックスな機械学習モデルとは、機械学習モデルの訓練に用いられた訓練データの分布がユーザにとって未知な機械学習モデルである。
 一つの側面として、開示の技術は、ユーザにとってブラックボックスな機械学習モデルの訓練データの分布を高精度に推定することを目的とする。
 一つの態様として、開示の技術は、機械学習モデルに入力される入力データのデータ空間に設定された探索空間において、ラベルの異なる2点の組を複数用いて予測された、前記ラベル間の決定境界上の複数の点に基づいて、前記ラベル間の決定境界を複数予測する。また、開示の技術は、予測をした複数の前記決定境界の交差部分に対応する点の集合を生成し、前記集合に含まれる点を基準に前記探索空間を更新する。そして、開示の技術は、前記決定境界の予測、前記集合の生成、及び前記探索空間の更新を繰り返し、繰り返し処理が所定の終了条件を満たした場合の前記集合を、前記機械学習モデルの訓練に用いられた訓練データの分布として出力する。
 一つの側面として、ユーザにとってブラックボックスな機械学習モデルの訓練データの分布を高精度に推定することができる、という効果を有する。
機械学習における決定境界を説明するための図である。 訓練データと決定境界との関係を説明するための図である。 訓練データ分布推定装置の機能ブロック図である。 決定境界上の点の予測を説明するための図である。 決定境界上の点の予測を説明するための図である。 決定境界の予測を説明するための図である。 決定境界の予測を説明するための図である。 決定境界の交差部分に対応する点の集合の生成を説明するための図である。 探索空間の更新を説明するための図である。 決定境界の交差部分に対応する点の集合の生成を説明するための図である。 訓練データ分布推定装置として機能するコンピュータの概略構成を示すブロック図である。 訓練データ分布推定処理の一例を示すフローチャートである。 更新及び予測処理の一例を示すフローチャートである。 本実施形態の効果を検証した実験結果の一例を示す図である。
 以下、図面を参照して、開示の技術に係る実施形態の一例を説明する。
 まず、本実施形態の概要について説明する。
 図1に示すように、機械学習では、異なるクラスに分類されるべきデータ点を分けられるような境界線、すなわち、決定境界を見つけることを行っている。そのため、図2に示すように、機械学習モデルの訓練に用いられた訓練データは、決定境界の交点が多く存在する領域に分布していると考えられる。なお、図1及び図2において、丸、バツ、及び三角の各マークで表された点はデータ点であり、マークの種類の違いは、各データのラベルの違いを表している。
 そこで、本実施形態では、機械学習モデルに入力される入力データのデータ空間に設定した探索空間において、決定境界を複数予測し、予測した決定境界の交差部分に対応する点の集合を、その機械学習モデルの訓練に用いられた訓練データの分布として推定する。以下、本実施形態に係る訓練データ分布推定装置について詳述する。
 図3に示すように、訓練データ分布推定装置10は、機能的には、予測部12と、生成部14と、更新部16と、出力部18とを含む。また、訓練データ分布推定装置10の所定の記憶領域には、訓練データの分布を推定する対象の、ブラックボックスな機械学習モデル20が記憶される。
 予測部12は、機械学習モデル20に入力される入力データのデータ空間に設定された探索空間において、ラベルの異なる2点の組を複数用いて予測された、ラベル間の決定境界上の複数の点に基づいて、ラベル間の決定境界を複数予測する。探索空間は、処理開始時には、機械学習モデル20への入力データの値の範囲として想定される最大の範囲が設定され、それ以降は、後述する更新部16により更新された探索空間が設定される。
 具体的には、予測部12は、探索空間における、入力データの次元数以上の組数の2点間であって、2点間同士が所定距離ずれた位置である2点間の各々で二分探索を実行して、決定境界上の複数の点を予測する。より具体的には、予測部12は、探索空間に含まれる点に相当するデータを機械学習モデル20へ入力し、機械学習モデル20の出力である予測ラベルを取得する。予測部12は、予測ラベルが異なる2点が探索されると、図4に示すように、探索された2点(図4中の黒丸)間において、二分探索により特定される点に相当するデータを機械学習モデル20へ入力して予測ラベルを取得する。そして、予測部12は、取得された予測ラベルが切り替わる点を、決定境界上の点(図4中の白丸)として予測する。なお、探索された2点間に複数の決定境界が存在する場合もあるため、予測部12は、予測した決定境界上の点の周辺の点のラベルに基づいて、決定境界を再予測するようにしてもよい。
 なお、図4では、説明を簡単にするため、探索空間を2次元で表している。また、図4では、探索空間の最大の範囲を各軸について、-1010~1010としている。また、図4では、機械学習モデル20の本来の決定境界を図示しているが、本来の決定境界は未知である。以下の図5~図10においても同様である。
 予測部12は、図5に示すように、先に探索された2点の組のそれぞれの点を微小量ずらした2点の組について、上記と同様に決定境界上の点を予測する。予測部12は、1つの決定境界につき、決定境界上の点を、入力データの次元数分予測する。そして、予測部12は、予測した決定境界上の複数の点と、所定の関数とに基づいて、ラベル間の決定境界を予測する。所定の関数は、決定境界上の複数の点を含む超平面を表す関数としてよい。図6に示すように、探索空間が2次元の場合、すなわち、入力データが2次元の場合、予測部12は、決定境界上の点として予測された2点を線形近似して決定境界を予測する。なお、予測部12は、決定境界上の点を、入力データの次元数より多く予測し、それらの平均を用いる等して決定境界を予測してもよい。
 予測部12は、図7に示すように、上記の決定境界を予測する処理を所定回繰り返し、所定数(例えば、10個)の決定境界を予測する。図7では、3個の決定境界が予測された例を示している。
 生成部14は、予測部12により予測された複数の決定境界の交差部分に対応する点の集合を生成する。具体的には、生成部14は、決定境界の交差部分として、決定境界を表す超平面同士の交線を算出し、交線の組み合わせ毎に、交線上の点同士で距離が最も近い2点を算出する。なお、探索空間が2次元の場合は、図8に示すように、決定境界を示す直線同士の交点(図8中の星印)が算出される。生成部14は、算出した点を集合Pに追加する。
 更新部16は、生成部14により生成された集合に含まれる点を基準に探索空間を更新する。具体的には、図9に示すように、更新部16は、集合に含まれる点から1つの点を選択し、選択した点(図9中の網掛の星印)を中心として、予め定めた最小値の仮探索空間30を設定する。例えば、更新部16は、図9に示すように、仮探索空間30を、選択した点を中心とした縦及び横のサイズがsの矩形として設定してよい。仮探索空間30の設定はこの例に限定されず、例えば、更新部16は、仮探索空間30を、選択した点を中心とした半径がsの円として設定してもよい。以下、このsを、探索空間のサイズという。更新部16は、設定した仮探索空間30において、上記予測部12により、ラベル間の決定境界上の複数の点を予測可能なラベルの異なる2点の組を複数探索することができない場合に、sを所定値大きくして、又はsを所定倍大きくして、仮探索空間30を拡大する。更新部16は、上記予測部12により、ラベル間の決定境界上の複数の点を予測可能なラベルの異なる2点の組を複数探索できた場合の仮探索空間30を、後述する繰り返し処理毎の探索空間32として更新する。
 更新部16は、生成部14により生成された集合に含まれる点から1つの点を選択する処理を所定回繰り返す。この所定回は、予測部12により予測される決定境界の数と同数である。これにより、図10に示すように、予測部12により、各点について設定された探索空間32で探索された複数の2点の組に基づいて、所定数の境界決定が予測され、生成部14により、決定境界の交差部分に対応する点の集合が新たに生成される。
 出力部18は、予測部12、生成部14、及び更新部16の処理を繰り返し実行させ、繰り返し処理が所定の終了条件を満たした場合に、生成部14により生成された点の集合を、機械学習モデル20の訓練に用いられた訓練データの分布の推定結果として出力する。
 出力部18は、所定の終了条件を、繰り返し処理の繰り返し回数が所定数に達した場合としてよい。また、出力部18は、所定の終了条件を、繰り返し処理毎に設定される探索空間32のサイズsが所定の第1閾値以下になった場合としてよい。なお、更新部16は、生成部14により生成された集合から選択した点毎に探索空間32を設定するため、繰り返し処理毎に複数の探索空間32が設定されることになる。そのため、出力部18は、繰り返し処理毎に設定された複数の探索空間32の各々のサイズsの統計値、例えば、平均値、最大値、最小値、中央値等が第1閾値以下になった場合に、終了条件を満たすと判定してよい。また、出力部18は、見つける決定境界の多様さを確保するため、所定の終了条件を、予測部12により予測された決定境界同士が交差する角度の平均値が第2閾値以上の場合としてもよい。
 訓練データ分布推定装置10は、例えば図11に示すコンピュータ40で実現されてよい。コンピュータ40は、CPU(Central Processing Unit)41と、一時記憶領域としてのメモリ42と、不揮発性の記憶装置43とを備える。また、コンピュータ40は、入力装置、表示装置等の入出力装置44と、記憶媒体49に対するデータの読み込み及び書き込みを制御するR/W(Read/Write)装置45とを備える。また、コンピュータ40は、インターネット等のネットワークに接続される通信I/F(Interface)46を備える。CPU41、メモリ42、記憶装置43、入出力装置44、R/W装置45、及び通信I/F46は、バス47を介して互いに接続される。
 記憶装置43は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フラッシュメモリ等である。記憶媒体としての記憶装置43には、コンピュータ40を、訓練データ分布推定装置10として機能させるための訓練データ分布推定プログラム50が記憶される。訓練データ分布推定プログラム50は、予測プロセス制御命令52と、生成プロセス制御命令54と、更新プロセス制御命令56と、出力プロセス制御命令58とを有する。また、記憶装置43は、機械学習モデル20を構成する情報が記憶される情報記憶領域60を有する。
 CPU41は、訓練データ分布推定プログラム50を記憶装置43から読み出してメモリ42に展開し、訓練データ分布推定プログラム50が有する制御命令を順次実行する。CPU41は、予測プロセス制御命令52を実行することで、図3に示す予測部12として動作する。また、CPU41は、生成プロセス制御命令54を実行することで、図3に示す生成部14として動作する。また、CPU41は、更新プロセス制御命令56を実行することで、図3に示す更新部16として動作する。また、CPU41は、出力プロセス制御命令58を実行することで、図3に示す出力部18として動作する。また、CPU41は、情報記憶領域60から情報を読み出して、機械学習モデル20をメモリ42に展開する。これにより、訓練データ分布推定プログラム50を実行したコンピュータ40が、訓練データ分布推定装置10として機能することになる。なお、プログラムを実行するCPU41はハードウェアである。
 なお、訓練データ分布推定プログラム50により実現される機能は、例えば半導体集積回路、より詳しくはASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等で実現されてもよい。
 次に、本実施形態に係る訓練データ分布推定装置10の動作について説明する。訓練データ分布推定装置10に、ブラックボックスな機械学習モデル20が記憶された状態で、訓練データの分布の推定が指示されると、訓練データ分布推定装置10において、図12に示す訓練データ分布推定処理が実行される。なお、訓練データ分布推定処理は、開示の技術の訓練データ分布推定方法の一例である。
 ステップS10で、生成部14が、初期の探索空間32の原点(0,0,・・・)を集合Pに追加する。初期の探索空間32は、機械学習モデル20への入力データの値の範囲として想定される最大の範囲である。次に、ステップS20で、更新及び予測処理が実行される。ここで、図13を参照して、更新及び予測処理について詳述する。
 ステップS21で、更新部16が、集合Pに含まれる点が原点のみか否かを判定する。原点のみの場合には、ステップS22へ移行し、原点のみではない場合には、ステップS23へ移行する。ステップS22では、予測部12が、最大の探索空間32において、ラベルの異なる2点の組を探索する。
 一方、ステップS23では、更新部16が、探索空間のサイズsとして、最小値sminを設定する。次に、ステップS24で、更新部16が、集合Pに含まれる点から1つの点を選択し、選択した点を中心とするサイズsの仮探索空間30を設定する。そして、予測部12が、仮探索空間30において、ラベルの異なる2点の組を探索する。
 次に、ステップS25で、更新部16が、上記ステップS24で、予測部12により2点の組が探索されたか否かを判定する。2点の組が探索された場合には、ステップS27へ移行し、探索されなかった場合には、ステップS26へ移行する。ステップS26では、更新部16が、sを所定値大きくして、又はsを所定倍大きくして、仮探索空間30を拡大し、ステップS24に戻る。ステップS27では、更新部16が、現在設定している仮探索空間30を探索空間として更新する。
 次に、ステップS28で、予測部12が、上記ステップS22又はS24で探索された2点の組のそれぞれの点を微小量ずらした2点の組を、入力データの次元数-1個追加する。次に、ステップS29で、予測部12が、2点の組毎に、二分探索により決定境界上の点を予測する。次に、ステップS30で、予測部12が、予測した決定境界上の複数の点を含む超平面を、ラベル間の決定境界として予測する。
 次に、ステップS31で、予測部12が、所定数の決定境界が予測されたか否かを判定する。予測された決定境界が所定数に達していない場合には、ステップS21に戻り、所定数の決定境界が予測された場合には、更新及び予測処理を終了し、訓練データ分布推定処理(図12)に戻る。
 次に、ステップS40で、生成部14が、集合Pをクリア、すなわち空集合にする。次に、ステップS50で、生成部14が、上記ステップS30で予測された超平面同士の交線を算出する。次に、ステップS60で、生成部14が、算出した交線の組み合わせ毎に、交線上の点同士で距離が最も近い2点を算出し、算出した点を集合Pに追加する。
 次に、ステップS70で、出力部18が、繰り返し処理が所定の終了条件を満たすか否かを判定する。終了条件を満たさない場合には、ステップS20に戻り、終了条件を満たす場合には、ステップS80へ移行する。ステップS80では、集合Pを、機械学習モデル20の訓練に用いられた訓練データの分布の推定結果として出力し、訓練データ分布推定処理は終了する。
 以上説明したように、本実施形態に係る訓練データ分布推定装置は、機械学習モデルに入力される入力データのデータ空間に設定された探索空間において、ラベルの異なる2点の組を複数用いて、ラベル間の決定境界上の複数の点を予測する。また、訓練データ分布推定装置は、予測した決定境界上の複数の点に基づいて、ラベル間の決定境界を複数予測し、予測をした複数の決定境界の交差部分に対応する点の集合を生成し、集合に含まれる点を基準に探索空間を更新する。そして、訓練データ分布推定装置は、決定境界の予測、集合の生成、及び探索空間の更新を繰り返し、繰り返し処理が所定の終了条件を満たした場合の集合を、機械学習モデルの訓練に用いられた訓練データの分布として出力する。これにより、ユーザにとってブラックボックスな機械学習モデルの訓練データの分布を高精度に推定することができる。その結果、ユーザが、その機械学習モデルに入力したいデータ分布との違いを、精度良く確認することができる。
 また、本実施形態に係る訓練データ分布推定装置は、初期の探索空間として、入力データとして想定される最大の範囲を設定する。これにより、画像データのように、値が正規化された範囲となるようなデータだけでなく、金融データや保険データのような、属性間で値にスケール差が存在するデータについても、訓練データの分布を高精度に推定することができる。そのため、従来のモデル抽出手法と組み合わせることで、属性間で値にスケール差が存在する中で、訓練データが未知の状況でのモデル抽出、すなわち、データフリーモデル抽出を実現することができる。例えば、訓練データの一部を初期データとし、その敵対的サンプルをクエリとして用いるモデル抽出手法(例えば、参考文献1)に対して、その初期データを本実施形態で推定した訓練データで置き換えることができる。また、DFME(Data-Free Model Extraction、例えば、参考文献2)の生成器が出力するクエリを、本実施形態により推定した訓練データの分布で補正することができる。
参考文献1: Juuti, Mika, et al., "PRADA: protecting against DNN model stealing attacks", 2019 IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, 2019.
参考文献2:J. Truong et al., "Data-Free Model Extraction", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 4771-4780.
 ここで、本実施形態の効果を検証するための実験例について説明する。本実験では、訓練データの分布を推定する対象の機械学習モデルを、3層ReLUニューラルネットワークとし、訓練データセットを、haberman(3次元)及びiris(4次元)とした。まず、対象の機械学習モデルを訓練データセットで訓練し、訓練済みの機械学習モデルに対して、上記実施形態を適用して、訓練データの分布を推定した。なお、繰り返し処理の終了条件は、探索空間のサイズsの中央値が閾値以下か否かで判定した。
 図14に、各訓練データセットについての訓練データの分布を示す。図14では、横軸を訓練データの各次元とし、次元毎に、左側にオリジナルの訓練データの分布を示す箱ひげ図、右側に本実施形態で推定した訓練データの分布を示す箱ひげ図を表している。いずれの訓練データセットにおいても、オリジナルの訓練データセットに対して、本実施形態の手法により、精度良く訓練データの分布が推定できていることが分かる。
 なお、上記実施形態では、訓練データ分布推定プログラムが記憶装置に予め記憶(インストール)されているが、これに限定されない。開示の技術に係るプログラムは、CD-ROM、DVD-ROM、USBメモリ等の記憶媒体に記憶された形態で提供されてもよい。
10   訓練データ分布推定装置
12   予測部
14   生成部
16   更新部
18   出力部
20   機械学習モデル
30   仮探索空間
32   探索空間
40   コンピュータ
41   CPU
42   メモリ
43   記憶装置
44   入出力装置
45   R/W装置
46   通信I/F
47   バス
49   記憶媒体
50   訓練データ分布推定プログラム
52   予測プロセス制御命令
54   生成プロセス制御命令
56   更新プロセス制御命令
58   出力プロセス制御命令
60   情報記憶領域

Claims (20)

  1.  機械学習モデルに入力される入力データのデータ空間に設定された探索空間において、ラベルの異なる2点の組を複数用いて予測された、前記ラベル間の決定境界上の複数の点に基づいて、前記ラベル間の決定境界を複数予測し、
     予測をした複数の前記決定境界の交差部分に対応する点の集合を生成し、
     前記集合に含まれる点を基準に前記探索空間を更新し、
     前記決定境界の予測、前記集合の生成、及び前記探索空間の更新を繰り返し、繰り返し処理が所定の終了条件を満たした場合の前記集合を、前記機械学習モデルの訓練に用いられた訓練データの分布として出力する、
     ことを含む処理をコンピュータに実行させるための訓練データ分布推定プログラム。
  2.  前記ラベル間の決定境界を予測する処理は、前記探索空間における、前記入力データの次元数以上の組数の2点間であって、前記2点間同士が所定距離ずれた位置である前記2点間の各々で二分探索を実行して前記決定境界上の複数の点を予測することを含む請求項1に記載の訓練データ分布推定プログラム。
  3.  前記ラベル間の決定境界を予測する処理は、前記決定境界上の複数の点と、所定の関数とに基づいて、前記ラベル間の決定境界を予測することを含む請求項1又は請求項2に記載の訓練データ分布推定プログラム。
  4.  前記所定の関数は、前記決定境界上の複数の点を含む超平面を表す関数である請求項3に記載の訓練データ分布推定プログラム。
  5.  前記集合を生成する処理は、前記決定境界の交差部分として、前記決定境界を表す前記超平面同士の交線を算出し、前記交線の組み合わせ毎に、前記交線上の点で距離が最も近い2点を算出することを含む請求項4に記載の訓練データ分布推定プログラム。
  6.  前記探索空間を更新する処理は、前記集合に含まれる点を中心とした第1範囲を設定し、前記第1範囲内で前記ラベル間の決定境界上の複数の点を予測可能な前記ラベルの異なる2点の組を複数探索することができない場合に、前記第1範囲を所定値又は所定倍大きくし、前記ラベル間の決定境界上の複数の点を予測可能な前記ラベルの異なる2点の組を複数探索できた場合の前記第1範囲を前記探索空間として更新することを含む請求項1又は請求項2に記載の訓練データ分布推定プログラム。
  7.  前記所定の終了条件は、前記繰り返し処理を所定回数繰り返した場合、前記集合に含まれる点の各々を基準に設定される複数の前記探索空間のサイズを示す値の統計値が第1閾値以下になった場合、又は前記決定境界同士が交差する角度の平均値が第2閾値以上の場合である請求項1又は請求項2に記載の訓練データ分布推定プログラム。
  8.  初期の前記探索空間として、前記入力データとして想定される最大の範囲を設定する請求項1又は請求項2に記載の訓練データ分布推定プログラム。
  9.  機械学習モデルに入力される入力データのデータ空間に設定された探索空間において、ラベルの異なる2点の組を複数用いて予測された、前記ラベル間の決定境界上の複数の点に基づいて、前記ラベル間の決定境界を複数予測する予測部と、
     予測をした複数の前記決定境界の交差部分に対応する点の集合を生成する生成部と、
     前記集合に含まれる点を基準に前記探索空間を更新する更新部と、
     前記決定境界の予測、前記集合の生成、及び前記探索空間の更新を繰り返し、繰り返し処理が所定の終了条件を満たした場合の前記集合を、前記機械学習モデルの訓練に用いられた訓練データの分布として出力する出力部と、
     を含む訓練データ分布推定装置。
  10.  前記予測部は、前記探索空間における、前記入力データの次元数以上の組数の2点間であって、前記2点間同士が所定距離ずれた位置である前記2点間の各々で二分探索を実行して前記決定境界上の複数の点を予測する請求項9に記載の訓練データ分布推定装置。
  11.  前記予測部は、前記決定境界上の複数の点と、所定の関数とに基づいて、前記ラベル間の決定境界を予測する請求項9又は請求項10に記載の訓練データ分布推定装置。
  12.  前記所定の関数は、前記決定境界上の複数の点を含む超平面を表す関数である請求項11に記載の訓練データ分布推定装置。
  13.  前記生成部は、前記決定境界の交差部分として、前記決定境界を表す前記超平面同士の交線を算出し、前記交線の組み合わせ毎に、前記交線上の点で距離が最も近い2点を算出する請求項12に記載の訓練データ分布推定装置。
  14.  前記更新部は、前記集合に含まれる点を中心とした第1範囲を設定し、前記第1範囲内で前記ラベル間の決定境界上の複数の点を予測可能な前記ラベルの異なる2点の組を複数探索することができない場合に、前記第1範囲を所定値又は所定倍大きくし、前記ラベル間の決定境界上の複数の点を予測可能な前記ラベルの異なる2点の組を複数探索できた場合の前記第1範囲を前記探索空間として更新する請求項9又は請求項10に記載の訓練データ分布推定装置。
  15.  前記所定の終了条件は、前記繰り返し処理を所定回数繰り返した場合、前記集合に含まれる点の各々を基準に設定される複数の前記探索空間のサイズを示す値の統計値が第1閾値以下になった場合、又は前記決定境界同士が交差する角度の平均値が第2閾値以上の場合である請求項9又は請求項10に記載の訓練データ分布推定装置。
  16.  初期の前記探索空間として、前記入力データとして想定される最大の範囲を設定する請求項9又は請求項10に記載の訓練データ分布推定装置。
  17.  機械学習モデルに入力される入力データのデータ空間に設定された探索空間において、ラベルの異なる2点の組を複数用いて予測された、前記ラベル間の決定境界上の複数の点に基づいて、前記ラベル間の決定境界を複数予測し、
     予測をした複数の前記決定境界の交差部分に対応する点の集合を生成し、
     前記集合に含まれる点を基準に前記探索空間を更新し、
     前記決定境界の予測、前記集合の生成、及び前記探索空間の更新を繰り返し、繰り返し処理が所定の終了条件を満たした場合の前記集合を、前記機械学習モデルの訓練に用いられた訓練データの分布として出力する、
     ことを含む処理をコンピュータが実行する訓練データ分布推定方法。
  18.  前記ラベル間の決定境界を予測する処理は、前記探索空間における、前記入力データの次元数以上の組数の2点間であって、前記2点間同士が所定距離ずれた位置である前記2点間の各々で二分探索を実行して前記決定境界上の複数の点を予測することを含む請求項17に記載の訓練データ分布推定方法。
  19.  前記ラベル間の決定境界を予測する処理は、前記決定境界上の複数の点と、所定の関数とに基づいて、前記ラベル間の決定境界を予測することを含む請求項17又は請求項18に記載の訓練データ分布推定方法。
  20.  前記所定の関数は、前記決定境界上の複数の点を含む超平面を表す関数である請求項19に記載の訓練データ分布推定方法。
PCT/JP2022/032622 2022-08-30 2022-08-30 訓練データ分布推定プログラム、装置、及び方法 WO2024047758A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032622 WO2024047758A1 (ja) 2022-08-30 2022-08-30 訓練データ分布推定プログラム、装置、及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032622 WO2024047758A1 (ja) 2022-08-30 2022-08-30 訓練データ分布推定プログラム、装置、及び方法

Publications (1)

Publication Number Publication Date
WO2024047758A1 true WO2024047758A1 (ja) 2024-03-07

Family

ID=90099197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032622 WO2024047758A1 (ja) 2022-08-30 2022-08-30 訓練データ分布推定プログラム、装置、及び方法

Country Status (1)

Country Link
WO (1) WO2024047758A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020086778A (ja) * 2018-11-21 2020-06-04 株式会社東芝 機械学習モデル構築装置および機械学習モデル構築方法
WO2021079436A1 (ja) * 2019-10-23 2021-04-29 富士通株式会社 検出方法、検出プログラム及び情報処理装置
WO2021157330A1 (ja) * 2020-02-06 2021-08-12 株式会社日立ハイテク 計算機、識別器の学習方法、および分析システム
WO2022079919A1 (ja) * 2020-10-16 2022-04-21 富士通株式会社 検知プログラム、検知方法および検知装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020086778A (ja) * 2018-11-21 2020-06-04 株式会社東芝 機械学習モデル構築装置および機械学習モデル構築方法
WO2021079436A1 (ja) * 2019-10-23 2021-04-29 富士通株式会社 検出方法、検出プログラム及び情報処理装置
WO2021157330A1 (ja) * 2020-02-06 2021-08-12 株式会社日立ハイテク 計算機、識別器の学習方法、および分析システム
WO2022079919A1 (ja) * 2020-10-16 2022-04-21 富士通株式会社 検知プログラム、検知方法および検知装置

Similar Documents

Publication Publication Date Title
CN112487168B (zh) 知识图谱的语义问答方法、装置、计算机设备及存储介质
JP4757116B2 (ja) パラメータ学習方法及びその装置、パターン識別方法及びその装置、プログラム
JP6849932B2 (ja) 高精密度のイメージを分析するためのディープラーニングネットワークを使用するためにトレーニングイメージをオートラベリングするオートラベルリング装置のハイパーパラメータを最適化する方法、及びこれを利用した最適化装置
WO2021144943A1 (ja) 制御方法、情報処理装置および制御プログラム
US20200133998A1 (en) Estimation method, estimation apparatus, and computer-readable recording medium
JP7047498B2 (ja) 学習プログラム、学習方法および学習装置
JP7172612B2 (ja) データ拡張プログラム、データ拡張方法およびデータ拡張装置
US20190287010A1 (en) Search point determining method and search point determining apparatus
KR20210149530A (ko) 이미지 분류 모델 학습 방법 및 이를 수행하기 위한 장치
JP2010009518A (ja) パターン検出器の学習装置、学習方法及びプログラム
WO2014087590A1 (ja) 最適化装置、最適化方法および最適化プログラム
US20200201342A1 (en) Obstacle avoidance model generation method, obstacle avoidance model generation device, and obstacle avoidance model generation program
KR102209076B1 (ko) 가상 키보드 오타 보정을 위한 방법과 시스템 및 비-일시적인 컴퓨터 판독가능한 기록 매체
CN110728359B (zh) 搜索模型结构的方法、装置、设备和存储介质
WO2024047758A1 (ja) 訓練データ分布推定プログラム、装置、及び方法
US20230334341A1 (en) Method for augmenting data and system thereof
CN110674860A (zh) 基于邻域搜索策略的特征选择方法、存储介质和终端
EP1837807A1 (en) Pattern recognition method
JP2008299618A (ja) 画像高品質化装置、方法およびプログラム
KR20230065443A (ko) 포인트 클라우드 데이터 증강 방법 및 이를 이용하는 학습 방법
JP6114679B2 (ja) 制御方策決定装置、制御方策決定方法、制御方策決定プログラム、及び制御システム
WO2020115903A1 (ja) 学習装置、学習方法、および学習プログラム
JPWO2012032747A1 (ja) 特徴点選択システム、特徴点選択方法および特徴点選択プログラム
JP2014081743A (ja) 情報処理装置及び方法、並びにパターン認識装置
KR102608565B1 (ko) 음향 장면 분류 방법 및 음향 장면 분류를 위한 학습 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957359

Country of ref document: EP

Kind code of ref document: A1