WO2024046425A1 - 快插式传动件、末端执行器及手术系统 - Google Patents

快插式传动件、末端执行器及手术系统 Download PDF

Info

Publication number
WO2024046425A1
WO2024046425A1 PCT/CN2023/116143 CN2023116143W WO2024046425A1 WO 2024046425 A1 WO2024046425 A1 WO 2024046425A1 CN 2023116143 W CN2023116143 W CN 2023116143W WO 2024046425 A1 WO2024046425 A1 WO 2024046425A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
tracer
interface
saw blade
end effector
Prior art date
Application number
PCT/CN2023/116143
Other languages
English (en)
French (fr)
Inventor
张晓峰
张钊
霍雨佳
李卫
宫照雨
潘连强
张春
郗魁斌
Original Assignee
北京和华瑞博医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211071929.4A external-priority patent/CN116725681A/zh
Priority claimed from CN202211071263.2A external-priority patent/CN116725680A/zh
Priority claimed from CN202211123737.3A external-priority patent/CN116725683B/zh
Priority claimed from CN202222890490.XU external-priority patent/CN219480334U/zh
Application filed by 北京和华瑞博医疗科技有限公司 filed Critical 北京和华瑞博医疗科技有限公司
Publication of WO2024046425A1 publication Critical patent/WO2024046425A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • This application relates to the technical field of orthopedic surgical robots, and specifically to a quick-plug transmission part, an end effector and a surgical system.
  • TKA Total Knee Arthroplasty
  • TKA can directly remove the diseased knee joint and replace it with an artificial joint to completely treat the disease.
  • TKA requires plastic surgery of the distal femur and proximal tibia first, and then the prosthesis is installed after plastic surgery.
  • the shape of the reconstructed bone is adapted to the prosthesis.
  • An efficient plastic surgery method is oscillating saw osteotomy. During the operation, the patient lies on his back with the knee joint bent, and the soft tissue is cut to expose the joint bones. The saw blade can cut into the bone at different angles from above the knee joint (the front of the human body).
  • HTO high tibial osteotomy
  • DFO distal femur osteotomy
  • PFO Proximal Fibular Osteotomy
  • the incision is expanded to a certain angle with an expander, and strong internal fixation is used to straighten the legs, and the line of force passes through the lateral compartment of the knee joint, slowing down the Wear on the inside of the knee joint.
  • DFO surgery is roughly the same as HTO surgery. It also creates an incision on the distal femur from the side to adjust the alignment of the lower limbs. The above two surgeries can effectively correct the alignment of the lower limbs. Numerous clinical practices and research trials have confirmed the effectiveness and reliability of high tibial osteotomy and distal femoral osteotomy in the treatment of knee osteoarthritis.
  • Proximal fibula osteotomy refers to a surgical method that cuts off the proximal part of the fibula to improve the pressure in the medial compartment, thereby delaying the development of knee osteoarthritis.
  • This surgery is based on the "uneven subsidence theory of the knee joint" and transfers part of the pressure from the inside of the knee joint to the outside to reduce the excessive load on the medial articular surface of the knee joint.
  • the above three surgical methods have been increasingly used in the clinical treatment of knee osteoarthritis and deformity. Wear and tear of joints is inevitable, and patients may still need to undergo TKA surgery eventually, but HTO, DFO and PFO can prevent patients from premature TKA surgery and reduce the possibility of patients requiring revision of artificial joint prostheses during their lifetime. .
  • the doctor can plan the surgical plan on the three-dimensional model and determine the orientation information of the plane to be osteotomy.
  • the intraoperative doctor can understand the progress of the operation and understand the operation process by observing the images on the computer.
  • robots can replace doctors in holding and positioning surgical tools.
  • Surgery can even be planned by computer, and the surgery can be completed fully or semi-automatically after confirmation by the doctor.
  • This semi-automated surgical method can largely avoid relying on the doctor's rich experience.
  • the learning curve of the surgical method is short and the surgical accuracy is high, which truly brings convenience to patients and doctors.
  • Surgical robots designed specifically for TKA will be configured based on the needs and intraoperative limitations of TKA.
  • the exposed area of the knee joint opens toward the top of the supine human body, and the oscillating saw needs to enter the human body from above the knee joint; six osteotomy operations at different angles are required during the TKA process, so the robot should be ensured to have sufficient flexibility.
  • the saw blade of the oscillating saw actuator
  • the robot not only needs to align the saw blade with the target osteotomy plane, but also needs to ensure that the oscillating saw actuator can move along this plane when pushed by the user.
  • the other arms and joints of the robot should be flexible enough to prevent any arm from reaching its extreme position.
  • the position of the robot relative to the operating table is an important factor in ensuring the above effects.
  • the first consideration is the doctor's operational convenience. The surgical robot cannot overly occupy the doctor's operating space.
  • the oscillating saw actuator needs to be connected to the robot, saw blade, tracer and operating handle.
  • the flexibility of the actuator, the comfort of the doctor holding the handle, the rationality of the direction of the saw blade entering the bone and the tracer must be ensured. Not obscured.
  • the requirements for HTO, DFO or PFO are different from the intraoperative limitations of TKA.
  • the opening direction on the bone is located on the medial or lateral side of the knee joint, and the actuator needs to be on the side of the knee joint accordingly, which causes the robot to The location is more difficult to reach and the tracer is more likely to be obscured.
  • the present application aims to provide an actuator and surgical system for a surgical robot, which can perform TKA, HTO, DFO or PFO more conveniently.
  • Surgical robots include robotic arms, surgical tools, and power tools.
  • the robot arm is installed above the trolley.
  • the power tool is mounted on the end of the robot arm.
  • the surgical tool is mounted on the end of the power tool.
  • the surgical robot also has a control section for powering and controlling the robotic arm and tool sections.
  • the robot arm is electrically connected to the ground terminal of the circuit.
  • the power tool includes a main body and a transmission device.
  • the transmission device is fixedly connected to the main body, one end of the transmission device is connected to the power component, and the other end is connected to the surgical tool.
  • the transmission mechanism is used to transmit the power generated by the power assembly to the surgical tool so that the surgical tool can perform surgical operations.
  • the transmission mechanism as the main transmission part, is subject to greater forces and wears out faster, so it needs to be replaced before its lifespan expires.
  • the current installation method between the transmission mechanism and the main body makes the disassembly and assembly of the transmission mechanism cumbersome and makes maintenance inconvenient.
  • this application also provides a transmission mechanism with leakage protection function and easy disassembly and assembly, and an end effector containing the mechanism.
  • Orthopedic robots usually use their own positioning systems to locate position information of surgical tools in the surgical space.
  • the positioning system is equivalent to the doctor's eyes, guiding the doctor to deliver surgical tools to the surgical site. Whether the positioning system accurately positions the surgical tools will directly affect the accuracy of the surgery.
  • a complete operation may require surgical tools to act on human tissue multiple times. Moreover, due to the positioning accuracy of the positioning system itself and the changes in each working condition. Every time a surgical tool acts on human tissue, the surgical tool is positioned and verified to avoid deviations in the positioning of the surgical tool by the positioning system.
  • TKA Total Knee Arthroplasty
  • the end of the robot arm of the orthopedic robot is equipped with an actuator
  • the actuator is equipped with a saw blade and an end tracer for positioning the saw blade. Due to the high-speed swing of the saw blade, a tracer cannot be directly installed on the saw blade to locate the position of the saw blade during bone cutting. Therefore, a temporary tracer is installed on the saw blade before each step of osteotomy is performed. The temporary tracer can help the orthopedic robot directly locate the position of the saw blade, allowing the robot arm to position the saw blade to the target osteotomy surface with the assistance of the temporary tracer.
  • the installation of the temporary tracer can also enable the orthopedic robot to obtain the positional relationship between the saw blade and the end tracer, and then it can use the end tracer and the position of the saw blade and the end tracer when performing osteotomy on the target osteotomy surface. relationship to accurately guide the osteotomy process.
  • Total knee replacement mainly involves osteotomy of multiple target osteotomy surfaces of the knee joint. Specifically, they include distal femoral osteotomy, anterior femoral condyle osteotomy, posterior femoral condyle osteotomy, posterior femoral oblique osteotomy, anterior femoral oblique osteotomy and tibial plateau osteotomy.
  • the present disclosure also provides an actuator and a surgical system to solve the problem of positioning surgical tools in the prior art.
  • an end effector including a main body and a tracer; the main body has a first interface, a second interface and a power mechanism, the first interface is used to connect the robot arm, the second interface is used to connect the saw blade, and the power mechanism
  • the mechanism is arranged inside the main body, and the power mechanism is used to provide power to the second interface;
  • the tracer is arranged on the main body and is used to indicate the orientation of the saw blade; wherein, the second interface is configured to form a first first interface with the saw blade.
  • the connection relationship or the second connection relationship under the first connection relationship, the saw blade and the main body have a first relative orientation relationship, and under the second connection relationship, the saw blade and the main body have a second relative orientation relationship.
  • the first relative orientation relationship is that the saw blade and the main body have a first included angle value
  • the second relative orientation relationship is that the saw blade and the main body have a second included angle value
  • the first relative orientation relationship is that the saw blade is perpendicular to the main body.
  • the second relative orientation relationship is that the saw blade is parallel to the main body.
  • the first interface is located at the first end of the main body, and the second interface is located at the first side of the main body.
  • the second interface is located on the first side of the main body close to the second end, and the second end and the first end are the two ends of the main body.
  • the cutting end of the saw blade extends away from the main body from the first side of the main body.
  • the cutting end of the saw blade is oriented opposite to the first end of the main body.
  • the plane of the saw blade is arranged parallel to the virtual longitudinal section of the main body.
  • the virtual longitudinal section is the symmetry plane of the actuator.
  • the main body when the main body is connected to the robot arm, it is arranged coaxially with the end arm of the robot arm, and the virtual longitudinal section is parallel to the axis of the end arm.
  • the tracer and the first interface are distributed at both ends of the main body.
  • the tracer includes a first tracer and a second tracer, and the first tracer is used to have a first connection relationship between the saw blade and the main body.
  • the second tracer indicates the orientation of the saw blade
  • the second tracer is used to indicate the orientation of the saw blade when the saw blade has a second connection relationship with the main body.
  • the second tracer is detachably connected to the main body.
  • the second tracer is configured such that the tracing element is detachable.
  • the second tracer is located on a side of the first tracer in a direction away from the second interface.
  • a handle part is further included, and the handle part is located on the second side of the main body.
  • the end effector proposed in the first aspect of the present disclosure includes a main body and a tracer.
  • the main body has a first interface, a second interface and a power mechanism.
  • the first interface is used to connect the robot arm
  • the second interface is used to connect the saw blade
  • the power mechanism is arranged inside the main body
  • the power mechanism is used to provide power to the second interface; shown
  • the tracker is provided on the main body for indicating the orientation of the saw blade; wherein, the second interface is configured to have a first connection relationship and a second connection relationship with the saw blade.
  • Under the first connection relationship the saw blade and the main body There is a first relative orientation relationship between them, and there is a second relative orientation relationship between the saw blade and the main body under the second connection relationship.
  • the two orientation relationships of the saw blade relative to the main body allow the end effector to adapt to different surgical approaches and types of surgery.
  • a second aspect of the present disclosure proposes a surgical system, including an end effector, a robot arm, a positioning system and a controller.
  • the end effector is the end effector of the first aspect; the end arm of the robot arm is fixedly connected to the end effector. ;
  • the positioning system is used to identify the position of the tracer to obtain the orientation information of the saw blade; the controller is used to control the movement and orientation of the robot arm based on the orientation information and the pre-stored surgical plan.
  • a third aspect provides an end effector for cutting bone tissue.
  • the end effector includes a main body and a tracer.
  • the main body has a first interface, a second interface and a power mechanism.
  • the first interface is used to connect the robot arm, and the second interface is used to connect the saw blade.
  • the power mechanism is arranged inside the main body.
  • the power mechanism Used to provide power to the second interface;
  • a tracer is provided on the main body to indicate the orientation of the saw blade; wherein, the first interface is located at the first end of the main body, and the cutting end of the saw blade points to the first end of the main body.
  • the directions of the two ends are parallel, and the first end and the second end are opposite ends of the main body.
  • the plane of the saw blade is parallel to the virtual longitudinal section of the body.
  • the virtual longitudinal section is the symmetry plane of the actuator.
  • the main body when the main body is connected to the robot arm, the main body is coaxially arranged with the end arm of the robot arm, and the saw blade plane is parallel to the axis of the end arm.
  • the second interface is located on the first side of the body close to the second end.
  • the second interface is a clamping mechanism
  • the clamping mechanism includes two clamping parts arranged oppositely, and the saw blade is clamped when the two clamping parts are close to each other.
  • the second interface is a plug-in mechanism.
  • the saw blade plug-in mechanism includes a slot and a limiting part. The limiting part is configured to connect the saw blade to the plug-in mechanism. It prevents the saw blade from disengaging from the plug-in mechanism.
  • the tracer is provided at the second end of the main body.
  • the tracer is detachably connected to the main body.
  • the main body is further provided with a handle portion, the handle portion is located on the second side of the main body, and the second side is the opposite side of the second interface on the main body.
  • the end effector proposed in the third aspect of the present disclosure includes a main body and a tracer.
  • the tracer is provided on the main body and is used to indicate the orientation of the saw blade; the cutting end of the saw blade points in the same direction as the first end points to the second end of the main body. The directions are parallel, and the first end and the second end are opposite ends of the main body.
  • the orientation relationship of the saw blade relative to the main body allows the end effector to flexibly perform HTO, DFO or PFO surgery types.
  • a surgical system which includes an end effector, a robot arm, a positioning system and a controller.
  • the end effector is the end effector of the third aspect; the end arm of the robot arm is fixedly connected to the end effector.
  • the positioning system is used to identify the position of the tracer to obtain the orientation information of the saw blade; the controller is used to control the movement and orientation of the robot arm based on the orientation information and the pre-stored surgical plan.
  • embodiments of the present application provide a quick-plug transmission device for connecting a surgical tool to a main body of an electric tool, including: a transmission housing having a first end of the transmission housing and a second end of the transmission housing, The first end of the transmission housing is used to connect with the main body, and the second end of the transmission housing extends out of the main body; the input shaft has one end located in the transmission housing, and the other end passes through the first end of the transmission housing and is connected to the power assembly built into the main body. Connection; the output component has one end located in the transmission housing and the other end connected to the surgical tool. The end of the output component located in the transmission housing is connected to the end of the input shaft located in the transmission housing.
  • embodiments of the present application provide an electric tool for performing surgery under the control of a robot arm, including: a main body having a first interface, a second interface and a built-in power component, the first interface being used to connect to The robot arm, the power component is used to provide power for the surgical tool; the quick-plug transmission device described in the fifth aspect is detachably connected to the second interface, the quick-plug transmission device includes a transmission mechanism, wherein the transmission mechanism is used to connect the power components and surgical tools, delivering power to the surgical tools.
  • a seventh aspect provides an electric tool for performing surgery under the control of a robot arm, including: a main body with a first interface, a second interface and a built-in power component, the first interface is used to connect to the robot arm, and the power tool The component is used to provide power for the surgical tool; the transmission mechanism is provided at the second interface and has a first end and a second end. The first end of the transmission mechanism is connected to the power assembly, and the second end of the transmission mechanism is connected to the surgical tool; An isolation structure is provided between the second interface and the transmission mechanism to prevent the formation of a current path between the surgical tool and the robot arm.
  • embodiments of the present application provide a surgical system, including: the electric tool described in the seventh aspect; a robot arm used to carry the electric tool and provide power for position changes of the electric tool; and a navigation system used to obtain surgical information. Orientation information of the tool; a controller for controlling the motion and orientation of the robotic arm based on the orientation information and the pre-stored surgical plan.
  • the present disclosure provides a quick-plug transmission device, an electric tool and a surgical system.
  • the electric tool of the sixth aspect includes a main body and a quick-plug transmission device.
  • the main body includes a second interface.
  • the quick-plug transmission device is detachably connected to the second interface of the main body to facilitate quick disassembly and installation of the quick-plug transmission device and reduce the transmission speed.
  • the electric tool of the seventh aspect includes a main body, a transmission mechanism and a first isolation structure. The first isolation structure disposed between the transmission mechanism and the main body prevents the formation of a current path between the surgical tool and the robot arm.
  • an end effector for performing a predetermined action under the control of a robot arm.
  • the end effector is The device includes a surgical tool, a main body and an end tracer; the main body includes a first interface and a second interface, the first interface is used to connect to the robot arm, and the second interface is used to connect the surgical tool; the end tracer is used to position the surgical tool Position; wherein, the end tracer and the first interface are respectively located at both ends of the body, and the end tracer and the second interface have a predetermined first position relationship.
  • the plane where the end tracer is located is perpendicular to the length direction of the body.
  • the end effector is configured such that the second interface is disposed on the first side of the body and close to the end tracer, so that the end tracer and the second interface have First position relationship.
  • the distance between the end tracer and the second interface in the length direction of the main body is 0 mm to 50 mm.
  • the distance between the end tracer and the second interface in the length direction of the main body is 0 mm to 30 mm.
  • the distance between the end tracer and the second interface in the longitudinal direction of the main body is 0 mm to 70 mm.
  • the distance between the end tracer and the second interface in the longitudinal direction of the main body is 40 mm to 60 mm.
  • the terminal tracer and the main body have the same position in the virtual longitudinal direction, and/or the height of the terminal tracer is not greater than the longitudinal height of the main body.
  • the actuator further includes a tool tracer, and the tool tracer is detachably connected to the surgical tool.
  • the end effector is configured such that when the tool tracer is installed on the surgical tool, the tool tracer and the end tracer have a second positional relationship.
  • the plane where the tool tracer is located is parallel to the plane where the end tracer is located.
  • the distance between the plane where the tool tracer is located and the plane where the end tracer is located is 0 mm to 20 mm.
  • the distance between the plane where the tool tracer is located and the plane where the end tracer is located is 0 mm to 10 mm.
  • the orientation of the tracking element on the tool tracer is the same as the orientation of the tracking element on the end tracer.
  • the tool tracer and the end tracer are disposed offset in the first direction.
  • the first direction is a virtual longitudinal direction
  • the virtual longitudinal direction, the length direction of the main body, and the virtual transverse direction are two perpendicular to each other.
  • the end effector further includes a handle, the handle is disposed on the second side of the main body, and the handle and the second interface are respectively disposed on opposite sides of the main body.
  • the end effector proposed in the ninth aspect of the present disclosure includes a surgical tool, a main body and an end tracer; the main body includes a first interface and a second interface, the first interface is used to connect with the robot arm, and the second interface is used to connect the surgical tool ;
  • the end tracer is used to locate the position of the surgical tool; wherein, the end tracer and the first interface are located at both ends of the main body.
  • the surgical tool is installed on the second interface, the surgical tool and the end tracer are in the length direction of the main body. has a predetermined first place on Set relationship. Through the setting of the end effector, the position of the surgical tool can be accurately positioned through the end tracer, so that the surgical tool can accurately reach the target surgical site.
  • a surgical system which includes an end effector, a robot arm, a positioning system and a controller; the end effector is the end effector of the ninth aspect; the robot arm is used to carry the end effector; and the positioning system is used to Position the end effector and/or the surgical tool; the controller is used to control the end effector to execute the predetermined surgical plan.
  • Figure 1 is a schematic structural diagram of a surgical system according to an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of an end effector configured to perform TKA according to an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of an end effector configured to execute HTO according to an embodiment of the present disclosure
  • Figure 4 is a front view of the end effector shown in Figure 2;
  • Figure 5 is a right view of the end effector shown in Figure 2;
  • Figure 6 is a schematic diagram of the internal power mechanism of the end effector shown in Figure 5;
  • Figure 7 is a right view of the end effector shown in Figure 3.
  • Figure 8 is a schematic diagram of total knee replacement surgery on the right leg according to an embodiment of the present disclosure.
  • Figure 9 is a schematic diagram of the end effector adjusting the saw blade angle according to the embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of the alignment state of the saw blade and the target osteotomy surface b of the distal femur according to an embodiment of the present disclosure
  • Figure 11 is a schematic diagram of high medial tibial osteotomy of the left leg according to an embodiment of the present disclosure
  • Figure 12 is a schematic diagram 1 of the saw blade aligned with the high tibia according to an embodiment of the present disclosure
  • Figure 13 is a second schematic diagram of the saw blade aligned with the high position of the tibia according to the embodiment of the present disclosure
  • Figure 14 is a schematic diagram of the first saw blade and clamping mechanism according to the embodiment of the present disclosure.
  • Figure 15 is a schematic diagram of the second saw blade and clamping mechanism according to the embodiment of the present disclosure.
  • Figure 16 is a second schematic diagram of the second saw blade and clamping mechanism according to the embodiment of the present disclosure.
  • Figure 17 is a schematic diagram of the connection method between the second tracer and the main body according to the embodiment of the present disclosure.
  • Figure 18 is a schematic structural diagram of a second tracer according to an embodiment of the present disclosure.
  • Figure 19 is a schematic diagram of an end effector configured to perform HTO according to an embodiment of the present disclosure.
  • Figure 20 is a front view of the end effector shown in Figure 19;
  • Figure 21 is a schematic diagram 1 of the saw blade aligned with the high tibia according to an embodiment of the present disclosure
  • Figure 22 is a second schematic diagram of the saw blade aligned with the high position of the tibia according to the embodiment of the present disclosure
  • Figure 23 is a schematic diagram of the first saw blade and clamping mechanism according to the embodiment of the present disclosure.
  • Figure 24 is a schematic diagram of the second saw blade and clamping mechanism according to the embodiment of the present disclosure.
  • Figure 25 is a schematic diagram of the saw blade and plug-in mechanism according to the embodiment of the present disclosure.
  • Figure 26 is a schematic diagram of the connection method between the tracer and the main body according to the embodiment of the present disclosure.
  • Figure 27 is a schematic diagram of a surgical system with electric tools provided by the present application.
  • Figure 28 is an overall schematic diagram of the electric tool provided by this application.
  • Figure 29 is a cross-sectional view of the electric tool provided by the present application.
  • Figure 30 is an overall view of the quick-plug transmission device provided by this application.
  • Figure 31 is a cross-sectional view of a quick-plug transmission device provided by the company.
  • Figure 32 is an exploded view of a quick-plug transmission device provided by this application.
  • Figure 33 is an exploded view of the flexible coupling in the electric tool provided by the present application.
  • Figure 34 is an overall view of another quick-plug transmission device provided by this application.
  • Figure 35 is a cross-sectional view of another quick-plug transmission device provided by this application.
  • Figure 36 is an exploded view of another quick-plug transmission device provided by this application.
  • Figure 37 is an exploded view of the assembly of the quick-plug transmission device and the main body provided by the present application.
  • Figure 38 is an exploded view from another perspective of the assembly of the quick-plug transmission device and the main body provided by the present application;
  • Figure 39 is a schematic cross-sectional structural view of a connector in the quick-plug transmission device provided by this application.
  • Figure 40 is a schematic diagram of a surgical system according to an embodiment of the present disclosure.
  • Figure 41 is a schematic structural diagram of an end effector according to an embodiment of the present disclosure.
  • Figure 42 is a left view of the end tracer in Figure 42 according to the embodiment of the present disclosure.
  • Figure 43 is a schematic diagram of the internal structure of the end effector according to an embodiment of the present disclosure.
  • Figure 44 is a schematic structural diagram of an end effector equipped with a tool tracer according to an embodiment of the present disclosure
  • Figure 45 is a left side view of the end effector with a tool tracer installed in Figure 44 according to an embodiment of the present disclosure
  • Figure 46 is a schematic diagram of total knee replacement surgery on the right leg according to an embodiment of the present disclosure.
  • Figure 47 is a schematic diagram of the end effector adjusting the angle of the saw blade during total knee replacement surgery on the right leg according to an embodiment of the present disclosure
  • Figure 48 is a schematic diagram of the alignment state between the saw blade and the target osteotomy surface b of the distal femur according to an embodiment of the present disclosure
  • the surgical system involving this technology includes a robot arm 1, a positioning system 2, an end effector 7 equipped with a saw blade 6, and a controller 5.
  • the robot arm 1 is equivalent to the surgeon's arm and can hold the saw blade 6 and position and move the saw blade 6 with high accuracy.
  • the positioning system 2 is equivalent to the surgeon's eyes and can measure the position of the saw blade 6 and the patient's tissue in real time.
  • the controller 5 is equivalent to the surgeon's brain and stores surgical plans internally.
  • the controller 5 calculates the route and/or the position to be reached by the robot arm 1 based on the position information obtained through the positioning system 2 during the operation, and can control the movement of the robot arm 1, or set the virtual boundary of the robot arm 1 through the force feedback mode, and manually
  • the end effector 7 that pushes the robot arm 1 moves within the virtual boundary/along the route and surface defined by the virtual boundary.
  • FIG. 2 is a schematic diagram of the end effector 7 configured to perform TKA, which shows the first connection relationship between the saw blade 6 and the main body 71 of the end effector 7 .
  • the saw blade 6 is arranged on one side of the main body (the lower side of the main body 71 in Figure 2), and the end of the saw blade 6 used for cutting bone tissue is directed perpendicular to the length direction of the main body 71, that is, in Figure 2
  • the saw blade 6 points downward relative to the body 71 .
  • the end effector 7 is adapted to perform an osteotomy operation in total knee replacement.
  • FIG. 3 is a schematic diagram of the end effector 7 configured to perform HTO, which shows the second connection relationship between the saw blade 6 and the main body 71 of the end effector 7 .
  • the saw blade 6 is also arranged on one side of the main body (the lower side of the main body 71 in Figure 3), and the end of the saw blade 6 used for cutting bone tissue is directed parallel to the length direction of the main body 7, that is, Figure 3
  • the middle saw blade 6 points to the left of the main body 7 .
  • the end effector 7 is suitable for performing high tibial osteotomy, distal femoral osteotomy or proximal fibula osteotomy.
  • Figure 4 is a front view of the end effector shown in Figure 2.
  • Figure 5 shows the end shown in Figure 2 Right view of the end effector.
  • FIG. 6 is a schematic diagram of the internal structure of the end effector 7 shown in FIG. 5 .
  • FIG. 7 is a right side view of the end effector shown in FIG. 3 .
  • the end effector 7 includes a main body 71 and a tracer.
  • the tracer includes a first tracer 721 and a second tracer 722 .
  • the main body 71 is generally a cone, and the rotation center line W of the cone is coaxial with the rotation center line of the end arm 11 of the robot arm 1 .
  • the direction reference and coordinate system CS of the body 71 are defined.
  • the rotation center line W of the cone is the Z axis of the coordinate system CS, and the two mutually perpendicular directions perpendicular to the Z axis are the Y axis and the X axis.
  • the extension direction of the rotation center line W is the length direction of the main body 71 .
  • the two ends of the main body 71 in the length direction are the first end 701 and the second end 702 respectively.
  • the radial direction of the main body 71 is the lateral direction, specifically including the upper side, lower side, front side and rear side.
  • the upper side, lower side, front side and back side correspond to the Y-axis forward direction, Y-axis reverse direction, X-axis forward direction and X-axis reverse direction of the coordinate system CS.
  • the main body 71 When the main body 71 is connected to the end arm 11 of the robot arm 1 , it is coaxially fixed with the end arm 11 , and is equivalent to becoming an extension of the end arm 11 of the robot arm 1 .
  • the shape of the main body 71 is not limited to a cone, and can be a regular or irregular shape as long as it has a predetermined length and can be coaxial with the end arm 11 when connected to the robot arm 1 .
  • "Coaxial" here is not strictly limited to the literal meaning, as long as the two rod-shaped structures are connected in a substantially collinear manner.
  • the definition of the length direction of the main body 71 of other shapes can also refer to the rotation center line W of the end arm 11 (when the main body 71 is connected to the robot arm 1), because the main body 71 rotates with the end arm 11, and the rotation center lines of the two are the same.
  • the main body 71 has a first interface 711 , a second interface 712 , a power mechanism 713 and a handle part 73 .
  • the first interface 711 is located at the first end 701 of the main body 71 .
  • the second interface 712 is located on the first side 703 of the body 71 and closer to the second end 702 in the length direction.
  • the handle portion 73 is located on the second side 704 of the main body 71 and is used to provide a force portion for the doctor to push and pull the end effector 7 .
  • the first side 703 of the main body 71 corresponds to the aforementioned lower side, that is, the reverse direction of the Y-axis; the second side 704 corresponds to the aforementioned upper side, that is, the forward direction of the Y-axis.
  • the first interface 711 is used to connect the main body 71 to the robot arm 1 .
  • the second interface 712 is used to connect the saw blade 6 .
  • the second interface 712 is specifically a mechanical connection structure and has a rotating shaft 7121 that can rotate back and forth.
  • the saw blade 6 is fixed on the rotating shaft 7121 and swings back and forth driven by the rotating shaft 7012.
  • the power mechanism 713 is disposed inside the main body 71 , and is used to provide power to the second interface 712 .
  • the power mechanism 713 mainly includes a motor 7131, a reducer 7132 and a transmission mechanism 7133.
  • the motor 7131 and the reducer 7132 are used to provide initial power.
  • One end of the transmission mechanism 7133 is connected to the reducer, and the other end is provided at the second interface 712.
  • the transmission mechanism 7133 receives the initial power from the motor 7131 and the reducer 7132 and drives the saw blade 6 to swing through the rotating shaft 7121.
  • the saw blade 6 is in the shape of a long strip, and its two ends are a cutting end 61 and a connecting end 62 respectively.
  • the cutting end 61 is provided with saw teeth for cutting bone tissue.
  • the connecting end 62 is used to connect with the second interface 712 and receive the power to drive the saw blade 6 to swing.
  • the tracer is disposed on the second end 702 of the main body 71 for indicating the orientation of the saw blade 6 .
  • the tracer includes a first tracer 721 and a second tracer 722 .
  • the first tracer 721 is fixedly disposed on the second end 702 of the main body 71 , and the tracer element 723 on the first tracer 721 is detachable.
  • the positioning system 2 can determine the orientation of the tracer in the surgical space and thereby the orientation of the saw blade 6 .
  • the tracer is an optical tracer, and a tracer element 723 is installed on it.
  • the tracer element 723 is a reflective sheet or reflective ball.
  • the positioning system 2 includes a binocular vision camera 21 capable of identifying reflective sheets or reflective balls.
  • the tracer enables the positioning system 2 to clearly and accurately understand the position of the saw blade 6 during the movement of the end effector 7 holding the saw blade 6 .
  • the extent to which the saw blade 6 cuts the bone tissue and the condition of the remaining bone tissue to be cut can be determined by the position of the saw blade 6 reflected by the tracer.
  • the tracer may also be an electromagnetic transmitter or a position sensor, and a corresponding positioning system 2 capable of identifying the position of the electromagnetic emission signal or position sensor may determine the orientation of the saw blade 6 .
  • a first connection relationship or a second connection relationship may be formed between the saw blade 6 and the second interface 712.
  • first connection relationship there is a first relative orientation relationship between the saw blade 6 and the main body 71, and by the first A tracer 721 indicates the orientation of the saw blade 6 .
  • second connection relationship there is a second relative orientation relationship between the saw blade 6 and the main body 71 , and the orientation of the saw blade 6 is indicated by the second tracer 722 .
  • FIG 2, 4 and 5 are schematic diagrams of the saw blade 6 and the second interface 712 in the first connection relationship.
  • the saw blade 6 and the main body 71 have a first included angle, and the first included angle is a right angle, that is, the length direction of the saw blade 6 and the length direction of the main body 71 (the direction of the rotation center line W) are 90 degrees. angle.
  • the plane of the saw blade 6 is parallel to the virtual longitudinal section P of the main body 71 .
  • the virtual longitudinal section P is a cross-sectional plane in the length direction of the main body 71
  • the virtual longitudinal section P is parallel to the axis of the end arm 11 of the robot arm 1 .
  • the length direction of the saw blade 6 points in the opposite direction of the Y-axis; the plane of the saw blade 6 is parallel to the plane determined by the Y-axis and the Z-axis.
  • the axis M of the first interface and the axis N of the second interface are both on the virtual longitudinal section P, where the axis M of the first interface coincides with the rotation center line W, that is, the axis M and Z in the CS coordinate system Axis coaxial.
  • the axis N of the second interface coincides with the line connecting the main body 71 to the first side 703 , that is, the axis N is parallel to the Y-axis in the CS coordinate system.
  • the main body 71 is symmetrical with respect to the virtual longitudinal section P.
  • Figure 8 is a schematic diagram of total knee replacement surgery on the right leg.
  • Figure 9 is a schematic diagram of the end effector 7 adjusting the angle of the saw blade 6.
  • Figure 10 is a schematic diagram of the end effector 7 adjusting the angle to align the saw blade with the target osteotomy surface b of the distal femur 6.
  • the end effector 7 facilitates knee replacement surgery, such as total knee replacement or unicondylar replacement.
  • the patient is in a supine position with the knees bent, and the robot arm 1 and the trolley 12 carrying it are located on the patient's affected side (the patient's right side).
  • the positioning system 2 is located on the opposite side of the affected side. side (patient's left side).
  • the robot arm 1 points from the affected side to the opposite side.
  • the end section 11 of the robot arm 1 is connected to an end effector 7 .
  • the robot arm 1 keeps the end effector 7 roughly above the knee joint and transverse to the patient.
  • the saw blade 6 will enter from the front of the patient, and the cutting end 61 of the saw blade 6 points to the knee joint.
  • the plane of the saw blade 6 only needs the end effector 7 to be roughly parallel to the coronal plane and transverse plane of the human body.
  • the angle of the intersection axis W By adjusting the angle of the intersection axis W, the positioning of the six planes for knee replacement surgery planning can be achieved.
  • the end effector 7 when the end effector 7 is equipped with the saw blade 6 to position different osteotomy surfaces, in order to adapt to the angles of different target osteotomy surfaces, the plane of the saw blade 6 is adjusted at a position away from the affected area.
  • the rotation of the end arm 11 of the robot arm around its own axis causes the end effector 7 to rotate around the axis W, and the saw blade 6 rotates at a certain angle in the plane.
  • the end effector 7 has a first posture A, a second posture B, a third posture C, a fourth posture D, a fifth posture E and a sixth posture G after adjustment.
  • the angle of the saw blade in the first posture A of the end effector 7 corresponds to the angle of the target osteotomy surface a of the tibia; the angle of the saw blade in the second posture B corresponds to the angle of the target osteotomy surface b of the distal femur; In the third posture C, the angle of the saw blade corresponds to the angle of the target osteotomy surface c at the front end of the femur; in the fourth posture D, the angle of the saw blade corresponds to the angle of the target osteotomy surface d at the rear end of the femur.
  • the robot arm 1 can achieve alignment between each plane and the target osteotomy plane by translating a certain distance within a certain range according to a predetermined path, such as Figure 10 shows a schematic diagram of the saw blade 6 aligned with the target osteotomy plane b of the distal femur and about to perform osteotomy. After the saw blade 6 is positioned in this state, the robot arm 1 moves the saw blade 6 under the control of the controller. The movement range is limited to this plane, and the doctor pushes the end effector 7 to move in this plane and completes the corresponding osteotomy.
  • the end effector 7 rotates around the axis W to drive the saw blade 6Adjust the angle.
  • the robot arm 1 itself does not need to adjust its posture at a large angle. It only needs to rotate the end effector 7 of the end arm 11 of the robot arm 1 around the axis W to adjust the angle of the saw blade 6 .
  • unicondylar knee replacement is similar to total knee replacement.
  • the saw blade 6 performs osteotomy through the patient's anterior approach.
  • the specific positioning principle of the osteotomy plane is the same as that of the total knee joint replacement.
  • the relevant positioning principles in knee replacement are the same and will not be repeated here.
  • FIGS. 11 to 13 are schematic diagrams of the operating space in the second connection relationship between the saw blade 6 and the second interface 712 .
  • Figure 11 is a schematic diagram of high medial tibial osteotomy of the left leg.
  • Figures 12 and 13 show the schematic diagram of the saw blade being aligned high on the tibia.
  • the saw blade 6 and the main body 71 have a second included angle, and the second included angle is a zero angle, that is, the length direction of the saw blade 6 is parallel to the length direction of the main body 71 (the direction of the axis W).
  • the plane of the saw blade 6 is parallel to the virtual longitudinal section P of the main body 71
  • the virtual longitudinal section P is the cross-sectional plane in the length direction of the main body 71 .
  • the virtual longitudinal section P of the main body 71 is the plane determined by the axis M of the first interface and the axis N of the second interface, where the axis M of the first interface coincides with the axis W, and the axis N of the second interface coincides with the axis N of the main body 71
  • the lines pointing to the first side 703 coincide.
  • the main body 71 is symmetrical with respect to the virtual longitudinal section P.
  • the end effector 7 facilitates high tibial osteotomy and distal femoral osteotomy.
  • This type of surgery uses open wedge osteotomy or closed osteotomy on the lateral side of the femur F or tibia T to protect the integrity of the physiological structure of the knee joint. It is the main surgical method for the treatment of early knee joint lesions. Unlike knee replacement surgery, a high tibial osteotomy or distal femoral osteotomy will be performed through a medial or lateral approach to the affected side.
  • the patient is in the supine position with knees bent, the robot arm 1 and the trolley 12 carrying it are located on the opposite side of the patient's affected side (the patient's right side), and the positioning system 2 Located on the affected area (patient's left side).
  • the robot arm 1 points from the affected side to the opposite side.
  • the end arm 11 of the robot arm is connected to an end effector 7.
  • the robot arm 1 keeps the effector roughly transverse to the patient and above the middle of the left leg and the right leg and closer to the left leg.
  • the saw blade 6 will be introduced from the inside of the proximal end of the tibia T of the patient's left leg, and the cutting end 61 of the saw blade 6 will point toward the proximal end of the tibia T in a horizontal direction transverse to the patient.
  • the plane of the saw blade 6 is adapted to the planned osteotomy plane of the predetermined surgical plan, and the end effector 7 needs to adjust the angle of the plane of the saw blade 6 roughly around the axis W parallel to the intersection of the human body's coronal plane and the transverse plane.
  • the rotation of the end arm 11 of the robot arm around its own axis causes the end effector 7 to rotate around the axis W, and the saw blade 6 rotates at a certain angle to be parallel to the high target osteotomy surface h of the tibia.
  • the robot arm 1 can achieve alignment of each plane with the high tibial target osteotomy surface h by translating a certain distance within a certain range according to a predetermined path.
  • the robot arm 1 itself does not need to adjust its posture at a large angle or greatly.
  • the angle of the saw blade 6 can be adjusted by rotating the end arm of the robot arm 1.
  • the distal femoral osteotomy is similar to the high tibial osteotomy.
  • the patient is in a supine position with the knees bent, and the end effector 7 equipped with the saw blade 6 is introduced from the medial or lateral side of the corresponding femur.
  • the proximal fibular osteotomy is similar to the high tibial osteotomy.
  • the patient is usually in the supine position, and the end effector 7 equipped with the saw blade 6 enters through the posterolateral approach of the corresponding fibula, and the cutting position is 6 to 10 cm below the fibular head.
  • the end effector 7 is equipped with the saw blade 6 to cut off the fibula by about 2cm, and seal the cut end with bone wax to prevent the broken end of the fibula from healing.
  • the cutting end of the saw blade 6 has a second connection relationship with the end effector 7 61 can be directed from the side of the bone to the surgical site.
  • the robot arm 1 can be equipped with an end effector 7 to perform distal femoral osteotomy or proximal fibula osteotomy flexibly and conveniently.
  • the cutting end 61 of the saw blade 6 can be better pointed on the front side of the patient.
  • the cutting end 61 of the saw blade 6 can be better directed from the inside or outside of the patient's lower limb to the femur F, tibia T or fibula.
  • the saw blade 6 is connected to the main body 71 in a first connection relationship and a second connection relationship.
  • the end effector 7 can adapt to different surgical approaches and types of surgery.
  • the robot arm 1 carrying the end effector 7 does not need to be in a complicated or difficult-to-reach posture. Position the saw blade to the target osteotomy plane.
  • the doctor's operation is convenient and the operating space is sufficient, and the robot equipped with the end effector 7 is flexible enough to complete a variety of surgeries.
  • the equipment purchase cost and the doctor's learning time cost will be greatly reduced.
  • the second interface 712 is a clamping mechanism 8, and the saw blade 6 is connected to the clamping mechanism 8 through the clamping mechanism 8.
  • the tightening mechanism 8 is connected to the end effector 7 .
  • the clamping mechanism 8 includes two opposite clamping parts 81 . The two clamping parts 81 approach each other under the action of external force to clamp the connecting end 62 of the saw blade 6 .
  • the schematic diagram of the first saw blade 6 and the clamping mechanism 8 is shown in Figure 14.
  • a reversing structure is provided between the two clamping parts 81 and the saw blade 6.
  • the reversing structure enables the saw blade 6 to form a first connection relationship or a second connection relationship when the saw blade 6 is connected to the main body 71 through the second interface 712.
  • the reversing structure includes a protrusion 91 and a groove 92.
  • the protrusion 91 and the groove 92 are respectively provided on the clamping part 81 and the saw blade 6.
  • the groove 92 includes at least two accommodation spaces 921, and the two accommodation spaces 921 are connected with the described When the protrusions 91 cooperate, the saw blade 6 and the rotating shaft 7121 are circumferentially fixed respectively.
  • the protrusion 91 is provided on one of the clamping parts 81
  • the groove 92 is provided on the connecting end 62 of the saw blade 6 .
  • Both the protrusion 91 and the groove 92 include strip-shaped units evenly distributed in the circumferential direction.
  • the saw blade 6 will have multiple angular connection methods relative to the main body 71, two of which respectively correspond to the first connection relationship and the second connection relationship between the saw blade 6 and the main body 71. .
  • adjusting the matching relationship between the protrusion 91 and the groove 92 can allow the saw blade 6 and the main body 71 to have a first orientation relationship.
  • FIG. 15 and FIG. 16 are schematic diagrams of the second saw blade 6 and the clamping structure 8 .
  • the shapes of the protrusions 91a and the grooves 92a are different from those described above (the embodiment shown in FIG. 14).
  • the protrusion 91a is in the shape of a strip, and the groove 92a has two accommodation spaces 921 spaced 90 degrees apart.
  • the strip-shaped protrusion 91a corresponds to the first connection relationship between the saw blade 6 and the main body 71 in the two accommodation spaces 921.
  • Second connection relationship The state shown in FIG. 15 allows the saw blade 6 and the main body 71 to have a first connection relationship; the state shown in FIG. 16 allows the saw blade 6 and the main body 71 to have a second connection relationship.
  • the tracer includes a first tracer 721 and a second tracer 722 .
  • the first tracer 721 is fixedly disposed on the second end 702 of the main body 71.
  • the tracer element 723 on the first tracer 721 is detachable.
  • the first tracer 721 indicates the direction.
  • the second tracer 722 is detachably connected to the second end 702 of the main body 71 .
  • the second tracer 722 indicates the orientation.
  • the saw blade 6 points from the front side of the patient (above the knee joint of the patient's bent knee) to the knee joint.
  • the end effector 7 is higher than the patient's knee bent state.
  • the positioning system 2 is located on the opposite side of the main body 71 and can identify the position information of the first tracer 721.
  • the controller 5 obtains the position information of the saw blade based on the position information of the first tracer 721 to control the end effector 7 to move the saw blade.
  • the tracking element 723 on the first tracer 721 is removed, and the second tracer 722 is connected to the second end 702 of the main body 71 .
  • the second tracer 722 is located on a side of the first tracer 721 away from the second interface 712 .
  • the second tracer 722 can be positioned higher than the lower limb of the patient in the knee-flexed state, and is positioned on the opposite side of the second tracer 722
  • System 2 can recognize the position information of the second tracer 722 without obstruction.
  • the verification frame when verifying the plane of the saw blade 6 also needs to face the positioning system 2.
  • the saw blade 6 is closer to the main body 71.
  • the verification frame When the verification frame is installed on the saw blade 6, it may block the first tracer 721 and the second tracer 721.
  • the arrangement of the tracer 722 also prevents the sight of the second tracer 722 from being recognized by the positioning system 2 when the saw blade 6 is installed on the verification frame.
  • the tracer may only include the first tracer 721 .
  • the saw blade 6 When performing total knee replacement, high tibial osteotomy or distal femoral osteotomy, the saw blade 6 has a first connection relationship or a second connection relationship with the main body, and the positioning system determines the saw blade through the position and posture of the first tracer 721 The position of film 6 in the surgical space.
  • the first tracer In the case of 721, it is only necessary to ensure that when the saw blade 6 and the actuator have the second connection relationship, the patient's legs or the verification frame in the kneeled state will not block the positioning system 2's line of sight to identify the first tracer 721.
  • the height of the first tracer 721 along the positive direction of the Y-axis can be increased based on the first tracer 721 shown in FIG. 2 .
  • Figure 17 is a schematic diagram of the second tracer 722 and the main body 71.
  • Figure 18 is a schematic structural diagram of the second tracer.
  • the second tracer 722 is connected to the second end 702 of the main body 71 through a detachable fixing structure.
  • the detachable fixing structure includes a plug-in component and a locking member 103.
  • the plug-in component includes a plug member 101 and a locking member 103.
  • Kit 102 when the plug member 101 is plugged into the kit 102, the second tracer 722 has the remaining degree of freedom to move in the direction opposite to the plugging direction relative to the main body 71.
  • the locking member 103 is used to advance in a direction perpendicular to the insertion direction to limit the remaining degree of freedom of the second tracer 722 relative to the main body 71 .
  • the plug member 101 is provided on the main body 71 and is a dovetail-type plug block.
  • the set 102 is provided on the second tracer 722 and is a dovetail groove.
  • the second tracer 722 has an unfixed remaining degree of freedom in the plugging direction relative to the main body 71.
  • the locking piece 103 has a jackscrew structure. When the locking piece 103 fixes the remaining degree of freedom, the locking piece 103 penetrates the bottom surface of the slot and is in tight contact with the surface of the plug member 101 to restrict the second tracer 722 in the opposite direction of the plugging direction. Detachment from the subject 71.
  • the tracer includes a tracer frame 724 and a tracer part.
  • the tracer frame 724 is connected to the actuator body 71.
  • the tracer part includes a plurality of tracer frames 724.
  • the connected tracking elements 723 and multiple tracking elements 723 are arranged along a plane, and the multiple tracking elements 723 arranged along the plane define a plane, which is recognized by the positioning system 2 and reflects the orientation of the saw blade 6 accordingly.
  • the handle portion 73 is not provided on the main body 71 of the end effector 7 . In this way, the operator can hold the second side 704 of the main body 71 to control the posture change or movement of the end effector.
  • the present disclosure proposes a surgical system, including an end effector 7 , a robot arm 1 , a positioning system 2 and a controller 5 .
  • the end effector 7 is the end effector 7 of the first aspect.
  • the robot arm 1 is used to carry the end effector 7 and provide power for the end effector 7 ;
  • the positioning system 2 is used to identify the position of the tracer to obtain the position information of the osteotomy effector and/or saw blade; controller 5 , used to control the end effector 7 to cut bones according to the predetermined surgical plan.
  • the controller 5 can control the robot arm 1 so that the robot arm 1 moves completely autonomously according to the surgical plan, or by providing tactile feedback or force feedback to limit the surgeon's manual movement of the surgical tool 3 beyond the predetermined virtual boundary, or by providing virtual guidance. to guide the surgeon's movement along a certain degree of freedom.
  • Virtual boundaries and virtual guides can come from the surgical plan or can be set intraoperatively via input devices.
  • the end effector 7 is detachably connected to the robot arm 1; the positioning system 2 is used to obtain the position of the saw blade 6 and the patient's bones.
  • the positioning system 2 generally includes a positioner (such as a binocular camera 21) to measure the orientation of the above-mentioned tracer through 3D measurement technology.
  • the controller 5 is used to drive the robotic arm to move the prosthesis installation actuator to the target position according to the surgical plan, so that the saw blade 6 is positioned to the target osteotomy plane.
  • the surgical plan can include the robotic arm movement path, movement boundaries, etc.
  • the end effector 7 can complete not only knee replacement surgery, but also high tibial osteotomy or distal femoral osteotomy.
  • One system can adapt to a variety of surgeries and operations, which not only reduces the time for doctors to adapt to the surgical system, but also eliminates the need to purchase corresponding special equipment for various surgeries.
  • FIGS. 19 to 26 an end effector of a surgical robot provided by the present disclosure is shown.
  • the end effector described in this section is partially structurally similar to the end effector shown in Figures 1 to 18, including the internal power mechanism shown in Figure 6 and the tracer structure shown in Figure 18. Therefore, in the explanation process, Please refer to Figure 6 and Figure 18.
  • Two kinds The end effector functions differently in that it can perform HTO, DFO, and PFO surgeries rather than being used to perform TKA surgeries.
  • the end effector may also be used in the surgical system shown in Figure 1.
  • FIG. 19 is a schematic diagram of the end effector 7 configured to perform HTO, which shows the connection relationship between the saw blade 6 and the main body 71 of the end effector 7 .
  • the saw blade 6 is arranged on one side of the main body (the lower side of the main body 71 in Figure 19), and the cutting end of the saw blade 6 for cutting bone tissue is oriented parallel to the length direction of the main body 7, that is, in Figure 20
  • the saw blade 6 points to the left of the main body 7 .
  • the end effector 7 is suitable for performing high tibial osteotomy (HTO), distal femoral osteotomy (DFO) or proximal fibula osteotomy (PFO).
  • HTO high tibial osteotomy
  • DFO distal femoral osteotomy
  • PFO proximal fibula osteotomy
  • FIG. 20 is a front view of the end effector 7 shown in FIG. 19 .
  • Figure 6 is a schematic diagram of the internal power mechanism of the end effector 7 shown in Figure 19.
  • the end effector 7 includes a main body 71 and a tracer 72 .
  • the main body 71 is generally a cone, and the rotation center line W of the cone is coaxial with the rotation center line of the end arm 11 of the robot arm 1 .
  • the direction reference and coordinate system CS of the body 71 are defined.
  • the rotation center line W of the cone is the Z axis of the coordinate system CS, and the two mutually perpendicular directions perpendicular to the Z axis are the Y axis and the X axis.
  • the extension direction of the rotation center line W is the length direction of the main body 71 .
  • the two ends of the main body 71 in the length direction are the first end 701 and the second end 702 respectively.
  • the radial direction of the main body 71 is the lateral direction, specifically including the upper side, lower side, front side and rear side.
  • the upper side, lower side, front side and back side correspond to the Y-axis forward direction, Y-axis reverse direction, X-axis forward direction and X-axis reverse direction of the coordinate system CS.
  • the main body 71 When the main body 71 is connected to the end arm 11 of the robot arm 1 , it is coaxially fixed with the end arm 11 , and is equivalent to becoming an extension of the end arm 11 of the robot arm 1 .
  • the shape of the main body 71 is not limited to a cone, and can be a regular or irregular shape as long as it has a predetermined length and can be coaxial with the end arm 11 when connected to the robot arm 1 .
  • "Coaxial" here is not strictly limited to the literal meaning, as long as the two rod-shaped structures are connected in a substantially collinear manner.
  • the definition of the length direction of the main body 71 of other shapes can also refer to the rotation center line W of the end arm 11 (when the main body 71 is connected to the robot arm 1), because the main body 71 rotates with the end arm 11, and the rotation center lines of the two are the same.
  • the main body 71 has a first interface 711 , a second interface 712 , a power mechanism 713 and a handle part 73 .
  • the first interface 711 is located at the first end 701 of the main body 71 .
  • the second interface 712 is located on the first side 703 of the body 71 and closer to the second end 702 in the length direction.
  • the handle portion 73 is located on the second side 704 of the main body 71 and is used to provide a force portion for the doctor to push and pull the end effector 7 .
  • the first side 703 of the main body 71 corresponds to the aforementioned lower side, that is, the reverse direction of the Y-axis; the second side 704 corresponds to the aforementioned upper side, that is, the forward direction of the Y-axis.
  • the first interface 711 is used to connect the main body 71 to the robot arm 1 .
  • the second interface 712 is used to connect the saw blade 6 .
  • the second interface 712 is specifically a mechanical connection structure and has a rotating shaft 7121 that can rotate back and forth.
  • the saw blade 6 is fixed on the rotating shaft 7121 and swings back and forth driven by the rotating shaft 7012.
  • the power mechanism 713 is disposed inside the main body 71 , and is used to provide power to the second interface 712 .
  • the power mechanism 713 mainly includes a motor 7131, a reducer 7132 and a transmission mechanism 7133.
  • Motor 7131 and reducer 7132 are used to provide initial power.
  • One end of the transmission mechanism 7133 is connected to the reducer, and the other end is provided at the second interface 712 .
  • the transmission mechanism 7133 receives the initial power from the motor 7131 and the reducer 7132 and drives the saw blade 6 to swing through the rotating shaft 7121.
  • the saw blade 6 is in the shape of a long strip, and its two ends are a cutting end 61 and a connecting end 62 respectively.
  • the cutting end 61 is provided with saw teeth for cutting bone tissue.
  • the connecting end 62 is used to connect with the second interface 712 and receive the power to drive the saw blade 6 to swing.
  • the tracer 72 is disposed on the second end 702 of the main body 71 for indicating the orientation of the saw blade 6 .
  • the positioning system 2 can determine the orientation of the tracer 72 and thereby the saw blade 6 in the surgical space.
  • the tracer is an optical tracer, and a tracer element 723 is installed on it.
  • the tracer element 723 is a reflective sheet or reflective ball.
  • the positioning system 2 includes a binocular vision camera 21 capable of identifying reflective sheets or reflective balls. The tracer enables the positioning system 2 to clearly and accurately understand the position of the saw blade 6 during the movement of the end effector 7 holding the saw blade 6 .
  • the extent to which the saw blade 6 cuts the bone tissue and the condition of the remaining bone tissue to be cut can be determined by the position of the saw blade 6 reflected by the tracer.
  • the tracer may also be an electromagnetic transmitter or a position sensor, and a corresponding positioning system 2 capable of identifying the position of the electromagnetic emission signal or position sensor may determine the orientation of the saw blade 6 .
  • Figure 11 is a schematic diagram of high medial tibial osteotomy of the left leg.
  • Figures 21 and 22 show the schematic diagram of the saw blade being aligned high on the tibia.
  • the saw blade 6 has an included angle of zero degree with the length direction of the main body 71 , that is, the cutting end 61 of the saw blade 6 points parallel to the direction in which the first end 701 points to the second end 702 (the direction of the axis W).
  • the plane of the saw blade 6 is parallel to the virtual longitudinal section P of the main body 71 , and the virtual longitudinal section P is the cross-sectional plane in the length direction of the main body 71 .
  • the virtual longitudinal section P of the main body 71 is the plane determined by the axis M of the first interface and the axis N of the second interface, where the axis M of the first interface coincides with the axis W, and the axis N of the second interface coincides with the axis N of the main body 71
  • the lines pointing to the first side 703 coincide.
  • the main body 71 is symmetrical with respect to the virtual longitudinal section P.
  • this type of surgery uses an open wedge osteotomy or closed osteotomy on the T side of the femur or tibia to protect the integrity of the physiological structure of the knee joint. It is a treatment
  • the main surgical methods for early knee joint disease Unlike knee replacement surgery, a high tibial osteotomy or distal femoral osteotomy will be performed through a medial or lateral approach to the affected side.
  • the robot arm 1 and the trolley 12 carrying it are located on the opposite side of the patient's affected side (the patient's right side), and the positioning system 2 Located at the affected area (patient's left side), the robot arm 1 points from the affected side to the opposite side.
  • An end effector 7 is connected to the end arm 11 of the robot arm 1, and the robot arm 1 holds the effector generally transversely to the patient and above the middle of the left leg and the right leg and closer to the left leg.
  • the saw blade 6 will be introduced from the inside of the proximal end of the tibia T of the patient's left leg, and the cutting end 61 of the saw blade 6 will point toward the proximal end of the tibia T in a horizontal direction transverse to the patient.
  • the plane of the saw blade 6 is adapted to the planned osteotomy plane of the predetermined surgical plan, and the end effector is required to adjust the angle of the plane of the saw blade 6 roughly around the axis W parallel to the intersection of the coronal plane and the transverse plane of the human body.
  • the rotation of the end arm 11 of the robot arm 1 around its own axis causes the end effector 7 to rotate around the axis W, and the saw blade 6 rotates at a certain angle to be parallel to the high target osteotomy surface h of the tibia.
  • the robot arm 1 can achieve alignment of each plane with the high tibial target osteotomy surface h by translating a certain distance within a certain range according to a predetermined path.
  • the robot arm 1 itself does not need to adjust its posture at a large angle or greatly.
  • the angle of the saw blade 6 can be adjusted by rotating the end arm 11 of the robot arm 1 .
  • the distal femoral osteotomy is similar to the high tibial osteotomy.
  • the patient is in a supine position with the knees bent, and the end effector 7 equipped with the saw blade 6 is introduced from the medial or lateral side of the corresponding femur.
  • the proximal fibular osteotomy is similar to the high tibial osteotomy.
  • the patient is usually in the supine position, and the end effector 7 equipped with the saw blade 6 enters through the posterolateral approach of the corresponding fibula, and the cutting position is 6 to 10 cm below the fibular head.
  • the end effector 7 is equipped with the saw blade 6 to cut off the fibula by about 2cm, and seal the cut end with bone wax to prevent the broken end of the fibula from healing.
  • the cutting end 61 of the saw blade 6 can be directed from the side of the bone to the surgical site.
  • the robot arm 1 can be equipped with an end effector 7 to perform distal femoral osteotomy or proximal fibula osteotomy flexibly and conveniently.
  • the end effector 7 can adapt to the surgical approaches and types of HTO, DFO and PFO, and the robot arm 1 carrying the end effector 7 does not need to position the saw blade to the target osteotomy plane in a complicated or difficult-to-reach posture.
  • the doctor's operation is convenient and the operating space is sufficient, and the robot equipped with the end effector 7 is flexible enough to complete a variety of surgeries.
  • the equipment purchase cost and the doctor's learning time cost will be greatly reduced.
  • the second interface 712 is a clamping mechanism 8 provided on the rotating shaft 7121, and the saw blade 6 is connected to the end effector 7 through the clamping mechanism 8.
  • the clamping mechanism 8 includes two opposite clamping parts 81 , and the end surfaces of the two clamping parts are perpendicular to the rotating shaft 7121 .
  • the two clamping parts 81 approach each other under the action of external force to Clamp the connecting end 62 of the saw blade 6 to fix the saw blade 6 and the rotating shaft 7121 circumferentially.
  • Figure 23 is a schematic diagram of the first saw blade 6 and clamping mechanism 8.
  • a positioning structure is provided between the two clamping parts 81 and the saw blade 6 .
  • the positioning structure includes a protrusion 91 and a groove 92.
  • the protrusion 91 and the groove 92 are respectively provided on the clamping part 81 and the saw blade 6.
  • the groove 92 cooperates with the protrusion 91, the saw blade 6 and the rotating shaft 7121 are axially fixed and fixed. It can swing with the rotation of the rotating shaft 7121.
  • the protrusion 91 is provided on one of the clamping parts 81 , and the groove 92 is provided on the connecting end 62 of the saw blade 6 .
  • Both the protrusion 91 and the groove 92 include strip-shaped units evenly distributed in the circumferential direction.
  • the protrusion 91 is provided on the connecting end 62 of the saw blade 6
  • the groove 92 is provided on the clamping portion 81 .
  • Figure 24 is a schematic diagram of the second saw blade 6 and the clamping mechanism 8. The shapes of the protrusions 91a and the grooves 92a are different from the above (the embodiment shown in FIG. 23).
  • the protrusions 91a and the grooves 92a may be in a strip shape as shown in FIG. 24.
  • the protrusion 91a and the groove 92a can also be composed of multiple strips, as long as the saw blade 6 can be circumferentially fixed relative to the rotating shaft 7121.
  • the second interface 712 is a plug-in mechanism provided on the rotating shaft 7121.
  • Figure 25 is a schematic diagram of the saw blade 6 and the plug-in mechanism 3.
  • the plug-in mechanism 3 includes a slot 31 and a limiting part 32 .
  • the slot 31 is fixed to the rotating shaft 7121.
  • the thickness of the slot 31 is the same as the thickness of the saw blade 6 and allows the connecting end 62 of the saw blade 6 to be inserted.
  • the limiting portion 32 is a blocking piece on the slot 31 , and the blocking piece limits the thickness of the slot 31 .
  • the connecting end 62 of the saw blade 6 is provided with a snap-in portion 621.
  • the snap-in portion 621 is an elastic rectangular piece raised on the saw blade 6, one end of which is connected to the saw blade 6. The other end is separated from the saw blade 6 and is convex relative to the saw blade 6 plane.
  • the protruding end can be pressed under the action of external force until the saw blade 6 is flush with the plane, and can be restored when the external force disappears. through this setting.
  • the connecting end 62 of the saw blade 6 is inserted into the slot 31 , the clamping portion 621 is pressed flush with the surface of the saw blade 6 under the action of the limiting portion 32 , and the connecting end 62 of the saw blade 6 can enter the slot 31 smoothly.
  • the engaging portion 621 protrudes, and the limiting portion 32 prevents the saw blade 6 from withdrawing from the slot 31 .
  • the saw blade 6 is connected to the end effector 7 in the form of a plug connection, which is easy to disassemble and has a simple structure.
  • Figure 26 is a schematic diagram of the tracer 72 and the main body 71.
  • the tracer 72 is detachably connected to the second end 702 of the main body 71 through a detachable fixing structure.
  • the detachable fixing structure includes a plug-in assembly and a locking piece 103.
  • the plug-in assembly includes a plug piece 101 and a sleeve 102.
  • the tracer 72 has an edge and a plug-in connection relative to the main body 71.
  • the locking member 103 is used to advance in a direction perpendicular to the plugging direction to limit the remaining freedom of the tracer 72 relative to the main body 71 .
  • FIG. 26 is a schematic structural diagram of the tracer 72 .
  • the plug member 101 is provided on the main body 71 and is a dovetail-type plug block.
  • the kit 102 is provided on the tracer 72 and is a dovetail groove.
  • the tracer 72 has an unfixed remaining degree of freedom in the plugging direction relative to the main body 71.
  • the locking piece 103 has a top-screw structure.
  • the locking piece 103 fixes the remaining degree of freedom, the locking piece 103 penetrates the bottom surface of the slot and is in tight contact with the surface of the plug member 101, restricting the tracer 72 from detaching from the main body in the opposite direction of the plugging direction. 71.
  • the end effector 7 is more convenient to store and transport, and collision or damage to the tracer can be avoided.
  • the damage to the tracer will affect the positioning accuracy of the saw blade 6, which is detrimental to meeting the surgical accuracy requirements.
  • the tracer 72 is fixedly connected to the second end of the body.
  • the tracer includes a tracer frame 724 and a tracer part.
  • the tracer frame 724 is connected to the actuator body 71.
  • the tracer part includes a plurality of tracer frames connected to the tracer frame 724.
  • the plurality of tracking elements 723 are arranged along a plane.
  • the plurality of tracking elements 723 arranged along the plane define a plane, which is recognized by the positioning system 2 and reflects the orientation of the saw blade 6 accordingly.
  • the handle portion 73 is not provided on the main body 71 of the end effector 7 . In this way, the operation The user can hold the second side 704 of the main body 71 to control the posture change or movement of the end effector.
  • the present disclosure also proposes a surgical system, including an end effector 7, a robot arm 1, a positioning system 2 and a controller 5.
  • the end effector 7 is the end effector 7 of the first aspect; the robot arm 1 is used to carry the end effector 7 and provide power for the end effector 7; the positioning system 2 is used to identify the position of the tracer to obtain the position information of the osteotomy effector and/or the saw blade; the controller 5 is used to The end effector 7 is controlled to cut the bone according to the predetermined surgical plan.
  • the end effector 7 has the structure and functions described in 19 to 26 above.
  • the controller 5 can control the robot arm 1 so that the robot arm 1 moves completely autonomously according to the surgical plan, or by providing tactile feedback or force feedback to limit the surgeon's manual movement of the surgical tool 3 beyond the predetermined virtual boundary, or by providing virtual guidance. to guide the surgeon's movement along a certain degree of freedom.
  • Virtual boundaries and virtual guides can come from the surgical plan or can be set intraoperatively via input devices.
  • the end effector 7 is detachably connected to the robot arm 1; the positioning system 2 is used to obtain the position of the saw blade 6 and the patient's bones.
  • the positioning system 2 generally includes a positioner (such as a binocular camera 21) to measure the orientation of the above-mentioned tracer through 3D measurement technology.
  • the controller 5 is used to drive the robotic arm to move the prosthesis installation actuator to the target position according to the surgical plan, so that the saw blade 6 is positioned to the target osteotomy plane.
  • the surgical plan can include the robotic arm movement path, movement boundaries, etc.
  • the end effector 7 can complete high tibial osteotomy, distal femoral osteotomy and proximal fibula osteotomy.
  • One system can adapt to a variety of surgeries and operations, which not only reduces the time for doctors to adapt to the surgical system, but also eliminates the need to purchase corresponding special equipment for various surgeries.
  • the embodiment of the present application provides an electric tool for use in a surgical system with a robot arm 7 , which performs surgery under the control of the robot arm 7 , and includes a main body 1 , a transmission mechanism 2 and a first isolation structure 4 .
  • the first isolation structure 4 is provided between the main body 1 and the transmission mechanism 2 .
  • the main body 1 includes a main body shell 11 and a power assembly 14 .
  • the main body shell 11 has a first interface 12 and a second interface 13 .
  • the first interface 12 is used to connect to the robot arm 7 .
  • the transmission mechanism 2 is provided at the second interface 13, and has a first end and a second end. The first end of the transmission mechanism 2 is connected to the power assembly 14; the second end of the transmission mechanism 2 is connected to the surgical tool.
  • the power assembly 14 is built inside the main body shell 11 . When the robot arm 7 moves, it can drive the main body 1 and the transmission mechanism 2 installed on the main body 1 to move and change the working position.
  • the power assembly 14 drives the surgical tool through the transmission mechanism 2 to perform surgical operations.
  • the first isolation structure 4 is disposed between the second interface 13 and the transmission mechanism 2.
  • the first isolation structure 4 is used to isolate the second interface 13 and the transmission mechanism 2 to avoid direct contact between the two and can isolate the current between the main body 1 and the transmission mechanism. 2, thus preventing the formation of a current path between the surgical tool and the robot arm 7.
  • the first isolation structure 4 is made of insulating material, such as plastic, resin or carbon fiber.
  • the power component 14 has an output end 141; the end of the power component 14 away from the transmission mechanism 2 is a terminal 142.
  • the output end 141 is connected with the input shaft 22 of the transmission mechanism 2 .
  • Terminal 142 is used to connect the power supply line.
  • a wire clamp 143 is provided between the terminal 142 of the power assembly 14 and the main body shell 11 .
  • the power supply line can be clamped in the line clamp 143, and the power supply line can be kept tidy after being sorted by the line clamp 143.
  • the wire clamp 143 can also prevent friction between the power component 14 and the power supply line, thereby protecting the power supply line.
  • the main body housing 11 is provided with a handle portion 15 .
  • the handle portion 15 provides the doctor with a focus portion for convenient operation of the electric tool.
  • the handle portion 15 has a receiving cavity for accommodating the power assembly 14 .
  • the power assembly 14 is installed in the receiving cavity of the handle portion 15 within to maintain the stability of the power assembly 14.
  • the power component 14 is generally a motor. Of course, other components capable of outputting power can also be used.
  • a flexible coupling 3 is provided between the power component 14 and the transmission mechanism 2 .
  • One end of the flexible coupling 3 is connected to the output end 141 of the power assembly 14; the other end of the flexible coupling 3 is connected to the transmission mechanism 2.
  • a wire retaining sleeve 18 is provided on the periphery of the flexible coupling 3 . The wire blocking sleeve 18 isolates the power supply lines of the flexible coupling 3 and the power assembly 14 from each other to prevent the power supply line of the power assembly 14 from being entangled at the flexible coupling 3 .
  • the transmission mechanism 2 includes a transmission housing 21 , an input shaft 22 and an output component 23 .
  • the transmission housing 21 has a transmission housing first end 2100 and a transmission housing second end 2101. The first end 2100 of the transmission housing is inserted into the second interface 13 .
  • One end of the input shaft 22 is located in the transmission housing 21; the other end of the input shaft 22 passes through the first end 2100 of the transmission housing.
  • One end of the output component 23 is located in the transmission housing 21; the other end of the output component 23 is connected to the surgical tool.
  • the end of the output member 23 located in the transmission housing 21 is connected to the end of the input shaft 22 located in the transmission housing 21 .
  • the transmission mechanism 2 When the transmission mechanism 2 is connected to the second interface 13, the first end 2100 of the transmission housing is plugged into the second interface 13, the input shaft 22 is transmission connected with the power assembly 14, and the input shaft 22 and the output component 23 are transmitted inside the transmission housing 21
  • the output component 23 is transmission connected with the surgical tool, and the power assembly 14 transmits power to the surgical tool through the input shaft 22 and the output component 23 to drive the surgical tool to move.
  • Surgical tools can be of many types. The movements of different types of surgical tools are not exactly the same, and the corresponding matching transmission mechanisms 2 are also different.
  • the surgical tool is a saw blade, and the saw blade operates by swinging at high speed.
  • the input shaft 22 and the transmission housing 21 are rotationally connected through bearings or bushings.
  • the portion of the input shaft 22 located within the transmission housing 21 has an eccentric shaft 221 .
  • the output member 23 includes a shift fork 231 and an output shaft 232 .
  • the shift fork 231 is located in the transmission housing 21 , and one end of the shift fork 231 is connected to the eccentric shaft 221 .
  • the output shaft 232 is fixedly connected to an end of the shift fork 231 away from the eccentric shaft 221 , and the output shaft 232 is perpendicular to the input shaft 22 .
  • At least one end of the output shaft 232 passes through the transmission housing 21 and is connected to the saw blade.
  • At least part of the outer periphery of the first isolation structure 4 is provided with connecting pieces 45 .
  • the connecting piece 45 is connected to the second interface 13 and is used to fix the transmission mechanism 2 to the main body 1 .
  • the first isolation structure 4 is maintained between the transmission mechanism 2 and the connecting piece 45 , specifically between the transmission housing 21 and the connecting piece 45 .
  • first isolation structure 4 and the transmission mechanism 2 have a first connection relationship; the first isolation structure 4 and the connector 45 have a second connection relationship. Both the first connection relationship and the second connection relationship are fixed connections.
  • the transmission mechanism 2, the first isolation structure 4 and the connecting piece 45 are fixed to each other and their relative positions remain unchanged.
  • the transmission mechanism 2, the first isolation structure 4 and the connecting piece 45 are inserted into the second interface 13 as a whole, and the transmission mechanism 2 is fixed to the main body 1 by using the connection between the connecting piece 45 and the second interface 13.
  • the connecting piece 45 and the second interface 13 may be a detachable structure such as snapping, or a non-detachable structure such as welding.
  • first isolation structure 4 and the transmission mechanism 2 have a first connection relationship; the first isolation structure 4 and the connector 45 have a second connection relationship. At least one of the first connection relationship and the second connection relationship is circumferentially rotatable.
  • the connecting piece 45 and the second interface 13 are screwed together.
  • the two interfaces 13 are screwed together to fix the transmission mechanism 2 to the main body 1 .
  • the first connection relationship between the first isolation structure 4 and the transmission mechanism 2 is a fixed connection; the second connection relationship between the first isolation structure 4 and the connecting piece 45 is circumferential rotation. This is to ensure that after the transmission mechanism 2 and the main body 1 are fixed, the transmission mechanism 2 and the main body 1 remain stable.
  • first connection relationship between the first isolation structure 4 and the transmission mechanism 2 is circumferentially rotatable, it can be understood that the entire first isolation structure 4 and the transmission mechanism 2 are circumferentially rotatable, or the first isolation structure A part of 4 and the transmission mechanism 2 are capable of circumferential rotation.
  • the connecting member 45 is a pressure ring, which is sleeved on the transmission housing 21 , and at least a part of the first isolation structure 4 is located between the pressure ring and the transmission housing 21 .
  • the pressure ring and the first isolation structure 4 can rotate circumferentially and move along the axial direction of the first isolation structure 4 .
  • the flexible coupling 3 includes a first coupling part 31 and a second coupling part 32 .
  • the first coupling 31 is coupled with the output end 141 of the power assembly 14 .
  • the second coupling 32 is coupled with the input shaft 22 of the transmission mechanism 2 .
  • the first coupling part 31 and the second coupling part 32 are interconnected to transmit the power of the power assembly 14 to the transmission mechanism 2 through the first coupling part 31 and the second coupling part 32 .
  • the first coupling 31 is connected to the output end 141 of the power assembly 14 through a key.
  • the second coupling part 32 is inserted into the first coupling part 31 .
  • the second coupling member 32 has a first insertion portion 321 at one end facing the first coupling member 31 .
  • the first plug-in part 321 is a non-rotating body and is generally in the shape of a sheet.
  • a first slot (not shown in the figure) is provided at one end of the first coupling member 31 facing the second coupling member 32 .
  • the first plug-in part 321 is plug-fitted into the first slot to realize the connection between the first coupling part 31 and the second coupling part 32 .
  • the input shaft 22 of the transmission mechanism 2 cooperates with the second coupling member 32, it has an amount of movement in the axial direction.
  • the second coupling member 32 has a second plug-in portion 322 at one end facing the input shaft 22 of the transmission mechanism 2 .
  • the second plug-in part 322 is a non-rotating body and is generally in the shape of a sheet.
  • a second slot 222 is opened at one end of the input shaft 22 of the transmission mechanism 2 toward the second coupling member 32 .
  • the second plug-in part 322 is plug-fitted with the second slot 222 .
  • the input shaft 22 of the transmission mechanism 2 is provided with a first pin hole 223 .
  • the first pin hole 223 penetrates the second slot 222 along the radial direction of the input shaft 22 .
  • a second pin hole 323 is defined in the second plug portion 322 .
  • the pin shaft is inserted.
  • the diameter of the second pin hole 323 is larger than the diameter of the pin shaft to ensure that the input shaft 22 of the transmission mechanism 2 has an amount of movement along the axial direction after mating with the second coupling 32 .
  • the amount of movement is the difference between the diameter of the second pin hole 323 and the diameter of the pin shaft.
  • the amount of axial movement between the input shaft 22 and the second coupling 32 will not affect the transmission of torque, and the processing accuracy requirements for the second plug-in part 322 are reduced, which helps to reduce processing costs and improve processing efficiency.
  • the first plug-in portion 321 and the second plug-in portion 322 of the second coupling member 32 are cross-sectionally projected.
  • the pin After the pin is inserted into the first pin hole 223 and the second pin hole 323 , the pin can be welded to the input shaft 22 to improve the structural strength of the input shaft 22 and prevent the pin from falling off.
  • the electric tool also includes a second isolation structure 5 .
  • the second isolation structure 5 is provided between the transmission mechanism 2 and the power assembly 14 .
  • the second isolation structure 5 may be disposed between the input shaft 22 and the second coupling member 32 , between the second coupling member 32 and the first coupling member 31 , or between the second coupling member 32 and the power assembly 14 between the output terminals 141.
  • the second isolation structure 5 is an insulating sleeve located between the second coupling member 32 and the first coupling member 31 .
  • the second isolation structure 5 can not only prevent the current loop from being generated between the power assembly 14 and the transmission mechanism 2 , but also buffer the connection between the first coupling member 31 and the second coupling member 32 .
  • the first isolation structure 4 and the second isolation structure 5 can be made of plastic, resin or carbon fiber.
  • the second isolation structure 5 can be fixedly connected to the second coupling member 32 by press fitting, bonding or injection molding.
  • Surgical robots belong to Class III medical devices and need to meet corresponding electrical safety requirements.
  • the applied part of the surgical robot will come into contact with the human body. It is necessary to set up electrical isolation between the applied part of the surgical robot and the ground of the surgical robot to prevent the ground of the surgical robot from being connected to the human body through the applied part, affecting surgical safety.
  • Surgical robots include robot arms, trolleys, main bodies and surgical tools.
  • the base of the robot arm is installed on the trolley.
  • the main body is installed at the end of the robot arm away from the trolley.
  • the surgical tool is installed on the main body, and the surgical tool is the applied part of the surgical robot.
  • the main body has built-in power components.
  • the power component can drive the surgical tools to perform corresponding surgical actions.
  • the outer shells of the trolley, robot arm and main body are generally made of metal.
  • Metal bolts/screws are generally used to connect the trolley and the robot arm and between the robot arm and the main body. When in use, the trolley and robot arm are connected to the ground terminal of the external power supply.
  • the main body includes a main body shell and a power assembly.
  • the power assembly is built into the main body housing.
  • a transmission mechanism is provided between the surgical tool and the power assembly.
  • the transmission mechanism is used to connect the power component and the surgical tool, and convert the movement of the power component into the movement of the surgical tool. Since the connection between the surgical tool and the transmission mechanism will have a large force and relative motion, it is not appropriate to install an insulation structure at the connection between the surgical tool and the transmission mechanism.
  • the main reason is that the insulating material of the insulating structure generally has weak rigidity and strength, making it difficult to meet the transmission requirements between the surgical tool and the transmission mechanism.
  • a quick-release/quick-assembly mechanism is usually provided between the main body and the end of the robot arm to facilitate quick disassembly and assembly of the main body and the robot arm.
  • the quick release/quick assembly mechanism generally includes multiple parts.
  • the quick release/quick assembly structure is in contact with the main body and the robot arm, and the quick release/quick assembly structure is required to be firmly and reliably connected to the main body and the robot arm.
  • providing an insulating structure between the main body and the end of the robot arm may result in insufficient connection strength between the main body and the robot arm, making it difficult to meet usage requirements.
  • a first isolation structure 4 is provided between the transmission housing of the transmission mechanism 2 and the second interface 13 of the main body 1 .
  • the first isolation structure 4 can prevent the formation of a current path between the surgical tool and the main body 1, and further prevent the formation of a current path between the surgical tool and the robot arm 7, thereby improving the safety of surgery.
  • the isolation structure is provided between the transmission housing and the main body, and will not significantly affect the connection strength between the two, nor the connection strength between the surgical tool and the transmission mechanism.
  • the embodiment of the present application provides a quick-plug transmission device for connecting a surgical tool to the main body 1 of an electric tool.
  • the quick-plug transmission device includes a transmission mechanism 2 and a first isolation structure 4 .
  • the transmission mechanism 2 is as described in Embodiment 1
  • the first isolation structure 4 is attached to the outer surface of the transmission housing 21, and at least a part of the first isolation structure 4 is located between the transmission housing 21 and the main body 1. It blocks the formation of a current path between the transmission housing 21 and the main body 1 .
  • the transmission housing 21 includes a cover plate 211 and a transmission main housing 212 .
  • the cover plate 211 is located at the first end 2100 of the transmission housing, and the cover plate 211 covers the main transmission housing 212 .
  • the transmission mechanism 2 is inserted into the second interface 13 of the main body 1 , at least a part of the transmission main housing 212 and the cover 211 are located in the second interface 13 .
  • the transmission main housing 212 and the cover plate 211 are detachably connected, such as screw connection or threaded connection, so that the input shaft 22 can be easily installed into the transmission housing 21 .
  • the input shaft 22 of the transmission mechanism 2 is rotationally connected to the first cover plate 211 through a bearing. At least a portion of the first cover 211 is inserted into the transmission main housing 212 .
  • the first isolation structure 4 includes a first insulator 41 and a second insulator 42 .
  • the first insulator 41 is attached on the outer peripheral surface of the cover plate 211.
  • the second insulator 42 is attached to at least a portion of the transmission main housing 212 .
  • the first insulator 41 and the second insulator 42 are in contact with each other.
  • the insulation isolation from the main body 1 prevents the formation of a current path between the transmission mechanism 2 and the main body 1 .
  • the first isolation structure 4 also includes a third insulator 43 .
  • the third insulator 43 is attached to the outer periphery of the transmission main housing 212 , and is located at an end of the second insulator 42 away from the first insulator 41 .
  • the push-in transmission also includes a connector 45 .
  • the connecting piece 45 is sleeved on the outside of the first isolation structure 4 , and the connecting piece 45 is connected to the main body 1 . At least a portion of the first isolation structure 4 is located between the connecting piece 45 and the first end 2100 of the transmission housing.
  • the connecting piece 45 is sleeved on the outside of the third insulator 43 .
  • the first insulator 41 and the second insulator 42 are located between the connecting piece 45 and the first end 2100 of the transmission housing.
  • the connecting piece 45 squeezes the first insulating body 41 and the second insulating body 42 to prevent the transmission housing 21 from axial movement. Movement to ensure that the transmission housing 21 can be stably connected to the main body 1.
  • connection relationship between the third insulator 43 and the transmission housing 21; there is a fourth connection relationship between the third insulator 43 and the connecting piece 45.
  • both the third connection relationship and the fourth connection relationship are fixed connections.
  • At least one of the third connection relationship and the fourth connection relationship is circumferentially rotatable. On this basis, at least one of the third connection relationship and the fourth connection relationship may be axially movable.
  • the third connection relationship between the third insulator 43 and the transmission housing 21 is a fixed connection, such as using an insulating pin for fixation.
  • the fourth connection relationship between the third insulator 43 and the connecting piece 45 is that they can both rotate circumferentially and move axially. After the first end 2100 of the transmission housing is inserted into the second interface 13, the connecting piece 45 and the third insulator 43 first move in the axial direction so that the connecting piece 45 is aligned with the second interface 13, and then the connecting piece 45 is rotated in the circumferential direction so that The connecting piece 45 is screwed with the second interface 13 .
  • a sealing ring is provided between the connecting piece 45 and the third insulator 43 .
  • the connecting piece 45 is connected to the main body 1 , at least a part of the connecting piece 45 is received in the second interface 13 , and a sealing ring is also provided between the connecting piece 45 and the second interface 13 . Utilizing the sealing ring between the connecting piece 45 and the third insulator 43 and the sealing ring between the connecting piece 45 and the second interface 13 can improve the sealing performance after the transmission mechanism 2 and the main body 1 are installed.
  • the connecting piece is provided with an elastic piece 46 .
  • the elastic member 46 is used to provide reset power for the axial movement of the connecting member 45 .
  • the elastic member 46 is located between the second insulator 42 and the connecting member 45 .
  • the first isolation structure 4 further includes a fourth insulator 44 .
  • the fourth insulator 44 is attached to the outer periphery of the transmission main housing 212 .
  • the fourth insulator 44 is located on the third insulator 43 toward the first end 2100 of the transmission housing.
  • the fourth insulator 44 is in contact with the second insulator 42 .
  • the connecting member 45 and the third insulator 43 can rotate circumferentially and move axially.
  • the third insulator 43 has a step surface on its inner peripheral surface.
  • the outer peripheral surface of the fourth insulator 44 is provided with a convex edge.
  • One end of the elastic member 46 is connected to the stepped surface of the inner peripheral surface of the third insulator 43; the other end of the elastic member 46 is connected to the convex edge of the outer peripheral surface of the fourth insulator 44.
  • a washer 47 is provided at one end of the elastic member 46 facing the step surface.
  • the washer 47 is in contact with the stepped surface of the inner peripheral surface of the third insulator 43 .
  • the elastic member 46 is in contact with the washer 47 to improve the installation stability of the elastic member 46 .
  • the elastic member 46 may be a spring or elastic rubber.
  • the first isolation structure 4 includes a first insulator 41, a second insulator The edge body 42 and the third insulator 43.
  • the first insulator 41 , the second insulator 42 and the third insulator 43 are connected to form a continuous insulating structure, preventing the formation of a current path between the transmission housing 21 and the main body 1 .
  • the elastic member 46 is disposed between the second insulator 42 and the connecting member 45 (not shown in the figure).
  • the first insulator 41 is connected to the transmission main housing 212 .
  • the cover plate 211 is located in the first insulator 41 , and a part of the cover plate 211 is inserted into the transmission main housing 212 and is threadedly connected with the transmission main housing 212 .
  • a second positioning block 412 is protruding from the end surface of the first insulator 41 and the transmission main housing 212 .
  • a second positioning groove 2121 corresponding to the second positioning block 412 is formed on the end surface of the main transmission housing 212 and the first insulator 41 .
  • One or more second positioning blocks 412 and second positioning grooves 2121 are provided.
  • the second positioning block 412 is inserted into the second positioning groove 2121. This is to prevent the first insulator 41 from rotating in the circumferential direction relative to the transmission main housing 212 .
  • the end surface of the first insulator 41 and the transmission main housing 212 is also provided with a third positioning block 413.
  • the end surface of the transmission main housing 212 and the first insulator 41 is provided with a third positioning block 413.
  • the shapes of the third positioning block 413 and the second positioning block 412 may be different to distinguish the second positioning block 412 from the third positioning block 413 .
  • the length and/or width of the third positioning block 413 is different from the length and/or width of the second positioning block 412 .
  • an embodiment of the present application also provides an electric tool including a quick-plug transmission device, used to perform surgery under the grip of a robot arm 7 , and includes a main body 1 and a quick-plug transmission device.
  • the quick-plug transmission device is detachably connected to the second interface 13 . This is achieved by arranging a detachable mechanism between the quick-plug transmission device and the main body 1 .
  • the detachable mechanism is partly provided on the quick-plug transmission device and partly on the second interface 13 of the main body 1 .
  • the detachable mechanism between the quick-plug transmission device and the main body 1 is a screw-on structure, such as a threaded connection, or a rotating buckle structure.
  • the detachable mechanism includes a rotating groove 62 and a clamping block 61.
  • One of the rotating groove 62 and the clamping block 61 is provided at the second interface 13 of the main body 1, and the other The latter is provided in a quick-plug transmission device, the snap-in block 61 is fitted in the rotating groove 62, and the snap-in block 61 can move in the rotating slot 62 to change its position.
  • Changing the position of the snap-in block 61 in the rotating groove 62 can switch the connection state between the quick-plug transmission device and the main body 1, specifically: switching between a fixed or non-fixed state.
  • the clamping block 61 is provided on the connecting piece 45 and can be integrally provided, wherein the clamping block 61 can be protruded from the connecting piece 45 .
  • the connecting piece 45 is fixedly connected to the first isolation structure 4 or at least can rotate circumferentially. When the connecting piece 45 and the first isolation structure 4 can at least rotate circumferentially, the connecting piece 45 is rotated circumferentially relative to the first isolation structure 4, and the clamping block 61 rotates circumferentially with the connecting piece 45, so that the clamping block 61 is in contact with the rotating groove. 62 turns.
  • the rotating groove 62 is opened on the inner wall of the second interface 13 .
  • the detachable mechanism further includes a fixed base 17.
  • the fixing base 17 is received in the second interface 13 , and the fixing base 17 is connected with the main body 1 .
  • One end of the quick-plug transmission device passes through the bottom of the fixed seat 17 and is connected to the power assembly 14 .
  • the rotating groove 62 is opened on the peripheral surface of the fixed seat 17 .
  • the rotating groove 62 can penetrate the fixed seat 17 along the radial direction of the fixed seat 17 , or the rotating groove 62 can be opened on the inner or outer peripheral surface of the fixed seat 17 .
  • the fixed base 17 and the second interface 13 of the main body 1 may be detachably connected, such as bolted connection, threaded connection, or clamping. Pick up and wait.
  • the fixed base 17 and the second interface 13 of the main body 1 can also be connected non-detachably, such as interference fit, welding, riveting, cone fit, etc.
  • the rotating groove 62 may be spirally opened along the circumferential direction of the second interface 13 or the fixed seat 17 , or may be opened in an arc shape along the circumferential direction of the second interface 13 or the fixed seat 17 . That is, the spiral groove 62 may be a spiral groove 62 or an arc groove with axial lift.
  • the rotating groove 62 includes an inlet end 621 of the rotating groove and a positioning end 622 of the rotating groove.
  • the clamping block 61 enters the rotating groove 62 along the rotating groove inlet end 621 and can move along the rotating groove 62 to the rotating groove positioning end 622.
  • the rotating groove 62 also includes a matching groove 63 .
  • the fitting groove 63 is connected with the positioning end 622 of the rotating groove, and the fitting groove 63 extends along the axial direction of the quick-plug transmission device.
  • the clamping block 61 can be accommodated in the matching groove 63 to prevent the clamping block 61 from rotating in the circumferential direction of the quick-plug transmission device, so that the quick-plug transmission device and the main body 1 remain fixed.
  • the rotating groove 62 protrudes inward toward a side wall of the second end 2101 of the transmission housing to form a protruding portion 623 .
  • the protruding portion 623 is close to the rotating groove positioning end 622 , and the protruding portion 623 and the contour of the rotating groove positioning end 622 form a matching groove 63 .
  • the rotating groove 62 also includes a guide groove 64 .
  • One end of the guide groove 64 is connected with the rotating groove inlet end 621 , and the other end of the guide groove 64 is away from the bottom of the second interface 13 or the bottom of the fixed base 17 and is open.
  • the clamping block 61 can move along the open end of the guide groove 64 to the rotation groove inlet end 621 . After the guide groove 64 is provided, the difficulty for the latch block 61 to enter the entrance end 621 of the rotating groove can be reduced.
  • the detachable mechanism between the quick-plug transmission device and the main body 1 also includes an elastic member 46 .
  • the elastic member 46 is configured such that when the clamping block 61 cooperates with the rotating groove 62, the clamping block 61 is driven to abut the bottom of the matching groove 63 along the axial direction of the quick-plug transmission device, so that the connecting piece 45 and the fixed seat 17 are in contact with each other. Circumferential, axial and radial positioning. Specifically, the connecting piece 45 moves axially relative to the third insulator 43, and the clamping block 61 can enter the rotating groove 62 through the guide groove 64, and at this time, the elastic member 46 is compressed.
  • the clamping block 61 When the clamping block 61 cooperates with the rotating groove 62, the clamping block 61 starts from the rotating groove inlet end 621 and slides along the rotating groove 62 to the rotating groove positioning end 622.
  • the engaging block 61 enters the mating groove 63 , and the elastic member 46 drives the engaging block 61 to have an axial reset tendency. This tendency makes it difficult for the engaging block 61 to break through the restriction of the protrusion 623 and break away from the mating groove 63 .
  • the elastic force of the elastic member 46 positions the connecting member 45 and the fixed seat 17 in the axial and circumferential directions. And this positioning is destroyed when the engaging block 61 is disengaged from the mating groove against the elastic force of the elastic member 46 .
  • a first positioning block 411 is protruding from the outer peripheral surface of the first insulator 41 .
  • the bottom of the fixed base 17 is provided with a relief hole 171 into which the first end 2100 of the transmission housing is inserted.
  • a first positioning groove 172 is formed on the peripheral surface of the relief hole 171 . After the first end 2100 of the transmission housing is inserted into the relief hole 171 at the bottom of the fixed base 17, the first positioning block 411 cooperates with the first positioning groove 172. To position the position between the transmission housing 21 and the fixed base 17 to prevent the transmission housing 21 from rotating circumferentially relative to the fixed base 17 .
  • the first positioning blocks 411 include at least two, and the two first positioning blocks 411 have different shapes, such as different lengths or widths.
  • the shape of the first positioning groove 172 is adapted to the shape of the corresponding first positioning block 411 .
  • At least two first positioning blocks 411 and corresponding first positioning grooves 172 are used for positioning between the transmission housing 21 and the fixed base 17 , which can improve the reliability of preventing the transmission housing 21 from circumferential rotation relative to the fixed base 17 .
  • the use of first positioning blocks 411 and corresponding first positioning grooves 172 of different shapes can prevent errors in the installation angle between the transmission housing 21 and the fixed base 17 and has a foolproof effect.
  • the connector 45 includes a first sub-connector 451 and a second sub-connector 452 .
  • the first sub-connector 451 is connected to the second sub-connector 452, and the first sub-connector 451 is located at an end of the second sub-connector 452 facing the first end 2100 of the transmission housing.
  • the clamping block 61 is protruding from the first sub-connector 451 .
  • the first sub-connector 451 and the second sub-connector 452 can be made of different materials to adapt to different surface requirements or to reduce weight.
  • the first sub-connector 451 and the second sub-connector 452 can be fixed by clamping spring 453, or connected by threaded connection, screw connection, riveting, welding, interference fit, etc.
  • an insertion hole 4521 is formed on one end of the second sub-connector 452 away from the first sub-connector 451 .
  • the second sub-connector 452 is rotated, thereby driving the first sub-connector 451 and the clamping block 61 to rotate in the circumferential direction, thereby realizing the rotation of the clamping block 61 and the rotating groove 62. Close or spin away.
  • the jack holes 4521 can be in the shape of arc holes, circular holes, square holes, grooves, etc. There are two or more jack holes 4521 .
  • the first end of the transmission mechanism 2 into the fixed seat 17 and pass through the bottom of the fixed seat 17; the input shaft 22 of the transmission mechanism 2 is connected to the output end 141 of the power assembly 14, and the first insulator 41 is attached
  • the transmission housing 21 and the fixed base 17 of the second insulator 42 are plug-fitted to ensure the radial positioning between the quick-plug transmission device and the main body 1 .
  • the first positioning block 411 cooperates with the first positioning groove 172 to ensure the circumferential positioning between the quick-plug transmission device and the main body 1. .
  • the connecting piece 45 moves in the axial direction relative to the third insulator 43, and the clamping block 61 can enter the rotating groove 62 through the guide groove 64, and at this time, the elastic member 46 is compressed.
  • the connecting piece 45 is rotated in the circumferential direction relative to the third insulator 43.
  • the engaging block 61 starts from the inlet end 621 of the rotating groove and slides along the rotating groove 62 to the positioning end 622 of the rotating groove.
  • the engaging block 61 enters the mating groove 63 , and the elastic member 46 drives the engaging block 61 to have an axial reset tendency.
  • the quick-plug transmission device is fixed to the main body 1 to ensure the stability of the quick-plug transmission device and the main body 1 after being matched.
  • An embodiment of the present application also provides a surgical system, including a surgical tool, an electric tool such as the first or second embodiment, a robot arm 7, a navigation system, and a controller.
  • the robot arm 7 is used to carry the electric tool and provide power for position changes of the electric tool.
  • the surgical tool interfaces with the output member 23 of the power tool.
  • Power tools power the movement of surgical tools.
  • the navigation system is used to obtain the orientation information of surgical tools.
  • the controller is used to control the movement and orientation of the robot arm 7 based on the orientation information of the surgical tool and the pre-stored surgical plan.
  • the navigation system includes a tracer frame 16 .
  • the tracer frame 16 is fixedly connected to the outside of the main body shell 11 .
  • the tracer frame 16 can show position information of the surgical tool.
  • the quick-plug transmission device is detachably connected to the second interface of the main body, so as to facilitate quick disassembly and installation of the quick-plug transmission device and reduce the difficulty of disassembly and installation of the transmission device; and the electric tool includes a main body , the transmission mechanism and the first isolation structure 4.
  • the first isolation structure 4 provided between the transmission mechanism and the main body prevents the formation of a current path between the surgical tool and the robot arm 7. Its specific principles and uses have been described in detail in Embodiment 1 and 2 and will not be described again here.
  • the surgical system involving this technology includes a robot arm 1, a positioning system 2, an end effector 3 equipped with surgical tools, and a controller 4.
  • the robot arm 1 is equivalent to a surgeon's arm and can hold surgical tools and position and move surgical tools with high accuracy.
  • Positioning System 2 is equivalent to the surgeon's eyes and can measure the position of surgical tools and patient tissue in real time.
  • the controller 4 is equivalent to the surgeon's brain and stores surgical plans internally. The controller 4 calculates the path of the robot arm 1 based on the position information obtained through the positioning system 2 during the operation.
  • the line and/or the position to be reached can control the movement of the robot arm 1, or set the virtual boundary of the robot arm 1 through the force feedback mode, and manually push the end effector 3 of the robot arm 1 to move within the virtual boundary/limited along the virtual boundary. route and surface movement.
  • the end effector 3 includes a surgical tool, a main body 32 and an end tracer 33; the main body 32 includes a first interface 321 and a second interface 322.
  • the first interface 321 is used to connect to the robot arm 1, and the second interface 322 is used to connect to the surgical arm.
  • Tool; the end tracer is used to locate the position of the surgical tool; wherein, the end tracer and the first interface are respectively located at both ends of the main body 32, and the end tracer and the second interface have a predetermined first position relationship.
  • the surgical tool is a saw blade 31, which is used to cut bones on the target osteotomy surface.
  • Figure 41 is a schematic structural diagram of an end effector according to an embodiment of the present disclosure.
  • Figure 42 is a left view of the end tracer in Figure 41 according to the embodiment of the present disclosure.
  • Figure 43 is a schematic diagram of the internal structure of the end effector according to an embodiment of the present disclosure.
  • Figure 44 is a schematic structural diagram of an end effector equipped with a tool tracer according to an embodiment of the present disclosure.
  • Figure 45 is a left side view of the end effector of Figure 44 with a tool tracer installed according to an embodiment of the present disclosure.
  • the end effector 3 includes a saw blade 31 , a main body 32 , an end tracer 33 and a tool tracer 34 .
  • the main body 32 is generally a cone, and the rotation center line W of the cone is coaxial with the rotation center line of the end arm 11 of the robot arm 1 .
  • the direction reference and coordinate system CS of the body 32 are defined.
  • the rotation center line W of the cone is the Z axis of the coordinate system CS, and the two mutually perpendicular directions perpendicular to the Z axis are the Y axis and the X axis.
  • the extension direction of the rotation center line W is the length direction of the main body 32 .
  • the two ends in the length direction of the main body 32 are respectively the first end 32a and the second end 32b.
  • the radial direction of the main body 32 is the lateral direction, specifically including the upper side, lower side, front side and rear side.
  • the upper side, lower side, front side and back side correspond to the Y-axis forward direction, Y-axis reverse direction, X-axis forward direction and X-axis reverse direction of the coordinate system CS.
  • the shape of the main body 32 is not limited to a cone, and can be a regular or irregular shape as long as it has a predetermined length and can be coaxial with the end arm 11 when connected to the robot arm 1 .
  • "Coaxial" here is not strictly limited to the literal meaning, as long as the two rod-shaped structures are connected in a substantially collinear manner.
  • the definition of the length direction of the main body 32 of other shapes can also refer to the rotation center line W of the end arm 11 (when the main body 32 is connected to the robot arm 1). The main body 32 rotates with the end arm 11, and the rotation center lines of the two are the same.
  • the main body 32 has a first interface 321, a second interface 322, a power mechanism 323 and a handle 324.
  • the first interface 321 is located at the first end 32a of the main body 32.
  • the second interface 322 is located on the first side 32c of the main body 32 and closer to the second end 32b of the main body 32 in the length direction.
  • the handle 324 is located on the second side 32d of the main body 32 and is used to provide a force portion for the doctor to push and pull the end effector 3 .
  • the first end 32a and the second end 32b of the main body 32 are both ends in the length direction (Z-axis direction).
  • the first side 32c of the main body 32 corresponds to the aforementioned lower side, that is, the reverse direction of the Y-axis; the second side 32d corresponds to the aforementioned upper side, that is, the forward direction of the Y-axis.
  • the first interface 321 is used to connect the main body 32 to the robot arm 1 .
  • the second interface 322 is used to connect the saw blade 31 .
  • the second interface 322 is a mechanical connection structure and has a rotating shaft 3221 that can rotate back and forth.
  • the saw blade 31 is fixed on the rotating shaft 3221, and is driven by the rotating shaft 3221 to swing back and forth.
  • the power mechanism 323 is disposed inside the main body 32 , and is used to provide power to the second interface 322 .
  • the power mechanism 323 mainly includes a motor 3231, a reducer 3232 and a transmission mechanism 3233.
  • the motor 3231 and the reducer 3232 are used to provide initial power.
  • One end of the transmission mechanism 3233 is connected to the reducer 3232, and the other end is provided at the second interface 322.
  • the transmission mechanism 3233 receives the initial power from the motor 3231 and the reducer 3232 and drives the saw blade 31 to swing through the rotating shaft 3221.
  • the saw blade 31 is in the shape of a long strip, and its two ends are respectively a cutting end 31a and a connecting end 31b.
  • the cutting end 31a is provided with serrations, Used to cut bone tissue.
  • the connecting end 31b is used to connect with the second interface 322 and receive the power to drive the saw blade 31 to swing.
  • the end tracer 33 is disposed on the second end 32b of the main body 32 for indicating the orientation of the saw blade 31 .
  • the terminal tracer 33 includes a frame 331 and a plurality of tracing elements 332 (four as shown), and the plurality of tracing elements 332 are located on the same plane.
  • the end tracer 33 and the second interface 322 have a predetermined first positional relationship.
  • the plane where the end tracer 33 is located is perpendicular to the length direction of the main body 32 , that is, the normal direction of the plane where the end tracer 33 is located is parallel to the Z-axis.
  • the general outline of the end tracer 33 is approximately at the same position as the main body 32 in the virtual longitudinal direction and the virtual transverse direction.
  • the virtual vertical direction is the Y-axis direction
  • the virtual horizontal direction is the X-axis direction.
  • the height of the general outline of the end tracer 33 is not greater than the longitudinal height of the outline of the main body 32, and the above two heights are the heights in the Y-axis direction.
  • the distance between the end tracer 33 and the second interface 322 in the length direction of the main body 32 is preferably 0 mm to 30 mm.
  • the distance between the end tracer 33 and the second interface 322 in the longitudinal direction of the main body 32 is preferably 40 mm to 60 mm.
  • the above two distances are the distances between the center of the end of the second interface 322 away from the main body 32 and the centroid of the end tracer 33 . That is, the end tracer 33 is relatively close to the second interface 322 on the main body 32.
  • the end tracer 33 and the saw blade 31 are in the length direction of the main body 32 ( in the Z-axis direction) and in the longitudinal direction (Y-axis direction). In this way, from the perspective of the positioning system, the end tracer 33 used to locate the position of the saw blade 31 is approximately close to the position of the saw blade 31 .
  • the positioning system determines the position of the saw blade 31 based on the position of the end tracer 33 during the osteotomy process, the positioning error of the positioning system itself may cause the end tracer 33 to be positioned inaccurately. Since the position of the end tracer 33 and the second interface 322 are relatively close, the positioning error will not be overly amplified when converted to the position of the saw blade 31 .
  • the end tracer can more accurately locate the position of the saw blade 31 from the perspective of the positioning system. That is to say, when the distance between the end tracer 33 and the second interface 322 is closer, the distance between the end tracer 33 and the saw blade 31 is closer, and the positioning system can position the saw blade 31 more accurately through the end tracer 33 .
  • the distance between the end tracer 33 and the second interface 322 in the length direction of the main body 32 is 0 mm.
  • the distance between the end tracer 33 and the second interface 322 in the longitudinal direction of the main body 32 is 50 mm. That is, the second interface 322 is disposed 50 mm directly below the end tracer 33 . It can be understood that the distance between the end tracer 33 and the second interface 322 in the length direction of the main body 32 is 0 mm.
  • the positioning error will not be amplified at least in the length direction of the main body 32, because the position of the end tracer 33 in the Z-axis direction recognized by the positioning system is the second interface 322 (or the saw blade 31 installed on the second interface 322) in the Z-axis direction.
  • the distance between the end tracer 33 and the second interface 322 in the longitudinal direction of the body is 50 mm, and the end tracer 33 and the second interface 322 should be as close as possible while meeting the mechanical design requirements.
  • the positioning error of the saw blade 31 by the end tracer 33 will not be excessively amplified, and the end tracer 33 can position the position of the saw blade 31 more accurately.
  • the distance between the end tracer 33 and the second interface 322 in the longitudinal direction of the main body 32 can also be any value smaller than 60 mm and larger than 40 mm.
  • the amplification of the possible positioning error is also within the acceptable range of the surgical system.
  • the effect of the end tracer 33 on the saw blade 31 The accuracy of positioning can ensure the usage requirements.
  • the distance between the end tracer 33 and the second interface 322 in the longitudinal direction (Y-axis direction) of the main body 32 may be a value such as 40 mm, 45 mm or 55 mm.
  • the distance between the end tracer 33 and the second interface 322 in the length direction of the main body 32 is 30 mm. Similar to the previous embodiment, the distance between the end tracer 33 and the second interface 322 in the longitudinal direction of the main body 32 is any value less than 30 mm. In this way, when the positioning error is acceptable, the end tracer can still locate the position of the saw blade 31 relatively accurately.
  • the distance between the end tracer and the second interface in the length direction of the body may also be 10 mm, 15 mm, 20 mm or 25 mm.
  • the end tracer 33 can also locate the position of the saw blade more accurately. The specific principle is the same as the previous embodiment and will not be described again here.
  • the distance between the end tracer 33 and the second interface 322 in the length direction of the main body 32 can also be any value from 0 mm to 50 mm.
  • the distance between the end tracer 33 and the second interface 322 in the longitudinal direction of the main body 32 may be any value from 0 mm to 70 mm.
  • the distance between the end tracer 33 and the second interface 322 in the length direction of the main body 32 is 50 mm, and/or the distance between the end tracer 33 and the second interface 322 in the longitudinal direction of the main body 32 is 70 mm.
  • the end tracer 33 is at a certain distance from the second interface 322, it can still meet the surgical accuracy requirements and position the saw blade 31 more accurately.
  • the distance between the end tracer 33 and the second interface 322 in the length direction of the main body 32 is 0 mm, and/or the distance between the end tracer 33 and the second interface 322 in the longitudinal direction of the main body 32 is 0 mm.
  • the end tracer 33 is closer to the second interface 322, and the positioning of the saw blade 31 by the end tracer 33 will be more accurate.
  • the tool tracer 34 is detachably connected to the saw blade 31 . As shown in FIGS. 44 and 45 , the tool tracer 34 is connected to the saw blade 31 .
  • the tool tracer 34 includes a tracer frame 341, a tracer element 332 and a mounting part 342.
  • the tracer frame 341 is generally triangular in shape, and three tracer elements 332 are disposed on it.
  • the mounting portion 342 is provided on the back side of the tracking element 332 on the tracking frame 341 and is used for mounting the tool tracker 34 on the saw blade 31 .
  • the mounting portion 342 is a clamping structure. When the clamping structure acts on the saw blade 31 , the tool tracer 34 can be fixed to the saw blade 31 .
  • Both the end tracer 33 and the tool tracer 34 can be recognized by the positioning system 2 during surgery, and thereby determine the orientation of the saw blade 31 .
  • Both the end tracer 33 and the tool tracer 34 are optical tracers, and the tracer element 332 installed thereon is a reflective sheet or reflective ball.
  • the positioning system 2 includes a binocular vision camera capable of identifying reflective sheets or reflective balls.
  • the end tracer 33 and/or the tool tracer 34 can also be an electromagnetic transmitter or a position sensor, and the corresponding positioning system 2 capable of identifying the position of the electromagnetic emission signal or the position sensor can determine the position of the saw.
  • the orientation of piece 31 is a binocular vision camera capable of identifying reflective sheets or reflective balls.
  • the tool tracer 34 and the end tracer 33 have a second positional relationship.
  • the plane in which the tool tracer 34 is located is parallel to the plane in which the end tracer 33 is located.
  • the orientation of the three tracking elements 332 is the same as the orientation of the tracking element 332 on the end tracer 33, which is the opposite direction of the Z-axis.
  • the tool tracer 34 and the end tracer 33 are offset in a first direction, and the first direction is the virtual longitudinal direction (the direction of the Y-axis). That is, as shown in the figure, the tool tracer 34 is located below the tip tracer 33 .
  • the distance between the plane where the end tracer 33 is located and the plane where the tool tracer 34 is located is less than 10 mm. It can be understood that the setting of the tool tracer 34 can not only accurately position the saw blade 31 when the robot arm 1 positions the saw blade 31 to the target osteotomy surface, but also can obtain the relationship between the saw blade 31 and the end during this process.
  • the positional relationship between tracers 33 The positional relationship between tracers 33. Among them, the positioning system obtains the positional relationship between the end tracer 33 and the tool tracer 34 to determine the positional relationship between the saw blade 31 and the end tracer 33 .
  • the distance between the plane where the end tracer 33 is located and the plane where the tool tracer 34 is located is 0 mm.
  • the positioning system locates the end tracer 33 and the tool tracer 34 , the tool tracer 34 and the end tracer 33 have the same position at least in the length direction of the main body 32 . And at least in this direction, the positional relationship between the end tracer 33 and the tool tracer 34 is certain and unique, and the positioning system can obtain the positional relationship between the tool tracer 34 and the end tracer 33 relatively accurately. Combined with the installation relationship between the tool tracer 34 and the saw blade 31 , the positional relationship between the saw blade 31 and the end tracer 33 can be further accurately obtained.
  • the distance between the plane where the end tracer is located and the plane where the tool tracer is located is 10 mm.
  • the distance between the plane where the end tracer 33 is located and the plane where the tool tracer 34 is located is relatively close, and there will be no large error in the positional relationship between the two acquired by the positioning system. If the error occurs and is within the allowable error range of the surgical system, the positional relationship between the saw blade 31 and the end tracer 33 can also be accurately determined.
  • the distance between the plane where the end tracer 33 is located and the plane where the tool tracer 34 is located is any value from 0 mm to 10 mm, such as 1 mm, 5 mm or 8 mm. In this way, the positioning system can also obtain the positional relationship between the saw blade 34 and the end tracer 333 more accurately.
  • the specific principle is the same as the above embodiment and will not be described again here.
  • the distance between the plane where the end tracer 33 is located and the plane where the tool tracer 34 is located is any value from 0 mm to 20 mm, such as 0 mm, 15 mm or 20 mm. In this way, the positioning system can also obtain the positional relationship between the saw blade 34 and the end tracer 333 more accurately.
  • the specific principle is the same as the above embodiment and will not be described again here.
  • Total knee replacement mainly involves osteotomy of multiple target osteotomy surfaces of the knee joint. Specifically, they are tibial plateau osteotomy, distal femoral osteotomy, anterior femoral condyle osteotomy, posterior femoral condyle osteotomy, posterior femoral oblique osteotomy, and anterior femoral oblique osteotomy.
  • Figure 46 is a schematic diagram of total knee replacement surgery on the right leg according to an embodiment of the present disclosure.
  • Figure 47 is a schematic diagram of the end effector adjusting the angle of the saw blade during total knee replacement surgery of the right leg according to an embodiment of the present disclosure;
  • Figure 48 is a schematic diagram of the alignment state of the saw blade and the target osteotomy surface b of the distal femur according to the embodiment of the present disclosure.
  • the robot arm 1 points from the affected side to the opposite side.
  • the end arm 11 of the robot arm 1 is connected to the end effector 3.
  • the robot arm 1 holds the end effector 3 roughly above the knee joint and transversely to the patient.
  • the saw blade 31 will enter from the front of the patient, and the cutting end 31a of the saw blade 31 points to the knee joint.
  • the plane of the saw blade 31 only needs the end effector 3 to be roughly parallel to the coronal plane of the human body and transversely
  • the angle of the axis of the plane intersection (rotation center line W)
  • the end effector 3 when the end effector 3 is equipped with the saw blade 31 to position different osteotomy surfaces, in order to adapt to the angles of different target osteotomy surfaces, the saw blade 31 is adjusted in plane at a position away from the affected area.
  • the rotation of the end arm 11 of the robot arm 1 around its own axis causes the end effector 3 to rotate around the axis (rotation center line W), and the saw blade 31 rotates at a certain angle in the plane.
  • the end effector 3 has a first posture A, a second posture B, a third posture C, a fourth posture D, a fifth posture E, and a sixth posture G after adjustment.
  • the angle of the saw blade 31 in the first posture A of the end effector 3 corresponds to the angle of the target osteotomy surface a of the tibia; the angle of the saw blade 31 in the second posture B corresponds to the angle of the target osteotomy surface b of the distal femur; In the third posture C, the angle of the saw blade 31 corresponds to the angle of the target osteotomy surface c at the front end of the femur; in the fourth posture D, the angle of the saw blade 31 corresponds to the angle of the target osteotomy surface d at the rear end of the femur.
  • the robot arm 1 can achieve alignment between each plane and the target osteotomy plane by translating a certain distance within a certain range according to a predetermined path, such as Figure 48 shows a schematic diagram of the saw blade 31 aligned with the target osteotomy plane b of the distal femur and about to perform osteotomy. After the saw blade 31 is positioned in this state, the robot arm 1 moves the saw blade 31 under the control of the controller. The movement range is limited to this plane, and the doctor pushes the end effector 3 to move in this plane and complete the corresponding osteotomy.
  • the saw blade 31 used for cutting bone tissue will swing at high speed during osteotomy.
  • a tracer cannot be directly installed on the saw blade 31 to locate the position of the saw blade 31 . Therefore, before performing the primary osteotomy (ie, tibial osteotomy), the tool tracer 34 is installed on the saw blade 31 .
  • the tool tracer 34 can help the orthopedic robot directly locate the position of the saw blade 31, so that the robot arm 1 can move with the assistance of the tool tracer 34 to position the saw blade 31 To the target osteotomy surface of the distal femur.
  • the orthopedic robot also obtains the positional relationship between the saw blade 31 and the end tracer 33 .
  • the tool tracer 34 is removed from the saw blade 31 .
  • the power device of the saw blade 31 is started to make the saw blade 31 swing at a high speed, and then with the assistance of the robot arm 1, the osteotomy is performed within the target osteotomy surface of the tibia.
  • the orthopedic robot can use the position of the end tracer 33 and the positions of the saw blade 31 and the end tracer 33 obtained through the tool tracer 34 before the first osteotomy. relationship to accurately determine the position of the saw blade 31 and guide the osteotomy process relatively accurately. In this way, the orthopedic robot can accurately locate the position of the saw blade 31 and does not need to install the tool tracer 34 multiple times before performing osteotomy on the five subsequent target osteotomy surfaces.
  • the accuracy of positioning of the saw blade 31 is affected by two factors: the accuracy of positioning the tracer by the positioning system 2 and the accuracy of positioning the positional relationship between the saw blade 31 and the end tracer 33 .
  • the positioning accuracy of the terminal tracer 33 is mainly affected by the positioning accuracy of the positioning system 2 .
  • the determination of the positional relationship between the saw blade 31 and the end tracer 33 is also affected by the accuracy of the positioning system 2 .
  • the accuracy of positioning system 2 exists objectively and is unavoidable. In the embodiment of the present disclosure, as shown in FIG. 42 , the plane where the end tracer 33 is located is close to the saw blade 31 .
  • the plane where the end tracer 33 is located and the plane where the tool tracer 34 is located are nearly coincident, so that the coordinate system defined by the end tracer 33 and the coordinate system defined by the tool tracer 34 are
  • the positional relationship is relatively simple.
  • the positioning system 2 positions the two tracers, the two coordinate systems represented by the two tracers are close to each other in the length direction of the main body 32.
  • the positioning system 2 will be able to more accurately determine the saw blade 31 and the end tracer.
  • tool tracer 34 may not be provided.
  • the positioning system 2 directly obtains the position of the saw blade 31 through the position of the end tracer 33 and the inherent positional relationship between the end tracer 33 and the saw blade 31 .
  • the end tracer 33 and the saw blade 31 have a first positional relationship in the length direction of the main body 32 .
  • the end tracer 33 is close to the saw blade 31 , and the end tracer 33 can reflect the position of the saw blade 31 more accurately.
  • the orthopedic robot can accurately guide the surgery according to the position of the saw blade 31 indicated by the end tracer 33 .
  • the plane where the end tracer 33 is located coincides with the plane where the tool tracer 34 is located. In this way, the coordinate system defined by the end tracer 33 and the two tracers defined by the tool tracer 34 will not produce positioning errors in at least one direction.
  • the positional relationship between the end tracer 33 and the tool tracer 34 is obtained through the positioning system 2 to obtain the relationship between the saw blade 31 and the end tracer 33 , the determination of the positional relationship will be more accurate.
  • the surgical tool may be other instruments besides the saw blade 31, such as milling cutters, drill bits, and grinding files. It can be understood that through the arrangement of the end tracer 33 and the tool tracer 34, tools such as milling cutters, drill bits or grinding files can be accurately positioned during surgery. The principle of accurately positioning the surgical tool is similar to the principle of positioning the saw blade 31 , and will not be described again here.
  • the present disclosure proposes a surgical system, including an end effector 3 , a robot arm 1 , a positioning system 2 and a controller 4 .
  • the end effector 3 is the end effector 3 of the first aspect.
  • the robot arm 1 is used to carry the end effector 3 and provide power for the end effector 3;
  • the positioning system 2 is used to identify the position of the tracer to obtain the position information of the end effector and/or the saw blade 31; the controller 4 , used to control the end effector 37 to cut bones according to the predetermined surgical plan.
  • the controller 4 can control the robot arm 1 so that the robot arm 1 moves completely autonomously according to the surgical plan, or by providing tactile feedback or force feedback to limit the surgeon's manual movement of the surgical tool beyond the predetermined virtual boundary, or by providing virtual guidance to Guides the surgeon's movement along a certain degree of freedom.
  • Virtual boundaries and virtual guides can come from the surgical plan or can be set intraoperatively via input devices.
  • the end effector 3 is detachably connected to the robot arm 1; the positioning system 2 is used to obtain the position of the saw blade 31 and the patient's bones.
  • Positioning system 2 generally includes a positioner (such as a binocular machine) to measure the orientation of the above tracer through 3D measurement technology.
  • the controller 4 is used to drive the robot arm 1 to move the prosthesis installation actuator to the target position according to the surgical plan, so that the saw blade 31 is positioned to the target osteotomy plane.
  • the surgical plan can include the robot arm movement path, movement boundaries, etc.
  • the end effector as described in the first aspect of the present disclosure. Through the setting of the end effector, it is convenient for the positioning system to accurately position surgical tools such as saw blades and milling cutters.

Abstract

一种末端执行器,包括主体和示踪器;主体具有第一接口、第二接口和动力机构,第一接口用于连接机器人臂,第二接口用于连接锯片,动力机构设置于主体内部,动力机构用于向第二接口提供动力;示踪器设置于主体,用于指示锯片的方位;其中,第二接口被配置为其与锯片之间具有第一连接关系和第二连接关系,在第一连接关系下锯片与主体之间具有第一相对方位关系,第二连接关系下锯片与主体之间具有第二相对方位关系。通过这样的设置,锯片与第二接口分别具有第一连接关系和第二连接关节时,锯片相对于主体的两种方位关系使得末端执行器可以适应不同的手术入路及手术类型。

Description

快插式传动件、末端执行器及手术系统 技术领域
本申请涉及骨科手术机器人技术领域,具体涉及一种快插式传动件、末端执行器及手术系统。
背景技术
先天发育引起的膝关节畸形或膝骨关节炎引起的膝关节病变、畸形,都会严重影响患者下肢的正常站立、行走功能。当前,全膝关节置换手术是治疗上述病症的较为成熟的治疗方法。全膝关节置换手术(Total Knee Arthroplasty,简称TKA)可以直接去除病变的膝关节并更换人工关节以达到彻底治疗病变的目的。TKA需要先对股骨远端和胫骨近端进行整形,整形后安装假体。整形后的骨骼形状与假体适配。高效的整形方式为摆锯截骨。术中患者仰卧,膝关节弯曲,切开软组织使关节骨骼显露,锯片可以从膝关节上方(人体前方)以不同的角度切入骨骼。
然而,关节假体的寿命有限,假体寿命到期后,需要进行人工关节假体翻修手术。人工关节假体翻修手术是非常有挑战的手术,手术过程中可能遇到很多难题,如膝关节局部软组织瘢痕松解困难、关节暴露困难,需要医生有很好的技术储备和翻修手术设备才能获得较满意的手术效果。
另外,随着临床膝关节研究的不断深入、人们保膝意识的不断加强,通过胫骨高位截骨术(High Tibial Osteotomy,简称HTO)、股骨远端截骨术(Distal Femur Osteotomy,简称DFO)或腓骨近端截骨术(Proximal Fibular Osteotomy简称PFO)矫正下肢力线的术式逐渐得到临床工作者的推崇。以膝内翻HTO为例说明手术原理。HTO手术需要从膝关节内侧方向将胫骨近端进行切割形成切口,切口以扩张器扩开一定角度,外加以坚强的内固定,使得双腿变直,力线穿过膝关节外侧间室,减缓膝关节内侧磨损。DFO与HTO手术方式大致相同,同样是从侧方对股骨远端产生一切口来调整下肢力线。上述两种手术能够对下肢力线进行有效矫正,众多的临床实践和研究试验证实了胫骨高位截骨术、股骨远端截骨术治疗膝骨关节炎的有效性和可靠性。而腓骨近端截骨术是指通过截断腓骨近端部分骨质以改善内侧间室压力,从而延缓膝骨关节炎发展的手术方法。该手术基于“膝关节不均匀沉降理论”,使膝关节内侧的压力转移一部分至外侧,以减轻膝关节内侧关节面的过度负荷。并且,上述三种手术方式已经在膝骨关节炎并畸形的临床治疗中得到越来越多的应用。关节的磨损是不可避免的,也许最终患者仍需要进行TKA手术,但HTO、DFO和PFO能使患者避免过早进行TKA手术,可减小患者在生命期内需进行人工关节假体翻修的可能性。
随着计算机辅助手术(Computer-Assisted Surgery,CAS)技术的发展,越来越多的原本需要依靠人工的手术正逐步向半自动化的计算机辅助手术方向靠拢,使得医生能够较为轻松且精准地实施外科手术。现在的思路是利用计算机生成的图形图像进行手术方案规划,通过配准技术将术中患者组织与载有手术方案的图形图像进行对准,术中使用导航系统追踪手术工具与患者组织的相对位置并以图像显示在显示器中,使用机器人辅助手术工具精准定位至规划的位置。如骨科手术中使用CT/MRI/DSA/PET/CTA/MRA等图像数据进行患者骨组织的三维重建,医生可以在三维模型上规划手术方案,确定要截骨的平面的方位信息。配准后,术中医生可以通过对计算机上图像的观察来了解手术的进程并 指导手术,机器人可以替代医生把持和定位手术工具。甚至可以由计算机进行手术规划,在经过医生的确认后全自动或半自动地完成手术。这种半自动化的手术方式能够很大程度上避免对医生丰富经验的依赖,且手术方法的学习曲线短,手术精度高,真正为患者和医生带来了便利。
但目前临床中对于膝关节的治疗,计算机辅助手术技术主要应用于TKA,并没有能够进行HTO、DFO或PFO的系统进行膝关节治疗。专门为TKA设计的手术机器人,会基于TKA的需求和术中限制进行配置。如,TKA手术中膝关节的暴露区域开口朝向仰卧位人体的上方,摆锯需从膝关节上方进入人体;TKA过程中需6次不同角度的截骨操作,因此应保证机器人有足够的灵活性以便在6次截骨过程中调整(摆锯执行器的)锯片相对于关节的位置。需要说明的是,机器人不仅需要将锯片与目标截骨面对准,还需保证摆锯执行器可在用户推动下沿该平面移动。这就需要刚性连接锯片的机器人末节臂具有这种灵活性。为了达到这种效果,机器人的其他臂和关节应有足够的灵活性,以避免任意一节臂到达极限位置。而机器人相对于手术床的位置则是保证上述效果的重要因素。然而,术中不仅要考虑手术机器人的位置,首要考虑的是医生的操作便利性,手术机器人不能过分挤占医生的操作空间。另外,摆锯执行器需要连接机器人、锯片、示踪器及操作把手,术中要保证执行器的灵活性、医生握持把手的舒适性、锯片进入骨骼方向的合理性及示踪器不被遮挡。而HTO、DFO或PFO的需求及术中限制于TKA的并不相同,如HTO截骨时骨骼上的开口方向位于膝关节内侧或外侧,执行器相应地需在膝关节侧面,这就造成机器人更难以到达该位置,且示踪器更容易被遮挡。
因此,本申请旨在提供一种外科手术机器人用的执行器及外科手术系统,其能够更方便地执行TKA、HTO、DFO或PFO。
外科机器人包括机器人臂、手术工具和电动工具。机器人臂安装于台车的上方。电动工具安装于机器人臂的末端。手术工具安装于电动工具的末端。外科机器人还具有控制部分,用于对机器人臂和工具部分进行供电和控制。机器人臂与电路的接地端电连接。
在外科机器人工作的过程中,由于人体的静电或者外部设备漏电,人体与电路的接地端会具有电势差。外科机器人的手术工具在工作过程中会与人体接触,手术工具与人体接触后,人体与电路的接地端导通产生电流,影响手术安全。
另外,电动工具包括主体和传动装置。传动装置与主体固定相接,传动装置的一端动力组件相接,另一端与手术工具相接。传动机构用于将动力组件产生的动力传递至手术工具,以便手术工具进行手术作业。其中传动机构作为主要的传动件,受力较大,磨损较快,需在寿命到期前更换。
目前传动机构与主体之间的安装方式,导致传动机构的拆装繁琐,维修不便。
因此,本申请还提供一种具有漏电保护功能和便于拆装的传动机构、及含有该机构的末端执行器。
骨科机器人通常通过其自身的定位系统来定位手术工具在手术空间的位置信息。定位系统相当于医生的眼睛,指导医生将手术工具送至手术部位。定位系统对手术工具的定位是否准确,将直接影响手术精度。
在实际手术中,一例完整的手术可能需要手术工具多次作用于人体组织。并且,由于定位系统本身定位精度的存在以及每次工况的改变。手术工具每次作用于人体组织时,均对手术工具进行定位和校验,避免定位系统对手术工具定位存在偏差。
如全膝关节置换术(Total Knee Arthroplasty,TKA)中,骨科机器人的机器人臂末端搭载执行器,执行器上搭载锯片和用于定位锯片的末端示踪器。由于锯片高速摆动,在锯片截骨时不能在锯片上直接安装示踪器以定位锯片的位置。因此,在进行每个步骤的截骨之前,会在锯片上安装临时示踪器。临时示踪器既可以帮助骨科机器人直接定位锯片的位置,使机器人臂能够在临时示踪器的辅助下将锯片定位至目标截骨面。并且临时示踪器的安装,也可以使骨科机器人得到锯片与末端示踪器的位置关系,进而在目标截骨面截骨时能够根据末端示踪器以及锯片与末端示踪器的位置关系来精确指导截骨过程。
在截骨手术中,锯片定位的准确性将直接影响截骨精度。截骨精度不足可能影响假体的安装以及患者下肢力线的恢复。全膝关节置换术主要涉及对膝关节多个目标截骨面的截骨。具体为股骨远端截骨、股骨前髁截骨、股骨后髁截骨、股骨后斜角截骨、股骨前斜角截骨以及胫骨平台截骨。为了保证手术中的每次截骨时都能准确定位锯片,现有的骨科机器人在每次将锯片定位至目标截骨面前都需要将临时的示踪器安装至锯片,确保骨科机器人能够准确确定锯片与末端示踪器的位置关系并据此准确指导锯片的截骨,但多次临时示踪器的安装拆卸过程操作繁琐且影响手术的快速进行。
因此,本公开还提供一种执行器及手术系统,以解决现有技术中定位手术工具的问题。
发明内容
第一方面,提供一种末端执行器,包括主体和示踪器;主体具有第一接口、第二接口和动力机构,第一接口用于连接机器人臂,第二接口用于连接锯片,动力机构设置于主体内部,动力机构用于向第二接口提供动力;示踪器设置于主体,用于指示锯片的方位;其中,第二接口被配置为其可以与锯片之间形成第一连接关系或第二连接关系,在第一连接关系下锯片与主体之间具有第一相对方位关系,第二连接关系下锯片与主体之间具有第二相对方位关系。
在一种可能的实施方式中,第一相对方位关系为锯片与主体具有第一夹角值,第二相对方位关系为锯片与主体具有第二夹角值。
结合上述可能的实现方式,在第二种可能的实施方式中,第一相对方位关系为锯片垂直于主体。
结合上述可能的实现方式,在第三种可能的实施方式中,第二相对方位关系为锯片平行于主体。
结合上述可能的实现方式,在第四种可能的实施方式中,第一接口位于主体的第一端,第二接口位于主体的第一侧。
结合上述可能的实现方式,在第五种可能的实施方式中,第二接口位于主体的第一侧的靠近第二端的位置,第二端和第一端为主体的两个末端。
结合上述可能的实现方式,在第六种可能的实施方式中,在第一连接关系下,锯片的切削端从主体的第一侧远离主体延伸。
结合上述可能的实现方式,在第七种可能的实施方式中,在第二连接关系下,锯片的切削端的指向与主体的第一端的朝向相反。
结合上述可能的实现方式,在第八种可能的实施方式中,锯片的平面与主体的虚拟纵剖面平行设置。
结合上述可能的实现方式,在第九种可能的实施方式中,虚拟纵剖面为执行器的对称平面。
结合上述可能的实现方式,在第十种可能的实施方式中,主体连接至机器人臂时与机器人臂的末端臂同轴设置,虚拟纵剖面与末端臂的轴线平行。
结合上述可能的实现方式,在第十一种可能的实施方式中,示踪器与第一接口分布在主体的两端。
结合上述可能的实现方式,在第十二种可能的实施方式中,示踪器包括第一示踪器和第二示踪器,第一示踪器用于在锯片与主体具有第一连接关系时指示锯片的方位,第二示踪器用于在锯片与主体具有第二连接关系时指示锯片的方位。
结合上述可能的实现方式,在第十三种可能的实施方式中,第二示踪器与主体之间为可拆卸连接。
结合上述可能的实现方式,在第十四种可能的实施方式中,第二示踪器被设置为示踪元件可拆卸。
结合上述可能的实现方式,在第十五种可能的实施方式中,第二示踪器位于第一示踪器的远离第二接口的方向的一侧。
结合上述可能的实现方式,在第十六种可能的实施方式中,还包括手柄部,手柄部位于主体的第二侧。
本公开第一方面所提出的末端执行器,包括主体和示踪器。主体具有第一接口、第二接口和动力机构,第一接口用于连接机器人臂,第二接口用于连接锯片,动力机构设置于主体内部,动力机构用于向第二接口提供动力;示踪器设置于主体,用于指示锯片的方位;其中,第二接口被配置为其与锯片之间具有第一连接关系和第二连接关系,在第一连接关系下锯片与主体之间具有第一相对方位关系,第二连接关系下锯片与主体之间具有第二相对方位关系。锯片相对于主体的两种方位关系使得末端执行器可以适应不同的手术入路及手术类型。
本公开的第二方面提出一种外科手术系统,包括末端执行器、机器人臂、定位系统和控制器,末端执行器为前述第一方面的末端执行器;机器人臂的末端臂固定连接末端执行器;定位系统用于识别示踪器的位置以获取锯片的方位信息;控制器用于基于方位信息和预存储的手术规划控制机器人臂的运动和方位。
第三方面,提供一种末端执行器,用于切割骨组织。末端执行器包括主体和示踪器,主体具有第一接口、第二接口和动力机构,第一接口用于连接机器人臂,第二接口用于连接锯片,动力机构设置于主体内部,动力机构用于向第二接口提供动力;示踪器设置于主体,用于指示锯片的方位;其中,第一接口位于主体的第一端,锯片的切削端的指向与第一端指向主体的第二端的方向平行,第一端和第二端为主体的方向相反的两端。
在第一种可能的实施方式中,锯片的平面与主体的虚拟纵剖面平行。
结合上述可能的实现方式,在第二种可能的实施方式中,虚拟纵剖面为执行器的对称平面。
结合上述可能的实现方式,在第三种可能的实施方式中,主体连接至机器人臂时,主体与机器人臂的末端臂同轴设置,锯片平面与末端臂的轴线平行。
结合上述可能的实现方式,在第四种可能的实施方式中,第二接口位于主体的第一侧的靠近第二端的位置。
结合上述可能的实现方式,在第五种可能的实施方式中,第二接口为夹紧机构,夹紧 机构包括相对设置的两个夹紧部,两个夹紧部相互靠近时夹紧锯片。
结合上述可能的实现方式,在第六种可能的实施方式中,第二接口为插接机构,锯片插接机构包括插槽和限位部,限位部被构造为锯片连接至插接机构时阻止锯片脱离插接机构。
结合上述可能的实现方式,在第七种可能的实施方式中,示踪器设置于主体的第二端。
结合上述可能的实现方式,在第八种可能的实施方式中,示踪器与主体可拆卸连接。
结合上述可能的实现方式,在第九种可能的实施方式中,主体还设置有手柄部,手柄部位于主体的第二侧,第二侧为主体上第二接口的对侧。
本公开第三方面所提出的末端执行器,包括主体和示踪器,示踪器设置于主体,用于指示锯片的方位;锯片的切削端的指向与第一端指向主体的第二端的方向平行,第一端和第二端为主体的方向相反的两端。锯片相对于主体的方位关系设置使末端执行器可以灵活执行HTO、DFO或PFO的手术类型。
第四方面,本申请实施例提出一种外科手术系统,包括末端执行器、机器人臂、定位系统和控制器,末端执行器为第三方面的末端执行器;机器人臂的末端臂固定连接末端执行器;定位系统用于识别示踪器的位置以获取锯片的方位信息;控制器用于基于方位信息和预存储的手术规划控制机器人臂的运动和方位。
第五方面,本申请实施例提供一种快插式传动装置,用于将手术工具连接至电动工具的主体,包括:传动壳体,具有传动壳体第一端和传动壳体第二端,传动壳体第一端用于与主体连接,传动壳体第二端伸出所述主体;输入轴,一端位于传动壳体内,另一端穿出传动壳体第一端且与主体内置的动力组件连接;输出部件,一端位于传动壳体内,另一端与手术工具连接,输出部件位于传动壳体内的一端与输入轴位于传动壳体内的一端相接。
第六方面,本申请实施例提供一种电动工具,用于在机器人臂的把持下执行手术,包括:主体,具有第一接口、第二接口和内置的动力组件,第一接口用于连接至机器人臂,动力组件用于为手术工具提供动力;第五方面所述的快插式传动装置,与第二接口可拆卸连接,快插式传动装置包括传动机构,其中,传动机构用于连接动力组件和手术工具,向手术工具传递动力。
第七方面,提供一种电动工具,用于在机器人臂的把持下执行手术,包括:主体,具有第一接口、第二接口和内置的动力组件,第一接口用于连接至机器人臂,动力组件用于为手术工具提供动力;传动机构,设置于第二接口处,具有第一端和第二端,传动机构的第一端与动力组件连接,传动机构的第二端连接手术工具;第一隔离结构,设置于第二接口与传动机构之间,用于阻碍手术工具与机器人臂间形成电流通路。
第八方面,本申请实施例提供一种手术系统,包括:第七方面所述的电动工具;机器人臂,用于搭载电动工具并提供电动工具位姿变化的动力;导航系统,用于获取手术工具的方位信息;控制器,用于基于方位信息和预存储的手术规划控制机器人臂的运动和方位。
本公开提供了快插式传动装置、电动工具及手术系统。第六方面的电动工具包括主体和快插式传动装置,主体包括第二接口,快插式传动装置与主体的第二接口可拆卸连接,以便于快速拆、装快插式传动装置,降低传动装置拆、装的难度。第七方面的电动工具包括主体、传动机构和第一隔离结构,通过设置于传动机构与主体之间的第一隔离结构,阻碍手术工具与机器人臂之间形成电流通路。
第九方面,提供一种末端执行器,用于在机器人臂的把持下执行预定动作,末端执行 器包括手术工具、主体以及末端示踪器;主体包括第一接口和第二接口,第一接口用于与机器人臂连接,第二接口用于连接手术工具;末端示踪器用于定位手术工具的位置;其中,末端示踪器与第一接口分别位于主体的两端,末端示踪器与第二接口具有预定的第一位置关系。
在第一种可能的实施方式中,末端示踪器所在的平面垂直于主体的长度方向。
结合上述可能的实现方式,在第二种可能的实施方式中,末端执行器被构造为第二接口设置于主体的第一侧且靠近末端示踪器,使末端示踪器与第二接口具有第一位置关系。
结合上述可能的实现方式,在第三种可能的实施方式中,第一位置关系下,末端示踪器与第二接口在主体的长度方向上的距离为0mm~50mm。
结合上述可能的实现方式,在第四种可能的实施方式中,末端示踪器与第二接口在主体的长度方向上的距离为0mm~30mm。
结合上述可能的实现方式,在第五种可能的实施方式中,第一位置关系下,末端示踪器与第二接口在主体的纵向方向上的距离为0mm~70mm。
结合上述可能的实现方式,在第六种可能的实施方式中,末端示踪器与第二接口在主体的纵向方向上的距离为40mm~60mm。
结合上述可能的实现方式,在第七种可能的实施方式中,末端示踪器与主体在虚拟纵向上的位置相同,和/或末端示踪器的高度不大于主体的纵向高度。
结合上述可能的实现方式,在第八种可能的实施方式中,执行器还包括工具示踪器,工具示踪器与手术工具可拆卸连接。
结合上述可能的实现方式,在第九种可能的实施方式中,末端执行器被构造为:工具示踪器安装于手术工具时,工具示踪器与末端示踪器具有第二位置关系。
结合上述可能的实现方式,在第十种可能的实施方式中,第二位置关系下,工具示踪器所在的平面与末端示踪器所在的平面平行。
结合上述可能的实现方式,在第十一种可能的实施方式中,工具示踪器所在的平面与末端示踪器所在的平面间的距离为0mm~20mm。
结合上述可能的实现方式,在第十二种可能的实施方式中,所述工具示踪器所在的平面与所述末端示踪器所在的平面间的距离为0mm~10mm。
结合上述可能的实现方式,在第十三种可能的实施方式中,第二位置关系下,工具示踪器上的示踪元件的朝向与末端示踪器上示踪元件的朝向相同。
结合上述可能的实现方式,在第十四种可能的实施方式中,第二位置关系下,工具示踪器与末端示踪器在第一方向上错位设置。
结合上述可能的实现方式,在第十五种可能的实施方式中,第一方向为虚拟纵向,虚拟纵向、主体的长度方向以及虚拟横向两两垂直。
结合上述可能的实现方式,在第十六种可能的实施方式中,末端执行器还包括手柄,手柄设置于主体的第二侧,手柄与第二接口分别设置于主体的相对的两侧。
本公开第九方面所提出的末端执行器包括手术工具、主体以及末端示踪器;主体包括第一接口和第二接口,第一接口用于与机器人臂连接,第二接口用于连接手术工具;末端示踪器用于定位手术工具的位置;其中,末端示踪器与第一接口分别位于主体的两端,手术工具安装于第二接口时,手术工具与末端示踪器在主体的长度方向上具有预定的第一位 置关系。通过末端执行器的设置,可以通过末端示踪器准确定位手术工具的位置,使手术工具能够准确到达目标手术部位。
第十方面,提出一种手术系统,其包括末端执行器、机器人臂、定位系统以及控制器;末端执行器为第九方面的末端执行器;机器人臂用于搭载末端执行器;定位系统用于定位末端执行器和/或手术工具的位置;控制器用于控制末端执行器执行预定手术计划。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理,并不构成对本申请的不当限定。
图1为本公开实施例的手术系统结构示意图;
图2为本公开实施例的末端执行器被配置为可执行TKA的示意图;
图3为本公开实施例的末端执行器被配置为可执行HTO的示意图;
图4为图2中所示末端执行器的正视图;
图5为图2中所示末端执行器的右视图;
图6为图5中所示的末端执行器内部动力机构示意图;
图7为图3中所示的末端执行器的右视图;
图8为本公开实施例的右腿全膝关节置换手术示意图;
图9为本公开实施例的末端执行器调整锯片角度示意图;
图10为本公开实施例的锯片与股骨远端目标截骨面b对准状态示意图;
图11为本公开实施例的左腿内侧胫骨高位截骨手术示意图;
图12为本公开实施例的锯片对准胫骨高位示意图一;
图13为本公开实施例的锯片对准胫骨高位示意图二;
图14为本公开实施例的第一种锯片与夹紧机构示意图;
图15为本公开实施例的第二种锯片与夹紧机构示意图一;
图16为本公开实施例的第二种锯片与夹紧机构示意图二;
图17为本公开实施例的第二示踪器与主体连接方式的示意图;
图18为本公开实施例的第二示踪器结构示意图。
图1至18附图标记说明:
1-机器人臂,11-末端臂,12-台车;
2-定位系统,21-双目视觉相机;
5-控制器;
6-锯片,61-切削端,62-连接端;
7-末端执行器,71-主体,701-第一端,702-第二端,703-第一侧,704-第二侧,711-
第一接口,712-第二接口,7121-转轴,713-动力机构,7131-电机,7132-减速器,7133-传动机构,721-第一示踪器,722-第二示踪器,723-示踪元件,724-示踪架,73-手柄部;
8-夹紧机构,81-夹紧部;
91、91a-凸起,92、92a-凹槽,921-容纳空间;
101-插销件,102-套件,103-锁紧件;
W-轴线,P-虚拟纵剖面,a-胫骨目标截骨面,b-股骨远端目标截骨面,c-股骨前端目
标截骨面,d-股骨后端目标截骨面,e-股骨后斜目标截骨面,g-股骨前斜目标截骨面,h-胫骨高位目标截骨面,A-第一姿态,B-第二姿态,C-第三姿态,D-第四姿态,E-第五姿态,G-第六姿态,M-第一接口的轴线,N-第二接口的轴线,O-手柄部的轴线,F-股骨,T-胫骨。
图19为本公开实施例的末端执行器被配置为可执行HTO的示意图;
图20为图19中所示末端执行器的正视图;
图21为本公开实施例的锯片对准胫骨高位示意图一;
图22为本公开实施例的锯片对准胫骨高位示意图二;
图23为本公开实施例的第一种锯片与夹紧机构示意图;
图24为本公开实施例的第二种锯片与夹紧机构示意图;
图25为本公开实施例的锯片与插接机构示意图;
图26为本公开实施例的示踪器与主体连接方式的示意图;
图19至26附图标记说明:
1-机器人臂,11-末端臂,12-台车;
2-定位系统,21-双目视觉相机;
3-插接机构,31-插槽,32-限位部;
5-控制器;
6-锯片,61-切削端,62-连接端;
7-末端执行器,71-主体,701-第一端,702-第二端,703-第一侧,704-第二侧,711-
第一接口,712-第二接口,7121-转轴,713-动力机构,7131-电机,7132-减速器,7133-传动机构,72-示踪器,723-示踪元件,724-示踪架,73-手柄部;
8-夹紧机构,81-夹紧部;
91、91a-凸起,92、92a-凹槽;
101-插销件,102-套件,103-锁紧件;
W-轴线,P-虚拟纵剖面,h-胫骨高位目标截骨面,M-第一接口的轴线,N-第二接口
的轴线,O-手柄部的轴线,T-胫骨。
图27为本申请提供的具有电动工具的手术系统的示意图;
图28为本申请提供的电动工具的整体示意图;
图29为本申请提供的电动工具的剖视图;
图30为本申请提供的快插式传动装置的整体图;
图31为本身提供的一种快插式传动装置的剖视图;
图32为本申请提供的一种快插式传动装置的爆炸图;
图33为本申请提供的电动工具中的柔性联轴器的爆炸图;
图34为本申请提供的另一种快插式传动装置的整体图;
图35为本申请提供的另一种快插式传动装置的剖视图;
图36为本申请提供的另一种快插式传动装置的爆炸图;
图37为本申请提供的快插式传动装置与主体装配的一种视角的爆炸图;
图38为本申请提供的快插式传动装置与主体装配的另一种视角的爆炸图;
图39为本申请提供的快插式传动装置中的一种连接件的剖面结构示意图。
图27至39附图标记说明:
1、主体;11、主体外壳;12、第一接口;13、第二接口;14、动力组件;141、输出
端;142、接线端;143、线夹;15、手柄部;16、示踪架;17、固定座;171、让位孔;172、第一定位槽;18、挡线套;
2、传动机构;21、传动壳体;211、盖板;212、传动主壳体;2121、第二定位槽;
2122、第三定位槽;2100、传动壳体第一端;2101、传动壳体第二端;22、输入轴;221、偏心轴;222、第二插槽;223、第一销孔;23、输出部件;231、拨叉;232、输出轴;
3、柔性联轴器;31、第一联轴件;32、第二联轴件;321、第一插接部;322、第二
插接部;323、第二销孔;
4、第一隔离结构;41、第一绝缘体;411、第一定位块;412、第二定位块;413、第
三定位块;42、第二绝缘体;43、第三绝缘体;44、第四绝缘体;45、连接件;451、第一子连接件;452、第二子连接件;4521、插孔;453、卡簧;46、弹性件;47、垫圈;
5、第二隔离结构;
61、卡接块;62、旋槽;621、旋槽入口端;622、旋槽定位端;623、凸出部;63、
配合槽;64、导向槽;
7、机器人臂。
图40为本公开实施例的手术系统示意图;
图41为本公开实施例的末端执行器结构示意图;
图42为本公开实施例图42中末端示踪器的左视图;
图43为本公开实施例的末端执行器内部结构示意图;
图44为本公开实施例的安装有工具示踪器的末端执行器结构示意图;
图45为本公开实施例的图44中安装有工具示踪器的末端执行器的左视图;
图46为本公开实施例的右腿全膝关节置换手术示意图;
图47为本公开实施例的右腿全膝关节置换手术中末端执行器调整锯片角度示意图;
图48为本公开实施例的锯片与股骨远端目标截骨面b对准状态示意图;
图40至图48附图标记说明:
1-机器人臂,11-末端臂,12-台车;
2-定位系统;
3-末端执行器,31-锯片,31a-切削端,31b-连接端,32-主体,32a-第一端,32b-第二
端,32c-第一侧,32d-第二侧,321-第一接口,322-第二接口,3221-转轴,323-动力机构,3231-电机,3232-减速器,3233-传动机构,324-手柄,33-末端示踪器,331-架体,332-示踪元件,34-工具示踪器,341-示踪架,342-安装部;
4-控制器;
W-回转中心线,a-胫骨目标截骨面,b-股骨远端目标截骨面,c-股骨前端目标截骨面,
d-股骨后端目标截骨面,e-股骨后斜目标截骨面,g-股骨前斜目标截骨面,A-第一姿态,B-第二姿态,C-第三姿态,D-第四姿态,E-第五姿态,G-第六姿态。
具体实施方式
为了使本领域普通人员更好地理解本申请的技术方案,下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。下面将详细描述本公开的各个方面的特征和示例性实施例,为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本公开进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本公开,而不是限定本公开。对于本领域技术人员来说,本公开可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本公开的示例来提供对本公开的更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将结合附图对实施例进行详细描述。
如图1所示的手术系统结构示意图,本公开涉及计算机辅助手术(Computer-Assisted Surgery,CAS)技术。涉及该技术的外科手术系统包括机器人臂1、定位系统2、搭载有锯片6的末端执行器7和控制器5。机器人臂1相当于外科医生的手臂,可以把持锯片6并以较高的精度定位和移动锯片6。定位系统2相当于外科医生的眼睛,可以实时测量锯片6和患者组织的位置。控制器5相当于外科医生的大脑,内部储存手术规划。控制器5根据术中通过定位系统2获取的位置信息计算机器人臂1的路线和/或应达的位置,可以控制机器人臂1运动,或者通过力反馈模式设置机器人臂1的虚拟边界,由人工推动机器人臂1的末端执行器7在虚拟边界内移动/沿虚拟边界限定的路线、面移动。
参考图2和图3。图2为末端执行器7被配置为可执行TKA的示意图,其中示出了锯片6与末端执行器7的主体71的第一连接关系。该连接关系下,锯片6设置于主体的一侧(图2中主体71的下侧),锯片6上用于切割骨组织的一端的指向与主体71的长度方向垂直,即图2中锯片6相对于主体71指向下方。在第一连接关系下末端执行器7适于执行全膝关节置换术中的截骨操作。图3为末端执行器7被配置为可执行HTO的示意图,其中示出了锯片6与末端执行器7的主体71的第二连接关系。该连接关系下,锯片6同样设置于主体的一侧(图3中主体71的下侧),锯片6上用于切割骨组织的一端的指向与主体7的长度方向平行,即图3中锯片6指向主体7的左方。在第二连接关系下末端执行器7适于执行胫骨高位截骨手术、股骨远端截骨手术或腓骨近端截骨手术。
继续参考图2至图7。图4为图2中所示末端执行器的正视图。图5为图2中所示末 端执行器的右视图。图6为图5所示的末端执行器7内部结构示意图。图7为图3中所示的末端执行器的右视图。具体的,末端执行器7包括主体71和示踪器。示踪器包括第一示踪器721和第二示踪器722。主体71大致为圆锥体,圆锥体的回转中心线W与机器人臂1的末端臂11的自转中心线同轴。在此基础上,定义主体71的方向参考及坐标系CS。圆锥体的回转中心线W为坐标系CS的Z轴,垂直于Z轴的两个互相垂直的方向为Y轴和X轴。回转中心线W的延伸方向为主体71的长度方向。主体71长度方向的两端分别为第一端701和第二端702。主体71的径向为侧向,具体包括上侧、下侧、前侧和后侧。上侧、下侧、前侧和后侧对应于坐标系CS的Y轴正向、Y轴反向、X轴正向和X轴反向。
主体71连接至机器人臂1的末端臂11时与末端臂11同轴固定,相当于成为机器人臂1的末端臂11的延伸。在其他实施例中,主体71的形状并不局限于圆锥体,只要具有预定长度且连接至机器人臂1时能与末端臂11同轴的规则或不规则形状均可。此处的“同轴”并不严格局限于字面意思,只要是两个杆状结构基本共线地连接即可。当然,其他形状的主体71的长度方向定义也可以参照(主体71连接至机器人臂1时)末端臂11的旋转中心线W,因为主体71随末端臂11自转,二者的旋转中心线相同。
主体71具有第一接口711、第二接口712、动力机构713和手柄部73。第一接口711位于主体71的第一端701。第二接口712位于主体71的第一侧703,并且在长度方向上更靠近第二端702。手柄部73位于主体71的第二侧704,用于为医生提供推拉末端执行器7的着力部。主体71的第一侧703对应前述的下侧,即Y轴的反向;第二侧704对应前述的上侧,即Y轴的正向。第一接口711用于将主体71连接至机器人臂1。第二接口712用于连接锯片6。如图6所示,第二接口712具体为机械连接结构,并且具有能往复转动的转轴7121。锯片6固定在转轴7121上,并在转轴7012的带动下往复摆动。动力机构713设置于主体71内部,动力机构713用于向第二接口712提供动力。动力机构713主要包括电机7131、减速器7132以及传动机构7133。电机7131和减速器7132用于提供初始动力,传动机构7133一端与减速器连接,另一端设置于第二接口712处。锯片6与第二接口712连接时,传动机构7133接收电机7131及减速器7132的初始动力并通过转轴7121驱动锯片6摆动。
锯片6为长条状,两端分别为切削端61和连接端62。切削端61设置有锯齿,用于切割骨组织。连接端62用于与第二接口712连接,接收驱动锯片6摆动的动力。
示踪器设置于主体71的第二端702,用于指示锯片6的方位。示踪器包括第一示踪器721和第二示踪器722。第一示踪器721固定设置于主体71的第二端702,第一示踪器721上的示踪元件723可拆卸。定位系统2可以在手术空间中确定示踪器的方位,并以此确定锯片6的方位。示踪器为光学示踪器,其上安装有示踪元件723,示踪元件723为反光片或反光球。定位系统2包括能够识别反光片或反光球的双目视觉相机21。示踪器使得末端执行器7在把持锯片6运动的过程中,定位系统2能够清楚且精确地了解到锯片6的位置。如切割骨组织时,锯片6对于骨组织切割的程度、以及剩余待切割的骨组织情况可以通过示踪器反映的锯片6位置来确定。在一种可选的实施方式中,示踪器也可以是电磁发射器或位置传感器,能够识别电磁发射信号或位置传感器位置的相应定位系统2可以确定锯片6的方位。
锯片6与第二接口712连接时,锯片6与第二接口712之间可形成第一连接关系或第二连接关系。在第一连接关系下锯片6与主体71之间具有第一相对方位关系,并且由第 一示踪器721指示锯片6的方位。第二连接关系下锯片6与主体71之间具有第二相对方位关系,并且由第二示踪器722指示锯片6的方位。
如图2、图4和图5所示为锯片6与第二接口712在第一连接关系下的示意图。在第一连接关系下,锯片6与主体71具有第一夹角,第一夹角为直角,即锯片6的长度方向与主体71的长度方向(旋转中心线W的方向)具有90度的夹角。锯片6的平面与主体71的虚拟纵剖面P平行。虚拟纵剖面P为主体71长度方向的剖切面,虚拟纵剖面P与机器人臂1的末端臂11的轴线平行。具体如图2中所示的,锯片6的长度方向指向Y轴的反向;锯片6的平面与Y轴和Z轴所确定的平面平行。继续参考图2,第一接口的轴线M与第二接口的轴线N均在虚拟纵剖面P上,其中第一接口的轴线M与旋转中心线W重合,即轴线M与CS坐标系中的Z轴同轴。第二接口的轴线N与主体71指向第一侧703的连线重合,即轴线N与CS坐标系中的Y轴平行。以虚拟纵剖面P为镜像面,主体71关于虚拟纵剖面P对称。
如图8至图10所示,图8为右腿全膝关节置换手术示意图。图9为末端执行器7调整锯片6角度示意图。图10为末端执行器7调整角度使锯片与6股骨远端目标截骨面b对准状态示意图。锯片6与主体71间具有第一方位关系的情况下,末端执行器7便于进行膝关节置换手术,如全膝关节置换术或单髁置换术。该手术类型下,以右腿全膝关节置换为例,患者为屈膝仰卧位,机器人臂1及承载其的台车12位于患者的患处侧(患者的右侧)定位系统2位于患处侧的对侧(患者的左侧)。机器人臂1由患处侧指向对侧,机器人臂1的末端段11连接有末端执行器7,机器人臂1将末端执行器7大致保持在膝关节上方且横向于患者。手术时,锯片6将从患者前侧入路,锯片6的切削端61指向膝关节,锯片6截骨时锯片平面只需末端执行器7大致绕平行于人体冠状面与横断面交线的轴线W调整角度,即可实现膝关节置换手术规划的六个平面的定位。
具体参考图9,末端执行器7搭载锯片6进行不同截骨面的定位时,为适应不同目标截骨面的角度,在远离患处的位置处进行锯片6平面调整。机器人臂的末端臂11绕自身轴线的旋转使末端执行器7绕轴线W旋转,锯片6平面转动一定角度。按照临床中的截骨顺序,末端执行器7姿态调整后依次具有第一姿态A、第二姿态B、第三姿态C、第四姿态D、第五姿态E以及第六姿态G。其中末端执行器7的第一姿态A中锯片的6角度与胫骨目标截骨面a的角度对应;第二姿态B中锯片的6角度与股骨远端目标截骨面b的角度对应;第三姿态C中锯片的6角度与股骨前端目标截骨面c的角度对应;第四姿态D中锯片的6角度与股骨后端目标截骨面d的角度对应,第五姿态E中锯片的6角度与股骨后斜目标截骨面e的角度对应,第六姿态G中锯片的6角度与股骨前斜目标截骨面g的角度对应。分别完成锯片6与六个相应的目标截骨面截骨面的角度定位后,机器人臂1在一定范围内按照预定路径平移一定距离即可实现各个平面与目标截骨平面的对准,如图10所示为锯片6与股骨远端目标截骨平面b对准并即将进行截骨的示意图,锯片6定位至该状态后,机器人臂1在控制器的控制下将锯片6的移动范围限制在该平面,医生推动末端执行器7在该平面移动并完成相应的截骨。
继续参考图9,在不考虑锯片6位置平移的情况下,锯片6的角度调整过程中,锯片6为适应不同的目标截骨平面,末端执行器7绕轴线W的旋转带动锯片6进行角度调整。这样,机器人臂1本身无需大角度、大幅度调整自身姿态,只需机器人臂1的末端臂11绕轴线W旋转末端执行器7即可实现锯片6角度的调整。可以理解的是,膝关节单髁置换与全膝关节置换类似,同样是在患者为屈膝仰卧位状态下,锯片6由患者前侧入路进行截骨,具体截骨平面的定位原理与全膝关节置换中的相关定位原理相同,这里不再赘述。
如图11至图13所示为锯片6与第二接口712在第二连接关系下手术空间的示意图。图11为左腿内侧胫骨高位截骨手术示意图。图12和图13所示为锯片对准胫骨高位的示意图。在第二连接关系下,锯片6与主体71具有第二夹角,第二夹角为零角,即锯片6的长度方向与主体71的长度方向(轴线W的方向)平行。锯片6的平面与主体71的虚拟纵剖面P平行,虚拟纵剖面P为主体71长度方向的剖切面。具体的,主体71的虚拟纵剖面P为第一接口的轴线M与第二接口的轴线N所确定的平面,其中第一接口的轴线M与轴线W重合,第二接口的轴线N与主体71指向第一侧703的连线重合。以虚拟纵剖面P为镜像面,主体71关于虚拟纵剖面P对称。
锯片6与主体71间具有第二方位关系的情况下,末端执行器7便于进行胫骨高位截骨术、股骨远端截骨术。该手术类型通过股骨F或胫骨T侧方的开放楔形截骨或闭合截骨以保护膝关节生理结构的完整性,是治疗早期膝关节病变的主要手术方式。不同于膝关节置换手术,胫骨高位截骨术或股骨远端截骨术将以患侧的内侧或外侧入路。如图11所示,以左腿内侧胫骨高位截骨为例,患者为屈膝仰卧位,机器人臂1及承载其的台车12位于患者患处侧的对侧(患者的右侧),定位系统2位于患处测(患者的左侧)。机器人臂1由患处侧指向对侧,机器人臂的末端臂11连接有末端执行器7,机器人臂1将执行器大致横向于患者且保持在左腿和右腿中间的上方且更靠近左腿。如图12和图13所示,手术时,锯片6将从患者左腿胫骨T近端内侧入路,锯片6的切削端61沿横向于患者的水平方向指向胫骨T近端。截骨时,锯片6平面为适应预定手术计划的规划截骨面,需要末端执行器7大致绕平行于人体冠状面与横断面交线的轴线W调整锯片6平面的角度。角度调整过程中,机器人臂的末端臂11绕自身轴线的旋转使末端执行器7绕轴线W旋转,锯片6平面转动一定角度与胫骨高位目标截骨面h平行。并且,机器人臂1在一定范围内按照预定路径平移一定距离即可实现各个平面与胫骨高位目标截骨面h的对准。
在不考虑锯片6平移的情况下,锯片6的角度调整过程中,锯片6为适应相应的胫骨高位目标截骨面h,机器人臂1本身无需大角度、大幅度调整自身姿态,只需转动机器人臂1末端臂即可实现锯片6角度的调整。可以理解的是,股骨远端截骨术与胫骨高位截骨术情况类似,患者均为屈膝仰卧位的状态,搭载有锯片6的末端执行器7从相应股骨的内侧或外侧入路。并且,腓骨近端截骨术也与胫骨高位截骨术类似。患者通常为仰卧位,搭载有锯片6的末端执行器7从相应腓骨的后外侧入路,切割位置在腓骨头下方6至10cm。手术时,末端执行器7搭载锯片6将腓骨截断约2cm,并在截断端用骨蜡封堵,避免腓骨断端愈合。在股骨远端截骨术和腓骨近端截骨术中,基于相似的入路和锯片6的截骨姿态,锯片6与末端执行器7具有第二连接关系时锯片6的切削端61可以从骨骼侧方指向手术部位。机器人臂1可搭载末端执行器7灵活方便地进行股骨远端截骨手术或腓骨近端截骨手术。
这样,通过锯片6与主体71第一连接关系和第二连接关系的设置,锯片6与主体71具有第一方位关系时,锯片6的切削端61能够在患者前侧更好地指向待手术的膝关节部位。锯片6与主体71具有第二方位关系时,锯片6的切削端61能更好地从患者下肢内侧或外侧指向股骨F、胫骨T或腓骨。锯片6以第一连接关系获第二连接关系与主体71连接,末端执行器7可以适应不同的手术入路及手术类型,承载末端执行器7的机器人臂1无需以复杂或难以到达的姿态将锯片定位至目标截骨平面。医生的操作利、操作空间充足,并且搭载有末端执行器7的机器人具有足够的灵活性以完成多种术式的手术,设备采购成本和医生的学习时间成本将大大降低。
如图14至图16所示,在本实施例中,第二接口712为夹紧机构8,锯片6与通过夹 紧机构8连接至末端执行器7。夹紧机构8包括两个相对设置的夹紧部81,两个夹紧部81在外力作用下相互靠近以夹紧锯片6的连接端62。
如图14所示的第一种锯片6与夹紧机构8的示意图。两个夹紧部81与锯片6间设置有换向结构,换向结构能够使锯片6通过第二接口712与主体71连接时形成第一连接关系或第二连接关系。换向结构包括凸起91和凹槽92,凸起91和凹槽92分别设置于夹紧部81和锯片6,凹槽92至少包括两个容纳空间921,两个容纳空间921与所述凸起91配合时分别为锯片6与转轴7121周向固定。
继续参考图14,凸起91设置于其中一个夹紧部81,凹槽92设置于锯片6的连接端62,凸起91和凹槽92均包括周向均匀分布的条状单元。锯片6被夹紧部81夹紧时,锯片6相对于主体71将具有多种角度连接方式,其中两种连接方式分别对应锯片6与主体71的第一连接关系和第二连接关系。这样,需要进行膝关节置换手术时,调整凸起91和凹槽92的配合关系可使锯锯片6与主体71具有第一方位关系。需要进行胫骨高位截骨或股骨远端截骨时,调整凸起91和凹槽92的配合关系可使锯锯片6与主体71具有第二方位关系。在一种可选的实施方式中,凸起91设置于锯片6的连接端62,凹槽92设置于夹紧部81。在一种可选的实施方式中,如图15和图16为第二种锯片6与夹紧结构8的示意图。凸起91a和凹槽92a的形状不同于上述(图14所示的实施方式)。凸起91a为一个条状,凹槽92a具有间隔90度设置的两个容纳空间921,条状的凸起91a在两个容纳空间921中分别对应锯片6与主体71的第一连接关系和第二连接关系。如图15所示的状态使锯片6与主体71具有第一连接关系;如图16所示的状态使锯片6与主体71具有第二连接关系。
如图6、图7以及图17所示,在本实施例中,示踪器包括第一示踪器721和第二示踪器722。第一示踪器721固定设置于主体71的第二端702,第一示踪器721上的示踪元件723可拆卸,锯片6与主体71具有第一连接关系时由第一示踪器721指示方位。第二示踪器722可拆卸连接于主体71的第二端702,锯片6与主体71具有第二连接关系时由第二示踪器722指示方位。
在临床手术中,锯片6与主体71具有第一连接关系时,锯片6由患者前侧(患者屈膝的膝关节上方)指向膝关节,此时的末端执行器7高于屈膝状态的患者腿部,第一示踪器721与主体71相对于患者的高度基本一致。定位系统2位于主体71的对侧,可识别第一示踪器721的位置信息,控制器5根据第一示踪器721的位置信息获得锯片的位置信息,以控制末端执行器7将锯片6定位至目标截骨平面。
锯片6与主体71具有第二连接关系时,将第一示踪器721上的示踪元件723拆除,第二示踪器722与主体71的第二端702连接。第二示踪器722位于第一示踪器721的远离所述第二接口712的方向的一侧。这样,在手术空间内,在末端执行器7位于屈膝状态下的胫骨T近端处时,第二示踪器722能够高于屈膝状态的患者下肢,处于第二示踪器722对侧的定位系统2能够无遮挡地识别到第二示踪器722的位置信息。在对锯片6平面进行校验时的验证架同样需要面对定位系统2,锯片6与主体71更靠近,验证架安装于锯片6时可能遮挡第一示踪器721,第二示踪器722的设置,也使锯片6安装验证架时也不会阻挡第二示踪器722被定位系统2识别的视线。
在一种可选的实施方式中,示踪器可只包含第一示踪器721。在进行全膝关节置换、胫骨高位截骨或股骨远端截骨时,锯片6与主体具有第一连接关系或第二连接关系,定位系统均通过第一示踪器721的位姿确定锯片6在手术空间中的位姿。只设置第一示踪器 721的情况下,只需要保证进锯片6与执行器具有第二连接关系时,屈膝状态的患者腿部或验证架不会阻挡定位系统2识别第一示踪器721的视线即可。如可以在图2所示的第一示踪器721的基础上增加其沿Y轴正向的高度。
如图6、图7、图17及图18所示,图17为第二示踪器722与主体71示意图。图18为第二示踪器结构示意图。在本实施例中,第二示踪器722通过可拆固定结构实现与主体71第二端702的连接,可拆固定结构包括插拔组件和锁紧件103,插拔组件包括插销件101和套件102,插销件101与所述套件102插接时,第二示踪器722相对于主体71具有沿与插接方向相反方向移动的剩余自由度。锁紧件103用于沿垂直于所插接方向的方向进给,以限制第二示踪器722相对于主体71的剩余自由度。
继续参考图17和图18,具体的,插销件101设置于主体71,为燕尾型插块。套件102设置于第二示踪器722,为燕尾槽。插销件101与套件102插接时,第二示踪器722相对于主体71在插接方向上具有不固定的剩余自由度。锁紧件103为顶丝结构,锁紧件103固定剩余自由度时,锁紧件103贯穿插槽底面与插销件101表面顶紧接触,限制第二示踪器722沿插接方向的反方向脱离主体71。
如图2至图7、图17及图18所示,示踪器包括示踪架724和示踪部分,示踪架724与执行器主体71连接,示踪部分包括多个与示踪架724连接的示踪元件723,多个示踪元件723沿平面排列,沿平面排列的多个示踪元件723记确定一个平面,该平面由定位系统2识别并据此反映锯片6的方位。
在一种可选的实施方式中,末端执行器7的主体71上不设置手柄部73。这样,操作者可以把持主体71的第二侧704来控制末端执行器的位姿改变或移动。
继续参考图1,第二方面,本公开提出一种外科手术系统,包括末端执行器7、机器人臂1、定位系统2以及控制器5,末端执行器7,为第一方面的末端执行器7;机器人臂1用于搭载末端执行器7,并且为末端执行器7提供动力;定位系统2用于识别示踪器的位置以获取截骨执行器和/或锯片的位置信息;控制器5,用于控制末端执行器7按照预定手术计划截骨。
具体地,控制器5可以控制机器人臂1,使机器人臂1完全自主地按照手术计划移动,或通过提供触觉反馈或力反馈以限制外科医生手动移动手术工具3超出预定虚拟边界,或提供虚拟导向以引导外科医生沿某个自由度移动。虚拟边界和虚拟导向可以来自于手术计划,也可以在术中通过输入装置设置。末端执行器7与机器人臂1之间为可拆卸连接;定位系统2用于获知锯片6以及患者骨骼的位置。定位系统2一般包括定位器(如双目相机21)通过3D测量技术测量上述示踪器的方位。控制器5用于根据手术计划驱动机械臂将假体安装执行器移动至目标位置,以使锯片6定位至目标截骨平面。手术计划中可以包括机械臂移动路径、移动边界等。
在临床应用中,通过改变锯片6与末端执行器7的连接关系,末端执行器7既能够完成膝关节置换手术的手术类型,又能够完成胫骨高位截骨或股骨远端截骨类型的手术。一套系统可适应多种术式和手术操作,既减轻了医生适应手术系统的时间,也无需单独应各种手术而采购相应的专用设备。
参考图19至图26,其中示出了本公开提供的一种外科手术机器人的末端执行器。本部分所说明的末端执行器与图1至图18所示的末端执行器部分结构相似,如图6所示的内部动力机构、图18所示的示踪器结构,因此在说明过程中也可参考图6和图18。两种 末端执行器的功能不同之处在于,其可以执行HTO、DFO和PFO手术,而不是用于执行TKA手术。该末端执行器也可以用于图1所示的外科手术系统。
图19为末端执行器7被配置为可执行HTO的示意图,其中示出了锯片6与末端执行器7的主体71的连接关系。该连接关系下,锯片6设置于主体的一侧(图19中主体71的下侧),锯片6上用于切割骨组织的切削端的指向与主体7的长度方向平行,即图20中锯片6指向主体7的左方。末端执行器7适于执行胫骨高位截骨手术(HTO)、股骨远端截骨手术(DFO)或腓骨近端截骨术(PFO)。
参考图19、图20及图6。图20为图19中所示末端执行器7的正视图。图6为图19所示的末端执行器7内部动力机构示意图。具体的,末端执行器7包括主体71和示踪器72。主体71大致为圆锥体,圆锥体的回转中心线W与机器人臂1的末端臂11的自转中心线同轴。在此基础上,定义主体71的方向参考及坐标系CS。圆锥体的回转中心线W为坐标系CS的Z轴,垂直于Z轴的两个互相垂直的方向为Y轴和X轴。回转中心线W的延伸方向为主体71的长度方向。主体71长度方向的两端分别为第一端701和第二端702。主体71的径向为侧向,具体包括上侧、下侧、前侧和后侧。上侧、下侧、前侧和后侧对应于坐标系CS的Y轴正向、Y轴反向、X轴正向和X轴反向。
主体71连接至机器人臂1的末端臂11时与末端臂11同轴固定,相当于成为机器人臂1的末端臂11的延伸。在其他实施例中,主体71的形状并不局限于圆锥体,只要具有预定长度且连接至机器人臂1时能与末端臂11同轴的规则或不规则形状均可。此处的“同轴”并不严格局限于字面意思,只要是两个杆状结构基本共线地连接即可。当然,其他形状的主体71的长度方向定义也可以参照(主体71连接至机器人臂1时)末端臂11的旋转中心线W,因为主体71随末端臂11自转,二者的旋转中心线相同。
主体71具有第一接口711、第二接口712、动力机构713和手柄部73。第一接口711位于主体71的第一端701。第二接口712位于主体71的第一侧703,并且在长度方向上更靠近第二端702。手柄部73位于主体71的第二侧704,用于为医生提供推拉末端执行器7的着力部。主体71的第一侧703对应前述的下侧,即Y轴的反向;第二侧704对应前述的上侧,即Y轴的正向。第一接口711用于将主体71连接至机器人臂1。第二接口712用于连接锯片6。如图6所示,第二接口712具体为机械连接结构,并且具有能往复转动的转轴7121。锯片6固定在转轴7121上,并在转轴7012的带动下往复摆动。动力机构713设置于主体71内部,动力机构713用于向第二接口712提供动力。动力机构713主要包括电机7131、减速器7132以及传动机构7133。电机7131和减速器7132用于提供初始动力。传动机构7133一端与减速器连接,另一端设置于第二接口712处。锯片6与第二接口712连接时,传动机构7133接收电机7131及减速器7132的初始动力并通过转轴7121驱动锯片6摆动。
锯片6为长条状,两端分别为切削端61和连接端62。切削端61设置有锯齿,用于切割骨组织。连接端62用于与第二接口712连接,接收驱动锯片6摆动的动力。
示踪器72设置于主体71的第二端702,用于指示锯片6的方位。定位系统2可以在手术空间中确定示踪器72的方位,并以此确定锯片6的方位。示踪器为光学示踪器,其上安装有示踪元件723,示踪元件723为反光片或反光球。定位系统2包括能够识别反光片或反光球的双目视觉相机21。示踪器使得末端执行器7在把持锯片6运动的过程中,定位系统2能够清楚且精确地了解到锯片6的位置。如切割骨组织时,锯片6对于骨组织切割的程度、以及剩余待切割的骨组织情况可以通过示踪器反映的锯片6位置来确定。在 一种可选的实施方式中,示踪器也可以是电磁发射器或位置传感器,能够识别电磁发射信号或位置传感器位置的相应定位系统2可以确定锯片6的方位。
参考图11、图19至图22。图11为左腿内侧胫骨高位截骨手术示意图。图21和图22所示为锯片对准胫骨高位的示意图。如图19所示,锯片6与主体71长度方向具有零度的夹角,即锯片6的切削端61的指向与第一端701指向第二端702的方向(轴线W的方向)平行。锯片6的平面与主体71的虚拟纵剖面P平行,虚拟纵剖面P为主体71长度方向的剖切面。具体的,主体71的虚拟纵剖面P为第一接口的轴线M与第二接口的轴线N所确定的平面,其中第一接口的轴线M与轴线W重合,第二接口的轴线N与主体71指向第一侧703的连线重合。以虚拟纵剖面P为镜像面,主体71关于虚拟纵剖面P对称。
末端执行器7进行胫骨高位截骨术、股骨远端截骨术时,该手术类型通过股骨或胫骨T侧方的开放楔形截骨或闭合截骨以保护膝关节生理结构的完整性,是治疗早期膝关节病变的主要手术方式。不同于膝关节置换手术,胫骨高位截骨术或股骨远端截骨术将以患侧的内侧或外侧入路。如图11所示,以左腿内侧胫骨高位截骨为例,患者为屈膝仰卧位,机器人臂1及承载其的台车12位于患者患处侧的对侧(患者的右侧),定位系统2位于患处测(患者的左侧),机器人臂1由患处侧指向对侧。机器人臂1的末端臂11连接有末端执行器7,机器人臂1将执行器大致横向于患者且保持在左腿和右腿中间的上方且更靠近左腿。如图21和图22所示,手术时,锯片6将从患者左腿胫骨T近端内侧入路,锯片6的切削端61沿横向于患者的水平方向指向胫骨T近端。截骨时,锯片6平面为适应预定手术计划的规划截骨面,需要末端执行器大致绕平行于人体冠状面与横断面交线的轴线W调整锯片6平面的角度。角度调整过程中,机器人臂1的末端臂11绕自身轴线的旋转使末端执行器7绕轴线W旋转,锯片6平面转动一定角度与胫骨高位目标截骨面h平行。并且,机器人臂1在一定范围内按照预定路径平移一定距离即可实现各个平面与胫骨高位目标截骨面h的对准。
在不考虑锯片6平移的情况下,锯片6的角度调整过程中,锯片6为适应相应的胫骨高位目标截骨面h,机器人臂1本身无需大角度、大幅度调整自身姿态,只需转动机器人臂1末端臂11即可实现锯片6角度的调整。可以理解的是,股骨远端截骨术与胫骨高位截骨术情况类似,患者均为屈膝仰卧位的状态,搭载有锯片6的末端执行器7从相应股骨的内侧或外侧入路。并且,腓骨近端截骨术也与胫骨高位截骨术类似。患者通常为仰卧位,搭载有锯片6的末端执行器7从相应腓骨的后外侧入路,切割位置在腓骨头下方6至10cm。手术时,末端执行器7搭载锯片6将腓骨截断约2cm,并在截断端用骨蜡封堵,避免腓骨断端愈合。在股骨远端截骨术和腓骨近端截骨术中,基于相似的入路和锯片6的截骨姿态,锯片6的切削端61可以从骨骼侧方指向手术部位。机器人臂1可搭载末端执行器7灵活方便地进行股骨远端截骨手术或腓骨近端截骨手术。
这样,末端执行器7可以适应HTO、DFO以及PFO的手术入路及手术类型,承载末端执行器7的机器人臂1无需以复杂或难以到达的姿态将锯片定位至目标截骨平面。医生的操作利、操作空间充足,并且搭载有末端执行器7的机器人具有足够的灵活性以完成多种术式的手术,设备采购成本和医生的学习时间成本将大大降低。
如图23和图24所示,在本实施例中,第二接口712为设置在转轴7121上的夹紧机构8,锯片6与通过夹紧机构8连接至末端执行器7。夹紧机构8包括两个相对设置的夹紧部81,两个夹紧部的端面与转轴7121垂直。两个夹紧部81在外力作用下相互靠近以 夹紧锯片6的连接端62,使锯片6与转轴7121周向固定。
图23为第一种锯片6与夹紧机构8的示意图。两个夹紧部81与锯片6间设置有定位结构。定位结构包括凸起91和凹槽92,凸起91和凹槽92分别设置于夹紧部81和锯片6,凹槽92与凸起91配合时使锯片6与转轴7121轴向固定并能够随转轴7121的转动而摆动。
继续参考图23,凸起91设置于其中一个夹紧部81,凹槽92设置于锯片6的连接端62,凸起91和凹槽92均包括周向均匀分布的条状单元。在一种可选的实施方式中,凸起91设置于锯片6的连接端62,凹槽92设置于夹紧部81。在一种可选的实施方式中,如图24所示,图24为第二种锯片6与夹紧机构8示意图。凸起91a和凹槽92a的形状不同于上述(图23所示的实施方式),凸起91a和凹槽92a可以为如图24所示的一个条状。当然凸起91a和凹槽92a也可以是多个条状组成,只要能够实现锯片6相对于转轴7121周向固定即可。
在一种可选的实施方式中,第二接口712为设置在转轴7121上的插接机构。图25为锯片6与插接机构3示意图。插接机构3包括插槽31和限位部32。插槽31与转轴7121固定,插槽31的厚度与锯片6的厚度相同并允许锯片6的连接端62插入。限位部32为插槽31上的挡片,挡片限制插槽31的厚度。与该插接机构3相适应的,锯片6的连接端62设置有卡接部621,卡接部621为锯片6上凸起的具有弹性的矩形片,其一端与锯片6连接,另一端与锯片6分离且相对于锯片6平面凸起。凸起的一端可在外力的作用下被按压至于锯片6平面齐平,并可在外力消失时恢复。通过这样的设置。锯片6的连接端62插入插槽时31,卡接部621在限位部32的作用下被按压至与锯片6表面齐平,锯片6的连接端62可顺利进入插槽31。锯片6进入插槽后卡接部621凸起,限位部32阻止锯片6由插槽31中退出。拆卸锯片6时,则只需按压卡接部621并拔出锯片6即可。锯片6以插接的形式与末端执行器7连接,拆卸方便且结构简单。
如图26所示,图26为示踪器72与主体71示意图。在本实施例中,示踪器72通过可拆固定结构实现与主体71第二端702的可拆卸连接。可拆固定结构包括插拔组件和锁紧件103,插拔组件包括插销件101和套件102,插销件101与所述套件102插接时,示踪器72相对于主体71具有沿与插接方向相反方向移动的剩余自由度。锁紧件103用于沿垂直于所插接方向的方向进给,以限制示踪器72相对于主体71的剩余自由度。
继续参考图26和图28,图26为示踪器72结构示意图。具体的,插销件101设置于主体71,为燕尾型插块。套件102设置于示踪器72,为燕尾槽。插销件101与套件102插接时,示踪器72相对于主体71在插接方向上具有不固定的剩余自由度。锁紧件103为顶丝结构,锁紧件103固定剩余自由度时,锁紧件103贯穿插槽底面与插销件101表面顶紧接触,限制示踪器72沿插接方向的反方向脱离主体71。通过示踪器72与主体71的可拆连接的设置,末端执行器7在存储和运输时更加方便,可避免对示踪器的碰撞或损坏。其中示踪器损坏将影响锯片6的定位精度,这对于满足手术精度要求是不利的。在一种可选的实施方式中,示踪器72与主体的第二端固定连接。
如图19、图20以及图18所示,示踪器包括示踪架724和示踪部分,示踪架724与执行器主体71连接,示踪部分包括多个与示踪架724连接的示踪元件723,多个示踪元件723沿平面排列,沿平面排列的多个示踪元件723记确定一个平面,该平面由定位系统2识别并据此反映锯片6的方位。
在一种可选的实施方式中,末端执行器7的主体71上不设置手柄部73。这样,操作 者可以把持主体71的第二侧704来控制末端执行器的位姿改变或移动。
继续参考图1,本公开还提出一种外科手术系统,包括末端执行器7、机器人臂1、定位系统2以及控制器5,末端执行器7,为第一方面的末端执行器7;机器人臂1用于搭载末端执行器7,并且为末端执行器7提供动力;定位系统2用于识别示踪器的位置以获取截骨执行器和/或锯片的位置信息;控制器5,用于控制末端执行器7按照预定手术计划截骨。末端执行器7具有前述19至26所述的构造和功能。
具体地,控制器5可以控制机器人臂1,使机器人臂1完全自主地按照手术计划移动,或通过提供触觉反馈或力反馈以限制外科医生手动移动手术工具3超出预定虚拟边界,或提供虚拟导向以引导外科医生沿某个自由度移动。虚拟边界和虚拟导向可以来自于手术计划,也可以在术中通过输入装置设置。末端执行器7与机器人臂1之间为可拆卸连接;定位系统2用于获知锯片6以及患者骨骼的位置。定位系统2一般包括定位器(如双目相机21)通过3D测量技术测量上述示踪器的方位。控制器5用于根据手术计划驱动机械臂将假体安装执行器移动至目标位置,以使锯片6定位至目标截骨平面。手术计划中可以包括机械臂移动路径、移动边界等。在临床应用中,末端执行器7能够完成胫骨高位截骨术、股骨远端截骨术以及腓骨近端截骨术。一套系统可适应多种术式和手术操作,既减轻了医生适应手术系统的时间,也无需单独应各种手术而采购相应的专用设备。
以下结合图27至图39说明本公开提供的电动工具及其传动装置的构成。
实施例一
如图27至图29所示。本申请实施例提供了一种电动工具,用于具有机器人臂7的手术系统,在机器人臂7的把持下执行手术,包括主体1、传动机构2和第一隔离结构4。第一隔离结构4设置于主体1与传动机构2之间。
如图29所示。主体1包括主体外壳11和动力组件14。主体外壳11具有第一接口12和第二接口13。第一接口12用于连接至机器人臂7。传动机构2设置于第二接口13,传动机构2具有第一端和第二端。传动机构2的第一端与动力组件14连接;传动机构2的第二端与手术工具连接。动力组件14内置于主体外壳11内部。机器人臂7动作,能够驱动主体1以及安装于主体1的传动机构2运动,改变作业位置。动力组件14通过传动机构2驱动手术工具动作,执行手术作业。
第一隔离结构4设置于第二接口13和传动机构2之间,第一隔离结构4用于隔离第二接口13与传动机构2,避免两者直接接触,能够隔绝电流在主体1与传动机构2之间流通,从而阻碍手术工具与机器人臂7之间形成电流通路。第一隔离结构4为绝缘材料制成,如塑料、树脂或碳纤维等。
可选的,动力组件14具有输出端141;动力组件14背离传动机构2的一端为接线端142。输出端141与传动机构2的输入轴22相接。接线端142用于连接供电线路。动力组件14的接线端142与主体外壳11之间设有线夹143。供电线路可以夹设于线夹143内,供电线路经过线夹143的梳理,能够保持整齐。同时,线夹143也能够防止动力组件14与供电线路之间产生摩擦,从而保护供电线路。
主体外壳11设置有手柄部15。手柄部15为医生提供了方便操作电动工具的着力部。手柄部15内具有用于容置动力组件14的容纳腔。动力组件14安装于手柄部15的容纳腔 内,以保持动力组件14的稳定性。
动力组件14一般为电机。当然,也可以选用其他能够输出动力的组件。
可选的,动力组件14与传动机构2之间设置有柔性联轴器3。柔性联轴器3的一端与动力组件14的输出端141连接;柔性联轴器3的另一端与传动机构2连接。柔性联轴器3的外围设置有挡线套18。挡线套18将柔性联轴器3与动力组件14的供电线路互相隔离,以免动力组件14的供电线路在柔性联轴器3处发生缠绕。
可选的,如图30至图32,传动机构2包括传动壳体21、输入轴22和输出部件23。传动壳体21具有传动壳体第一端2100和传动壳体第二端2101。传动壳体第一端2100插入第二接口13。输入轴22的一端位于传动壳体21内;输入轴22的另一端穿出传动壳体第一端2100。输出部件23的一端位于传动壳体21内;输出部件23的另一端与手术工具连接。并且输出部件23位于传动壳体21内的一端与输入轴22位于传动壳体21的一端相接。传动机构2与第二接口13连接时,传动壳体第一端2100插接于第二接口13,输入轴22与动力组件14传动连接,输入轴22与输出部件23在传动壳体21内部传动连接,输出部件23与手术工具传动连接,动力组件14通过输入轴22和输出部件23将动力传输至手术工具,驱动手术工具动作。
手术工具可以有多种类型,不同类型的手术工具动作不完全相同,对应配合的传动机构2也不相同。
示例性的,手术工具为锯片,锯片通过高速摆动进行作业。输入轴22与传动壳体21通过轴承或者轴套转动连接。输入轴22位于传动壳体21内的部分具有偏心轴221。输出部件23包括拨叉231和输出轴232。拨叉231位于传动壳体21内,拨叉231的一端与偏心轴221连接。输出轴232固定连接于拨叉231背离偏心轴221的一端,且输出轴232与输入轴22垂直。输出轴232至少有一端穿出传动壳体21后与锯片连接。通过偏心轴221与拨叉231的传动连接,将输入轴22的回转运动转换为输出轴232的摆动,从而驱动锯片进行高速摆动。
可选的,第一隔离结构4至少部分的外周设置有连接件45。连接件45与第二接口13之间连接,用于将传动机构2固定至主体1。
第一隔离结构4保持在传动机构2与连接件45之间,具体可以为传动壳体21与连接件45之间。
可选的,第一隔离结构4与传动机构2具有第一连接关系;第一隔离结构4与连接件45具有第二连接关系。第一连接关系和第二连接关系均为固定连接。
此时,传动机构2、第一隔离结构4和连接件45之间互相固定,保持相对位置不变。在安装的过程中,将传动机构2、第一隔离结构4和连接件45整体插入第二接口13,利用连接件45与第二接口13的连接,使传动机构2固定至主体1。其中,连接件45与第二接口13可以为卡接等可拆的结构,或为焊接等不可拆卸的结构。
可选的,第一隔离结构4与传动机构2具有第一连接关系;第一隔离结构4与连接件45具有第二连接关系。第一连接关系和第二连接关系中的至少一者为可周向转动。
此时,连接件45与第二接口13为旋合连接。在安装的过程中,将传动机构2、第一隔离结构4和连接件45整体插入第二接口13,相对传动机构2和第一隔离结构4周向转动连接件45,或相对传动机构2周向转动第一隔离结构4和连接件45,将连接件45与第 二接口13旋合,使传动机构2固定至主体1。
在一般情况下,第一隔离结构4与传动机构2之间的第一连接关系为固定连接;第一隔离结构4与连接件45之间的第二连接关系为可周向转动。以保证传动机构2与主体1固定之后,传动机构2与主体1之间保持稳定。
第一隔离结构4与传动机构2之间的第一连接关系为可周向转动时,可以理解为,第一隔离结构4整体与传动机构2之间为可周向转动,或第一隔离结构4的一部分与传动机构2之间为可周向转动。
可选的,连接件45为压环,压环套设于传动壳体21,第一隔离结构4的至少一部分位于压环与传动壳体21之间。压环与第一隔离结构4之间可周向转动,且可沿第一隔离结构4的轴向移动。
如图33所示。可选的,柔性联轴器3包括第一联轴件31和第二联轴件32。第一联轴件31与动力组件14的输出端141联接。第二联轴件32与传动机构2的输入轴22联接。第一联轴件31与第二联轴件32之间互相联接,以实现将动力组件14的动力通过第一联轴件31和第二联轴件32传递至传动机构2。
示例性的,第一联轴件31与动力组件14的输出端141通过键连接。第二联轴件32与第一联轴件31之间插接。第二联轴件32朝向第一联轴件31的一端具有第一插接部321。第一插接部321为非回转体,大致为片状。第一联轴件31朝向第二联轴件32的一端开设有第一插槽(图中未示出)。第一插接部321与第一插槽插接配合,以实现第一联轴件31与第二联轴件32的联接。
可选的,传动机构2的输入轴22与第二联轴件32配合后,沿轴向具有活动量。
示例性的,第二联轴件32朝向传动机构2输入轴22的一端具有第二插接部322。第二插接部322为非回转体,大致为片状。传动机构2的输入轴22朝向第二联轴件32的一端开设有第二插槽222。第二插接部322与第二插槽222插接配合。传动机构2的输入轴22上开设有第一销孔223。第一销孔223沿输入轴22的径向贯穿第二插槽222。第二插接部322上开设有第二销孔323。第二插接部322插入第二插槽222内时,第一销孔223和第二销孔323对齐。第一销孔223和第二销孔323对齐后插入销轴。其中,第二销孔323的孔径大于销轴的直径,以保证传动机构2的输入轴22与第二联轴件32配合后,沿轴向具有活动量。活动量为第二销孔323孔径与销轴直径之差。
输入轴22与第二联轴件32之间的轴向活动量不会影响扭矩的传递,且对第二插接部322的加工精度要求降低,有助于降低加工成本,并且提升加工效率。
第二联轴件32的第一插接部321和第二插接部322于截面的投影呈十字交叉。
销轴插入第一销孔223和第二销孔323内之后,可以将销轴与输入轴22焊接,以提升输入轴22的结构强度,并且能够防止销轴脱落。
可选的,电动工具还包括第二隔离结构5。第二隔离结构5设置于传动机构2与动力组件14之间。示例性的,第二隔离结构5可以设置于输入轴22与第二联轴件32之间、第二联轴件32与第一联轴件31之间或第二联轴件32与动力组件14的输出端141之间。在本申请的示例中,第二隔离结构5为绝缘套,位于第二联轴件32与第一联轴件31之间。第二隔离结构5既能够起到阻碍动力组件14与传动机构2之间产生电流回路,又能够对第一联轴件31和第二联轴件32的连接进行缓冲。
第一隔离结构4和第二隔离结构5可以选用塑料、树脂或碳纤维等。第二隔离结构5可采用压配、粘接或注塑等方式与第二联轴件32固定相接。
外科手术机器人属于三类医疗器械,需要满足相应的电气安全要求。外科手术机器人在工作的过程中,外科手术机器人的应用部分会与人体接触。需要外科手术机器人的应用部分与外科手术机器人的接地之间设置好电气隔离,防止外科手术机器人的接地通过应用部分与人体导通,影响手术安全。
外科手术机器人包括机器人臂、台车、主体和手术工具。机器人臂的基座安装于台车。主体安装于机器人臂远离台车的末端。手术工具安装于主体,手术工具即为外科手术机器人的应用部分。主体内置有动力组件。动力组件能够驱动手术工具进行相应的手术动作。
台车、机器人臂和主体的外壳一般为金属材质。台车与机器人臂之间以及机器人臂与主体之间一般使用金属螺栓/螺钉连接。在使用时,台车和机器人臂与外部电源的接地端连接。
主体包括主体外壳和动力组件。动力组件内置于主体外壳内。手术工具与动力组件之间设置有传动机构。传动机构用于连接动力组件与手术工具,将动力组件的运动转化为手术工具的动作。由于手术工具与传动机构的连接处会有较大的作用力,并且存在相对运动,因此不宜在手术工具与传动机构的连接处设置绝缘结构。主要原因是:绝缘结构的绝缘材料,刚性和强度一般较弱,难以满足手术工具与传动机构之间的传动要求。
主体与机器人臂末端之间通常会设置快拆/快装机构,以便于快速拆装主体与机器人臂。快拆/快装机构一般包括多个零部件,快拆/快装结构与主体以及机器人臂之间均有接触,并且快拆/快装结构与主体以及机器人臂连接后要求连接牢固可靠。这种情况下,在主体与机器人臂的末端之间设置绝缘结构,可能导致主体与机器人臂之间的连接强度不足,难以满足使用要求。本公开实施例中,传动机构2的传动壳体与主体1的第二接口13之间设置第一隔离结构4。第一隔离结构4能够阻碍手术工具与主体1之间形成电流通路,进而阻碍手术工具与机器人臂7之间形成电流通路,提升手术的安全性。隔离结构设置在传动壳体与主体之间,不会显著影响二者的连接强度,也不会影响手术工具与传动机构的连接强度。
实施例二
本申请实施例提供了一种快插式传动装置,用于将手术工具连接至电动工具的主体1,快插式传动装置包括传动机构2和第一隔离结构4。其中,传动机构2如实施例一所述,第一隔离结构4贴合于传动壳体21的外表面,且第一隔离结构4的至少一部分位于传动壳体21与主体1之间,用于阻碍传动壳体21与主体1之间形成电流通路。
如图29至图32,传动壳体21包括盖板211和传动主壳体212。盖板211位于传动壳体第一端2100,且盖板211盖合于传动主壳体212。传动机构2插入主体1的第二接口13内时,传动主壳体212的至少一部分以及盖板211位于第二接口13内。
传动主壳体212与盖板211为可拆卸连接,如螺钉连接或螺纹连接,以便于将输入轴22装入传动壳体21内。
可选的,传动机构2的输入轴22通过轴承与第一盖板211转动连接。第一盖板211的至少一部分插入传动主壳体212内。
可选的,第一隔离结构4包括第一绝缘体41和第二绝缘体42。第一绝缘体41贴合 于盖板211的外周面。第二绝缘体42贴合于传动主壳体212的至少一部分。第一绝缘体41和第二绝缘体42抵接。传动机构2插入第二接口13内时,传动壳体21与主体1之间具有第一绝缘体41和第二绝缘体42,以避免传动壳体21与主体1之间直接接触,实现传动壳体21与主体1之间的绝缘隔离,阻碍在传动机构2与主体1之间形成电流通路。
可选的,第一隔离结构4还包括第三绝缘体43。第三绝缘体43贴合于传动主壳体212的外周,且第三绝缘体43位于第二绝缘体42背离第一绝缘体41的一端。
快插式传动装置还包括连接件45。连接件45套设于第一隔离结构4的外侧,连接件45与主体1相接。第一隔离结构4的至少一部分位于连接件45与传动壳体第一端2100之间。
示例性的,连接件45套设于第三绝缘体43的外侧。第一绝缘体41和第二绝缘体42位于连接件45与传动壳体第一端2100之间。当连接件45与主体1相接时,第一绝缘体41和第二绝缘体42位于第二接口13内,连接件45挤压第一绝缘体41和第二绝缘体42,防止传动壳体21产生轴向窜动,以保证传动壳体21能够稳定地与主体1连接。
第三绝缘体43与传动壳体21之间具有第三连接关系;第三绝缘体43与连接件45之间具有第四连接关系。在一些示例中,第三连接关系与第四连接关系均为固定连接。
在另一些示例中,第三连接关系与第四连接关系中至少有一者为可周向转动。在此基础上,第三连接关系和第四连接关系中至少有一者还可以为可轴向移动。
在本申请的具体示例中,第三绝缘体43与传动壳体21之间的第三连接关系为固定连接,如采用绝缘销轴固定。第三绝缘体43与连接件45之间的第四连接关系为:既可周向转动,又可轴向移动。传动壳体第一端2100插入第二接口13之后,连接件45与第三绝缘体43之间首先沿轴向移动,以便连接件45对齐第二接口13,之后沿周向转动连接件45,使连接件45与第二接口13旋合。
连接件45与第三绝缘体43之间设置有密封圈。连接件45与主体1连接后,连接件45的至少一部分容置于第二接口13内,且连接件45与第二接口13之间同样设置有密封圈。利用连接件45与第三绝缘体43之间的密封圈以及连接件45与第二接口13之间的密封圈,能够提升传动机构2与主体1安装后的密封性。
可选的,连接件与设置有弹性件46。弹性件46用于为连接件45轴向的移动提供复位动力。弹性件46位于第二绝缘体42与连接件45之间。
可选的,第一隔离结构4还包括第四绝缘体44。第四绝缘体44贴合于传动主壳体212的外周,第四绝缘体44位于第三绝缘体43朝向传动壳体第一端2100,第四绝缘体44与第二绝缘体42抵接。连接件45与第三绝缘体43为可周向转动以及可轴向移动。第三绝缘体43的内周面开设有台阶面。第四绝缘体44的外周面凸设有凸沿。弹性件46的一端与第三绝缘体43内周面的台阶面连接;弹性件46的另一端与第四绝缘体44外周面的凸沿连接。连接件45相对第三绝缘体43沿轴向移动后,弹性件46会被拉伸或压缩,产生连接件45沿轴向复位的弹性力。
可选的,弹性件46朝向台阶面的一端设置有垫圈47。垫圈47与第三绝缘体43内周面的台阶面抵接。弹性件46与垫圈47抵接,以提升弹性件46安装的稳定性。
弹性件46可以为弹簧或弹性橡胶。
如图34至图36所示。作为一种示例,第一隔离结构4包括第一绝缘体41、第二绝 缘体42和第三绝缘体43。第一绝缘体41、第二绝缘体42与第三绝缘体43相接,形成连续的绝缘结构,阻碍传动壳体21与主体1之间形成电流通路。
其中,弹性件46设置于第二绝缘体42与连接件45(图中未示出)之间。
第一绝缘体41与传动主壳体212相接。盖板211位于第一绝缘体41内,盖板211的一部分插入传动主壳体212并与传动主壳体212螺纹连接。
可选的,第一绝缘体41与传动主壳体212贴合的端面凸设有第二定位块412。传动主壳体212与第一绝缘体41贴合的端面开设有与第二定位块412对应的第二定位槽2121。第二定位块412与第二定位槽2121设有一个或一个以上。第一绝缘体41和传动主壳体212配合时,第二定位块412与第二定位槽2121插接配合。以避免第一绝缘体41相对传动主壳体212沿周向转动。
可选的,第一绝缘体41与传动主壳体212贴合的端面还凸设有第三定位块413,传动主壳体212与第一绝缘体41贴合的端面开设有与第三定位块413对应的第三定位槽2122。由于多个第二定位块412一般沿第一绝缘体41的周向均匀设置,利用第三定位块413与第三定位槽2122的配合,能够定位第一绝缘体41与传动主壳体212的安装角度,避免安装错误。
其中,第三定位块413与第二定位块412的形状可以不同,以示区分第二定位块412和第三定位块413。具体的,第三定位块413的长和/或宽与第二定位块412的长和/宽不同。
结合图29所示,本申请实施例还提供了一种包含快插式传动装置的电动工具,用于在机器人臂7的把持下执行手术,包括主体1和快插式传动装置。快插式传动装置与第二接口13可拆卸连接。通过在快插式传动装置与主体1之间设置可拆机构实现。可拆机构部分设置于快插式传动装置,部分设置于主体1的第二接口13。
可选的,快插式传动装置与主体1之间的可拆机构为旋合结构,如螺纹连接,或旋转扣合结构。
可选的,如图37和图38所示,可拆机构包括旋槽62和卡接块61,旋槽62和卡接块61中的一者设置于主体1的第二接口13,另一者设置于快插式传动装置,卡接块61嵌合于旋槽62内,卡接块61可在旋槽62内移动以改变位置。卡接块61在旋槽62中改变位置,可切换快插式传动装置与主体1的连接状态,具体为:在固定或非固定的状态中切换。
在一些示例中,卡接块61设置于连接件45,可以为一体设置,其中卡接块61可以凸设于连接件45。连接件45与第一隔离结构4之间为固定连接或至少可周向转动。连接件45与第一隔离结构4为至少可周向转动时,相对第一隔离结构4周向转动连接件45,卡接块61随连接件45周向转动,使卡接块61与旋槽62旋合。
在一些示例中,旋槽62开设于第二接口13的内侧壁。
如图37和图38所示,在另一些示例中,可拆机构还包括固定座17。固定座17容置于第二接口13,且固定座17与主体1相接。快插式传动装置的一端穿过固定座17的底部与动力组件14相接。此时,旋槽62开设于固定座17的周面。旋槽62可沿固定座17的径向贯穿固定座17,或旋槽62开设于固定座17的内周面或外周面。
固定座17与主体1的第二接口13之间可以为可拆连接,如螺栓连接、螺纹连接、卡 接等。固定座17与主体1的第二接口13之间也可以为不可拆连接,如过盈配合、焊接、铆接、圆锥配合等。
旋槽62可以沿第二接口13或固定座17的周向螺旋开设,或沿第二接口13或固定座17的周向弧形开设。即,旋槽62可以为具有轴向升程的螺旋槽62或圆弧槽。
旋槽62包括旋槽入口端621和旋槽定位端622。卡接块61沿旋槽入口端621进入旋槽62,并能够沿旋槽62移动至旋槽定位端622。
可选的,旋槽62还包括配合槽63。配合槽63与与旋槽定位端622连通,配合槽63沿快插式传动装置的轴向延伸。卡接块61能够容置于配合槽63内,以阻碍卡接块61沿快插式传动装置的周向转动,使快插式传动装置与主体1之间保持固定状态。
可选的,旋槽62朝向传动壳体第二端2101的一侧壁向内凸起形成凸出部623。凸出部623靠近旋槽定位端622,凸出部623与旋槽定位端622的轮廓形成配合槽63。
可选的,旋槽62还包括导向槽64。导向槽64的一端与旋槽入口端621连通,导向槽64的另一端背离第二接口13的底部或固定座17的底部且开口。卡接块61能沿导向槽64的开口端移动至旋槽入口端621。设置导向槽64之后,能够降低卡接块61进入旋槽入口端621的难度。
可选的,快插式传动装置与主体1之间的可拆机构还包括弹性件46。弹性件46被配置为:卡接块61与旋槽62配合时,驱动卡接块61沿快插式传动装置的轴向抵接在配合槽63的底部,使连接件45与固定座17在周向、轴向、径向定位。具体的,连接件45相对第三绝缘体43沿轴向移动,卡接块61能够通过导向槽64进入旋槽62内,此时弹性件46被压缩。卡接块61与旋槽62配合时,卡接块61由旋槽入口端621起始沿旋槽62滑动至旋槽定位端622。卡接块61进入配合槽63内,弹性件46驱动卡接块61有轴向复位的趋势,该趋势使卡接块61不易突破凸出部623的限制而脱离配合槽63。这样,弹性件46的弹力使连接件45和固定座17之间轴向、周向定位。且该定位在克服弹性件46的弹力使卡接块61脱离配合槽时被破坏。
可选的,第一绝缘体41的外周面凸设有第一定位块411。固定座17的底部开设有用传动壳体第一端2100插入的让位孔171。让位孔171的周面开设有第一定位槽172。传动壳体第一端2100插入固定座17底部的让位孔171内后,第一定位块411与第一定位槽172配合。以定位传动壳体21与固定座17之间的位置,避免传动壳体21相对固定座17周向转动。
可选的,第一定位块411包括至少两个,且两个第一定位块411的形状不同,如长度或宽度不同。第一定位槽172的形状同与对应的第一定位块411形状相适配。传动壳体21与固定座17之间采用至少两个第一定位块411以及对应的第一定位槽172进行定位,能够提升阻碍传动壳体21相对固定座17周向转动的可靠性。采用不同形状的第一定位块411以及对应的第一定位槽172,能够防止传动壳体21与固定座17之间的安装角度出错,具有防呆的作用。
可选的,如图39所示,连接件45包括第一子连接件451和第二子连接件452。第一子连接件451与第二子连接件452相接,第一子连接件451位于第二子连接件452朝向传动壳体第一端2100的一端。卡接块61凸设于第一子连接件451。第一子连接件451和第二子连接件452能够使用不同的材料制成,以适应不同的表面要求或减重。
第一子连接件451与第二子连接件452可采用卡簧453卡接固定,或采用螺纹连接、螺钉连接、铆接、焊接、过盈配合等进行连接。
可选的,第二子连接件452背离第一子连接件451的一端开设有插孔4521。以便于拆装工具插入插孔4521内,对第二子连接件452进行旋转,进而带动第一子连接件451和卡接块61沿周向转动,实现卡接块61与旋槽62的旋合或旋离。插孔4521可以为弧形孔、圆形孔、方形孔、沟槽等形状,插孔4521设有两个或两个以上。
本申请实施例提供的快插式传动装置的安装过程为:
首先,将传动机构2的第一端插入固定座17内,并穿过固定座17的底部;传动机构2的输入轴22与动力组件14的输出端141相接,贴设有第一绝缘体41和第二绝缘体42的传动壳体21与固定座17插接配合,以保障快插式传动装置与主体1之间的径向定位。并且,在快插式传动装置穿过固定座17插入主体1内的过程中,第一定位块411与第一定位槽172配合,以保障快插式传动装置与主体1之间的周向定位。
连接件45相对第三绝缘体43沿轴向移动,卡接块61能够通过导向槽64进入旋槽62内,此时弹性件46被压缩。卡接块61与旋槽62配合时,相对第三绝缘体43沿周向转动连接件45,卡接块61由旋槽入口端621起始,沿旋槽62滑动至旋槽定位端622。卡接块61进入配合槽63内,弹性件46驱动卡接块61有轴向复位的趋势,该趋势使卡接块61不易突破凸出部623的限制而脱离配合槽63。这样,弹性件46的弹力使连接件45和固定座17之间轴向定位。使快插式传动装置固定至主体1,保障快插式传动装置与主体1配合后的稳定性。
实施例三
结合图27所示。本申请实施例还提供了一种手术系统,包括手术工具、如实施例一或实施例二的电动工具、机器人臂7、导航系统和控制器。机器人臂7用于搭载电动工具并提供电动工具位姿变化的动力。手术工具与电动工具的输出部件23相接。电动工具为手术工具的动作提供动力。导航系统用于获取手术工具的方位信息。控制器用于基于手术工具的方位信息和预储存的手术规划控制机器人臂7的运动和方位。
如图28所示。其中,导航系统包括示踪架16。示踪架16固定连接于主体外壳11的外部。示踪架16能够示出手术工具的位置信息。
容易理解的是,电动工具中,快插式传动装置与主体的第二接口可拆卸连接,以便于快速拆、装快插式传动装置,降低传动装置拆、装的难度;并且电动工具包括主体、传动机构和第一隔离结构4,通过设置于传动机构与主体之间的第一隔离结构4,阻碍手术工具与机器人臂7之间形成电流通路。其具体原理和使用在实施例一和实施例二中已详细记载,此处不再赘述。
参考图40至图48。其中示出了末端执行器结构及手术系统结构。
如图40所示的手术系统结构示意图,本公开涉及计算机辅助手术(Computer-Assisted Surgery,CAS)技术。涉及该技术的手术系统(即骨科机器人系统)包括机器人臂1、定位系统2、搭载有手术工具的末端执行器3和控制器4。机器人臂1相当于外科医生的手臂,可以把持手术工具并以较高的精度定位和移动手术工具。定位系统2相当于外科医生的眼睛,可以实时测量手术工具和患者组织的位置。控制器4相当于外科医生的大脑,内部储存手术规划。控制器4根据术中通过定位系统2获取的位置信息计算机器人臂1的路 线和/或应达的位置,可以控制机器人臂1运动,或者通过力反馈模式设置机器人臂1的虚拟边界,由人工推动机器人臂1的末端执行器3在虚拟边界内移动/沿虚拟边界限定的路线、面移动。
末端执行器3包括手术工具、主体32以及末端示踪器33;主体32包括第一接口321和第二接口322,第一接口321用于与机器人臂1连接,第二接口322用于连接手术工具;末端示踪器用于定位手术工具的位置;其中,末端示踪器与第一接口分别位于主体32的两端,末端示踪器与第二接口具有预定的第一位置关系。通过末端执行器3的设置,可以通过末端示踪器3准确定位手术工具的位置,使手术工具能够准确到达目标手术部位。
下面以全膝关节置换术为例,对本公开进行说明。其中,在全膝关节置换术中,手术工具为锯片31,用于在目标截骨面截骨。
如图41至图45所示,图41为本公开实施例的末端执行器结构示意图。图42为本公开实施例图41中末端示踪器的左视图。图43为本公开实施例的末端执行器内部结构示意图。图44为本公开实施例的安装有工具示踪器的末端执行器结构示意图。图45为本公开实施例的图44中安装有工具示踪器的末端执行器的左视图。末端执行器3包括锯片31、主体32、末端示踪器33和工具示踪器34。主体32大致为圆锥体,圆锥体的回转中心线W与机器人臂1的末端臂11的自转中心线同轴。在此基础上,定义主体32的方向参考及坐标系CS。圆锥体的回转中心线W为坐标系CS的Z轴,垂直于Z轴的两个互相垂直的方向为Y轴和X轴。回转中心线W的延伸方向为主体32的长度方向。主体32长度方向的两端分别为第一端32a和第二端32b。主体32的径向为侧向,具体包括上侧、下侧、前侧和后侧。上侧、下侧、前侧和后侧对应于坐标系CS的Y轴正向、Y轴反向、X轴正向和X轴反向。
主体32连接至机器人臂1的末端臂11时与末端臂11同轴固定,相当于成为机器人臂1的末端臂11的延伸。在其他实施例中,主体32的形状并不局限于圆锥体,只要具有预定长度且连接至机器人臂1时能与末端臂11同轴的规则或不规则形状均可。此处的“同轴”并不严格局限于字面意思,只要是两个杆状结构基本共线地连接即可。当然,其他形状的主体32的长度方向定义也可以参照(主体32连接至机器人臂1时)末端臂11的回转中心线W,主体32随末端臂11自转,二者的旋转中心线相同。
主体32具有第一接口321、第二接口322、动力机构323和手柄324。第一接口321位于主体32的第一端32a。第二接口322位于主体32的第一侧32c,并且在长度方向上更靠近主体32的第二端32b。手柄324位于主体32的第二侧32d,用于为医生提供推拉末端执行器3的着力部。主体32的第一端32a和第二端32b为长度方向(Z轴方向)上的两端。主体32的第一侧32c对应前述的下侧,即Y轴的反向;第二侧32d对应前述的上侧,即Y轴的正向。第一接口321用于将主体32连接至机器人臂1。第二接口322用于连接锯片31。如图43所示,第二接口322为机械连接结构,并且具有能往复转动的转轴3221。锯片31固定在转轴3221上,并在转轴3221的带动下往复摆动。动力机构323设置于主体32内部,动力机构323用于向第二接口322提供动力。动力机构323主要包括电机3231、减速器3232以及传动机构3233。电机3231和减速器3232用于提供初始动力,传动机构3233一端与减速器3232连接,另一端设置于第二接口322处。锯片31与第二接口322连接时,传动机构3233接收电机3231及减速器3232的初始动力并通过转轴3221驱动锯片31摆动。
锯片31为长条状,两端分别为切削端31a和连接端31b。切削端31a设置有锯齿, 用于切割骨组织。连接端31b用于与第二接口322连接,接收驱动锯片31摆动的动力。
具体的,末端示踪器33设置于主体32的第二端32b,用于指示锯片31的方位。末端示踪器33包括架体331和多个示踪元件332(如图示的四个),多个示踪元件332位于同一平面上。末端示踪器33与第二接口322具有预定的第一位置关系。末端示踪器33所在的平面与主体32的长度方向垂直,即末端示踪器33所在平面的法线方向与Z轴平行。末端示踪器33的大体轮廓在虚拟纵向、虚拟横向上与主体32大致处于相同的位置。虚拟纵向为Y轴方向,虚拟横向为X轴方向。并且,末端示踪器33的大体轮廓的高度不大于主体32轮廓的纵向高度,上述的两个高度为Y轴方向上的高度。
其中,在第一位置关系下,末端示踪器33与第二接口322在主体32的长度方向上的距离优选0mm~30mm。末端示踪器33与第二接口322在主体32的纵向方向上的距离优选40mm~60mm。上述两个距离为第二接口322的远离主体32的一端的中心与末端示踪器33的形心之间的距离。即,末端示踪器33在主体32上与第二接口322的位置相对靠近,当锯片31安装于第二接口322时,末端示踪器33与锯片与31在主体32的长度方向(Z轴方向)上和纵向方向(Y轴方向)上靠近。这样,在定位系统的视角下,用于定位锯片31位置的末端示踪器33与锯片31所处的位置大致靠近。在截骨过程中定位系统根据末端示踪器33的位置确定锯片31的位置时,定位系统本身存在的定位误差,可能对末端示踪器33定位不够精确。由于末端示踪器33与第二接口322的位置较近,该定位误差换算至锯片31的位置时不会被过度放大。即通过上述的设置,末端示踪器在定位系统的视角下能够较精确地定位锯片31的位置。也就是说,当末端示踪器33与第二接口322的距离越近,末端示踪器33与锯片31的距离越近,定位系统通过末端示踪器33对锯片31的定位越精确。
在一种可选的实施方式中,末端示踪器33与第二接口322在主体32的长度方向上的距离为0mm。末端示踪器33与第二接口322在所述主体32的纵向方向上的距离为50mm。即第二接口322设置在末端示踪器33的正下方的50mm处。可以理解的是,末端示踪器33与第二接口322在主体32长度方向上距离为0mm。末端示踪器33定位锯片31位置时,至少在主体32长度方向上不会将定位误差放大,因为定位系统所识别到的末端示踪器33在Z轴方向的位置即为第二接口322(或安装于第二接口322的锯片31)在Z轴方向的位置。末端示踪器33与第二接口322在主体的纵向方向上距离为50mm,末端示踪器33和第二接口322在满足机械设计要求的情况下尽量靠近。在Y轴方向上,末端示踪器33对锯片31的定位误差也不会过度放大,末端示踪器33能够较精准地定位锯片31的位置。当然,末端示踪器33与第二接口322在主体32的纵向方向上的距离也可以是小于60mm大于40mm的任意值。如末端示踪器33与第二接口322在主体32的纵向方向上的距离为60mm时,可能存在的定位误差的放大也在手术系统可接受的范围内,末端示踪器33对锯片31的定位的准确性可以保证使用需求。末端示踪器33与第二接口322在主体32的纵向方向(Y轴方向)上的距离可以是40mm、45mm或55mm等数值。
在一种可选的实施方式中,末端示踪器33与第二接口322在主体32的长度方向上的距离为30mm。与前述实施例同理的,末端示踪器33与第二接口322在主体32的纵向方向上的距离为小于30mm的任意值。这样,在定位误差可以接受的情况下,末端示踪器仍能够较准确地定位锯片31的位置。
在另一种可选的实施方式中,末端示踪器与第二接口在主体的长度方向上的距离也可以为10mm、15mm、20mm或25mm。末端示踪器33同样能够较准确地定位锯片的位置, 其具体原理与前述实施例相同,这里不再赘述。
在一些可选的实施方式中,在第一位置关系下,末端示踪器33与第二接口322在主体32的长度方向上的距离也可以为0mm~50mm的任意值。末端示踪器33与第二接口322在主体32的纵向方向上的距离可以为0mm~70mm的任意值。其中当末端示踪器33与第二接口322在主体32的长度方向上的距离为50mm,和/或末端示踪器33与第二接口322在主体32的纵向方向上的距离为70mm时。虽然末端示踪器33距离第二接口322有一定距离,但同样能满足手术精度要求以及对锯片31进行较为精确的定位。当末端示踪器33与第二接口322在主体32的长度方向上的距离为0mm,和/或末端示踪器33与第二接口322在主体32的纵向方向上的距离为0mm时。末端示踪器33距离第二接口322更近,末端示踪器33对锯片31的定位将更精确。
基于上述实施例,主体32的长度方向上末端示踪器33与第二接口322距离越趋近于0则末端示踪器33对锯片31的定位越精确。主体32的纵向方向上末端示踪器33与第二接口322距离越趋近于0则末端示踪器33对锯片31的定位越精确。
工具示踪器34与锯片31可拆卸连接。如图44和图45所示为工具示踪器34连接至锯片31的状态。工具示踪器34包括示踪架341、示踪元件332以及安装部342。示踪架341大致为三角形,其上设置有三个示踪元件332。安装部342设置于示踪架341上示踪元件332的背面,用于将工具示踪器34安装于锯片31。在本实施例中,安装部342为一夹紧结构,夹紧结构作用于锯片31时可以将工具示踪器34固定于锯片31。
末端示踪器33和工具示踪器34在手术时均可以被定位系统2识别,并以此确定锯片31的方位。末端示踪器33和工具示踪器34均为光学示踪器,其上安装的示踪元件332为反光片或反光球。定位系统2包括能够识别反光片或反光球的双目视觉相机。在一种可选的实施方式中,末端示踪器33和/或工具示踪器34也可以是电磁发射器或位置传感器,能够识别电磁发射信号或位置传感器位置的相应定位系统2可以确定锯片31的方位。
如图44和图45所示。当工具示踪器34通过安装部342安装于锯片31上时,工具示踪器34与末端示踪器33具有第二位置关系。在第二位置关系下,工具示踪器34所在的平面与末端示踪器33所在的平面平行。三个示踪元件332的朝向与末端示踪器33上示踪元件332的朝向相同,该朝向为Z轴的反方向。。并且工具示踪器34与末端示踪器33在第一方向上错位设置,第一方向为虚拟纵向(Y轴的方向)。即在图中所示的,工具示踪器34位于末端示踪器33的下方。
在第二位置关系下,末端示踪器33所在的平面与工具示踪器34所在的平面间的距离小于10mm。可以理解的是,工具示踪器34的设置,既能够在机器人臂1将锯片31定位至目标截骨面的过程中精确定位锯片31,又能够在该过程中获取锯片31与末端示踪器33之间的位置关系。其中,定位系统获取末端示踪器33和工具示踪器34的位置关系来确定锯片31与末端示踪器33之间的位置关系。
在一种可选的实施方式中,末端示踪器33所在的平面与工具示踪器34所在的平面间的距离为0mm。这样,定位系统定位末端示踪器33和工具示踪器34时,工具示踪器34与末端示踪器33至少在主体32的长度方向上具有相同的位置。且至少在该方向上,末端示踪器33与工具示踪器34的位置关系确定且唯一,定位系统能够较为准确地获取工具示踪器34与末端示踪器33间的位置关系。再结合工具示踪器34与锯片31的安装关系,进一步准确得出锯片31与末端示踪器33的位置关系。
在一种可选的实施方式中,末端示踪器所在的平面与工具示踪器所在的平面间的距离为10mm。在这种情况下,末端示踪器33所在的平面与工具示踪器34所在的平面间的距离较近,定位系统所获取的两者之间的位置关系不会出现较大的误差。若出现误差也在手术系统允许的误差范围内,同样能够准确确定锯片31与末端示踪器33之间的位置关系。
在一些可选的实施方式中,末端示踪器33所在的平面与工具示踪器34所在的平面间的距离为0mm~10mm的任意值,如1mm、5mm或8mm。这样,定位系统同样可以较精确地获取锯片34与末端示踪器333的位置关系,其具体原理与上述实施例相同,这里不再赘述。
在另一些可选的实施方式中,末端示踪器33所在的平面与工具示踪器34所在的平面间的距离为0mm~20mm的任意值,如0mm、15mm或20mm等。这样,定位系统也可以较精确地获取锯片34与末端示踪器333的位置关系,其具体原理与上述实施例相同,这里不再赘述。
全膝关节置换术主要涉及对膝关节多个目标截骨面的截骨。具体为胫骨平台截骨、股骨远端截骨、股骨前髁截骨、股骨后髁截骨、股骨后斜角截骨以及股骨前斜角截骨。
如图46至图48所示,图46为本公开实施例的右腿全膝关节置换手术示意图。图47为本公开实施例的右腿全膝关节置换手术中末端执行器调整锯片角度示意图;图48为本公开实施例的锯片与股骨远端目标截骨面b对准状态示意图。以右腿全膝关节置换为例,患者为屈膝仰卧位,机器人臂1及承载其的台车12位于患者的患处侧(患者的右侧)定位系统2位于患处侧的对侧(患者的左侧)。机器人臂1由患处侧指向对侧,机器人臂1的末端臂11连接有末端执行器3,机器人臂1将末端执行器3大致保持在膝关节上方且横向于患者。手术时,锯片31将从患者前侧入路,锯片31的切削端31a指向膝关节,锯片31截骨时锯片31平面只需末端执行器3大致绕平行于人体冠状面与横断面交线的轴线(回转中心线W)调整角度,即可实现膝关节置换手术规划的六个平面的定位。
具体参考图47,末端执行器3搭载锯片31进行不同截骨面的定位时,为适应不同目标截骨面的角度,在远离患处的位置处进行锯片31平面调整。机器人臂1的末端臂11绕自身轴线的旋转使末端执行器3绕轴线(回转中心线W)旋转,锯片31平面转动一定角度。按照临床中的截骨顺序,末端执行器3姿态调整后依次具有第一姿态A、第二姿态B、第三姿态C、第四姿态D、第五姿态E以及第六姿态G。其中末端执行器3的第一姿态A中锯片31的角度与胫骨目标截骨面a的角度对应;第二姿态B中锯片31的角度与股骨远端目标截骨面b的角度对应;第三姿态C中锯片31的角度与股骨前端目标截骨面c的角度对应;第四姿态D中锯片31的角度与股骨后端目标截骨面d的角度对应,第五姿态E中锯片31的角度与股骨后斜目标截骨面e的角度对应,第六姿态G中锯片31的角度与股骨前斜目标截骨面g的角度对应。分别完成锯片31与六个相应的目标截骨面截骨面的角度定位后,机器人臂1在一定范围内按照预定路径平移一定距离即可实现各个平面与目标截骨平面的对准,如图48所示为锯片31与股骨远端目标截骨平面b对准并即将进行截骨的示意图,锯片31定位至该状态后,机器人臂1在控制器的控制下将锯片31的移动范围限制在该平面,医生推动末端执行器3在该平面移动并完成相应的截骨。
在手术过程中,用于切割骨组织的锯片31在截骨时会高速摆动。在锯片31截骨时不能在锯片31上直接安装示踪器以定位锯片31的位置。因此,在进行初次截骨(即胫骨截骨)之前,在锯片31上安装工具示踪器34。工具示踪器34可以帮助骨科机器人直接定位锯片31的位置,使机器人臂1能够在工具示踪器34的辅助下走位,以将锯片31定位 至股骨远端目标截骨面。并且在工具示踪器34安装在锯片31上的走位过程中,也使骨科机器人得到锯片31与末端示踪器33的位置关系。完成走位并将锯片31定位至胫骨目标截骨面后,将工具示踪器34由锯片31上拆下。启动锯片31的动力装置,使锯片31高速摆动,进而在机器人臂1的辅助下在胫骨目标截骨面内进行截骨。对后续5个目标截骨面进行截骨时,骨科机器人能够根据末端示踪器33的位置和第一次截骨前通过工具示踪器34获得的锯片31与末端示踪器33的位置关系,来精确确定锯片31的位置并相对准确地指导截骨过程。这样,使得骨科机器人既能够精确定位锯片31的位置,在后续5个目标截骨面进行截骨之前,也无需多次安装工具示踪器34。
需要说明的是,在手术中,锯片31定位的准确性受定位系统2对示踪器定位的准确性和锯片31与末端示踪器33间位置关系定位的准确性两个因素影响。末端示踪器33的定位的准确性主要受定位系统2定位精度的影响。锯片31与末端示踪器33间位置关系的确定同样受定位系统2精度的影响。定位系统2精度客观存在且难以避免。而本公开实施例中,如图42所示,末端示踪器33所在的平面靠近锯片31。并且如图45所示,末端示踪器33所在的平面与工具示踪器34所在的平面接近重合,使得末端示踪器33所定义的坐标系与工具示踪器34定义的坐标系间的位置关系相对简单。定位系统2在对两个示踪器进行定位时,由两个示踪器表示的两个坐标系在主体32长度方向上接近,定位系统2将能够更加精确地确定锯片31与末端示踪器33间的位置关系。
在一种可选的实施方式中,可以不设置工具示踪器34。这样,在手术中,定位系统2直接通过末端示踪器33的位置以及末端示踪器33与锯片31间固有的位置关系获取锯片31位置。在末端执行器3中,末端示踪器33与锯片31在主体32的长度方向上具有第一位置关系。第一位置关系下,末端示踪器33靠近锯片31,末端示踪器33能够较准确地反映锯片31的位置。骨科机器人可以根据末端示踪器33指示的锯片31的位置来精确指导手术。并且,也无需在每次截骨前安装工具示踪器34,操作方便。
在一种可选的实施方式中,末端示踪器33所在的平面与所述工具示踪器34所在的平面与重合。这样,末端示踪器33所定义的坐标系和工具示踪器34定义的两个示踪器在至少一个方向上不会产生定位误差。通过定位系统2获取末端示踪器33和工具示踪器34间的位置关系以获得锯片31和末端示踪器33之间的关系时,位置关系的确定将更为准确。
在一种可选的实施方式中,手术工具可以是除锯片31外的其他器械,如铣刀、钻头以及磨锉等。可以理解的是,通过末端示踪器33以及工具示踪器34的设置,使诸如铣刀、钻头或磨锉等工具在手术时能够被精准定位。且上述手术工具被精准定位的原理与锯片31被定位的原理相似,这里不再赘述。
继续参考图40,第二方面,本公开提出一种外科手术系统,包括末端执行器3、机器人臂1、定位系统2以及控制器4,末端执行器3,为第一方面的末端执行器3;机器人臂1用于搭载末端执行器3,并且为末端执行器3提供动力;定位系统2用于识别示踪器的位置以获取末端执行器和/或锯片31的位置信息;控制器4,用于控制末端执行器37按照预定手术计划截骨。
具体地,控制器4可以控制机器人臂1,使机器人臂1完全自主地按照手术计划移动,或通过提供触觉反馈或力反馈以限制外科医生手动移动手术工具超出预定虚拟边界,或提供虚拟导向以引导外科医生沿某个自由度移动。虚拟边界和虚拟导向可以来自于手术计划,也可以在术中通过输入装置设置。末端执行器3与机器人臂1之间为可拆卸连接;定位系统2用于获知锯片31以及患者骨骼的位置。定位系统2一般包括定位器(如双目相 机)通过3D测量技术测量上述示踪器的方位。控制器4用于根据手术计划驱动机器人臂1将假体安装执行器移动至目标位置,以使锯片31定位至目标截骨平面。手术计划中可以包括机器人臂移动路径、移动边界等。其中,如本公开第一方面所述的末端执行器。通过末端执行器的设置,方便定位系统对诸如锯片、铣刀的手术工具进行准确定位。
以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。

Claims (66)

  1. 一种末端执行器,其特征在于,包括:
    主体,具有第一接口、第二接口和动力机构,所述第一接口用于连接机器人臂,所述第二接口用于连接锯片,所述动力机构设置于所述主体内部,所述动力机构用于向所述第二接口提供动力;
    示踪器,设置于所述主体,用于指示所述锯片的方位;其中
    所述第二接口被配置为其可以与所述锯片之间形成第一连接关系或第二连接关系,在所述第一连接关系下所述锯片与所述主体之间具有第一相对方位关系,所述第二连接关系下所述锯片与所述主体之间具有第二相对方位关系。
  2. 根据权利要求1所述的末端执行器,其特征在于,所述第一相对方位关系为所述锯片与所述主体具有第一夹角值,所述第二相对方位关系为所述锯片与所述主体具有第二夹角值。
  3. 根据权利要求2所述的末端执行器,其特征在于,所述第一相对方位关系为所述锯片垂直于所述主体。
  4. 根据权利要求2所述的末端执行器,其特征在于,所述第二相对方位关系为所述锯片平行于所述主体。
  5. 根据权利要求1所述的末端执行器,其特征在于,所述第一接口位于所述主体的第一端,所述第二接口位于所述主体的第一侧。
  6. 根据权利要求5所述的末端执行器,其特征在于,所述第二接口位于所述主体的所述第一侧的靠近第二端的位置,所述第二端和所述第一端为所述主体的两个末端。
  7. 根据权利要求5所述的末端执行器,其特征在于,在所述第一连接关系下,所述锯片的切削端从所述主体的所述第一侧远离所述主体延伸。
  8. 根据权利要求5所述的末端执行器,其特征在于,在所述第二连接关系下,所述锯片的切削端的指向与所述主体的所述第一端的朝向相反。
  9. 根据权利要求1所述的末端执行器,其特征在于,所述锯片的平面与所述主体的虚拟纵剖面平行设置。
  10. 根据权利要求9所述的末端执行器,其特征在于,所述虚拟纵剖面为所述执行器的对称平面。
  11. 根据权利要求9所述的末端执行器,其特征在于,所述主体连接至所述机器人臂时与所述机器人臂的末端臂同轴设置,所述虚拟纵剖面与所述末端臂的轴线平行。
  12. 根据权利要求1所述的末端执行器,其特征在于,所述示踪器与所述第一接口分布在所述主体的两端。
  13. 根据权利要求1所述的末端执行器,其特征在于,所述示踪器包括第一示踪器和第二示踪器,所述第一示踪器用于在所述锯片与所述主体具有第一连接关系时指示所述锯片的方位,所述第二示踪器用于在所述锯片与所述主体具有第二连接关系时指示所述锯片的方位。
  14. 根据权利要求13所述的末端执行器,其特征在于,所述第二示踪器与所述主体之间为可拆卸连接。
  15. 根据权利要求13所述的末端执行器,其特征在于,所述第一示踪器被设置为示踪元件可拆卸。
  16. 根据权利要求13所述的末端执行器,其特征在于,所述第二示踪器位于所述第一示踪器的远离所述第二接口的方向的一侧。
  17. 根据权利要求1所述的末端执行器,其特征在于,还包括手柄部,所述手柄部位于所述主体的第二侧。
  18. 一种外科手术系统,其特征在于,包括:
    末端执行器,所述末端执行器为权利要求1至17任一项所述的末端执行器;
    机器人臂,所述机器人臂的末端臂固定连接所述末端执行;
    定位系统,用于识别所述示踪器的位置以获取所述锯片的方位信息;
    控制器,用于基于所述方位信息和预存储的手术规划控制所述机器人臂的运动和方位。
  19. 一种末端执行器,用于切割骨组织,其特征在于,包括:
    主体,具有第一接口、第二接口和动力机构,所述第一接口用于连接机器人臂,所述第二接口用于连接锯片,所述动力机构设置于所述主体内部,所述动力机构用于向所述第二接口提供动力;
    示踪器,设置于所述主体,用于指示所述锯片的方位;
    其中,所述第一接口位于所述主体的第一端,所述锯片的切削端的指向与所述第一端指向所述主体的第二端的方向平行,所述第一端和所述第二端为所述主体的方向相反的两端。
  20. 根据权利要求19所述的末端执行器,其特征在于,所述锯片的平面与所述主体的虚拟纵剖面平行。
  21. 根据权利要求20所述的末端执行器,其特征在于,所述虚拟纵剖面为所述执行器的对称平面。
  22. 根据权利要求19所述的末端执行器,其特征在于,所述主体连接至机器人臂时,所述主体与所述机器人臂的末端臂同轴设置,所述锯片平面与所述末端臂的轴线平行。
  23. 根据权利要求19所述的末端执行器,其特征在于,所述第二接口位于所述主体的第一侧且靠近所述第二端的位置。
  24. 根据权利要求19所述的末端执行器,其特征在于,所述第二接口为夹紧机构,所述夹紧机构包括相对设置的两个夹紧部,两个所述夹紧部相互靠近时夹紧所述锯片。
  25. 根据权利要求19所述的末端执行器,其特征在于,所述第二接口为插接机构,所述锯片插接机构包括插槽和限位部,所述限位部被构造为锯片连接至插接机构时阻止所述锯片脱离所述插接机构。
  26. 根据权利要求19所述的末端执行器,其特征在于,所述示踪器设置于所述主体的第二端。
  27. 根据权利要求19所述的末端执行器,其特征在于,所述示踪器与所述主体可拆卸连接。
  28. 根据权利要求19所述的末端执行器,其特征在于,所述主体还设置有手柄部,所述手柄部位于所述主体的第二侧,所述第二侧为所述主体上所述第二接口的对侧。
  29. 一种外科手术系统,其特征在于,包括:
    末端执行器,所述末端执行器为权利要求19至28任一项所述的末端执行器;
    机器人臂,所述机器人臂的末端臂固定连接所述末端执行器;
    定位系统,用于识别所述示踪器的位置以获取所述锯片的方位信息;
    控制器,用于基于所述方位信息和预存储的手术规划控制所述机器人臂的运动和方位。
  30. 一种快插式传动装置,用于将手术工具连接至电动工具的主体,其特征在于,包括:
    传动壳体,具有传动壳体第一端和传动壳体第二端,所述传动壳体第一端用于与所述主体连接,所述传动壳体第二端伸出所述主体;
    输入轴,一端位于所述传动壳体内,另一端穿出所述传动壳体第一端且与所述主体内置的动力组件连接;
    输出部件,一端位于所述传动壳体内,另一端与所述手术工具连接,所述输出部件位于所述传动壳体内的一端与所述输入轴位于所述传动壳体内的一端相接。
  31. 根据权利要求30所述的快插式传动装置,其特征在于,还包括第一隔离结构,所述第一隔离结构贴合于所述传动壳体的外表面;且所述第一隔离结构的至少一部分位于所述传动壳体与所述主体之间,用于阻碍所述传动壳体与所述主体之间形成电流通路。
  32. 根据权利要求31所述的快插式传动装置,其特征在于,所述快插式传动装置还包括连接件,所述连接件套设于所述第一隔离结构,所述连接件用于与所述主体相接,其中,所述第一隔离结构的至少一部分位于所述连接件与所述传动壳体第一端之间。
  33. 一种电动工具,用于在机器人臂的把持下执行手术,其特征在于,包括:
    主体,具有第一接口、第二接口和内置的动力组件,所述第一接口用于连接至机器人臂,所述动力组件用于为手术工具提供动力;
    快插式传动装置,与所述第二接口可拆卸连接,所述快插式传动装置包括传动机构;
    其中,所述传动机构用于连接所述动力组件和所述手术工具,向所述手术工具传递动力。
  34. 根据权利要求33所述的电动工具,其特征在于,所述快插式传动装置还包括第一隔离结构,所述第一隔离结构用于阻碍所述手术工具与所述机器人臂间形成电流通路。
  35. 根据权利要求34所述的电动工具,其特征在于,所述第一隔离结构设置于所述第二接口与所述传动机构之间。
  36. 根据权利要求33所述的电动工具,其特征在于,所述快插式传动装置与所述主体间设置有可拆机构,所述可拆机构部分设置于所述快插式传动装置,部分设置于所述主体。
  37. 根据权利要求36所述的电动工具,其特征在于,所述可拆机构为旋合结构。
  38. 根据权利要求37所述的电动工具,其特征在于,所述可拆机构包括旋槽和卡接块,所述旋槽和所述卡接块中的一者设置于所述主体的第二接口,另一者设置于所述快插式传动装置,所述卡接块嵌合于所述旋槽内,所述卡接块在所述旋槽中改变位置,可切换所述快插式传动装置与所述主体的连接状态。
  39. 根据权利要求38所述的电动工具,其特征在于,所述可拆机构还包括固定座,所述固定座容置于所述第二接口且与所述主体相接,所述快插式传动装置的一端穿过所述固定座的底部与所述动力组件相接,所述旋槽开设于所述固定座的周面。
  40. 根据权利要求38所述的电动工具,其特征在于,所述旋槽具有旋槽入口端和旋槽定位端,所述卡接块沿所述旋槽入口端进入所述旋槽,并沿所述旋槽移动至所述旋槽定 位端;
    所述旋槽还包括配合槽,所述配合槽与所述旋槽定位端连通,所述卡接块能容置于所述配合槽;
    和/或,所述旋槽还包括导向槽,所述导向槽的一端与所述旋槽入口端连通,所述导向槽的另一端开口,所述卡接块能沿所述导向槽的开口端移动至所述旋槽入口端;
    和/或,所述快插式传动装置包括连接件,所述连接件套设于所述第一隔离结构的至少一部分的外周,所述卡接块设置于所述连接件。
  41. 根据权利要求40所述的电动工具,其特征在于,所述可拆机构还包括弹性件,所述弹性件被配置为:所述卡接块与所述旋槽配合时,驱动所述卡接块沿所述快插式传动装置的轴向移动,使所述快插式传动装置与所述主体沿所述快插式传动装置的周向、轴向、径向定位。
  42. 一种电动工具,用于在机器人臂的把持下执行手术,其特征在于,包括:
    主体,具有第一接口、第二接口和内置的动力组件,所述第一接口用于连接至机器人臂,所述动力组件用于为手术工具提供动力;
    传动机构,设置于所述第二接口处,具有第一端和第二端,所述传动机构的第一端与所述动力组件连接,所述传动机构的第二端连接所述手术工具;
    第一隔离结构,设置于所述第二接口与所述传动机构之间,用于阻碍所述手术工具与所述机器人臂间形成电流通路。
  43. 根据权利要求42所述的电动工具,其特征在于,所述第一隔离结构至少部分外周设置有连接件,所述连接件与所述第二接口连接,用于将所述传动机构固定至所述主体。
  44. 根据权利要求43所述的电动工具,其特征在于,所述第一隔离结构保持在所述传动机构和所述连接件之间,所述第一隔离结构与所述传动机构具有第一连接关系,所述第一隔离结构与所述连接件具有第二连接关系,所述第一连接关系和所述第二连接关系均为固定连接;
    或,所述第一连接关系和所述第二连接关系至少一者为可周向转动。
  45. 根据权利要求43所述的电动工具,其特征在于,所述传动机构包括:
    传动壳体,具有传动壳体第一端和传动壳体第二端,所述传动壳体第一端插入所述第二接口;
    输入轴,一端位于所述传动壳体内,另一端穿出所述传动壳体第一端;
    输出部件,一端位于所述传动壳体内,另一端与所述手术工具连接,所述输出部件位于所述传动壳体内的一端与所述输入轴位于所述传动壳体内的一端相接。
  46. 根据权利要求45所述的电动工具,其特征在于,所述连接件为压环,所述压环套设于所述传动壳体,所述第一隔离结构的至少一部分位于所述压环与所述传动壳体之间。
  47. 根据权利要求42所述的电动工具,其特征在于,所述电动工具还包括第二隔离结构,所述第二隔离结构设置于所述传动机构与所述动力组件之间。
  48. 一种手术系统,其特征在于,包括:
    电动工具,所述电动工具为权利要求33至47任一项所述的电动工具;
    机器人臂,用于搭载所述电动工具并提供所述电动工具位姿变化的动力;
    导航系统,用于获取所述手术工具的方位信息;
    控制器,用于基于所述方位信息和预存储的手术规划控制所述机器人臂的运动和方位。
  49. 一种末端执行器,用于在机器人臂的把持下执行预定动作,其特征在于,所述末端执行器包括:
    手术工具;
    主体,包括第一接口和第二接口,所述第一接口用于与所述机器人臂连接,所述第二接口用于连接所述手术工具;
    末端示踪器,用于定位所述手术工具的位置;
    其中,所述末端示踪器与所述第一接口分别位于所述主体的两端,所述末端示踪器与所述第二接口具有预定的第一位置关系。
  50. 根据权利要求49所述的末端执行器,其特征在于,所述末端示踪器所在的平面垂直于所述主体的长度方向。
  51. 根据权利要求49所述的末端执行器,其特征在于,所述末端执行器被构造为所述第二接口设置于所述主体的第一侧且靠近所述末端示踪器,使所述末端示踪器与所述第二接口具有所述第一位置关系。
  52. 根据权利要求49所述的末端执行器,其特征在于,所述第一位置关系下,所述末端示踪器与所述第二接口在所述主体的长度方向上的距离为0mm~50mm。
  53. 根据权利要求52所述的末端执行器,其特征在于,所述末端示踪器与所述第二接口在所述主体的长度方向上的距离为0mm~30mm。
  54. 根据权利要求49所述的末端执行器,其特征在于,所述第一位置关系下,所述末端示踪器与所述第二接口在所述主体的纵向方向上的距离为0mm~70mm。
  55. 根据权利要求54所述的末端执行器,其特征在于,所述末端示踪器与所述第二接口在所述主体的纵向方向上的距离为40mm~60mm。
  56. 根据权利要求49所述的末端执行器,其特征在于,所述末端示踪器与所述主体在虚拟纵向上的位置相同,和/或所述末端示踪器的高度不大于所述主体的纵向高度。
  57. 根据权利要求49所述的末端执行器,其特征在于,所述执行器还包括工具示踪器,所述工具示踪器与所述手术工具可拆卸连接。
  58. 根据权利要求57所述的末端执行器,其特征在于,所述末端执行器被构造为:所述工具示踪器安装于所述手术工具时,所述工具示踪器与所述末端示踪器具有第二位置关系。
  59. 根据权利要求58所述的末端执行器,其特征在于,所述第二位置关系下,所述工具示踪器所在的平面与所述末端示踪器所在的平面平行。
  60. 根据权利要求57所述的末端执行器,其特征在于,所述工具示踪器所在的平面与所述末端示踪器所在的平面间的距离为0mm~20mm。
  61. 根据权利要求60所述的末端执行器,其特征在于,所述工具示踪器所在的平面与所述末端示踪器所在的平面间的距离为0mm~10mm。
  62. 根据权利要求58所述的末端执行器,其特征在于,所述第二位置关系下,所述工具示踪器上的示踪元件的朝向与所述末端示踪器上示踪元件的朝向相同。
  63. 根据权利要求58所述的末端执行器,其特征在于,所述第二位置关系下,所述工具示踪器与所述末端示踪器在第一方向上错位设置。
  64. 根据权利要求63所述的末端执行器,其特征在于,所述第一方向为虚拟纵向,所述虚拟纵向、所述主体的长度方向以及虚拟横向两两垂直。
  65. 根据权利要求49所述的末端执行器,其特征在于,所述末端执行器还包括手柄,所述手柄设置于所述主体的第二侧,所述手柄与所述第二接口分别设置于所述主体的相对的两侧。
  66. 一种手术系统,其特征在于,包括:
    末端执行器,所述末端执行器为权利要求49至65任一项所述的末端执行器;
    机器人臂,用于搭载所述末端执行器;
    定位系统,用于定位所述末端执行器和/或所述手术工具的位置;
    控制器,用于控制所述末端执行器执行预定手术计划。
PCT/CN2023/116143 2022-09-02 2023-08-31 快插式传动件、末端执行器及手术系统 WO2024046425A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202211071263.2 2022-09-02
CN202211071929.4A CN116725681A (zh) 2022-09-02 2022-09-02 末端执行器及手术系统
CN202211071263.2A CN116725680A (zh) 2022-09-02 2022-09-02 末端执行器及手术系统
CN202211071929.4 2022-09-02
CN202211123737.3A CN116725683B (zh) 2022-09-15 快插式传动装置、电动工具及手术系统
CN202211123737.3 2022-09-15
CN202222890490.XU CN219480334U (zh) 2022-10-31 2022-10-31 末端执行器及手术系统
CN202222890490.X 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024046425A1 true WO2024046425A1 (zh) 2024-03-07

Family

ID=90100428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116143 WO2024046425A1 (zh) 2022-09-02 2023-08-31 快插式传动件、末端执行器及手术系统

Country Status (1)

Country Link
WO (1) WO2024046425A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104918573A (zh) * 2012-12-21 2015-09-16 玛口外科股份有限公司 用于外科手术工具的触觉控制的系统和方法
US20180055517A1 (en) * 2011-10-18 2018-03-01 Mako Surgical Corp. System and method for robotic surgery
CN111227935A (zh) * 2020-02-20 2020-06-05 中国科学院长春光学精密机械与物理研究所 一种手术机器人导航定位系统
CN111345895A (zh) * 2020-03-13 2020-06-30 北京天智航医疗科技股份有限公司 全膝关节置换手术机器人辅助系统、控制方法及电子设备
CN111772727A (zh) * 2020-07-01 2020-10-16 北京和华瑞博医疗科技有限公司 一种截骨锯片防抖动的控制方法和系统
CN112568997A (zh) * 2019-09-27 2021-03-30 格罗伯斯医疗有限公司 直接刀片引导系统
CN112603544A (zh) * 2020-12-22 2021-04-06 南京佗道医疗科技有限公司 一种机械臂末端执行器校准系统及方法
US20210177450A1 (en) * 2018-08-31 2021-06-17 Norwegian University Of Science And Technology Surgical cutting tool
CN114727825A (zh) * 2019-11-22 2022-07-08 新特斯有限责任公司 外科工具和包括此类外科工具的机器人系统
CN218784458U (zh) * 2022-09-02 2023-04-04 北京和华瑞博医疗科技有限公司 末端执行器及手术系统
CN218784457U (zh) * 2022-09-02 2023-04-04 北京和华瑞博医疗科技有限公司 末端执行器及手术系统
CN219480334U (zh) * 2022-10-31 2023-08-08 北京和华瑞博医疗科技有限公司 末端执行器及手术系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180055517A1 (en) * 2011-10-18 2018-03-01 Mako Surgical Corp. System and method for robotic surgery
CN104918573A (zh) * 2012-12-21 2015-09-16 玛口外科股份有限公司 用于外科手术工具的触觉控制的系统和方法
US20210177450A1 (en) * 2018-08-31 2021-06-17 Norwegian University Of Science And Technology Surgical cutting tool
CN112568997A (zh) * 2019-09-27 2021-03-30 格罗伯斯医疗有限公司 直接刀片引导系统
CN114727825A (zh) * 2019-11-22 2022-07-08 新特斯有限责任公司 外科工具和包括此类外科工具的机器人系统
CN111227935A (zh) * 2020-02-20 2020-06-05 中国科学院长春光学精密机械与物理研究所 一种手术机器人导航定位系统
CN111345895A (zh) * 2020-03-13 2020-06-30 北京天智航医疗科技股份有限公司 全膝关节置换手术机器人辅助系统、控制方法及电子设备
CN111772727A (zh) * 2020-07-01 2020-10-16 北京和华瑞博医疗科技有限公司 一种截骨锯片防抖动的控制方法和系统
CN112603544A (zh) * 2020-12-22 2021-04-06 南京佗道医疗科技有限公司 一种机械臂末端执行器校准系统及方法
CN218784458U (zh) * 2022-09-02 2023-04-04 北京和华瑞博医疗科技有限公司 末端执行器及手术系统
CN218784457U (zh) * 2022-09-02 2023-04-04 北京和华瑞博医疗科技有限公司 末端执行器及手术系统
CN219480334U (zh) * 2022-10-31 2023-08-08 北京和华瑞博医疗科技有限公司 末端执行器及手术系统

Similar Documents

Publication Publication Date Title
US20220323162A1 (en) Active robotic pin placement in total knee arthroplasty
US11633233B2 (en) Surgical system for cutting an anatomical structure according to at least one target cutting plane
US11607229B2 (en) Surgical system for cutting an anatomical structure according to at least one target plane
JP6368906B2 (ja) 身体部分の計画されたボリュームの処置用システム
US9421019B2 (en) Robotic guide assembly for use in computer-aided surgery
WO2015027065A2 (en) Intraoperative dynamic trialing
CN219661885U (zh) 关节手术装置及外科手术系统
JP2023505164A (ja) 医療処置を施行するために道具を軸と整列させるためのシステム及び方法
CN112971988B (zh) 膝关节置换手术机器人
CN218784458U (zh) 末端执行器及手术系统
CN218784457U (zh) 末端执行器及手术系统
WO2024046425A1 (zh) 快插式传动件、末端执行器及手术系统
EP4061252B1 (en) Surgical tool and robotic system comprising such a surgical tool
CN219480334U (zh) 末端执行器及手术系统
CN116725680A (zh) 末端执行器及手术系统
CN117257460B (zh) 关节手术系统
WO2024051571A1 (zh) 连接装置、关节手术装置及外科手术系统
Jakopec et al. Acrobot: a" hands-on" robot for total knee replacement surgery
De Momi et al. Robotic alignment of femoral cutting mask during total knee arthroplasty
CN117257460A (zh) 关节手术系统
CN116725684A (zh) 关节手术装置及外科手术系统
CN116725681A (zh) 末端执行器及手术系统
US20220249107A1 (en) Cut guide for arthroplasty procedures
US20220265376A1 (en) Robotic pin placement
US20220265377A1 (en) Robotic alignment of a tool or pin with a virtual plane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859453

Country of ref document: EP

Kind code of ref document: A1