WO2024047707A1 - Optical signal processing device - Google Patents

Optical signal processing device Download PDF

Info

Publication number
WO2024047707A1
WO2024047707A1 PCT/JP2022/032437 JP2022032437W WO2024047707A1 WO 2024047707 A1 WO2024047707 A1 WO 2024047707A1 JP 2022032437 W JP2022032437 W JP 2022032437W WO 2024047707 A1 WO2024047707 A1 WO 2024047707A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
awg
optical signal
input
processing device
Prior art date
Application number
PCT/JP2022/032437
Other languages
French (fr)
Japanese (ja)
Inventor
雅 太田
賢哉 鈴木
慶太 山口
毅伺 梅木
啓 渡邉
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/032437 priority Critical patent/WO2024047707A1/en
Publication of WO2024047707A1 publication Critical patent/WO2024047707A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind

Definitions

  • the present disclosure relates to an optical signal processing device, and more specifically to an optical signal processing device having a plurality of arrayed waveguide gratings.
  • optical waveguide devices such as optical wavelength multiplexing/demultiplexing circuits and optical switch circuits that support this is being actively conducted.
  • Optical wavelength multiplexing and demultiplexing circuits are used for multiplexing and demultiplexing optical signals, and narrowing the guard band width, which determines the multiplexing and demultiplexing performance, is an important issue that determines the performance of optical communications.
  • tandem AWG A high-performance optical wavelength multiplexing/demultiplexing circuit that has a configuration in which two arrayed waveguide gratings (AWG) are connected in cascade is known (for example, a non-patent (See Reference 1).
  • the tandem AWG has the advantage of a narrow guard band, that is, a highly rectangular transmission spectrum characteristic.
  • tandem AWG samples the wavelength of light in a first AWG at narrow intervals, and by adjusting the input position of the second AWG, light of a desired wavelength is transmitted to an arbitrary output of the second AWG. It has a function. Therefore, the tandem AWG is effective as an optical wavelength division filter having narrow guard band width and highly rectangular transmission spectrum characteristics. Based on the principle of backward propagation of light, tandem AWGs are also effective as optical wavelength multiplexing filters.
  • the first AWG and the second AWG need to be connected through a connection circuit. Until the optical signal propagates from the output of the first AWG to the input of the second AWG via the connection circuit, it is necessary to maintain the phase difference of the optical waves in order to prevent deterioration of the interference characteristics.
  • the first AWG and the second AWG each include an array waveguide composed of a plurality of waveguides having different optical path lengths.
  • a connection circuit connecting the first AWG and the second AWG is also composed of a plurality of waveguides.
  • a tandem AWG including a first AWG, a second AWG, and a connection circuit, each of which is composed of a plurality of waveguides there is a path between the input of the first AWG and the output of the second AWG. There are many light paths of different lengths.
  • the phase error of light waves occurring in each of the first AWG, second AWG, and connection circuit deteriorates the interference characteristics in each of the first AWG, second AWG, and connection circuit. Deterioration of interference characteristics increases crosstalk noise, which is one of the optical characteristics of optical wavelength multiplexing/demultiplexing circuits, and becomes a factor that leads to deterioration of optical signal transmission quality.
  • the present disclosure has been made in view of such problems, and its purpose is to provide an optical signal processing device with low crosstalk noise.
  • an optical signal processing device includes at least one first input/output waveguide and a wavelength demultiplexer connected to the first input/output waveguide. a plurality of wavelength multiplexers, at least one second input/output waveguide connected to each of the plurality of wavelength multiplexers, a wavelength demultiplexer and a plurality of wavelength multiplexers; a connection circuit, the connection circuit includes a plurality of waveguides, one end of the plurality of waveguides in the connection circuit is connected to a wavelength demultiplexer, and the other end of the plurality of waveguides in the connection circuit is connected to a plurality of subsets.
  • the other end of one of the k-th subset (k is an integer of 2) of the plurality of subsets or the adjacent plurality of waveguides is connected to the k-th wavelength multiplexer of the plurality of wavelength multiplexers. connected to the wave generator.
  • FIG. 2 is a schematic configuration diagram showing a tandem AWG.
  • 1 is a schematic configuration diagram showing an optical signal processing device according to an embodiment of the present disclosure, in which (a) is a diagram showing the overall configuration, (b) is a diagram showing the configuration of a wavelength demultiplexer, and (c) is a diagram showing the configuration of a wavelength demultiplexer. It is a figure showing the composition of a wave device.
  • FIG. 2 is a diagram illustrating light input to a wavelength demultiplexer of an optical signal processing device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating light propagating through a wavelength demultiplexer of an optical signal processing device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating light propagating through a wavelength demultiplexer of an optical signal processing device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating light input to a wavelength multiplexer of an optical signal processing device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating light input to the wavelength multiplexer of the optical signal processing device according to an embodiment of the present disclosure, (a) is a diagram illustrating light input to the wavelength multiplexer, and (b) is a diagram illustrating light input to the wavelength multiplexer.
  • FIG. 2 is a diagram illustrating the transmission characteristics of a wavelength multiplexer.
  • FIG. 3 is a schematic configuration diagram showing a modified form of an optical signal processing device according to an embodiment of the present disclosure, in which (a) is a diagram showing the overall configuration, (b) is a diagram showing the configuration of a wavelength demultiplexer, (c) FIG. 2 is a diagram showing the configuration of a wavelength multiplexer.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of a tandem AWG.
  • the tandem AWG 100 includes a first AWG 110, a second AWG 120, one input waveguide 111 connected to the input of the first AWG 110, and one input waveguide 111 connected to the output of the second AWG 120. It includes two output waveguides 121-1 and 121-2, and a connection circuit 130 that connects the output of the first AWG 110 and the input of the second AWG 120.
  • the tandem AWG 100 wavelength-demultiplexes a wavelength-multiplexed signal input via an input waveguide 111, and sends an optical signal with a wavelength ⁇ 1 and an optical signal with a wavelength ⁇ 2 included in the wavelength-multiplexed signal to two output waveguides. It is configured to output from each of 121-1 and 121-2.
  • the first AWG 110 receives a wavelength-multiplexed signal (an optical signal with a wavelength ⁇ 1 and an optical signal with a wavelength ⁇ 2) inputted via the input waveguide 111, and separates the wavelength-multiplexed signal (an optical signal with a wavelength ⁇ 1 and an optical signal with a wavelength ⁇ 2 ) into different wavelengths of the first AWG 110 depending on the wavelength. It is configured to be split into different positions.
  • the second AWG 120 is configured to multiplex lights of the same wavelength out of a plurality of input wavelengths at different positions of the second AWG 120 depending on the wavelength.
  • One end of the plurality of waveguides constituting the connection circuit 130 is connected to a position of the first AWG 110 where the optical signal of wavelength ⁇ 1 and the optical signal of wavelength ⁇ 2 are demultiplexed.
  • the other ends of the plurality of waveguides constituting the connection circuit 130 are provided with a gap for separating the position of the second AWG 120 where the optical signal of wavelength ⁇ 1 is inputted and the position where the optical signal of wavelength ⁇ 2 is inputted. and is connected to the second AWG 120.
  • the two output waveguides 121-1 and 121-2 are each connected to a position where the light from the second AWG 120 is multiplexed.
  • an optical signal with a wavelength ⁇ 1 and an optical signal with a wavelength ⁇ 2 are each demultiplexed to different positions of the first AWG 110.
  • the optical signal with wavelength ⁇ 1 is branched to a position above the first AWG 110, and coupled to a waveguide connected to the first AWG 110 at that position among the plurality of waveguides forming the connection circuit 130.
  • the signal propagates to the second AWG 120.
  • the optical signal with wavelength ⁇ 2 is branched to a position below the first AWG 110 and coupled to a waveguide connected to the first AWG 110 at that position among the plurality of waveguides forming the connection circuit 130. and propagates to the second AWG 120.
  • the optical signal of wavelength ⁇ 1 and the optical signal of wavelength ⁇ 2 input to different positions of the second AWG 120 are multiplexed to different positions of the second AWG 120, respectively.
  • the optical signals of wavelength ⁇ 1 are multiplexed at a position above the second AWG 120, and coupled to the output waveguide 121-1 connected to the second AWG 120 at this position and output.
  • the optical signals of wavelength ⁇ 2 are multiplexed at a position below the second AWG 120, and coupled to the output waveguide 121-2 connected to the second AWG 120 at that position and output.
  • the tandem AWG 100 configured as described above samples the wavelength of light at narrow intervals in the first AWG 110 and adjusts the input position of the second AWG 120 to send light of a desired wavelength to an arbitrary position of the second AWG 120. It has the function of transmitting.
  • the gap of the waveguide forming the connection circuit 130 at the connection position with the second AWG 120 corresponds to a guard band.
  • the tandem AWG 100 by increasing the resolution of the first AWG 110, a highly rectangular transmission spectrum characteristic with a narrow guard band width can be achieved.
  • the reduction of the guard band is accompanied by an increase in crosstalk noise, which becomes a factor that leads to deterioration of the transmission quality of optical signals.
  • An optical signal processing device includes a first AWG that configures a wavelength demultiplexer, a plurality of second AWGs that configure a plurality of wavelength multiplexers, a wavelength demultiplexer, and a plurality of second AWGs that configure a wavelength demultiplexer. and a connection circuit for connecting the wavelength multiplexer.
  • the connection circuit includes a plurality of waveguides. One end of the plurality of waveguides in the connection circuit is connected to the output of the wavelength demultiplexer.
  • the other ends of the plurality of waveguides in the connection circuit are divided into a plurality of subsets, and the other ends of one of the k-th (k is an integer of 2) subset or the adjacent plurality of waveguides are divided into a plurality of subsets. It is connected to the input of the k-th wavelength multiplexer among the wavelength multiplexers. According to one embodiment of the present disclosure, an optical signal processing device with low crosstalk noise is provided.
  • FIG. 2(a) is a diagram showing the overall configuration of the optical signal processing device 200.
  • the optical signal processing device 200 includes a first AWG 210 that constitutes a wavelength demultiplexer, and two second AWGs 220-1 and 220-1 that constitute two wavelength multiplexers. , one input waveguide 111 connected to the input of the first AWG 110, one output waveguide 221-1 connected to the output of the second AWG 120-1, and the other second AWG 120-2. and a connection circuit 230 that connects the output of the first AWG 110 and the input of each of the two second AWGs 220-1 and 220-2.
  • the optical signal processing device 200 wavelength-demultiplexes the wavelength-multiplexed signal input via the input waveguide 111, and generates light with wavelength ⁇ 1 included in the wavelength-multiplexed signal. It is configured to output a signal and an optical signal of wavelength ⁇ 2 from two output waveguides 221-1 and 221-2, respectively.
  • the optical signal processing device 200 can also combine the input optical signal with wavelength ⁇ 1 and the optical signal with wavelength ⁇ 2 and output a wavelength multiplexed signal. That is, the input waveguide 111 and the output waveguides 221-1 and 221-2 each constitute an input/output waveguide. Further, the AWGs 210 and 220 constitute a wavelength multiplexer.
  • FIG. 2(b) is a diagram showing the configuration of the first AWG 210 that constitutes the wavelength demultiplexer.
  • the AWG 210 includes a first slab 210a, an arrayed waveguide 210b, and a second slab 210c.
  • the array waveguide 210b is composed of a plurality of waveguides having different waveguide lengths.
  • the array waveguide 210b is connected to the output side termination surface of the first slab 210a and the input side termination surface of the second slab 210c.
  • An input waveguide 111 is connected to the input side termination surface of the first slab 210a.
  • a connection circuit 230 is connected to the output side termination surface of the second slab 210c.
  • FIG. 2(c) is a diagram showing the configuration of the second AWG 220 (220-1 or 220-2) that constitutes the wavelength multiplexer.
  • the AWG 220 includes a first slab 220a, an arrayed waveguide 220b, and a second slab 220c.
  • the array waveguide 220b is composed of a plurality of waveguides having different waveguide lengths.
  • the array waveguide 220b is connected to the output side termination surface of the first slab 220a and the input side termination surface of the second slab 220c.
  • a connection circuit 230 is connected to the input-side termination surface of the first slab 220a.
  • An output waveguide 221 is connected to the output side termination surface of the second slab 210c.
  • the first AWG 210 converts the wavelength-multiplexed signal (the optical signal with the wavelength ⁇ 1 and the optical signal with the wavelength ⁇ 2 ) inputted via the input waveguide 111 into the first AWG 210 according to the wavelength.
  • the signal is configured to be split into different positions of the AWG 210.
  • Each of the two second AWGs 220-1 and 220-2 is configured to multiplex input lights of the same wavelength.
  • the second AWG 220 differs from the AWG 120 in FIG. 1 in that it inputs and multiplexes light with the same wavelength and multiplexes the lights with the same wavelength.
  • the free spectral range (FSR) of the second AWG 220, into which light of one wavelength is input/output, is greater than the FSR of the first AWG 210, into which light of multiple wavelengths is input/output, and the second AWG 120 in FIG. can also be made smaller.
  • the plurality of waveguides making up the connection circuit 230 are divided into two subsets. Each subset includes one or more adjacent waveguides.
  • the upper side of the connection circuit 230 in FIG. 2A is a subset 1, and the lower side is a subset 2.
  • One end of the waveguide in subset 1 is connected to a position in the first AWG 210 where the optical signal of wavelength ⁇ 1 is demultiplexed (a position above the output side end face of the second slab 210c).
  • One end of the waveguide in subset 2 is connected to a position in the first AWG 210 where the optical signal of wavelength ⁇ 2 is demultiplexed (a position below the output side end face of the second slab 210c).
  • the other end of the waveguide in subset 1 is connected to the second AWG 220-1 (the end face on the input side of the first slab 220a).
  • the other end of the waveguide in subset 2 is connected to the second AWG 220-2 (the end face on the input side of the first slab 220a).
  • FIG. 3 is a diagram showing the intensity distribution of the optical signal at the boundary between the first slab 210a and the input waveguide 111.
  • the position of the first slab 210a to which the input waveguide 111 is connected is defined as x0 .
  • the intensity distribution shown in FIG. 3 is that of monochromatic light.
  • FIG. 4 is a diagram showing the intensity distribution of the optical signal at the boundary between the first slab 210a and the arrayed waveguide 210b.
  • the array waveguide 210b is connected to the position of the first slab 210a where the intensity of the optical signal shown in dark color in FIG. 4 appears.
  • a plurality of optical signals with a wavelength ⁇ 1 input to the second slab 210c via a plurality of waveguides having different waveguide lengths constituting the array waveguide 210b are transmitted through the waveguides through which they propagated. It has different phases depending on its length.
  • the plurality of optical signals of wavelength ⁇ 2 input to the second slab 210c also have a phase depending on the length of the waveguide through which they propagate.
  • the optical signals of each wavelength input to the first AWG 210 are multiplexed at a position according to the wavelength. Specifically, optical signals of wavelength ⁇ 1 interfere with each other, are combined, and appear above the AWG 210 (second slab 210c).
  • One or more waveguides of subset 1 of connection circuit 230 are connected to the position where the optical signal of wavelength ⁇ 1 appears.
  • one or more waveguides of subset 2 of connection circuit 230 are connected to the position where the optical signal of wavelength ⁇ 2 appears.
  • FIG. 5 is a diagram showing the transmission loss at the boundary between the second slab 210c of the first AWG 210 and the connection circuit 230.
  • crosstalk noise occurs due to the phase error occurring in the first AWG 210. Therefore, it is desirable to configure the connection circuit 230 so that the waveguide forming the connection circuit 230 is not connected to a position where the crosstalk of the second slab 210c is high. As a result, crosstalk occurring between subset 1 and subset 2 of connection circuit 230 is reduced compared to the case where no subset is provided.
  • This is the optical signal intensity distribution of subset k of connection circuit 230 when an optical signal of a wavelength different from ⁇ k is coupled to any one waveguide in subset k of ⁇ k .
  • Each broken line in FIG. 6 corresponds to each waveguide included in subset k.
  • the crosstalk noise within subset k of connection circuit 230 is approximately ⁇ 40 dB.
  • the peak intensity of the optical signal at ⁇ 1 is approximately -40 dB.
  • FIG. 7B is a diagram showing the transmission loss at the boundary between the second slab 210c of the second AWG 220-2 and the waveguide of the subset 2 of the connection circuit 230. It can be seen that the crosstalk of connection circuit 230 to subset 2 is ⁇ 80 db or less.
  • the optical signal with the wavelength ⁇ 1 and the optical signal with the wavelength ⁇ 2 are each demultiplexed to different positions of the first AWG 210 (second slab 210c).
  • the optical signal of wavelength ⁇ 1 is branched to the upper position of the first AWG 210 (second slab 210c), and connected to the first AWG 210 at that position among the plurality of waveguides that constitute the connection circuit 230.
  • the signal is coupled to the waveguide of Subset 1 and propagated to the second AWG 220-1.
  • the optical signal of wavelength ⁇ 2 is branched to a position below the first AWG 210 (second slab 210c), and connected to the first AWG 110 at the corresponding position among the plurality of waveguides forming the connection circuit 130.
  • the signal is coupled to the waveguide of Subset 2 and propagated to the second AWG 120.
  • the plurality of waveguides constituting the connection circuit 230 have the same length or have an optical wave length difference that is an integral multiple of the wavelength of the propagating optical signal. This maintains the phase difference of the light waves and prevents deterioration of the interference characteristics in the first AGW.
  • the spacing between adjacent waveguides constituting the connection circuit 230 may or may not be constant. For example, when demultiplexing wavelength ⁇ 1 in the C wavelength band and wavelength ⁇ 2 in the L wavelength band from a wavelength multiplexed signal, the distance between adjacent waveguides in subset 1 of the connection circuit 230 and the distance between adjacent waveguides in subset 2 The intervals between the two can be made different.
  • the first AWG 210 has the function of branching the input optical signal to different positions depending on the wavelength, but also has the function of branching the optical signal to different positions depending on the input position. has.
  • the wavelength of the optical signal propagated through the subsets 1 and 2 of the connection circuit 230 and input to the second AWGs 220-1 and 220-2 changes.
  • the position where the optical signals are multiplexed in the second AWGs 220-1 and 220-2 also changes. Therefore, the optical signal processing device 200 may have a configuration in which a plurality of input waveguides are connected to the first AWG 210 and a plurality of output waveguides are connected to each of the second AWGs 220-1 and 220-2.
  • the first AWG 210, the connection circuit 230, and the second AGW 220 may be configured on the same planar lightwave circuit (PLC), or the first AWG 210 and the second AWG 220 may be configured on the same planar lightwave circuit (PLC).
  • Two AGWs 220 may be connected by a connection circuit 230.
  • the material of the light wave circuit constituting the first AWG 210 and the second AGW 220 of this embodiment can be silicon oxide (SiO 2 ), which has low connection loss with an optical fiber.
  • silicon (Si) which can reduce the circuit area, may be used, or silicon nitride (Si 3 N 4 ), which has performance between silicon oxide and silicon, may be used.
  • a wavelength multiplexed signal input through the input waveguide 111 is wavelength-demultiplexed, and two optical signals of wavelength ⁇ 1 and wavelength ⁇ 2 included in the wavelength multiplexed signal are separated into two optical signals.
  • the optical signal processing device 200 is configured to output from the output waveguides 221-1 and 221-2, respectively. It is also possible to configure an optical signal processing device configured to output.
  • the optical signal processing device of this modification is configured to output optical signals of three or more different wavelengths from a wavelength multiplexed signal from three or more output waveguides.
  • FIG. 8(a) is a diagram showing the overall configuration of an optical signal processing device 800.
  • the optical signal processing device 800 includes a first AWG 810 that constitutes a wavelength demultiplexer, and a second AWG 810 that constitutes k (k is an integer of 3 or more) wavelength multiplexers.
  • AWG820-1, 820-2,...820-k one input waveguide 111 connected to the input of the first AWG810, and the output connected to the output of the kth second AWG820-k.
  • It includes a waveguide 821-k and a connection circuit 830 that connects the output of the first AWG 110 and the input of each of the k second AWGs 820-1, 820-2, . . . 820-k.
  • the optical signal processing device 800 like the optical signal processing device 200 shown in FIG. It is configured to output optical signals having wavelengths ⁇ k to ⁇ k from k output waveguides 221-1 to 221-k, respectively.
  • the optical signal processing device 800 multiplexes an optical signal of wavelength ⁇ k from an input optical signal of wavelength ⁇ 1 to generate a wavelength multiplexed signal. It can also be output. That is, the input waveguide 111 and the output waveguides 821-1 to 821-k each constitute an input/output waveguide. Further, AWGs 810 and 820-1 to 820-k constitute a wavelength multiplexer.
  • FIG. 8(b) is a diagram showing the configuration of the first AWG 810 that constitutes the wavelength demultiplexer. Similar to the first AWG 210 shown in FIG. 2(b), the first AWG 810 includes a first slab 810a, an arrayed waveguide 810b, and a second slab 810c.
  • the array waveguide 210b is composed of a plurality of waveguides having different waveguide lengths.
  • the array waveguide 810b is connected to the output side termination surface of the first slab 810a and the input side termination surface of the second slab 810c.
  • An input waveguide 111 is connected to the input side termination surface of the first slab 810a.
  • Subsets 1 to k of the connection circuit 830 are connected to the output end surface of the second slab 810c.
  • FIG. 8(c) is a diagram showing the configuration of the second AWG 820 (820-1 to 820-k) that constitutes the wavelength multiplexer.
  • the AWG 820 includes a first slab 820a, an arrayed waveguide 820b, and a second slab 820c.
  • the array waveguide 820b is composed of a plurality of waveguides having different waveguide lengths.
  • the array waveguide 820b is connected to the output side termination surface of the first slab 820a and the input side termination surface of the second slab 820c.
  • a subset k of the connection circuit 830 is connected to the input side termination surface of the first slab 820a of the second AWG 820-k.
  • An output waveguide 221-k is connected to the output side termination surface of the second slab 810c of the second AWG 820-k.
  • the first AWG 810 has the function of branching the input optical signal to different positions depending on the wavelength, but at the same time, the first AWG 810 has the function of branching the input optical signal to different positions depending on the input position. has.
  • the wavelength of the optical signal propagated through subset 1 to k of the connection circuit 830 and input to the second AWGs 820-1 to 820-k changes.
  • the position where the optical signal is multiplexed in the second AWGs 820-1 to 820-k also changes. Therefore, the optical signal processing device 800 may have a configuration in which a plurality of input waveguides are connected to the first AWG 810 and a plurality of output waveguides are connected to each of the second AWGs 820-1 to 820-k.
  • the AWG 810, AWG 820, connection circuit 830, and output waveguide 821 in the optical signal processing device 800 correspond to the AWG 210, AWG 220, connection circuit 230, and output waveguide 221 in the optical signal processing device 200 described above, so detailed explanations will be given below. The explanation will be omitted.
  • the wavelength ⁇ 1 to wavelength ⁇ k in the description of this modification is expanded from the wavelength band ⁇ 1 to the wavelength band ⁇ k , and a plurality of wavelengths (wavelengths ⁇ 1- 1 , ⁇ 1-2 , ...), multiple wavelengths included in the wavelength band ⁇ 2 (wavelengths ⁇ 2-1 , ⁇ 2-2 , ...), ... multiple wavelengths included in the wavelength band ⁇ k
  • the optical signal processing device may be configured to output wavelengths (wavelengths ⁇ k-1 , ⁇ k-2 , . . . ) from a plurality of output waveguides, respectively.

Abstract

Provided is an optical signal processing device having low crosstalk. An optical signal processing device according to one embodiment of the present disclosure comprises: at least one first input-output waveguide; a wavelength demultiplexer that is connected to the first input-output waveguide; a plurality of wavelength multiplexers; at least one second input-output waveguide that is connected to each of the plurality of wavelength multiplexers; and a connection circuit that connects the wavelength demultiplexer and the plurality of wavelength multiplexers. The connection circuit includes a plurality of waveguides. One end of each of the plurality of waveguides in the connection circuit is connected to the wavelength demultiplexer. The other ends of the plurality of waveguides in the connection circuit are divided into a plurality of subsets. The other end of one or a plurality of adjacent waveguides in a kth (k is the integer 2) subset among the plurality of subsets is connected to the kth wavelength multiplexer among the plurality of wavelength multiplexers.

Description

光信号処理装置Optical signal processing device
 本開示は、光信号処理装置に関し、より具体的には複数のアレイ導波路回折格子を有する光信号処理装置に関する。 The present disclosure relates to an optical signal processing device, and more specifically to an optical signal processing device having a plurality of arrayed waveguide gratings.
 波長多重光通信の更なる大容量化に伴い、これを支える光波長合分波回路や光スイッチ回路等、光導波路デバイスに関する研究開発が盛んに行われている。光波長合分波回路は光信号の合分波に使用され、その合分波性能を決定するガードバンド幅の狭窄化は、光通信の性能を決定する重要な課題である。 With the further increase in capacity of wavelength division multiplexing optical communications, research and development on optical waveguide devices such as optical wavelength multiplexing/demultiplexing circuits and optical switch circuits that support this is being actively conducted. Optical wavelength multiplexing and demultiplexing circuits are used for multiplexing and demultiplexing optical signals, and narrowing the guard band width, which determines the multiplexing and demultiplexing performance, is an important issue that determines the performance of optical communications.
 2つのアレイ導波路回折格子(Arrayed waveguide gratings:AWG)を縦続に接続した構成の高性能の光波長合分波回路(以下、「タンデムAWG」ともいう)が知られている(例えば、非特許文献1参照)。タンデムAWGは、狭ガードバンドである、すなわち、透過スペクトル特性が高矩形であるという利点がある。 A high-performance optical wavelength multiplexing/demultiplexing circuit (hereinafter also referred to as "tandem AWG") that has a configuration in which two arrayed waveguide gratings (AWG) are connected in cascade is known (for example, a non-patent (See Reference 1). The tandem AWG has the advantage of a narrow guard band, that is, a highly rectangular transmission spectrum characteristic.
 タンデムAWGは、第1のAWGにおいて光の波長を狭い間隔でサンプリングして、第2のAWGの入力位置を調整することで当該第2のAWGの任意の出力に所望の波長の光を透過させる機能を有している。したがって、タンデムAWGは、ガードバンド幅の狭い高矩形な透過スペクトル特性を有する光波長分波フィルタとして有効である。光線逆進の原理より、タンデムAWGは、光波長合波フィルタとしても有効である。 A tandem AWG samples the wavelength of light in a first AWG at narrow intervals, and by adjusting the input position of the second AWG, light of a desired wavelength is transmitted to an arbitrary output of the second AWG. It has a function. Therefore, the tandem AWG is effective as an optical wavelength division filter having narrow guard band width and highly rectangular transmission spectrum characteristics. Based on the principle of backward propagation of light, tandem AWGs are also effective as optical wavelength multiplexing filters.
 タンデムAWGにおいて、第1のAWGと第2のAWGとは接続回路において接続される必要がある。接続回路を介して光信号が第1のAWGの出力から第2のAWGの入力へ伝播するまで、干渉特性の劣化を防ぐために光波の位相差が保持される必要がある。 In a tandem AWG, the first AWG and the second AWG need to be connected through a connection circuit. Until the optical signal propagates from the output of the first AWG to the input of the second AWG via the connection circuit, it is necessary to maintain the phase difference of the optical waves in order to prevent deterioration of the interference characteristics.
 第1のAWGおよび第2のAWGはそれぞれ、光路長差を有する複数の導波路で構成されたアレイ導波路を含む。第1のAWGと第2のAWGとを接続する接続回路もまた複数の導波路で構成されている。各々が複数の導波路で構成された第1のAWG、第2のAWG、および接続回路を備えたタンデムAWGにおいて、第1のAWGの入力から第2のAWGの出力に至るまで間には経路長の異なる多数の光の経路が存在する。第1のAWG、第2のAWG、および接続回路の各々で生じる光波の位相誤差は、第1のAWG、第2のAWG、および接続回路の各々における干渉特性を劣化させる。干渉特性を劣化は、光波長合分波回路の光学特性の一つであるクロストークノイズを増大し、光信号の伝送品質の劣化につながる要因となる。 The first AWG and the second AWG each include an array waveguide composed of a plurality of waveguides having different optical path lengths. A connection circuit connecting the first AWG and the second AWG is also composed of a plurality of waveguides. In a tandem AWG including a first AWG, a second AWG, and a connection circuit, each of which is composed of a plurality of waveguides, there is a path between the input of the first AWG and the output of the second AWG. There are many light paths of different lengths. The phase error of light waves occurring in each of the first AWG, second AWG, and connection circuit deteriorates the interference characteristics in each of the first AWG, second AWG, and connection circuit. Deterioration of interference characteristics increases crosstalk noise, which is one of the optical characteristics of optical wavelength multiplexing/demultiplexing circuits, and becomes a factor that leads to deterioration of optical signal transmission quality.
 本開示は、このような問題に鑑みなされたものであり、その目的とするところは、クロストークノイズの低い光信号処理装置を提供することにある。 The present disclosure has been made in view of such problems, and its purpose is to provide an optical signal processing device with low crosstalk noise.
 このような目的を達成するために、本開示の一実施形態に係る光信号処理装置は、少なくとも1つの第1の入出力導波路と、第1の入出力導波路と接続された波長分波器と、複数の波長合波器と、複数の波長合波器の各々と接続された少なくとも1つの第2の入出力導波路と、波長分波器と複数の波長合波器とを接続する接続回路とを備え、接続回路は複数の導波路を含み、接続回路における複数の導波路の一端は波長分波器に接続されており、接続回路における複数の導波路の他端は複数のサブセットに分割され、複数のサブセットのうちのk番目(kは2の整数)のサブセットの1つまたは隣接する複数の導波路の他端は、複数の波長合波器のうちのk番目の波長合波器に接続されている。 In order to achieve such an objective, an optical signal processing device according to an embodiment of the present disclosure includes at least one first input/output waveguide and a wavelength demultiplexer connected to the first input/output waveguide. a plurality of wavelength multiplexers, at least one second input/output waveguide connected to each of the plurality of wavelength multiplexers, a wavelength demultiplexer and a plurality of wavelength multiplexers; a connection circuit, the connection circuit includes a plurality of waveguides, one end of the plurality of waveguides in the connection circuit is connected to a wavelength demultiplexer, and the other end of the plurality of waveguides in the connection circuit is connected to a plurality of subsets. The other end of one of the k-th subset (k is an integer of 2) of the plurality of subsets or the adjacent plurality of waveguides is connected to the k-th wavelength multiplexer of the plurality of wavelength multiplexers. connected to the wave generator.
 以上説明したように、本開示の一実施形態によれば、接続回路を介して、複数の波長合波器を波長分波器に対して並列に接続することで、クロストークノイズ値の低い光波長合分波回路を提供することが可能となる。 As described above, according to an embodiment of the present disclosure, by connecting a plurality of wavelength multiplexers in parallel to a wavelength demultiplexer via a connection circuit, light with a low crosstalk noise value is It becomes possible to provide a wavelength multiplexing/demultiplexing circuit.
タンデムAWGを示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a tandem AWG. 本開示の一実施形態に係る光信号処理装置を示す概略構成図であり、(a)は全体構成を示す図、(b)は波長分波器の構成を示す図、(c)は波長合波器の構成を示す図である。1 is a schematic configuration diagram showing an optical signal processing device according to an embodiment of the present disclosure, in which (a) is a diagram showing the overall configuration, (b) is a diagram showing the configuration of a wavelength demultiplexer, and (c) is a diagram showing the configuration of a wavelength demultiplexer. It is a figure showing the composition of a wave device. 本開示の一実施形態に係る光信号処理装置の波長分波器へ入力する光を説明する図である。FIG. 2 is a diagram illustrating light input to a wavelength demultiplexer of an optical signal processing device according to an embodiment of the present disclosure. 本開示の一実施形態に係る光信号処理装置の波長分波器を伝播する光を説明する図である。FIG. 2 is a diagram illustrating light propagating through a wavelength demultiplexer of an optical signal processing device according to an embodiment of the present disclosure. 本開示の一実施形態に係る光信号処理装置の波長分波器を伝播する光を説明する図である。FIG. 2 is a diagram illustrating light propagating through a wavelength demultiplexer of an optical signal processing device according to an embodiment of the present disclosure. 本開示の一実施形態に係る光信号処理装置の波長合波器へ入力する光を説明する図である。FIG. 2 is a diagram illustrating light input to a wavelength multiplexer of an optical signal processing device according to an embodiment of the present disclosure. 本開示の一実施形態に係る光信号処理装置の波長合波器へ入力する光を説明する図であり、(a)は波長合波器へ入力する光を説明する図であり、(b)は波長合波器の透過特性を説明する図である。FIG. 2 is a diagram illustrating light input to the wavelength multiplexer of the optical signal processing device according to an embodiment of the present disclosure, (a) is a diagram illustrating light input to the wavelength multiplexer, and (b) is a diagram illustrating light input to the wavelength multiplexer. FIG. 2 is a diagram illustrating the transmission characteristics of a wavelength multiplexer. 本開示の一実施形態に係る光信号処理装置の変形形態を示す概略構成図であり、(a)は全体構成を示す図、(b)は波長分波器の構成を示す図、(c)は波長合波器の構成を示す図である。FIG. 3 is a schematic configuration diagram showing a modified form of an optical signal processing device according to an embodiment of the present disclosure, in which (a) is a diagram showing the overall configuration, (b) is a diagram showing the configuration of a wavelength demultiplexer, (c) FIG. 2 is a diagram showing the configuration of a wavelength multiplexer.
 以下、図面を参照して本開示の種々の実施形態に係る光信号処理装置を説明する。同一または類似の符号は同一または類似の要素を示し、繰り返しの説明を省略する場合がある。以下の説明における数値および材料は例示であり、本開示の趣旨を逸脱しない範囲で他の数値および材料に替えて本開示の実施形態に係る光信号処理装置を実施することができる。
本開示の実施形態に係る光信号処理装置の説明に先立って、タンデムAWGについて説明する。
Optical signal processing devices according to various embodiments of the present disclosure will be described below with reference to the drawings. The same or similar symbols indicate the same or similar elements, and repeated description may be omitted. Numerical values and materials in the following description are illustrative, and the optical signal processing device according to the embodiment of the present disclosure can be implemented using other numerical values and materials without departing from the spirit of the present disclosure.
Prior to describing an optical signal processing device according to an embodiment of the present disclosure, a tandem AWG will be described.
(タンデムAWG)
 図1は、タンデムAWGの概略構成を示す概略構成図である。図1に示すようにタンデムAWG100は、第1のAWG110と、第2のAWG120と、第1のAWG110の入力に接続された1つの入力導波路111と、第2のAWG120の出力に接続された2つの出力導波路121-1,121-2と、第1のAWG110の出力と第2のAWG120の入力とを接続する接続回路130とを備えている。タンデムAWG100は、入力導波路111を介して入力された波長多重信号を波長分波して、波長多重信号に含まれた波長λの光信号および波長λの光信号を2つの出力導波路121-1,121-2からそれぞれ出力するように構成されている。
(Tandem AWG)
FIG. 1 is a schematic configuration diagram showing a schematic configuration of a tandem AWG. As shown in FIG. 1, the tandem AWG 100 includes a first AWG 110, a second AWG 120, one input waveguide 111 connected to the input of the first AWG 110, and one input waveguide 111 connected to the output of the second AWG 120. It includes two output waveguides 121-1 and 121-2, and a connection circuit 130 that connects the output of the first AWG 110 and the input of the second AWG 120. The tandem AWG 100 wavelength-demultiplexes a wavelength-multiplexed signal input via an input waveguide 111, and sends an optical signal with a wavelength λ 1 and an optical signal with a wavelength λ 2 included in the wavelength-multiplexed signal to two output waveguides. It is configured to output from each of 121-1 and 121-2.
 タンデムAWG100において、第1のAWG110は、入力導波路111を介して入力された波長多重信号(波長λの光信号および波長λの光信号)が、波長に応じて第1のAWG110の異なる位置に分波されるように構成されている。 In the tandem AWG 100, the first AWG 110 receives a wavelength-multiplexed signal (an optical signal with a wavelength λ 1 and an optical signal with a wavelength λ 2) inputted via the input waveguide 111, and separates the wavelength-multiplexed signal (an optical signal with a wavelength λ 1 and an optical signal with a wavelength λ 2 ) into different wavelengths of the first AWG 110 depending on the wavelength. It is configured to be split into different positions.
 第2のAWG120は、入力された複数の波長のうちの同一の波長の光同士を波長に応じて第2のAWG120の異なる位置に合波するように構成されている。 The second AWG 120 is configured to multiplex lights of the same wavelength out of a plurality of input wavelengths at different positions of the second AWG 120 depending on the wavelength.
 接続回路130を構成する複数の導波路の一端は、第1のAWG110の波長λの光信号および波長λの光信号が分波される位置に接続されている。接続回路130を構成する複数の導波路の他端は、第2のAWG120の波長λの光信号が入力される位置と波長λの光信号が入力される位置とを離間するためのギャップを有して、第2のAWG120と接続されている。 One end of the plurality of waveguides constituting the connection circuit 130 is connected to a position of the first AWG 110 where the optical signal of wavelength λ 1 and the optical signal of wavelength λ 2 are demultiplexed. The other ends of the plurality of waveguides constituting the connection circuit 130 are provided with a gap for separating the position of the second AWG 120 where the optical signal of wavelength λ 1 is inputted and the position where the optical signal of wavelength λ 2 is inputted. and is connected to the second AWG 120.
 2つの出力導波路121-1,121-2は、第2のAWG120の光が合波される位置にそれぞれ接続されている。 The two output waveguides 121-1 and 121-2 are each connected to a position where the light from the second AWG 120 is multiplexed.
 図1に示すタンデムAWG100において、波長λの光信号および波長λの光信号はそれぞれ、第1のAWG110の異なる位置に分波される。波長λの光信号は、第1のAWG110の上側位置に分波され、接続回路130を構成する複数の導波路のうちの当該位置において第1のAWG110と接続された導波路に結合して第2のAWG120まで伝播する。波長λの光信号は第1のAWG110の下側の位置に分波され、接続回路130を構成する複数の導波路のうちの当該位置において第1のAWG110と接続された導波路に結合して第2のAWG120まで伝播する。第2のAWG120の異なる位置へ入力された波長λの光信号および波長λの光信号はそれぞれ、第2のAWG120の異なる位置に合波される。波長λの光信号同士は、第2のAWG120の上側の位置に合波され、当該位置において第2のAWG120と接続された出力導波路121-1に結合し出力される。波長λの光信号同士は、第2のAWG120の下側の位置に合波され、当該位置において第2のAWG120と接続された出力導波路121-2に結合し出力される。 In the tandem AWG 100 shown in FIG. 1, an optical signal with a wavelength λ 1 and an optical signal with a wavelength λ 2 are each demultiplexed to different positions of the first AWG 110. The optical signal with wavelength λ 1 is branched to a position above the first AWG 110, and coupled to a waveguide connected to the first AWG 110 at that position among the plurality of waveguides forming the connection circuit 130. The signal propagates to the second AWG 120. The optical signal with wavelength λ 2 is branched to a position below the first AWG 110 and coupled to a waveguide connected to the first AWG 110 at that position among the plurality of waveguides forming the connection circuit 130. and propagates to the second AWG 120. The optical signal of wavelength λ 1 and the optical signal of wavelength λ 2 input to different positions of the second AWG 120 are multiplexed to different positions of the second AWG 120, respectively. The optical signals of wavelength λ 1 are multiplexed at a position above the second AWG 120, and coupled to the output waveguide 121-1 connected to the second AWG 120 at this position and output. The optical signals of wavelength λ 2 are multiplexed at a position below the second AWG 120, and coupled to the output waveguide 121-2 connected to the second AWG 120 at that position and output.
 上述した構成のタンデムAWG100は、第1のAWG110において光の波長を狭い間隔でサンプリングして、第2のAWG120の入力位置を調整することで第2のAWG120の任意の位置へ所望の波長の光を透過させる機能を有している。 The tandem AWG 100 configured as described above samples the wavelength of light at narrow intervals in the first AWG 110 and adjusts the input position of the second AWG 120 to send light of a desired wavelength to an arbitrary position of the second AWG 120. It has the function of transmitting.
 第2のAWG120との接続位置における接続回路130を構成する導波路のギャップは、ガードバンドに相当する。第1のAWG110の波長分波機能の分解能が高いほど、ギャップを小さくできる、すなわち、ガードバンドを削減できる。タンデムAWG100においては、第1のAWG110の分解能を高くすることで、狭ガードバンド幅の高矩形な透過スペクトル特性を実現できる。一方、ガードバンドの削減は、クロストークノイズの増大を伴い、光信号の伝送品質の劣化につながる要因となる。 The gap of the waveguide forming the connection circuit 130 at the connection position with the second AWG 120 corresponds to a guard band. The higher the resolution of the wavelength demultiplexing function of the first AWG 110, the smaller the gap can be, that is, the guard band can be reduced. In the tandem AWG 100, by increasing the resolution of the first AWG 110, a highly rectangular transmission spectrum characteristic with a narrow guard band width can be achieved. On the other hand, the reduction of the guard band is accompanied by an increase in crosstalk noise, which becomes a factor that leads to deterioration of the transmission quality of optical signals.
 以下、本開示の種々の実施形態にかかる光信号処理装置を説明する。本開示の一実施形態に係る光信号処理装置は、波長分波器を構成する第1のAWGと、複数の波長合波器を構成する複数の第2のAWGと、波長分波器と複数の波長合波器とを接続する接続回路とを備える。接続回路は複数の導波路を含む。接続回路における複数の導波路の一端は波長分波器の出力に接続されている。接続回路における複数の導波路の他端は複数のサブセットに分割され、k番目(kは2の整数)のサブセットのうちの1つまたは隣接する複数の導波路の他端は、複数の波長合波器のうちのk番目の波長合波器の入力に接続されている。本開示の一実施形態によれば、クロストークノイズの低い光信号処理装置が提供される。 Hereinafter, optical signal processing devices according to various embodiments of the present disclosure will be described. An optical signal processing device according to an embodiment of the present disclosure includes a first AWG that configures a wavelength demultiplexer, a plurality of second AWGs that configure a plurality of wavelength multiplexers, a wavelength demultiplexer, and a plurality of second AWGs that configure a wavelength demultiplexer. and a connection circuit for connecting the wavelength multiplexer. The connection circuit includes a plurality of waveguides. One end of the plurality of waveguides in the connection circuit is connected to the output of the wavelength demultiplexer. The other ends of the plurality of waveguides in the connection circuit are divided into a plurality of subsets, and the other ends of one of the k-th (k is an integer of 2) subset or the adjacent plurality of waveguides are divided into a plurality of subsets. It is connected to the input of the k-th wavelength multiplexer among the wavelength multiplexers. According to one embodiment of the present disclosure, an optical signal processing device with low crosstalk noise is provided.
(第1の実施形態)
 図2を参照して第1の実施形態に係る光信号処理装置を説明する。図2(a)は光信号処理装置200の全体構成を示す図である。図2(a)に示すように光信号処理装置200は、波長分波器を構成する第1のAWG210と、2つの波長合波器を構成する2つの第2のAWG220-1,220-1と、第1のAWG110の入力に接続された1つの入力導波路111と、一方の第2のAWG120-1の出力に接続された出力導波路221-1と、他方の第2のAWG120-2の出力に接続された出力導波路221-2と、第1のAWG110の出力と2つの第2のAWG220-1,220-2の各々の入力とを接続する接続回路230とを備えている。光信号処理装置200は、図1に示したタンデムAWG100と同様に、入力導波路111を介して入力された波長多重信号を波長分波して、波長多重信号に含まれた波長λの光信号および波長λの光信号を2つの出力導波路221-1,221-2からそれぞれ出力するように構成されている。
(First embodiment)
The optical signal processing device according to the first embodiment will be described with reference to FIG. 2. FIG. 2(a) is a diagram showing the overall configuration of the optical signal processing device 200. As shown in FIG. 2(a), the optical signal processing device 200 includes a first AWG 210 that constitutes a wavelength demultiplexer, and two second AWGs 220-1 and 220-1 that constitute two wavelength multiplexers. , one input waveguide 111 connected to the input of the first AWG 110, one output waveguide 221-1 connected to the output of the second AWG 120-1, and the other second AWG 120-2. and a connection circuit 230 that connects the output of the first AWG 110 and the input of each of the two second AWGs 220-1 and 220-2. Similar to the tandem AWG 100 shown in FIG. 1, the optical signal processing device 200 wavelength-demultiplexes the wavelength-multiplexed signal input via the input waveguide 111, and generates light with wavelength λ 1 included in the wavelength-multiplexed signal. It is configured to output a signal and an optical signal of wavelength λ 2 from two output waveguides 221-1 and 221-2, respectively.
 なお、光線逆進の原理より、光信号処理装置200は、入力された波長λの光信号および波長λの光信号を合波して波長多重信号を出力することもできる。すなわち、入力導波路111、出力導波路221-1,221-2はそれぞれ入出力導波路を構成する。また、AWG210、220は波長合波器を構成する。 Note that, based on the principle of light beam reversal, the optical signal processing device 200 can also combine the input optical signal with wavelength λ 1 and the optical signal with wavelength λ 2 and output a wavelength multiplexed signal. That is, the input waveguide 111 and the output waveguides 221-1 and 221-2 each constitute an input/output waveguide. Further, the AWGs 210 and 220 constitute a wavelength multiplexer.
 図2(b)は波長分波器を構成する第1のAWG210の構成を示す図である。図2(b)に示すように、AWG210は、第1のスラブ210aと、アレイ導波路210bと、第2のスラブ210cとを備える。アレイ導波路210bは導波路長差を有する複数の導波路で構成されている。アレイ導波路210bは第1のスラブ210aの出力側の終端面と第2のスラブ210cの入力側の終端面と接続している。第1のスラブ210aの入力側の終端面に入力導波路111が接続される。第2のスラブ210cの出力側の終端面に接続回路230が接続される。 FIG. 2(b) is a diagram showing the configuration of the first AWG 210 that constitutes the wavelength demultiplexer. As shown in FIG. 2(b), the AWG 210 includes a first slab 210a, an arrayed waveguide 210b, and a second slab 210c. The array waveguide 210b is composed of a plurality of waveguides having different waveguide lengths. The array waveguide 210b is connected to the output side termination surface of the first slab 210a and the input side termination surface of the second slab 210c. An input waveguide 111 is connected to the input side termination surface of the first slab 210a. A connection circuit 230 is connected to the output side termination surface of the second slab 210c.
 図2(c)は波長合波器を構成する第2のAWG220(220-1または220-2)の構成を示す図である。図2(c)に示すように、AWG220は、第1のスラブ220aと、アレイ導波路220bと、第2のスラブ220cとを備える。アレイ導波路220bは導波路長差を有する複数の導波路で構成されている。アレイ導波路220bは第1のスラブ220aの出力側の終端面と第2のスラブ220cの入力側の終端面と接続している。第1のスラブ220aの入力側の終端面に接続回路230が接続される。第2のスラブ210cの出力側の終端面に出力導波路221が接続される。 FIG. 2(c) is a diagram showing the configuration of the second AWG 220 (220-1 or 220-2) that constitutes the wavelength multiplexer. As shown in FIG. 2(c), the AWG 220 includes a first slab 220a, an arrayed waveguide 220b, and a second slab 220c. The array waveguide 220b is composed of a plurality of waveguides having different waveguide lengths. The array waveguide 220b is connected to the output side termination surface of the first slab 220a and the input side termination surface of the second slab 220c. A connection circuit 230 is connected to the input-side termination surface of the first slab 220a. An output waveguide 221 is connected to the output side termination surface of the second slab 210c.
 光信号処理装置200において、第1のAWG210は、入力導波路111を介して入力された波長多重信号(波長λの光信号および波長λの光信号)が、波長に応じて第1のAWG210の異なる位置に分波されるように構成されている。 In the optical signal processing device 200, the first AWG 210 converts the wavelength-multiplexed signal (the optical signal with the wavelength λ 1 and the optical signal with the wavelength λ 2 ) inputted via the input waveguide 111 into the first AWG 210 according to the wavelength. The signal is configured to be split into different positions of the AWG 210.
 2つの第2のAWG220-1,220-2の各々は、入力された同一の波長の光同士を合波するように構成されている。第2のAWG220は、波長が同一の光を入力し合波する点で、波長が異なる複数の光を入力し同一の波長の光同士を合波する図1のAWG120と異なる。1つの波長の光が入出力する第2のAWG220の共振周波数間隔(free spectral range:FSR)は、複数の波長の光が入出力する第1のAWG210および図1の第2のAWG120のFSRよりも小さくできる。 Each of the two second AWGs 220-1 and 220-2 is configured to multiplex input lights of the same wavelength. The second AWG 220 differs from the AWG 120 in FIG. 1 in that it inputs and multiplexes light with the same wavelength and multiplexes the lights with the same wavelength. The free spectral range (FSR) of the second AWG 220, into which light of one wavelength is input/output, is greater than the FSR of the first AWG 210, into which light of multiple wavelengths is input/output, and the second AWG 120 in FIG. can also be made smaller.
 接続回路230を構成する複数の導波路は、2つのサブセットに分割されている。各サブセットには、1つまたは隣接する複数の導波路が含まれる。図2(a)における接続回路230の上側をサブセット1、下側をサブセット2としている。サブセット1における導波路の一端は、第1のAWG210において波長λの光信号が分波される位置(第2のスラブ210cの出力側の端面の上側の位置)に接続されている。サブセット2における導波路の一端は、第1のAWG210において波長λの光信号が分波される位置(第2のスラブ210cの出力側の端面の下側の位置)に接続されている。一方、サブセット1における導波路の他端は、第2のAWG220-1(第1のスラブ220aの入力側の端面)に接続されている。サブセット2における導波路の他端は第2のAWG220-2(第1のスラブ220aの入力側の端面)に接続されている。 The plurality of waveguides making up the connection circuit 230 are divided into two subsets. Each subset includes one or more adjacent waveguides. The upper side of the connection circuit 230 in FIG. 2A is a subset 1, and the lower side is a subset 2. One end of the waveguide in subset 1 is connected to a position in the first AWG 210 where the optical signal of wavelength λ 1 is demultiplexed (a position above the output side end face of the second slab 210c). One end of the waveguide in subset 2 is connected to a position in the first AWG 210 where the optical signal of wavelength λ 2 is demultiplexed (a position below the output side end face of the second slab 210c). On the other hand, the other end of the waveguide in subset 1 is connected to the second AWG 220-1 (the end face on the input side of the first slab 220a). The other end of the waveguide in subset 2 is connected to the second AWG 220-2 (the end face on the input side of the first slab 220a).
 図2に示す光信号処理装置200において、波長λの光信号および波長λの光信号は入力導波路111を介して第1のAWG210の第1スラブ210aへ入力される。図3は、第1スラブ210aと入力導波路111との境界の位置における光信号の強度分布を示す図である。図3において、入力導波路111が接続された第1スラブ210aの位置をxとしている。図3に示す強度分布は単色光の強度分布である。入力導波路111を介して第1のAWG210へ入力される波長多重信号に複数の波長の光信号が含まれる場合は、各波長の光信号が図3と同様の強度分布を有することになる。 In the optical signal processing device 200 shown in FIG. 2, an optical signal with a wavelength λ 1 and an optical signal with a wavelength λ 2 are input to the first slab 210a of the first AWG 210 via the input waveguide 111. FIG. 3 is a diagram showing the intensity distribution of the optical signal at the boundary between the first slab 210a and the input waveguide 111. In FIG. 3, the position of the first slab 210a to which the input waveguide 111 is connected is defined as x0 . The intensity distribution shown in FIG. 3 is that of monochromatic light. When the wavelength multiplexed signal input to the first AWG 210 via the input waveguide 111 includes optical signals of a plurality of wavelengths, the optical signals of each wavelength have an intensity distribution similar to that shown in FIG. 3.
 第1のAWG210において、波長λの光信号および波長λの光信号はそれぞれ、伝播軸に直交する方向に広がりながら第1スラブ210aを伝播する。図4は、第1スラブ210aとアレイ導波路210bとの境界の位置における光信号の強度分布を示す図である。図4において濃い色で示した光信号の強度が現れる第1のスラブ210aの位置にアレイ導波路210bが接続されている。 In the first AWG 210, the optical signal with the wavelength λ 1 and the optical signal with the wavelength λ 2 each propagate through the first slab 210a while spreading in a direction perpendicular to the propagation axis. FIG. 4 is a diagram showing the intensity distribution of the optical signal at the boundary between the first slab 210a and the arrayed waveguide 210b. The array waveguide 210b is connected to the position of the first slab 210a where the intensity of the optical signal shown in dark color in FIG. 4 appears.
 第1のAWG210において、アレイ導波路210bを構成する導波路長差を有する複数の導波路を介して第2のスラブ210cへ入力された波長λの複数の光信号は、伝播した導波路の長さに応じた異なる位相を有している。同様に第2のスラブ210cへ入力された波長λの複数の光信号も伝播した導波路の長さに応じた位相を有している。第1のAWG210へ入力された各波長の光信号は、波長に応じた位置に合波される。具体的には、波長λの光信号同士が干渉して合波されて、AWG210(第2のスラブ210c)の上側の位置に出現する。波長λの光信号同士は干渉して合波されて、AWG210(第2のスラブ210c)の下側の位置に出現する。波長λの光信号が出現する位置に接続回路230のサブセット1の1つまたは複数の導波路が接続される。また、波長λの光信号が出現する位置に接続回路230のサブセット2の1つまたは複数の導波路が接続される。 In the first AWG 210, a plurality of optical signals with a wavelength λ 1 input to the second slab 210c via a plurality of waveguides having different waveguide lengths constituting the array waveguide 210b are transmitted through the waveguides through which they propagated. It has different phases depending on its length. Similarly, the plurality of optical signals of wavelength λ 2 input to the second slab 210c also have a phase depending on the length of the waveguide through which they propagate. The optical signals of each wavelength input to the first AWG 210 are multiplexed at a position according to the wavelength. Specifically, optical signals of wavelength λ 1 interfere with each other, are combined, and appear above the AWG 210 (second slab 210c). The optical signals of wavelength λ 2 interfere with each other, are combined, and appear at a position below the AWG 210 (second slab 210c). One or more waveguides of subset 1 of connection circuit 230 are connected to the position where the optical signal of wavelength λ 1 appears. Furthermore, one or more waveguides of subset 2 of connection circuit 230 are connected to the position where the optical signal of wavelength λ 2 appears.
 図5は、第1のAWG210の第2のスラブ210cと接続回路230との境界の位置における透過損失を示す図である。図5に示すように、第1のAWG210で発生する位相誤差により、クロストークノイズが発生する。したがって、第2のスラブ210cのクロストークが高くなる位置に、接続回路230を構成する導波路が接続されないように接続回路230を構成することが望ましい。これにより、接続回路230のサブセット1とサブセット2の間の位置に発生するクロストークは、サブセットを設けない場合と比較して低減される。 FIG. 5 is a diagram showing the transmission loss at the boundary between the second slab 210c of the first AWG 210 and the connection circuit 230. As shown in FIG. 5, crosstalk noise occurs due to the phase error occurring in the first AWG 210. Therefore, it is desirable to configure the connection circuit 230 so that the waveguide forming the connection circuit 230 is not connected to a position where the crosstalk of the second slab 210c is high. As a result, crosstalk occurring between subset 1 and subset 2 of connection circuit 230 is reduced compared to the case where no subset is provided.
 図6は、第1のAWG210のアレイ導波路210bの実効屈折率に10-5程度のランダムなばらつきが存在すると仮定したときの、任意の整数k(k=1,2)について、接続回路230のサブセットkにおける任意の1つの導波路にλと異なる波長の光信号が結合した場合の接続回路230のサブセットkの光信号強度分布である。図6における各破線は、サブセットkに含まれる各導波路に対応する。図6から解るように、接続回路230のサブセットk内のクロストークノイズは約-40dBとなることがわかる。 FIG. 6 shows the connection circuit 230 for an arbitrary integer k (k=1, 2), assuming that there is a random variation of about 10 −5 in the effective refractive index of the arrayed waveguide 210b of the first AWG 210. This is the optical signal intensity distribution of subset k of connection circuit 230 when an optical signal of a wavelength different from λ k is coupled to any one waveguide in subset k of λ k . Each broken line in FIG. 6 corresponds to each waveguide included in subset k. As can be seen from FIG. 6, the crosstalk noise within subset k of connection circuit 230 is approximately −40 dB.
 図7(a)は、k=2のときの第2のAWG220-2への入力されるλ1(λk=2と異なる波長)の光信号の強度分布である。λ1の光信号の強度のピークは約-40dBである。図7(b)は、第2のAWG220-2の第2のスラブ210cと接続回路230のサブセット2の導波路との境界の位置における透過損失を示す図である。接続回路230のサブセット2へのクロストークは-80db以下となることがわかる。 FIG. 7(a) shows the intensity distribution of the optical signal of λ1 (wavelength different from λ k=2 ) input to the second AWG 220-2 when k=2. The peak intensity of the optical signal at λ1 is approximately -40 dB. FIG. 7B is a diagram showing the transmission loss at the boundary between the second slab 210c of the second AWG 220-2 and the waveguide of the subset 2 of the connection circuit 230. It can be seen that the crosstalk of connection circuit 230 to subset 2 is −80 db or less.
 このように、光信号処理装置200において、波長λの光信号および波長λの光信号はそれぞれ、第1のAWG210(第2スラブ210c)の異なる位置に分波される。波長λの光信号は、第1のAWG210(第2のスラブ210c)の上側位置に分波され、接続回路230を構成する複数の導波路のうちの当該位置において第1のAWG210と接続されたサブセット1の導波路に結合して第2のAWG220-1まで伝播する。波長λの光信号は第1のAWG210(第2のスラブ210c)の下側の位置に分波され、接続回路130を構成する複数の導波路のうちの当該位置において第1のAWG110と接続されたサブセット2の導波路に結合して第2のAWG120まで伝播する。 In this way, in the optical signal processing device 200, the optical signal with the wavelength λ 1 and the optical signal with the wavelength λ 2 are each demultiplexed to different positions of the first AWG 210 (second slab 210c). The optical signal of wavelength λ 1 is branched to the upper position of the first AWG 210 (second slab 210c), and connected to the first AWG 210 at that position among the plurality of waveguides that constitute the connection circuit 230. The signal is coupled to the waveguide of Subset 1 and propagated to the second AWG 220-1. The optical signal of wavelength λ 2 is branched to a position below the first AWG 210 (second slab 210c), and connected to the first AWG 110 at the corresponding position among the plurality of waveguides forming the connection circuit 130. The signal is coupled to the waveguide of Subset 2 and propagated to the second AWG 120.
 接続回路230を構成する複数の導波路は等しい長さ、または伝播する光信号の波長の整数倍の光波路長差を有している。これにより、光波の位相差が保持され、第1のAGWにける干渉特性の劣化が防止される。一方、接続回路230を構成する隣接する導波路の間隔は、一定であってもよく、一定でなくてもよい。たとえば、波長多重信号からC波長帯の波長λとL波長帯の波長λとを分波する場合は、接続回路230のサブセット1における隣接する導波路の間隔とサブセット2における隣接する導波路の間隔とを異ならせることができる。 The plurality of waveguides constituting the connection circuit 230 have the same length or have an optical wave length difference that is an integral multiple of the wavelength of the propagating optical signal. This maintains the phase difference of the light waves and prevents deterioration of the interference characteristics in the first AGW. On the other hand, the spacing between adjacent waveguides constituting the connection circuit 230 may or may not be constant. For example, when demultiplexing wavelength λ 1 in the C wavelength band and wavelength λ 2 in the L wavelength band from a wavelength multiplexed signal, the distance between adjacent waveguides in subset 1 of the connection circuit 230 and the distance between adjacent waveguides in subset 2 The intervals between the two can be made different.
 上述したように、第1のAWG210は、入力した光信号を、波長に応じて異なる位置に分波する機能を有するが、同時に、光信号を入力する位置に応じて異なる位置に分波する機能を有する。光信号を入力する位置を変えると、接続回路230のサブセット1,2を伝播して第2のAWG220-1,220-2へ入力する光信号の波長が変わる。さらに、光信号の波長を変えると、第2のAWG220-1,220-2において合波される位置も変わる。したがって、光信号処理装置200を、第1のAWG210に複数の入力導波路を接続するとともに、第2のAWG220-1,220-2の各々に複数の出力導波路を接続した構成としてもよい。 As described above, the first AWG 210 has the function of branching the input optical signal to different positions depending on the wavelength, but also has the function of branching the optical signal to different positions depending on the input position. has. When the input position of the optical signal is changed, the wavelength of the optical signal propagated through the subsets 1 and 2 of the connection circuit 230 and input to the second AWGs 220-1 and 220-2 changes. Furthermore, when the wavelength of the optical signal is changed, the position where the optical signals are multiplexed in the second AWGs 220-1 and 220-2 also changes. Therefore, the optical signal processing device 200 may have a configuration in which a plurality of input waveguides are connected to the first AWG 210 and a plurality of output waveguides are connected to each of the second AWGs 220-1 and 220-2.
 第1のAWG210、接続回路230、および第2のAGW220は、同一の平面光波回路(PLC: Planar Lightwave Circuit:PLC)上に構成されていてもよく、個別に作成された第1のAWG210および第2のAGW220が接続回路230で接続されていてもよい。 The first AWG 210, the connection circuit 230, and the second AGW 220 may be configured on the same planar lightwave circuit (PLC), or the first AWG 210 and the second AWG 220 may be configured on the same planar lightwave circuit (PLC). Two AGWs 220 may be connected by a connection circuit 230.
 本実施形態の第1のAWG210および第2のAGW220を構成する光波回路の材料は、光ファイバとの接続損失が小さい酸化シリコン(SiO)とすることができる。もしくは、光波回路の材料は、回路面積を小さくできるシリコン(Si)を用いてもよく、酸化シリコンとシリコンの中間の性能を有する窒化シリコン(Si)を用いてもよい。 The material of the light wave circuit constituting the first AWG 210 and the second AGW 220 of this embodiment can be silicon oxide (SiO 2 ), which has low connection loss with an optical fiber. Alternatively, as the material of the light wave circuit, silicon (Si), which can reduce the circuit area, may be used, or silicon nitride (Si 3 N 4 ), which has performance between silicon oxide and silicon, may be used.
 以上説明したように、本実施形態によれば、クロストークノイズの低い光信号処理装置200を提供することができる。本実施形態では、入力導波路111を介して入力された波長多重信号を波長分波して、波長多重信号に含まれた2つの波長λの光信号および波長λの光信号を2つの出力導波路221-1,221-2からそれぞれ出力する構成の光信号処理装置200を説明したが、波長多重信号からを3つ以上の異なる波長の光信号を3つ以上の出力導波路からそれぞれ出力する構成の光信号処理装置を構成することもできる。 As described above, according to this embodiment, it is possible to provide the optical signal processing device 200 with low crosstalk noise. In this embodiment, a wavelength multiplexed signal input through the input waveguide 111 is wavelength-demultiplexed, and two optical signals of wavelength λ 1 and wavelength λ 2 included in the wavelength multiplexed signal are separated into two optical signals. The optical signal processing device 200 is configured to output from the output waveguides 221-1 and 221-2, respectively. It is also possible to configure an optical signal processing device configured to output.
(変形形態1)
 図8を参照して本実施形態の光信号装置の変形形態を説明する。本変形形態の光信号処理装置は、波長多重信号からを3つ以上の異なる波長の光信号を3つ以上の出力導波路からそれぞれ出力する構成の光信号処理装置である。
(Variation 1)
A modification of the optical signal device of this embodiment will be described with reference to FIG. The optical signal processing device of this modification is configured to output optical signals of three or more different wavelengths from a wavelength multiplexed signal from three or more output waveguides.
 図8(a)は光信号処理装置800の全体構成を示す図である。図8(a)に示すように光信号処理装置800は、波長分波器を構成する第1のAWG810と、k個(kは3以上の整数)の波長合波器を構成する第2のAWG820-1,820-2,・・・820-kと、第1のAWG810の入力に接続された1つの入力導波路111と、k番目の第2のAWG820-kの出力に接続された出力導波路821-kと、第1のAWG110の出力とk個の第2のAWG820-1,820-2,・・・820-kの各々の入力とを接続する接続回路830とを備えている。光信号処理装置800は、図2に示した光信号処理装置200と同様に、入力導波路111を介して入力された波長多重信号を波長分波して、波長多重信号に含まれた波長λから波長λの光信号をk個の出力導波路221-1から221-kからそれぞれ出力するように構成されている。 FIG. 8(a) is a diagram showing the overall configuration of an optical signal processing device 800. As shown in FIG. 8(a), the optical signal processing device 800 includes a first AWG 810 that constitutes a wavelength demultiplexer, and a second AWG 810 that constitutes k (k is an integer of 3 or more) wavelength multiplexers. AWG820-1, 820-2,...820-k, one input waveguide 111 connected to the input of the first AWG810, and the output connected to the output of the kth second AWG820-k. It includes a waveguide 821-k and a connection circuit 830 that connects the output of the first AWG 110 and the input of each of the k second AWGs 820-1, 820-2, . . . 820-k. . The optical signal processing device 800, like the optical signal processing device 200 shown in FIG. It is configured to output optical signals having wavelengths λ k to λ k from k output waveguides 221-1 to 221-k, respectively.
 なお、光信号処理装置200と同様に、光線逆進の原理より、光信号処理装置800は、入力された波長λの光信号から波長λの光信号を合波して波長多重信号を出力することもできる。すなわち、入力導波路111、出力導波路821-1から821-kはそれぞれ入出力導波路を構成する。また、AWG810、820-1から820-kは波長合波器を構成する。 Note that, similarly to the optical signal processing device 200, based on the principle of light beam reversal, the optical signal processing device 800 multiplexes an optical signal of wavelength λ k from an input optical signal of wavelength λ 1 to generate a wavelength multiplexed signal. It can also be output. That is, the input waveguide 111 and the output waveguides 821-1 to 821-k each constitute an input/output waveguide. Further, AWGs 810 and 820-1 to 820-k constitute a wavelength multiplexer.
 図8(b)は波長分波器を構成する第1のAWG810の構成を示す図である。図2(b)に示した第1のAWG210と同様に、第1のAWG810は、第1のスラブ810aと、アレイ導波路810bと、第2のスラブ810cとを備える。アレイ導波路210bは導波路長差を有する複数の導波路で構成されている。アレイ導波路810bは第1のスラブ810aの出力側の終端面と第2のスラブ810cの入力側の終端面と接続している。第1のスラブ810aの入力側の終端面に入力導波路111が接続される。第2のスラブ810cの出力側の終端面に接続回路830のサブセット1からサブセットkが接続される。 FIG. 8(b) is a diagram showing the configuration of the first AWG 810 that constitutes the wavelength demultiplexer. Similar to the first AWG 210 shown in FIG. 2(b), the first AWG 810 includes a first slab 810a, an arrayed waveguide 810b, and a second slab 810c. The array waveguide 210b is composed of a plurality of waveguides having different waveguide lengths. The array waveguide 810b is connected to the output side termination surface of the first slab 810a and the input side termination surface of the second slab 810c. An input waveguide 111 is connected to the input side termination surface of the first slab 810a. Subsets 1 to k of the connection circuit 830 are connected to the output end surface of the second slab 810c.
 図8(c)は波長合波器を構成する第2のAWG820(820-1から820-k)の構成を示す図である。図8(c)に示すように、AWG820は、第1のスラブ820aと、アレイ導波路820bと、第2のスラブ820cとを備える。アレイ導波路820bは導波路長差を有する複数の導波路で構成されている。アレイ導波路820bは第1のスラブ820aの出力側の終端面と第2のスラブ820cの入力側の終端面と接続している。第2のAWG820-kの第1のスラブ820aの入力側の終端面に接続回路830のサブセットkが接続される。第2のAWG820-kの第2のスラブ810cの出力側の終端面に出力導波路221-kが接続される。 FIG. 8(c) is a diagram showing the configuration of the second AWG 820 (820-1 to 820-k) that constitutes the wavelength multiplexer. As shown in FIG. 8(c), the AWG 820 includes a first slab 820a, an arrayed waveguide 820b, and a second slab 820c. The array waveguide 820b is composed of a plurality of waveguides having different waveguide lengths. The array waveguide 820b is connected to the output side termination surface of the first slab 820a and the input side termination surface of the second slab 820c. A subset k of the connection circuit 830 is connected to the input side termination surface of the first slab 820a of the second AWG 820-k. An output waveguide 221-k is connected to the output side termination surface of the second slab 810c of the second AWG 820-k.
 上述したように、第1のAWG810は、入力した光信号を、波長に応じて異なる位置に分波する機能を有するが、同時に、光信号を入力する位置に応じて異なる位置に分波する機能を有する。光信号を入力する位置を変えると、接続回路830のサブセット1からkを伝播して第2のAWG820-1から820-kへ入力する光信号の波長が変わる。さらに、光信号の波長を変えると、第2のAWG820-1から820-kにおいて合波される位置も変わる。したがって、光信号処理装置800を、第1のAWG810に複数の入力導波路を接続するとともに、第2のAWG820-1から820-kの各々に複数の出力導波路を接続した構成としてもよい。 As described above, the first AWG 810 has the function of branching the input optical signal to different positions depending on the wavelength, but at the same time, the first AWG 810 has the function of branching the input optical signal to different positions depending on the input position. has. When the input position of the optical signal is changed, the wavelength of the optical signal propagated through subset 1 to k of the connection circuit 830 and input to the second AWGs 820-1 to 820-k changes. Furthermore, when the wavelength of the optical signal is changed, the position where the optical signal is multiplexed in the second AWGs 820-1 to 820-k also changes. Therefore, the optical signal processing device 800 may have a configuration in which a plurality of input waveguides are connected to the first AWG 810 and a plurality of output waveguides are connected to each of the second AWGs 820-1 to 820-k.
 光信号処理装置800におけるAWG810、AWG820、接続回路830、および出力導波路821は、上述した光信号処理装置200におけるAWG210、AWG220、接続回路230、および出力導波路221にそれぞれ対応するので、詳細な説明を省略する。 The AWG 810, AWG 820, connection circuit 830, and output waveguide 821 in the optical signal processing device 800 correspond to the AWG 210, AWG 220, connection circuit 230, and output waveguide 221 in the optical signal processing device 200 described above, so detailed explanations will be given below. The explanation will be omitted.
 以上説明したように、本変形形態によれば、クロストークノイズの低い光信号処理装置200を提供することができる。 As explained above, according to this modification, it is possible to provide an optical signal processing device 200 with low crosstalk noise.
 なお、本変形形態の説明における波長λから波長λを波長帯域λから波長帯域λに拡張し、波長多重信号に含まれる波長帯域λに含まれる複数の波長(波長λ1-1、λ1-2、・・・)、波長帯域λに含まれる複数の波長(波長λ2-1、λ2-2、・・・)、・・・波長帯域λに含まれる複数の波長(波長λk-1、λk-2、・・・)を複数の出力導波路からそれぞれ出力する構成の光信号処理装置としてもよい。 Note that the wavelength λ 1 to wavelength λ k in the description of this modification is expanded from the wavelength band λ 1 to the wavelength band λ k , and a plurality of wavelengths (wavelengths λ 1- 1 , λ 1-2 , ...), multiple wavelengths included in the wavelength band λ 2 (wavelengths λ 2-1 , λ 2-2 , ...), ... multiple wavelengths included in the wavelength band λ k The optical signal processing device may be configured to output wavelengths (wavelengths λ k-1 , λ k-2 , . . . ) from a plurality of output waveguides, respectively.
 以上説明したように、本変形形態によれば、クロストークノイズの低い光信号処理装置を提供することができる。 As explained above, according to this modification, it is possible to provide an optical signal processing device with low crosstalk noise.
 従来構成よりもクロストークノイズ値の低い光波長合分波回路を提供することができる。 It is possible to provide an optical wavelength multiplexing/demultiplexing circuit with a lower crosstalk noise value than the conventional configuration.
100 タンデムAWG
110、120、210、220、810、820 AWG
111 入力導波路
121、221、821 出力導波路
130 接続回路、230、830 接続回路
200、800 光信号処理装置
210a、210c、220a、220c、810a、810c、820a、820c スラブ
210b、220b、810b、820b アレイ導波路
100 tandem AWG
110, 120, 210, 220, 810, 820 AWG
111 Input waveguide 121, 221, 821 Output waveguide 130 Connection circuit, 230, 830 Connection circuit 200, 800 Optical signal processing device 210a, 210c, 220a, 220c, 810a, 810c, 820a, 820c Slab 210b, 220b, 810b, 820b array waveguide

Claims (6)

  1.  光信号処理装置であって、
     少なくとも1つの第1の入出力導波路と、
     前記第1の入出力導波路と接続された波長分波器と、
     複数の波長合波器と、
     前記複数の波長合波器の各々と接続された少なくとも1つの第2の入出力導波路と、
     前記波長分波器と前記複数の波長合波器とを接続する接続回路と
    を備え、
     前記接続回路は複数の導波路を含み、
     前記接続回路における前記複数の導波路の一端は前記波長分波器に接続されており、
     前記接続回路における前記複数の導波路の他端は複数のサブセットに分割され、前記複数のサブセットのうちのk番目(kは2の整数)のサブセットの1つまたは隣接する複数の導波路の他端は、前記複数の波長合波器のうちのk番目の波長合波器に接続されている、光信号処理装置。
    An optical signal processing device,
    at least one first input/output waveguide;
    a wavelength demultiplexer connected to the first input/output waveguide;
    multiple wavelength multiplexers,
    at least one second input/output waveguide connected to each of the plurality of wavelength multiplexers;
    comprising a connection circuit that connects the wavelength demultiplexer and the plurality of wavelength multiplexers,
    The connection circuit includes a plurality of waveguides,
    One end of the plurality of waveguides in the connection circuit is connected to the wavelength demultiplexer,
    The other end of the plurality of waveguides in the connection circuit is divided into a plurality of subsets, and one of the k-th (k is an integer of 2) subset among the plurality of subsets or the other end of the plurality of adjacent waveguides is divided into a plurality of subsets. An optical signal processing device whose end is connected to a k-th wavelength multiplexer among the plurality of wavelength multiplexers.
  2.  前記波長分波器および前記波長合波器が酸化シリコン光回路で構成されている、請求項1に記載の光信号処理装置。 The optical signal processing device according to claim 1, wherein the wavelength demultiplexer and the wavelength multiplexer are constructed of silicon oxide optical circuits.
  3.  前記波長分波器と前記波長合波器がシリコン光回路で構成されている、請求項1に記載の光信号処理装置。 The optical signal processing device according to claim 1, wherein the wavelength demultiplexer and the wavelength multiplexer are constructed of silicon optical circuits.
  4.  前記波長分波器および前記波長合波器が窒化シリコン光回路で構成されている、請求項1に記載の光信号処理装置。 The optical signal processing device according to claim 1, wherein the wavelength demultiplexer and the wavelength multiplexer are constructed of silicon nitride optical circuits.
  5.  前記波長分波器および前記波長合波器はアレイ導波路回折格子を含む、請求項1に記載の光信号処理装置。 The optical signal processing device according to claim 1, wherein the wavelength demultiplexer and the wavelength multiplexer include an arrayed waveguide diffraction grating.
  6.  前記波長分波器および前記波長合波器は平面光波回路に形成されている、請求項1に記載の光信号処理装置。 The optical signal processing device according to claim 1, wherein the wavelength demultiplexer and the wavelength multiplexer are formed in a plane light wave circuit.
PCT/JP2022/032437 2022-08-29 2022-08-29 Optical signal processing device WO2024047707A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032437 WO2024047707A1 (en) 2022-08-29 2022-08-29 Optical signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032437 WO2024047707A1 (en) 2022-08-29 2022-08-29 Optical signal processing device

Publications (1)

Publication Number Publication Date
WO2024047707A1 true WO2024047707A1 (en) 2024-03-07

Family

ID=90099112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032437 WO2024047707A1 (en) 2022-08-29 2022-08-29 Optical signal processing device

Country Status (1)

Country Link
WO (1) WO2024047707A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111751A (en) * 1998-08-04 2000-04-21 Nippon Telegr & Teleph Corp <Ntt> Wavelength branching filter and light spectrum analyzer and light band path filter
JP2002280967A (en) * 2001-03-15 2002-09-27 Fujitsu Ltd Optical device and wavelength multiplex communication system employing the same
US6529649B1 (en) * 2000-05-01 2003-03-04 Lucent Technologies Inc. Optical filter with improved crosstalk rejection
US6754410B1 (en) * 2003-05-29 2004-06-22 Lucent Technologies Inc. Integrated wavelength-selective cross connect
JP2019101315A (en) * 2017-12-06 2019-06-24 Nttエレクトロニクス株式会社 Optical wavelength multiplexer/demultiplexer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111751A (en) * 1998-08-04 2000-04-21 Nippon Telegr & Teleph Corp <Ntt> Wavelength branching filter and light spectrum analyzer and light band path filter
US6529649B1 (en) * 2000-05-01 2003-03-04 Lucent Technologies Inc. Optical filter with improved crosstalk rejection
JP2002280967A (en) * 2001-03-15 2002-09-27 Fujitsu Ltd Optical device and wavelength multiplex communication system employing the same
US6754410B1 (en) * 2003-05-29 2004-06-22 Lucent Technologies Inc. Integrated wavelength-selective cross connect
JP2019101315A (en) * 2017-12-06 2019-06-24 Nttエレクトロニクス株式会社 Optical wavelength multiplexer/demultiplexer

Similar Documents

Publication Publication Date Title
JP4748524B2 (en) Arrayed waveguide grating type multiplexer / demultiplexer
JPH11202152A (en) Optical device having optical multiplexer and optical demultiplexer
US6160932A (en) Expandable wavelength division multiplexer based on interferometric devices
CA2302008A1 (en) Mach-zehnder based filter demultiplexers and method
EP1148358B1 (en) An arrayed waveguide grating type optical multiplexer/demultiplexer
JP4002063B2 (en) Optical wavelength add / drop multiplexer and filter element used therefor
KR100422372B1 (en) Channel Extended Wavelength Division Multiplexer/DeMultiplexer
US20030026529A1 (en) Optical demultiplexer
US6885823B2 (en) Wavelength multiplexing/demultiplexing unit, wavelength multiplexing/demultiplexing apparatus and wavelength multiplexing/demultiplexing method
JP2003149471A (en) Waveguide type optical multiplexer-demultiplexer
WO2024047707A1 (en) Optical signal processing device
EP0936483A2 (en) Optical router with coherent connecting paths
JP4350044B2 (en) Optical switch device
US6728447B2 (en) Optical multiplexer/demultiplexer
RU2380837C1 (en) Multichannel optical input/output multiplexer with dynamic functionality
RU2372729C1 (en) Multichannel controlled input/output optical multiplexer
WO2001005082A1 (en) Method and devices for multiplexing and de-multiplexing multiple wavelengths
EP1243951B1 (en) An optical multiplexer/demultiplexer
JP3682000B2 (en) Waveguide type optical multiplexer / demultiplexer
JPS63148207A (en) Optical multiplexing and demultiplexing element
JP4238069B2 (en) Optical wavelength multiplexer / demultiplexer
EP1009112A2 (en) Duplex Optical transmission system
US6768843B1 (en) Cascaded fourier filter interleaver having enhanced performance
EP4202510A1 (en) Integrated optical structure for multiplexing and/or demultiplexing
EP1447693A1 (en) Flexible Passband Filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957311

Country of ref document: EP

Kind code of ref document: A1