WO2024046378A1 - 冷藏冷冻装置 - Google Patents

冷藏冷冻装置 Download PDF

Info

Publication number
WO2024046378A1
WO2024046378A1 PCT/CN2023/115879 CN2023115879W WO2024046378A1 WO 2024046378 A1 WO2024046378 A1 WO 2024046378A1 CN 2023115879 W CN2023115879 W CN 2023115879W WO 2024046378 A1 WO2024046378 A1 WO 2024046378A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
refrigeration
vent
interface
air conditioning
Prior art date
Application number
PCT/CN2023/115879
Other languages
English (en)
French (fr)
Inventor
王春利
苗建林
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2024046378A1 publication Critical patent/WO2024046378A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • the present invention relates to controlled atmosphere preservation technology, and in particular to a refrigeration and freezing device.
  • Controlled atmosphere preservation technology is a technology that extends the storage life of food by adjusting the composition of ambient gases. Refrigeration and freezing devices with controlled atmosphere preservation functions are widely popular.
  • a specific gas can be introduced into the storage space through a pipeline.
  • the pipeline is inserted into the storage space to achieve air flow connection, the air connection between the pipeline and the storage space is easily loosened during use, resulting in air leakage.
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide a refrigeration and freezing device.
  • a further object of the present invention is to improve the stability of the air connection between the air conditioning pipeline and the ventilation port of the storage container, and reduce or avoid air leakage due to loose joints.
  • a further object of the present invention is to improve the convenience of use of the storage container.
  • Another further object of the present invention is to simplify the communication method between the storage space and the air conditioning pipeline of the refrigeration and freezing device.
  • a further object of the present invention is to achieve a detachable air path connection between the storage container and the air conditioning pipeline.
  • Yet another further object of the present invention is to securely assemble the positioning mechanism of the air circuit assembly inside the storage room to fix the joint between the air conditioning pipeline and the vent.
  • the present invention provides a refrigeration and freezing device, including:
  • the box body defines a storage compartment inside
  • a storage container is arranged inside the storage room, and a storage space is defined inside the storage container; a vent is provided on the wall of the storage container that communicates with the storage space;
  • An air conditioning pipeline connected to the vent and used to transport gas to enable gas exchange between the storage space and its external environment
  • An air circuit assembly which includes a positioning mechanism that is fixed on the outside of the storage container, and has a joint for the joint between the air conditioning pipeline and the vent to be assembled thereon to achieve fixation. Fixed part.
  • the gas circuit assembly further includes a tubular connector, the first end of which is connected to the vent, and the second end of which is connected to the air conditioning pipeline, and serves as the air conditioning pipeline and the ventilation port. the joint between the mouth; and
  • the fixing portion defines a hollow cylindrical channel into which the tubular connector is inserted to achieve a fixed assembly.
  • the positioning mechanism includes:
  • the body part is fixed in the storage compartment and defines a concave arc-shaped plate that is concave downward and arc-shaped; the concave arc-shaped plate serves as the lower channel wall of the hollow cylindrical channel; and
  • the cover body part defines an upwardly concave arc-shaped plate as the upper channel wall of the hollow cylindrical channel; the upper channel wall and the lower channel wall jointly form the fixing part.
  • the cover part is detachably assembled above the body part;
  • the cover part also defines first threaded holes located on both sides of the upper channel wall; the body part is correspondingly formed with a third threaded hole located on both sides of the lower channel wall and opposite to the first threaded holes one by one. Two threaded holes for detachable assembly via screw connections.
  • the vent is located on the back wall of the storage container; the body part is fixed to the rear side of the storage container; and
  • the positioning mechanism also includes a bending portion, which is formed by bending forward or backward from the end of the body portion, and is disposed in close contact with the side wall of the storage compartment; the bending portion A third threaded hole is opened in the folding portion for fixing the folding portion to the side wall of the storage compartment through screw connection.
  • the vent is a hollow cylindrical shape, and it bulges outward from the wall of the storage container and at least partially extends into the hollow cylindrical channel;
  • the first end of the tubular connector defines a hollow cylindrical interface into which the vent is nested.
  • the gas circuit assembly further includes a gas circuit adapter having a first interface connected to the air conditioning pipeline and a second interface connected to the second end of the tubular connector, and the third interface is connected to the second end of the tubular connector.
  • An airflow channel is connected between the second interface and the first interface, so that the air conditioning pipeline is indirectly connected to the vent;
  • the air flow channel is inclined relative to the horizontal plane.
  • first interface and the second interface are respectively hollow cylindrical interfaces formed by protruding outward from the outer surface of the air path adapter;
  • the interiors of the first interface and the second interface respectively define hollow channels that communicate with the air flow channel and are arranged obliquely with respect to the horizontal plane.
  • the second end of the tubular connector defines a hollow cylindrical interface for the second interface to be nested; one end of the air conditioning pipeline connected to the ventilation port defines a hollow cylindrical interface for the first interface to be nested.
  • the refrigeration and freezing device also includes:
  • An oxygen treatment device is arranged in the box and has a shell and an electrode pair.
  • the interior of the shell defines an electrochemical reaction chamber for containing electrolyte.
  • the electrode pair is arranged in the electrochemical reaction chamber.
  • the chamber is used to transfer external oxygen to the electrochemical reaction chamber through electrochemical reaction;
  • the housing is provided with an exhaust hole connected to the electrochemical reaction chamber, and is used to discharge oxygen from the electrochemical reaction chamber. ;
  • One end of the air conditioning pipeline away from the vent is used to communicate with the exhaust hole.
  • the refrigeration and freezing device further includes a liquid storage module, which is disposed in the box and has a A box body, the interior of which defines a liquid storage space for storing liquid;
  • the box body is provided with an air inlet and an air outlet; wherein, the air inlet is connected to the exhaust hole to allow oxygen discharged from the exhaust hole to pass into the liquid storage space to filter soluble impurities;
  • the air outlet is used to allow filtered oxygen to be discharged outward, and is directly connected to an end of the air conditioning pipeline away from the vent, so that the air conditioning pipeline is indirectly connected to the exhaust hole.
  • the refrigeration and freezing device of the present invention can reduce or avoid the connection between the air conditioning pipeline and the vent of the storage container by arranging the air path assembly and using the positioning mechanism of the air path assembly to fix the joint between the air conditioning pipeline and the vent of the storage container.
  • the joints between the vents are loose, which is beneficial to improving the stability of the air path connection between the air conditioning pipeline and the vents of the storage container, and reducing or avoiding air leakage due to loose joints.
  • the refrigeration and freezing device of the present invention uses a positioning mechanism to fix the joint between the air conditioning pipeline and the vent. Even if the storage container deviates from the original position or shakes when the user takes and places items, it will not The air conditioning pipelines involved will move accordingly. And when the storage container is returned to its position, the air connection can be re-established with the air conditioning pipeline. Therefore, based on the solution of the present invention, the storage container does not need to be fixedly installed in the storage room, and the air path connection between the air conditioning pipeline and the vent does not restrict the movement of the storage container, which improves storage efficiency. Convenience of use of container.
  • a tubular connector is provided, one end of the tubular connector is connected to the vent, and the other end is connected to the air conditioning pipeline, and the tubular connector is used as a gap between the air conditioning pipeline and the vent.
  • the joint part cleverly connects the air-conditioning pipeline and the vent. There is no need to directly seal the connection between the port of the air-conditioning pipeline and the vent. This is conducive to simplifying the connection between the storage space and the air-conditioning pipeline of the refrigeration and freezing device. way of connecting between.
  • the vent when the vent is in the shape of a hollow column and at least partially extends into the hollow cylindrical channel and is nested within the hollow cylindrical channel defined by the first connecting portion of the tubular connector. , moving the storage container in the direction away from the tubular connector can make the vent come out of the hollow cylindrical channel defined by the first connecting part, and moving the storage container in the direction close to the tubular connector can make the vent re-nested.
  • the air path connection between the storage container and the air conditioning pipeline can be detachably achieved.
  • the main body when a ventilation opening is opened on the back wall of the storage container, the main body is fixed to the rear side of the storage container, and the end of the main body is connected to a forwardly bent
  • the bending part when the bending part is connected, the bending part can be fixedly connected to the side wall of the storage compartment through screw connection. Therefore, based on the above structure, on the one hand, the positioning mechanism of the air path assembly can be stably assembled in the storage compartment. , to fix the joint between the air conditioning pipeline and the vent.
  • the body part can be fixed at any position away from the back wall of the storage compartment, so that there is a predetermined gap between the body part and the back wall of the storage compartment. Leave enough space for piping.
  • Figure 1 is a schematic structural diagram of a refrigeration and freezing device according to an embodiment of the present invention
  • Figure 2 is a schematic internal structure diagram of a refrigeration and freezing device according to an embodiment of the present invention.
  • Figure 3 is a schematic exploded view of the internal structure of the refrigeration and freezing device shown in Figure 2;
  • Figure 4 is a partial enlarged view of position A in Figure 3;
  • FIG. 5 is a schematic structural diagram of the air path adapter of the refrigeration and freezing device shown in Figure 3;
  • Figure 6 is a schematic perspective view of the air path adapter of the refrigeration and freezing device shown in Figure 5;
  • Figure 7 is a schematic structural diagram of an oxygen treatment device of a refrigeration and freezing device according to one embodiment of the present invention.
  • Figure 8 is a schematic exploded view of the oxygen treatment device of the refrigeration and freezing device shown in Figure 7;
  • Figure 9 is a schematic structural diagram of a refrigeration and freezing device according to an embodiment of the present invention.
  • Figure 10 is a schematic internal structure diagram of the refrigeration and freezing device shown in Figure 9;
  • Figure 11 is a schematic structural diagram of the inner tank of the refrigeration and freezing device according to one embodiment of the present invention.
  • Figure 12 is a schematic structural diagram of the liquid storage module of the refrigeration and freezing device shown in Figure 10;
  • FIG. 13 is a schematic perspective view of the liquid storage module of the refrigeration and freezing device shown in FIG. 12 .
  • the refrigeration and freezing device 10 will be described below with reference to FIGS. 1 to 13 .
  • the directions or positional relationships indicated by “inside”, “outside”, “up”, “down”, “top”, “bottom”, “horizontal”, “horizontal”, “vertical”, etc. are based on the directions or positional relationships shown in the drawings, and only It is intended to facilitate the description of the present invention and simplify the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation of the present invention.
  • some of the drawings of the present invention are illustrated in perspective form.
  • first”, “second”, etc. are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first”, “second”, etc. may explicitly or implicitly include at least one of the features, that is, include one or more of the features. It should be understood that the term “plurality” means at least two, such as two, three, etc. Unless otherwise expressly and specifically limited. When a feature "includes or includes” one or some of the features it encompasses, unless specifically described otherwise, this indicates that other features are not excluded and may further be included.
  • FIG. 1 is a schematic structural diagram of a refrigeration and freezing device 10 according to an embodiment of the present invention.
  • Figure 2 is a schematic internal structure diagram of the refrigeration and freezing device 10 according to one embodiment of the present invention.
  • the refrigeration and freezing device 10 may generally include a box 100, a storage container 600, an air conditioning pipeline 440 and an air circuit assembly.
  • the refrigeration and freezing device 10 in the embodiment of the present invention may be a refrigerator, or a refrigeration equipment with a low-temperature storage function such as a refrigerator, a freezer, or a refrigerator.
  • the interior of the box 100 defines a storage compartment.
  • the box 100 may include an inner bladder, and the inner side of the inner bladder may define the above-mentioned storage compartment.
  • the storage container 600 is disposed in the storage room, and defines a storage space inside.
  • a vent 610 is provided on the wall of the storage container 600 to communicate with the storage space.
  • the vent 610 may be an opening or a hole opened on the container wall of the storage container 600 .
  • the air conditioning pipeline 440 is connected to the vent 610 and is used to transport gas to allow gas exchange between the storage space and its external environment.
  • the external environment of the storage space may refer to other spaces located inside the box 100 and outside the storage space, such as the air supply duct between the air duct cover and the rear wall of the inner tank, the foam layer, or the press chamber. etc.; when the storage space is the internal space of the storage container 600 disposed in the storage compartment, the external environment of the storage space may refer to the internal space of the storage compartment formed outside the storage container 600 . In other examples, the external environment of the storage space may also refer to the external space of the box 100 .
  • FIG. 3 is a schematic exploded view of the internal structure of the refrigeration and freezing device 10 shown in FIG. 2 .
  • Figure 4 is a partial enlarged view of position A in Figure 3.
  • the air path assembly includes a positioning mechanism 850, which is fixed on the outside of the storage container 600, and has a fixing portion for mounting the joint between the air conditioning pipe 440 and the vent 610 to achieve fixation.
  • the air conditioning pipeline 440 and the vent 610 of the storage container 600 can be reduced or avoided.
  • the joints between 610 are loose, which is beneficial to improving the stability of the air path connection between the air conditioning pipeline 440 and the vent 610 of the storage container 600, and reducing or avoiding air leakage due to loose joints.
  • the air conditioning pipeline 440 and the vent 610 of the storage container 600 can be connected in any suitable manner to achieve air path communication.
  • the air-conditioning pipeline 440 can be directly connected to the vent 610.
  • the end section of the air-conditioning pipeline 440 connected to the vent 610 serves as the gap between the air-conditioning pipeline 440 and the vent 610. joint part.
  • a connection structure may be provided between the air conditioning pipeline 440 and the vent 610 so that the air conditioning pipeline 440 is indirectly connected to the vent 610.
  • the connecting structure can be used as a joint between the air conditioning pipeline 440 and the vent 610 .
  • the positioning mechanism 850 is used to fix the joint between the air conditioning pipeline 440 and the vent 610. Even if the storage container 600 deviates from the original position or shakes when the user takes and places items, the air conditioning pipeline 440 will not be affected. Move accordingly, and when the storage container 600 returns to its original position, air can be re-established with the air conditioning line 440. Therefore, based on the solution of this embodiment, the storage container 600 does not need to be fixedly installed in the storage room, and the air connection between the air conditioning pipeline 440 and the vent 610 does not restrict the storage container. 600, which improves the convenience of use of the storage container 600.
  • the gas circuit assembly also includes a tubular connector 820, the first end of which is connected to the ventilation port 610, and the second end of which is connected to the air conditioning pipeline 440, and serves as the air conditioning pipeline 440 and the ventilation port.
  • the fixing portion defines a hollow cylindrical channel into which the tubular connector 820 is inserted to achieve a fixed assembly.
  • tubular connector 820 By arranging the tubular connector 820, one end of the tubular connector 820 is connected to the vent 610, and the other end is connected to the air conditioning pipeline 440, and the tubular connector 820 is used as the joint between the air conditioning pipeline 440 and the vent 610,
  • the air-conditioning pipeline 440 and the vent 610 are cleverly connected. There is no need to directly seal the connection between the port of the air-conditioning pipeline 440 and the vent 610, which is conducive to simplifying the storage space and air-conditioning pipe of the refrigeration and freezing device 10. way of connecting between roads 440.
  • the positioning mechanism 850 includes a body part 851 and a cover part 852 .
  • the main body part 851 is fixed in the storage compartment, and defines a concave arc-shaped plate that is concave downward and arc-shaped; the concave arc-shaped plate serves as the lower channel wall of the hollow cylindrical channel.
  • the cover body portion 852 defines an upwardly concave arc-shaped plate that is concave and arc-shaped as the upper channel wall of the hollow cylindrical channel.
  • the upper channel wall and the lower channel wall together form a fixing part.
  • the main body part 851 and the cover body part 852 can be separately provided and are not integrally formed.
  • the body part 851 and the cover part 852 jointly define a hollow cylindrical channel for arranging the tubular connector 820. Since the body part 851 and the cover part 852 can be separated and independently arranged, when assembling the tubular connector 820, it is possible to First place the tubular connector 820 on the concave arc plate of the body part 851, and then fix the cover part 852 on the body part 851. In this way, the tubular connector 820 can be stably assembled on the hollow cylinder. inside the channel. And when it is necessary to disassemble the tubular connector 820, just separate the body part 851 and the cover part 852, and the disassembly process is simple.
  • the cover portion 852 is detachably assembled above the main body portion 851 .
  • the cover portion 852 also defines first threaded holes on both sides of the upper channel wall.
  • the body part 851 is correspondingly formed with second threaded holes located on both sides of the lower channel wall and opposite to the first threaded holes, so as to achieve detachable assembly through screwing.
  • the vent 610 is located on the back wall of the storage container 600 .
  • the body portion 851 can be disposed in close contact with the back wall of the storage container 600 .
  • the positioning mechanism 850 also includes a bending portion 854, which is formed by bending forward or backward from the end of the body portion 851, and is disposed in close contact with the side wall of the storage compartment.
  • the bent portion 854 is provided with a third threaded hole for fixing the bent portion 854 to the side wall of the storage compartment through screw connection.
  • the body part 851 When the vent 610 is opened on the back wall of the storage container 600, the body part 851 is fixed to the rear side of the storage container 600, and the bending part 854 bent forward is connected to the end of the body part 851, Since the bending portion 851 can be fixedly connected to the side wall of the storage compartment through screwing, based on the above structure, on the one hand, the positioning mechanism 850 of the air path assembly can be stably assembled in the storage compartment to fix it.
  • the joint between the air conditioning pipeline 440 and the vent 610 can, on the other hand, fix the body part 851 at any position away from the back wall of the storage compartment, so that there is a gap between the body part 851 and the back wall of the storage compartment. Leave enough space for piping.
  • the vent 610 is hollow cylindrical, and it bulges outward from the wall of the storage container 600 and at least partially extends into it. Inside the hollow cylindrical channel.
  • the first end 821 of the tubular connector 820 defines a hollow cylindrical interface into which the vent 610 is nested.
  • the vent 610 When the vent 610 is hollow cylindrical and at least partially extends into the hollow cylindrical channel and is nested within the hollow cylindrical channel defined by the first end 821 of the tubular connector 820, along the direction away from the tubular connector 820 By moving the storage container 600 in a direction, the vent 610 can escape from the hollow cylindrical channel defined by the first end 821 of the tubular connector 820. By moving the storage container 600 in a direction close to the tubular connector 820, the vent 610 can be It is re-nested in the hollow cylindrical channel defined by the first end 821 of the tubular connector 820. Therefore, based on the above structure, the storage container 600 and the air conditioning pipeline 440 can be detachably realized. Air connection.
  • the gas circuit assembly further includes a gas circuit adapter 810 .
  • FIG. 5 is a schematic structural diagram of the air path adapter 810 of the refrigeration and freezing device 10 shown in FIG. 3 .
  • FIG. 6 is a schematic perspective view of the air path adapter 810 of the refrigeration and freezing device 10 shown in FIG. 5 .
  • the air path adapter 810 has a first interface 811 connected to the air conditioning pipeline 440 and a second interface 812 connected to the second end of the tubular connector 820, and an air flow channel 813 is connected between the second interface 812 and the first interface 811. , so that the air conditioning pipeline 440 is indirectly connected to the vent 610 .
  • the air flow channel 813 is arranged obliquely with respect to the horizontal plane.
  • Storage spaces are generally cooler. Since the air path adapter 810 is directly connected to the vent 610 of the storage container 600 through the tubular connector 820 and is close to the storage space, when the temperature of the storage space is low, the air path adapter 810 The temperature of 810 is also correspondingly lower.
  • the angle between the air flow channel 813 and the horizontal plane can form an acute or right angle.
  • the gas flowing through the air path adapter 810 contains moisture and stores
  • the moisture carried by the gas is not easy to stay inside the air flow channel 813, which is helpful to reduce or avoid the air flow channel 813 being blocked due to frost and dew, and achieve sustainability between the storage space and its external environment.
  • Ground gas exchange enables the storage space to maintain a low-temperature preservation atmosphere for a long time.
  • the first interface 811 and the second interface 812 are respectively hollow cylindrical interfaces formed by protruding outward from the outer surface of the gas path adapter 810 .
  • the interiors of the first interface 811 and the second interface 812 respectively define hollow passages that communicate with the airflow passage 813 and are inclined relative to the horizontal plane. That is, the hollow channel of the first interface 811 and the hollow channel of the second interface 812 are also respectively arranged at an angle.
  • the second end 822 of the tubular connector 820 defines a hollow cylindrical interface for the second interface 812 to be nested therein, and one end of the air conditioning pipeline 440 connected to the vent 610 defines a hollow cylindrical interface for the first interface 811 to be nested.
  • the hollow cylindrical interface allows the air conditioning pipeline 440 to indirectly communicate with the vent 610 .
  • the air flow channel 813 of the air path adapter 810 includes a first channel section 813a and a second channel section 813b.
  • the first channel section 813a is connected to the hollow channel inside the first interface 811.
  • the second channel section 813b is connected to the first channel section 813a and to the hollow channel inside the second interface 812 .
  • the degree of inclination of the second channel section 813b is set to be different from the degree of inclination of the first channel section 813a.
  • the angle between the second channel section 813b and the horizontal plane is different from the angle between the first channel section 813a and the horizontal plane, which will cause the liquid carried by the gas to flow through the first channel section 813a and the second channel section 813a.
  • the flow rates of the two channel sections 813b are different.
  • the connection method between each channel section and the corresponding interface can be simplified, and on the other hand, since the gas flows through the first channel area
  • the flow rates of the section 813a and the second channel section 813b are different. Therefore, the above solution of this embodiment can further reduce the risk of airway blockage in the airflow channel 813.
  • the angle between the first channel section 813a and the horizontal plane is greater than the angle between the second channel section 813b and the horizontal plane.
  • the air conditioning pipeline 440 delivers gas to the storage space, even the liquid carried by the gas may condense in the first channel section 813a and the second channel section 813b, because the liquid carried by the gas It will first condense in the first channel section 813a, and the flow rate of the liquid droplets is relatively large.
  • these liquid beads enter the second channel section 813b, they will wash the surface of the second channel section 813b, enveloping the second channel section 813b.
  • the liquid beads condensed inside continue to flow forward at a high speed, thereby effectively reducing the risk of air path blockage in the air path adapter 810 .
  • the first interface 811 is formed in the upper section of the air path adapter 810 , and the hollow channel inside the first interface 811 is inclined upward in a direction away from the outer surface of the air path adapter 810 .
  • the central axis of the first channel section 813a is coaxial with the central axis of the hollow channel inside the first interface 811. That is to say, the inclination degree of the hollow channel inside the first interface 811 is the same as the inclination degree of the first channel section 813a.
  • the second interface 812 is formed on a side section of the air path adapter 810 and is located below the second interface 812 .
  • the hollow channel inside the second interface 812 is inclined downward in a direction away from the outer surface of the air path adapter 810 .
  • the central axis of the second channel section 813b is coaxial with the central axis of the hollow channel inside the second interface 812. That is, the inclination degree of the hollow channel inside the second interface 812 is the same as the inclination degree of the second channel section 813b.
  • the air conditioning pipeline 440 can be connected to the upper part of the air path adapter 810 , and the tubular connector can be connected to the side of the air path adapter 810 .
  • the port of the air conditioning pipeline 440 can be nested in the hollow channel of the first interface 811 , and the tubular connector can be nested in the hollow channel of the second interface 812 .
  • tubular connector 820 is made of elastic material. Since the tubular connector 820 made of elastic material can closely fit the interface nested therein, using the tubular connector 820 to connect the second interface 812 and the vent 610 can make the second interface 812 and the vent 610 are airtightly joined.
  • the refrigeration and freezing device 10 further includes an oxygen treatment device 300, which is disposed in the box 100 and has a housing 320 and an electrode pair.
  • the interior of the housing 320 defines a chamber for holding the electrolyte.
  • Electrochemical reaction chamber, the electrode pair is arranged in the electrochemical reaction chamber and used to transfer external oxygen to the electrochemical reaction chamber through electrochemical reaction.
  • FIG. 7 is a schematic structural diagram of the oxygen treatment device 300 of the refrigeration and freezing device 10 according to an embodiment of the present invention.
  • FIG. 8 is a schematic exploded view of the oxygen treatment device 300 of the refrigeration and freezing device 10 shown in FIG. 7 .
  • the electrode pair may include a cathode plate 330 and an anode plate 340.
  • the electrochemical reaction chamber is a cathode plate 330 and an anode plate 340 is a place where electrochemical reactions are carried out. It can contain alkaline electrolyte, such as 1 mol/L NaOH, and its concentration can be adjusted according to actual needs.
  • Housing 320 has lateral openings 321 .
  • the housing 320 may be in the shape of a flat rectangular parallelepiped.
  • the lateral opening 321 can be provided on any surface of the housing 320, such as the top surface, bottom surface or side surface.
  • the lateral opening 321 may be provided on the surface of the housing 320 with the largest area.
  • the cathode plate 330 is disposed at the lateral opening 321 to jointly define an electrochemical reaction chamber for containing electrolyte and consuming oxygen through an electrochemical reaction together with the housing 320 .
  • Oxygen in the air can undergo a reduction reaction at the cathode plate 330, namely: O 2 +2H 2 O+4e - ⁇ 4OH - .
  • the anode plate 340 and the cathode plate 330 are spaced apart from each other and are arranged in the electrochemical reaction chamber, and are used to provide reactants to the cathode plate 330 and generate oxygen through electrochemical reactions.
  • the OH - generated by the cathode plate 330 can undergo an oxidation reaction at the anode plate 340 and generate oxygen, that is: 4OH - ⁇ O 2 +2H 2 O+4e - .
  • the housing 320 is provided with an exhaust hole 323 connected to the electrochemical reaction chamber for exhausting oxygen from the electrochemical reaction chamber.
  • One end of the air conditioning pipeline 440 away from the vent 610 (for example, the second end of the air conditioning pipeline 440 ) is used to communicate with the exhaust hole 323 .
  • the second end of the air conditioning pipeline 440 may be directly or indirectly connected to the exhaust hole 323 .
  • One end of the air conditioning pipeline 440 connected to the vent 610 can be used as the first end of the air conditioning pipeline 440 , and the first end of the air conditioning pipeline 440 can be directly or indirectly connected to the first interface 811 of the air path adapter 810 .
  • the housing 320 is provided with a fluid replenishing port 322 connected to the electrochemical reaction chamber.
  • the refrigeration and freezing device 10 also includes a liquid storage module 500, which is disposed in the box 100 and has a box body 510.
  • the interior of the box body 510 defines a liquid storage space for storing liquid, and the liquid storage space is connected to the liquid replenishment port 322.
  • the liquid contained in the liquid storage space may be water or electrolyte, and its concentration may be lower than the electrolyte contained in the electrochemical reaction chamber.
  • the box body 510 is provided with an air inlet 512 and an air outlet 513.
  • the air inlet 512 and the air outlet 513 can be opened on the top wall of the box 510 .
  • the air inlet 512 is connected to the exhaust hole 323 to allow the oxygen discharged from the exhaust hole 323 to pass into the liquid storage space to filter soluble impurities, such as the electrolyte carried by the oxygen.
  • the air outlet 513 is used to allow filtered oxygen to be discharged outward, and is directly connected to an end of the air conditioning pipeline 440 away from the vent 610 so that the air conditioning pipeline 440 is indirectly connected to the exhaust hole 323 .
  • the air conditioning pipeline 440 can deliver clean oxygen to the storage space.
  • the refrigeration and freezing device 10 may include an inner bladder 120 and an inner bladder 150 .
  • the storage compartment may be the internal space of the inner bladder 150 .
  • the inner bladder 150 may define a temperature-changing compartment 152 or a freezing compartment 152 .
  • the above storage space may be named the first storage space.
  • the inner bladder 120 defines another storage compartment, such as a refrigeration compartment, and the storage compartment may define another storage space 122.
  • this storage space may be named a second storage space.
  • the cathode plate of the oxygen treatment device 300 is in gas flow communication with the storage space 122, thereby reducing the oxygen content in the storage space through an electrochemical reaction.
  • the oxygen treatment device 300 may be disposed within the foam layer.
  • Figure 9 is a schematic structural diagram of a refrigeration and freezing device according to an embodiment of the present invention.
  • Figure 10 is a schematic internal structural diagram of the refrigeration and freezing device shown in Figure 9. In order to facilitate illustrating the structure and connection relationship of each component, in the figure The foaming layer is hidden.
  • the refrigeration and freezing device 10 may further include a ventilation pipeline 200 embedded in the foam layer.
  • the ventilation pipeline 200 may include an air intake pipeline 210 and a return air pipeline 220 .
  • the air inlet pipe 210 is used to guide the gas in the storage space 122 to the cathode plate 330
  • the return pipe 220 is used to guide the gas flowing through the cathode plate 330 back to the storage space 122 to reduce the oxygen in the storage space 122 .
  • a first ventilation port connected to the first end of the air inlet pipeline 210 and a second ventilation port connected to the first end of the return air pipeline 220 are formed on the wall of the inner tank 120 .
  • Each ventilation port is an opening formed on the wall of the inner bladder 120 .
  • the second end of the air inlet pipe 210 and the second end of the return air pipe 220 can be connected to the two ends of the cathode plate 330 respectively.
  • the second end of the air inlet pipe 210 can be connected to the upwind side of the cathode plate 330 and the return air pipe.
  • the second end of 220 can be connected to the leeward side of the cathode plate 330, so that the gas flowing out of the air inlet pipe 210 can flow into the return air pipe 220 after flowing through the cathode plate 330.
  • the air inlet pipe 210 and the air return pipe 220 are used to connect the storage space 122 and the oxygen treatment device 300.
  • the gas with a high oxygen content in the storage space 122 can flow to the cathode plate 330 through the air inlet pipe 210.
  • the cathode plate 330 uses the oxygen in it as a reactant to perform an electrochemical reaction to form hypoxic gas with lower oxygen content.
  • hypoxic gases can be returned to the storage space 122 through the return pipeline 220, thereby reducing the storage space. 122The role of oxygen content.
  • the oxygen treatment device 300 can be disposed at any part of the foam layer, for example, it can be disposed on the back of the liner 120 , or can be disposed on the top, bottom, and side of the liner 120 .
  • the oxygen treatment device 300 may be disposed in the gap between the upper inner pot 120 and the lower inner pot 120 .
  • the side of the foam layer facing away from the inner bladder 120 is provided with an assembly groove that communicates with the external environment of the foam layer for assembling the oxygen treatment device 300 .
  • the oxygen treatment device 300 can be assembled into the assembly groove to be disposed in the foam layer.
  • Assembly grooves can be reserved during the foam layer forming process.
  • the assembly groove is recessed along the thickness direction of the foam layer toward the inner bladder 120 and forms a gap with the inner bladder 120 .
  • the assembly groove does not penetrate the foam layer, so that the oxygen treatment device 300 assembled to the assembly groove will not be close to the inner bladder 120 . That is, a certain thickness of heat insulation material is formed between the inner tank 120 and the oxygen treatment device 300 .
  • the oxygen treatment device 300 can be The foam layer is formed and then installed into the assembly groove, which helps to simplify the difficulty of disassembly and assembly of the oxygen treatment device 300 .
  • the solution of this embodiment can reduce or prevent the low-temperature environment of the refrigeration and freezing device 10 from affecting the normal progress of the electrochemical reaction.
  • the oxygen treatment device 300 can be fixed in the assembly groove, and the fixing method includes but is not limited to screwing, snapping, riveting, welding, and bonding.
  • the box body 100 further includes a box shell 170, which is covered on the outside of the foam layer to The foam layer is sandwiched with the inner bladder 120 .
  • the box shell 170 has a back plate, and an assembly groove is formed between the back wall of the inner bladder 120 and the back plate of the box shell 170 . That is to say, the oxygen treatment device 300 of this embodiment is disposed in the foam layer on the back of the inner bladder 120 .
  • the back plate of the box shell 170 can close the opening of the assembly groove to improve the appearance.
  • the back plate of the box shell 170 can be provided with an installation opening facing the assembly groove. During the assembly process, there is no need to disassemble the back plate of the box shell 170 , and the oxygen treatment device 300 can be directly fixed to the assembly through the installation opening. inside the groove.
  • a cover plate may be provided at the installation opening to cover the installation opening to improve the appearance.
  • the oxygen treatment device 300 can be fixed into the assembly groove first, and then the back plate of the box shell 170 is covered on the back of the foam layer.
  • the oxygen treatment device 300 does not need to be pre-installed in the foaming layer to prevent the foaming process from adversely affecting the structure and performance of the oxygen treatment device 300 , and the assembly process of the oxygen treatment device 300 can be done on the back of the refrigeration and freezing device 10 Execution, with the advantages of simple assembly process.
  • a compressor chamber for installing a compressor is also defined within the box 100 .
  • the oxygen treatment device 300 may be installed in the compressor chamber.
  • a support plate for fixing the compressor is provided at the bottom of the compressor chamber, and the oxygen treatment device 300 can be directly or indirectly disposed on the support plate.
  • the box body 510 is disposed within the foam layer.
  • the liquid stored in the box body 510 can be used to replenish the oxygen treatment device 300.
  • the refrigeration and freezing device 10 can use the liquid storage module 500 to replenish the electrolyte to the oxygen treatment device 300 without affecting the volume ratio, so that the oxygen treatment device 300 can The oxygen content of storage space 122 is continuously adjusted.
  • the box body 510 of the liquid storage module 500 can be disposed at any part of the foam layer, for example, it can be disposed on the side of the inner bladder 150 , or can be disposed on the top, bottom and back of the inner bladder 150 .
  • the box body 510 of the liquid storage module 500 may be disposed in the gap between the upper inner pot 150 and the lower inner pot 150 .
  • the box body 100 also has a box shell, and the foam layer is formed between the box shell and the inner bladder 150 .
  • the box cover is provided on the outside of the foam layer to sandwich the foam layer with the inner bladder 150 .
  • the refrigeration and freezing device may include a refrigeration inner pot, a variable temperature inner pot, and a freezing inner pot.
  • the box body can be disposed in the foam layer outside the refrigerated inner bag.
  • FIG 11 is a schematic structural diagram of the inner bladder 120 of the refrigeration and freezing device 10 according to an embodiment of the present invention.
  • the liner 120 is provided with an opening-shaped interactive window 124, and the foam layer has an installation groove communicating with the interactive window 124 for assembling the liquid storage module 500.
  • the liquid storage module 500 can be assembled into the installation groove, thereby being disposed in the foam layer.
  • the installation groove can be reserved during the foam layer forming process.
  • the installation groove is recessed in a direction away from the interaction window 124 along the thickness direction of the foam layer, and forms a gap with the box shell. In other words, the installation groove does not penetrate through the foam layer, so that the liquid storage module 500 assembled into the installation groove will not be close to the tank shell. That is, a certain thickness of heat insulation material is formed between the box shell and the oxygen treatment device 300 .
  • the liquid storage module 500 does not need to be pre-installed in the foaming layer to avoid the adverse effects of the foaming process on the structure and performance of the liquid storage module 500 , and the assembly process of the liquid storage module 500 can be done in the storage space 122 It is executed in-house and has the advantages of simple assembly process.
  • the liquid storage module 500 can be installed in the foam layer. After molding, it is installed into the installation groove, which helps to simplify the difficulty of disassembly and assembly of the liquid storage module 500 . Moreover, since the installation groove does not penetrate the foam layer, the solution of this embodiment can reduce or avoid the significant reduction in the thermal insulation performance of the refrigeration and freezing device 10 caused by installing the liquid storage module 500 in the foam layer.
  • the liquid storage module 500 can be fixed in the installation groove, and the fixing method includes but is not limited to screwing, snapping, riveting, welding, and bonding.
  • the box body 510 is provided with a liquid injection port 514 connected to the liquid storage space, and the liquid injection port 514 is exposed through the interactive window 124, thereby allowing external liquid to be injected into the liquid storage space.
  • FIG. 12 is a schematic structural diagram of the liquid storage module of the refrigeration and freezing device shown in FIG. 10 .
  • FIG. 13 is a schematic perspective view of the liquid storage module of the refrigeration and freezing device shown in FIG. 12 .
  • the liquid filling port 514 is disposed on the side wall of the box body 510 facing the storage space 122 so as to be exposed through the interactive window 124 .
  • the interactive window 124 By opening an interactive window 124 on the inner tank 150 and connecting the liquid filling port 514 of the box 510 to the storage space 122 through the interactive window 124, the interactive window 124 can be used as an operation window for the user to add fluid to the liquid storage space. Since the interactive window 124 can expose the liquid injection port 514, when the liquid storage volume of the liquid storage space is insufficient, external liquid can be injected into the liquid storage space through the liquid injection port 514. Therefore, the above solution of this embodiment can simplify the liquid storage module.
  • the liquid replenishment method of 500 enables the liquid storage module 500 to replenish the electrolyte to the oxygen treatment device 300 continuously.
  • the box body 510 is provided with a cover 550, and the cover 550 is reciprocally disposed at the liquid filling port 514 to open or close the liquid filling port 514.
  • the cover 550 opens the liquid filling port 514, the liquid filling port 514 is allowed to be exposed.
  • the liquid filling port 514 can be opened only when receiving external liquid, thereby reducing or preventing foreign matter from entering the liquid storage space. , to keep the liquid stored in the liquid storage space clean.
  • the cover 550 may be a push-type pop-up cover that can rotate and pop up under pressure to at least partially extend into the storage space 122 through the interaction window 124 to open the liquid filling port 514 .
  • the bottom of the cover 550 may be connected to the box body 510 through a rotating shaft and be pivotably connected to the box body 510 .
  • the lid body 550 closes the liquid filling port 514, its outer surface is coplanar with the outer surface of the box body 510.
  • the top of the lid body 550 can be connected to the box body 510 through the snap-in structure; when it is necessary to open the liquid filling port 514 , the top of the cover 550 can be pressed to separate the top of the cover 550 from the box 510.
  • the cover 550 can rotate around the rotating axis and at least partially extend into the storage space 122, thereby opening the liquid filling port 514.
  • At least a portion of the box body 510 is made of a transparent material to form a visible area 516 for revealing the liquid storage volume of the box body 510 .
  • the transparent material may be polymethyl methacrylate, polycarbonate, polyethylene terephthalate, or polypropylene.
  • the visible area 516 of this embodiment is exposed through the interactive window 124 .
  • the visible area 516 extends longitudinally and is located below the liquid filling port 514 .
  • the visible area 516 is also provided on the box body 510 facing the storage area. on the side wall of the object space 122 so as to be exposed through the interactive window 124.
  • the interactive window 124 can be used as an observation window for the user to observe the liquid level in the liquid storage space. Since the interactive window 124 can reveal the visible area 516, the user can easily observe the liquid storage volume in the liquid storage space. Therefore, the above solution of this embodiment can enable the user to obtain an intuitive interactive experience. When the liquid storage volume in the liquid storage space is insufficient, the user can take rehydration measures in a timely manner.
  • the interactive window 124 may be located on the side wall of the inner bladder 150, and the mounting groove is correspondingly disposed between the side wall of the inner bladder 150 and the side wall of the box shell.
  • an interactive window 124 is provided on the side wall of the inner tank 150 to allow the liquid to be stored.
  • the module 500 is embedded in the foam layer on the side of the box 100, which can reduce the difficulty of interaction between the user and the liquid storage module 500 to a certain extent. The user can quickly obtain the stored liquid without moving the items stored in the storage space 122.
  • the liquid storage capacity information of the module 500 is stored, and the liquid replenishment operation can be performed in time when the liquid storage capacity of the liquid storage module 500 is insufficient.
  • the liquid storage module 500 may further include a liquid level sensor, which is disposed in the liquid storage space and used to detect the liquid level in the liquid storage space.
  • the refrigeration and freezing device 10 can send out an alarm signal.
  • the alarm signal can be transmitted to the user through wireless transmission technology to remind the user to replenish liquid in time.
  • the box body 510 has a first side wall flush with the side wall of the inner bladder 150 and closing the interaction window 124 and a second side wall opposite the first side wall and hidden inside the mounting groove. .
  • the liquid filling port 514 is located on the first side wall.
  • the opening area of the interactive window 124 and the surface area of the first side wall of the box body 510 can be approximately the same, so that the first side wall of the box body 510 just closes the interactive window 124 and the outer surface of the first side wall is in contact with the side wall of the inner bladder 150
  • the inner surfaces are connected into a complete plane to make the appearance beautiful.
  • the liquid filling port 514 may be provided in the upper section of the first side wall.
  • the visible area 516 can also be provided on the first side wall, for example, it can be provided on the middle section or the lower section of the first side wall.
  • the box body 510 may be generally in the shape of a flat rectangular parallelepiped.
  • the box body 510 is provided with a liquid outlet 511 communicating with the liquid storage space.
  • the box body 510 also has a top wall and a bottom wall connected between the first side wall and the second side wall and arranged oppositely in the vertical direction.
  • a liquid outlet 511 is provided on the bottom wall, and the liquid outlet 511 is connected to the liquid replenishing port 322 to replenish electrolyte to the electrochemical reaction chamber.
  • the box body 510 further has a third side wall and a fourth side wall connected between the first side wall and the second side wall and arranged oppositely in the horizontal direction.
  • a fixing piece 517 is connected to the outer surface of the third side wall and/or the fourth side wall, and the fixing piece 517 has a screw hole for cooperating with a screw to fix the box body 510 to the installation groove.
  • the refrigeration and freezing device 10 also includes a fluid replenishment pipeline 420 embedded in the foam layer.
  • the first end of the fluid replenishment pipeline 420 is connected to the fluid replenishment port 322 of the oxygen treatment device 300 , and the second end of the fluid replenishment pipeline 420 is connected to the liquid storage module 500
  • the liquid outlet 511 is provided to guide the liquid flowing out of the liquid storage space from the liquid outlet 511 to the liquid replenishment port 322, thereby replenishing liquid to the electrochemical reaction chamber.
  • the liquid outlet 511 is higher than the liquid replenishing port 322. In this way, the liquid in the liquid storage space can automatically flow into the electrochemical reaction chamber under the action of gravity without the need for a power device.
  • the liquid outlet 511 can also be transformed to be lower than the liquid replenishment port 322 or be connected to the liquid replenishment port 322. 322 is equal.
  • a pump can be installed on the liquid replenishing pipeline 420 to drive the liquid in the liquid storage space to flow into the electrochemical reaction chamber under the action of the pump; or the siphon principle can be used to cause the liquid in the liquid storage space to flow into the electrochemical reaction chamber. .
  • a one-way valve may be provided on the fluid replacement pipeline 420 to allow one-way passage of liquid from the liquid outlet to ensure one-way flow of liquid flowing through the fluid replacement pipeline 420 .
  • the refrigeration and freezing device 10 also includes a filter pipeline 430 embedded in the foam layer.
  • the first end of the filter pipeline 430 is connected to the exhaust hole 323 of the oxygen treatment device 300 , and the second end of the filter pipeline 430 is connected to the box 510
  • the air inlet 512 is used to guide the oxygen flowing out from the exhaust hole 323 to the air outlet 513, so as to enter the liquid storage space for filtration.
  • the liquid storage module 500 may further include an air filter pipe 540 and an air outlet pipe.
  • the air filter pipe 540 is inserted into the liquid storage space from the air inlet 512 and extends to the bottom section of the liquid storage space to guide the oxygen to be filtered to the liquid storage space so that the soluble impurities in the oxygen are dissolved in the liquid storage space.
  • the air outlet pipe is inserted into the box body 510 from the air outlet 513, and extends to the upper section of the liquid storage space, and is located above the liquid stored in the liquid storage space, so as to guide the filtered oxygen out through it.
  • the oxygen to be filtered can reach the liquid storage space under the guidance of the air filter pipe 540, and flow through the liquid stored in the liquid storage space, so that the soluble impurities in the oxygen are dissolved in the liquid storage space, completing the purification of the gas.
  • the purified gas can flow into the designated space under the guidance of the air outlet pipe, thereby regulating the oxygen content in the space.
  • the liquid storage module 500 further includes an air blocking mechanism 530, which is disposed in the liquid storage space and separates the liquid storage space into a gas filter area and a non-gas filter area where the air path is blocked.
  • the gas filter area is used to allow the gas flowing into the air inlet 512 to flow therethrough to achieve filtration.
  • the non-filtered area is used to receive liquid from the outside.
  • the air filter area and the non-air filter area can be arranged side by side in the transverse direction.
  • the air blocking mechanism 530 blocks a part of the liquid path between the air filter area and the non-air filter area, so that the air filter area and the non-air filter area can be blocked when the air path is blocked. Keep the fluid path connected.
  • the air blocking mechanism 530 is a partition-like structure located between the air filter area and the non-air filter area and extends downward from the lower surface of the top wall of the box body 510 and forms a gap with the upper surface of the bottom wall of the box body 510 .
  • the air filtering area is located on one lateral side of the air blocking mechanism 530 , and the non-air filtering area is located on the other lateral side of the air blocking mechanism 530 .
  • the air inlet 512 and the air outlet 513 can be respectively provided on the top wall of the area where the air filter area is located.
  • the liquid injection port 514 can be provided on the top wall of the area where the non-air filter area is located.
  • the air blocking mechanism 530 in the liquid storage space, and using the air blocking mechanism 530 to separate the liquid storage space into a filtered air area and a non-air filtered area where the air path is blocked, it is possible to execute the operation only in the air filtered area.
  • Gas purification function Since the air filter area is only a subspace of the liquid storage space and is blocked from other areas of the liquid storage space, the gas flowing into the air inlet 512 can only flow in the air filter area without The liquid storage module 500 of this embodiment has a high purification gas release rate due to free diffusion into the non-filtered gas area, resulting in the inability to discharge quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

本发明提供了一种冷藏冷冻装置,包括:箱体,其内部限定出储物间室;储物容器,设置于储物间室内,且其内部限定出储物空间;储物容器的壁上开设有连通储物空间的通气口;气调管路,其连通通气口,并用于输送气体,使得储物空间与其外部环境进行气体交换;和气路总成,其包括定位机构,定位机构固定于储物容器外部,且其具有供气调管路与通气口之间的接合部位装配其上以实现固定的固定部。本发明的方案可以减少或避免气调管路与通气口之间的接合部位出现松动,有利于提高气调管路与储物容器的通气口之间的气路连接的稳定性,减少或避免漏气。

Description

冷藏冷冻装置 技术领域
本发明涉及气调保鲜技术,特别是涉及冷藏冷冻装置。
背景技术
气调保鲜技术是通过调节环境气体成分来延长食品贮藏寿命的技术。具备气调保鲜功能的冷藏冷冻装置广受青睐。
发明人认识到,对于冷藏冷冻装置而言,若要调节储物空间的气体成分,可以借助管路向储物空间通入特定气体。然而,当将管路插入储物空间以实现气流连接时,在使用过程中,管路与储物空间之间的气路连接极易出现松动现象,导致漏气。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冷藏冷冻装置。
本发明的一个进一步的目的是要提高气调管路与储物容器的通气口之间的气路连接的稳定性,减少或避免因接合部位松动而漏气。
本发明的一个更进一步的目的是要提高储物容器的使用便利性。
本发明的另一个进一步的目的是要简化冷藏冷冻装置的储物空间与气调管路之间的连通方式。
本发明的再一个进一步的目的是要使储物容器与气调管路之间以可拆卸的方式实现气路连接。
本发明的又一个进一步的目的是要使气路总成的定位机构稳固地装配于储物间室内,以固定气调管路与通气口之间的接合部位。
特别地,本发明提供了一种冷藏冷冻装置,包括:
箱体,其内部限定出储物间室;
储物容器,设置于所述储物间室内,且其内部限定出储物空间;所述储物容器的壁上开设有连通所述储物空间的通气口;
气调管路,其连通所述通气口,并用于输送气体,使得所述储物空间与其外部环境进行气体交换;和
气路总成,其包括定位机构,所述定位机构固定于所述储物容器外部,且其具有供所述气调管路与所述通气口之间的接合部位装配其上以实现固定的固定部。
可选地,所述气路总成还包括管状连接件,其第一端连通所述通气口,其第二端连通所述气调管路,并作为所述气调管路与所述通气口之间的接合部位;且
所述固定部限定出供所述管状连接件插入其中以实现固定装配的中空筒状通道。
可选地,所述定位机构包括:
本体部,所述本体部固定于所述储物间室内,且限定出向下凹陷并呈弧状的下凹弧形板;所述下凹弧形板作为所述中空筒状通道的下部通道壁;和
盖体部,其限定出向上凹陷并呈弧状的上凹弧形板,作为所述中空筒状通道的上部通道壁;所述上部通道壁和所述下部通道壁共同形成所述固定部。
可选地,所述盖体部可拆卸地装配于所述本体部的上方;且
所述盖体部还限定出位于所述上部通道壁两侧的第一螺纹孔;所述本体部相应形成有位于所述下部通道壁两侧并与所述第一螺纹孔一一相对的第二螺纹孔,以通过螺接实现可拆卸地装配。
可选地,所述通气口位于所述储物容器的背壁上;所述本体部固定于所述储物容器的后侧;且
所述定位机构还包括弯折部,所述弯折部自所述本体部的端部向前或向后弯折形成,且与所述储物间室的侧壁贴靠设置;所述弯折部开设有第三螺纹孔,以通过螺接将所述弯折部固定装配至所述储物间室的侧壁。
可选地,所述通气口为中空柱状,且其自所述储物容器的壁向外隆起并至少部分地伸入所述中空筒状通道内;且
所述管状连接件的第一端限定出供所述通气口嵌套其中的中空筒状接口。
可选地,所述气路总成还包括气路转接件,其具有连通所述气调管路的第一接口以及连通所述管状连接件的第二端的第二接口,且所述第二接口与所述第一接口之间连接有气流通道,使得所述气调管路间接地连通所述通气口;
所述气流通道相对于水平面倾斜设置。
可选地,所述第一接口和所述第二接口分别为自所述气路转接件的外表面向外隆起形成的中空柱状接口;且
所述第一接口和所述第二接口的内部分别限定出连通所述气流通道并且相对于水平面倾斜设置的中空通道。
可选地,所述管状连接件的第二端限定出供所述第二接口嵌套其中的中空筒状接口;所述气调管路连通所述通气口的一端限定出供所述第一接口嵌套其中的中空筒状接口。
可选地,冷藏冷冻装置还包括:
氧气处理装置,设置于所述箱体内,且其具有壳体和电极对,所述壳体的内部限定出用于盛装电解液的电化学反应仓,所述电极对设置于所述电化学反应仓且用于通过电化学反应将外部氧气转移至所述电化学反应仓;所述壳体上开设有连通所述电化学反应仓的排气孔,用于排出所述电化学反应仓的氧气;
所述气调管路远离所述通气口的一端用于连通所述排气孔。
可选地,所述冷藏冷冻装置还包括储液模块,其设置于所述箱体内,且其具有 盒体,所述盒体的内部限定出用于储液的储液空间;
所述盒体上开设有进气口和出气口;其中,所述进气口连通所述排气孔,以允许所述排气孔排出的氧气通入所述储液空间以过滤可溶性杂质;所述出气口用于允许过滤后的氧气向外排出,且直接地连通所述气调管路远离所述通气口的一端,使所述气调管路间接地连通所述排气孔。
本发明的冷藏冷冻装置,通过设置气路总成,并利用气路总成的定位机构固定气调管路与储物容器的通气口之间的接合部位,可以减少或避免气调管路与通气口之间的接合部位出现松动,这有利于提高气调管路与储物容器的通气口之间的气路连接的稳定性,减少或避免因接合部位松动而漏气。
进一步地,本发明的冷藏冷冻装置,利用定位机构固定气调管路与通气口之间的接合部位,即便储物容器在用户取放物品的过程中偏离原始位置,或者出现晃动,也不会牵连气调管路随之移动。并且当储物容器归位时,可以重新与气调管路建立气路连接。因此,基于本发明的方案,储物容器无需固定不动地设置于储物间室内,气调管路与通气口之间的气路连接并不会制约储物容器的移动,这提高了储物容器的使用便利性。
进一步地,本发明的冷藏冷冻装置,通过设置管状连接件,并使管状连接件的一端连通通气口,另一端连通气调管路,利用管状连接件作为气调管路与通气口之间的接合部位,巧妙地连通气调管路与通气口,气调管路的端口与通气口之间并不需要直接地密封结合,这有利于简化冷藏冷冻装置的储物空间与气调管路之间的连通方式。
进一步地,本发明的冷藏冷冻装置,当通气口为中空柱状并至少部分地伸入中空筒状通道内且嵌套于管状连接件的第一连接部所限定出的中空筒状通道之内时,沿远离管状连接件的方向移动储物容器,可使通气口脱出第一连接部所限定出的中空筒状通道,沿靠近管状连接件的方向移动储物容器,可使通气口重新嵌套于第一连接部所限定出的中空筒状通道之内,因此,基于上述结构,可使储物容器与气调管路之间以可拆卸的方式实现气路连接。
更进一步地,本发明的冷藏冷冻装置,当在储物容器的背壁上开设通气口,并将本体部固定于储物容器的后侧,且在本体部的端部连接向前弯折的弯折部时,由于可以通过螺接使弯折部与储物间室的侧壁固定连接,因此,基于上述结构,一方面可使气路总成的定位机构稳固地装配于储物间室内,以固定气调管路与通气口之间的接合部位,另一方面可使本体部固定在远离储物间室背壁的任意位置,使得本体部与储物间室的背壁之间预留出足够的空间以布置管路。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施 例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意性结构图;
图2是根据本发明一个实施例的冷藏冷冻装置的示意性内部结构图;
图3是图2所示的冷藏冷冻装置的内部结构的示意性分解图;
图4是图3中A处的局部放大图;
图5是图3所示的冷藏冷冻装置的气路转接件的示意性结构图;
图6是图5所示的冷藏冷冻装置的气路转接件的示意性透视图;
图7是根据本发明一个实施例的冷藏冷冻装置的氧气处理装置的示意性结构图;
图8是图7所示的冷藏冷冻装置的氧气处理装置的示意性分解图;
图9是根据本发明一个实施例的冷藏冷冻装置的示意性结构图;
图10是图9所示的冷藏冷冻装置的示意性内部结构图;
图11是根据本发明一个实施例的冷藏冷冻装置的内胆的示意性结构图;
图12是图10所示的冷藏冷冻装置的储液模块的示意性结构图;
图13是图12所示的冷藏冷冻装置的储液模块的示意性透视图。
具体实施方式
现将详细参考本发明的实施例,其一个或多个示例在附图中示出。提供的各个实施例旨在解释本发明,而非限制本发明。事实上,在不脱离本发明的范围或精神的情况下对本发明进行各种修改和变化对于本领域的技术人员来说是显而易见的。例如,图示或描述为一个实施例的一部分的特征可以与另一个实施例一起使用以产生再另外的实施例。因此,本发明旨在涵盖所附权利要求书及其等同物范围内的此类修改和变化。
下面参照图1至图13来描述本发明实施例的冷藏冷冻装置10。其中,“内”“外”“上”“下”“顶”“底”“横向”“水平”“竖直”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。为便于示意装置的结构,本发明的部分附图采用透视的形式进行示意。
在本实施例的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。需要理解的是,术语“多个”的含义是至少两个,例如两个,三个等。除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
在本实施例的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、 “一个示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本发明实施例提供了一种冷藏冷冻装置10。图1是根据本发明一个实施例的冷藏冷冻装置10的示意性结构图。图2是根据本发明一个实施例的冷藏冷冻装置10的示意性内部结构图。冷藏冷冻装置10一般性地可包括箱体100、储物容器600、气调管路440和气路总成。本发明实施例的冷藏冷冻装置10可以为冰箱,也可以为冷柜、冷冻柜或者冷藏柜等具备低温储存功能的制冷设备。
箱体100的内部限定出储物间室。例如,箱体100可以包括内胆,内胆的内侧可以限定出上述储物间室。
储物容器600设置于储物间室内,且其内部限定出储物空间。储物容器600的壁上开设有连通储物空间的通气口610。例如,通气口610可以为开设于储物容器600的容器壁上的开口或开孔。储物容器600可以设置为一个或多个,例如两个。
气调管路440连通通气口610,并用于输送气体,使得储物空间与其外部环境进行气体交换。储物空间的外部环境可以指位于箱体100内部且位于储物空间之外的其他空间,例如风道盖板与内胆后壁之间的送风风道,发泡层,或者压机仓等;当储物空间为设置于储物间室内的储物容器600的内部空间时,储物空间的外部环境可以指形成于储物容器600外部的储物间室的内部空间。在另一些示例中,储物空间的外部环境也可以指箱体100的外部空间。
图3是图2所示的冷藏冷冻装置10的内部结构的示意性分解图。图4是图3中A处的局部放大图。气路总成包括定位机构850,定位机构850固定于储物容器600外部,且其具有供气调管路440与通气口610之间的接合部位装配其上以实现固定的固定部。
通过设置气路总成,并利用气路总成的定位机构850固定气调管路440与储物容器600的通气口610之间的接合部位,可以减少或避免气调管路440与通气口610之间的接合部位出现松动,这有利于提高气调管路440与储物容器600的通气口610之间的气路连接的稳定性,减少或避免因接合部位松动而漏气。
气调管路440与储物容器600的通气口610之间可以采用任意合适的方式进行接合,以实现气路连通。在一个示例中,气调管路440可以直接与通气口610相连接,此时,气调管路440与通气口610相连接的端部区段作为气调管路440与通气口610之间的接合部位。在另一个示例中,气调管路440与通气口610之间可以设置有连接结构,使得气调管路440间接地与通气口610相连接,此时,气调管路440与通气口610之间的连接结构可以作为气调管路440与通气口610之间的接合部位。
利用定位机构850固定气调管路440与通气口610之间的接合部位,即便储物容器600在用户取放物品的过程中偏离原始位置,或者出现晃动,也不会牵连气调管路440随之移动,并且当储物容器600归位时,可以重新与气调管路440建立气 路连接,因此,基于本实施例的方案,储物容器600无需固定不动地设置于储物间室内,气调管路440与通气口610之间的气路连接并不会制约储物容器600的移动,这提高了储物容器600的使用便利性。
在一些可选的实施例中,气路总成还包括管状连接件820,其第一端连通通气口610,其第二端连通气调管路440,并作为气调管路440与通气口610之间的接合部位。固定部限定出供管状连接件820插入其中以实现固定装配的中空筒状通道。
通过设置管状连接件820,并使管状连接件820的一端连通通气口610,另一端连通气调管路440,利用管状连接件820作为气调管路440与通气口610之间的接合部位,巧妙地连通气调管路440与通气口610,气调管路440的端口与通气口610之间并不需要直接地密封结合,这有利于简化冷藏冷冻装置10的储物空间与气调管路440之间的连通方式。
在一些可选的实施例中,定位机构850包括本体部851和盖体部852。其中,本体部851固定于储物间室内,且限定出向下凹陷并呈弧状的下凹弧形板;下凹弧形板作为中空筒状通道的下部通道壁。
盖体部852限定出向上凹陷并呈弧状的上凹弧形板,作为中空筒状通道的上部通道壁。上部通道壁和下部通道壁共同形成固定部。
本体部851和盖体部852可以分离独立设置,并非一体成型。利用本体部851和盖体部852共同限定出中空筒状通道,以供布置管状连接件820,由于本体部851和盖体部852可以分离独立设置,因此,在装配管状连接件820时,可以先将管状连接件820放置在本体部851的下凹弧形板上,然后再将盖体部852固定在本体部851上,这样一来,可使管状连接件820稳固地装配于中空筒状通道内。并且当需要拆卸管状连接件820时,分离本体部851和盖体部852即可,拆卸过程简便。
盖体部852可拆卸地装配于本体部851的上方。盖体部852还限定出位于上部通道壁两侧的第一螺纹孔。本体部851相应形成有位于下部通道壁两侧并与第一螺纹孔一一相对的第二螺纹孔,以通过螺接实现可拆卸地装配。
在一个示例中,通气口610位于储物容器600的背壁上。例如,本体部851可以与储物容器600的背壁贴靠设置。
定位机构850还包括弯折部854,弯折部854自本体部851的端部向前或向后弯折形成,且与储物间室的侧壁贴靠设置。弯折部854开设有第三螺纹孔,以通过螺接将弯折部854固定装配至储物间室的侧壁。
当在储物容器600的背壁上开设通气口610,并将本体部851固定于储物容器600的后侧,且在本体部851的端部连接向前弯折的弯折部854时,由于可以通过螺接使弯折部851与储物间室的侧壁固定连接,因此,基于上述结构,一方面可使气路总成的定位机构850稳固地装配于储物间室内,以固定气调管路440与通气口610之间的接合部位,另一方面可使本体部851固定在远离储物间室背壁的任意位置,使得本体部851与储物间室的背壁之间预留出足够的空间以布置管路。
通气口610为中空柱状,且其自储物容器600的壁向外隆起并至少部分地伸入 中空筒状通道内。管状连接件820的第一端821限定出供通气口610嵌套其中的中空筒状接口。
当通气口610为中空柱状并至少部分地伸入中空筒状通道内且嵌套于管状连接件820的第一端821所限定出的中空筒状通道之内时,沿远离管状连接件820的方向移动储物容器600,可使通气口610脱出管状连接件820的第一端821所限定出的中空筒状通道,沿靠近管状连接件820的方向移动储物容器600,可使通气口610重新嵌套于管状连接件820的第一端821所限定出的中空筒状通道之内,因此,基于上述结构,可使储物容器600与气调管路440之间以可拆卸的方式实现气路连接。
在一些可选的实施例中,气路总成还包括气路转接件810。图5是图3所示的冷藏冷冻装置10的气路转接件810的示意性结构图。图6是图5所示的冷藏冷冻装置10的气路转接件810的示意性透视图。
气路转接件810具有连通气调管路440的第一接口811以及连通管状连接件820的第二端的第二接口812,且第二接口812与第一接口811之间连接有气流通道813,使得气调管路440间接地连通通气口610。气流通道813相对于水平面倾斜设置。
储物空间的温度一般较低。由于气路转接件810经由管状连接件820直接连接至储物容器600的通气口610,且与储物空间距离较近,因此,当储物空间的温度较低时,气路转接件810的温度也相应较低。
通过将气路转接件810的气流通道813相对于水平面倾斜设置,可使气流通道813与水平面之间的夹角形成锐角或直角,当流经气路转接件810的气体含有水分且储物空间的温度较低时,气体所携带的水分不易在气流通道813内部滞留,这有利于减少或避免气流通道813因产生霜露而堵塞,使储物空间与其外部环境之间实现可持续性地气体交换,进而使储物空间能够长期维持低温保鲜气氛。
第一接口811和第二接口812分别为自气路转接件810的外表面向外隆起形成的中空柱状接口。
第一接口811和第二接口812的内部分别限定出连通气流通道813并且相对于水平面倾斜设置的中空通道。即,第一接口811的中空通道和第二接口812的中空通道也分别倾斜设置。
采用上述结构,由于每个接口的中空通道均与气流通道813连通,这相当于延长了气路转接件810的倾斜区段的路径,可以进一步地降低气路转接件810发生气路堵塞的风险,使气调管路440与通气口610之间保持畅通连接。
在一个示例中,管状连接件820的第二端822限定出供第二接口812嵌套其中的中空筒状接口,气调管路440连通通气口610的一端限定出供第一接口811嵌套其中的中空筒状接口,使得气调管路440间接地连通通气口610。
在一些可选的实施例中,气路转接件810的气流通道813包括第一通道区段813a和第二通道区段813b。其中,第一通道区段813a连通第一接口811内部的中空通道。第二通道区段813b连通第一通道区段813a,且连通第二接口812内部的中空通道。
第二通道区段813b的倾斜程度与第一通道区段813a的倾斜程度设置为不同。 换言之,第二通道区段813b与水平面之间的夹角与第一通道区段813a与水平面之间的夹角不同,这会导致气体所携带的液体在流经第一通道区段813a和第二通道区段813b时的流速产生不同。
通过在气路转接件810内布置两个倾斜程度不同的通道区段,一方面可以简化每个通道区段与对应接口之间的连接方式,另一方面由于气体在流经第一通道区段813a和第二通道区段813b时的流速不同,因此,本实施例的上述方案可以进一步地降低气流通道813发生气路堵塞的风险。
在一些可选的实施例中,第一通道区段813a与水平面之间的夹角大于第二通道区段813b与水平面之间的夹角。
采用上述方案,当气调管路440向储物空间输送气体时,即便气体所携带的液体可能会在第一通道区段813a内和第二通道区段813b内凝结,由于气体所携带的液体会率先在第一通道区段813a率内凝结,液珠的流速较大,这些液珠进入第二通道区段813b时会冲刷第二通道区段813b的表面,裹挟着第二通道区段813b内凝结的液珠继续向前高速流动,从而有效降低气路转接件810发生气路堵塞的风险。
在一些可选的实施例中,第一接口811形成于气路转接件810的上部区段,且第一接口811内部的中空通道朝向远离气路转接件810外表面的方向倾斜向上设置。第一通道区段813a的中心轴线与第一接口811内部的中空通道的中心轴线同轴。也就是说,第一接口811内部的中空通道的倾斜程度与第一通道区段813a的倾斜程度相同。
第二接口812形成于气路转接件810的侧部区段,且位于第二接口812的下方。第二接口812内部的中空通道朝向远离气路转接件810外表面的方向倾斜向下设置。第二通道区段813b的中心轴线与第二接口812内部的中空通道的中心轴线同轴。也即,第二接口812内部的中空通道的倾斜程度与第二通道区段813b的倾斜程度相同。
基于上述结构,气调管路440可以连接至气路转接件810的上部,管状连接件可以连接至气路转接件810的侧部。
在一个示例中,气调管路440的端口可以嵌套于第一接口811的中空通道内,管状连接件可以嵌套于第二接口812的中空通道内。
在一个示例中,管状连接件820由弹性材料制成。由于由弹性材料制成的管状连接件820可以与嵌套其中的接口紧密地贴合,因此,采用管状连接件820连通第二接口812与通气口610,能使第二接口812与通气口610之间气密性地接合。
在一些可选的实施例中,冷藏冷冻装置10还包括氧气处理装置300,设置于箱体100内,且其具有壳体320和电极对,壳体320的内部限定出用于盛装电解液的电化学反应仓,电极对设置于电化学反应仓且用于通过电化学反应将外部氧气转移至电化学反应仓。
图7是根据本发明一个实施例的冷藏冷冻装置10的氧气处理装置300的示意性结构图。图8是图7所示的冷藏冷冻装置10的氧气处理装置300的示意性分解图。
电极对可以包括阴极板330和阳极板340。电化学反应仓为阴极板330和阳极板 340进行电化学反应的场所,其内可以盛装碱性电解液,例如1mol/L的NaOH,其浓度可以根据实际需要进行调整。
壳体320具有侧向开口321。例如壳体320可以呈扁平的长方体形状。侧向开口321可以设置在壳体320的任意面上,例如顶面、底面或者侧面。在一个示例中,侧向开口321可以设置在壳体320的面积最大的面上。
阴极板330设置于侧向开口321处以与壳体320共同限定出用于盛装电解液的电化学反应仓,并用于通过电化学反应消耗氧气。空气中的氧气可以在阴极板330处发生还原反应,即:O2+2H2O+4e-→4OH-
阳极板340与阴极板330相互间隔地设置于电化学反应仓内,并用于通过电化学反应向阴极板330提供反应物并生成氧气。阴极板330产生的OH-可以在阳极板340处发生氧化反应,并生成氧气,即:4OH-→O2+2H2O+4e-
以上关于阴极板330和阳极板340的电化学反应的举例仅仅是示意性的,在了解上述实施例的基础上,本领域技术人员应当易于变换电化学反应的类型,或者针对适用于其他电化学反应类型的氧气处理装置300的结构进行拓展,这些变换和拓展均应落入本发明的保护范围。
壳体320上开设有连通电化学反应仓的排气孔323,用于排出电化学反应仓的氧气。气调管路440远离通气口610的一端(例如,气调管路440的第二端)用于连通排气孔323。气调管路440的第二端可以直接或间接地连通排气孔323。气调管路440连通通气口610的一端可以作为气调管路440的第一端,气调管路440的第一端可以直接或间接地连通气路转接件810的第一接口811。
在一些可选的实施例中,壳体320开设有连通电化学反应仓的补液口322。冷藏冷冻装置10还包括储液模块500,其设置于箱体100内,且其具有盒体510,盒体510的内部限定出用于储液的储液空间,储液空间连通补液口322,以向电化学反应仓补充电解液。储液空间所盛装的液体可以为水,或者也可以为电解液,其浓度可以低于电化学反应仓所盛装的电解液。
盒体510上开设有进气口512和出气口513。进气口512和出气口513可以开设于盒体510的顶壁上。其中,进气口512连通排气孔323,以允许排气孔323排出的氧气通入储液空间以过滤可溶性杂质,例如氧气所携带的电解液。出气口513用于允许过滤后的氧气向外排出,且直接地连通气调管路440远离通气口610的一端,使气调管路440间接地连通排气孔323。
采用上述结构,气调管路440可以向储物空间输送洁净的氧气。
在一个示例中,冷藏冷冻装置10可以包括内胆120和内胆150。以上实施例中,储物间室可以为内胆150的内部空间。内胆150可以限定出变温间室152或者冷冻间室152。为便于区分,上述储物空间可以命名为第一储物空间。内胆120限定出另一储物间室,例如冷藏间室,该储物间室内可以限定出另一储物空间122,为便于区分,该储物空间可以命名为第二储物空间。氧气处理装置300的阴极板与储物空间122气流连通,从而通过电化学反应降低储物空间的氧气含量。
在另一个示例中,氧气处理装置300可以设置于发泡层内。图9是根据本发明一个实施例的冷藏冷冻装置的示意性结构图,图10是图9所示的冷藏冷冻装置的示意性内部结构图,为便于示意各个部件的结构以及连接关系,图中隐去了发泡层。此时,冷藏冷冻装置10可以进一步地包括预埋于发泡层的换气管路200。换气管路200可包括进气管路210和回气管路220。
进气管路210用于将储物空间122的气体导引至阴极板330,回气管路220用于将流经阴极板330的气体导引回储物空间122,以降低储物空间122的氧气含量。例如,内胆120的胆壁上开设有连通进气管路210的第一端的第一换气口和连通回气管路220的第一端的第二换气口。每个换气口分别为形成于内胆120胆壁上的开口。进气管路210的第二端以及回气管路220的第二端可以分别连通阴极板330的两端,具体地,进气管路210的第二端可以连通阴极板330的上风侧,回气管路220的第二端可以连通阴极板330的下风侧,使得流出进气管路210的气体可以在流经阴极板330之后流入回气管路220。
采用上述结构,利用进气管路210与回气管路220连通储物空间122与氧气处理装置300,储物空间122内的氧气含量较高的气体可以经进气管路210流动至阴极板330处,使阴极板330利用其中的氧气作为反应物进行电化学反应,形成氧气含量较低的低氧气体,这些低氧气体可以经回气管路220返回至储物空间122,从而起到降低储物空间122氧气含量的作用。
氧气处理装置300可以设置于发泡层的任意部位,例如可以设置于内胆120的背部,或者可以设置于内胆120的顶部、底部以及侧部。对于法式冰箱或者T型冰箱而言,在一个示例中,氧气处理装置300可以设置于上部内胆120与下部内胆120之间的间隙中。
在一些可选的实施例中,发泡层背对内胆120的一侧开设有与发泡层的外部环境相通以供装配氧气处理装置300的装配凹槽。
在发泡层成型之后,氧气处理装置300可以装配至装配凹槽内,从而设置于发泡层内。装配凹槽可以在发泡层成型过程中预留出来。装配凹槽沿发泡层的厚度方向朝向靠近内胆120的方向凹陷,且与内胆120之间形成间隙。换言之,装配凹槽并未贯穿发泡层,这使得装配至装配凹槽的氧气处理装置300不会紧贴内胆120。也即,内胆120与氧气处理装置300之间形成有一定厚度的隔热保温材料。
采用上述结构,通过在发泡层背对内胆120的一侧开设连通发泡层的外部环境的装配凹槽,并使装配凹槽与内胆120之间形成间隙,氧气处理装置300可以在发泡层成型之后再安装至装配凹槽,这有利于简化氧气处理装置300的拆装难度。并且由于氧气处理装置300并不会紧贴内胆120,因此本实施例的方案能够减少或避免冷藏冷冻装置10的低温环境影响电化学反应的正常进行。
氧气处理装置300可以固定于装配凹槽内,固定方式包括但不限于螺接、卡接、铆接、焊接以及粘接。
在一些可选的实施例中,箱体100还包括箱壳170,其罩设于发泡层的外侧,以 与内胆120夹持发泡层。箱壳170具有背板,装配凹槽形成于内胆120的背壁与箱壳170的背板之间。也就是说,本实施例的氧气处理装置300设置于内胆120背部的发泡层内。箱壳170的背板可以封闭装配凹槽的开口,以使外形美观。
在一个示例中,箱壳170的背板可以开设有正对装配凹槽的安装口,在装配过程中,无需拆卸箱壳170的背板,可以直接通过安装口将氧气处理装置300固定至装配凹槽内。在一个进一步的示例中,安装口处可以设置有盖板,用于遮蔽安装口,以使外形美观。在另一个示例中,可以先将氧气处理装置300固定至装配凹槽内,然后再将箱壳170的背板覆盖在发泡层的背部。
采用上述结构,氧气处理装置300无需预装于发泡层内,避免发泡过程对氧气处理装置300的结构和性能产生不利影响,并且氧气处理装置300的装配过程可以在冷藏冷冻装置10的背部执行,具备装配过程简单等优点。
在又一个示例中,箱体100内还限定出用于安装压缩机的压缩机室。氧气处理装置300可以设置于压缩机室内。例如,压缩机室的底部设置有用于固定压缩机的支撑板,氧气处理装置300可以直接或间接地设置于支撑板上。
在一个示例中,盒体510设置于发泡层内。通过将储液模块500的盒体510设置于发泡层内,并使盒体510的储液空间与氧气处理装置300液路相通,以利用盒体510所储存的液体向氧气处理装置300补充电解液,由于盒体510并未占据储物空间122,因此冷藏冷冻装置10能够在不影响容积率的情况下,利用储液模块500向氧气处理装置300补充电解液,使氧气处理装置300可持续性地调节储物空间122的氧气含量。
储液模块500的盒体510可以设置于发泡层的任意部位,例如可以设置于内胆150的侧部,或者可以设置于内胆150的顶部、底部以及背部。对于法式冰箱或者T型冰箱而言,在一个示例中,储液模块500的盒体510可以设置于上部内胆150与下部内胆150之间的间隙中。
在一些可选的实施例中,箱体100还具有箱壳,发泡层形成于箱壳和内胆150之间。箱壳罩设于发泡层的外侧,以与内胆150夹持发泡层。在一个示例中,冷藏冷冻装置可以包括冷藏内胆、变温内胆和冷冻内胆。在一个进一步的示例中,盒体可以设置在冷藏内胆外侧的发泡层内。
图11是是根据本发明一个实施例的冷藏冷冻装置10的内胆120的示意性结构图。内胆120开设有开口状的交互窗口124,发泡层具有与交互窗口124相通以供装配储液模块500的安装凹槽。在发泡层成型之后,储液模块500可以装配至安装凹槽内,从而设置于发泡层内。安装凹槽可以在发泡层成型过程中预留出来。安装凹槽沿发泡层的厚度方向朝向背离交互窗口124的方向凹陷,且与箱壳之间形成间隙。换言之,安装凹槽并未贯穿发泡层,这使得装配至安装凹槽的储液模块500不会紧贴箱壳。也即,箱壳与氧气处理装置300之间形成有一定厚度的隔热保温材料。
采用上述结构,储液模块500无需预装于发泡层内,避免发泡过程对储液模块500的结构和性能产生不利影响,并且储液模块500的装配过程可以在储物空间122 内执行,具备装配过程简单等优点。
通过在内胆120上开设交互窗口124,并在发泡层中设置与交互窗口124相通的安装凹槽,且使安装凹槽与箱壳之间形成间隙,储液模块500可以在发泡层成型之后再安装至安装凹槽,这有利于简化储液模块500的拆装难度。并且由于安装凹槽并未贯穿发泡层,因此本实施例的方案能够减少或避免因在发泡层内安装储液模块500而导致冷藏冷冻装置10的保温性能明显降低。
储液模块500可以固定于安装凹槽内,固定方式包括但不限于螺接、卡接、铆接、焊接以及粘接。
在一些可选的实施例中,盒体510开设有连通储液空间的注液口514,且注液口514通过交互窗口124显露出来,从而允许外部液体注入储液空间。图12是图10所示的冷藏冷冻装置的储液模块的示意性结构图。图13是图12所示的冷藏冷冻装置的储液模块的示意性透视图。例如,注液口514设置于盒体510面朝储物空间122的侧壁上,以通过交互窗口124显露出来。
通过在内胆150上开设交互窗口124,并使盒体510的注液口514经交互窗口124连通储物空间122,可利用交互窗口124作为用户向储液空间补液的操作窗口。由于交互窗口124可将注液口514显露出来,当储液空间的储液量不足时,外部液体可以经注液口514注入储液空间,因此,本实施例的上述方案可简化储液模块500的补液方式,使储液模块500可持续性地向氧气处理装置300补充电解液。
盒体510上设置有盖体550,盖体550可往复运动地设置在注液口514处,以打开或封闭注液口514。盖体550打开注液口514时,允许注液口514显露出来。通过在盒体510上设置盖体550,并利用盖体550打开或封闭注液口514,可使注液口514仅在接收外部液体时呈开放状态,从而可减少或避免异物进入储液空间,使储液空间所储存的液体保持洁净。
盖体550可以为按压式弹盖,其受压可转动地弹起,以至少部分地经由交互窗口124伸入储物空间122内,从而打开注液口514。
在一个示例中,盖体550的底部可以通过转轴连接至盒体510,并与盒体510可枢转地连接。当盖体550封闭注液口514时,其外表面与盒体510的外表面共面,此时盖体550的顶部可以通过卡接结构连接至盒体510;当需要打开注液口514时,可以按压盖体550的顶部,使盖体550的顶部与盒体510脱离,此时盖体550可以绕转轴转动,并且至少部分地伸入储物空间122,从而打开注液口514。
在了解本公开实施例的基础上,本领域技术人员应当易于获知按压式弹盖与盒体510之间的装配结构,本公开不再赘述。
在一些可选的实施例中,盒体510的至少一部分由透明材料制成,以形成用于显露盒体510的储液量的可视区域516。透明材料可以为聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇脂或者聚丙烯等。
本实施例的可视区域516通过交互窗口124显露出来。可视区域516沿纵向延伸设置,并位于注液口514的下方。例如,可视区域516也设置于盒体510面朝储 物空间122的侧壁上,以便通过交互窗口124显露出来。
通过在盒体510上设置可视区域516,并使可视区域516与交互窗口124相对,可利用交互窗口124作为用户观察储液空间液位的观察窗口。由于交互窗口124可将可视区域516显露出来,用户可以十分方便地观察储液空间的储液量,因此,本实施例的上述方案可使用户获得直观的交互体验。当储液空间的储液量不足时,用户可以及时地采取补液措施。
在一个示例中,交互窗口124可以位于内胆150的侧壁上,安装凹槽相应设置于内胆150的侧壁与箱壳的侧壁之间。
由于内胆150的侧壁不易被储物空间122所储存的物品所遮挡,且与用户的可活动区域距离较近,因此,在内胆150的侧壁上设置交互窗口124,并使储液模块500嵌入箱体100侧部的发泡层内,可以在一定程度上降低用户与储液模块500之间的交互难度,用户无需挪动储物空间122所储存的物品便可以快捷地获取储液模块500的储液量信息,并且可以在储液模块500的储液量不足时及时执行补液操作。
在一些可选的实施例中,储液模块500可以进一步地包括液位传感器,设置于储液空间内,并用于检测储液空间的液位。在液位传感器检测到储液空间的液位低于设定值时,冷藏冷冻装置10可以发出报警信号,例如可以通过无线传输技术将报警信号输送给用户,以提醒用户及时补液。
在一些进一步的示例中,盒体510具有与内胆150的侧壁相平齐且封闭交互窗口124的第一侧壁以及与第一侧壁相对并且隐藏于安装凹槽内部的第二侧壁。注液口514位于第一侧壁上。交互窗口124的开口面积与盒体510的第一侧壁的表面积可以大致相同,使得盒体510的第一侧壁恰好封闭交互窗口124且使第一侧壁的外表面与内胆150侧壁的内表面连接成完整的平面,以使外形美观。
注液口514可以设置于第一侧壁的上部区段。可视区域516也可以设置于第一侧壁上,例如可以设置于第一侧壁的中部区段或者下部区段。
盒体510可以大致呈扁平的长方体形状。盒体510开设有连通储液空间的出液口511。盒体510还具有连接于第一侧壁和第二侧壁之间且沿竖直方向相对设置的顶壁和底壁。底壁上开设有出液口511,出液口511连通补液口322,以向电化学反应仓补充电解液。
在一些可选的实施例中,盒体510还具有连接于第一侧壁和第二侧壁之间且沿水平方向相对设置的第三侧壁和第四侧壁。第三侧壁和/或第四侧壁的外表面连接有固定件517,固定件517具有用于与螺钉配合以将盒体510固定于安装凹槽的螺孔。
冷藏冷冻装置10还包括预埋于发泡层内的补液管路420,补液管路420的第一端连通氧气处理装置300的补液口322,补液管路420的第二端连通储液模块500的出液口511,以将自出液口511流出储液空间的液体导引至补液口322,从而向电化学反应仓补液。出液口511高于补液口322,如此一来,储液空间内的液体可以在重力作用下自动流入电化学反应仓,而无需借助动力装置。
当然,在另一些示例中,出液口511也可以变换为低于补液口322或与补液口 322相平。此时,可以在补液管路420上安装泵,以在泵的作用下驱使储液空间内的液体流入电化学反应仓;或者可以利用虹吸原理,使储液空间内的液体流入电化学反应仓。
在一些进一步的示例中,补液管路420上可以设置有单向阀,用于允许来自出液口的液体单向通过,保证流经补液管路420的液体的单向流动。
冷藏冷冻装置10还包括预埋于发泡层内的过滤管路430,过滤管路430的第一端连通氧气处理装置300的排气孔323,过滤管路430的第二端连通盒体510的进气口512,以将自排气孔323流出的氧气导引至出气口513,从而进入储液空间进行过滤。
储液模块500还可以进一步地包括滤气管540和出气管。其中,滤气管540从进气口512插入储液空间,并延伸至储液空间的底部区段,以将待过滤的氧气导引至储液空间,使得氧气中的可溶性杂质溶解于储液空间。出气管从出气口513插入盒体510内,并延伸至储液空间的上部区段,且位于储液空间所储存的液体上方,以将过滤后的氧气经其导引出。
采用上述方案,待过滤氧气可以在滤气管540的导引下到达储液空间,并且流经储液空间所储存的液体,使得氧气中的可溶性杂质溶解于储液空间,完成气体的净化。净化后的气体可以在出气管的导引下流入指定空间,从而起到调节空间氧气含量的作用。
在一个可选的实施例中,储液模块500还包括气阻机构530,设置于储液空间内,且将储液空间分隔出气路阻断的滤气区和非滤气区。其中,滤气区用于使流入进气口512的气体流经其中以实现过滤。非滤气区用于接收来自外部液体。
滤气区和非滤气区可以沿横向并列设置,气阻机构530阻断滤气区和非滤气区之间的一部分液路,使滤气区和非滤气区在气路阻断的情况下保持液路相通。例如,气阻机构530为位于滤气区与非滤气区之间且自盒体510的顶壁下表面向下延伸并与盒体510的底壁上表面之间形成间隙的隔板状结构。滤气区位于气阻机构530的横向一侧,非滤气区则位于气阻机构530的横向另一侧。进气口512和出气口513可以分别设置于滤气区所在区域的顶壁上。注液口514则可以设置于非滤气区所在区域的顶壁上。
采用上述结构,通过在储液空间内设置气阻机构530,并利用气阻机构530将储液空间分隔出气路阻断的滤气区和非滤气区,可实现仅在滤气区内执行净化气体的功能。由于滤气区仅为储液空间的一个子空间,且与储液空间的其他区域之间的气路阻断,通入进气口512的气体仅能在滤气区内流动,而不会自由扩散至非滤气区而导致无法快速排放,因此本实施例的储液模块500具备较高的净化气体释放率。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

  1. 一种冷藏冷冻装置,包括:
    箱体,其内部限定出储物间室;
    储物容器,设置于所述储物间室内,且其内部限定出储物空间;所述储物容器的壁上开设有连通所述储物空间的通气口;
    气调管路,其连通所述通气口,并用于输送气体,使得所述储物空间与其外部环境进行气体交换;和
    气路总成,其包括定位机构,所述定位机构固定于所述储物容器外部,且其具有供所述气调管路与所述通气口之间的接合部位装配其上以实现固定的固定部。
  2. 根据权利要求1所述的冷藏冷冻装置,其中,
    所述气路总成还包括管状连接件,其第一端连通所述通气口,其第二端连通所述气调管路,并作为所述气调管路与所述通气口之间的接合部位;且
    所述固定部限定出供所述管状连接件插入其中以实现固定装配的中空筒状通道。
  3. 根据权利要求2所述的冷藏冷冻装置,其中,
    所述定位机构包括:
    本体部,所述本体部固定于所述储物间室内,且限定出向下凹陷并呈弧状的下凹弧形板;所述下凹弧形板作为所述中空筒状通道的下部通道壁;和
    盖体部,其限定出向上凹陷并呈弧状的上凹弧形板,作为所述中空筒状通道的上部通道壁;所述上部通道壁和所述下部通道壁共同形成所述固定部。
  4. 根据权利要求3所述的冷藏冷冻装置,其中,
    所述盖体部可拆卸地装配于所述本体部的上方;且
    所述盖体部还限定出位于所述上部通道壁两侧的第一螺纹孔;所述本体部相应形成有位于所述下部通道壁两侧并与所述第一螺纹孔一一相对的第二螺纹孔,以通过螺接实现可拆卸地装配。
  5. 根据权利要求3所述的冷藏冷冻装置,其中,
    所述通气口位于所述储物容器的背壁上;所述本体部固定于所述储物容器的后侧;且
    所述定位机构还包括弯折部,所述弯折部自所述本体部的端部向前或向后弯折形成,且与所述储物间室的侧壁贴靠设置;所述弯折部开设有第三螺纹孔,以通过 螺接将所述弯折部固定装配至所述储物间室的侧壁。
  6. 根据权利要求2所述的冷藏冷冻装置,其中,
    所述通气口为中空柱状,且其自所述储物容器的壁向外隆起并至少部分地伸入所述中空筒状通道内;且
    所述管状连接件的第一端限定出供所述通气口嵌套其中的中空筒状接口。
  7. 根据权利要求2所述的冷藏冷冻装置,其中,
    所述气路总成还包括气路转接件,其具有连通所述气调管路的第一接口以及连通所述管状连接件的第二端的第二接口,且所述第二接口与所述第一接口之间连接有气流通道,使得所述气调管路间接地连通所述通气口;
    所述气流通道相对于水平面倾斜设置。
  8. 根据权利要求7所述的冷藏冷冻装置,其中,
    所述第一接口和所述第二接口分别为自所述气路转接件的外表面向外隆起形成的中空柱状接口;且
    所述第一接口和所述第二接口的内部分别限定出连通所述气流通道并且相对于水平面倾斜设置的中空通道。
  9. 根据权利要求8所述的冷藏冷冻装置,其中,
    所述管状连接件的第二端限定出供所述第二接口嵌套其中的中空筒状接口;所述气调管路连通所述通气口的一端限定出供所述第一接口嵌套其中的中空筒状接口。
  10. 根据权利要求1所述的冷藏冷冻装置,还包括:
    氧气处理装置,设置于所述箱体内,且其具有壳体和电极对,所述壳体的内部限定出用于盛装电解液的电化学反应仓,所述电极对设置于所述电化学反应仓且用于通过电化学反应将外部氧气转移至所述电化学反应仓;所述壳体上开设有连通所述电化学反应仓的排气孔,用于排出所述电化学反应仓的氧气;
    所述气调管路远离所述通气口的一端用于连通所述排气孔。
  11. 根据权利要求10所述的冷藏冷冻装置,还包括:
    储液模块,其设置于所述箱体内,且其具有盒体,所述盒体的内部限定出用于储液的储液空间;且
    所述盒体上开设有进气口和出气口;其中,所述进气口连通所述排气孔,以允许所述排气孔排出的氧气通入所述储液空间以过滤可溶性杂质;所述出气口用于允许过滤后的氧气向外排出,且直接地连通所述气调管路远离所述通气口的一端,使 所述气调管路间接地连通所述排气孔。
PCT/CN2023/115879 2022-08-31 2023-08-30 冷藏冷冻装置 WO2024046378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211064524.8A CN117663609A (zh) 2022-08-31 2022-08-31 冷藏冷冻装置
CN202211064524.8 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024046378A1 true WO2024046378A1 (zh) 2024-03-07

Family

ID=90072088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115879 WO2024046378A1 (zh) 2022-08-31 2023-08-30 冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN117663609A (zh)
WO (1) WO2024046378A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679274A (zh) * 2016-12-02 2017-05-17 青岛海尔股份有限公司 冷藏冷冻装置
CN106839586A (zh) * 2016-12-09 2017-06-13 青岛海尔股份有限公司 冷藏冷冻装置
CN111578586A (zh) * 2020-04-26 2020-08-25 海信(山东)冰箱有限公司 冰箱
CN214630987U (zh) * 2020-12-18 2021-11-09 佛山顺德歌林美电子产品有限公司 一种带有电解液补充系统的除氧储物柜
CN218495514U (zh) * 2022-08-31 2023-02-17 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN218915506U (zh) * 2022-08-31 2023-04-25 青岛海尔电冰箱有限公司 冷藏冷冻装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679274A (zh) * 2016-12-02 2017-05-17 青岛海尔股份有限公司 冷藏冷冻装置
WO2018099463A1 (zh) * 2016-12-02 2018-06-07 青岛海尔股份有限公司 冷藏冷冻装置
CN106839586A (zh) * 2016-12-09 2017-06-13 青岛海尔股份有限公司 冷藏冷冻装置
CN111578586A (zh) * 2020-04-26 2020-08-25 海信(山东)冰箱有限公司 冰箱
CN214630987U (zh) * 2020-12-18 2021-11-09 佛山顺德歌林美电子产品有限公司 一种带有电解液补充系统的除氧储物柜
CN218495514U (zh) * 2022-08-31 2023-02-17 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN218915506U (zh) * 2022-08-31 2023-04-25 青岛海尔电冰箱有限公司 冷藏冷冻装置

Also Published As

Publication number Publication date
CN117663609A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN218495514U (zh) 冷藏冷冻装置
CN218915506U (zh) 冷藏冷冻装置
CN218915507U (zh) 冷藏冷冻装置
CN219037233U (zh) 冷藏冷冻装置
WO2024046387A1 (zh) 冷藏冷冻装置
WO2021083431A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN106237478A (zh) 储液装置、加湿器和呼吸机
WO2024046375A1 (zh) 冷藏冷冻装置
WO2024046378A1 (zh) 冷藏冷冻装置
WO2024017204A1 (zh) 冰箱
CN218495515U (zh) 冷藏冷冻装置
CN218495517U (zh) 冷藏冷冻装置
WO2024046376A1 (zh) 冷藏冷冻装置
CN219346911U (zh) 冷藏冷冻装置
WO2024046379A1 (zh) 冷藏冷冻装置
CN219346910U (zh) 冷藏冷冻装置
WO2024046388A1 (zh) 冷藏冷冻装置
WO2024046377A1 (zh) 冷藏冷冻装置
WO2024046383A1 (zh) 储液装置以及具有其的冷藏冷冻装置
CN218915504U (zh) 冷藏冷冻装置
WO2024046385A1 (zh) 冷藏冷冻装置
CN117663601A (zh) 冷藏冷冻装置
CN117663610A (zh) 冷藏冷冻装置
CN115540457A (zh) 风路组件及制冷设备
CN117663602A (zh) 冷藏冷冻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859407

Country of ref document: EP

Kind code of ref document: A1