WO2024047732A1 - Acoustic stimulation generation device, acoustic stimulation generation method, and program - Google Patents

Acoustic stimulation generation device, acoustic stimulation generation method, and program Download PDF

Info

Publication number
WO2024047732A1
WO2024047732A1 PCT/JP2022/032535 JP2022032535W WO2024047732A1 WO 2024047732 A1 WO2024047732 A1 WO 2024047732A1 JP 2022032535 W JP2022032535 W JP 2022032535W WO 2024047732 A1 WO2024047732 A1 WO 2024047732A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate
beat
signal
sound stimulus
eeg
Prior art date
Application number
PCT/JP2022/032535
Other languages
French (fr)
Japanese (ja)
Inventor
弘章 伊藤
賢一 野口
大将 千葉
達也 加古
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/032535 priority Critical patent/WO2024047732A1/en
Publication of WO2024047732A1 publication Critical patent/WO2024047732A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control

Definitions

  • the present invention relates to binaural beat signal generation technology.
  • Non-Patent Document 2 they investigated the relationship between the beat frequency of presented binaural beats and the frequency of brain responses, and confirmed that the same brain wave band as the beat frequency was emphasized, and furthermore, the following day after listening to binaural beats, confirmed that attention during the task improved.
  • the desired effect (for example, the effect of improving concentration and attention) may not be obtained depending on the person.
  • An object of the present invention is to provide a sound stimulus generation device, a sound stimulus generation method, and a program that generate a sound stimulus that is optimal for the brain wave state of the subject.
  • a sound stimulus generation device uses a score obtained when a predetermined task is performed on a subject and an electroencephalogram signal of the subject
  • the present invention includes a beat frequency determining unit that determines a beat frequency candidate ⁇ that is optimal for a subject, and a binaural beat generating unit that generates a binaural beat signal using the candidate ⁇ .
  • FIG. 1 is a functional block diagram of a sound stimulus generation device according to first and second embodiments.
  • FIG. 3 is a diagram illustrating an example of a processing flow of the sound stimulus generation device according to the first and second embodiments. The figure which shows the image of the process of a beat frequency determination part.
  • FIG. 3 is a functional block diagram of a binaural beat generation unit according to a second embodiment.
  • FIG. 7 is a diagram illustrating an example of a processing flow of a binaural beat generation unit according to a second embodiment.
  • FIG. 7 is a diagram illustrating an image of processing by a binaural beat generation unit according to the second embodiment.
  • ⁇ Points of the first embodiment> from the subject's brain wave signal while performing a certain task and the subject's task performance data, the brain wave band where the power is high when the subject himself/herself performs well is extracted, and beat frequency candidates are extracted. Determine as.
  • FIG. 1 shows a functional block diagram of a sound stimulus generation device 100 according to the first embodiment, and FIG. 2 shows its processing flow.
  • the sound stimulus generation device 100 includes a beat frequency determination section 110 and a binaural beat generation section 120.
  • the sound stimulus generation device 100 inputs the subject's brain wave signal x eeg (t) while performing a certain task and the subject's score Score (for example, time series data of task performance), and generates a desired effect.
  • Determine the optimal beat frequency to obtain the optimal beat frequency generate a binaural beat signal (x L (t),x R (t)) corresponding to the optimal beat frequency, and use a playback device including stereo speakers such as earphones and headphones.
  • the sound stimulus generation device 100 is configured by loading a special program into a known or dedicated computer having, for example, a central processing unit (CPU), a main memory (RAM), etc. It is a special device.
  • the sound stimulus generation device 100 executes each process under the control of, for example, a central processing unit.
  • the data input to the sound stimulus generation device 100 and the data obtained through each process are stored, for example, in the main memory, and the data stored in the main memory is read out to the central processing unit as necessary. and used for other processing.
  • Each processing unit of the sound stimulus generation device 100 may be configured at least in part by hardware such as an integrated circuit.
  • Each storage unit included in the sound stimulus generation device 100 can be configured by, for example, a main storage device such as a RAM (Random Access Memory), or middleware such as a relational database or a key value store.
  • a main storage device such as a RAM (Random Access Memory), or middleware such as a relational database or a key value store.
  • middleware such as a relational database or a key value store.
  • each storage unit does not necessarily need to be provided inside the sound stimulus generation device 100, and may be configured with an auxiliary storage device configured from a semiconductor memory element such as a hard disk, an optical disk, or a flash memory. It may be configured to be provided outside the stimulus generation device 100.
  • FIG. 3 is a diagram showing an image of the processing of the beat frequency determining section 110.
  • the beat frequency determination unit 110 inputs the score Score when a predetermined task is performed on the subject and the subject's brain wave signal x eeg (t) measured during the task, and uses these values to determine the , determines the optimal beat frequency candidate ⁇ for the subject (S110) and outputs it.
  • t represents time.
  • Median(Score RT ) represents the median value of Score RT .
  • n represents the question number of the one-question, one-answer task.
  • N the number of questions in this task.
  • N the number of questions in this task.
  • N the number of questions in this task.
  • x eeg (1),...,x eeg (n),...,x eeg (N) is included in the electroencephalogram signal x eeg (1),...,x eeg (t),...,x eeg (T).
  • T represents the time taken from starting a task to finishing all tasks.
  • the beat frequency determination unit 110 uses the score to extract an electroencephalogram signal x eeg high (n) when the performance is high and an electroencephalogram signal x eeg low (n) when the performance is low from the electroencephalogram signal x eeg (t). do.
  • it is extracted using the following formula.
  • the electroencephalogram signal when the reaction time is below the median value and a correct answer is taken as the electroencephalogram signal when the performance is high x eeg high (n)
  • the electroencephalogram signal when the reaction time is longer than the median value and an incorrect answer is made is x eeg high (n).
  • the electroencephalogram signal when the performance is low be x eeg low (n).
  • various indicators indicating high performance can be used as the task performance, in addition to determining whether the question is correct or incorrect or the reaction time from asking the question to answering the question.
  • the beat frequency determining unit 110 performs short - time Fourier analysis on the extracted electroencephalogram signals x eeg high (n) and x eeg low (n), and performs short-time Fourier analysis on the extracted brain wave signals ), - Calculate X eeg low (f).
  • the beat frequency determining unit 110 compares the average values -X eeg high (f) and -X eeg low (f) for each frequency f, and calculates the brain wave power at high performance ( -X eeg high (f)).
  • Candidate ⁇ is a vector in which L candidate values ⁇ i of binaural beat beat frequencies are stored. L is any integer greater than or equal to 1, and may be set as appropriate.
  • L may be set to include all frequencies that satisfy - X eeg high (f)- - X eeg low (f)>0, or - X eeg high (f)- - X eeg low (f )>0, L may be set to include the top K% of frequencies, or a threshold Th may be set so that - X eeg high (f)- - X eeg low (f)> You can set L to include all frequencies that satisfy Th, or you can set L to a predetermined integer and select the frequencies that satisfy - X eeg high (f) - - X eeg low (f)>0.
  • the binaural beat generation unit 120 receives the frequency ⁇ 0 of the binaural beat reference sound and the beat frequency candidate ⁇ , and generates the binaural beat signal (x L (t), x R (t)) using the candidate ⁇ . It is generated (S120) and output.
  • the binaural beat signal (x L (t), x R (t)) is a signal that corresponds to the brain wave state of the subject, and is output to a playback device including stereo speakers such as earphones and headphones, and is played back by the playback device. , presented separately to the subject's ear.
  • ⁇ t is the optimal beat frequency at time t, and in this embodiment, the beat frequency ⁇ t is a fixed value. For example, the frequency that shows the greatest effect among the beat frequency candidates ⁇ (in this example, ⁇ 1 ) is permanently set as the beat frequency.
  • the same brain wave band as candidate ⁇ is emphasized so that the brain wave state is when the subject is in a high performance state (for example, in a state of high concentration). Further, unlike the conventional technology, it is possible to generate a sound stimulus that is optimized for an individual (target person).
  • a binaural beat signal with an optimized beat frequency is generated based on the beat frequency candidate and the brain wave state of the subject himself/herself.
  • FIG. 1 is a functional block diagram of a sound stimulus generation device 200 according to the first embodiment, and FIG. 2 shows its processing flow.
  • the sound stimulus generation device 200 includes a beat frequency determination section 110 and a binaural beat generation section 220.
  • the sound stimulus generation device 200 inputs the subject's brain wave signal x eeg (t) while performing a certain task and the subject's score Score (for example, time series data of task performance), and generates a desired effect. Determine the optimal beat frequency candidate to obtain.
  • the sound stimulus generation device 200 inputs the brain wave signal y eeg (t) of the subject when the binaural beat signal is presented, and generates the binaural beat signal (x L (t)) corresponding to the optimal beat frequency. ,x R (t)) and output to a playback device including stereo speakers such as earphones and headphones.
  • L is an integer of 2 or more.
  • FIG. 4 shows a functional block diagram of the binaural beat generation section 220 according to the second embodiment, and FIG. 5 shows its processing flow.
  • FIG. 6 is a diagram showing an image of the processing of the binaural beat generation section 220.
  • the binaural beat generation section 220 includes a second binaural beat signal generation section 221 , an electroencephalogram signal acquisition section 223 , a power extraction section 225 , and a determination section 227 .
  • the binaural beat generation unit 220 receives the frequency ⁇ 0 of the binaural beat reference sound and the beat frequency candidate ⁇ as input, and uses the candidate ⁇ to generate the binaural beat signal (x L (t ),x R (t)) (S220) and outputs it.
  • the binaural beat signal (x L (t), x R (t)) is a signal that corresponds to the brain wave state of the subject, and is output to a playback device including stereo speakers such as earphones or headphones, and is played back by the playback device. , presented separately to the subject's ear.
  • the beat frequency is a fixed value, whereas in this embodiment, the beat frequency is a variable. The processing of each part will be explained below.
  • the binaural beat generation unit 221 inputs the frequency ⁇ 0 of the binaural beat reference sound and the beat frequency candidate ⁇ , and generates a binaural beat signal (x L (t), x R (t)) (S221) and outputs it.
  • x L (t) sin( ⁇ 0 + ⁇ i )(t)
  • x R (t) sin( ⁇ 0 - ⁇ i )(t) It is.
  • the beat frequency ⁇ i is used as a variable. For example, the frequency that shows the greatest effect among the beat frequency candidates ⁇ (in this example, ⁇ 1 ) is used first, and then the frequency ⁇ 2 is assigned in descending order from the most effective to the least effective under the control of the determination unit 227 , which will be described later. ,..., ⁇ L.
  • Brain wave signal acquisition unit 223 acquires the brain wave signal y eeg (t) of the subject who is presented with the binaural beat signal (x L (t), x R (t)) (S223) and outputs it.
  • the brain wave signal acquisition unit 223 is an existing brain wave measurement device, an interface that receives brain wave signals measured by the existing brain wave measurement device, or the like.
  • the power extraction unit 225 inputs the electroencephalogram signal y eeg (t), converts the time domain electroencephalogram signal y eeg (t) into a frequency domain signal by short-time Fourier transform, etc., and extracts the power in the block section B.
  • Y eeg (k B , ⁇ i ) and the power Y eeg (k B-1 , ⁇ i ) in the previous block section B-1 are extracted (S225) and output.
  • Block sections B and B-1 are time sections used when making a judgment in the judgment section 227, which will be described later. For block sections B and B-1, N B and N B-1 powers at frequency ⁇ i are obtained, respectively.
  • k B and k B-1 are indexes of frames included in block sections B and B-1, respectively.
  • the determining unit 227 determines whether or not the same brain wave band as candidate ⁇ i is emphasized so that the target person is in a high performance brain wave state based on the information based on the brain wave signal (S227- 1) If it is not emphasized (NO in S227-1), control is performed to repeat processes S221, S223, and S225 using candidate ⁇ i , and if it is emphasized (YES in S227-1) ), a candidate ⁇ j that is not used for binaural beat signal generation is selected from the L candidates ⁇ i (S227-5), and control is performed to repeat the process using the selected candidate ⁇ j .
  • the determination unit 227 receives N B powers Y eeg (k B , ⁇ i ) and N B-1 powers Y eeg (k B-1 , ⁇ i ), and determines the frequency distribution. Calculate the difference d B,B-1 .
  • This difference in frequency distribution dB,B-1 corresponds to the information based on the above-mentioned electroencephalogram signal.
  • Various values can be used to indicate the difference in frequency distribution; for example, an effect size such as Cohen's d (standardized value obtained by dividing the difference in mean values by the sample standard deviation) shown by the following formula: can be used.
  • - Y eeg (k B , ⁇ i ) and S B 2 represent the average value and variance of N B powers Y eeg (k B , ⁇ i ), respectively
  • - Y eeg (k B-1 , ⁇ i ) and S B-1 2 represent the average value and variance of N B-1 powers Y eeg (k B-1 , ⁇ i ), respectively.
  • the determining unit 227 determines whether the same brain wave band as candidate ⁇ i is emphasized based on the magnitude relationship between the frequency distribution difference d B,B-1 and a predetermined threshold Th (S227), A control signal is sent to each part according to the determination result.
  • the determination unit 227 performs the following processing. If the frequency distribution difference d B,B-1 is less than or equal to the predetermined threshold Th (in the case of NO in S227-1), the determining unit 227 uses the candidate ⁇ i used in the binaural beat signal generating unit 220 to determine the second The binaural beat signal generation section 221 performs the processing, and outputs a control signal to each section so as to repeat the processing at the brain wave signal acquisition section 223 and the power extraction section 225.
  • the determination unit 227 determines whether all L candidates ⁇ i were used to generate the binaural beat signal. If it is used (YES in S227-3), the process ends. On the other hand, if there is a candidate ⁇ j that is not used for binaural beat signal generation among the L candidates ⁇ i (in the case of NO in S227-3), the binaural beat signal is selected from among the L candidates ⁇ i. (S227-5 ), the second binaural beat signal generation unit 221 processes the selected candidate ⁇ j , and the electroencephalogram signal acquisition unit 223 and the power extraction unit 225 A control signal is output to each part to control the process to be repeated.
  • the fact that the difference in frequency distribution is greater than the threshold means that the brain waves are emphasized in that frequency component. It is thought that the brain wave state during high performance and other brain wave states differ not only in one frequency component but in multiple frequency components.
  • attention is paid to the difference in one frequency component for example, the frequency component showing the greatest effect
  • brain waves are emphasized only for that frequency component.
  • the frequency components to be emphasized are changed every time brain wave enhancement is confirmed for multiple frequency components that have shown an effect. It aims for higher effects by uniformly emphasizing brain waves. Note that the selection order of candidates is not particularly limited.
  • the determination unit 227 may select candidates in descending or ascending order according to the level of effectiveness, or may select candidates at random. However, it is thought that by selecting candidates in descending order of effectiveness, it is possible to more quickly bring the subject's brain wave state closer to the brain wave state during high performance.
  • a program that describes this processing content can be recorded on a computer-readable recording medium.
  • the computer-readable recording medium may be of any type, such as a magnetic recording device, an optical disk, a magneto-optical recording medium, or a semiconductor memory.
  • this program is performed, for example, by selling, transferring, lending, etc. portable recording media such as DVDs and CD-ROMs on which the program is recorded. Furthermore, this program may be distributed by storing the program in the storage device of the server computer and transferring the program from the server computer to another computer via a network.
  • a computer that executes such a program for example, first stores a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. When executing a process, this computer reads a program stored in its own recording medium and executes a process according to the read program. In addition, as another form of execution of this program, the computer may directly read the program from a portable recording medium and execute processing according to the program, and furthermore, the program may be transferred to this computer from the server computer. The process may be executed in accordance with the received program each time.
  • ASP Application Service Provider
  • the above-mentioned processing is executed by a so-called ASP (Application Service Provider) service, which does not transfer programs from the server computer to this computer, but only realizes processing functions by issuing execution instructions and obtaining results.
  • ASP Application Service Provider
  • the present apparatus is configured by executing a predetermined program on a computer, but at least a part of these processing contents may be implemented in hardware.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Provided is an acoustic stimulation generation device which generates the most suitable acoustic stimulation for a brain wave state of a given subject. This acoustic stimulation generation device includes: a beat frequency determination unit which determines the most suitable beat frequency candidate α for the subject by using a score obtained when a predetermined task has been performed with respect to the subject and a brain wave signal of the subject; and a binaural beat generation unit which generates a binaural beat signal by using the candidate α.

Description

音刺激生成装置、音刺激生成方法、およびプログラムSound stimulus generation device, sound stimulus generation method, and program
 本発明は、バイノーラルビート信号の生成技術に関する。 The present invention relates to binaural beat signal generation technology.
 集中力の継続を促すために、人工的な聴覚刺激を提示する従来技術がある。例えば、非特許文献1では、バイノーラルビートと呼ばれる、わずかに異なる周波数の2つの純音を両耳に提示し、周波数差に対応するビート音(うなり音)を提示すると、脳波が同調することで、集中力が活性化することを明らかにしている。基準音の角周波数をωとして、左耳には角周波数αだけ加算した信号xL(t)=sin(ω+α)t、右耳には角周波数αだけ減算した信号xR(t)=sin(ω+α)tをそれぞれ提示すると、脳内にはその加算信号であるy(t)=xL(t)+xR(t)=2sinωt cosαtとして受聴される。 There are conventional techniques that present artificial auditory stimuli to encourage continued concentration. For example, in Non-Patent Document 1, when two pure tones with slightly different frequencies called binaural beats are presented to both ears and a beat sound (beat sound) corresponding to the frequency difference is presented, the brain waves become synchronized. It has been shown that concentration is activated. Letting the angular frequency of the reference sound be ω, the signal x L (t)=sin(ω+α)t for the left ear is the signal obtained by adding the angular frequency α, and the signal x R (t) is the signal obtained by subtracting the angular frequency α for the right ear. When =sin(ω+α)t is presented, the sum signal y(t)=x L (t)+x R (t)=2sinωt cosαt is heard in the brain.
 これは角周波数ωの基準音の振幅を角周波数αのビートで変動した波形となり、このビートが脳波の同調効果を示す。例えば非特許文献2では、提示するバイノーラルビートのビート周波数と脳反応の周波数との関係を調査し、ビート周波数と同一の脳波帯域が強調されることを確認し、更にバイノーラルビートを受聴した翌日にはタスク中の注意力が向上することを確認した。 This is a waveform in which the amplitude of the reference sound of angular frequency ω is varied by a beat of angular frequency α, and this beat shows the brain wave entrainment effect. For example, in Non-Patent Document 2, they investigated the relationship between the beat frequency of presented binaural beats and the frequency of brain responses, and confirmed that the same brain wave band as the beat frequency was emphasized, and furthermore, the following day after listening to binaural beats, confirmed that attention during the task improved.
 従来技術では、ビート周波数と同一の脳波が同調されると仮定し、全ての対象者に対して、固定のビート周波数を設定している。すなわち、これは、すべての人に同一の音刺激を提示することで、同等の効果がある、という主張である。 In the conventional technology, a fixed beat frequency is set for all subjects on the assumption that the same brain waves as the beat frequency are tuned. In other words, this is an argument that presenting the same sound stimulus to everyone will have the same effect.
 しかしながら、人には個人差があるため、ある人によっては所望の効果(たとえば、集中力や注意力の向上効果)が得られない場合がある。 However, since there are individual differences between people, the desired effect (for example, the effect of improving concentration and attention) may not be obtained depending on the person.
 本発明は、対象者本人の脳波状態に最適な音刺激を生成する音刺激生成装置、音刺激生成方法、およびプログラムを提供することを目的とする。 An object of the present invention is to provide a sound stimulus generation device, a sound stimulus generation method, and a program that generate a sound stimulus that is optimal for the brain wave state of the subject.
 上記の課題を解決するために、本発明の一態様によれば、音刺激生成装置は、対象者に対して所定のタスクを実施した際のスコアと、対象者の脳波信号とを用いて、対象者に対して最適なビート周波数の候補αを決定するビート周波数決定部と、候補αを用いて、バイノーラルビート信号を生成するバイノーラルビート生成部とを含む。 In order to solve the above problems, according to one aspect of the present invention, a sound stimulus generation device uses a score obtained when a predetermined task is performed on a subject and an electroencephalogram signal of the subject, The present invention includes a beat frequency determining unit that determines a beat frequency candidate α that is optimal for a subject, and a binaural beat generating unit that generates a binaural beat signal using the candidate α.
 本発明によれば、対象者の個人差を考慮して、最適な音刺激を生成することができるという効果を奏する。 According to the present invention, it is possible to generate an optimal sound stimulus in consideration of individual differences among subjects.
第一、第二実施形態に係る音刺激生成装置の機能ブロック図。FIG. 1 is a functional block diagram of a sound stimulus generation device according to first and second embodiments. 第一、第二実施形態に係る音刺激生成装置の処理フローの例を示す図。FIG. 3 is a diagram illustrating an example of a processing flow of the sound stimulus generation device according to the first and second embodiments. ビート周波数決定部の処理のイメージを示す図。The figure which shows the image of the process of a beat frequency determination part. 第二実施形態に係るバイノーラルビート生成部の機能ブロック図。FIG. 3 is a functional block diagram of a binaural beat generation unit according to a second embodiment. 第二実施形態に係るバイノーラルビート生成部の処理フローの例を示す図。FIG. 7 is a diagram illustrating an example of a processing flow of a binaural beat generation unit according to a second embodiment. 第二実施形態に係るバイノーラルビート生成部の処理のイメージを示す図。FIG. 7 is a diagram illustrating an image of processing by a binaural beat generation unit according to the second embodiment. 本手法を適用するコンピュータの構成例を示す図。The figure which shows the example of a structure of the computer to which this method is applied.
 以下、本発明の実施形態について、説明する。なお、以下の説明に用いる図面では、同じ機能を持つ構成部や同じ処理を行うステップには同一の符号を記し、重複説明を省略する。以下の説明において、テキスト中で使用する記号「-」等は、本来直後の文字の真上に記載されるべきものであるが、テキスト記法の制限により、当該文字の直前に記載する。式中においてはこれらの記号は本来の位置に記述している。また、ベクトルや行列の各要素単位で行われる処理は、特に断りが無い限り、そのベクトルやその行列の全ての要素に対して適用されるものとする。 Embodiments of the present invention will be described below. In the drawings used in the following explanation, components having the same functions and steps that perform the same processing are denoted by the same reference numerals, and redundant explanation will be omitted. In the following explanation, symbols such as " - " used in the text should originally be written directly above the character that immediately follows, but due to text notation limitations, they are written immediately before the character. In the formula, these symbols are written in their original positions. Furthermore, unless otherwise specified, processing performed for each element of a vector or matrix is applied to all elements of that vector or matrix.
<第一実施形態のポイント>
 本実施形態では、あるタスクを実施しているときの対象者の脳波信号と対象者のタスク成績データから、対象者本人が好成績を出す際にパワーが高くなる脳波帯域を抽出し、ビート周波数候補として決定する。
<Points of the first embodiment>
In this embodiment, from the subject's brain wave signal while performing a certain task and the subject's task performance data, the brain wave band where the power is high when the subject himself/herself performs well is extracted, and beat frequency candidates are extracted. Determine as.
<第一実施形態>
 図1は第一実施形態に係る音刺激生成装置100の機能ブロック図を、図2はその処理フローを示す。
<First embodiment>
FIG. 1 shows a functional block diagram of a sound stimulus generation device 100 according to the first embodiment, and FIG. 2 shows its processing flow.
 音刺激生成装置100は、ビート周波数決定部110とバイノーラルビート生成部120とを含む。 The sound stimulus generation device 100 includes a beat frequency determination section 110 and a binaural beat generation section 120.
 音刺激生成装置100は、あるタスクを実施しているときの対象者の脳波信号xeeg(t)と対象者のスコアScore(例えば、タスク成績の時系列データ)とを入力とし、所望の効果を得るために最適なビート周波数を決定し、最適なビート周波数に対応するバイノーラルビート信号(xL(t),xR(t))を生成し、イヤホンやヘッドホン等のステレオスピーカを含む再生装置に出力する。 The sound stimulus generation device 100 inputs the subject's brain wave signal x eeg (t) while performing a certain task and the subject's score Score (for example, time series data of task performance), and generates a desired effect. Determine the optimal beat frequency to obtain the optimal beat frequency, generate a binaural beat signal (x L (t),x R (t)) corresponding to the optimal beat frequency, and use a playback device including stereo speakers such as earphones and headphones. Output to.
 音刺激生成装置100は、例えば、中央演算処理装置(CPU: Central Processing Unit)、主記憶装置(RAM: Random Access Memory)などを有する公知又は専用のコンピュータに特別なプログラムが読み込まれて構成された特別な装置である。音刺激生成装置100は、例えば、中央演算処理装置の制御のもとで各処理を実行する。音刺激生成装置100に入力されたデータや各処理で得られたデータは、例えば、主記憶装置に格納され、主記憶装置に格納されたデータは必要に応じて中央演算処理装置へ読み出されて他の処理に利用される。音刺激生成装置100の各処理部は、少なくとも一部が集積回路等のハードウェアによって構成されていてもよい。音刺激生成装置100が備える各記憶部は、例えば、RAM(RandomAccessMemory)などの主記憶装置、またはリレーショナルデータベースやキーバリューストアなどのミドルウェアにより構成することができる。ただし、各記憶部は、必ずしも音刺激生成装置100がその内部に備える必要はなく、ハードディスクや光ディスクもしくはフラッシュメモリ(Flash Memory)のような半導体メモリ素子により構成される補助記憶装置により構成し、音刺激生成装置100の外部に備える構成としてもよい。 The sound stimulus generation device 100 is configured by loading a special program into a known or dedicated computer having, for example, a central processing unit (CPU), a main memory (RAM), etc. It is a special device. The sound stimulus generation device 100 executes each process under the control of, for example, a central processing unit. The data input to the sound stimulus generation device 100 and the data obtained through each process are stored, for example, in the main memory, and the data stored in the main memory is read out to the central processing unit as necessary. and used for other processing. Each processing unit of the sound stimulus generation device 100 may be configured at least in part by hardware such as an integrated circuit. Each storage unit included in the sound stimulus generation device 100 can be configured by, for example, a main storage device such as a RAM (Random Access Memory), or middleware such as a relational database or a key value store. However, each storage unit does not necessarily need to be provided inside the sound stimulus generation device 100, and may be configured with an auxiliary storage device configured from a semiconductor memory element such as a hard disk, an optical disk, or a flash memory. It may be configured to be provided outside the stimulus generation device 100.
 以下、各部について説明する。 Each part will be explained below.
<ビート周波数決定部110>
 図3は、ビート周波数決定部110の処理のイメージを示す図である。
<Beat frequency determination unit 110>
FIG. 3 is a diagram showing an image of the processing of the beat frequency determining section 110.
 ビート周波数決定部110は、対象者に対して所定のタスクを実施した際のスコアScoreと、タスク中に測定した対象者の脳波信号xeeg(t)とを入力とし、これらの値を用いて、対象者に対して最適なビート周波数の候補αを決定し(S110)、出力する。ここでtは時間を表す。 The beat frequency determination unit 110 inputs the score Score when a predetermined task is performed on the subject and the subject's brain wave signal x eeg (t) measured during the task, and uses these values to determine the , determines the optimal beat frequency candidate α for the subject (S110) and outputs it. Here t represents time.
 スコアScoreは、あるタスクを実施した際のタスク成績(時系列データ)であり、Score=(Score(1),…,Score(n),…,Score(N))である。例えば、タスクは、1問1答タスクであり、タスク成績は、問題の正誤判定ScoreCor(n)={True、False}、問題の出題から回答までの反応時間ScoreRT(n)などを用いることとし、Score(n)=(ScoreCor(n),ScoreRT(n))とし、ScoreRT=(ScoreRT(1),…,ScoreRT(n),…,ScoreRT(N))とし、Median(ScoreRT)はScoreRTの中央値を表す。ScoreRT(n)の値が大きいほど、反応時間が短いことを示す。ここでnは1問1答タスクの問題番号を表す。なお、このタスクの問題数は全部でN問とし、n=1,2,…,Nとする。予めタスクの問題と脳波信号とは対応付けられており、n番目のタスクを実施しているときの脳波信号をxeeg(n)とも表記する。xeeg(1),…,xeeg(n),…,xeeg(N)は脳波信号xeeg(1),…,xeeg(t),…,xeeg(T)に含まれる。Tは、タスクを開始してから全てのタスクを終了するまでにかかった時間を表す。 The score Score is the task performance (time series data) when a certain task is performed, and is Score=(Score(1),...,Score(n),...,Score(N)). For example, the task is a one-question, one-answer task, and the task performance uses score Cor (n) = {True, False} to judge whether the question is correct or incorrect, reaction time from asking the question to answering Score RT (n), etc. Let Score(n)=(Score Cor (n),Score RT (n)) and Score RT =(Score RT (1),…,Score RT (n),…,Score RT (N)). , Median(Score RT ) represents the median value of Score RT . The larger the value of Score RT (n), the shorter the reaction time. Here, n represents the question number of the one-question, one-answer task. Note that the number of questions in this task is N in total, and n=1, 2,...,N. Task problems and brain wave signals are associated in advance, and the brain wave signal when performing the nth task is also expressed as x eeg (n). x eeg (1),…,x eeg (n),…,x eeg (N) is included in the electroencephalogram signal x eeg (1),…,x eeg (t),…,x eeg (T). T represents the time taken from starting a task to finishing all tasks.
 例えば、ビート周波数決定部110は、スコアScoreを用いて、脳波信号xeeg(t)からパフォーマンスが高い時の脳波信号xeeg high(n)と低い時の脳波信号xeeg low(n)を抽出する。例えば次式により、抽出する。
Figure JPOXMLDOC01-appb-M000001

この例では、反応時間が中央値以下、かつ、正答を行った際の脳波信号をパフォーマンスが高い時の脳波信号xeeg high(n)とし、反応時間が中央値より長く、かつ、誤答を行った際の脳波信号をパフォーマンスが低い時の脳波信号xeeg low(n)とする。なお、タスク成績として、問題の正誤判定や出題から回答までの反応時間以外にも、パフォーマンスの高さを示す様々な指標を用いることができる。
For example, the beat frequency determination unit 110 uses the score to extract an electroencephalogram signal x eeg high (n) when the performance is high and an electroencephalogram signal x eeg low (n) when the performance is low from the electroencephalogram signal x eeg (t). do. For example, it is extracted using the following formula.
Figure JPOXMLDOC01-appb-M000001

In this example, the electroencephalogram signal when the reaction time is below the median value and a correct answer is taken as the electroencephalogram signal when the performance is high x eeg high (n), and the electroencephalogram signal when the reaction time is longer than the median value and an incorrect answer is made is x eeg high (n). Let the electroencephalogram signal when the performance is low be x eeg low (n). Note that various indicators indicating high performance can be used as the task performance, in addition to determining whether the question is correct or incorrect or the reaction time from asking the question to answering the question.
 次に、ビート周波数決定部110は、抽出した脳波信号xeeg high(n)、xeeg low(n)をそれぞれ短時間フーリエ解析し、周波数f毎のパワースペクトルの平均値-Xeeg high(f)、-Xeeg low(f)を算出する。 Next, the beat frequency determining unit 110 performs short - time Fourier analysis on the extracted electroencephalogram signals x eeg high (n) and x eeg low (n), and performs short-time Fourier analysis on the extracted brain wave signals ), - Calculate X eeg low (f).
 最後に、ビート周波数決定部110は、周波数f毎に平均値-Xeeg high(f)、-Xeeg low(f)を比較し、高パフォーマンス時の脳波パワー(-Xeeg high(f))が低パフォーマンス時の脳波パワー(-Xeeg low(f))を上回る周波数を、パワーの差分(-Xeeg high(f)--Xeeg low(f))が大きい周波数から順番に並べ替えて、ビート周波数の候補α={α12,・・・,αL}として抽出し、出力する。
Figure JPOXMLDOC01-appb-M000002

候補αは、バイノーラルビートのビート周波数の候補値αiがL個格納されたベクトルである。Lは1以上の整数の何れかであり、適宜設定すればよい。例えば、-Xeeg high(f)--Xeeg low(f)>0を満たす周波数全てを含むようにLを設定してもよいし、-Xeeg high(f)--Xeeg low(f)>0を満たす周波数の内、上位K%の周波数を含むようにLを設定してもよいし、閾値Thを設けておき、-Xeeg high(f)--Xeeg low(f)>Thを満たす周波数全てを含むようにLを設定してもよいし、Lを所定の整数に設定しておき-Xeeg high(f)--Xeeg low(f)>0を満たす周波数の内、上位L個の周波数を候補α={α12,・・・,αL}として抽出してもよい。本実施形態では、L=1とする。
Finally, the beat frequency determining unit 110 compares the average values -X eeg high (f) and -X eeg low (f) for each frequency f, and calculates the brain wave power at high performance ( -X eeg high (f)). The frequencies that exceed the brain wave power ( - X eeg low (f ) ) during low performance are sorted in descending order of the power difference ( - , the beat frequency candidates α={α 12 ,...,α L } are extracted and output.
Figure JPOXMLDOC01-appb-M000002

Candidate α is a vector in which L candidate values α i of binaural beat beat frequencies are stored. L is any integer greater than or equal to 1, and may be set as appropriate. For example, L may be set to include all frequencies that satisfy - X eeg high (f)- - X eeg low (f)>0, or - X eeg high (f)- - X eeg low (f )>0, L may be set to include the top K% of frequencies, or a threshold Th may be set so that - X eeg high (f)- - X eeg low (f)> You can set L to include all frequencies that satisfy Th, or you can set L to a predetermined integer and select the frequencies that satisfy - X eeg high (f) - - X eeg low (f)>0. , the top L frequencies may be extracted as candidates α={α 1 , α 2 , . . . , α L }. In this embodiment, L=1.
<バイノーラルビート生成部120>
 バイノーラルビート生成部120は、バイノーラルビートの基準音の周波数ω0と、ビート周波数候補αとを入力とし、候補αを用いて、バイノーラルビート信号(xL(t),xR(t))を生成し(S120)、出力する。バイノーラルビート信号(xL(t),xR(t))は、対象者の脳波状態に応じた信号であり、イヤホンやヘッドホン等のステレオスピーカを含む再生装置に出力され、再生装置で再生され、対象者の耳への別々に提示される。なお、
xL(t)=sin(ω0t)(t)
xR(t)=sin(ω0t)(t)
である。なお、αtは時刻tにおける最適なビート周波数であり、本実施形態では、ビート周波数αtを固定値とする。例えば、ビート周波数候補αの中で最大の効果を示した周波数(この例では、α1)を永続的にビート周波数として設定する。
<Binaural beat generation unit 120>
The binaural beat generation unit 120 receives the frequency ω 0 of the binaural beat reference sound and the beat frequency candidate α, and generates the binaural beat signal (x L (t), x R (t)) using the candidate α. It is generated (S120) and output. The binaural beat signal (x L (t), x R (t)) is a signal that corresponds to the brain wave state of the subject, and is output to a playback device including stereo speakers such as earphones and headphones, and is played back by the playback device. , presented separately to the subject's ear. In addition,
x L (t)=sin(ω 0t )(t)
x R (t)=sin(ω 0t )(t)
It is. Note that α t is the optimal beat frequency at time t, and in this embodiment, the beat frequency α t is a fixed value. For example, the frequency that shows the greatest effect among the beat frequency candidates α (in this example, α 1 ) is permanently set as the beat frequency.
<効果>
 本実施形態により、対象者本人がハイパフォーマンス(例えば、集中力の高い状態)となっている際の脳波状態となるように、候補αと同一の脳波帯域が強調される。また、従来技術とは異なり、個人(対象者)に最適化された音刺激生成が可能となる。
<Effect>
According to the present embodiment, the same brain wave band as candidate α is emphasized so that the brain wave state is when the subject is in a high performance state (for example, in a state of high concentration). Further, unlike the conventional technology, it is possible to generate a sound stimulus that is optimized for an individual (target person).
<第二実施形態のポイント>
 本実施形態では、ビート周波数候補と対象者本人の脳波状態に基づき、ビート周波数を最適化したバイノーラルビート信号を生成する。
<Points of the second embodiment>
In this embodiment, a binaural beat signal with an optimized beat frequency is generated based on the beat frequency candidate and the brain wave state of the subject himself/herself.
<第二実施形態>
 第一実施形態と異なる部分を中心に説明する。
<Second embodiment>
The explanation will focus on parts that are different from the first embodiment.
 図1は第一実施形態に係る音刺激生成装置200の機能ブロック図を、図2はその処理フローを示す。 FIG. 1 is a functional block diagram of a sound stimulus generation device 200 according to the first embodiment, and FIG. 2 shows its processing flow.
 音刺激生成装置200は、ビート周波数決定部110とバイノーラルビート生成部220とを含む。 The sound stimulus generation device 200 includes a beat frequency determination section 110 and a binaural beat generation section 220.
 音刺激生成装置200は、あるタスクを実施しているときの対象者の脳波信号xeeg(t)と対象者のスコアScore(例えば、タスク成績の時系列データ)とを入力とし、所望の効果を得るために最適なビート周波数の候補を決定する。バイノーラルビート生成時には、音刺激生成装置200は、バイノーラルビート信号を提示した際の対象者の脳波信号yeeg(t)を入力とし、最適なビート周波数に対応するバイノーラルビート信号(xL(t),xR(t))を生成し、イヤホンやヘッドホン等のステレオスピーカを含む再生装置に出力する。 The sound stimulus generation device 200 inputs the subject's brain wave signal x eeg (t) while performing a certain task and the subject's score Score (for example, time series data of task performance), and generates a desired effect. Determine the optimal beat frequency candidate to obtain. When generating binaural beats, the sound stimulus generation device 200 inputs the brain wave signal y eeg (t) of the subject when the binaural beat signal is presented, and generates the binaural beat signal (x L (t)) corresponding to the optimal beat frequency. ,x R (t)) and output to a playback device including stereo speakers such as earphones and headphones.
 ビート周波数決定部110の処理については、第一実施形態と同様なので、説明を省略する。ただし、本実施形態では、Lは2以上の整数の何れかとする。 The processing of the beat frequency determination unit 110 is the same as that of the first embodiment, so the explanation will be omitted. However, in this embodiment, L is an integer of 2 or more.
<バイノーラルビート生成部220>
 図4は第二実施形態に係るバイノーラルビート生成部220の機能ブロック図を、図5はその処理フローを示す。
<Binaural beat generation unit 220>
FIG. 4 shows a functional block diagram of the binaural beat generation section 220 according to the second embodiment, and FIG. 5 shows its processing flow.
 図6は、バイノーラルビート生成部220の処理のイメージを示す図である。 FIG. 6 is a diagram showing an image of the processing of the binaural beat generation section 220.
 バイノーラルビート生成部220は、第二バイノーラルビート信号生成部221と、脳波信号取得部223と、パワー抽出部225と、判定部227とを含む。 The binaural beat generation section 220 includes a second binaural beat signal generation section 221 , an electroencephalogram signal acquisition section 223 , a power extraction section 225 , and a determination section 227 .
 バイノーラルビート生成部220も、バイノーラルビート生成部120と同様に、バイノーラルビートの基準音の周波数ω0と、ビート周波数候補αとを入力とし、候補αを用いて、バイノーラルビート信号(xL(t),xR(t))を生成し(S220)、出力する。バイノーラルビート信号(xL(t),xR(t))は、対象者の脳波状態に応じた信号であり、イヤホンやヘッドホン等のステレオスピーカを含む再生装置に出力され、再生装置で再生され、対象者の耳への別々に提示される。第一実施形態では、ビート周波数を固定値とするのに対し、本実施形態ではビート周波数を変数とする。以下、各部の処理について説明する。 Similar to the binaural beat generation unit 120, the binaural beat generation unit 220 receives the frequency ω 0 of the binaural beat reference sound and the beat frequency candidate α as input, and uses the candidate α to generate the binaural beat signal (x L (t ),x R (t)) (S220) and outputs it. The binaural beat signal (x L (t), x R (t)) is a signal that corresponds to the brain wave state of the subject, and is output to a playback device including stereo speakers such as earphones or headphones, and is played back by the playback device. , presented separately to the subject's ear. In the first embodiment, the beat frequency is a fixed value, whereas in this embodiment, the beat frequency is a variable. The processing of each part will be explained below.
(第二バイノーラルビート信号生成部221)
 バイノーラルビート生成部221は、バイノーラルビートの基準音の周波数ω0と、ビート周波数候補αとを入力とし、候補αに含まれる候補αをビート周波数とするバイノーラルビート信号(xL(t),xR(t))を生成し(S221)、出力する。
(Second binaural beat signal generation unit 221)
The binaural beat generation unit 221 inputs the frequency ω 0 of the binaural beat reference sound and the beat frequency candidate α, and generates a binaural beat signal (x L (t), x R (t)) (S221) and outputs it.
なお、
xL(t)=sin(ω0i)(t)
xR(t)=sin(ω0i)(t)
である。本実施形態では、ビート周波数αiを変数とする。例えば、ビート周波数候補αの中で最大の効果を示した周波数(この例では、α1)を最初に用い、後述する判定部227の制御に従い、効果の大きいものから小さいものへと降順α2,…,αLに変化させていく。
In addition,
x L (t)=sin(ω 0i )(t)
x R (t)=sin(ω 0i )(t)
It is. In this embodiment, the beat frequency α i is used as a variable. For example, the frequency that shows the greatest effect among the beat frequency candidates α (in this example, α 1 ) is used first, and then the frequency α 2 is assigned in descending order from the most effective to the least effective under the control of the determination unit 227 , which will be described later. ,…,α L.
(脳波信号取得部223)
 脳波信号取得部223は、バイノーラルビート信号(xL(t),xR(t))を提示された対象者の脳波信号yeeg(t)を取得し(S223)、出力する。
(Brain wave signal acquisition unit 223)
The brain wave signal acquisition unit 223 acquires the brain wave signal y eeg (t) of the subject who is presented with the binaural beat signal (x L (t), x R (t)) (S223) and outputs it.
 例えば、脳波信号取得部223は、既存の脳波測定装置や、既存の脳波測定装置で測定した脳波信号を受け取るインターフェイス等である。 For example, the brain wave signal acquisition unit 223 is an existing brain wave measurement device, an interface that receives brain wave signals measured by the existing brain wave measurement device, or the like.
(パワー抽出部225)
 パワー抽出部225は、脳波信号yeeg(t)を入力とし、例えば、時間領域の脳波信号yeeg(t)を短時間フーリエ変換等により、周波数領域の信号に変換し、ブロック区間BにおけるパワーYeeg(kBi)、および1つ前のブロック区間B-1におけるパワーYeeg(kB-1i)とを抽出し(S225)、出力する。ブロック区間B、B-1は、後述する判定部227で判定を行う際に用いる時間区間であり、ブロック区間B、B-1にはそれぞれNB個,NB-1個のフレーム(短時間フーリエ変換等を行う際のフレーム)が含まれ、ブロック区間B、B-1に対して、周波数αiにおけるそれぞれNB個,NB-1個のパワーが得られる。kB,kB-1は、それぞれブロック区間B、B-1に含まれるフレームのインデックスである。
(Power extraction unit 225)
The power extraction unit 225 inputs the electroencephalogram signal y eeg (t), converts the time domain electroencephalogram signal y eeg (t) into a frequency domain signal by short-time Fourier transform, etc., and extracts the power in the block section B. Y eeg (k B , α i ) and the power Y eeg (k B-1 , α i ) in the previous block section B-1 are extracted (S225) and output. Block sections B and B-1 are time sections used when making a judgment in the judgment section 227, which will be described later. For block sections B and B-1, N B and N B-1 powers at frequency α i are obtained, respectively. k B and k B-1 are indexes of frames included in block sections B and B-1, respectively.
(判定部227)
 判定部227は、脳波信号に基づく情報から対象者本人がハイパフォーマンスとなっている際の脳波状態となるように、候補αiと同一の脳波帯域が強調されているか否かを判定し(S227-1)、強調されていない場合(S227―1のNOの場合)、候補αiを用いて処理S221,S223,S225を繰り返すように制御し、強調されている場合(S227―1のYESの場合)、L個の候補αiの中からバイノーラルビート信号の生成に用いられていない候補αjを選択し(S227-5)、選択した候補αjを用いて処理を繰り返すように制御する。
(Determination unit 227)
The determining unit 227 determines whether or not the same brain wave band as candidate α i is emphasized so that the target person is in a high performance brain wave state based on the information based on the brain wave signal (S227- 1) If it is not emphasized (NO in S227-1), control is performed to repeat processes S221, S223, and S225 using candidate α i , and if it is emphasized (YES in S227-1) ), a candidate α j that is not used for binaural beat signal generation is selected from the L candidates α i (S227-5), and control is performed to repeat the process using the selected candidate α j .
 本実施形態では、判定部227は、NB個のパワーYeeg(kBi)とNB-1個のパワーYeeg(kB-1i)とを受け取り、頻度分布の違いdB,B-1を算出する。この頻度分布の違いdB,B-1が上述の脳波信号に基づく情報に相当する。なお、頻度分布の違いを示す量としては、様々な値を用いることができ、例えば次式で示されるCohen's d(平均値の差を標本標準偏差で割って標準化した値)のような効果量を用いることができる。
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004

ここで、-Yeeg(kBi)、SB 2はそれぞれNB個のパワーYeeg(kBi)の平均値、分散を表し、-Yeeg(kB-1i)、SB-1 2はそれぞれNB-1個のパワーYeeg(kB-1i)の平均値、分散を表す。
In this embodiment, the determination unit 227 receives N B powers Y eeg (k B , α i ) and N B-1 powers Y eeg (k B-1 , α i ), and determines the frequency distribution. Calculate the difference d B,B-1 . This difference in frequency distribution dB,B-1 corresponds to the information based on the above-mentioned electroencephalogram signal. Various values can be used to indicate the difference in frequency distribution; for example, an effect size such as Cohen's d (standardized value obtained by dividing the difference in mean values by the sample standard deviation) shown by the following formula: can be used.
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004

Here, - Y eeg (k Bi ) and S B 2 represent the average value and variance of N B powers Y eeg (k Bi ), respectively, and - Y eeg (k B-1 , α i ) and S B-1 2 represent the average value and variance of N B-1 powers Y eeg (k B-1 , α i ), respectively.
 判定部227は、頻度分布の違いdB,B-1と所定の閾値Thとの大小関係に基づいて、候補αiと同一の脳波帯域が強調されているか否かを判定し(S227)、判定結果に応じて各部に制御信号を送信する。 The determining unit 227 determines whether the same brain wave band as candidate α i is emphasized based on the magnitude relationship between the frequency distribution difference d B,B-1 and a predetermined threshold Th (S227), A control signal is sent to each part according to the determination result.
 例えば、値dB,B-1が大きいほど、頻度分布の違いが大きいことを表す場合には、判定部227は以下のように処理を行う。判定部227は、頻度分布の違いdB,B-1が所定の閾値Th以下の場合(S227-1のNOの場合)、バイノーラルビート信号生成部220で用いた候補αiを用いて第二バイノーラルビート信号生成部221で処理を行い、脳波信号取得部223とパワー抽出部225における処理を繰り返すように制御する制御信号を各部に出力する。 For example, when the larger the value d B,B-1 is, the larger the difference in frequency distribution is, the determination unit 227 performs the following processing. If the frequency distribution difference d B,B-1 is less than or equal to the predetermined threshold Th (in the case of NO in S227-1), the determining unit 227 uses the candidate α i used in the binaural beat signal generating unit 220 to determine the second The binaural beat signal generation section 221 performs the processing, and outputs a control signal to each section so as to repeat the processing at the brain wave signal acquisition section 223 and the power extraction section 225.
 判定部227は、頻度分布の違いdB,B-1が所定の閾値Thより大きい場合(S227-1のYESの場合)、L個の候補αiの全てをバイノーラルビート信号の生成に用いたか否かを判定し、用いた場合(S227-3のYESの場合)、処理を終了する。一方、L個の候補αiの中にバイノーラルビート信号の生成に用いられていない候補αjが存在する場合(S227-3のNOの場合)、L個の候補αiの中からバイノーラルビート信号の生成に用いられていない候補αjを選択し(S227-5)、選択した候補αjを用いて第二バイノーラルビート信号生成部221で処理を行い、脳波信号取得部223とパワー抽出部225における処理を繰り返すように制御する制御信号を各部に出力する。 If the frequency distribution difference dB,B-1 is larger than the predetermined threshold Th (YES in S227-1), the determination unit 227 determines whether all L candidates α i were used to generate the binaural beat signal. If it is used (YES in S227-3), the process ends. On the other hand, if there is a candidate α j that is not used for binaural beat signal generation among the L candidates α i (in the case of NO in S227-3), the binaural beat signal is selected from among the L candidates α i. (S227-5 ), the second binaural beat signal generation unit 221 processes the selected candidate α j , and the electroencephalogram signal acquisition unit 223 and the power extraction unit 225 A control signal is output to each part to control the process to be repeated.
 この場合、頻度分布の違いが閾値より大きいということは、その周波数成分において脳波が強調されたことを意味している。ハイパフォーマンスとなっている際の脳波状態と、それ以外の脳波状態とは、一つの周波数成分でのみ違いが見られるのではなく、複数の周波数成分で違いが見られると考えられる。第一実施形態では、一つの周波数成分(例えば、最大の効果を示した周波数成分)の違いに着目し、その周波数成分についてのみ脳波を強調している。一方、本実施形態では、ハイパフォーマンスとなっている際の脳波状態により近づけるために、効果を示した複数の周波数成分について、脳波の強調が確認されるたびに、強調する周波数成分を変更し、万遍なく脳波を強調し、より高い効果を狙っている。なお、候補の選択順は特に限定されるものではない。例えば、判定部227は、効果の高さに応じて降順または昇順に候補を選択してもよいし、ランダムに候補を選択してもよい。ただし、効果の高いものから降順に候補を選択することで、より早く対象者の脳波状態をハイパフォーマンスとなっている際の脳波状態に近づけることができると考えられる。 In this case, the fact that the difference in frequency distribution is greater than the threshold means that the brain waves are emphasized in that frequency component. It is thought that the brain wave state during high performance and other brain wave states differ not only in one frequency component but in multiple frequency components. In the first embodiment, attention is paid to the difference in one frequency component (for example, the frequency component showing the greatest effect), and brain waves are emphasized only for that frequency component. On the other hand, in this embodiment, in order to more closely approximate the brain wave state during high performance, the frequency components to be emphasized are changed every time brain wave enhancement is confirmed for multiple frequency components that have shown an effect. It aims for higher effects by uniformly emphasizing brain waves. Note that the selection order of candidates is not particularly limited. For example, the determination unit 227 may select candidates in descending or ascending order according to the level of effectiveness, or may select candidates at random. However, it is thought that by selecting candidates in descending order of effectiveness, it is possible to more quickly bring the subject's brain wave state closer to the brain wave state during high performance.
<効果>
 このような構成とすることで、第一実施形態と同様の効果を得ることができる。さらに、ハイパフォーマンスとなっている際の脳波状態により近づけることができる。
<Effect>
With such a configuration, effects similar to those of the first embodiment can be obtained. Furthermore, it is possible to more closely approximate the state of brain waves during high performance.
<変形例>
 本実施形態では、L個の候補αiの全てをバイノーラルビート信号の生成に用いた場合(S227-3のYESの場合)、処理を終了しているが、候補の使用状態をリセットして再度脳波を強調する処理を繰り返す構成としてもよい。
<Modified example>
In this embodiment, when all L candidates α i are used to generate the binaural beat signal (YES in S227-3), the process is finished, but the usage status of the candidates is reset and the process is restarted. A configuration may also be adopted in which processing for emphasizing brain waves is repeated.
<その他の変形例>
 本発明は上記の実施形態及び変形例に限定されるものではない。例えば、上述の各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
<Other variations>
The present invention is not limited to the above-described embodiments and modifications. For example, the various processes described above may not only be executed in chronological order as described, but may also be executed in parallel or individually depending on the processing capacity of the device executing the process or as necessary. Other changes may be made as appropriate without departing from the spirit of the present invention.
<プログラム及び記録媒体>
 上述の各種の処理は、図7に示すコンピュータ2000の記録部2020に、上記方法の各ステップを実行させるプログラムを読み込ませ、制御部2010、入力部2030、出力部2040、表示部2050などに動作させることで実施できる。
<Program and recording medium>
The various processes described above are performed by causing the recording unit 2020 of the computer 2000 shown in FIG. This can be done by letting
 この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。 A program that describes this processing content can be recorded on a computer-readable recording medium. The computer-readable recording medium may be of any type, such as a magnetic recording device, an optical disk, a magneto-optical recording medium, or a semiconductor memory.
 また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。 Further, distribution of this program is performed, for example, by selling, transferring, lending, etc. portable recording media such as DVDs and CD-ROMs on which the program is recorded. Furthermore, this program may be distributed by storing the program in the storage device of the server computer and transferring the program from the server computer to another computer via a network.
 このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。 A computer that executes such a program, for example, first stores a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. When executing a process, this computer reads a program stored in its own recording medium and executes a process according to the read program. In addition, as another form of execution of this program, the computer may directly read the program from a portable recording medium and execute processing according to the program, and furthermore, the program may be transferred to this computer from the server computer. The process may be executed in accordance with the received program each time. In addition, the above-mentioned processing is executed by a so-called ASP (Application Service Provider) service, which does not transfer programs from the server computer to this computer, but only realizes processing functions by issuing execution instructions and obtaining results. You can also use it as Note that the program in this embodiment includes information that is used for processing by an electronic computer and that is similar to a program (data that is not a direct command to the computer but has a property that defines the processing of the computer, etc.).
 また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。 Furthermore, in this embodiment, the present apparatus is configured by executing a predetermined program on a computer, but at least a part of these processing contents may be implemented in hardware.

Claims (7)

  1.  対象者に対して所定のタスクを実施した際のスコアと、前記対象者の脳波信号とを用いて、前記対象者に対して最適なビート周波数の候補αを決定するビート周波数決定部と、
     前記候補αを用いて、バイノーラルビート信号を生成するバイノーラルビート生成部とを含む、
     音刺激生成装置。
    a beat frequency determination unit that determines an optimal beat frequency candidate α for the target person using a score obtained when a predetermined task is performed on the target person and an electroencephalogram signal of the target person;
    a binaural beat generation unit that generates a binaural beat signal using the candidate α;
    Sound stimulus generator.
  2.  請求項1の音刺激生成装置であって、
     Lを1以上の整数の何れかとし、iを1,2,…,Lの何れかとし、前記候補αにはL個の候補αiが含まれ、
     前記バイノーラルビート生成部は、
     候補αiをビート周波数とするバイノーラルビート信号を生成する第二バイノーラルビート信号生成部と、
     生成した前記バイノーラルビート信号を提示された前記対象者の脳波信号を取得する脳波信号取得部と、
     前記脳波信号に基づく情報から対象者本人がハイパフォーマンスとなっている際の脳波状態となるように、前記候補αiと同一の脳波帯域が強調されているか否かを判定し、強調されていない場合、前記候補αiを用いて処理を繰り返すように制御し、強調されている場合、前記L個の候補αiの中からバイノーラルビート信号の生成に用いられていない候補αjを選択し、選択した候補αjを用いて処理を繰り返すように制御する判定部とを含む、
     音刺激生成装置。
    The sound stimulus generation device according to claim 1, comprising:
    Let L be any integer greater than or equal to 1, let i be any one of 1, 2,...,L, and the candidate α includes L candidates α i ,
    The binaural beat generation section includes:
    a second binaural beat signal generation unit that generates a binaural beat signal with candidate α i as the beat frequency;
    an electroencephalogram signal acquisition unit that obtains an electroencephalogram signal of the subject who is presented with the generated binaural beat signal;
    Based on the information based on the brain wave signal, it is determined whether the same brain wave band as the candidate α i is emphasized so that the brain wave state of the subject is in high performance, and if it is not emphasized. , the process is controlled to be repeated using the candidate α i , and if the candidate α i is emphasized, the candidate α j that is not used for generating the binaural beat signal is selected from among the L candidates α i . a determination unit that controls to repeat the process using the selected candidate α j ;
    Sound stimulus generator.
  3.  請求項2の音刺激生成装置であって、
     前記バイノーラルビート生成部は、
     前記脳波信号取得部で取得した前記脳波信号からブロック区間BにおけるパワーYeeg(kBi)と1つ前のブロック区間B-1におけるパワーYeeg(kB-1i)とを抽出するパワー抽出部を含み、
     前記判定部は、前記パワーYeeg(kBi)と前記パワーYeeg(kB-1i)との頻度分布の違いと所定の閾値との大小関係に基づいて、前記候補αiと同一の脳波帯域が強調されているか否かを判定し、
     前記脳波信号に基づく情報は、前記頻度分布の違いである、
     音刺激生成装置。
    The sound stimulus generation device according to claim 2,
    The binaural beat generation section includes:
    The power Y eeg (k B , α i ) in block section B and the power Y eeg (k B-1 , α i ) in the previous block section B-1 are determined from the electroencephalogram signal acquired by the electroencephalogram signal acquisition section. It includes a power extraction part that extracts
    The determination unit selects the candidate based on the difference in frequency distribution between the power Y eeg (k B , α i ) and the power Y eeg (k B-1 , α i ) and the magnitude relationship between the power Y eeg (k B , α i ) and a predetermined threshold. Determine whether the same brain wave band as α i is emphasized,
    The information based on the electroencephalogram signal is the difference in the frequency distribution,
    Sound stimulus generator.
  4.  請求項3の音刺激生成装置であって、
     前記頻度分布の違いは、平均値の差を標本標準偏差で割って標準化した値である、
     音刺激生成装置。
    The sound stimulus generation device according to claim 3,
    The difference in the frequency distribution is a standardized value obtained by dividing the difference in mean values by the sample standard deviation.
    Sound stimulus generator.
  5.  請求項1の音刺激生成装置であって、
     前記スコアは、問題の正誤判定と問題の出題から回答までの反応時間とを含む、
     音刺激生成装置。
    The sound stimulus generation device according to claim 1, comprising:
    The score includes determining whether the question is correct or incorrect and the reaction time from asking the question to answering the question.
    Sound stimulus generator.
  6.  対象者に対して所定のタスクを実施した際のスコアと、前記対象者の脳波信号とを用いて、前記対象者に対して最適なビート周波数の候補αを決定するビート周波数決定ステップと、
     前記候補αを用いて、バイノーラルビート信号を生成するバイノーラルビート生成ステップとを含む、
     音刺激生成方法。
    a beat frequency determining step of determining an optimal beat frequency candidate α for the target person using a score obtained when a predetermined task is performed on the target person and an electroencephalogram signal of the target person;
    a binaural beat generation step of generating a binaural beat signal using the candidate α;
    Sound stimulus generation method.
  7.  請求項1から請求項5の何れかに記載の音刺激生成装置として、コンピュータを機能させるためのプログラム。 A program for causing a computer to function as the sound stimulus generation device according to any one of claims 1 to 5.
PCT/JP2022/032535 2022-08-30 2022-08-30 Acoustic stimulation generation device, acoustic stimulation generation method, and program WO2024047732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032535 WO2024047732A1 (en) 2022-08-30 2022-08-30 Acoustic stimulation generation device, acoustic stimulation generation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032535 WO2024047732A1 (en) 2022-08-30 2022-08-30 Acoustic stimulation generation device, acoustic stimulation generation method, and program

Publications (1)

Publication Number Publication Date
WO2024047732A1 true WO2024047732A1 (en) 2024-03-07

Family

ID=90098929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032535 WO2024047732A1 (en) 2022-08-30 2022-08-30 Acoustic stimulation generation device, acoustic stimulation generation method, and program

Country Status (1)

Country Link
WO (1) WO2024047732A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507889A (en) * 2011-02-02 2014-03-27 ヴェーデクス・アクティーセルスカプ Binaural hearing aid system and binaural beat providing method
US20170340855A1 (en) * 2014-11-27 2017-11-30 Rythm Device and method for stimulating slow brain waves
WO2018159519A1 (en) * 2017-02-28 2018-09-07 シャープ株式会社 Induction sound output device, induction sound output method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507889A (en) * 2011-02-02 2014-03-27 ヴェーデクス・アクティーセルスカプ Binaural hearing aid system and binaural beat providing method
US20170340855A1 (en) * 2014-11-27 2017-11-30 Rythm Device and method for stimulating slow brain waves
WO2018159519A1 (en) * 2017-02-28 2018-09-07 シャープ株式会社 Induction sound output device, induction sound output method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伊藤弘章, 外4名, 周囲環境からの聴覚刺激に伴う個人の集中力の変化に関する初期検討, 日本音響学会 2021年春季 研究発表会講演論文集 CD-ROM, 24 February 2021, pages 599-600, (Reports of the 2021 spring meeting the Acoustical Society of Japan.), non-official translation (ITO, Hiroaki and 4 others. Initial study on changes in individual concentration due to auditory stimulation from the surrounding environment.) *

Similar Documents

Publication Publication Date Title
Vlaming et al. Automated screening for high-frequency hearing loss
Won et al. Psychoacoustic abilities associated with music perception in cochlear implant users
Gfeller et al. Melodic, rhythmic, and timbral perception of adult cochlear implant users
Scott et al. The neural processing of masked speech: Evidence for different mechanisms in the left and right temporal lobes
Brown et al. Effects of long-term musical training on cortical auditory evoked potentials
CN105930480B (en) The generation method and managing irritating auditory phenomena system of managing irritating auditory phenomena music
Roy et al. Musical sound quality impairments in cochlear implant (CI) users as a function of limited high-frequency perception
Blackman et al. Reducing the effects of background noise during auditory functional magnetic resonance imaging of speech processing: qualitative and quantitative comparisons between two image acquisition schemes and noise cancellation
CN105999509A (en) A tinnitus treating music generating method and a tinnitus treating system
Parkinson et al. Hybrid music perception outcomes: implications for melody and timbre recognition in cochlear implant recipients
Haro et al. EEG alpha and pupil diameter reflect endogenous auditory attention switching and listening effort
Saygin et al. Nonverbal auditory agnosia with lesion to Wernicke's area
Kates Speech enhancement based on a sinusoidal model
Hall et al. Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging
Ziemer et al. Using psychoacoustic models for sound analysis in music
Bertoncini et al. Discrimination of speech sounds based upon temporal envelope versus fine structure cues in 5-to 7-year-old children
Dajani et al. Improving hearing aid fitting using the speech-evoked auditory brainstem response
WO2024047732A1 (en) Acoustic stimulation generation device, acoustic stimulation generation method, and program
Arehart et al. Effects of age on melody and timbre perception in simulations of electro-acoustic and cochlear-implant hearing
Huang et al. Perceptual fusion tendency of speech sounds
Verschuur et al. The role of first formant information in simulated electro-acoustic hearing
Yang et al. SleepGAN: Towards personalized sleep therapy music
Miller et al. The effects of static and moving spectral ripple sensitivity on unaided and aided speech perception in noise
Sabin et al. A method for rapid personalization of audio equalization parameters
Lorenzi et al. Temporal-envelope reconstruction for hearing-impaired listeners

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957335

Country of ref document: EP

Kind code of ref document: A1