WO2024046500A1 - 汽轮机阀门特性测试装置 - Google Patents

汽轮机阀门特性测试装置 Download PDF

Info

Publication number
WO2024046500A1
WO2024046500A1 PCT/CN2023/123351 CN2023123351W WO2024046500A1 WO 2024046500 A1 WO2024046500 A1 WO 2024046500A1 CN 2023123351 W CN2023123351 W CN 2023123351W WO 2024046500 A1 WO2024046500 A1 WO 2024046500A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
operational amplifier
tube
diode
voltage
Prior art date
Application number
PCT/CN2023/123351
Other languages
English (en)
French (fr)
Inventor
马磊
王兆明
车银辉
黄祥君
冯德虎
Original Assignee
苏州热工研究院有限公司
中广核核电运营有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州热工研究院有限公司, 中广核核电运营有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 苏州热工研究院有限公司
Publication of WO2024046500A1 publication Critical patent/WO2024046500A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0075For recording or indicating the functioning of a valve in combination with test equipment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the invention relates to the technical field of equipment maintenance, and in particular to a steam turbine valve characteristic testing device.
  • the steam turbine of a certain nuclear power plant is controlled through a proportional control valve (proportional valve for short).
  • a proportional control valve proportional valve for short.
  • pilot valve jamming main valve jamming
  • control jamming failure signal transmission failure, etc.
  • the proportional valve may instantaneously close and open again. Therefore, in order to maintain the stable operation of a nuclear power plant, the work of the proportional valve needs to be monitored and tested regularly.
  • the existing steam turbine valve system also monitors some data of the proportional valve, the fault diagnosis methods are limited and cannot effectively determine the cause of the fault, and cannot predict the fault in advance.
  • the technical problem to be solved by the present invention is to provide a steam turbine valve characteristic testing device to address at least one defect of the existing technology.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a steam turbine valve characteristic testing device, including a box body, and the box body is provided with: a control card, a collection card, a collection interface and an industrial computer;
  • the control card is used to control the operation of the proportional valve
  • the acquisition card is connected to the control card and is used to collect feedback signals and control signals of the control card; wherein the feedback signal includes at least one of a pilot valve feedback signal, a main valve feedback signal and an oil engine feedback signal.
  • the control signal includes at least one of a coil current signal, a zero point command signal, a conditional command signal, a PID control signal and an integrator output signal;
  • the collection interface is connected to the collection card and is also connected to a pressure sensor in the oil engine to send oil pressure signals to the collection card;
  • the industrial computer is connected to the control card and the acquisition card, and is used to control the operation of the control card, and process the feedback signal, control signal and oil pressure signal to generate a corresponding characteristic curve.
  • the box is a flip-top box, and the flip-top box is further provided with an operation panel for controlling the industrial computer;
  • the operation panel is provided with a selection switch unit for controlling the on-off of the feedback signal, realizing the enabling function and setting the working mode.
  • it also includes a touch screen located inside the flip cover of the flip-top box, the touch screen is connected to the industrial computer, and the touch screen is used to display the characteristic curves of the feedback signal, control signal and oil pressure signal in real time, and obtain control instructions.
  • a touch screen located inside the flip cover of the flip-top box, the touch screen is connected to the industrial computer, and the touch screen is used to display the characteristic curves of the feedback signal, control signal and oil pressure signal in real time, and obtain control instructions.
  • control card includes a zero command signal processing unit, which includes: resistor R124, resistor R123, operational amplifier N10B, resistor R126, resistor R125, resistor R122, voltage regulator tube D15, resistor R77, inverter N6E, diode T19A, operational amplifier N10A, resistor R111, resistor R112, resistor R110, diode T19B, resistor R78, inverter N6D, resistor R76, NPN tube T20, resistor R75, PNP tube T17, resistor R84, diode D14, resistor R85, stable Pressure tube D52 and resistor R7;
  • a zero command signal processing unit which includes: resistor R124, resistor R123, operational amplifier N10B, resistor R126, resistor R125, resistor R122, voltage regulator tube D15, resistor R77, inverter N6E, diode T19A, operational amplifier N10A, resistor R111, resistor R112, resistor R110, diode T19B
  • the second end of the resistor R124 is used to receive the zero point control signal.
  • the second end of the resistor R124 is also connected to the non-inverting input end of the operational amplifier N10B through the resistor R123.
  • the inverting input end of the operational amplifier N10B The inverting input terminal of the operational amplifier N10B is also connected to the first DC voltage positive terminal via the resistor R125, and the output terminal of the operational amplifier N10B is connected to the ground via the resistor R122.
  • the non-inverting input terminal of the operational amplifier N10B, the output terminal of the operational amplifier N10B are also connected to the anode of the voltage stabilizing tube D15, and the cathode of the voltage stabilizing tube D15 is connected to the second DC voltage through the resistor R77, so The cathode of the voltage regulator tube D15 is also connected to the input terminal of the inverter N6E, and the output terminal of the inverter N6E is connected to the anode of the diode T19A;
  • the first end of the resistor R124 is connected to the non-inverting input end of the operational amplifier N10A.
  • the inverting input end of the operational amplifier N10A is connected to the first DC voltage negative end through the resistor R111.
  • the inverting input end of the operational amplifier N10A The phase input terminal is also connected to ground through the resistor R112, the non-inverting input terminal of the operational amplifier N10A is connected to the output terminal of the operational amplifier N10A via the resistor R110, and the output terminal of the operational amplifier N10A is connected to the diode Anode of T19B;
  • the cathode of the diode T19A is connected to the cathode of the diode T19B.
  • the cathode of the diode T19B is connected to ground through a resistor R78.
  • the cathode of the diode T19B is also connected to the input end of the inverter N6D.
  • the inverter The output end of N6D is connected to the base of the NPN tube T20 via the resistor R76, the emitter of the NPN tube T20 is grounded, and the collector of the NPN tube T20 is connected to the PNP tube T17 via the resistor R75.
  • the base of the PNP tube T17 is connected to the third DC voltage through the resistor R84, the collector of the PNP tube T17 is connected to the ground through the resistor R85, and the collector of the PNP tube T17 is also connected to the ground through the resistor R85.
  • the anode of the diode D14 is connected to the cathode of the diode D14 and the emitter of the PNP tube T17 are connected to the third DC voltage.
  • the anode of the diode D14 is also connected to the cathode of the voltage stabilizing tube D52.
  • the voltage stabilizing tube D52 The anode of the diode D14 is connected to the ground.
  • the anode of the diode D14 is also connected to the first end of the resistor R7.
  • the second end of the resistor R7 is connected to the acquisition card as the zero point command signal output end.
  • the zero point command signal output end is used for Connect the proportional valve.
  • control card also includes a conditional command signal setting unit, which includes: diode D18, resistor R96, voltage regulator tube D4, adjustable resistor P3, resistor R14, resistor R113, diode D2, resistor R12, adjustable resistor P2 , voltage regulator tube D3, resistor R13, resistor R114, voltage regulator tube D20, voltage regulator tube D19, resistor R121, resistor R15, adjustable resistor P1, resistor R117, operational amplifier N10C, resistor R120, resistor R196 and protection tube D43;
  • a conditional command signal setting unit which includes: diode D18, resistor R96, voltage regulator tube D4, adjustable resistor P3, resistor R14, resistor R113, diode D2, resistor R12, adjustable resistor P2 , voltage regulator tube D3, resistor R13, resistor R114, voltage regulator tube D20, voltage regulator tube D19, resistor R121, resistor R15, adjustable resistor P1, resistor R117, operational amplifier N10C, resistor R120, resistor R
  • the anode of the diode D18 is connected to the output end of the operational amplifier N10A, and the cathode of the diode D18 is connected to the cathode of the voltage stabilizing tube D4 through the resistor R96.
  • the anode of the voltage stabilizing tube D4 is connected to the ground.
  • the cathode of tube D4 is also connected to the second end of the adjustable resistor P3.
  • the first end of the adjustable resistor P3 is connected to ground through the resistor R14.
  • the adjustable end of the adjustable resistor P3 is connected to the resistor.
  • the cathode of the diode D2 is connected to the output end of the operational amplifier N10B.
  • the anode of the diode D2 is connected to the second end of the adjustable resistor P2 through the resistor R12.
  • the second end of the adjustable resistor P2 The anode of the voltage stabilizing tube D3 is connected, the cathode of the voltage stabilizing tube D3 is connected to the ground, the first end of the adjustable resistor P2 is connected to the ground through the resistor R13, and the adjustable end of the adjustable resistor P2 is connected to The first end of the resistor R114;
  • the second end of the resistor R114 is connected to the second end of the resistor R113 and the anode of the voltage stabilizing tube D20.
  • the cathode of the voltage stabilizing tube D20 is connected to the cathode of the voltage stabilizing tube D19.
  • the second terminal of the resistor R114 is connected to the anode of the voltage stabilizing tube D20.
  • the second end of the resistor R114 is connected to the anode of the voltage regulator tube D19 and the output end of the operational amplifier N10C through the resistor R121, and the second end of the resistor R114 is connected to the adjustable end of the adjustable resistor P1 through the resistor R15.
  • the first end of the adjustable resistor P1 is connected to the first DC voltage positive end, and the second end of the resistor R114 is also connected to the second end of the resistor R117 and the inverting input end of the operational amplifier N10C.
  • the resistor R117 The first end of the operational amplifier N10C is connected to the industrial computer, the non-inverting input end of the operational amplifier N10C is connected to the ground through the resistor 120, the output end of the operational amplifier N10C is connected to the first end of the resistor R196, and the resistor R196 The second end of the resistor R196 is connected to the ground through the protection tube D43, and the second end of the resistor R196 is connected to the acquisition card as a conditional command signal output end.
  • the control card also includes a coil current signal processing unit, which includes: a switch control unit, a resistor R162, an NPN tube T6, a resistor R161, a resistor R154, a resistor R164, a PNP tube T8, an NPN tube T9, a resistor R205, a stabilizer Voltage tube D28, PMOS tube T2, inductor L4, diode D34, capacitor C5, resistor R173, operational amplifier N16A, resistor R183, resistor R172, resistor R181, resistor R188, NMOS tube T3, resistor R163, resistor R174, diode D35 and inductor L3;
  • a coil current signal processing unit which includes: a switch control unit, a resistor R162, an NPN tube T6, a resistor R161, a resistor R154, a resistor R164, a PNP tube T8, an NPN tube T9, a resistor R205, a stabilizer Voltage tube D28, PMOS tube T2, in
  • the switching signal output end of the switch control unit is connected to the base of the NPN tube T6 through the resistor R162, and the base of the NPN tube T6 is also connected to the ground through the resistor R161.
  • the emitter is connected to the ground through the resistor R154, the collector of the NPN tube T6 is connected to the third DC voltage through the resistor R164, and the collector of the NPN tube T6 is also connected to the base of the PNP tube T8 and
  • the base of the NPN tube T9, the collector of the NPN tube T9 is connected to the third DC voltage, the emitter of the NPN tube T9 is connected to the emitter of the PNP tube T8, the collector of the PNP tube T8 is grounded, so The emitter of the PNP tube T8 is also connected to the anode of the voltage stabilizing tube D28 via the resistor R205.
  • the anode of the voltage stabilizing tube D28 is connected to the gate of the PMOS tube T2.
  • the cathode of the voltage stabilizing tube D28 The source of the PMOS transistor T2 is connected to the third DC voltage, the drain of the PMOS transistor T2 is connected to the first end of the inductor L4 and the cathode of the diode D34, and the second end of the inductor L4 is connected to the ground through the capacitor C5.
  • the second end of the inductor L4 is the first coil current signal output end and can be connected to the electromagnet coil of the pilot valve;
  • the anode of the diode D34 is connected to the inverting input terminal of the operational amplifier N16A through the resistor R173.
  • the anode of the diode D34 is also connected to ground via the resistor R183.
  • the inverting input terminal of the operational amplifier N16A The resistor R172 is connected to the output terminal of the operational amplifier N16A.
  • the output terminal of the operational amplifier N16A is connected to the acquisition card as an error signal sampling terminal.
  • the non-inverting input terminal of the operational amplifier N16A is connected via the resistor R181.
  • the non-inverting input terminal of the operational amplifier N16A is also connected to the source of the NMOS transistor T3 via the resistor R188, and the source of the NMOS transistor T3 is connected to ground via the resistor R174.
  • the NMOS transistor The gate of T3 is connected to the switching signal output end of the switch control unit via the resistor R163, the drain of the NMOS transistor T3 is connected to the anode of the diode D35, and the cathode of the diode D35 is connected to the third DC voltage, the drain of the NMOS transistor T3 is also connected to the first end of the inductor L3, and the second end of the inductor L3 is a second coil current signal output end that can be connected to the electromagnetic coil of the pilot valve.
  • control card also includes an oil motor feedback signal processing unit and an integrator output signal processing unit;
  • the oil motor feedback signal processing unit is used to collect the voltage and current signals fed back by the proportional valve, and process the voltage and current signals to obtain current and voltage feedback signals;
  • the integrator output signal processing unit includes: adjustable resistor P4, resistor R25, resistor R23, operational amplifier N3A, resistor R1, resistor R40, voltage regulator tube D2, voltage regulator tube D1, capacitor C6, selection switch K2F, Diode D3 and resistor R10;
  • the first end of the adjustable resistor P4 is connected to the oil engine feedback signal processing unit to receive the current and voltage feedback signals, and the second end of the adjustable resistor P4 is connected to ground through the resistor R25.
  • the adjustable end of the adjustable resistor P4 is connected to the inverting input end of the operational amplifier N3A through the resistor R23.
  • the inverting input end of the operational amplifier N3A is connected to the second end of the resistor R1.
  • the resistor R1 The second end is connected to the enable unit in the control card, the non-inverting input end of the operational amplifier N3A is connected to the ground through the resistor R40, and the inverting input end of the operational amplifier N3A is also connected to the voltage regulator tube
  • the anode of D2 the cathode of the voltage stabilizing tube D2 is connected to the cathode of the voltage stabilizing tube D1
  • the anode of the voltage stabilizing tube D1 is connected to the output end of the operational amplifier N3A
  • the anode of the voltage stabilizing tube D1 is used for Connect the enabling unit
  • the inverting input terminal of the operational amplifier N3A is connected to the output terminal of the operational amplifier N3A via the capacitor C6, and the inverting input terminal of the operational amplifier N3A is also connected via the selection switch K2F Connected to the anode of the diode D3, the cathode of the diode D3 is connected to the output end of the operational amplifier N3A, the
  • control card also includes an oil engine feedback signal acquisition unit and/or a controller output signal processing unit;
  • the oil motor feedback signal acquisition unit is connected to the oil motor feedback signal processing unit and a collection card to filter the current and voltage feedback signals and send them to the collection card;
  • the controller output signal processing unit is connected to the integrator output signal processing unit and the oil engine feedback signal processing unit to perform operations based on the integrator output signal and current and voltage feedback signals output by the integrator output signal processing unit, The PID control output signal is obtained, and the PID control output signal is sent to the collection card.
  • control card also includes two valve feedback signal processing units;
  • valve feedback signal processing unit An input end of the valve feedback signal processing unit is connected to the acquisition card and a pilot valve feedback signal output end connectable to the proportional valve, and an output end of the valve feedback signal processing unit is connected to the industrial computer;
  • the input end of the other valve feedback signal processing unit is connected to the acquisition card and the main valve feedback signal output end of the proportional valve, and the output end of the other valve feedback signal processing unit is connected to the industrial computer. .
  • each valve feedback signal processing unit includes: voltage regulator D51, resistor R74, operational amplifier N3A, resistor R83, resistor R41, resistor R27, resistor R28, adjustable resistor P8, resistor R26, operational amplifier N3B, Resistor R58, resistor R25 and protection tube D42;
  • the cathode of the voltage stabilizing tube D51 is the input terminal of the valve feedback signal processing unit, and the cathode of the voltage stabilizing tube D51 is connected to the inverting input terminal of the operational amplifier N3A through the resistor R74.
  • the cathode of the tube D51 is also connected to the ground through the resistor R83, the anode of the voltage stabilizing tube D51 is grounded, and the inverting input terminal of the operational amplifier N3A is connected to the output terminal of the operational amplifier N3A via the resistor R41.
  • the non-inverting input terminal of the operational amplifier N3A is connected to the first DC voltage positive terminal via the resistor R27, and the non-inverting input terminal of the operational amplifier N3A is also connected to the first terminal of the adjustable resistor P8 via the resistor R28. , the second end and the adjustable end of the adjustable resistor P8 are grounded, the output end of the operational amplifier N3A is connected to the inverting input end of the operational amplifier N3B through the resistor R26, and the non-inverting input end of the operational amplifier N3B
  • the inverting input terminal of the operational amplifier N3B is also connected to the output terminal of the operational amplifier N3B via the resistor R58.
  • the output terminal of the operational amplifier N3B is also connected to the first terminal of the resistor R25.
  • the resistor R25 The second end serves as the output end of the valve feedback signal amplification unit processing unit 18 and is connected to the industrial computer.
  • the invention at least has the following beneficial effects: it provides a steam turbine valve characteristic testing device, which includes: a box, and the box is provided with: a control card, a collection card, a collection interface and an industrial computer; relevant control instructions can be sent through the industrial computer; This allows the control card to control the proportional valve to work.
  • the acquisition card is used to collect feedback signals, control signals and oil pressure signals.
  • the industrial computer issues corresponding characteristic curves based on the feedback signals, control signals and oil pressure signals. It enables staff to comprehensively and intuitively monitor and diagnose the work of the proportional valve.
  • the device can not only predict the occurrence of faults in advance and prompt the faulty personnel to take corresponding measures, but can also replace the control when the control system of the steam turbine valve is being overhauled.
  • the system controls the proportional valve, thereby improving the reliability of the turbine valve system.
  • Figure 1 is a schematic structural diagram of a steam turbine valve characteristic testing device provided by the present invention
  • Figure 2 is a schematic structural diagram of the box in the steam turbine valve characteristic testing device provided by the present invention.
  • FIG. 3 is a schematic structural diagram of the control card in the steam turbine valve characteristic testing device provided by the present invention.
  • Figure 4 is a circuit diagram of the zero point command signal processing unit provided by the present invention.
  • FIG. 5 is a circuit diagram of the feedforward input operation unit provided by the present invention.
  • Figure 6 is a circuit diagram of the conditional instruction signal setting unit provided by the present invention.
  • FIG. 7 is a circuit diagram of the coil current signal processing unit provided by the present invention.
  • FIG. 8 is a circuit diagram of the switch control unit in the coil current signal processing unit provided by the present invention.
  • FIG. 9 is a circuit diagram of the integrator output signal processing unit provided by the present invention.
  • FIG. 10 is a circuit diagram of the oil engine feedback signal processing unit provided by the present invention.
  • FIG. 11 is a circuit diagram of the oil engine feedback signal acquisition unit provided by the present invention.
  • Figure 12 is a circuit diagram of the valve feedback signal processing unit provided by the present invention.
  • the steam turbine valve system includes an oil motor used to control the valve opening, a proportional valve used to control the operation of the oil motor, and a control system used to control the work of the proportional valve.
  • the present invention constructs a steam turbine valve characteristic testing device, which can replace the steam turbine valve control system to control the proportional valve, realize the control of the oil engine, and realize the characteristic testing of the proportional valve.
  • the steam turbine valve characteristic testing The device includes a box, and the box is equipped with: control card 1, acquisition card 2, acquisition interface 3 and industrial computer 4.
  • Control card 1 is used to control the operation of the proportional valve. Specifically, the control card 1 can generate a control instruction for controlling the proportional valve according to the control signal of the nuclear power plant control system or the industrial computer 4 and the feedback signal of the proportional valve; where the feedback signal includes the pilot valve feedback signal and the main valve feedback. signal and oil motor feedback signal.
  • the control signal includes coil current signal, zero point command signal, condition command signal, PID control signal and integrator output signal.
  • the pilot valve feedback signal is used to reflect the pilot valve stroke position information in the proportional valve. This signal is sent to the control card 1 by the displacement sensor in the pilot valve.
  • the main valve feedback signal is used to reflect the main valve stroke position information in the proportional valve. This signal is sent to the control card 1 by the displacement sensor in the main valve.
  • the oil motor feedback signal is used to reflect the stroke position information of the oil motor. This signal is sent to the control card 1 by the displacement sensor in the oil motor.
  • the coil current signal is used to drive the electromagnet in the pilot valve to control the pilot valve and then control the opening and closing of the main valve. This signal is sent by the control card 1 to the electromagnet in the pilot valve.
  • the zero point command signal is a signal that controls the stroke of the proportional valve generated after calculation processing (such as PID calculation) based on the input signal of the control system or industrial computer 4.
  • the conditional command signal is used to set the stroke position of the main valve.
  • This signal participates in relevant calculation processing together with the main valve feedback signal to control the generation of the coil current signal, thereby controlling the final stroke position of the main valve.
  • the calculation of this signal is based on the zero point It is obtained by performing related operations on the command signal.
  • the PID control signal is the control signal output after the zero point command signal participates in the PID operation.
  • the conditional command signal can be obtained through the operation of the control signal.
  • the acquisition card 2 is connected to the control card 1 and is used to collect the feedback signals and control signals of the control card 1, so that the industrial computer 4 can synchronously and accurately collect the feedback signals and control signals to accurately and truly reflect the working conditions of the proportional valve. , thereby improving the accuracy of characteristic testing.
  • the feedback signal includes at least one of a pilot valve feedback signal, a main valve feedback signal and an oil motor feedback signal
  • the control signal includes a coil current signal, a zero point command signal, a conditional command signal, a PID control signal and an integrator output signal. At least one.
  • the collection interface 3 is connected to the collection card 2 and is also connected to the pressure sensor in the oil engine to send the oil pressure signal to the collection card 2 .
  • the oil pressure signal includes the proportional valve inlet oil pressure signal, the oil pressure after the pressure reducing valve, the oil pressure signal of the pressure reducing valve A port, the oil pressure signal of the pressure reducing valve B port, and several other positions. (such as PT4 oil pressure signal, PT5 oil pressure signal, PT7 oil pressure signal, etc.).
  • the acquisition interface 3 includes several plugs, which are not only used to connect to the pressure sensor in the oil engine, but also to the displacement sensors in the oil engine and the proportional valve respectively to receive feedback from the main valve, pilot valve and oil engine. signals; these plugs also include four communication plugs.
  • the industrial computer 4 is connected to the control card 1 and the acquisition card 2, and is used to control the operation of the control card 1, and process feedback signals, control signals and oil pressure signals to generate corresponding characteristic curves.
  • the corresponding characteristic curves include pilot valve feedback signal characteristic curve, main valve feedback signal characteristic curve, oil motor feedback signal characteristic curve, coil current signal characteristic curve, zero point command signal characteristic curve, conditional command signal characteristic curve, and PID control signal. At least one of the characteristic curve and the integrator output signal characteristic curve. The staff can judge whether the proportional valve is working normally by observing the characteristic curve.
  • the box is a clamshell box 5.
  • the clamshell box 5 is also provided with an operation panel 51 for controlling the industrial computer 4. Open the flip cover of the clamshell box 5.
  • the operation panel 51 can be operated later; the operation panel 51 is provided with a selection switch unit 511 for controlling the feedback signal on and off, realizing the enabling function and setting the working mode.
  • the selection switch unit 511 includes several selection switches; some of the selection switches are connected in series between each feedback signal and the control card 1, thereby simulating the failure of the feedback signal through the selection switches; at least one selection switch It is connected to the enable end of the controller output signal processing unit 17 in the control card 1 to control whether the controller output signal processing unit 17 is enabled; there are also some selection switches connected to the industrial computer 4 for selecting the characteristics of the test. Operating mode.
  • the characteristic test includes four working modes, namely: Mode 1, simulate the GRE001 test with a stepwise variable rate of 21%/s; Mode 2, simulate the GRE001 test with a constant closing rate of 1.1%/s; Mode 3, 40% A closing rate of 8.9%/s above the valve position and a closing rate of 1.5%/s below 40% of the valve position simulates the GRE001 test; mode 4 simulates the GRE001 test with a constant closing rate of 3.3%/s.
  • the GRE001 test process includes: controlling the proportional valve to close the regulating valve based on the set closing rate. After the regulating valve is completely closed, the stop valve in the proportional valve is controlled to close.
  • the regulating valve is controlled based on Set the opening rate to open to 20%, then control the regulating valve to close based on the set closing rate, and then control the stop valve to open. After the cut-off valve is fully opened, control the regulating valve to open to the normal operating opening based on the set opening rate.
  • the industrial computer 4 generated the corresponding characteristic curve based on the relevant signals collected by the acquisition card 2.
  • the plug in the collection interface 3 can be provided on the operation panel 51, and the interface type can be an aviation plug.
  • the steam turbine valve characteristic testing device also includes a touch screen 6 located inside the flip of the flip-top box 5.
  • the touch screen 6 is connected to the industrial computer 4, and the touch screen 6 is used to display feedback signals in real time. Characteristic curves of control signals and oil pressure signals, and obtaining control instructions.
  • a universal wheel 7 is provided at the bottom of the clamshell box 5 , a telescopic rod 8 is provided on one side of the clamshell box 5 , and a telescopic rod 8 is provided on the outside of the clamshell of the clamshell box 5 .
  • Handle assembly (not shown).
  • the steam turbine valve characteristic testing device also includes a power supply unit located inside the operation panel 51.
  • the power supply is used to provide power for each unit in the device, including providing first, second, and third DC voltages; Among them, the first DC voltage can be ⁇ 10V, the positive terminal of the first DC voltage can be 10V, and the negative terminal of the first DC voltage can be -10V; the second DC voltage can be ⁇ 15V; and the third DC voltage can be 24V.
  • the control card 1 includes a zero point command signal processing unit 11; further, as shown in Figure 4, the zero point command signal processing unit 11 includes: a resistor R124, a resistor R123, an operational amplifier N10B, Capacitor C43, resistor R126, resistor R125, resistor R122, voltage regulator tube D15, resistor R77, inverter N6E, diode T19A, operational amplifier N10A, capacitor C48, resistor R111, resistor R112, resistor R110, diode T19B, resistor R78, Inverter N6D, resistor R76, NPN tube T20, resistor R75, PNP tube T17, resistor R84, diode D14, resistor R85, capacitor C49, voltage regulator tube D52 and resistor R7;
  • the second end of the resistor R124 is used to receive the zero control signal.
  • the second end of the resistor R124 is also connected to the non-inverting input end of the operational amplifier N10B through the resistor R123.
  • the non-inverting input end of the operational amplifier N10B is connected to the operational amplifier through the capacitor C43.
  • the inverting input terminal of N10B and the inverting input terminal of operational amplifier N10B are connected to the ground through resistor R126.
  • the inverting input terminal of operational amplifier N10B is also connected to the first DC voltage positive terminal through resistor R125.
  • the output terminal of operational amplifier N10B is connected to ground via resistor R126.
  • the resistor R122 is connected to the non-inverting input terminal of the operational amplifier N10B.
  • the output terminal of the operational amplifier N10B is also connected to the anode of the voltage stabilizing tube D15.
  • the cathode of the voltage stabilizing tube D15 is connected to the second DC voltage through the resistor R77.
  • the cathode of the voltage stabilizing tube D15 is also connected to the non-inverting input terminal of the operational amplifier N10B. Connect the input terminal of the inverter N6E, and connect the output terminal of the inverter N6E to the anode of the diode T19A;
  • the first end of the resistor R124 is connected to the non-inverting input terminal of the operational amplifier N10A.
  • the non-inverting input terminal of the operational amplifier N10A is also connected to the inverting input terminal of the operational amplifier N10A through the capacitor C48.
  • the inverting input terminal of the operational amplifier N10A is connected to The first DC voltage negative terminal, the inverting input terminal of the operational amplifier N10A is also connected to the ground through the resistor R112, the non-inverting input terminal of the operational amplifier N10A is connected to the output terminal of the operational amplifier N10A via the resistor R110, and the output terminal of the operational amplifier N10A is connected to the diode Anode of T19B;
  • the cathode of diode T19A is connected to the cathode of diode T19B.
  • the cathode of diode T19B is connected to ground via resistor R78.
  • the cathode of diode T19B is also connected to the input terminal of inverter N6D.
  • the output terminal of inverter N6D is connected to NPN tube T20 via resistor R76.
  • the base of the NPN tube T20 is grounded.
  • the collector of the NPN tube T20 is connected to the base of the PNP tube T17 via the resistor R75.
  • the base of the PNP tube T17 is connected to the third DC voltage via the resistor R84.
  • the collector is connected to ground via resistor R85.
  • the collector of PNP tube T17 is also connected to the anode of diode D14.
  • the cathode of diode D14 and the emitter of PNP tube T17 are connected to the third DC voltage.
  • the anode of diode D14 is connected to ground via capacitor C49.
  • the diode The anode of D14 is also connected to the cathode of the voltage stabilizing tube D52, and the anode of the voltage stabilizing tube D52 is grounded.
  • the anode of the diode D14 is also connected to the first end of the resistor R7.
  • the second end of the resistor R7 is connected to the acquisition card 2 as the zero point command signal output end.
  • the zero point command signal output terminal is used to connect the proportional valve.
  • the resistor R7 can be set to 100 ohms.
  • the working principle of the zero command signal processing unit 11 is as follows: the zero control signal enters the comparator composed of the operational amplifier N10B and the resistor R122 through the resistor R123. In this branch, the current feed output signal is greater than the resistor R125 and the resistor R125. When the intersection voltage of R126 is the voltage of the intersection point of R126, the operational amplifier N10B outputs a high level. When passing through the inverter N6E, the signal will be inverted; the other feedforward output signal enters the comparator composed of the operational amplifier N10B and the resistor R110 through the resistor R124.
  • the operational amplifier N10A when the feedforward output signal is greater than the intersection voltage of resistor R112 and resistor R111, the operational amplifier N10A outputs a high level; the output voltages of the two channels will affect the cathode voltage of the diode T19B.
  • the inverter N6D When the cathode voltage of the diode T19B is low level, The inverter N6D outputs a high level, which turns on the NPN tube T20, which in turn turns on the PNP tube T17.
  • the zero command signal output terminal outputs a certain high level under the action of the voltage regulator tube D52; vice versa; , when the cathode voltage of diode T19B is high level, the zero point command signal output terminal outputs low level.
  • control card 1 also includes a feedforward input operation unit.
  • the input end of the feedforward input operation unit is used to receive the feedforward output signal of the PID controller, and the feedforward input operation unit
  • the output terminal (corresponding to the output terminal of the operational amplifier N3D) is used to output the feedforward output signal to the zero point command signal processing unit; in addition, the enable unit in Figure 5 can be regarded as a closed switch when enabled.
  • control card 1 also includes a conditional command signal setting unit 12, which includes: a diode D18, a resistor R96, a voltage regulator tube D4, an adjustable resistor P3, a resistor R14, a resistor R113, diode D2, resistor R12, adjustable resistor P2, voltage regulator tube D3, resistor R13, resistor R114, voltage regulator tube D20, voltage regulator tube D19, resistor R121, resistor R15, adjustable resistor P1, resistor R117, operational amplifier N10C, resistor R120, resistor R196 and protection tube D43;
  • a conditional command signal setting unit 12 includes: a diode D18, a resistor R96, a voltage regulator tube D4, an adjustable resistor P3, a resistor R14, a resistor R113, diode D2, resistor R12, adjustable resistor P2, voltage regulator tube D3, resistor R13, resistor R114, voltage regulator tube D20, voltage regulator tube D19, resistor R121, resistor R15, adjustable resistor P1,
  • the anode of the diode D18 is connected to the output end of the operational amplifier N10A
  • the cathode of the diode D18 is connected to the cathode of the voltage stabilizing tube D4 through the resistor R96
  • the anode of the voltage stabilizing tube D4 is connected to ground
  • the cathode of the voltage stabilizing tube D4 is also connected to an adjustable resistor.
  • the second end of P3, the first end of the adjustable resistor P3 is connected to the ground through the resistor R14, and the adjustable end of the adjustable resistor P3 is connected to the first end of the resistor R113;
  • the cathode of the diode D2 is connected to the output end of the operational amplifier N10B, the anode of the diode D2 is connected to the second end of the adjustable resistor P2 through the resistor R12, the second end of the adjustable resistor P2 is connected to the anode of the voltage regulator tube D3, and the voltage regulator tube D3
  • the cathode is grounded, the first end of the adjustable resistor P2 is connected to the ground through the resistor R13, and the adjustable end of the adjustable resistor P2 is connected to the first end of the resistor R114;
  • the second end of the resistor R114 is connected to the second end of the resistor R113 and the anode of the voltage stabilizing tube D20.
  • the cathode of the voltage stabilizing tube D20 is connected to the cathode of the voltage stabilizing tube D19.
  • the second end of the resistor R114 is connected to the voltage stabilizing tube D19 through the resistor R121.
  • the anode and the output end of the operational amplifier N10C, the second end of the resistor R114 is connected to the adjustable end of the adjustable resistor P1 through the resistor R15, the first end of the adjustable resistor P1 is connected to the first DC voltage positive end, and the adjustable resistor P1
  • the second end of the resistor R114 is connected to the negative end of the first DC voltage.
  • the second end of the resistor R114 is also connected to the second end of the resistor R117 and the inverting input end of the operational amplifier N10C.
  • the first end of the resistor R117 is connected to the industrial computer 4 and the operational amplifier N10C.
  • the non-inverting input end is connected to the ground through the resistor 120
  • the output end of the operational amplifier N10C is connected to the first end of the resistor R196
  • the second end of the resistor R196 is connected to the ground through the protection tube D43
  • the second end of the resistor R196 is output as a conditional command signal Connect the capture card 2.
  • the working principle of the conditional instruction signal setting unit 12 is as follows: the operational amplifier N10C, the resistor R121, the resistor R117 and the resistor R120 form an amplifier circuit.
  • the output voltage of the amplifier circuit is proportional to the resistance of the resistor R121 and the resistor R117, and the resistor 117
  • the voltage at the first terminal is related to the voltage at the inverting input terminal of the operational amplifier N10C; and the voltage at the inverting input terminal of the operational amplifier N10C is the output voltage of the adjustable resistor P1, the adjustable resistor P2, the adjustable resistor P3, and the operational amplifier N10A
  • the high level output by N10A will affect the output voltage of the voltage dividing circuit composed of resistor R96, adjustable resistors P3, and R14 at the adjustable end of adjustable resistor P3
  • the output voltage of operational amplifier N10B (the high level output by N10B It will affect the output voltage of the voltage dividing circuit composed of resistor R12, adjustable resistors P2 and R13 at the adjustable end of
  • the voltage dividing circuit composed of resistor R12, adjustable resistors P2 and R13 can be adjusted P2, the adjustable resistor P3 and the first terminal voltage of resistor 117 control the output terminal voltage of the operational amplifier N10C; in addition, the output terminal of the operational amplifier N10C is also connected to the relevant operational circuit (not shown, mainly used to participate in the coil current signal generation operation).
  • the control card 1 also includes a coil current signal processing unit 13, which includes: a switch control unit, a resistor R162, an NPN tube T6, a resistor R161, a resistor R154, a resistor R164, PNP tube T8, NPN tube T9, resistor R205, voltage regulator tube D28, PMOS tube T2, inductor L4, diode D34, capacitor C5, resistor R173, operational amplifier N16A, resistor R183, resistor R172, resistor R181, resistor R188, NMOS tube T3, resistor R163, resistor R174, diode D35, inductor L3 and capacitor C4;
  • the switching signal output end of the switch control unit is connected to the base of the NPN tube T6 via the resistor R162.
  • the base of the NPN tube T6 is also connected to the ground via the resistor R161.
  • the emitter of the NPN tube T6 is connected to the ground via the resistor R154.
  • the collector of NPN tube T6 is connected to the third DC voltage through resistor R164.
  • the collector of NPN tube T6 is also connected to the base of PNP tube T8 and the base of NPN tube T9.
  • the collector of NPN tube T9 is connected to the third DC voltage.
  • the emitter of NPN tube T9 is connected to the emitter of PNP tube T8.
  • the collector of PNP tube T8 is grounded.
  • the emitter of PNP tube T8 is also connected to the anode of voltage regulator tube D28 through resistor R205.
  • the anode of voltage regulator tube D28 is connected to the PMOS tube.
  • the gate of T2, the cathode of the voltage regulator tube D28 and the source of the PMOS tube T2 are connected to the third DC voltage.
  • the drain of the PMOS tube T2 is connected to the first end of the inductor L4 and the cathode of the diode D34.
  • the second end of the inductor L4 is connected through Capacitor C5 is connected to ground, and the second end of inductor L4 is the first coil current signal output end that can be connected to the solenoid coil of the pilot valve;
  • the anode of diode D34 is connected to the inverting input terminal of operational amplifier N16A via resistor R173.
  • the anode of diode D34 is also connected to ground via resistor R183.
  • the inverting input terminal of operational amplifier N16A is connected to the output terminal of operational amplifier N16A via resistor R172.
  • the output terminal of the operational amplifier N16A is connected to the acquisition card 2 as the error signal sampling terminal.
  • the non-inverting input terminal of the operational amplifier N16A is connected to the ground through the resistor R181.
  • the non-inverting input terminal of the operational amplifier N16A is also connected to the source of the NMOS tube T3 through the resistor R188.
  • the source of the NMOS tube T3 is connected to the ground through the resistor R174, the gate of the NMOS tube T3 is connected to the switching signal output terminal of the switch control unit through the resistor R163, the drain of the NMOS tube T3 is connected to the anode of the diode D35, and the cathode of the diode D35 is connected
  • the drain of NMOS tube T3 is also connected to the first end of the inductor L3.
  • the second end of the inductor L3 is connected to the ground through the capacitor C4.
  • the second end of the inductor L3 is the second coil current signal output end and can be connected to the pilot. Valve solenoid coil.
  • the circuit diagram of the switch control unit can be referred to Figure 8, in which the coil control instructions are obtained by performing relevant operations based on the valve feedback signal (including the pilot valve feedback signal and the main valve feedback signal) and the conditional instruction signal; the switching power supply
  • the 10th pin of chip N13 is the switch signal output terminal of the switch control unit.
  • the working principle of the coil current signal processing unit 13 is as follows: when the switch signal output by the switch control unit is high level: the switch signal is input to the base of the NPN tube T6 through the resistor 162, causing the NPN tube T6 to conduct.
  • the PNP tube T8 and the NPN tube T9 are also turned on, and then the PMOS tube T2 is also turned on; the other path of the switching signal is input to the gate of the NMOS tube T3 through the resistor 163, so that the NMOS tube T3 is turned on, and finally the third DC
  • the voltage forms a loop through the PMOS tube T2, the inductor L4, the electromagnetic coil of the pilot valve, the inductor L3, the NMOS tube T3 and the resistor R174, which in turn excites the electromagnetic coil of the pilot valve and starts the pilot valve operation.
  • control card 1 also includes an oil engine feedback signal processing unit 14 and an integrator output signal processing unit 15; the oil engine feedback signal processing unit 14 is used to collect the voltage and current fed back by the proportional valve. signals, and processes the voltage and current signals to obtain current and voltage feedback signals.
  • the integrator output signal processing unit 15 includes: adjustable resistor P4, resistor R25, resistor R23, operational amplifier N3A, resistor R1, resistor R40, voltage regulator tube D2, voltage regulator tube D1, capacitor C6, selector switch K2F, diode D3 and resistor R10;
  • the first end of the adjustable resistor P4 is connected to the oil engine feedback signal processing unit 14 to receive current and voltage feedback signals
  • the second end of the adjustable resistor P4 is connected to ground through the resistor R25
  • the adjustable end of the adjustable resistor P4 It is connected to the inverting input terminal of the operational amplifier N3A through the resistor R23.
  • the inverting input terminal of the operational amplifier N3A is connected to the second terminal of the resistor R1.
  • the second terminal of the resistor R1 is used to connect the enable unit in the control card 1.
  • the operational amplifier The non-inverting input terminal of N3A is connected to ground through resistor R40.
  • the inverting input terminal of operational amplifier N3A is also connected to the anode of voltage regulator tube D2.
  • the cathode of voltage regulator tube D2 is connected to the cathode of voltage regulator tube D1.
  • the anode of voltage regulator tube D1 is connected.
  • the output terminal of the operational amplifier N3A and the anode of the voltage regulator tube D1 are used to connect the enable unit.
  • the inverting input terminal of the operational amplifier N3A is connected to the output terminal of the operational amplifier N3A through the capacitor C6.
  • the inverting input terminal of the operational amplifier N3A is also connected through The selector switch K2F is connected to the anode of the diode D3, the cathode of the diode D3 is connected to the output end of the operational amplifier N3A, the output end of the operational amplifier N3A is connected to the first end of the resistor R10, and the second end of the resistor R10 is connected as the integrator output signal output end.
  • Capture card 2 When the enabling unit performs the enabling operation, it is equivalent to short-circuiting the second end of the resistor R1 and the output end of the operational amplifier N3A.
  • the resistor R10 can be set to 100 ohms.
  • the working principle of the integrator output signal processing unit 15 is as follows: after the current and voltage feedback signals are divided by the adjustable resistor P4 and the resistor R25, they are input to the inverting input terminal of the operational amplifier N3A through the resistor R23. When the unit operates, the operational amplifier N3A, resistor R1 and resistor R23 form an amplifier circuit to amplify the divided current and voltage feedback signals. Finally, the amplified signal is output from the output end of the operational amplifier N3A and participates in the PID operation (not shown). ), and input to acquisition card 2 via resistor R10.
  • the circuit diagram of the oil engine feedback signal processing unit 14 can be referred to FIG. 10 , in which the voltage feedback signal and the current feedback signal are respectively derived from the voltage feedback signal and the current feedback signal output by the valve displacement sensor of the oil engine.
  • control card 1 also includes an oil engine feedback signal acquisition unit 16 and/or a controller output signal processing unit 17;
  • the oil engine feedback signal acquisition unit 16 is connected to the oil engine feedback signal processing unit 14 and the acquisition card 2 to filter the current and voltage feedback signals and send them to the acquisition card 2;
  • the controller output signal processing unit 17 is connected to the integrator output.
  • the signal processing unit 15 and the oil engine feedback signal processing unit 14 perform operations based on the integrator output signal and the current and voltage feedback signals output by the integrator output signal processing unit 15 to obtain the PID control output signal, and send the PID control output signal. to capture card 2.
  • the controller output signal processing unit 17 and the integrator output signal processing unit 15 together form a PID operation circuit.
  • the PID control output signal will eventually be operated with the feedforward output signal to obtain the zero point control signal, which will then participate in the operation of the zero point command signal. .
  • the circuit diagram of the oil engine feedback signal acquisition unit 16 can be referred to FIG. 11 .
  • the control card 1 also includes two valve feedback signal processing units 18; specifically, the input end of a valve feedback signal processing unit 18a is connected to the acquisition card 2 and a pilot valve that can be connected to the proportional valve.
  • the feedback signal output end, the output end of the valve feedback signal processing unit 18a is connected to the industrial computer 4; the input end of the other valve feedback signal processing unit 18b is connected to the acquisition card 2 and the main valve feedback signal output end that can be connected to the proportional valve.
  • the output end of a valve feedback signal processing unit 18b is connected to the industrial computer 4.
  • each valve feedback signal processing unit 18 includes: voltage regulator tube D51, resistor R74, operational amplifier N3A, resistor R83, resistor R41, resistor R27, resistor R28, adjustable resistor P8 , resistor R26, operational amplifier N3B, resistor R58, resistor R25 and protection tube D42;
  • the cathode of the voltage stabilizing tube D51 is the input end of the valve feedback signal processing unit 18.
  • the cathode of the voltage stabilizing tube D51 is connected to the inverting input terminal of the operational amplifier N3A through the resistor R74.
  • the cathode of the voltage stabilizing tube D51 is also connected through the resistor R83.
  • the anode of the voltage regulator tube D51 is connected to the ground
  • the inverting input terminal of the operational amplifier N3A is connected to the output terminal of the operational amplifier N3A via the resistor R41
  • the non-inverting input terminal of the operational amplifier N3A is connected to the first DC voltage positive terminal via the resistor R27
  • the non-inverting input terminal of the operational amplifier N3A is also connected to the first terminal of the adjustable resistor P8 through the resistor R28
  • the second terminal and the adjustable terminal of the adjustable resistor P8 are connected to ground
  • the output terminal of the operational amplifier N3A is connected to the operational amplifier through the resistor R26
  • the inverting input terminal of N3B and the non-inverting input terminal of operational amplifier N3B are connected to ground.
  • the inverting input terminal of operational amplifier N3B is also connected to the output terminal of operational amplifier N3B through resistor R58.
  • the output terminal of operational amplifier N3B is also connected to the first terminal of resistor R25. terminal, the second terminal of resistor R25 is connected to the industrial computer 4 as the output terminal of the valve feedback signal amplification unit processing unit 18.
  • the working principle of the valve feedback signal processing unit 18 is as follows: the input end of the valve feedback signal processing unit 18 is used to receive the signal output by the displacement sensor of the main valve or pilot valve, and the resistor R74, the operational amplifier N3A, the resistor R83, Resistor R41, resistor R27, resistor R28 and adjustable resistor P8 form a first-level amplifier circuit.
  • This amplifier circuit amplifies the output signal of the displacement sensor.
  • the amplified signal is input to the inverting input terminal of the operational amplifier N3B through resistor R26, and
  • the operational amplifier N3B, the resistor R26 and the resistor R58 form a secondary amplification circuit to amplify the signal again.
  • the output end of the operational amplifier N3B outputs the final valve feedback signal to the industrial computer 4 through the resistor 25.
  • the valve feedback signal is also related to the conditions.
  • the command signal participates in the calculation of the coil control command (not shown).
  • the invention at least has the following beneficial effects: it provides a steam turbine valve characteristic testing device, which includes: a box, and the box is provided with: a control card, a collection card, a collection interface and an industrial computer; relevant control instructions can be sent through the industrial computer; This allows the control card to control the proportional valve to work.
  • the acquisition card is used to collect feedback signals, control signals and oil pressure signals.
  • the industrial computer issues corresponding characteristic curves based on the feedback signals, control signals and oil pressure signals. It enables staff to comprehensively and intuitively monitor and diagnose the work of the proportional valve.
  • the device can not only predict the occurrence of faults in advance and prompt the faulty personnel to take corresponding measures, but can also replace the control when the control system of the steam turbine valve is being overhauled.
  • the system controls the proportional valve, thereby improving the reliability of the turbine valve system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种汽轮机阀门特性测试装置,包括箱体,以及箱体内设有:控制卡(1)、与控制卡(1)连接的采集卡(2)、与采集卡(2)和油动机中的压力传感器连接的采集接口(3),以及与控制卡(1)和采集卡(2)连接的工控机(4);该装置可使工作人员全面、直观地对比例阀的工作进行监视和故障诊断,不仅可以提前预测到故障发生,提示故障人员采取相应措施,还可以在汽轮机阀门的控制系统进行检修时,替代控制系统对比例阀进行控制,进而提高汽轮机阀门系统的可靠性。

Description

汽轮机阀门特性测试装置 技术领域
本发明涉及设备维修技术领域,尤其涉及一种汽轮机阀门特性测试装置。
背景技术
在相关技术中,某核电厂的汽轮机是通过比例式调节阀(简称比例阀)控制的,当先导阀卡涩、主阀卡涩、控制卡件故障、信号传输故障等多故障发生时,可能会引发比例阀会出现瞬时关闭又开启的现象。因此,为了维系核电厂稳定运作,需要定时对比例阀的工作进行监控及测试。而目前,现有的汽轮机阀门系统虽然也会对比例阀的一些数据进行监视,但故障诊断手段有限,很有效确定故障原因,也无法提前对故障进行预测。
发明内容
本发明要解决的技术问题在于,针对现有技术存在的至少一个缺陷,提供一种汽轮机阀门特性测试装置。
本发明解决其技术问题所采用的技术方案是:构造一种汽轮机阀门特性测试装置,包括箱体,以及箱体内设有:控制卡、采集卡、采集接口和工控机;
所述控制卡用于控制比例阀工作;
所述采集卡,与所述控制卡连接,用于采集所述控制卡的反馈信号和控制信号;其中,所述反馈信号包括先导阀反馈信号、主阀反馈信号和油动机反馈信号中的至少一种,所述控制信号包括线圈电流信号、零点指令信号、条件指令信号、PID控制信号和积分器输出信号中的至少一种;
所述采集接口与所述采集卡连接,还与油动机中的压力传感器连接,以将油压信号发送至所述采集卡;
所述工控机,与所述控制卡和采集卡连接,用于控制所述控制卡工作,并对所述反馈信号、控制信号和油压信号进行处理,以生成相应的特性曲线。
优选地,所述箱体为翻盖式箱体,所述翻盖式箱体内还设有用于对所述工控机进行控制的操作面板;
所述操作面板上设有用于控制所述反馈信号通断、实现使能功能和设置工作模式的选择开关单元。
优选地,还包括设于所述翻盖式箱体的翻盖内侧的触摸屏,所述触摸屏连接所述工控机,所述触摸屏用于实时显示所述反馈信号、控制信号和油压信号的特性曲线,以及获取控制指令。
优选地,所述控制卡包括零点指令信号处理单元,其包括:电阻R124、电阻R123、运算放大器N10B、电阻R126、电阻R125、电阻R122、稳压管D15、电阻R77、反相器N6E、二极管T19A、运算放大器N10A、电阻R111、电阻R112、电阻R110、二极管T19B、电阻R78、反相器N6D、电阻R76、NPN管T20、电阻R75、PNP管T17、电阻R84、二极管D14、电阻R85、稳压管D52和电阻R7;
所述电阻R124的第二端用于接收零点控制信号,所述电阻R124的第二端还经所述电阻R123连接至所述运算放大器N10B的同相输入端,所述运算放大器N10B的反相输入端经所述电阻R126连接至地,所述运算放大器N10B的反相输入端还经所述电阻R125连接至第一直流电压正端,所述运算放大器N10B的输出端经所述电阻R122连接至所述运算放大器N10B的同相输入端,所述运算放大器N10B的输出端还连接所述稳压管D15的阳极,所述稳压管D15的阴极经所述电阻R77连接至第二直流电压,所述稳压管D15的阴极还连接所述反相器N6E的输入端,所述反相器N6E的输出端连接所述二极管T19A的阳极;
所述电阻R124的第一端连接所述运算放大器N10A的同相输入端,所述运算放大器N10A的反相输入端经所述电阻R111连接至第一直流电压负端,所述运算放大器N10A的反相输入端还经所述电阻R112连接至地,所述运算放大器N10A的同相输入端经所述电阻R110连接至所述运算放大器N10A的输出端,所述运算放大器N10A的输出端连接所述二极管T19B的阳极;
所述二极管T19A的阴极连接所述二极管T19B的阴极, 所述二极管T19B的阴极经电阻R78连接至地,所述二极管T19B的阴极还连接所述反相器N6D的输入端,所述反相器N6D的输出端经所述电阻R76连接至所述NPN管T20的基极,所述NPN管T20的发射极接地,所述NPN管T20的集电极经所述电阻R75连接至所述PNP管T17的基极,所述PNP管T17的基极经所述电阻R84连接至第三直流电压,所述PNP管T17的集电极经所述电阻R85连接至地,所述PNP管T17的集电极还连接所述二极管D14的阳极,所述二极管D14的阴极和PNP管T17的发射极连接第三直流电压,所述二极管D14的阳极还连接所述稳压管D52的阴极,所述稳压管D52的阳极接地,所述二极管D14的阳极还连接所述电阻R7的第一端,所述电阻R7的第二端作为零点指令信号输出端连接所述采集卡,所述零点指令信号输出端用于连接所述比例阀。
优选地,所述控制卡还包括条件指令信号设置单元,其包括:二极管D18、电阻R96、稳压管D4、可调电阻P3、电阻R14、电阻R113、二极管D2、电阻R12、可调电阻P2、稳压管D3、电阻R13、电阻R114、稳压管D20、稳压管D19、电阻R121、电阻R15、可调电阻P1、电阻R117、运算放大器N10C、电阻R120、电阻R196和保护管D43;
所述二极管D18的阳极连接所述运算放大器N10A的输出端,所述二极管D18的阴极经电阻R96连接至所述稳压管D4的阴极,所述稳压管D4的阳极接地,所述稳压管D4的阴极还连接所述可调电阻P3的第二端,所述可调电阻P3的第一端经所述电阻R14连接至地,所述可调电阻P3的可调端连接所述电阻R113的第一端;
所述二极管D2的阴极连接所述运算放大器N10B的输出端, 所述二极管D2的阳极经所述电阻R12连接至所述可调电阻P2的第二端, 所述可调电阻P2的第二端连接所述稳压管D3的阳极,所述稳压管D3的阴极接地, 所述可调电阻P2的第一端经所述电阻R13连接至地,所述可调电阻P2的可调端连接所述电阻R114的第一端;
所述电阻R114的第二端连接所述电阻R113的第二端和稳压管D20的阳极,所述稳压管D20的阴极连接所述稳压管D19的阴极,所述电阻R114的第二端经所述电阻R121连接至所述稳压管D19的阳极和运算放大器N10C的输出端,所述电阻R114的第二端经所述电阻R15连接至所述可调电阻P1的可调端,所述可调电阻P1的第一端连接第一直流电压正端,所述电阻R114的第二端还连接所述电阻R117的第二端和运算放大器N10C的反相输入端,所述电阻R117的第一端连接所述工控机,所述运算放大器N10C的同相输入端经所述电阻120连接至地,所述运算放大器N10C的输出端连接所述电阻R196的第一端,所述电阻R196的第二端经所述保护管D43连接至地,所述电阻R196的第二端作为条件指令信号输出端连接所述采集卡。
优选地,所述控制卡还包括线圈电流信号处理单元,其包括:开关控制单元、电阻R162、NPN管T6、电阻R161、电阻R154、电阻R164、PNP管T8、NPN管T9、电阻R205、稳压管D28、PMOS管T2、电感L4、二极管D34、电容C5、电阻R173、运算放大器N16A、电阻R183、电阻R172、电阻R181、电阻R188、NMOS管T3、电阻R163、电阻R174、二极管D35和电感L3;
所述开关控制单元的开关信号输出端经所述电阻R162连接至所述NPN管T6的基极,所述NPN管T6的基极还经所述电阻R161连接至地,所述NPN管T6的发射极经所述电阻R154连接至地,所述NPN管T6的集电极经所述电阻R164连接至第三直流电压,所述NPN管T6的集电极还连接所述PNP管T8的基极和NPN管T9的基极,所述NPN管T9的集电极连接第三直流电压,所述NPN管T9的发射极连接所述PNP管T8的发射极,所述PNP管T8的集电极接地,所述PNP管T8的发射极还经所述电阻R205连接至所述稳压管D28的阳极,所述稳压管D28的阳极连接所述PMOS管T2的栅极,所述稳压管D28的阴极和PMOS管T2的源极连接第三直流电压,所述PMOS管T2的漏极连接所述电感L4的第一端和二极管D34的阴极,所述电感L4的第二端经电容C5连接至地,所述电感L4的第二端为第一线圈电流信号输出端可连接先导阀的电磁铁线圈;
所述二极管D34的阳极经所述电阻R173连接至所述运算放大器N16A的反相输入端,所述二极管D34的阳极还经所述电阻R183连接至地,所述运算放大器N16A的反相输入端经所述电阻R172连接至所述运算放大器N16A的输出端,所述运算放大器N16A的输出端作为误差信号采样端连接所述采集卡,所述运算放大器N16A的同相输入端经所述电阻R181连接至地,所述运算放大器N16A的同相输入端还经所述电阻R188连接至所述NMOS管T3的源极,所述NMOS管T3的源极经所述电阻R174连接至地,所述NMOS管T3的栅极经所述电阻R163连接至所述开关控制单元的开关信号输出端,所述NMOS管T3的漏极连接所述二极管D35的阳极,所述二极管D35的阴极连接所述第三直流电压,所述NMOS管T3的漏极还连接所述电感L3的第一端,所述电感L3的第二端为第二线圈电流信号输出端可连接所述先导阀的电磁铁线圈。
优选地,所述控制卡还包括油动机反馈信号处理单元和积分器输出信号处理单元;
所述油动机反馈信号处理单元用于采集所述比例阀反馈的电压及电流信号,并对所述电压及电流信号进行处理,得到电流及电压反馈信号;
其中,所述积分器输出信号处理单元包括:可调电阻P4、电阻R25、电阻R23、运算放大器N3A、电阻R1、电阻R40、稳压管D2、稳压管D1、电容C6、选择开关K2F、二极管D3和电阻R10;
所述可调电阻P4的第一端连接所述油动机反馈信号处理单元以接收所述电流及电压反馈信号,所述可调电阻P4的第二端经所述电阻R25连接至地,所述可调电阻P4的可调端经所述电阻R23连接至所述运算放大器N3A的反相输入端,所述运算放大器N3A的反相输入端连接所述电阻R1的第二端,所述电阻R1的第二端连接所述控制卡中的使能单元,所述运算放大器N3A的同相输入端经所述电阻R40连接至地,所述运算放大器N3A的反相输入端还连接所述稳压管D2的阳极,所述稳压管D2的阴极连接所述稳压管D1的阴极,所述稳压管D1的阳极连接所述运算放大器N3A的输出端,所述稳压管D1的阳极用于连接所述使能单元,所述运算放大器N3A的反相输入端经所述电容C6连接至所述运算放大器N3A的输出端,所述运算放大器N3A的反相输入端还经所述选择开关K2F连接至所述二极管D3的阳极,所述二极管D3的阴极连接所述运算放大器N3A的输出端,所述运算放大器N3A的输出端连接所述电阻R10的第一端,所述电阻R10的第二端作为积分器输出信号输出端连接所述采集卡。
优选地,所述控制卡还包括油动机反馈信号采集单元和/或控制器输出信号处理单元;
所述油动机反馈信号采集单元连接所述油动机反馈信号处理单元和采集卡,以对所述电流及电压反馈信号进行滤波后发送至所述采集卡;
所述控制器输出信号处理单元连接所述积分器输出信号处理单元和油动机反馈信号处理单元,以根据所述积分器输出信号处理单元输出的积分器输出信号和电流及电压反馈信号进行运算,得到所述PID控制输出信号,并将所述PID控制输出信号发送至所述采集卡。
优选地,所述控制卡还包括两个阀门反馈信号处理单元;
一所述阀门反馈信号处理单元的输入端连接所述采集卡以及可连接所述比例阀的先导阀反馈信号输出端,该所述阀门反馈信号处理单元的输出端连接所述工控机;
另一所述阀门反馈信号处理单元的输入端连接所述采集卡以及可连接所述比例阀的主阀反馈信号输出端,该另一所述阀门反馈信号处理单元的输出端连接所述工控机。
优选地,每一个所述阀门反馈信号处理单元包括:稳压管D51、电阻R74、运算放大器N3A、电阻R83、电阻R41、电阻R27、电阻R28、可调电阻P8、电阻R26、运算放大器N3B、电阻R58、电阻R25和保护管D42;
所述稳压管D51的阴极为所述阀门反馈信号处理单元的输入端,所述稳压管D51的阴极经所述电阻R74连接至所述运算放大器N3A的反相输入端,所述稳压管D51的阴极还经所述电阻R83连接至地,所述稳压管D51的阳极接地,所述运算放大器N3A的反相输入端经所述电阻R41连接至所述运算放大器N3A的输出端,所述运算放大器N3A的同相输入端经所述电阻R27连接至第一直流电压正端,所述运算放大器N3A的同相输入端还经所述电阻R28连接至所述可调电阻P8的第一端,所述可调电阻P8的第二端和可调端接地,所述运算放大器N3A的输出端经所述电阻R26连接至所述运算放大器N3B的反相输入端,运算放大器N3B的同相输入端接地,所述运算放大器N3B的反相输入端还经所述电阻R58连接至运算放大器N3B的输出端,所述运算放大器N3B的输出端还连接所述电阻R25的第一端,所述电阻R25的第二端作为所述阀门反馈信号放大单元处理单元18的输出端连接所述工控机。
本发明至少具有以下有益效果:提供一种汽轮机阀门特性测试装置,包括:箱体,以及箱体内设有:控制卡、采集卡、采集接口和工控机;可以通过工控机发送相关控制指令,从而使控制卡控制比例阀工作,在比例阀工作过程中,利用采集卡采集反馈信号、控制信号和油压信号,最后,工控机根据反馈信号、控制信号和油压信号出具相应的特性曲线,使工作人员能够全面、直观地对比例阀的工作进行监视和故障诊断,该装置不仅可以提前预测到故障发生,提示故障人员采取相应措施,还可以在汽轮机阀门的控制系统进行检修时,替代控制系统对比例阀进行控制,进而提高汽轮机阀门系统的可靠性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明提供的汽轮机阀门特性测试装置的结构示意图;
图2是本发明提供的汽轮机阀门特性测试装置中的箱体的结构示意图;
图3是本发明提供的汽轮机阀门特性测试装置中的控制卡的结构示意图;
图4是本发明提供的零点指令信号处理单元的电路图;
图5是本发明提供的前馈输入运算单元的电路图;
图6是本发明提供的条件指令信号设置单元的电路图;
图7是本发明提供的线圈电流信号处理单元的电路图;
图8是本发明提供的线圈电流信号处理单元中的开关控制单元的电路图;
图9是本发明提供的积分器输出信号处理单元的电路图;
图10是本发明提供的油动机反馈信号处理单元的电路图;
图11是本发明提供的油动机反馈信号采集单元的电路图;
图12是本发明提供的阀门反馈信号处理单元的电路图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
在某核电厂中,汽轮机阀门系统包括用于控制阀门开度的油动机、用于控制油动机工作的比例阀和用于控制比例阀工作的控制系统。
参考图1,本发明构造了一种汽轮机阀门特性测试装置,可以替代汽轮机阀门的控制系统对比例阀进行控制,实现对油动机的控制,并实现对比例阀进行特性测试,该汽轮机阀门特性测试装置包括箱体,以及箱体内设有:控制卡1、采集卡2、采集接口3和工控机4。
控制卡1用于控制比例阀工作。具体地,控制卡1可以根据核电厂的控制系统或工控机4的控制信号并结合比例阀的反馈信号生成用于控制比例阀的控制指令;其中,反馈信号包括先导阀反馈信号、主阀反馈信号和油动机反馈信号,控制信号包括线圈电流信号、零点指令信号、条件指令信号、PID控制信号和积分器输出信号。
先导阀反馈信号用于反映比例阀中的先导阀行程位置信息,该信号由先导阀中的位移传感器发送至控制卡1。
主阀反馈信号用于反映比例阀中的主阀行程位置信息,该信号由主阀中的位移传感器发送至控制卡1。
油动机反馈信号用于反映油动机的行程位置信息,该信号由油动机中的位移传感器发送至控制卡1。
线圈电流信号用于驱动先导阀中的电磁铁,以控制先导阀,进而控制主阀的开闭,该信号由控制卡1发送至先导阀中的电磁铁。
零点指令信号是根据控制系统或工控机4的输入信号经过运算处理(如PID运算)后产生控制比例阀行程的信号。
条件指令信号用于设置主阀的行程位置,该信号通过与主阀反馈信号共同参与相关运算处理,控制线圈电流信号的生成,进而控制主阀的最终行程位置,另外该信号的运算是根据零点指令信号进行相关运算得到的。
PID控制信号是零点指令信号参与PID运算后所输出的控制信号,条件指令信号可以通过该控制信号经过运算得到。
积分器输出信号是零点指令信号参与PID运算过程中吗,进行积分运算后输出的信号。
 采集卡2与控制卡1连接,用于采集控制卡1的反馈信号和控制信号,使工控机4可以同步且准确地采集到反馈信号和控制信号,以准确、真实地反映比例阀的工作情况,从而提高对特性测试的准确性。其中,反馈信号包括先导阀反馈信号、主阀反馈信号和油动机反馈信号中的至少一种,控制信号包括线圈电流信号、零点指令信号、条件指令信号、PID控制信号和积分器输出信号中的至少一种。
采集接口3与采集卡2连接,还与油动机中的压力传感器连接,以将油压信号发送至采集卡2。
在一些实施例中,油压信号包括比例阀入口油压信号、减压阀后油压、减压阀A油口的油压信号、减压阀B油口的油压信号、以及若干其它位置(如PT4油压信号、PT5油压信号、PT7油压信号等)的油压信号。
进一步地,采集接口3包括若干插头,这些插头中不仅用于与油动机中的压力传感器连接,还分别与油动机和比例阀中的位移传感器连接,以接收主阀、先导阀和油动机反馈信号;这些插头中当中还包括四个通讯插头。
工控机4与控制卡1和采集卡2连接,用于控制控制卡1工作,并对反馈信号、控制信号和油压信号进行处理,以生成相应的特性曲线。对应的,相应的特性曲线包括先导阀反馈信号特性曲线、主阀反馈信号特性曲线、油动机反馈信号特性曲线、线圈电流信号特性曲线、零点指令信号特性曲线、条件指令信号特性曲线、PID控制信号特性曲线和积分器输出信号特性曲线中的至少一种,工作人员可以通过观察特性曲线来判断比例阀的工作是否正常。
在一些实施例中,如图2所示,箱体为翻盖式箱体5,翻盖式箱体5内还设有用于对工控机4进行控制的操作面板51,打开翻盖式箱体5的翻盖后边可以对操作面板51进行操作;操作面板51上设有用于控制反馈信号通断、实现使能功能和设置工作模式的选择开关单元511。
在一些实施例中,选择开关单元511包括若干选择开关;其中,一些选择开关串联连接在每一个反馈信号与控制卡1之间,从而通过选择开关来模拟反馈信号失效的情况;至少一个选择开关与控制卡1中的控制器输出信号处理单元17的使能端连接,用于控制控制器输出信号处理单元17是否使能;还有一些选择开关与工控机4连接,用于选择特性测试的工作模式。
进一步地,特性测试包括四个工作模式,分别为:模式1、以21%/s分段变速率模拟GRE001试验;模式2、以恒定1.1%/s关闭速率模拟GRE001试验;模式3、40%阀位以上8.9%/s关闭速率、40%阀位以下1.5%/s关闭速率模拟GRE001试验;模式4、以恒定3.3%/s关闭速率模拟GRE001试验。其中,GRE001试验的过程包括:通过控制比例阀控制调节阀基于设定关闭速率进行关闭,在调节阀完全关闭后,控制比例阀中的截止阀关闭,在截止阀完全关闭后,控制调节阀基于设定打开速率打开到20%,然后控制调节阀基于设定关闭速率进行关闭,然后控制截止阀打开,在截止阀完全打开后,控制调节阀基于设定打开速率打开到正常运行开度。在GRE001试验过程中,工控机4根据采集卡2采集到相关信号生成相应的特性曲线。
为了方便接线,在一些实施例中,采集接口3中的插头可设置在操作面板51上,接口类型可以为航空插头。
在一些实施例中,如图2所示,该汽轮机阀门特性测试装置还包括设于翻盖式箱体5的翻盖内侧的触摸屏6,触摸屏6连接工控机4,触摸屏6用于实时显示反馈信号、控制信号和油压信号的特性曲线,以及获取控制指令。
为了提高便携性,在一些实施例中,翻盖式箱体的底部设有万向轮7,翻盖式箱体5的一侧面上设有伸缩杆8,以及翻盖式箱体5的翻盖外侧设有提手组件(未图示)。
在一些实施例中,该汽轮机阀门特性测试装置还包括设于操作面板51内侧的供电单元,该供电源用于为装置内各个单元提供电源,包括提供第一、第二、第三直流电压;其中,第一直流电压可以为±10V,第一直流电压正端为10V,第一直流电压负端为-10V;第二直流电压可以为±15V;第三直流电压可以为24V。
在一些实施例中,如图3所示, 控制卡1包括零点指令信号处理单元11;进一步地,如图4所示,零点指令信号处理单元11包括:电阻R124、电阻R123、运算放大器N10B、电容C43、电阻R126、电阻R125、电阻R122、稳压管D15、电阻R77、反相器N6E、二极管T19A、运算放大器N10A、电容C48、电阻R111、电阻R112、电阻R110、二极管T19B、电阻R78、反相器N6D、电阻R76、NPN管T20、电阻R75、PNP管T17、电阻R84、二极管D14、电阻R85、电容C49、稳压管D52和电阻R7;
具体地,电阻R124的第二端用于接收零点控制信号,电阻R124的第二端还经电阻R123连接至运算放大器N10B的同相输入端,运算放大器N10B的同相输入端经电容C43连接至运算放大器N10B的反相输入端,运算放大器N10B的反相输入端经电阻R126连接至地,运算放大器N10B的反相输入端还经电阻R125连接至第一直流电压正端,运算放大器N10B的输出端经电阻R122连接至运算放大器N10B的同相输入端,运算放大器N10B的输出端还连接稳压管D15的阳极,稳压管D15的阴极经电阻R77连接至第二直流电压,稳压管D15的阴极还连接反相器N6E的输入端,反相器N6E的输出端连接二极管T19A的阳极;
电阻R124的第一端连接运算放大器N10A的同相输入端,运算放大器N10A的同相输入端还经电容C48连接至运算放大器N10A的反相输入端,运算放大器N10A的反相输入端经电阻R111连接至第一直流电压负端,运算放大器N10A的反相输入端还经电阻R112连接至地,运算放大器N10A的同相输入端经电阻R110连接至运算放大器N10A的输出端,运算放大器N10A的输出端连接二极管T19B的阳极;
二极管T19A的阴极连接二极管T19B的阴极, 二极管T19B的阴极经电阻R78连接至地,二极管T19B的阴极还连接反相器N6D的输入端,反相器N6D的输出端经电阻R76连接至NPN管T20的基极,NPN管T20的发射极接地,NPN管T20的集电极经电阻R75连接至PNP管T17的基极,PNP管T17的基极经电阻R84连接至第三直流电压,PNP管T17的集电极经电阻R85连接至地,PNP管T17的集电极还连接二极管D14的阳极,二极管D14的阴极和PNP管T17的发射极连接第三直流电压,二极管D14的阳极经电容C49至地,二极管D14的阳极还连接稳压管D52的阴极,稳压管D52的阳极接地,二极管D14的阳极还连接电阻R7的第一端,电阻R7的第二端作为零点指令信号输出端连接采集卡2,零点指令信号输出端用于连接比例阀。
为了提高采集卡2的采样精度,在一些实施例中,可以将电阻R7设置为100欧姆。
参考图4,零点指令信号处理单元11的工作原理如下:零点控制信号一路经电阻R123进入由运算放大器N10B与电阻R122组成的比较器,在该支路中,当前馈输出信号大于电阻R125与电阻R126的相交点电压时,运算放大器N10B输出高电平,经过反相器N6E时,信号将会发生反相;前馈输出信号另一路经电阻R124进入由运算放大器N10B与电阻R110组成的比较器,当前馈输出信号大于电阻R112与电阻R111的相交点电压时,运算放大器N10A输出高电平;两路的输出电压会影响到二极管T19B的阴极电压,当二极管T19B的阴极电压为低电平时,反相器N6D输出高电平,使NPN管T20导通,进而使PNP管T17也导通,最终使零点指令信号输出端在稳压管D52的作用下,输出一定值的高电平;反之,当二极管T19B的阴极电压为高电平时,零点指令信号输出端输出低电平。
在一些实施例中,如图5所示,控制卡1还包括前馈输入运算单元,前馈输入运算单元的输入端用于接收PID控制器的前馈输出信号,而前馈输入运算单元的输出端(对应为运算放大器N3D的输出端)用于输出前馈输出信号至零点指令信号处理单元;另外,图5中的使能单元在使能时,可以看作为闭合的开关。
在一些实施例中,如图3和图6所示,控制卡1还包括条件指令信号设置单元12,其包括:二极管D18、电阻R96、稳压管D4、可调电阻P3、电阻R14、电阻R113、二极管D2、电阻R12、可调电阻P2、稳压管D3、电阻R13、电阻R114、稳压管D20、稳压管D19、电阻R121、电阻R15、可调电阻P1、电阻R117、运算放大器N10C、电阻R120、电阻R196和保护管D43;
具体地,二极管D18的阳极连接运算放大器N10A的输出端,二极管D18的阴极经电阻R96连接至稳压管D4的阴极,稳压管D4的阳极接地,稳压管D4的阴极还连接可调电阻P3的第二端,可调电阻P3的第一端经电阻R14连接至地,可调电阻P3的可调端连接电阻R113的第一端;
二极管D2的阴极连接运算放大器N10B的输出端,二极管D2的阳极经电阻R12连接至可调电阻P2的第二端,可调电阻P2的第二端连接稳压管D3的阳极,稳压管D3的阴极接地,可调电阻P2的第一端经电阻R13连接至地,可调电阻P2的可调端连接电阻R114的第一端;
电阻R114的第二端连接电阻R113的第二端和稳压管D20的阳极,稳压管D20的阴极连接稳压管D19的阴极,电阻R114的第二端经电阻R121连接至稳压管D19的阳极和运算放大器N10C的输出端,电阻R114的第二端经电阻R15连接至可调电阻P1的可调端,可调电阻P1的第一端连接第一直流电压正端,可调电阻P1的第二端连接第一直流电压负端,电阻R114的第二端还连接电阻R117的第二端和运算放大器N10C的反相输入端,电阻R117的第一端连接工控机4,运算放大器N10C的同相输入端经电阻120连接至地,运算放大器N10C的输出端连接电阻R196的第一端,电阻R196的第二端经保护管D43连接至地,电阻R196的第二端作为条件指令信号输出端连接采集卡2。
参考图6,条件指令信号设置单元12的工作原理如下:运算放大器N10C、电阻R121、电阻R117和电阻R120组成了放大电路,该放大电路的输出电压与电阻R121及电阻R117阻值比例、电阻117的第一端电压和运算放大器N10C的反相输入端电压相关;而运算放大器N10C的反相输入端的电压是在可调电阻P1、可调电阻P2、可调电阻P3、运算放大器N10A的输出电压(N10A输出的高电平会影响电阻R96、可调电阻P3、R14所组成的分压电路在可调电阻P3的可调端的输出电压)和运算放大器N10B的输出电压(N10B输出的高电平会影响电阻R12、可调电阻P2、R13所组成的分压电路在可调电阻P2的可调端的输出电压)相关,因此,在该实施例中,可以通过调节可调电阻P1、可调电阻P2、可调电阻P3和电阻117的第一端电压来控制运算放大器N10C的输出端电压;另外,运算放大器N10C的输出端还连接相关运算电路(未图示,主要用于参与线圈电流信号的生成运算)。
在一些实施例中,如图3和图7所示,控制卡1还包括线圈电流信号处理单元13,其包括:开关控制单元、电阻R162、NPN管T6、电阻R161、电阻R154、电阻R164、PNP管T8、NPN管T9、电阻R205、稳压管D28、PMOS管T2、电感L4、二极管D34、电容C5、电阻R173、运算放大器N16A、电阻R183、电阻R172、电阻R181、电阻R188、NMOS管T3、电阻R163、电阻R174、二极管D35、电感L3和电容C4;
具体地,开关控制单元的开关信号输出端经电阻R162连接至NPN管T6的基极,NPN管T6的基极还经电阻R161连接至地,NPN管T6的发射极经电阻R154连接至地,NPN管T6的集电极经电阻R164连接至第三直流电压,NPN管T6的集电极还连接PNP管T8的基极和NPN管T9的基极,NPN管T9的集电极连接第三直流电压,NPN管T9的发射极连接PNP管T8的发射极,PNP管T8的集电极接地,PNP管T8的发射极还经电阻R205连接至稳压管D28的阳极,稳压管D28的阳极连接PMOS管T2的栅极,稳压管D28的阴极和PMOS管T2的源极连接第三直流电压,PMOS管T2的漏极连接电感L4的第一端和二极管D34的阴极,电感L4的第二端经电容C5连接至地,电感L4的第二端为第一线圈电流信号输出端可连接先导阀的电磁铁线圈;
二极管D34的阳极经电阻R173连接至运算放大器N16A的反相输入端,二极管D34的阳极还经电阻R183连接至地,运算放大器N16A的反相输入端经电阻R172连接至运算放大器N16A的输出端,运算放大器N16A的输出端作为误差信号采样端连接采集卡2,运算放大器N16A的同相输入端经电阻R181连接至地,运算放大器N16A的同相输入端还经电阻R188连接至NMOS管T3的源极,NMOS管T3的源极经电阻R174连接至地,NMOS管T3的栅极经电阻R163连接至开关控制单元的开关信号输出端,NMOS管T3的漏极连接二极管D35的阳极,二极管D35的阴极连接第三直流电压,NMOS管T3的漏极还连接电感L3的第一端,电感L3的第二端经电容C4连接至地,电感L3的第二端为第二线圈电流信号输出端可连接先导阀的电磁铁线圈。
在一些实施例中,开关控制单元的电路图可以参考图8,其中,线圈控制指令是根据阀门反馈信号(包含先导阀反馈信号和主阀反馈信号)和条件指令信号进行相关运算得到的;开关电源芯片N13的第10引脚为开关控制单元的开关信号输出端。
参考图7,线圈电流信号处理单元13的工作原理如下:当开关控制单元输出的开关信号为高电平时:开关信号一路经电阻162输入至NPN管T6的基极,使NPN管T6导通,以使PNP管T8和NPN管T9也导通,进而使PMOS管T2也导通;开关信号另一路经电阻163输入至NMOS管T3的栅极,使NMOS管T3导通,最终使第三直流电压经PMOS管T2、电感L4、先导阀的电磁铁线圈、电感L3、NMOS管T3和电阻R174形成回路,进而使先导阀的电磁铁线圈励磁,先导阀开始动作。
在一些实施例中,如图3所示,控制卡1还包括油动机反馈信号处理单元14和积分器输出信号处理单元15;油动机反馈信号处理单元14用于采集比例阀反馈的电压及电流信号,并对电压及电流信号进行处理,得到电流及电压反馈信号。
在一些实施例中,如图9所示,积分器输出信号处理单元15包括:可调电阻P4、电阻R25、电阻R23、运算放大器N3A、电阻R1、电阻R40、稳压管D2、稳压管D1、电容C6、选择开关K2F、二极管D3和电阻R10;
具体地,可调电阻P4的第一端连接油动机反馈信号处理单元14以接收电流及电压反馈信号,可调电阻P4的第二端经电阻R25连接至地,可调电阻P4的可调端经电阻R23连接至运算放大器N3A的反相输入端,运算放大器N3A的反相输入端连接电阻R1的第二端,电阻R1的第二端用于连接控制卡1中的使能单元,运算放大器N3A的同相输入端经电阻R40连接至地,运算放大器N3A的反相输入端还连接稳压管D2的阳极,稳压管D2的阴极连接稳压管D1的阴极,稳压管D1的阳极连接运算放大器N3A的输出端,稳压管D1的阳极用于连接使能单元,运算放大器N3A的反相输入端经电容C6连接至运算放大器N3A的输出端,运算放大器N3A的反相输入端还经选择开关K2F连接至二极管D3的阳极,二极管D3的阴极连接运算放大器N3A的输出端,运算放大器N3A的输出端连接电阻R10的第一端,电阻R10的第二端作为积分器输出信号输出端连接采集卡2。其中,使能单元在执行使能操作时,相当于将电阻R1的第二端和运算放大器N3A的输出端短接。
为了提高采集卡2的采样精度,在一些实施例中,可以将电阻R10设置为100欧姆。
参考图9,积分器输出信号处理单元15的工作原理如下:电流及电压反馈信号在可调电阻P4和电阻R25分压后,经电阻R23输入到运算放大器N3A的反相输入端,在使能单元动作时,运算放大器N3A、电阻R1和电阻R23组成放大电路,对分压后的电流及电压反馈信号进行放大,最终该放大信号从运算放大器N3A的输出端输出,参与PID运算(未图示),并经电阻R10输入至采集卡2。
在一些实施例中,油动机反馈信号处理单元14的电路图可以参考图10,其中,电压反馈信号和电流反馈信号分别来自油动机的阀门位移传感器输出的电压反馈信号和电流反馈信号。
在一些实施例中,如图3所示,控制卡1还包括油动机反馈信号采集单元16和/或控制器输出信号处理单元17;
具体地,油动机反馈信号采集单元16连接油动机反馈信号处理单元14和采集卡2,以对电流及电压反馈信号进行滤波后发送至采集卡2;控制器输出信号处理单元17连接积分器输出信号处理单元15和油动机反馈信号处理单元14,以根据积分器输出信号处理单元15输出的积分器输出信号和电流及电压反馈信号进行运算,得到PID控制输出信号,并将PID控制输出信号发送至采集卡2。另外,控制器输出信号处理单元17与积分器输出信号处理单元15共同组成了PID运算电路,PID控制输出信号最终将与前馈输出信号进行运算,得到零点控制信号,进而参与零点指令信号的运算。
在一些实施例中,油动机反馈信号采集单元16的电路图可参照图11。
在一些实施例,如图3所示,控制卡1还包括两个阀门反馈信号处理单元18;具体地,一阀门反馈信号处理单元18a的输入端连接采集卡2以及可连接比例阀的先导阀反馈信号输出端,该阀门反馈信号处理单元18a的输出端连接工控机4;另一阀门反馈信号处理单元18b的输入端连接采集卡2以及可连接比例阀的主阀反馈信号输出端,该另一阀门反馈信号处理单元18b的输出端连接工控机4。
在一些实施例中,如图12所示,每一个阀门反馈信号处理单元18包括:稳压管D51、电阻R74、运算放大器N3A、电阻R83、电阻R41、电阻R27、电阻R28、可调电阻P8、电阻R26、运算放大器N3B、电阻R58、电阻R25和保护管D42;
具体地,稳压管D51的阴极为阀门反馈信号处理单元18的输入端,稳压管D51的阴极经电阻R74连接至运算放大器N3A的反相输入端,稳压管D51的阴极还经电阻R83连接至地,稳压管D51的阳极接地,运算放大器N3A的反相输入端经电阻R41连接至运算放大器N3A的输出端,运算放大器N3A的同相输入端经电阻R27连接至第一直流电压正端,运算放大器N3A的同相输入端还经电阻R28连接至可调电阻P8的第一端,可调电阻P8的第二端和可调端接地,运算放大器N3A的输出端经电阻R26连接至运算放大器N3B的反相输入端,运算放大器N3B的同相输入端接地,运算放大器N3B的反相输入端还经电阻R58连接至运算放大器N3B的输出端,运算放大器N3B的输出端还连接电阻R25的第一端,电阻R25的第二端作为阀门反馈信号放大单元处理单元18的输出端连接工控机4。
参考图12,阀门反馈信号处理单元18的工作原理如下:阀门反馈信号处理单元18的输入端用于接收主阀或先导阀的位移传感器输出的信号,而电阻R74、运算放大器N3A、电阻R83、电阻R41、电阻R27、电阻R28和可调电阻P8组成一级放大电路,该放大电路对位移传感器的输出信号进行放大,放大后的信号经电阻R26输入至运算放大器N3B的反相输入端,而运算放大器N3B、电阻R26和电阻R58组成二级放大电路,对信号进行再次放大,运算放大器N3B的输出端经电阻25输出最终的阀门反馈信号到工控机4,同时,该阀门反馈信号还与条件指令信号参与到线圈控制指令的运算(未图示)。
本发明至少具有以下有益效果:提供一种汽轮机阀门特性测试装置,包括:箱体,以及箱体内设有:控制卡、采集卡、采集接口和工控机;可以通过工控机发送相关控制指令,从而使控制卡控制比例阀工作,在比例阀工作过程中,利用采集卡采集反馈信号、控制信号和油压信号,最后,工控机根据反馈信号、控制信号和油压信号出具相应的特性曲线,使工作人员能够全面、直观地对比例阀的工作进行监视和故障诊断,该装置不仅可以提前预测到故障发生,提示故障人员采取相应措施,还可以在汽轮机阀门的控制系统进行检修时,替代控制系统对比例阀进行控制,进而提高汽轮机阀门系统的可靠性。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (10)

  1. 一种汽轮机阀门特性测试装置,其特征在于,包括箱体,以及箱体内设有:控制卡(1)、采集卡(2)、采集接口(3)和工控机(4);
    所述控制卡(1)用于控制比例阀工作;
    所述采集卡(2),与所述控制卡(1)连接,用于采集所述控制卡(1)的反馈信号和控制信号;其中,所述反馈信号包括先导阀反馈信号、主阀反馈信号和油动机反馈信号中的至少一种,所述控制信号包括线圈电流信号、零点指令信号、条件指令信号、PID控制信号和积分器输出信号中的至少一种;
    所述采集接口(3)与所述采集卡(2)连接,还与油动机中的压力传感器连接,以将油压信号发送至所述采集卡(2);
    所述工控机(4),与所述控制卡(1)和采集卡(2)连接,用于控制所述控制卡(1)工作,并对所述反馈信号、控制信号和油压信号进行处理,以生成相应的特性曲线。
  2. 根据权利要求1所述的汽轮机阀门特性测试装置,其特征在于,所述箱体为翻盖式箱体(5),所述翻盖式箱体(5)内还设有用于对所述工控机(4)进行控制的操作面板(51);
    所述操作面板(51)上设有用于控制所述反馈信号通断、实现使能功能和设置工作模式的选择开关单元(511)。
  3. 根据权利要求2所述的汽轮机阀门特性测试装置,其特征在于,还包括设于所述翻盖式箱体(5)的翻盖内侧的触摸屏(6),所述触摸屏(6)连接所述工控机(4),所述触摸屏(6)用于实时显示所述反馈信号、控制信号和油压信号的特性曲线,以及获取控制指令。
  4. 根据权利要求1所述的汽轮机阀门特性测试装置,其特征在于,所述控制卡(1)包括零点指令信号处理单元(11),其包括:电阻R124、电阻R123、运算放大器N10B、电阻R126、电阻R125、电阻R122、稳压管D15、电阻R77、反相器N6E、二极管T19A、运算放大器N10A、电阻R111、电阻R112、电阻R110、二极管T19B、电阻R78、反相器N6D、电阻R76、NPN管T20、电阻R75、PNP管T17、电阻R84、二极管D14、电阻R85、稳压管D52和电阻R7;
    所述电阻R124的第二端用于接收零点控制信号,所述电阻R124的第二端还经所述电阻R123连接至所述运算放大器N10B的同相输入端,所述运算放大器N10B的反相输入端经所述电阻R126连接至地,所述运算放大器N10B的反相输入端还经所述电阻R125连接至第一直流电压正端,所述运算放大器N10B的输出端经所述电阻R122连接至所述运算放大器N10B的同相输入端,所述运算放大器N10B的输出端还连接所述稳压管D15的阳极,所述稳压管D15的阴极经所述电阻R77连接至第二直流电压,所述稳压管D15的阴极还连接所述反相器N6E的输入端,所述反相器N6E的输出端连接所述二极管T19A的阳极;
    所述电阻R124的第一端连接所述运算放大器N10A的同相输入端,所述运算放大器N10A的反相输入端经所述电阻R111连接至第一直流电压负端,所述运算放大器N10A的反相输入端还经所述电阻R112连接至地,所述运算放大器N10A的同相输入端经所述电阻R110连接至所述运算放大器N10A的输出端,所述运算放大器N10A的输出端连接所述二极管T19B的阳极;
    所述二极管T19A的阴极连接所述二极管T19B的阴极, 所述二极管T19B的阴极经电阻R78连接至地,所述二极管T19B的阴极还连接所述反相器N6D的输入端,所述反相器N6D的输出端经所述电阻R76连接至所述NPN管T20的基极,所述NPN管T20的发射极接地,所述NPN管T20的集电极经所述电阻R75连接至所述PNP管T17的基极,所述PNP管T17的基极经所述电阻R84连接至第三直流电压,所述PNP管T17的集电极经所述电阻R85连接至地,所述PNP管T17的集电极还连接所述二极管D14的阳极,所述二极管D14的阴极和PNP管T17的发射极连接第三直流电压,所述二极管D14的阳极还连接所述稳压管D52的阴极,所述稳压管D52的阳极接地,所述二极管D14的阳极还连接所述电阻R7的第一端,所述电阻R7的第二端作为零点指令信号输出端连接所述采集卡(2),所述零点指令信号输出端用于连接所述比例阀。
  5. 根据权利要求4所述的汽轮机阀门特性测试装置,其特征在于,所述控制卡(1)还包括条件指令信号设置单元(12),其包括:二极管D18、电阻R96、稳压管D4、可调电阻P3、电阻R14、电阻R113、二极管D2、电阻R12、可调电阻P2、稳压管D3、电阻R13、电阻R114、稳压管D20、稳压管D19、电阻R121、电阻R15、可调电阻P1、电阻R117、运算放大器N10C、电阻R120、电阻R196和保护管D43;
    所述二极管D18的阳极连接所述运算放大器N10A的输出端,所述二极管D18的阴极经电阻R96连接至所述稳压管D4的阴极,所述稳压管D4的阳极接地,所述稳压管D4的阴极还连接所述可调电阻P3的第二端,所述可调电阻P3的第一端经所述电阻R14连接至地,所述可调电阻P3的可调端连接所述电阻R113的第一端;
    所述二极管D2的阴极连接所述运算放大器N10B的输出端, 所述二极管D2的阳极经所述电阻R12连接至所述可调电阻P2的第二端, 所述可调电阻P2的第二端连接所述稳压管D3的阳极,所述稳压管D3的阴极接地, 所述可调电阻P2的第一端经所述电阻R13连接至地,所述可调电阻P2的可调端连接所述电阻R114的第一端;
    所述电阻R114的第二端连接所述电阻R113的第二端和稳压管D20的阳极,所述稳压管D20的阴极连接所述稳压管D19的阴极,所述电阻R114的第二端经所述电阻R121连接至所述稳压管D19的阳极和运算放大器N10C的输出端,所述电阻R114的第二端经所述电阻R15连接至所述可调电阻P1的可调端,所述可调电阻P1的第一端连接第一直流电压正端,所述电阻R114的第二端还连接所述电阻R117的第二端和运算放大器N10C的反相输入端,所述电阻R117的第一端连接所述工控机(4),所述运算放大器N10C的同相输入端经所述电阻120连接至地,所述运算放大器N10C的输出端连接所述电阻R196的第一端,所述电阻R196的第二端经所述保护管D43连接至地,所述电阻R196的第二端作为条件指令信号输出端连接所述采集卡(2)。
  6. 根据权利要求3所述的汽轮机阀门特性测试装置,其特征在于,所述控制卡(1)还包括线圈电流信号处理单元(13),其包括:开关控制单元、电阻R162、NPN管T6、电阻R161、电阻R154、电阻R164、PNP管T8、NPN管T9、电阻R205、稳压管D28、PMOS管T2、电感L4、二极管D34、电容C5、电阻R173、运算放大器N16A、电阻R183、电阻R172、电阻R181、电阻R188、NMOS管T3、电阻R163、电阻R174、二极管D35和电感L3;
    所述开关控制单元的开关信号输出端经所述电阻R162连接至所述NPN管T6的基极,所述NPN管T6的基极还经所述电阻R161连接至地,所述NPN管T6的发射极经所述电阻R154连接至地,所述NPN管T6的集电极经所述电阻R164连接至第三直流电压,所述NPN管T6的集电极还连接所述PNP管T8的基极和NPN管T9的基极,所述NPN管T9的集电极连接第三直流电压,所述NPN管T9的发射极连接所述PNP管T8的发射极,所述PNP管T8的集电极接地,所述PNP管T8的发射极还经所述电阻R205连接至所述稳压管D28的阳极,所述稳压管D28的阳极连接所述PMOS管T2的栅极,所述稳压管D28的阴极和PMOS管T2的源极连接第三直流电压,所述PMOS管T2的漏极连接所述电感L4的第一端和二极管D34的阴极,所述电感L4的第二端经电容C5连接至地,所述电感L4的第二端为第一线圈电流信号输出端可连接先导阀的电磁铁线圈;
    所述二极管D34的阳极经所述电阻R173连接至所述运算放大器N16A的反相输入端,所述二极管D34的阳极还经所述电阻R183连接至地,所述运算放大器N16A的反相输入端经所述电阻R172连接至所述运算放大器N16A的输出端,所述运算放大器N16A的输出端作为误差信号采样端连接所述采集卡(2),所述运算放大器N16A的同相输入端经所述电阻R181连接至地,所述运算放大器N16A的同相输入端还经所述电阻R188连接至所述NMOS管T3的源极,所述NMOS管T3的源极经所述电阻R174连接至地,所述NMOS管T3的栅极经所述电阻R163连接至所述开关控制单元的开关信号输出端,所述NMOS管T3的漏极连接所述二极管D35的阳极,所述二极管D35的阴极连接所述第三直流电压,所述NMOS管T3的漏极还连接所述电感L3的第一端,所述电感L3的第二端为第二线圈电流信号输出端可连接所述先导阀的电磁铁线圈。
  7. 根据权利要求1或6任一项所述的汽轮机阀门特性测试装置,其特征在于,所述控制卡(1)还包括油动机反馈信号处理单元(14)和积分器输出信号处理单元(15);
    所述油动机反馈信号处理单元(14)用于采集所述比例阀反馈的电压及电流信号,并对所述电压及电流信号进行处理,得到电流及电压反馈信号;
    其中,所述积分器输出信号处理单元(15)包括:可调电阻P4、电阻R25、电阻R23、运算放大器N3A、电阻R1、电阻R40、稳压管D2、稳压管D1、电容C6、选择开关K2F、二极管D3和电阻R10;
    所述可调电阻P4的第一端连接所述油动机反馈信号处理单元(14)以接收所述电流及电压反馈信号,所述可调电阻P4的第二端经所述电阻R25连接至地,所述可调电阻P4的可调端经所述电阻R23连接至所述运算放大器N3A的反相输入端,所述运算放大器N3A的反相输入端连接所述电阻R1的第二端,所述电阻R1的第二端连接所述控制卡(1)中的使能单元,所述运算放大器N3A的同相输入端经所述电阻R40连接至地,所述运算放大器N3A的反相输入端还连接所述稳压管D2的阳极,所述稳压管D2的阴极连接所述稳压管D1的阴极,所述稳压管D1的阳极连接所述运算放大器N3A的输出端,所述稳压管D1的阳极用于连接所述使能单元,所述运算放大器N3A的反相输入端经所述电容C6连接至所述运算放大器N3A的输出端,所述运算放大器N3A的反相输入端还经所述选择开关K2F连接至所述二极管D3的阳极,所述二极管D3的阴极连接所述运算放大器N3A的输出端,所述运算放大器N3A的输出端连接所述电阻R10的第一端,所述电阻R10的第二端作为积分器输出信号输出端连接所述采集卡(2)。
  8. 根据权利要求7所述的汽轮机阀门特性测试装置,其特征在于,所述控制卡(1)还包括油动机反馈信号采集单元(16)和/或控制器输出信号处理单元(17);
    所述油动机反馈信号采集单元(16)连接所述油动机反馈信号处理单元(14)和采集卡(2),以对所述电流及电压反馈信号进行滤波后发送至所述采集卡(2);
    所述控制器输出信号处理单元(17)连接所述积分器输出信号处理单元(15)和油动机反馈信号处理单元(14),以根据所述积分器输出信号处理单元(15)输出的积分器输出信号和电流及电压反馈信号进行运算,得到所述PID控制输出信号,并将所述PID控制输出信号发送至所述采集卡(2)。
  9. 根据权利要求7所述的汽轮机阀门特性测试装置,其特征在于,所述控制卡(1)还包括两个阀门反馈信号处理单元(18);
    一所述阀门反馈信号处理单元(18)的输入端连接所述采集卡(2)以及可连接所述比例阀的先导阀反馈信号输出端,该所述阀门反馈信号处理单元(18)的输出端连接所述工控机(4);
    另一所述阀门反馈信号处理单元(18)的输入端连接所述采集卡(2)以及可连接所述比例阀的主阀反馈信号输出端,该另一所述阀门反馈信号处理单元(18)的输出端连接所述工控机(4)。
  10. 根据权利要求9所述的汽轮机阀门特性测试装置,其特征在于,每一个所述阀门反馈信号处理单元(18)包括:稳压管D51、电阻R74、运算放大器N3A、电阻R83、电阻R41、电阻R27、电阻R28、可调电阻P8、电阻R26、运算放大器N3B、电阻R58、电阻R25和保护管D42;
    所述稳压管D51的阴极为所述阀门反馈信号处理单元(18)的输入端,所述稳压管D51的阴极经所述电阻R74连接至所述运算放大器N3A的反相输入端,所述稳压管D51的阴极还经所述电阻R83连接至地,所述稳压管D51的阳极接地,所述运算放大器N3A的反相输入端经所述电阻R41连接至所述运算放大器N3A的输出端,所述运算放大器N3A的同相输入端经所述电阻R27连接至第一直流电压正端,所述运算放大器N3A的同相输入端还经所述电阻R28连接至所述可调电阻P8的第一端,所述可调电阻P8的第二端和可调端接地,所述运算放大器N3A的输出端经所述电阻R26连接至所述运算放大器N3B的反相输入端,运算放大器N3B的同相输入端接地,所述运算放大器N3B的反相输入端还经所述电阻R58连接至运算放大器N3B的输出端,所述运算放大器N3B的输出端还连接所述电阻R25的第一端,所述电阻R25的第二端作为所述阀门反馈信号放大单元处理单元18的输出端连接所述工控机(4)。
PCT/CN2023/123351 2022-09-02 2023-10-08 汽轮机阀门特性测试装置 WO2024046500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211071210.0 2022-09-02
CN202211071210.0A CN115542039A (zh) 2022-09-02 2022-09-02 汽轮机阀门特性测试装置

Publications (1)

Publication Number Publication Date
WO2024046500A1 true WO2024046500A1 (zh) 2024-03-07

Family

ID=84725158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123351 WO2024046500A1 (zh) 2022-09-02 2023-10-08 汽轮机阀门特性测试装置

Country Status (2)

Country Link
CN (1) CN115542039A (zh)
WO (1) WO2024046500A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115542039A (zh) * 2022-09-02 2022-12-30 苏州热工研究院有限公司 汽轮机阀门特性测试装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203471A (en) * 1977-08-23 1980-05-20 Kraftwerk Union Aktiengesellschaft Monitoring device for steam-turbine valves
CN204515085U (zh) * 2015-02-03 2015-07-29 中国航天空气动力技术研究院 电磁阀性能参数台式测试设备
CN109519233A (zh) * 2018-12-07 2019-03-26 苏州热工研究院有限公司 用于核电厂汽轮机进汽调节阀的在线监测方法和系统
CN112083711A (zh) * 2020-09-10 2020-12-15 重庆机电职业技术大学 汽车ecu故障检测系统及其检测方法
CN112696238A (zh) * 2021-01-25 2021-04-23 东方电气自动控制工程有限公司 一种用于汽轮机蒸汽阀门的控制系统及方法
CN112761741A (zh) * 2021-01-26 2021-05-07 西安热工研究院有限公司 一种汽轮机阀门关闭时间在线检测装置及远程报送方法
DE202022102925U1 (de) * 2022-05-25 2022-06-10 Sichuan University Frequenzdomänenreflexion-Prüfsystem eines Seekabels
CN115542039A (zh) * 2022-09-02 2022-12-30 苏州热工研究院有限公司 汽轮机阀门特性测试装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203471A (en) * 1977-08-23 1980-05-20 Kraftwerk Union Aktiengesellschaft Monitoring device for steam-turbine valves
CN204515085U (zh) * 2015-02-03 2015-07-29 中国航天空气动力技术研究院 电磁阀性能参数台式测试设备
CN109519233A (zh) * 2018-12-07 2019-03-26 苏州热工研究院有限公司 用于核电厂汽轮机进汽调节阀的在线监测方法和系统
CN112083711A (zh) * 2020-09-10 2020-12-15 重庆机电职业技术大学 汽车ecu故障检测系统及其检测方法
CN112696238A (zh) * 2021-01-25 2021-04-23 东方电气自动控制工程有限公司 一种用于汽轮机蒸汽阀门的控制系统及方法
CN112761741A (zh) * 2021-01-26 2021-05-07 西安热工研究院有限公司 一种汽轮机阀门关闭时间在线检测装置及远程报送方法
DE202022102925U1 (de) * 2022-05-25 2022-06-10 Sichuan University Frequenzdomänenreflexion-Prüfsystem eines Seekabels
CN115542039A (zh) * 2022-09-02 2022-12-30 苏州热工研究院有限公司 汽轮机阀门特性测试装置

Also Published As

Publication number Publication date
CN115542039A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2024046500A1 (zh) 汽轮机阀门特性测试装置
CN102155470B (zh) 一种液压阀的自动检测调试系统及方法
EP1166136B1 (en) Simulator cart
CA2201372C (en) Apparatus and method for use in testing gas pressure reduction equipment
CN101915881B (zh) 继电保护装置实时仿真测试方法
CA2917240C (en) Programmable actuator simulation card
CN102446233B (zh) 火电机组分布式控制系统控制对象仿真建模的方法
CN104736818A (zh) 用于对控制致动器、尤其是气体涡轮发动机的定子的系统的控制失效进行区分的方法
CN109459689B (zh) 一种移动式继电器全自动校验装置
CN106443096A (zh) 全自动温升试验低压大电流发生装置及其控制方法
CN108169678B (zh) 一种模拟燃料电池的电控开发测试系统
CN101644625B (zh) 一种汽轮机数字电液控制系统试验装置
CN103063463B (zh) 真空调节器输出压力特性检测装置
CN114109797B (zh) 一种航空电动燃油泵测试系统及方法
CN115237181B (zh) 燃气轮机温度监控及故障模拟系统
CN201247151Y (zh) 发动机试验轴向力自动控制装置
CN208283074U (zh) 一种蒸汽快速调节装置
CN117471933A (zh) 一种柴油机接口仿真装置及其系统
CN201993916U (zh) 一种利用网络进行远程虚拟实验的系统
CN214952162U (zh) 一种航空发动机引气试验设备
CN106526480B (zh) 一种组合传动发电机测试系统及输出频率分析试验方法
CN112346361B (zh) 一种实操与仿真一体化的风洞试验流程验证方法
CN112346360B (zh) 一种实操与仿真混合执行的风洞试验流程验证方法
CN104199317A (zh) 一种蒸汽发电机控制器
KR102159629B1 (ko) 모터 구동 밸브의 원격신호 검출 커넥터 확인 장치 및 이를 이용한 모터 구동 밸브의 원격신호 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859526

Country of ref document: EP

Kind code of ref document: A1