WO2024046195A1 - Sensing signal processing methods and apparatuses, and communication device - Google Patents

Sensing signal processing methods and apparatuses, and communication device Download PDF

Info

Publication number
WO2024046195A1
WO2024046195A1 PCT/CN2023/114583 CN2023114583W WO2024046195A1 WO 2024046195 A1 WO2024046195 A1 WO 2024046195A1 CN 2023114583 W CN2023114583 W CN 2023114583W WO 2024046195 A1 WO2024046195 A1 WO 2024046195A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resources
length
domain resource
frequency domain
Prior art date
Application number
PCT/CN2023/114583
Other languages
French (fr)
Chinese (zh)
Inventor
姚健
姜大洁
丁圣利
袁雁南
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024046195A1 publication Critical patent/WO2024046195A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present application belongs to the technical field of communications. Disclosed are sensing signal processing methods and apparatuses, and a communication device. A sensing signal processing method in the embodiments of the present application comprises: a first device sends a sensing signal. The features of a resource pattern of the sensing signal comprise: resources of the sensing signal comprising a first partial resource and a second partial resource, a first frequency domain resource length of the first partial resource being greater than a second frequency domain resource length of the second partial resource, and a first time domain resource length of the first partial resource being less than a second time domain resource length of the second partial resource.

Description

感知信号处理方法、装置及通信设备Sensing signal processing method, device and communication equipment
相关申请的交叉引用Cross-references to related applications
本申请主张在2022年08月29日在中国提交的中国专利申请No.202211041311.3的优先权,其全部内容通过引用包含于此。This application claims priority to Chinese Patent Application No. 202211041311.3 filed in China on August 29, 2022, the entire content of which is incorporated herein by reference.
技术领域Technical field
本申请属于通信技术领域,具体涉及一种感知信号处理方法、装置及通信设备。The present application belongs to the field of communication technology, and specifically relates to a sensing signal processing method, device and communication equipment.
背景技术Background technique
在大部分雷达应用中需要进行同时测距和测速业务,相关技术中,通过发送时频域资源图样为规则的矩形形状的感知信号来进行测距和测速。但在信噪比(Signal-to-Noise Ratio,SNR)较高,处理增益足够的情况下,采用均匀矩形状感知信号的资源开销较大,且不够灵活。In most radar applications, simultaneous ranging and speed measurement services are required. In related technologies, ranging and speed measurement are performed by sending sensing signals whose time-frequency domain resource patterns are regular rectangular shapes. However, when the signal-to-noise ratio (SNR) is high and the processing gain is sufficient, using a uniform rectangular shape to sense the signal requires a large resource overhead and is not flexible enough.
发明内容Contents of the invention
本申请实施例提供一种感知信号处理方法、装置及通信设备,能够解决在进行测距和测速业务时,如何减少感知信号的资源开销的问题。Embodiments of the present application provide a sensing signal processing method, device and communication equipment, which can solve the problem of how to reduce the resource overhead of sensing signals when performing ranging and speed measurement services.
第一方面,提供了一种感知信号处理方法,包括:The first aspect provides a perceptual signal processing method, including:
第一设备发送感知信号;The first device sends a sensing signal;
所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain of the second part of the resource. Domain resource length, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource.
第二方面,提供了一种感知信号处理方法,包括:In the second aspect, a perceptual signal processing method is provided, including:
第二设备接收感知信号,所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The second device receives a sensing signal, and the characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the first frequency domain resource length of the first part of resources is greater than the length of the third part of resources. The second frequency domain resource length of the two parts of resources, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource.
第三方面,提供了一种感知信号处理装置,应用于第一设备,包括:In a third aspect, a perceptual signal processing device is provided, applied to the first device, including:
第一发送模块,用于发送感知信号;The first sending module is used to send sensing signals;
所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain of the second part of the resource. Domain resource length, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource.
第四方面,提供了一种感知信号处理装置,应用于第二设备,包括:In a fourth aspect, a perceptual signal processing device is provided, applied to the second device, including:
第一接收模块,用于接收感知信号,所述感知信号的资源图样的特征包括:所述感知 信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The first receiving module is configured to receive a sensing signal. The characteristics of the resource pattern of the sensing signal include: the sensing signal The resources of the signal include a first part of resources and a second part of resources. The first frequency domain resource length of the first part of the resource is greater than the second frequency domain resource length of the second part of the resource. The first time domain of the first part of the resource is The resource length is smaller than the second time domain resource length of the second part of the resources.
第五方面,提供了一种终端(第一设备或第二设备),该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。In a fifth aspect, a terminal (first device or second device) is provided. The terminal includes a processor and a memory. The memory stores programs or instructions that can be run on the processor. The program or instructions are When executed by the processor, the steps of the method described in the first aspect or the second aspect are implemented.
第六方面,提供了一种终端(第一设备或第二设备),包括处理器及通信接口,其中,所述通信接口用于发送感知信号;In a sixth aspect, a terminal (first device or second device) is provided, including a processor and a communication interface, wherein the communication interface is used to send a sensing signal;
所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain of the second part of the resource. Domain resource length, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource.
第七方面,提供了一种网络侧设备(第一设备或第二设备),该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。In a seventh aspect, a network side device (first device or second device) is provided. The network side device includes a processor and a memory, and the memory stores programs or instructions that can be run on the processor. When the program or instructions are executed by the processor, the steps of the method described in the first aspect or the second aspect are implemented.
第八方面,提供了一种网络侧设备(第一设备或第二设备),包括处理器及通信接口,其中,所述通信接口用于接收感知信号,所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。In an eighth aspect, a network side device (first device or second device) is provided, including a processor and a communication interface, wherein the communication interface is used to receive a sensing signal, and the characteristics of the resource pattern of the sensing signal include: : The resources of the sensing signal include a first part of resources and a second part of resources. The length of the first frequency domain resource of the first part of the resource is greater than the length of the second frequency domain resource of the second part of the resource. The length of the first part of the resource is The length of the first time domain resource is less than the second length of the second part of the resource.
第九方面,提供了一种感知信号处理系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的方法的步骤,所述第二设备可用于执行如第二方面所述的方法的步骤。A ninth aspect provides a perceptual signal processing system, including: a first device and a second device. The first device can be used to perform the steps of the method described in the first aspect. The second device can be used to perform The steps of the method as described in the second aspect.
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。In an eleventh aspect, a chip is provided. The chip includes a processor and a communication interface. The communication interface is coupled to the processor. The processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the second aspect.
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法的步骤。In a twelfth aspect, a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect or the second aspect. The steps of the method described in the second aspect.
在本申请实施例中,第一设备发送的感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。其中,第一频域资源长度大于所述第二频域资源长度使得第一部分资源相对于第二部分资源能 够获得更高的距离分辨率或时延分辨率,第一时域资源长度小于第二时域资源长度,使得第二部分资源相对于第一部分资源能够获得更高的速度分辨率或多普勒分辨率,从而通过上述第一部分资源和第二部分资源能够分别满足测距和测速需求,且该感知信号的资源图样不再是规则的矩形图样,能够有效节省资源。In this embodiment of the present application, the resources of the sensing signal sent by the first device include a first part of the resource and a second part of the resource, and the first frequency domain resource length of the first part of the resource is greater than the second frequency domain of the second part of the resource. Resource length, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource. Wherein, the length of the first frequency domain resource is greater than the length of the second frequency domain resource so that the first part of the resource can be compared with the second part of the resource. It can obtain higher distance resolution or delay resolution. The length of the first time domain resource is smaller than the length of the second time domain resource, so that the second part of the resource can obtain higher speed resolution or Doppler than the first part of the resource. resolution, so that the above-mentioned first part of resources and the second part of resources can meet the ranging and speed measurement requirements respectively, and the resource pattern of the sensing signal is no longer a regular rectangular pattern, which can effectively save resources.
附图说明Description of drawings
图1表示本申请实施例可应用的一种通信系统的结构图;Figure 1 shows a structural diagram of a communication system applicable to the embodiment of the present application;
图2表示本申请实施例的感知信号处理方法的流程示意图之一;Figure 2 shows one of the schematic flow diagrams of the sensing signal processing method according to the embodiment of the present application;
图3表示本申请实施例中感知信号的资源图样示意图之一;Figure 3 shows one of the schematic diagrams of resource patterns of sensing signals in the embodiment of the present application;
图4表示本申请实施例中感知信号的资源图样示意图之二;Figure 4 shows the second schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图5表示本申请实施例中感知信号的资源图样示意图之三;Figure 5 shows the third schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图6表示本申请实施例中感知信号的资源图样示意图之四;Figure 6 shows the fourth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图7表示本申请实施例中感知信号的资源图样示意图之五;Figure 7 shows the fifth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图8表示本申请实施例中感知信号的资源图样示意图之六;Figure 8 shows the sixth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图9表示本申请实施例中感知信号的资源图样示意图之七;Figure 9 shows the seventh schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图10表示本申请实施例中感知信号的资源图样示意图之八;Figure 10 shows the eighth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图11表示本申请实施例中感知信号的资源图样示意图之九;Figure 11 shows the ninth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图12表示本申请实施例中感知信号的资源图样示意图之十;Figure 12 shows the tenth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图13表示本申请实施例中感知信号的资源图样示意图之十一;Figure 13 shows the eleventh schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图14表示本申请实施例中感知信号的资源图样示意图之十二;Figure 14 shows the twelfth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图15表示本申请实施例中感知信号的资源图样示意图之十三;Figure 15 shows the thirteenth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图16表示本申请实施例中感知信号的资源图样示意图之十四;Figure 16 shows the fourteenth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图17表示本申请实施例中感知信号的资源图样示意图之十五;Figure 17 shows the fifteenth schematic diagram of the resource pattern of the sensing signal in the embodiment of the present application;
图18表示本申请实施例的感知信号处理方法的流程示意图之二;Figure 18 shows the second schematic flowchart of the sensory signal processing method according to the embodiment of the present application;
图19表示本申请实施例中一维图的SNR计算示意图;Figure 19 shows a schematic diagram of SNR calculation of one-dimensional graph in the embodiment of the present application;
图20表示本申请实施例的感知信号处理装置的模块示意图之一;Figure 20 shows one of the module schematic diagrams of the perceptual signal processing device according to the embodiment of the present application;
图21表示本申请实施例的感知信号处理装置的模块示意图之二;Figure 21 shows the second module schematic diagram of the sensory signal processing device according to the embodiment of the present application;
图22表示本申请实施例的通信设备的结构框图;Figure 22 shows a structural block diagram of a communication device according to an embodiment of the present application;
图23表示本申请实施例的终端的结构框图;Figure 23 shows a structural block diagram of a terminal according to an embodiment of the present application;
图24表示本申请实施例的网络侧设备的结构框图之一;Figure 24 shows one of the structural block diagrams of the network side device according to the embodiment of the present application;
图25表示本申请实施例的网络侧设备的结构框图之二。Figure 25 shows the second structural block diagram of the network side device according to the embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施 例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, but not all of the embodiments. Based on the implementation in this application For example, all other embodiments obtained by those of ordinary skill in the art fall within the scope of protection of this application.
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。The terms "first", "second", etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and "second" are distinguished objects It is usually one type, and the number of objects is not limited. For example, the first object can be one or multiple. In addition, "and/or" in the description and claims indicates at least one of the connected objects, and the character "/" generally indicates that the related objects are in an "or" relationship.
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。It is worth pointing out that the technology described in the embodiments of this application is not limited to Long Term Evolution (LTE)/LTE Evolution (LTE-Advanced, LTE-A) systems, and can also be used in other wireless communication systems, such as code Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access, OFDMA), Single-carrier Frequency Division Multiple Access (SC-FDMA) and other systems. The terms "system" and "network" in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies. The following description describes a New Radio (NR) system for example purposes, and NR terminology is used in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th generation Generation, 6G) communication system.
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他 某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。Figure 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable. The wireless communication system includes a terminal 11 and a network side device 12. The terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer. (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearable devices (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices. Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc. It should be noted that the embodiment of the present application does not limit the specific type of the terminal 11. The network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit. Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc. The base station may be called a Node B, an Evolved Node B (eNB), an access point, a base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmitting and receiving point ( Transmission Reception Point (TRP) or other A suitable term, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the base station in the NR system is used as an example for introduction, and the base station is not limited. Concrete type. Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc. It should be noted that in the embodiment of this application, only the core network equipment in the NR system is used as an example for introduction, and the specific type of the core network equipment is not limited.
为使本领域技术人员能够更好地理解本申请实施例,先进行如下说明。In order to enable those skilled in the art to better understand the embodiments of the present application, the following description is provided first.
未来移动通信系统例如超第5代(Beyound 5th Generation,B5G)系统或6G系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。典型的感知功能与应用场景如表1所示。Future mobile communication systems such as Beyond 5th Generation (B5G) systems or 6G systems will not only have communication capabilities, but also perception capabilities. Sensing capability refers to one or more devices with sensing capabilities that can perceive the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect, track, and detect target objects, events or environments, etc. Recognition, imaging, etc. In the future, with the deployment of small base stations with high-frequency and large-bandwidth capabilities such as millimeter waves and terahertz in 6G networks, the resolution of perception will be significantly improved compared to centimeter waves, allowing 6G networks to provide more refined perception services. Typical sensing functions and application scenarios are shown in Table 1.
表1
Table 1
通信感知一体化即在同一系统中通过频谱共享与硬件共享,实现通信、感知功能一体化设计,系统在进行信息传递的同时,能够感知方位、距离、速度等信息,对目标物体或事件进行检测、跟踪、识别,通信系统与感知系统相辅相成,实现整体性能上的提升并带 来更好的服务体验。Communication and perception integration means to realize the integrated design of communication and perception functions in the same system through spectrum sharing and hardware sharing. While transmitting information, the system can sense orientation, distance, speed and other information, and detect target objects or events. , tracking, identification, communication system and perception system complement each other to achieve overall performance improvement and bring Come for a better service experience.
通信与雷达的一体化属于典型的通信感知融合应用,在过去,雷达系统与通信系统由于研究对象与关注重点不同而被严格地区分,大部分场景下两系统被分开研究。事实上,雷达与通信系统同样作为信息发送、获取、处理和交换的典型方式,不论工作原理还是系统架构以及频段上存在着不少相似之处。通信与雷达一体化的设计具有较大的可行性,主要体现在以下几个方面:首先,通信系统与感知系统均基于电磁波理论,利用电磁波的发射和接收来完成信息的获取和传递;其次,通信系统与感知系统均具备天线、发送端、接收端、信号处理器等结构,在硬件资源上有很大重叠;随着技术的发展,两者在工作频段上也有越来越多的重合;另外,在信号调制与接收检测、波形设计等关键技术上存在相似性。通信与雷达系统融合能够带来许多优势,例如节约成本、减小尺寸、降低功耗、提升频谱效率、减小互干扰等,从而提升系统整体性能。The integration of communications and radar is a typical communication-aware fusion application. In the past, radar systems and communication systems were strictly distinguished due to different research objects and focuses. In most scenarios, the two systems were studied separately. In fact, radar and communication systems are also typical ways of transmitting, acquiring, processing, and exchanging information. There are many similarities in terms of working principles, system architecture, and frequency bands. The design of integrated communication and radar has great feasibility, which is mainly reflected in the following aspects: First, the communication system and the sensing system are based on the electromagnetic wave theory, using the emission and reception of electromagnetic waves to complete the acquisition and transmission of information; secondly, Both communication systems and perception systems have structures such as antennas, transmitters, receivers, and signal processors, and have a large overlap in hardware resources. With the development of technology, there is more and more overlap between the two in their working frequency bands; In addition, there are similarities in key technologies such as signal modulation, reception detection, and waveform design. The integration of communication and radar systems can bring many advantages, such as saving costs, reducing size, reducing power consumption, improving spectrum efficiency, reducing mutual interference, etc., thereby improving the overall performance of the system.
根据感知信号发送节点和接收节点的不同,分为以下6种感知链路,需要注意的是,下面描述每种感知链路都以一个发送节点和一个接收节点作为例子,实际系统中,根据不同的感知需求可以选择不同的感知链路,每种感知链路的发送节点和接收节点可以有一个或多个,且实际感知系统可以包括多种不同的感知链路。According to the difference between the sensing signal sending node and the receiving node, it is divided into the following six types of sensing links. It should be noted that each sensing link described below uses a sending node and a receiving node as an example. In the actual system, according to different Different sensing links can be selected according to the sensing requirements. Each sensing link can have one or more sending nodes and receiving nodes, and the actual sensing system can include a variety of different sensing links.
1)基站回波感知。这种方式下基站发送感知信号,并通过接收该感知信号的回波来获得感知结果。1) Base station echo sensing. In this way, the base station sends a sensing signal and obtains sensing results by receiving the echo of the sensing signal.
2)基站间空口感知。此时,基站2接收基站1发送的感知信号,获得感知结果。2) Air interface sensing between base stations. At this time, base station 2 receives the sensing signal sent by base station 1 and obtains the sensing result.
3)上行空口感知。此时,基站接收用户终端(User Equipment,UE)发送的感知信号,获得感知结果。3) Uplink air interface sensing. At this time, the base station receives the sensing signal sent by the user terminal (User Equipment, UE) and obtains the sensing result.
4)下行空口感知。此时,UE接收基站发送的感知信号,获得感知结果。4) Downlink air interface sensing. At this time, the UE receives the sensing signal sent by the base station and obtains the sensing result.
5)终端回波感知。此时,UE发送感知信号,并通过接收该感知信号的回波来获得感知结果。5) Terminal echo perception. At this time, the UE sends a sensing signal and obtains the sensing result by receiving the echo of the sensing signal.
6)终端间旁链路(Sidelink)感知。例如,UE 2接收UE 1发送的感知信号,获得感知结果。6) Inter-terminal side link (Sidelink) perception. For example, UE 2 receives the sensing signal sent by UE 1 and obtains the sensing result.
另外,NR常用的参考信号如表2所示。In addition, commonly used reference signals for NR are shown in Table 2.
表2

Table 2

其中,不同信号用于感知的分析如下:Among them, the analysis of different signals used for perception is as follows:
1、解调参考信号(Demodulation Reference Signal,DMRS):1. Demodulation Reference Signal (DMRS):
为了保证通信速率,对参考信号资源开销有一定限制,带宽和时域持续时间未必能满足感知需求;In order to ensure the communication rate, there are certain restrictions on the reference signal resource overhead, and the bandwidth and time domain duration may not meet the sensing needs;
由于业务达到的随机性和调度的时频资源的不确定性,解调参考信号在时频域上分布可能是非均匀、非连续的;Due to the randomness of service attainment and the uncertainty of scheduled time-frequency resources, the distribution of demodulation reference signals in the time-frequency domain may be non-uniform and discontinuous;
受预编码的影响,在接收端进行初始信道估计后得到的结果可能无法反映原始信道信息。Affected by precoding, the result obtained after initial channel estimation at the receiving end may not reflect the original channel information.
2、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、跟踪参考信号(Tracking Reference Signal,TRS)或探测参考信号(Sounding Reference Signal,SRS):2. Channel State Information-Reference Signal (CSI-RS), Tracking Reference Signal (TRS) or Sounding Reference Signal (SRS):
可以是周期的发送也可以是非周期的发送,占用的时频域资源可以根据用途由系统灵活分配;也可以不受预编码的影响,更易于获取原始信道信息;It can be periodic transmission or non-periodic transmission, and the occupied time-frequency domain resources can be flexibly allocated by the system according to the purpose; it can also not be affected by precoding, making it easier to obtain the original channel information;
3、同步信号,该同步信号为主同步信号(Primary Synchronisation Signal,PSS)或辅同步信号(Secondary Synchronisation Signal,SSS):3. Synchronization signal, which is the primary synchronization signal (Primary Synchronization Signal, PSS) or the secondary synchronization signal (Secondary Synchronization Signal, SSS):
是持续发送的always on信号;It is an always on signal that is sent continuously;
带宽有限,测距分辨率不足;Limited bandwidth and insufficient ranging resolution;
周期可配置为5ms、10ms、20ms、40ms、80ms或160ms,时域间隔较大,测速范围较小;The cycle can be configured as 5ms, 10ms, 20ms, 40ms, 80ms or 160ms. The time domain interval is larger and the speed measurement range is smaller;
4、相位跟踪参考信号(Phase-tracking reference signal,PT-RS):4. Phase-tracking reference signal (PT-RS):
频域分布稀疏,时域分布密集,适合测速和测多普勒相关感知应用;The frequency domain distribution is sparse and the time domain distribution is dense, suitable for speed measurement and Doppler related sensing applications;
5、定位参考信号(Positioning Reference Signal,PRS):5. Positioning Reference Signal (PRS):
在频域上采用梳状结构,时域上采用交错的方式映射,可以通过不同的时频域图样配置适配不同的感知分辨率需求,可用于高精度感知;It adopts a comb structure in the frequency domain and an interleaved mapping in the time domain. It can adapt to different sensing resolution requirements through different time-frequency domain pattern configurations and can be used for high-precision sensing;
6、数据符号:6. Data symbols:
占用的时频资源一般比参考信号更多,可以作为通过参考信号得到的信道信息的补充;It generally occupies more time-frequency resources than the reference signal and can be used as a supplement to the channel information obtained through the reference signal;
数据信号不同于参考信号所使用的专用序列,自相关和互相关特性不够理想,受接收端算法影响可能对感知性能造成影响;The data signal is different from the dedicated sequence used in the reference signal. The autocorrelation and cross-correlation characteristics are not ideal, and the influence of the receiving end algorithm may affect the perception performance;
对于双站或多站感知模式,接收端需要先进行解调获取数据信息,然后利用数据信号估计信道矩阵信息,受到数据解调性能影响,解调误差会严重影响感知性能。 For dual-station or multi-station sensing mode, the receiving end needs to first perform demodulation to obtain data information, and then use the data signal to estimate the channel matrix information. Affected by data demodulation performance, demodulation errors will seriously affect sensing performance.
当前参考信号设计用于测距/测时延以及测速/测多普勒时存在一定问题:There are certain problems when the current reference signal is designed to be used for ranging/delay measurement and speed/Doppler measurement:
进行同时测距测速时,既满足高距离分辨率又满足高速度分辨率的需求存在矛盾,以高速公路场景为例,距离分辨率达到0.5m,对应信号带宽为300MHz,速度分辨率达到0.5m/s,中心频点为28GHz时对应相干处理时间0.0107s,假设感知目标最大速度达到250km/h,按照无距离单元移动的要求,最大相干处理时间为0.0036s,小于满足对应速度分辨率所需的处理时间。When performing simultaneous ranging and speed measurement, there is a contradiction between the need to meet both high distance resolution and high speed resolution. Taking the highway scene as an example, the distance resolution reaches 0.5m, the corresponding signal bandwidth is 300MHz, and the speed resolution reaches 0.5m. /s, when the center frequency is 28GHz, the corresponding coherent processing time is 0.0107s. Assuming that the maximum speed of the sensing target reaches 250km/h, according to the requirements of distance-free unit movement, the maximum coherent processing time is 0.0036s, which is less than required to meet the corresponding speed resolution. processing time.
在大部分雷达应用中需要进行同时测距和测速业务,一般不需要考虑资源开销问题,发送时频域资源图样为均匀矩形状的信号进行感知。在SNR较高,处理增益足够的情况下,采用均匀矩形状感知设计开销较大,且不够灵活,例如需要进行高分辨率感知,则时/频域资源总长度较长,此时若为了节省开销,使得密度降低,则会导致最大不模糊感知范围降低,另外一方面是不利于多设备感知时进行资源的高效利用。In most radar applications, simultaneous ranging and speed measurement services are required. Generally, there is no need to consider resource overhead issues. When transmitting, the frequency domain resource pattern is a uniform rectangular signal for perception. When the SNR is high and the processing gain is sufficient, using a uniform rectangular sensing design is expensive and not flexible enough. For example, if high-resolution sensing is required, the total length of time/frequency domain resources will be longer. At this time, if in order to save Overhead, reducing the density will lead to a reduction in the maximum unblurred sensing range. On the other hand, it is not conducive to efficient use of resources when sensing multiple devices.
基于快速傅里叶变换(Fast Fourier Transform,FFT)的常规测距、测速算法要求时频域均匀采样,一般感知信号配置同样为均匀分布,目前NR每个时隙符号循环前缀(Cyclic prefix,CP)长度不一致导致非均匀采样,若采用每一个或多个时隙采样的方式导致采样间隔较大,以CSI-RS为例,最小周期为4个时隙,在子载波间隔SCS=120kHz,fc=28GHz时,最大不模糊测速仅5.36m/s(间隔1Slot时为21.43m/s)。Conventional ranging and speed measurement algorithms based on Fast Fourier Transform (FFT) require uniform sampling in the time and frequency domain. The general sensing signal configuration is also uniformly distributed. Currently, each time slot symbol of NR has a cyclic prefix (CP). ) lengths lead to non-uniform sampling. If one or more time slots are used to sample, the sampling interval will be larger. Taking CSI-RS as an example, the minimum period is 4 time slots. At the subcarrier interval SCS=120kHz, fc =28GHz, the maximum unambiguous speed is only 5.36m/s (21.43m/s at 1Slot interval).
为进一步提高资源利用效率,且保证感知性能,需要对感知信号的时频域图样进行设计。In order to further improve resource utilization efficiency and ensure sensing performance, it is necessary to design the time-frequency domain pattern of the sensing signal.
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知信号处理方法进行详细地说明。The perceptual signal processing method provided by the embodiments of the present application will be described in detail below with reference to the accompanying drawings through some embodiments and their application scenarios.
如图2所示,本申请实施例提供了一种感知信号处理方法,包括:As shown in Figure 2, this embodiment of the present application provides a perceptual signal processing method, including:
步骤201:第一设备发送感知信号;Step 201: The first device sends a sensing signal;
所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain of the second part of the resource. Domain resource length, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource.
上述资源图样用于指示感知信号占用的时域资源和频域资源。The above resource pattern is used to indicate the time domain resources and frequency domain resources occupied by the sensing signal.
这里,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,能够使得第一部分资源相对于第二部分资源获取更高的距离分辨率或时延分辨率;Here, the first frequency domain resource length of the first part of the resource is greater than the second frequency domain resource length of the second part of the resource, which enables the first part of the resource to obtain a higher distance resolution or delay relative to the second part of the resource. resolution;
所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度,能够使得第二部分资源相对于第一部分资源获得更高的速度分辨率或多普勒分辨率。The first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource, which enables the second part of the resource to obtain higher speed resolution or Doppler resolution relative to the first part of the resource. Rate.
可选地,上述第一部分资源和第二部分资源对应的感知信号可以部分相同。该感知信号可以是基于M序列、Gold序列、Kasami序列、Golay序列、Zadoff-Chu序列等设计的导频信号,也可以是通信数据,也可以是线性调频信号等雷达常用信号,还可以是新设计的通感一体化信号。Optionally, the sensing signals corresponding to the first part of the resources and the second part of the resources may be partially the same. The sensing signal can be a pilot signal designed based on M sequence, Gold sequence, Kasami sequence, Golay sequence, Zadoff-Chu sequence, etc., or it can be communication data, or it can be a common radar signal such as linear frequency modulation signal, or it can be a new signal. Designed synaesthetic integration signals.
上述第一设备可以是基站,或者该第一设备是终端。 The above-mentioned first device may be a base station, or the first device may be a terminal.
本申请实施例中,第一设备发送的感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。其中,第一频域资源长度大于所述第二频域资源长度使得第一部分资源相对于第二部分资源能够获得更高的距离分辨率或时延分辨率,第一时域资源长度小于第二时域资源长度,使得第二部分资源相对于第一部分资源能够获得更高的速度分辨率或多普勒分辨率,从而通过上述第一部分资源和第二部分资源能够分别满足测距和测速需求,且该感知信号的资源图样不再是规则的矩形图样,能够有效节省资源。In this embodiment of the present application, the resources of the sensing signal sent by the first device include a first part of the resource and a second part of the resource, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain resource of the second part of the resource. The length of the first time domain resource of the first part of the resource is less than the second time domain resource length of the second part of the resource. Wherein, the length of the first frequency domain resource is greater than the length of the second frequency domain resource so that the first part of the resource can obtain a higher distance resolution or delay resolution relative to the second part of the resource, and the length of the first time domain resource is shorter than the second part of the resource. The length of the time domain resource enables the second part of the resource to obtain a higher speed resolution or Doppler resolution than the first part of the resource, so that the above-mentioned first part of the resource and the second part of the resource can meet the ranging and speed measurement requirements respectively. Moreover, the resource pattern of the sensing signal is no longer a regular rectangular pattern, which can effectively save resources.
可选地,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。Optionally, the characteristics of the resource pattern of the sensing signal further include: the first time domain resource interval of the first part of the resource is less than or equal to the second time domain resource interval of the second part of the resource; and/or the The second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
这里,第一部分资源(Part1)的第一时域资源间隔小于或等于第二部分资源(Part2)的第二时域资源间隔,使得第一部分资源相对于第二部分资源能够获取相同或更大的不模糊速度或多普勒测量范围,第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔,使得第二部分资源相对于第一部分资源能够获得相同或更大的不模糊距离或时延测量范围。Here, the first time-domain resource interval of the first part of the resource (Part1) is less than or equal to the second time-domain resource interval of the second part of the resource (Part2), so that the first part of the resource can obtain the same or greater resource than the second part of the resource. Without blurring the speed or Doppler measurement range, the second frequency domain resource interval of the second part of the resource is less than or equal to the first frequency domain resource interval of the first part of the resource, so that the second part of the resource can obtain the same or better results relative to the first part of the resource. Large unambiguous distance or delay measurement range.
可选地,本申请实施例的方法,还包括:Optionally, the method in the embodiment of this application also includes:
所述第一设备确定感知信号的资源配置信息;The first device determines resource configuration information of the sensing signal;
根据所述资源配置信息确定所述感知信号的资源图样;Determine the resource pattern of the sensing signal according to the resource configuration information;
其中,所述资源配置信息包括以下至少一项:Wherein, the resource configuration information includes at least one of the following:
第一部分资源的第一时域资源长度;The length of the first time domain resource of the first part of the resource;
第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
第二部分资源的第二频域资源长度;The second frequency domain resource length of the second part of the resource;
所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
所述第二部分资源的第二时域资源间隔;The second time domain resource interval of the second part of resources;
所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
作为第一种可选地实现方式,所述第一设备确定感知信号的资源配置信息,包括:As a first optional implementation manner, the first device determines the resource configuration information of the sensing signal, including:
所述第一设备根据感知分辨率,确定所述第一频域资源长度和所述第二时域资源长度。The first device determines the first frequency domain resource length and the second time domain resource length according to the sensing resolution.
这里的感知分辨率包括距离分辨率、时延分辨率、速度分辨率和多普勒分辨率中的至 少一项。这里的感知分辨率可以是根据感知需求得到的。Perceptual resolution here includes range resolution, delay resolution, velocity resolution and Doppler resolution. One item is missing. The perceptual resolution here can be obtained according to perceptual requirements.
可选地,所述第一设备根据感知分辨率,确定所述第一频域资源长度和第二时域资源长度,包括:Optionally, the first device determines the first frequency domain resource length and the second time domain resource length according to the sensing resolution, including:
所述第一设备根据距离分辨率或时延分辨率,确定所述第一频域资源长度;The first device determines the length of the first frequency domain resource based on distance resolution or delay resolution;
所述第一设备根据速度分辨率或多普勒分辨率,确定所述第二时域资源长度。The first device determines the second time domain resource length based on velocity resolution or Doppler resolution.
可选地,所述第一频域资源长度满足以下公式:
B1≥c/(2ΔR);
Optionally, the first frequency domain resource length satisfies the following formula:
B 1 ≥c/(2ΔR);
其中,B1表示第一频域资源长度,c表示光速,ΔR为距离分辨率;Among them, B 1 represents the length of the first frequency domain resource, c represents the speed of light, and ΔR is the distance resolution;
或者,所述第一频域资源长度满足以下公式:
B1≥1/Δτ;
Alternatively, the length of the first frequency domain resource satisfies the following formula:
B 1 ≥1/Δτ;
其中,B1表示第一频域资源长度,Δτ表示表示时延分辨率。Among them, B 1 represents the length of the first frequency domain resource, and Δτ represents the delay resolution.
可选地,所述第二时域资源长度满足以下公式:
T2≥c/(2fcΔv);
Optionally, the second time domain resource length satisfies the following formula:
T 2 ≥c/(2f c Δv);
其中,T2表示第二时域资源长度,c表示光速,Δv表示速度分辨率,fc表示中心频点;Among them, T 2 represents the length of the second time domain resource, c represents the speed of light, Δv represents the velocity resolution, and f c represents the center frequency point;
或者,所述第二时域资源长度满足以下公式:
T2≥1/Δfd
Alternatively, the second time domain resource length satisfies the following formula:
T 2 ≥1/ Δfd ;
其中,T2表示第二时域资源长度,Δfd表示多普勒分辨率。Among them, T 2 represents the second time domain resource length, and Δf d represents the Doppler resolution.
可选地,第一设备确定感知信号的资源配置信息,包括以下至少一项:Optionally, the first device determines resource configuration information of the sensing signal, including at least one of the following:
第一项:根据第一频域资源长度、第一部分资源对应的距离分辨率、第一部分资源对应的时延分辨率中的至少一项和感知目标的最大速度,确定第一时域资源长度;The first item: Determine the length of the first time domain resource based on at least one of the length of the first frequency domain resource, the distance resolution corresponding to the first part of the resource, the delay resolution corresponding to the first part of the resource, and the maximum speed of the sensing target;
第二项:根据第二时域资源长度、第二部分资源对应的速度分辨率、第二部分资源对应的多普勒分辨率中的至少一项和感知目标的最大速度,确定第二频域资源长度。The second item: Determine the second frequency domain based on at least one of the length of the second time domain resource, the speed resolution corresponding to the second part of the resource, the Doppler resolution corresponding to the second part of the resource, and the maximum speed of the perceived target. Resource length.
可选地,对于上述第一项:所述第一时域资源长度满足以下其中一项公式:
T1≤c/(4B1vmax);
T1≤ΔR1/(2vmax);
T1≤cΔτ1/(4vmax);
T1≤c/(4B1|vmax|);
T1≤ΔR1/(2|vmax|);
T1≤cΔτ1/(4|vmax|);
Optionally, for the first item above: the length of the first time domain resource satisfies one of the following formulas:
T 1 ≤c/(4B 1 v max );
T 1 ≤ΔR 1 /(2v max );
T 1 ≤cΔτ 1 /(4v max );
T 1 ≤c/(4B 1 |v max |);
T 1 ≤ΔR 1 /(2|v max |);
T 1 ≤cΔτ 1 /(4|v max |);
其中,T1表示第一时域资源长度,ΔR1表示第一部分资源对应的距离分辨率,vmax表示感知目标的最大速度,B1表示第一频域资源长度,Δτ1表示第一部分资源对应的时延分 辨率,c表示光速;Among them, T 1 represents the length of the first time domain resource, ΔR 1 represents the distance resolution corresponding to the first part of the resource, v max represents the maximum speed of the sensing target, B 1 represents the length of the first frequency domain resource, and Δτ 1 represents the corresponding distance of the first part of the resource. delay minutes Resolution, c represents the speed of light;
具体的,若不考虑速度方向,第一时域资源长度满足T1≤c/(4B1vmax)或T1≤ΔR1/(2vmax);若考虑速度方向,第一时域资源长度满足T1≤c/(4B1|vmax|)、T1≤ΔR1/(2|vmax|)或T1≤cΔτ1/(4|vmax|)。Specifically, if the speed direction is not considered, the length of the first time domain resource satisfies T 1 ≤ c/(4B 1 v max ) or T 1 ≤ ΔR 1 /(2v max ); if the speed direction is considered, the length of the first time domain resource is It satisfies T 1 ≤c/(4B 1 |v max |), T 1 ≤ΔR 1 /(2|v max |) or T 1 ≤cΔτ 1 /(4|v max |).
对于上述第二项:第二频域资源长度满足以下其中一项公式:
B2≤c/(4T2vmax);
B2≤fcΔv2/(2vmax);
B2≤cΔfd2/(4vmax);
B2≤c/(4T2|vmax|);
B2≤fcΔv2/(2|vmax|);
B2≤fcΔv2/(2|vmax|);
For the second item above: the length of the second frequency domain resource satisfies one of the following formulas:
B 2 ≤c/(4T 2 v max );
B 2 ≤ f c Δv 2 /(2v max );
B 2 ≤cΔf d2 /(4v max );
B 2 ≤c/(4T 2 |v max |);
B 2 ≤ f c Δv 2 /(2|v max |);
B 2 ≤ f c Δv 2 /(2|v max |);
其中,B2表示第二频域资源长度,Δfd2表示第二部分资源对应的多普勒分辨率,vmax表示感知目标的最大速度,T2表示第二时域资源长度,Δv2表示第二部分资源对应的速度分辨率,c表示光速;fc表示中心频点;Among them, B 2 represents the length of the second frequency domain resource, Δf d2 represents the Doppler resolution corresponding to the second part of the resource, v max represents the maximum speed of the sensing target, T 2 represents the length of the second time domain resource, and Δv 2 represents the third The velocity resolution corresponding to the two parts of the resource, c represents the speed of light; f c represents the center frequency point;
具体的,若不考虑速度方向,第二频域资源长度满足B2≤c/(4T2vmax)、B2≤fcΔv2/(2vmax)或B2≤cΔfd2/(4vmax);若考虑速度方向,第二频域资源长度满足B2≤fcΔv2/(2|vmax|)或B2≤fcΔv2/(2|vmax|)。Specifically, if the speed direction is not considered, the second frequency domain resource length satisfies B 2 ≤c/(4T 2 v max ), B 2 ≤f c Δv 2 /(2v max ) or B 2 ≤cΔf d2 /(4v max ); if the speed direction is considered, the second frequency domain resource length satisfies B 2 ≤ f c Δv 2 /(2|v max |) or B 2 ≤f c Δv 2 /(2|v max |).
可选地,所述第一设备确定感知信号的资源配置信息,包括:Optionally, the first device determines resource configuration information of the sensing signal, including:
根据感知目标的最大不模糊速度或最大不模糊多普勒,确定第一时域资源间隔;和/或,根据感知目标的最大距离和感知目标的最大时延,确定第二频域资源间隔。The first time domain resource interval is determined based on the maximum unambiguous speed or maximum unambiguous Doppler of the sensed target; and/or the second frequency domain resource interval is determined based on the maximum distance of the sensed target and the maximum delay of the sensed target.
示例性的,对于单基地雷达感知(即自发自收感知),第一部分资源的第一时延资源间隔ΔT1与最大不模糊速度/最大不模糊多普勒关联,若不考虑速度方向,满足ΔT1≤c/(2fcvmax),或者ΔT1≤1/(fdmax);若考虑速度方向,满足ΔT1≤c/(4fc|vmax|),或者ΔT1≤1/(2|fdmax|);其中,vmax表示最大不模糊速度,fdmax表示最大不模糊多普勒。在感知方式为自发自收的感知方式时,上述最大不模糊速度可以为最大不模糊径向速度。For example, for monostatic radar sensing (ie, spontaneous self-receiving sensing), the first delay resource interval ΔT 1 of the first part of the resource is related to the maximum unambiguous speed/maximum unambiguous Doppler. If the speed direction is not considered, it satisfies ΔT 1 ≤c/(2f c v max ), or ΔT 1 ≤1/(f dmax ); if the speed direction is considered, ΔT 1 ≤c/(4f c |v max |), or ΔT 1 ≤1/( 2|f dmax |); where v max represents the maximum unambiguous velocity, and f dmax represents the maximum unambiguous Doppler. When the sensing mode is the spontaneous self-retracting sensing mode, the above-mentioned maximum unambiguous speed may be the maximum unambiguous radial speed.
第二部分资源的第二频域资源间隔Δf2满足Δf2≤c/(2Rmax),或者Δf2≤1/Δτmax。其中,Rmax表示感知目标的最大距离,Δτmax表示感知目标的最大时延。The second frequency domain resource interval Δf 2 of the second part of the resources satisfies Δf 2 ≤c/(2R max ), or Δf 2 ≤1/Δτ max . Among them, R max represents the maximum distance of sensing the target, and Δτ max represents the maximum delay of sensing the target.
接收端多普勒的计算需要基于感知信号时域相位变化,即2πfdΔT=θ,其中θ为ΔT时间感知信号时域相位变化,在不考虑速度方向时,为了保证不发生多普勒模糊,需要满足θ=2πfdΔT≤2π,即最大不模糊多普勒与感知信号时域间隔关系为ΔT≤1/(fdmax),最大 不模糊速度与最大不模糊多普勒关系为vmax=fdmaxc/2fc,因此最大不模糊速度与感知信号时域间隔关系为ΔT≤c/(2fcvmax);考虑速度方向时,为保证不发生多普勒模糊,需要满足θ=|2πfdΔT|≤π,即最大不模糊多普勒与感知信号时域间隔关系为ΔT1≤1/(2|fdmax|),最大不模糊速度与感知信号时域间隔关系为ΔT1≤c/(4fc|vmax|)。The calculation of Doppler at the receiving end needs to be based on the time domain phase change of the perceived signal, that is, 2πf d ΔT = θ, where θ is the time domain phase change of the perceived signal at ΔT time. When the speed direction is not considered, in order to ensure that Doppler ambiguity does not occur , it is necessary to satisfy θ=2πf d ΔT≤2π, that is, the relationship between the maximum unambiguous Doppler and the time domain interval of the perceived signal is ΔT≤1/(f dmax ), the maximum The relationship between the unambiguous speed and the maximum unambiguous Doppler is v max =f dmax c/2f c , so the relationship between the maximum unambiguous speed and the time domain interval of the perceived signal is ΔT≤c/(2f c v max ); when considering the speed direction , in order to ensure that Doppler ambiguity does not occur, it is necessary to satisfy θ=|2πf d ΔT|≤π, that is, the relationship between the maximum unambiguous Doppler and the time domain interval of the perceived signal is ΔT 1 ≤1/(2|f dmax |), The relationship between the maximum unambiguous speed and the time domain interval of the sensing signal is ΔT 1 ≤ c/(4f c |v max |).
可选地,所述感知信号的资源图样对应多个传输端口;Optionally, the resource pattern of the sensing signal corresponds to multiple transmission ports;
其中,不同传输端口上的资源图样相同或不同。Among them, the resource patterns on different transmission ports are the same or different.
可选地,在不同传输端口上的资源图样相同的情况下,不同传输端口上的感知信号的生成序列不同,或者,不同传输端口的感知信号对应的正交覆盖码不同。Optionally, when the resource patterns on different transmission ports are the same, the generation sequences of the sensing signals on different transmission ports are different, or the orthogonal cover codes corresponding to the sensing signals on different transmission ports are different.
可选地,在不同传输端口上的资源图样不同的情况下,不同传输端口上的资源图样时分复用和/或频分复用。Optionally, when the resource patterns on different transmission ports are different, the resource patterns on different transmission ports are time division multiplexed and/or frequency division multiplexed.
作为第二种可选地实现方式,所述第一设备确定感知信号的资源配置信息,包括:As a second optional implementation manner, the first device determines the resource configuration information of the sensing signal, including:
所述第一设备根据第三设备发送的资源配置指示信息,确定所述感知信号的资源配置信息。The first device determines the resource configuration information of the sensing signal based on the resource configuration indication information sent by the third device.
可选地,该资源配置指示信息包括以下至少一项:Optionally, the resource configuration indication information includes at least one of the following:
第一部分资源的第一时域资源长度;The length of the first time domain resource of the first part of the resource;
第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
第二部分资源的第二频域资源长度;The second frequency domain resource length of the second part of the resource;
所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
所述第二部分资源的第二时域资源间隔;The second time domain resource interval of the second part of resources;
所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
可选地,该资源配置指示信息包括感知信号配置类型,其中,不同感知信号配置类型对应不同的资源配置信息。Optionally, the resource configuration indication information includes sensing signal configuration types, where different sensing signal configuration types correspond to different resource configuration information.
该第三设备可以是基站、感知网络功能或感知网元等。The third device may be a base station, a sensing network function, a sensing network element, etc.
可选地,本申请实施例的方法,还包括:Optionally, the method in the embodiment of this application also includes:
所述第一设备将所述感知信号的资源配置信息指示给第二设备。The first device indicates the resource configuration information of the sensing signal to the second device.
可选地,所述第一设备将所述感知信号的资源配置信息指示给第二设备,包括:Optionally, the first device indicates the resource configuration information of the sensing signal to the second device, including:
所述第一设备向所述第二设备指示感知信号配置类型(或感知信号配置标识),其中,不同感知信号配置类型对应不同的资源配置信息。 The first device indicates a sensing signal configuration type (or sensing signal configuration identifier) to the second device, where different sensing signal configuration types correspond to different resource configuration information.
这里,感知信号配置类型与资源配置信息之间的对应关系可以是第一设备和第二设备提前约定好的,也可以是第一设备提前通知给第二设备的(例如,通过RRC信令指示不同类型或标识的感知信号配置对应的具体时频域配置参数,并通过层1信令指示感知信号配置类型或标识)。Here, the correspondence between the sensing signal configuration type and the resource configuration information may be agreed upon by the first device and the second device in advance, or may be notified by the first device to the second device in advance (for example, indicated through RRC signaling). Different types or identities of sensing signal configurations correspond to specific time-frequency domain configuration parameters, and the sensing signal configuration type or identity is indicated through layer 1 signaling).
本申请实施例中,第一设备可以将资源配置信息的具体内容(如上述第一时域资源长度、第一频域资源长度、第二时域资源长度及第二频域资源长度等)指示给第二设备,可以仅指示上述感知信号配置类型。In this embodiment of the present application, the first device may indicate the specific content of the resource configuration information (such as the above-mentioned first time domain resource length, first frequency domain resource length, second time domain resource length, and second frequency domain resource length, etc.) To the second device, only the above sensing signal configuration type may be indicated.
可选地,本申请实施例的方法,还包括:Optionally, the method in the embodiment of this application also includes:
获取第二设备反馈的测量结果,所述测量结果是所述第二设备对所述感知信号进行测量处理后得到的;Obtaining the measurement result fed back by the second device, the measurement result is obtained after the second device performs measurement processing on the sensing signal;
其中,所述测量结果包括以下至少一项:Wherein, the measurement results include at least one of the following:
第一距离或第一时延,所述第一距离或第一时延与所述第一部分资源关联;a first distance or a first delay, the first distance or the first delay being associated with the first part of the resources;
第二距离或第二时延,所述第二距离或第二时延与所述第二部分资源关联;a second distance or a second delay, the second distance or the second delay being associated with the second part of the resources;
第一速度或第一多普勒,所述第一速度或第一多普勒与所述第一部分资源关联;a first velocity or a first Doppler, the first velocity or the first Doppler being associated with the first portion of the resource;
第二速度或第二多普勒,所述第二速度或第二多普勒与第二部分资源关联;a second velocity or a second Doppler, the second velocity or the second Doppler being associated with the second part of the resource;
目标距离或目标时延,所述目标距离是根据第一距离和第二距离计算得到,所述目标时延是根据第一时延和第二时延计算得到的;Target distance or target delay, the target distance is calculated based on the first distance and the second distance, and the target delay is calculated based on the first delay and the second delay;
目标速度或目标多普勒,所述目标速度是根据所述第一速度和所述第二速度计算得到的,所述目标多普勒是根据所述第一多普勒和所述第二多普勒计算得到的;Target speed or target Doppler, the target speed is calculated based on the first speed and the second speed, the target Doppler is calculated based on the first Doppler and the second Doppler Calculated by Puller;
第一感知指标,所述第一感知指标与所述第一部分资源关联;A first perception indicator, the first perception indicator is associated with the first part of resources;
第二感知指标,所述第二感知指标与所述第二部分资源关联;a second perception indicator, the second perception indicator being associated with the second part of resources;
联合感知指标,所述联合感知指标是根据所述第一感知指标和所述第二感知指标计算得到的。Joint sensing index, the joint sensing index is calculated based on the first sensing index and the second sensing index.
在本申请的第一实施例中,为支持同时测距和测速,如图3、图4和图5所示,可以采用“T”型或“L”型或“十”字型资源图样设计,根据时频域资源配置可分为两部分,第一部分资源(Part1)用于保证距离/时延分辨率,第二部分资源(Part2)用于保证速度/多普勒分辨率,Part1和Part2对应的感知信号可以部分相同(如重叠部分),对于采用连续资源映射的感知信号,主要配置参数包括:In the first embodiment of the present application, in order to support simultaneous ranging and speed measurement, as shown in Figures 3, 4 and 5, a "T"-shaped or "L"-shaped or "X"-shaped resource pattern design can be used , according to the time and frequency domain resource configuration, it can be divided into two parts. The first part of the resource (Part1) is used to ensure the distance/delay resolution, and the second part of the resource (Part2) is used to ensure the speed/Doppler resolution. Part1 and Part2 The corresponding sensing signals may be partially the same (such as overlapping parts). For sensing signals using continuous resource mapping, the main configuration parameters include:
时频域偏移量:包括第一时域偏移量(对应Part1时域偏移量),第二时域偏移量(对应Part2时域偏移量),第一频域偏移量(对应Part1频域偏移量),第二频域偏移量(对应Part2频域偏移量);Time-frequency domain offset: including the first time domain offset (corresponding to the Part1 time domain offset), the second time domain offset (corresponding to the Part2 time domain offset), the first frequency domain offset ( Corresponding to Part1 frequency domain offset), second frequency domain offset (corresponding to Part2 frequency domain offset);
时频域资源总长度:包括第一时域资源长度(对应Part1时域资源长度),第二时域资源长度(对应Part2时域资源长度),第一频域资源长度(对应Part1频域资源长度),第二频域资源长度(对应Part2频域资源长度);Total length of time and frequency domain resources: including the length of the first time domain resource (corresponding to the length of the Part1 time domain resource), the length of the second time domain resource (corresponding to the length of the Part2 time domain resource), and the length of the first frequency domain resource (corresponding to the length of the Part1 frequency domain resource) length), the second frequency domain resource length (corresponding to the Part2 frequency domain resource length);
其中,第一频域资源长度大于第二频域资源长度,所述第一时域资源长度小于第二时 域资源长度。Wherein, the length of the first frequency domain resource is greater than the length of the second frequency domain resource, and the length of the first time domain resource is less than the length of the second time domain resource. Domain resource length.
接收端基于Part1进行距离-速度检测,例如采用二维FFT运算,得到第一距离和第一速度,基于Part2进行距离-速度检测,例如采用二维FFT运算,得到第二距离和第二速度,可选的,将第一距离作为目标距离,将第二速度作为目标速度。The receiving end performs distance-speed detection based on Part1, for example, using a two-dimensional FFT operation to obtain the first distance and the first speed, and performs distance-speed detection based on Part2, such as using a two-dimensional FFT operation to obtain the second distance and the second speed. Optionally, use the first distance as the target distance and the second speed as the target speed.
特别的,当Part1仅占一个时域资源单元时,不进行速度/多普勒处理,只进行距离/时延检测,例如采用一维FFT运算得到第一距离;当Part2仅占一个频域资源单元,不进行距离/时延处理,只进行距离/时延检测,例如采用一维FFT运算得到第二速度,并将第一距离作为目标距离,将第二速度作为目标速度,感知信号的资源图样如图6、图7和图8所示。In particular, when Part1 only occupies one time domain resource unit, no speed/Doppler processing is performed, only distance/delay detection is performed, for example, a one-dimensional FFT operation is used to obtain the first distance; when Part2 only occupies one frequency domain resource The unit does not perform distance/delay processing, but only performs distance/delay detection. For example, a one-dimensional FFT operation is used to obtain the second speed, and the first distance is used as the target distance, and the second speed is used as the target speed to sense signal resources. The patterns are shown in Figures 6, 7 and 8.
在本申请的第二实施例中,如图9所示,感知信号时频域可以采用非连续映射的方式,第一部分资源Part1和第二部分资源Part2的时频域资源间隔可以相同,即具有相同的不模糊感知范围,也可以不同,例如,Part1时域资源间隔小于或等于Part2时域资源间隔,即Part1相对于Part2能够获得更大的不模糊速度/多普勒测量范围,且由于Part1时域资源长度较短,可以进一步节省感知信号资源开销;Part2频域资源间隔小于或等于Part1频域资源间隔,即Part2相对于Part1能够获得更大的不模糊距离/时延测量范围,且由于Part2频域资源总长度较短,可以进一步节省感知信号资源开销。对于采用非连续资源映射的感知信号,主要配置参数包括:In the second embodiment of the present application, as shown in Figure 9, the time-frequency domain of the sensing signal can adopt a discontinuous mapping method, and the time-frequency domain resource intervals of the first part of the resource Part1 and the second part of the resource Part2 can be the same, that is, with The same unambiguous sensing range can also be different. For example, the time domain resource interval of Part1 is less than or equal to the time domain resource interval of Part2, that is, Part1 can obtain a larger unambiguous speed/Doppler measurement range compared to Part2, and because Part1 The shorter time domain resource length can further save the cost of sensing signal resources; the Part2 frequency domain resource interval is less than or equal to the Part1 frequency domain resource interval, that is, Part2 can obtain a larger unambiguous distance/delay measurement range compared to Part1, and because The total length of Part2 frequency domain resources is shorter, which can further save sensing signal resource overhead. For sensing signals using discontinuous resource mapping, the main configuration parameters include:
时频域偏移量:包括第一时域偏移量(Toffset1,对应Part1时域偏移量,),第二时域偏移量(Toffset2,对应Part2时域偏移量,),第一频域偏移量(foffset1,对应Part1频域偏移量),第二频域偏移量(foffset2,对应Part2频域偏移量)Time-frequency domain offset: including the first time domain offset (Toffset1, corresponding to the Part1 time domain offset,), the second time domain offset (Toffset2, corresponding to the Part2 time domain offset,), the first Frequency domain offset (foffset1, corresponding to Part1 frequency domain offset), second frequency domain offset (foffset2, corresponding to Part2 frequency domain offset)
时频域资源长度:包括第一时域资源长度(T1,对应Part1时域资源长度),第二时域资源长度(T2,对应Part2时域资源长度),第一频域资源长度(B1,对应Part1频域资源长度),第二频域资源总长度(B2,对应Part2频域资源长度)Time and frequency domain resource length: including the first time domain resource length (T1, corresponding to the Part1 time domain resource length), the second time domain resource length (T2, corresponding to the Part2 time domain resource length), the first frequency domain resource length (B1, Corresponding to the length of Part1 frequency domain resources), the total length of the second frequency domain resource (B2, corresponding to the length of Part2 frequency domain resources)
时频域资源密度/时频域资源间隔:包括第一时域资源间隔(ΔT1,对应Part1时域资源间隔),第二时域资源间隔(ΔT2,对应Part2时域资源间隔),第一频域资源间隔(Δf1,对应Part1频域资源间隔),第二频域资源间隔(Δf2,对应Part2频域资源间隔);Time-frequency domain resource density/time-frequency domain resource interval: including the first time domain resource interval (ΔT 1 , corresponding to the Part1 time domain resource interval), the second time domain resource interval (ΔT 2 , corresponding to the Part2 time domain resource interval), and the second time domain resource interval (ΔT 2 , corresponding to the Part2 time domain resource interval). The first frequency domain resource interval (Δf 1 , corresponding to the Part1 frequency domain resource interval), the second frequency domain resource interval (Δf 2 , corresponding to the Part2 frequency domain resource interval);
特别的,不模糊距离限制相对较弱,一般可以Part1和Part2采用相同频域资源间隔,保证频域整体等间隔映射。In particular, the unambiguous distance restriction is relatively weak. Generally, the same frequency domain resource interval can be used for Part1 and Part2 to ensure equal-spaced mapping of the entire frequency domain.
接收端基于Part1进行距离-速度检测,例如采用二维FFT运算,得到第一距离和第一速度,基于Part2进行距离-速度检测,例如采用二维FFT运算,得到第二距离和第二速度。可选的,基于第一距离和第二距离得到目标距离,基于第一速度和第二速度得到目标速度。The receiving end performs distance-speed detection based on Part1, for example, using a two-dimensional FFT operation to obtain the first distance and the first speed, and performs distance-speed detection based on Part2, such as using a two-dimensional FFT operation to obtain the second distance and the second speed. Optionally, the target distance is obtained based on the first distance and the second distance, and the target speed is obtained based on the first speed and the second speed.
此时,Part1的频域资源间隔和Part2的时域资源间隔可以不满足最大不模糊范围的要求,产生的模糊问题可以利用资源密度较高但资源长度较短的一方的计算结果进行补偿。以速度计算为例,根据Part1计算得到第一速度为v1,Part1对应速度分辨率为Δv1,最大不模糊径向速度为vmax1;根据Part2计算得到第二速度为v2,Part2对应速度分辨率为Δv2, 且Δv2<Δv1,最大不模糊径向速度为vmax2,且vmax2<vmax1,令 该公式表示对n进行搜索取值使得Δv12最小,例如当n=nT时使得Δv12取最小值,则目标速度为vT=v2+nTvmax2,nT表示使得Δv12最小时的n的取值。例如Part1速度分辨率为5m/s,Part2速度分辨率为1m/s,Part1最大不模糊径向速度为50m/s,Part2最大不模糊径向速度为10m/s,即Part1时域资源长度为Part2时域资源长度的五倍,Part1时域资源间隔为Part2时域资源间隔的五分之一。假设根据Part1计算得到的第一速度为25m/s,根据Part2计算得到的第一速度为6m/s,则目标运动速度取26m/s。At this time, the frequency domain resource interval of Part1 and the time domain resource interval of Part2 may not meet the requirements of the maximum unambiguous range, and the resulting ambiguity problem can be compensated by using the calculation results of the party with higher resource density but shorter resource length. Taking speed calculation as an example, the first speed calculated based on Part1 is v 1 , the corresponding speed resolution of Part1 is Δv 1 , and the maximum unambiguous radial speed is v max1 ; the second speed calculated based on Part2 is v 2 , and the corresponding speed of Part2 The resolution is Δv 2 , And Δv 2 <Δv 1 , the maximum unambiguous radial velocity is v max2 , and v max2 < v max1 , let This formula means searching for the value of n to minimize Δv 12. For example, when n = n T to make Δv 12 take the minimum value, then the target speed is v T = v 2 + n T v max2 , n T means to make Δv 12 the smallest The value of n for hours. For example, the speed resolution of Part1 is 5m/s, the speed resolution of Part2 is 1m/s, the maximum unblurred radial speed of Part1 is 50m/s, and the maximum unblurred radial speed of Part2 is 10m/s, that is, the time domain resource length of Part1 is Five times the length of the Part2 time domain resource, and the Part1 time domain resource interval is one-fifth of the Part2 time domain resource interval. Assume that the first speed calculated based on Part1 is 25m/s, and the first speed calculated based on Part2 is 6m/s, then the target movement speed is 26m/s.
另外,在第一部分资源和第二部分资源的时域资源间隔不同或频域资源间隔不同的情况下,第一频域资源长度大于或等于第二频域资源长度,第一时域资源长度小于第二时域资源长度;或者,在第一部分资源和第二部分资源的时域资源间隔不同或频域资源间隔不同的情况下,第一频域资源长度大于第二频域资源长度,第一时域资源长度小于或等于第二时域资源长度。In addition, when the time domain resource intervals of the first part of the resources and the second part of the resources are different or the frequency domain resource intervals are different, the first frequency domain resource length is greater than or equal to the second frequency domain resource length, and the first time domain resource length is less than The second time domain resource length; or, when the time domain resource intervals of the first part of the resource and the second part of the resource are different or the frequency domain resource interval is different, the first frequency domain resource length is greater than the second frequency domain resource length, the first The length of the time domain resource is less than or equal to the length of the second time domain resource.
本申请实施例中,对于OFDM系统的感知信号,频域偏移可以是资源元素(Resource Element,RE)级别或资源块(Resource Block,RB)级别的偏移;时域偏移可以是符号级别、时隙级别或帧级别的偏移;频域资源长度通过总RE/RB个数表示,时域资源长度可以通过总符号/时隙个数表示;频域资源密度(或频域资源间隔)可以是间隔RE数,时域资源密度(或时域资源间隔)可以是间隔符号个数、间隔时隙个数。对于未被感知信号占用的资源可用于通信资源映射(通信参考信号(Reference Signal,RS)或数据),也可用于其他感知发射机或其他端口的感知资源映射。In the embodiment of this application, for the sensing signal of the OFDM system, the frequency domain offset can be an offset at the resource element (Resource Element, RE) level or the resource block (Resource Block, RB) level; the time domain offset can be at the symbol level. , offset at the slot level or frame level; the frequency domain resource length is expressed by the total number of RE/RBs, and the time domain resource length can be expressed by the total number of symbols/time slots; frequency domain resource density (or frequency domain resource interval) It can be the number of interval REs, and the time domain resource density (or time domain resource interval) can be the number of interval symbols and the number of interval slots. Resources not occupied by sensing signals can be used for communication resource mapping (communication reference signal (RS) or data), and can also be used for sensing resource mapping of other sensing transmitters or other ports.
在本申请的第三实施例中,感知信号可以被配置为多个端口,不同端口的感知信号图样关系可以是:In the third embodiment of the present application, the sensing signal can be configured as multiple ports, and the sensing signal pattern relationship of different ports can be:
方案一:Option One:
不同端口的感知信号采用频分复用,即通过配置不同频域偏移量区分不同端口的感知信号,如图10所示,2端口频分复用,端口1对应的感知信号频域偏移量为0个频率单元(例如RE),端口2对应的感知信号频域偏移量为1个频率单元(例如RE),端口1和端口2的资源长度以及资源间隔相同,即具有相同的感知性能;The sensing signals of different ports use frequency division multiplexing, that is, the sensing signals of different ports are distinguished by configuring different frequency domain offsets. As shown in Figure 10, 2-port frequency division multiplexing, the frequency domain offset of the sensing signal corresponding to port 1 The amount is 0 frequency units (such as RE), the frequency domain offset of the sensing signal corresponding to port 2 is 1 frequency unit (such as RE), the resource length and resource interval of port 1 and port 2 are the same, that is, they have the same perception performance;
或者,不同端口的感知信号采用时分复用,即通过配置不同时域偏移量区分不同端口的感知信号,如图11所示,2端口时分复用,端口1对应的感知信号时域偏移量为0个时间单元(例如OFDM符号),端口2对应的感知信号频域偏移量为1个时间单元(例如OFDM符号),端口1和端口2的资源长度、资源间隔相同,即具有相同的感知性能。Alternatively, the sensing signals of different ports are time-division multiplexed, that is, the sensing signals of different ports are distinguished by configuring different time domain offsets. As shown in Figure 11, 2-port time division multiplexing, the time domain offset of the sensing signal corresponding to port 1 The amount is 0 time unit (for example, OFDM symbol), the frequency domain offset of the sensing signal corresponding to port 2 is 1 time unit (for example, OFDM symbol), the resource length and resource interval of port 1 and port 2 are the same, that is, they have the same perceived performance.
或者,不同端口的感知信号采用频分复用和时分复用,即通过配置不同频域偏移量和时域偏移量区分不同端口的感知信号,如图12所示,4端口频分复用和时分复用,端口1对应的感知信号频域偏移量为0个频率单元(例如RE),时域偏移量为0个时间单元(例如OFDM符号),端口2对应的感知信号频域偏移量为1个频率单元(例如RE),时域偏 移量为0个时间单元(例如OFDM符号),端口3对应的感知信号频域偏移量为0个频率单元(例如RE),时域偏移量为1个时间单元(例如OFDM符号),端口4对应的感知信号频域偏移量为1个频率单元(例如RE),时域偏移量为1个时间单元(例如OFDM符号),端口1、端口2、端口3和端口4的资源长度以及资源间隔相同,即具有相同的感知性能;Alternatively, the sensing signals of different ports use frequency division multiplexing and time division multiplexing, that is, by configuring different frequency domain offsets and time domain offsets to distinguish the sensing signals of different ports, as shown in Figure 12, 4-port frequency division multiplexing Using and time division multiplexing, the frequency domain offset of the sensing signal corresponding to port 1 is 0 frequency units (such as RE), the time domain offset is 0 time units (such as OFDM symbols), and the frequency domain offset of the sensing signal corresponding to port 2 is The domain offset is 1 frequency unit (such as RE), and the time domain offset The shift amount is 0 time units (such as OFDM symbols), the frequency domain offset of the sensing signal corresponding to port 3 is 0 frequency units (such as RE), and the time domain offset is 1 time unit (such as OFDM symbols), The frequency domain offset of the sensing signal corresponding to port 4 is 1 frequency unit (for example, RE), the time domain offset is 1 time unit (for example, OFDM symbol), and the resources of port 1, port 2, port 3, and port 4 The length and resource interval are the same, that is, they have the same perceived performance;
或者,不同端口的感知信号对应的时频域图样相同,即具有相同的时频域配置参数,但所采用的感知信号的生成序列不同,即感知信号序列的生成参数与端口序号相关;Or, the time-frequency domain patterns corresponding to the sensing signals of different ports are the same, that is, they have the same time-frequency domain configuration parameters, but the sensing signal generation sequences used are different, that is, the generation parameters of the sensing signal sequence are related to the port serial number;
或者,不同端口的感知信号对应的时频域图样相同,即具有相同的时频域配置参数,且采用的感知信号的生成序列相同,但在映射到时频域资源时通过不同的正交覆盖码(Orthogonal Covering Code,OCC)区分,例如,2端口感知信号映射采用频域OCC(Frequency domain orthogonal covering code,FD-OCC)时,端口1的感知信号序列为c(m),可直接映射到某指定时间单元(例如OFDM符号)对应的频率单元(例如RE)上,端口2的感知信号序列可为c(m)*occ(m),occ(m)为FD-OCC序列,可表示为(1,-1,1,-1…,1,-1,1,-1),之后映射到与端口1相同的频率单元。Alternatively, the sensing signals of different ports correspond to the same time-frequency domain patterns, that is, they have the same time-frequency domain configuration parameters and use the same sensing signal generation sequence, but use different orthogonal coverage when mapping to time-frequency domain resources. Code (Orthogonal Covering Code, OCC) distinction. For example, when 2-port sensing signal mapping uses frequency domain OCC (Frequency domain orthogonal covering code, FD-OCC), the sensing signal sequence of port 1 is c(m), which can be directly mapped to On the frequency unit (such as RE) corresponding to a specified time unit (such as OFDM symbol), the sensing signal sequence of port 2 can be c(m)*occ(m), and occ(m) is the FD-OCC sequence, which can be expressed as (1,-1,1,-1…,1,-1,1,-1), and then mapped to the same frequency unit as port 1.
方案二:Option II:
对于给定感知资源的情况下,可以基于感知信号的时频域图样特征,进行多端口资源分配,例如,给定感知整体资源下,2端口的感知信号时频域图样设计如图13图所示。又例如给定感知整体资源下,4端口的感知信号时频域图样设计如图14、15或16所示。再例如,8端口的感知信号时频域图样设计如图17所示。For given sensing resources, multi-port resource allocation can be performed based on the time-frequency domain pattern characteristics of the sensing signal. For example, given the overall sensing resources, the design of the 2-port sensing signal time-frequency domain pattern is shown in Figure 13 Show. For another example, given the overall sensing resources, the time-frequency domain pattern design of the 4-port sensing signal is shown in Figure 14, 15 or 16. As another example, the time-frequency domain pattern design of the 8-port sensing signal is shown in Figure 17.
本申请实施例的方法,针对感知业务中的测距、测速功能特点提出了一种非均匀的感知信号时频域图样,并给出了相应配置方法以及测量和反馈流程,相比常规的信号映射方式具有如下好处:使速度分辨率与距离分辨率解耦,能够同时进行高分辨率测速和测距;保证分辨率的同时满足最大不模糊测距/测速需求;满足均匀采样需求;能够更灵活地进行资源分配,节省开销。The method of the embodiment of the present application proposes a non-uniform time-frequency domain pattern of the sensing signal according to the functional characteristics of ranging and speed measurement in the sensing service, and provides the corresponding configuration method and measurement and feedback process. Compared with the conventional signal The mapping method has the following benefits: it decouples the speed resolution and distance resolution, enabling high-resolution speed measurement and distance measurement at the same time; ensuring resolution while meeting the maximum unambiguous ranging/speed measurement requirements; meeting uniform sampling requirements; and enabling more accurate Flexibly allocate resources and save costs.
如图18所示,本申请实施例还提供了一种感知信号处理方法,包括:As shown in Figure 18, this embodiment of the present application also provides a perceptual signal processing method, including:
步骤1801:第二设备接收感知信号,所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。Step 1801: The second device receives a sensing signal. The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources. The length of the first frequency domain resource of the first part of resources is greater than The second frequency domain resource length of the second part of the resource, and the first time domain resource length of the first part of the resource are smaller than the second time domain resource length of the second part of the resource.
本申请实施例中,第二设备可以是终端、基站或感知网络功能或感知网元。In this embodiment of the present application, the second device may be a terminal, a base station, a sensing network function or a sensing network element.
本申请实施例中,第二设备接收的感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。其中,第一频域资源长度大于所述第二频域资源长度使得第一部分资源相对于第二部分资源能够获得更高的距离分辨率或时延分辨率,第一时域资源长度小于第二时域资源长度,使得第 二部分资源相对于第一部分资源能够获得更高的速度分辨率或多普勒分辨率,从而通过上述第一部分资源和第二部分资源能够分别满足测距和测速需求,且该感知信号的资源图样不再是规则的矩形图样,能够有效节省资源。In this embodiment of the present application, the resources of the sensing signal received by the second device include a first part of the resource and a second part of the resource, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain resource of the second part of the resource. The length of the first time domain resource of the first part of the resource is less than the second time domain resource length of the second part of the resource. Wherein, the length of the first frequency domain resource is greater than the length of the second frequency domain resource so that the first part of the resource can obtain a higher distance resolution or delay resolution relative to the second part of the resource, and the length of the first time domain resource is shorter than the second part of the resource. The length of the time domain resource is such that the The second part of resources can obtain higher speed resolution or Doppler resolution than the first part of resources, so that the above-mentioned first part of resources and the second part of resources can meet the ranging and speed measurement requirements respectively, and the resource pattern of the sensing signal It is no longer a regular rectangular pattern, which can effectively save resources.
可选地,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。Optionally, the characteristics of the resource pattern of the sensing signal further include: the first time domain resource interval of the first part of the resource is less than or equal to the second time domain resource interval of the second part of the resource; and/or the The second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
可选地,本申请实施例的方法,还包括:Optionally, the method in the embodiment of this application also includes:
获取第一设备指示的感知信号的资源配置信息;Obtain resource configuration information of the sensing signal indicated by the first device;
根据所述资源配置信息确定所述感知信号的资源图样;Determine the resource pattern of the sensing signal according to the resource configuration information;
其中,所述资源配置信息包括以下至少一项:Wherein, the resource configuration information includes at least one of the following:
第一部分资源的第一时域资源长度;The length of the first time domain resource of the first part of the resource;
第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
第二部分资源的第二频域资源长度;The second frequency domain resource length of the second part of the resource;
所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
所述第二部分资源的第二时域资源间隔;The second time domain resource interval of the second part of resources;
所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
可选地,本申请实施例的方法,还包括:Optionally, the method in the embodiment of this application also includes:
所述第二设备对感知信号进行接收与测量处理,并向第一设备反馈测量结果;The second device receives and measures the sensing signal, and feeds back the measurement results to the first device;
其中,所述测量结果包括以下至少一项:Wherein, the measurement results include at least one of the following:
第一距离或第一时延,所述第一距离或第一时延与所述第一部分资源关联;a first distance or a first delay, the first distance or the first delay being associated with the first part of the resources;
第二距离或第二时延,所述第二距离或第二时延与所述第二部分资源关联;a second distance or a second delay, the second distance or the second delay being associated with the second part of the resources;
第一速度或第一多普勒,所述第一速度或第一多普勒与所述第一部分资源关联;a first velocity or a first Doppler, the first velocity or the first Doppler being associated with the first portion of the resource;
第二速度或第二多普勒,所述第二速度或第二多普勒与第二部分资源关联;a second velocity or a second Doppler, the second velocity or the second Doppler being associated with the second part of the resource;
目标距离或目标时延,所述目标距离是根据第一距离和第二距离计算得到,所述目标时延是根据第一时延和第二时延计算得到的;Target distance or target delay, the target distance is calculated based on the first distance and the second distance, and the target delay is calculated based on the first delay and the second delay;
目标速度或目标多普勒,所述目标速度是根据所述第一速度和所述第二速度计算得到的,所述目标多普勒是根据所述第一多普勒和所述第二多普勒计算得到的;Target speed or target Doppler, the target speed is calculated based on the first speed and the second speed, the target Doppler is calculated based on the first Doppler and the second Doppler Calculated by Puller;
第一感知指标,所述第一感知指标与所述第一部分资源关联;A first perception indicator, the first perception indicator is associated with the first part of resources;
第二感知指标,所述第二感知指标与所述第二部分资源关联; a second perception indicator, the second perception indicator being associated with the second part of resources;
联合感知指标,所述联合感知指标是根据所述第一感知指标和所述第二感知指标计算得到的。Joint sensing index, the joint sensing index is calculated based on the first sensing index and the second sensing index.
可选地,所述第二设备获取第一设备指示的感知信号的资源配置信息,包括:Optionally, the second device obtains the resource configuration information of the sensing signal indicated by the first device, including:
所述第二设备获取感知信号配置类型,其中,不同感知信号配置类型对应不同的资源配置信息;The second device obtains a sensing signal configuration type, where different sensing signal configuration types correspond to different resource configuration information;
根据感知信号配置类型,确定感知信号的资源配置信息。According to the sensing signal configuration type, the resource configuration information of the sensing signal is determined.
本申请实施例中,第二设备接收的感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。其中,第一频域资源长度大于所述第二频域资源长度使得第一部分资源相对于第二部分资源能够获得更高的距离分辨率或时延分辨率,第一时域资源长度小于第二时域资源长度,使得第二部分资源相对于第一部分资源能够获得更高的速度分辨率或多普勒分辨率,从而通过上述第一部分资源和第二部分资源能够分别满足测距和测速需求,且该感知信号的资源图样不再是规则的矩形图样,能够有效节省资源。In this embodiment of the present application, the resources of the sensing signal received by the second device include a first part of the resource and a second part of the resource, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain resource of the second part of the resource. The length of the first time domain resource of the first part of the resource is less than the second time domain resource length of the second part of the resource. Wherein, the length of the first frequency domain resource is greater than the length of the second frequency domain resource so that the first part of the resource can obtain a higher distance resolution or delay resolution relative to the second part of the resource, and the length of the first time domain resource is shorter than the second part of the resource. The length of the time domain resource enables the second part of the resource to obtain a higher speed resolution or Doppler resolution than the first part of the resource, so that the above-mentioned first part of the resource and the second part of the resource can meet the ranging and speed measurement requirements respectively. Moreover, the resource pattern of the sensing signal is no longer a regular rectangular pattern, which can effectively save resources.
需要说明的是,本申请实施例中的感知指标为用于指示感知结果质量好坏的指标,例如,感知指标可以是信噪比(Signal Noise Ratio,SNR)或信号与干扰和噪声比(Signal to Interference plus Noise Ratio,SNIR)。It should be noted that the perception indicators in the embodiments of the present application are indicators used to indicate the quality of the perception results. For example, the perception indicators may be Signal Noise Ratio (SNR) or Signal to Interference and Noise Ratio (Signal Noise Ratio). to Interference plus Noise Ratio, SNIR).
对于感知SNR,可以是所述感知目标关联信号分量功率与噪声功率的比值,对于感知SNIR可以是感知目标关联信号分量功率与噪声和干扰的功率之和的比值。For perception SNR, it may be the ratio of the power of the signal component associated with the perception target and the power of the noise. For perception SNIR, it may be the ratio of the power of the signal component associated with the perception target and the sum of the power of noise and interference.
以雷达检测为例,所述感知目标关联信号分量功率为回波功率,回波信号功率的获取方法,可以是以下选项中的至少一项:Taking radar detection as an example, the power of the signal component associated with the perceived target is the echo power. The method for obtaining the echo signal power can be at least one of the following options:
基于回波信号快时间维FFT处理得到的时延一维图进行恒虚警检测(CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算回波信号功率,如图19所示;Constant false alarm detection (CFAR) is performed based on the time-delay one-dimensional map obtained by fast time-dimensional FFT processing of the echo signal. The sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude. Echo signal power, as shown in Figure 19;
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算回波信号功率,同图19所示;CFAR is performed based on the Doppler one-dimensional map obtained by slow-time FFT processing of the echo signal. The sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude to calculate the echo signal power. As shown in Figure 19;
基于回波信号二维(2D)-FFT处理得到的时延-多普勒二维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算回波信号功率;CFAR is performed based on the delay-Doppler two-dimensional map obtained by two-dimensional (2D)-FFT processing of the echo signal. The sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude. Calculate the echo signal power;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度来计算回波信号功率;CFAR is performed based on the delay-Doppler-angle three-dimensional map obtained by 3D-FFT processing of the echo signal. The sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude to calculate the echo. signal power;
目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度来计算回波信号功率;In addition to the above method of determining the target signal amplitude, taking the maximum amplitude sample point of CFAR crossing the threshold as the target sample point, the method can also be to use the maximum sample point of CFAR crossing the threshold and its nearest several samples that cross the threshold. The mean value of the value points is used as the target signal amplitude to calculate the echo signal power;
所述回波信号的SNR/SINR的获取方法可以是: The method for obtaining the SNR/SINR of the echo signal may be:
基于回波信号快时间维FFT处理得到的时延一维图进行恒虚警检测(CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±ε个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均干扰/幅度为干扰/噪声信号幅度,如图19所示,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;Constant false alarm detection (CFAR) is performed based on the time-delay one-dimensional map obtained by fast time-dimensional FFT processing of the echo signal. The sample point with the maximum amplitude of CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude. In the one-dimensional diagram, all sample points other than ±ε sample points from the target sample point position are interference/noise sample points, and their average interference/amplitude is calculated as the interference/noise signal amplitude, as shown in Figure 19. Finally, the SNR/SINR is calculated based on the target signal amplitude and the interference/noise signal amplitude;
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±η个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;CFAR is performed based on the Doppler one-dimensional map obtained by slow-time FFT processing of the echo signal. The sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude. The distance in the one-dimensional map is All sample points other than ±n sample points at the target sample point position are interference/noise sample points, and their average amplitude is calculated as the interference/noise signal amplitude. Finally, the SNR is calculated based on the target signal amplitude and the interference/noise signal amplitude. /SINR;
基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以二维图中距离目标样值点±ε(快时间维)和±η(慢时间维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;The delay-Doppler two-dimensional map obtained by 2D-FFT processing of the echo signal is entered into CFAR. The sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude. The two-dimensional map is All sample points except the ±ε (fast time dimension) and ±η (slow time dimension) sample points of the mid-range target sample points are interference/noise sample points, and their average amplitude is calculated as the interference/noise signal amplitude. , and finally calculate the SNR/SINR based on the target signal amplitude and the interference/noise signal amplitude;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以三维图中距离目标样值点±ε(快时间维)、±η(慢时间维)和±δ(角度维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;CFAR is performed based on the delay-Doppler-angle three-dimensional map obtained by 3D-FFT processing of the echo signal. The sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude. The three-dimensional map is All sample points except the ±ε (fast time dimension), ±η (slow time dimension) and ±δ (angle dimension) sample points of the mid-distance target sample points are interference/noise sample points, and their averages are calculated The amplitude is the interference/noise signal amplitude, and finally the SNR/SINR is calculated based on the target signal amplitude and the interference/noise signal amplitude;
目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度;In addition to the above method of determining the target signal amplitude, taking the maximum amplitude sample point of CFAR crossing the threshold as the target sample point, the method can also be to use the maximum sample point of CFAR crossing the threshold and its nearest several samples that cross the threshold. The mean value of the value points is used as the target signal amplitude;
干扰/噪声样值点的确定方法还可以是根据上述确定的干扰/噪声样值点进一步筛选,筛选方法是:对于时延一维图,去除时延为0附近的若干个样值点,以剩下的干扰/噪声样值点作为噪声样值点;对于多普勒一维图,去除多普勒为0附近的若干个样值点,以剩下的干扰/噪声样值点为干扰/噪声样值点;对于时延-多普勒二维图,去除以时延为0附近若干个点、全部多普勒范围构成的条状范围的干扰/噪声样值点,以剩下的噪声样值点作为干扰/噪声样值点;对于时延-多普勒-角度三维图,去除以时间维0附件若干个点、全部多普勒范围和全部角度范围构成的切片状范围的干扰/噪声样值点,以剩下的干扰/噪声样值点作为干扰/噪声样值点。The method for determining the interference/noise sample points can also be to further screen based on the interference/noise sample points determined above. The screening method is: for the one-dimensional time delay diagram, remove several sample points near the time delay of 0, so as to The remaining interference/noise sample points are used as noise sample points; for the Doppler one-dimensional map, several sample points near Doppler 0 are removed, and the remaining interference/noise sample points are used as interference/noise sample points. Noise sample points; for the delay-Doppler two-dimensional diagram, remove the interference/noise sample points in the strip range composed of several points near the delay 0 and the entire Doppler range, and use the remaining noise The sample points are used as interference/noise sample points; for the delay-Doppler-angle three-dimensional diagram, the interference of the slice-like range composed of several points attached to the time dimension 0, the entire Doppler range and the entire angle range is removed/ Noise sample points, use the remaining interference/noise sample points as interference/noise sample points.
本申请实施例提供的感知信号处理方法,执行主体可以为感知信号处理装置。本申请实施例中以感知信号处理装置执行感知信号处理方法为例,说明本申请实施例提供的感知信号处理装置。For the perceptual signal processing method provided by the embodiments of the present application, the execution subject may be a perceptual signal processing device. In the embodiment of the present application, the perceptual signal processing device performed by the perceptual signal processing method is used as an example to illustrate the perceptual signal processing device provided by the embodiment of the present application.
如图20所示,本申请实施例提供了一种感知信号处理装置2000,应用于第一设备,包括: As shown in Figure 20, this embodiment of the present application provides a perceptual signal processing device 2000, which is applied to the first device and includes:
第一发送模块2001,用于发送感知信号;The first sending module 2001 is used to send sensing signals;
所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain of the second part of the resource. Domain resource length, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource.
可选地,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。Optionally, the characteristics of the resource pattern of the sensing signal further include: the first time domain resource interval of the first part of the resource is less than or equal to the second time domain resource interval of the second part of the resource; and/or the The second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
可选地,本申请实施例的装置,还包括:Optionally, the device of the embodiment of the present application also includes:
第一确定模块,用于确定感知信号的资源配置信息;The first determination module is used to determine the resource configuration information of the sensing signal;
第二确定模块,用于根据所述资源配置信息确定所述感知信号的资源图样;a second determination module, configured to determine the resource pattern of the sensing signal according to the resource configuration information;
其中,所述资源配置信息包括以下至少一项:Wherein, the resource configuration information includes at least one of the following:
第一部分资源的第一时域资源长度;The length of the first time domain resource of the first part of the resource;
第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
第二部分资源的第二频域资源长度;The second frequency domain resource length of the second part of the resource;
所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
所述第二部分资源的第二时域资源间隔;The second time domain resource interval of the second part of resources;
所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
可选地,所述第一确定模块用于根据感知分辨率,确定所述第一频域资源长度和所述第二时域资源长度。Optionally, the first determination module is configured to determine the first frequency domain resource length and the second time domain resource length according to the sensing resolution.
可选地,所述第一确定模块包括:Optionally, the first determining module includes:
第一确定子模块,用于根据距离分辨率或时延分辨率,确定所述第一频域资源长度;The first determination sub-module is used to determine the length of the first frequency domain resource according to the distance resolution or the delay resolution;
第二确定子模块,用于根据速度分辨率或多普勒分辨率,确定所述第二时域资源长度。The second determination sub-module is used to determine the second time domain resource length according to the speed resolution or Doppler resolution.
可选地,所述第一频域资源长度满足以下公式:
B1≥c/(2ΔR);
Optionally, the first frequency domain resource length satisfies the following formula:
B 1 ≥c/(2ΔR);
其中,B1表示第一频域资源长度,c表示光速,ΔR为距离分辨率;Among them, B 1 represents the length of the first frequency domain resource, c represents the speed of light, and ΔR is the distance resolution;
或者,所述第一频域资源长度满足以下公式:
B1≥1/Δτ;
Alternatively, the length of the first frequency domain resource satisfies the following formula:
B 1 ≥1/Δτ;
其中,B1表示第一频域资源长度,Δτ表示表示时延分辨率。Among them, B 1 represents the length of the first frequency domain resource, and Δτ represents the delay resolution.
可选地,所述第二时域资源长度满足以下公式:
T2≥c/(2fcΔv);
Optionally, the second time domain resource length satisfies the following formula:
T 2 ≥c/(2f c Δv);
其中,T2表示第二时域资源长度,c表示光速,Δv表示速度分辨率,fc表示中心频点;Among them, T 2 represents the length of the second time domain resource, c represents the speed of light, Δv represents the velocity resolution, and f c represents the center frequency point;
或者,所述第二时域资源长度满足以下公式:
T2≥1/Δfd
Alternatively, the second time domain resource length satisfies the following formula:
T 2 ≥1/ Δfd ;
其中,T2表示第二时域资源长度,Δfd表示多普勒分辨率。Among them, T 2 represents the second time domain resource length, and Δf d represents the Doppler resolution.
可选地,所述第一确定模块用于执行以下至少一项:Optionally, the first determining module is configured to perform at least one of the following:
根据第一频域资源长度、第一部分资源对应的距离分辨率、第一部分资源对应的时延分辨率中的至少一项和感知目标的最大速度,确定第一时域资源长度;Determine the first time domain resource length according to at least one of the first frequency domain resource length, the distance resolution corresponding to the first part of the resource, the delay resolution corresponding to the first part of the resource, and the maximum speed of the sensing target;
根据第二时域资源长度、第二部分资源对应的速度分辨率、第二部分资源对应的多普勒分辨率中的至少一项和感知目标的最大速度,确定第二频域资源长度。The second frequency domain resource length is determined according to at least one of the second time domain resource length, the speed resolution corresponding to the second part of the resource, the Doppler resolution corresponding to the second part of the resource, and the maximum speed of the sensing target.
可选地,所述第一确定模块用于根据感知目标的最大不模糊速度或最大不模糊多普勒,确定第一时域资源间隔;和/或,根据感知目标的最大距离和感知目标的最大时延,确定第二频域资源间隔。Optionally, the first determination module is configured to determine the first time domain resource interval based on the maximum unambiguous speed or maximum unambiguous Doppler of the perceived target; and/or, based on the maximum distance of the perceived target and the maximum distance of the perceived target. The maximum delay determines the second frequency domain resource interval.
可选地,所述感知信号的资源图样对应多个传输端口;Optionally, the resource pattern of the sensing signal corresponds to multiple transmission ports;
其中,不同传输端口上的资源图样相同或不同。Among them, the resource patterns on different transmission ports are the same or different.
可选地,在不同传输端口上的资源图样相同的情况下,不同传输端口上的感知信号的生成序列不同,或者,不同传输端口的感知信号对应的正交覆盖码不同。Optionally, when the resource patterns on different transmission ports are the same, the generation sequences of the sensing signals on different transmission ports are different, or the orthogonal cover codes corresponding to the sensing signals on different transmission ports are different.
可选地,在不同传输端口上的资源图样不同的情况下,不同传输端口上的资源图样时分复用和/或频分复用。Optionally, when the resource patterns on different transmission ports are different, the resource patterns on different transmission ports are time division multiplexed and/or frequency division multiplexed.
可选地,本申请实施例的装置还包括:Optionally, the device in the embodiment of this application also includes:
第一指示模块,用于将所述感知信号的资源配置信息指示给第二设备。The first indication module is configured to indicate the resource configuration information of the sensing signal to the second device.
可选地,所述第一指示模块用于向所述第二设备指示感知信号配置类型,其中,不同感知信号配置类型对应不同的资源配置信息。Optionally, the first indication module is configured to indicate a sensing signal configuration type to the second device, where different sensing signal configuration types correspond to different resource configuration information.
可选地,本申请实施例的装置,还包括:Optionally, the device of the embodiment of the present application also includes:
第一获取模块,用于获取第二设备反馈的测量结果,所述测量结果是所述第二设备对所述感知信号进行测量处理后得到的;The first acquisition module is used to acquire the measurement results fed back by the second device, where the measurement results are obtained after the second device performs measurement processing on the sensing signal;
其中,所述测量结果包括以下至少一项:Wherein, the measurement results include at least one of the following:
第一距离或第一时延,所述第一距离或第一时延与所述第一部分资源关联;a first distance or a first delay, the first distance or the first delay being associated with the first part of the resources;
第二距离或第二时延,所述第二距离或第二时延与所述第二部分资源关联;a second distance or a second delay, the second distance or the second delay being associated with the second part of the resources;
第一速度或第一多普勒,所述第一速度或第一多普勒与所述第一部分资源关联;a first velocity or a first Doppler, the first velocity or the first Doppler being associated with the first portion of the resource;
第二速度或第二多普勒,所述第二速度或第二多普勒与第二部分资源关联;a second velocity or a second Doppler, the second velocity or the second Doppler being associated with the second part of the resource;
目标距离或目标时延,所述目标距离是根据第一距离和第二距离计算得到,所述目标时延是根据第一时延和第二时延计算得到的;Target distance or target delay, the target distance is calculated based on the first distance and the second distance, and the target delay is calculated based on the first delay and the second delay;
目标速度或目标多普勒,所述目标速度是根据所述第一速度和所述第二速度计算得到 的,所述目标多普勒是根据所述第一多普勒和所述第二多普勒计算得到的;Target speed or target Doppler, the target speed is calculated based on the first speed and the second speed , the target Doppler is calculated based on the first Doppler and the second Doppler;
第一感知指标,所述第一感知指标与所述第一部分资源关联;A first perception indicator, the first perception indicator is associated with the first part of resources;
第二感知指标,所述第二感知指标与所述第二部分资源关联;a second perception indicator, the second perception indicator being associated with the second part of resources;
联合感知指标,所述联合感知指标是根据所述第一感知指标和所述第二感知指标计算得到的。Joint sensing index, the joint sensing index is calculated based on the first sensing index and the second sensing index.
可选地,所述第一确定模块用于根据第三设备发送的资源配置指示信息,确定所述感知信号的资源配置信息。Optionally, the first determining module is configured to determine the resource configuration information of the sensing signal according to the resource configuration indication information sent by the third device.
本申请实施例中,第一设备发送的感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。其中,第一频域资源长度大于所述第二频域资源长度使得第一部分资源相对于第二部分资源能够获得更高的距离分辨率或时延分辨率,第一时域资源长度小于第二时域资源长度,使得第二部分资源相对于第一部分资源能够获得更高的速度分辨率或多普勒分辨率,从而通过上述第一部分资源和第二部分资源能够分别满足测距和测速需求,且该感知信号的资源图样不再是规则的矩形图样,能够有效节省资源。In this embodiment of the present application, the resources of the sensing signal sent by the first device include a first part of the resource and a second part of the resource, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain resource of the second part of the resource. The length of the first time domain resource of the first part of the resource is less than the second time domain resource length of the second part of the resource. Wherein, the length of the first frequency domain resource is greater than the length of the second frequency domain resource so that the first part of the resource can obtain a higher distance resolution or delay resolution relative to the second part of the resource, and the length of the first time domain resource is shorter than the second part of the resource. The length of the time domain resource enables the second part of the resource to obtain a higher speed resolution or Doppler resolution than the first part of the resource, so that the above-mentioned first part of the resource and the second part of the resource can meet the ranging and speed measurement requirements respectively. Moreover, the resource pattern of the sensing signal is no longer a regular rectangular pattern, which can effectively save resources.
如图21所示,本申请实施例还提供了一种感知信号处理装置2100,应用于第二设备,包括:As shown in Figure 21, this embodiment of the present application also provides a perceptual signal processing device 2100, which is applied to the second device, including:
第一接收模块2101,用于接收感知信号,所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The first receiving module 2101 is configured to receive a sensing signal. The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the first frequency domain resource of the first part of resources. The length is greater than the second frequency domain resource length of the second part of the resource, and the first time domain resource length of the first part of the resource is less than the second time domain resource length of the second part of the resource.
可选地,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。Optionally, the characteristics of the resource pattern of the sensing signal further include: the first time domain resource interval of the first part of the resource is less than or equal to the second time domain resource interval of the second part of the resource; and/or the The second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
可选地,本申请实施例的装置,还包括:Optionally, the device of the embodiment of the present application also includes:
第二获取模块,用于获取第一设备指示的感知信号的资源配置信息;The second acquisition module is used to acquire the resource configuration information of the sensing signal indicated by the first device;
第三确定模块,用于根据所述资源配置信息确定所述感知信号的资源图样;A third determination module, configured to determine the resource pattern of the sensing signal according to the resource configuration information;
其中,所述资源配置信息包括以下至少一项:Wherein, the resource configuration information includes at least one of the following:
第一部分资源的第一时域资源长度;The length of the first time domain resource of the first part of the resource;
第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
第二部分资源的第二频域资源长度;The length of the second frequency domain resource of the second part of the resource;
所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
所述第二部分资源的第二时域资源间隔; The second time domain resource interval of the second part of resources;
所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
可选地,本申请实施例的装置,还包括:Optionally, the device of the embodiment of the present application also includes:
处理模块,用于对感知信号进行接收与测量处理,并向第一设备反馈测量结果;A processing module, used to receive and measure the sensing signal, and feed back the measurement results to the first device;
其中,所述测量结果包括以下至少一项:Wherein, the measurement results include at least one of the following:
第一距离或第一时延,所述第一距离或第一时延与所述第一部分资源关联;a first distance or a first delay, the first distance or the first delay being associated with the first part of the resources;
第二距离或第二时延,所述第二距离或第二时延与所述第二部分资源关联;a second distance or a second delay, the second distance or the second delay being associated with the second part of the resources;
第一速度或第一多普勒,所述第一速度或第一多普勒与所述第一部分资源关联;a first velocity or a first Doppler, the first velocity or the first Doppler being associated with the first portion of the resource;
第二速度或第二多普勒,所述第二速度或第二多普勒与第二部分资源关联;a second velocity or a second Doppler, the second velocity or the second Doppler being associated with the second part of the resource;
目标距离或目标时延,所述目标距离是根据第一距离和第二距离计算得到,所述目标时延是根据第一时延和第二时延计算得到的;Target distance or target delay, the target distance is calculated based on the first distance and the second distance, and the target delay is calculated based on the first delay and the second delay;
目标速度或目标多普勒,所述目标速度是根据所述第一速度和所述第二速度计算得到的,所述目标多普勒是根据所述第一多普勒和所述第二多普勒计算得到的;Target speed or target Doppler, the target speed is calculated based on the first speed and the second speed, the target Doppler is calculated based on the first Doppler and the second Doppler Calculated by Puller;
第一感知指标,所述第一感知指标与所述第一部分资源关联;A first perception indicator, the first perception indicator is associated with the first part of resources;
第二感知指标,所述第二感知指标与所述第二部分资源关联;a second perception indicator, the second perception indicator being associated with the second part of resources;
联合感知指标,所述联合感知指标是根据所述第一感知指标和所述第二感知指标计算得到的。Joint sensing index, the joint sensing index is calculated based on the first sensing index and the second sensing index.
可选地,所述第二获取模块包括:Optionally, the second acquisition module includes:
获取子模块,用于获取感知信号配置类型,其中,不同感知信号配置类型对应不同的资源配置信息;The acquisition submodule is used to obtain the sensing signal configuration type, where different sensing signal configuration types correspond to different resource configuration information;
确定子模块,用于根据感知信号配置类型,确定感知信号的资源配置信息。The determination submodule is used to determine the resource configuration information of the sensing signal according to the sensing signal configuration type.
本申请实施例中,第二设备接收的感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。其中,第一频域资源长度大于所述第二频域资源长度使得第一部分资源相对于第二部分资源能够获得更高的距离分辨率或时延分辨率,第一时域资源长度小于第二时域资源长度,使得第二部分资源相对于第一部分资源能够获得更高的速度分辨率或多普勒分辨率,从而通过上述第一部分资源和第二部分资源能够分别满足测距和测速需求,且该感知信号的资源图样不再是规则的矩形图样,能够有效节省资源。In this embodiment of the present application, the resources of the sensing signal received by the second device include a first part of the resource and a second part of the resource, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain resource of the second part of the resource. The length of the first time domain resource of the first part of the resource is less than the second time domain resource length of the second part of the resource. Wherein, the length of the first frequency domain resource is greater than the length of the second frequency domain resource so that the first part of the resource can obtain a higher distance resolution or delay resolution relative to the second part of the resource, and the length of the first time domain resource is shorter than the second part of the resource. The length of the time domain resource enables the second part of the resource to obtain a higher speed resolution or Doppler resolution than the first part of the resource, so that the above-mentioned first part of the resource and the second part of the resource can meet the ranging and speed measurement requirements respectively. Moreover, the resource pattern of the sensing signal is no longer a regular rectangular pattern, which can effectively save resources.
本申请实施例中的感知信号处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型, 其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。The sensing signal processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip. The electronic device may be a terminal or other devices other than the terminal. For example, the terminal may include but is not limited to the types of terminal 11 listed above, Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiments of this application.
本申请实施例提供的感知信号处理装置能够实现图2至图19的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。The perceptual signal processing device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 2 to 19, and achieve the same technical effect. To avoid duplication, the details will not be described here.
可选的,如图22所示,本申请实施例还提供一种通信设备2200,包括处理器2201和存储器2202,存储器2202上存储有可在所述处理器2201上运行的程序或指令,例如,该通信设备2200为第一设备时,该程序或指令被处理器2201执行时实现上述第一设备侧的方法实施例的各个步骤,且能达到相同的技术效果。该通信设备2200为第二设备时,该程序或指令被处理器2201执行时实现上述第二设备侧的方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。Optionally, as shown in Figure 22, this embodiment of the present application also provides a communication device 2200, which includes a processor 2201 and a memory 2202. The memory 2202 stores programs or instructions that can be run on the processor 2201, for example. , when the communication device 2200 is a first device, when the program or instruction is executed by the processor 2201, each step of the method embodiment on the first device side is implemented, and the same technical effect can be achieved. When the communication device 2200 is a second device, when the program or instruction is executed by the processor 2201, each step of the method embodiment on the second device side is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be repeated here. .
本申请实施例还提供一种第一设备,包括处理器和通信接口,所述通信接口用于发送感知信号;An embodiment of the present application also provides a first device, including a processor and a communication interface, where the communication interface is used to send a sensing signal;
所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。该实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该实施例中,且能达到相同的技术效果。The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain of the second part of the resource. Domain resource length, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource. This embodiment corresponds to the above-mentioned first device-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this embodiment, and the same technical effect can be achieved.
本申请实施例还提供一种第二设备,包括处理器和通信接口,所述通信接口用于接收感知信号,所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。该实施例与上述第二设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该实施例中,且能达到相同的技术效果。Embodiments of the present application also provide a second device, including a processor and a communication interface. The communication interface is used to receive a sensing signal. The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources. and a second part of resources, the first frequency domain resource length of the first part of resources is greater than the second frequency domain resource length of the second part of resources, and the first time domain resource length of the first part of resources is less than the second part of resources. The second time domain resource length of some resources. This embodiment corresponds to the above-mentioned second device-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this embodiment, and the same technical effect can be achieved.
具体地,图23为实现本申请实施例的一种第一设备或第二设备(具体为终端)的硬件结构示意图。Specifically, FIG. 23 is a schematic diagram of the hardware structure of a first device or a second device (specifically, a terminal) that implements an embodiment of the present application.
该终端2300包括但不限于:射频单元2301、网络模块2302、音频输出单元2303、输入单元2304、传感器2305、显示单元2306、用户输入单元2307、接口单元2308、存储器2309以及处理器2310等中的至少部分部件。The terminal 2300 includes but is not limited to: a radio frequency unit 2301, a network module 2302, an audio output unit 2303, an input unit 2304, a sensor 2305, a display unit 2306, a user input unit 2307, an interface unit 2308, a memory 2309, a processor 2310, etc. At least some parts.
本领域技术人员可以理解,终端2300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器2310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图23中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。Those skilled in the art can understand that the terminal 2300 may also include a power supply (such as a battery) that supplies power to various components. The power supply may be logically connected to the processor 2310 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions. The terminal structure shown in Figure 23 does not constitute a limitation on the terminal. The terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
应理解的是,本申请实施例中,输入单元2304可以包括图形处理单元(Graphics Processing Unit,GPU)23041和麦克风23042,图形处理器23041对在视频捕获模式或图 像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元2306可包括显示面板23061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板23061。用户输入单元2307包括触控面板23071以及其他输入设备23072中的至少一种。触控面板23071,也称为触摸屏。触控面板23071可包括触摸检测装置和触摸控制器两个部分。其他输入设备23072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。It should be understood that in this embodiment of the present application, the input unit 2304 may include a graphics processing unit (GPU) 23041 and a microphone 23042. The graphics processor 23041 is useful in video capture mode or image processing. In the image capture mode, image data of still pictures or videos obtained by an image capture device (such as a camera) is processed. The display unit 2306 may include a display panel 23061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like. The user input unit 2307 includes at least one of a touch panel 23071 and other input devices 23072. Touch panel 23071, also known as touch screen. The touch panel 23071 may include two parts: a touch detection device and a touch controller. Other input devices 23072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
本申请实施例中,射频单元2301接收来自网络侧设备的下行数据后,可以传输给处理器2310进行处理;另外,射频单元2301可以向网络侧设备发送上行数据。通常,射频单元2301包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。In this embodiment of the present application, after receiving downlink data from the network side device, the radio frequency unit 2301 can transmit it to the processor 2310 for processing; in addition, the radio frequency unit 2301 can send uplink data to the network side device. Generally, the radio frequency unit 2301 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
存储器2309可用于存储软件程序或指令以及各种数据。存储器2309可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器2309可以包括易失性存储器或非易失性存储器,或者,存储器2309可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器2309包括但不限于这些和任意其它适合类型的存储器。Memory 2309 may be used to store software programs or instructions as well as various data. The memory 2309 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc. Additionally, memory 2309 may include volatile memory or nonvolatile memory, or memory 2309 may include both volatile and nonvolatile memory. Among them, non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM). Memory 2309 in embodiments of the present application includes, but is not limited to, these and any other suitable types of memory.
处理器2310可包括一个或多个处理单元;可选的,处理器2310集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器2310中。The processor 2310 may include one or more processing units; optionally, the processor 2310 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 2310.
在本申请的一实施例中,射频单元2301,用于发送感知信号;In an embodiment of the present application, the radio frequency unit 2301 is used to send sensing signals;
所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain of the second part of the resource. Domain resource length, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource.
可选地,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。Optionally, the characteristics of the resource pattern of the sensing signal further include: the first time domain resource interval of the first part of the resource is less than or equal to the second time domain resource interval of the second part of the resource; and/or the The second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
可选地,所述处理器2310,用于所述第一设备确定感知信号的资源配置信息; Optionally, the processor 2310 is used by the first device to determine the resource configuration information of the sensing signal;
根据所述资源配置信息确定所述感知信号的资源图样;Determine the resource pattern of the sensing signal according to the resource configuration information;
其中,所述资源配置信息包括以下至少一项:Wherein, the resource configuration information includes at least one of the following:
第一部分资源的第一时域资源长度;The length of the first time domain resource of the first part of the resource;
第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
第二部分资源的第二频域资源长度;The second frequency domain resource length of the second part of the resource;
所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
所述第二部分资源的第二时域资源间隔;The second time domain resource interval of the second part of resources;
所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
可选地,所述处理器2310,用于根据感知分辨率,确定所述第一频域资源长度和所述第二时域资源长度。Optionally, the processor 2310 is configured to determine the first frequency domain resource length and the second time domain resource length according to the sensing resolution.
可选地,所述处理器2310,用于根据距离分辨率或时延分辨率,确定所述第一频域资源长度;Optionally, the processor 2310 is configured to determine the first frequency domain resource length according to distance resolution or delay resolution;
根据速度分辨率或多普勒分辨率,确定所述第二时域资源长度。The second time domain resource length is determined according to the velocity resolution or Doppler resolution.
可选地,所述第一频域资源长度满足以下公式:
B1≥c/(2ΔR);
Optionally, the first frequency domain resource length satisfies the following formula:
B 1 ≥c/(2ΔR);
其中,B1表示第一频域资源长度,c表示光速,ΔR为距离分辨率;Among them, B 1 represents the length of the first frequency domain resource, c represents the speed of light, and ΔR is the distance resolution;
或者,所述第一频域资源长度满足以下公式:
B1≥1/Δτ;
Alternatively, the length of the first frequency domain resource satisfies the following formula:
B 1 ≥1/Δτ;
其中,B1表示第一频域资源长度,Δτ表示表示时延分辨率。Among them, B 1 represents the length of the first frequency domain resource, and Δτ represents the delay resolution.
可选地,所述第二时域资源长度满足以下公式:
T2≥c/(2fcΔv);
Optionally, the second time domain resource length satisfies the following formula:
T 2 ≥c/(2f c Δv);
其中,T2表示第二时域资源长度,c表示光速,Δv表示速度分辨率,fc表示中心频点;Among them, T 2 represents the length of the second time domain resource, c represents the speed of light, Δv represents the velocity resolution, and f c represents the center frequency point;
或者,所述第二时域资源长度满足以下公式:
T2≥1/Δfd
Alternatively, the second time domain resource length satisfies the following formula:
T 2 ≥1/ Δfd ;
其中,T2表示第二时域资源长度,Δfd表示多普勒分辨率。Among them, T 2 represents the second time domain resource length, and Δf d represents the Doppler resolution.
可选地,所述处理器2310,用于执行以下至少一项:Optionally, the processor 2310 is configured to perform at least one of the following:
根据第一频域资源长度、第一部分资源对应的距离分辨率、第一部分资源对应的时延 分辨率中的至少一项和感知目标的最大速度,确定第一时域资源长度;According to the length of the first frequency domain resource, the distance resolution corresponding to the first part of the resource, and the delay corresponding to the first part of the resource At least one of the resolution and the maximum speed of the perceived target determines the first time domain resource length;
根据第二时域资源长度、第二部分资源对应的速度分辨率、第二部分资源对应的多普勒分辨率中的至少一项和感知目标的最大速度,确定第二频域资源长度。The second frequency domain resource length is determined based on at least one of the second time domain resource length, the speed resolution corresponding to the second part of the resource, the Doppler resolution corresponding to the second part of the resource, and the maximum speed of the sensing target.
可选地,所述处理器2310,用于根据感知目标的最大不模糊速度或最大不模糊多普勒,确定第一时域资源间隔;和/或,根据感知目标的最大距离和感知目标的最大时延,确定第二频域资源间隔。Optionally, the processor 2310 is configured to determine the first time domain resource interval based on the maximum unambiguous speed or maximum unambiguous Doppler of the perceived target; and/or, based on the maximum distance of the perceived target and the maximum distance of the perceived target. The maximum delay determines the second frequency domain resource interval.
可选地,所述感知信号的资源图样对应多个传输端口;Optionally, the resource pattern of the sensing signal corresponds to multiple transmission ports;
其中,不同传输端口上的资源图样相同或不同。Among them, the resource patterns on different transmission ports are the same or different.
可选地,在不同传输端口上的资源图样相同的情况下,不同传输端口上的感知信号的生成序列不同,或者,不同传输端口的感知信号对应的正交覆盖码不同。Optionally, when the resource patterns on different transmission ports are the same, the generation sequences of the sensing signals on different transmission ports are different, or the orthogonal cover codes corresponding to the sensing signals on different transmission ports are different.
可选地,在不同传输端口上的资源图样不同的情况下,不同传输端口上的资源图样时分复用和/或频分复用。Optionally, when the resource patterns on different transmission ports are different, the resource patterns on different transmission ports are time division multiplexed and/or frequency division multiplexed.
可选地,射频单元2301,用于将所述感知信号的资源配置信息指示给第二设备。Optionally, the radio frequency unit 2301 is configured to indicate the resource configuration information of the sensing signal to the second device.
可选地,射频单元2301,用于向所述第二设备指示感知信号配置类型,其中,不同感知信号配置类型对应不同的资源配置信息。Optionally, the radio frequency unit 2301 is configured to indicate a sensing signal configuration type to the second device, where different sensing signal configuration types correspond to different resource configuration information.
可选地,射频单元2301,用于获取第二设备反馈的测量结果,所述测量结果是所述第二设备对所述感知信号进行测量处理后得到的;Optionally, the radio frequency unit 2301 is used to obtain the measurement results fed back by the second device, where the measurement results are obtained after the second device performs measurement processing on the sensing signal;
其中,所述测量结果包括以下至少一项:Wherein, the measurement results include at least one of the following:
第一距离或第一时延,所述第一距离或第一时延与所述第一部分资源关联;a first distance or a first delay, the first distance or the first delay being associated with the first part of the resources;
第二距离或第二时延,所述第二距离或第二时延与所述第二部分资源关联;a second distance or a second delay, the second distance or the second delay being associated with the second part of the resources;
第一速度或第一多普勒,所述第一速度或第一多普勒与所述第一部分资源关联;a first velocity or a first Doppler, the first velocity or the first Doppler being associated with the first portion of the resource;
第二速度或第二多普勒,所述第二速度或第二多普勒与第二部分资源关联;a second velocity or a second Doppler, the second velocity or the second Doppler being associated with the second part of the resource;
目标距离或目标时延,所述目标距离是根据第一距离和第二距离计算得到,所述目标时延是根据第一时延和第二时延计算得到的;Target distance or target delay, the target distance is calculated based on the first distance and the second distance, and the target delay is calculated based on the first delay and the second delay;
目标速度或目标多普勒,所述目标速度是根据所述第一速度和所述第二速度计算得到的,所述目标多普勒是根据所述第一多普勒和所述第二多普勒计算得到的;Target speed or target Doppler, the target speed is calculated based on the first speed and the second speed, the target Doppler is calculated based on the first Doppler and the second Doppler Calculated by Puller;
第一感知指标,所述第一感知指标与所述第一部分资源关联;A first perception indicator, the first perception indicator is associated with the first part of resources;
第二感知指标,所述第二感知指标与所述第二部分资源关联;a second perception indicator, the second perception indicator being associated with the second part of resources;
联合感知指标,所述联合感知指标是根据所述第一感知指标和所述第二感知指标计算得到的。Joint sensing index, the joint sensing index is calculated based on the first sensing index and the second sensing index.
可选地,处理器2310,用于所述第一设备根据第三设备发送的资源配置指示信息,确定所述感知信号的资源配置信息。Optionally, the processor 2310 is configured for the first device to determine the resource configuration information of the sensing signal according to the resource configuration indication information sent by the third device.
在本申请的又一实施例中,射频单元2301,用于接收感知信号,所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资 源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。In yet another embodiment of the present application, the radio frequency unit 2301 is configured to receive a sensing signal. The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources. The third part of resources The first frequency domain resource length of a part of the resources is greater than the second frequency domain resource length of the second part of the resources, and the first part of the resources The first time domain resource length of the source is smaller than the second time domain resource length of the second part of the resource.
可选地,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。Optionally, the characteristics of the resource pattern of the sensing signal further include: the first time domain resource interval of the first part of the resource is less than or equal to the second time domain resource interval of the second part of the resource; and/or the The second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
可选地,射频单元2301,用于获取第一设备指示的感知信号的资源配置信息;处理器2310,用于根据所述资源配置信息确定所述第一部分资源和所述第二部分资源;Optionally, the radio frequency unit 2301 is configured to obtain the resource configuration information of the sensing signal indicated by the first device; the processor 2310 is configured to determine the first part of the resource and the second part of the resource according to the resource configuration information;
其中,所述资源配置信息包括以下至少一项:Wherein, the resource configuration information includes at least one of the following:
第一部分资源的第一时域资源长度;The length of the first time domain resource of the first part of the resource;
第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
第二部分资源的第二频域资源长度;The second frequency domain resource length of the second part of the resource;
所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
所述第二部分资源的第二时域资源间隔;The second time domain resource interval of the second part of resources;
所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
可选地,处理器2310,用于对感知信号进行接收与测量处理,并向第一设备反馈测量结果;Optionally, the processor 2310 is used to receive and measure the sensing signal, and feed back the measurement results to the first device;
其中,所述测量结果包括以下至少一项:Wherein, the measurement results include at least one of the following:
第一距离或第一时延,所述第一距离或第一时延与所述第一部分资源关联;a first distance or a first delay, the first distance or the first delay being associated with the first part of the resources;
第二距离或第二时延,所述第二距离或第二时延与所述第二部分资源关联;a second distance or a second delay, the second distance or the second delay being associated with the second part of the resources;
第一速度或第一多普勒,所述第一速度或第一多普勒与所述第一部分资源关联;a first velocity or a first Doppler, the first velocity or the first Doppler being associated with the first portion of the resource;
第二速度或第二多普勒,所述第二速度或第二多普勒与第二部分资源关联;a second velocity or a second Doppler, the second velocity or the second Doppler being associated with the second part of the resource;
目标距离或目标时延,所述目标距离是根据第一距离和第二距离计算得到,所述目标时延是根据第一时延和第二时延计算得到的;Target distance or target delay, the target distance is calculated based on the first distance and the second distance, and the target delay is calculated based on the first delay and the second delay;
目标速度或目标多普勒,所述目标速度是根据所述第一速度和所述第二速度计算得到的,所述目标多普勒是根据所述第一多普勒和所述第二多普勒计算得到的;Target speed or target Doppler, the target speed is calculated based on the first speed and the second speed, the target Doppler is calculated based on the first Doppler and the second Doppler Calculated by Puller;
第一感知指标,所述第一感知指标与所述第一部分资源关联;A first perception indicator, the first perception indicator is associated with the first part of resources;
第二感知指标,所述第二感知指标与所述第二部分资源关联;a second perception indicator, the second perception indicator being associated with the second part of resources;
联合感知指标,所述联合感知指标是根据所述第一感知指标和所述第二感知指标计算得到的。Joint sensing index, the joint sensing index is calculated based on the first sensing index and the second sensing index.
可选地,射频单元2301,用于获取感知信号配置类型,其中,不同感知信号配置类 型对应不同的资源配置信息;处理器2310,用于根据感知信号配置类型,确定感知信号的资源配置信息。Optionally, the radio frequency unit 2301 is used to obtain the sensing signal configuration type, where different sensing signal configuration types The type corresponds to different resource configuration information; the processor 2310 is used to determine the resource configuration information of the sensing signal according to the sensing signal configuration type.
本申请实施例中,第二设备接收的感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。其中,第一频域资源长度大于所述第二频域资源长度使得第一部分资源相对于第二部分资源能够获得更高的距离分辨率或时延分辨率,第一时域资源长度小于第二时域资源长度,使得第二部分资源相对于第一部分资源能够获得更高的速度分辨率或多普勒分辨率,从而通过上述第一部分资源和第二部分资源能够分别满足测距和测速需求,且该感知信号的资源图样不再是规则的矩形图样,能够有效节省资源。In this embodiment of the present application, the resources of the sensing signal received by the second device include a first part of the resource and a second part of the resource, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain resource of the second part of the resource. The length of the first time domain resource of the first part of the resource is less than the second time domain resource length of the second part of the resource. Wherein, the length of the first frequency domain resource is greater than the length of the second frequency domain resource so that the first part of the resource can obtain a higher distance resolution or delay resolution relative to the second part of the resource, and the length of the first time domain resource is shorter than the second part of the resource. The length of the time domain resource enables the second part of the resource to obtain a higher speed resolution or Doppler resolution than the first part of the resource, so that the above-mentioned first part of the resource and the second part of the resource can meet the ranging and speed measurement requirements respectively. Moreover, the resource pattern of the sensing signal is no longer a regular rectangular pattern, which can effectively save resources.
具体地,本申请实施例还提供了一种网络侧设备(可具体为第一设备或第二设备)。如图24所示,该网络侧设备2400包括:天线241、射频装置242、基带装置243、处理器244和存储器245。天线241与射频装置242连接。在上行方向上,射频装置242通过天线241接收信息,将接收的信息发送给基带装置243进行处理。在下行方向上,基带装置243对要发送的信息进行处理,并发送给射频装置242,射频装置242对收到的信息进行处理后经过天线241发送出去。Specifically, embodiments of the present application also provide a network-side device (which may be specifically a first device or a second device). As shown in Figure 24, the network side device 2400 includes: an antenna 241, a radio frequency device 242, a baseband device 243, a processor 244 and a memory 245. The antenna 241 is connected to the radio frequency device 242. In the uplink direction, the radio frequency device 242 receives information through the antenna 241 and sends the received information to the baseband device 243 for processing. In the downlink direction, the baseband device 243 processes the information to be sent and sends it to the radio frequency device 242. The radio frequency device 242 processes the received information and then sends it out through the antenna 241.
以上实施例中第一设备或第二设备执行的方法可以在基带装置243中实现,该基带装置243包括基带处理器。The method performed by the first device or the second device in the above embodiments may be implemented in the baseband device 243, which includes a baseband processor.
基带装置243例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图24所示,其中一个芯片例如为基带处理器,通过总线接口与存储器245连接,以调用存储器245中的程序,执行以上方法实施例中所示的网络设备操作。The baseband device 243 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. 24 . One of the chips is, for example, a baseband processor, which is connected to the memory 245 through a bus interface to call the memory 245 . Program to perform the network device operations shown in the above method embodiments.
该网络侧设备还可以包括网络接口246,该接口例如为通用公共无线接口(common public radio interface,CPRI)。The network side device may also include a network interface 246, which is, for example, a common public radio interface (CPRI).
具体地,本申请实施例的网络侧设备2400还包括:存储在存储器245上并可在处理器244上运行的指令或程序,处理器244调用存储器245中的指令或程序执行图20或图21所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。Specifically, the network side device 2400 in the embodiment of the present application also includes: instructions or programs stored in the memory 245 and executable on the processor 244. The processor 244 calls the instructions or programs in the memory 245 to execute Figure 20 or Figure 21 The execution methods of each module are shown and achieve the same technical effect. To avoid repetition, they will not be described in detail here.
具体地,本申请实施例还提供了一种网络侧设备(可具体为第一设备或第二设备)。如图25所示,该网络侧设备2500包括:处理器2501、网络接口2502和存储器2503。其中,网络接口2502例如为通用公共无线接口(common public radio interface,CPRI)。Specifically, embodiments of the present application also provide a network-side device (which may be specifically a first device or a second device). As shown in Figure 25, the network side device 2500 includes: a processor 2501, a network interface 2502, and a memory 2503. The network interface 2502 is, for example, a common public radio interface (CPRI).
具体地,本申请实施例的网络侧设备2500还包括:存储在存储器2503上并可在处理器2501上运行的指令或程序,处理器2501调用存储器2503中的指令或程序执行图20或21所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。Specifically, the network side device 2500 in the embodiment of the present application also includes: instructions or programs stored in the memory 2503 and executable on the processor 2501. The processor 2501 calls the instructions or programs in the memory 2503 to execute the instructions in Figure 20 or 21. It shows the execution method of each module and achieves the same technical effect. To avoid duplication, it will not be repeated here.
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述感知信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。 Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above embodiments of the sensory signal processing method is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。Wherein, the processor is the processor in the terminal described in the above embodiment. The readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述感知信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。An embodiment of the present application further provides a chip. The chip includes a processor and a communication interface. The communication interface is coupled to the processor. The processor is used to run programs or instructions to implement the above embodiments of the sensing signal processing method. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。It should be understood that the chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述感知信号处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。Embodiments of the present application further provide a computer program/program product. The computer program/program product is stored in a storage medium. The computer program/program product is executed by at least one processor to implement the above sensing signal processing method. Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
本申请实施例还提供了一种感知系统,包括:第一设备及第二设备,所述第一设备可用于执行如上所述的第一设备侧的感知信号处理方法的步骤,所述第二设备可用于执行如上所述的第二设备侧的感知信号处理方法的步骤。An embodiment of the present application also provides a sensing system, including: a first device and a second device. The first device can be configured to perform the steps of the sensing signal processing method on the first device side as described above. The second device The device may be configured to perform the steps of the sensing signal processing method on the second device side as described above.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。It should be noted that, in this document, the terms "comprising", "comprises" or any other variations thereof are intended to cover a non-exclusive inclusion, such that a process, method, article or device that includes a series of elements not only includes those elements, It also includes other elements not expressly listed or inherent in the process, method, article or apparatus. Without further limitation, an element defined by the statement "comprises a..." does not exclude the presence of additional identical elements in a process, method, article or apparatus that includes that element. In addition, it should be pointed out that the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, but may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions may be performed, for example, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。Through the above description of the embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation. Based on this understanding, the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies. The computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。 The embodiments of the present application have been described above in conjunction with the accompanying drawings. However, the present application is not limited to the above-mentioned specific implementations. The above-mentioned specific implementations are only illustrative and not restrictive. Those of ordinary skill in the art will Inspired by this application, many forms can be made without departing from the purpose of this application and the scope protected by the claims, all of which fall within the protection of this application.

Claims (29)

  1. 一种感知信号处理方法,包括:A perceptual signal processing method, including:
    第一设备发送感知信号;The first device sends a sensing signal;
    所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain of the second part of the resource. Domain resource length, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource.
  2. 根据权利要求1所述的方法,其中,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。The method according to claim 1, wherein the characteristics of the resource pattern of the sensing signal further include: the first time domain resource interval of the first part of the resource is less than or equal to the second time domain resource of the second part of the resource. interval; and/or, the second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:The method according to claim 1 or 2, wherein the method further includes:
    所述第一设备确定感知信号的资源配置信息;The first device determines resource configuration information of the sensing signal;
    根据所述资源配置信息确定所述感知信号的资源图样;Determine the resource pattern of the sensing signal according to the resource configuration information;
    其中,所述资源配置信息包括以下至少一项:Wherein, the resource configuration information includes at least one of the following:
    第一部分资源的第一时域资源长度;The length of the first time domain resource of the first part of the resource;
    第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
    第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
    第二部分资源的第二频域资源长度;The second frequency domain resource length of the second part of the resource;
    所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
    所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
    所述第二部分资源的第二时域资源间隔;The second time domain resource interval of the second part of resources;
    所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
    第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
    第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
    第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
    第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
  4. 根据权利要求3所述的方法,其中,所述第一设备确定感知信号的资源配置信息,包括:The method according to claim 3, wherein the first device determines resource configuration information of the sensing signal, including:
    所述第一设备根据感知分辨率,确定所述第一频域资源长度和所述第二时域资源长度。The first device determines the first frequency domain resource length and the second time domain resource length according to the sensing resolution.
  5. 根据权利要求4所述的方法,其中,所述第一设备根据感知分辨率,确定所述第一频域资源长度和第二时域资源长度,包括:The method according to claim 4, wherein the first device determines the first frequency domain resource length and the second time domain resource length according to the sensing resolution, including:
    所述第一设备根据距离分辨率或时延分辨率,确定所述第一频域资源长度;The first device determines the length of the first frequency domain resource based on distance resolution or delay resolution;
    所述第一设备根据速度分辨率或多普勒分辨率,确定所述第二时域资源长度。The first device determines the second time domain resource length based on velocity resolution or Doppler resolution.
  6. 根据权利要求5所述的方法,其中,所述第一频域资源长度满足以下公式:
    B1≥c/(2ΔR);
    The method according to claim 5, wherein the first frequency domain resource length satisfies the following formula:
    B 1 ≥c/(2ΔR);
    其中,B1表示第一频域资源长度,c表示光速,ΔR为距离分辨率;Among them, B 1 represents the length of the first frequency domain resource, c represents the speed of light, and ΔR is the distance resolution;
    或者,所述第一频域资源长度满足以下公式:
    B1≥1/Δτ;
    Alternatively, the length of the first frequency domain resource satisfies the following formula:
    B 1 ≥1/Δτ;
    其中,B1表示第一频域资源长度,Δτ表示表示时延分辨率。Among them, B 1 represents the length of the first frequency domain resource, and Δτ represents the delay resolution.
  7. 根据权利要求5所述的方法,其中,所述第二时域资源长度满足以下公式:
    T2≥c/(2fcΔv);
    The method according to claim 5, wherein the second time domain resource length satisfies the following formula:
    T 2 ≥c/(2f c Δv);
    其中,T2表示第二时域资源长度,c表示光速,Δv表示速度分辨率,fc表示中心频点;Among them, T 2 represents the length of the second time domain resource, c represents the speed of light, Δv represents the velocity resolution, and f c represents the center frequency point;
    或者,所述第二时域资源长度满足以下公式:
    T2≥1/Δfd
    Alternatively, the second time domain resource length satisfies the following formula:
    T 2 ≥1/ Δfd ;
    其中,T2表示第二时域资源长度,Δfd表示多普勒分辨率。Among them, T 2 represents the second time domain resource length, and Δf d represents the Doppler resolution.
  8. 根据权利要求3所述的方法,其中,第一设备确定感知信号的资源配置信息,包括以下至少一项:The method according to claim 3, wherein the first device determines resource configuration information of the sensing signal, including at least one of the following:
    根据第一频域资源长度、第一部分资源对应的距离分辨率、第一部分资源对应的时延分辨率中的至少一项和感知目标的最大速度,确定第一时域资源长度;Determine the first time domain resource length according to at least one of the first frequency domain resource length, the distance resolution corresponding to the first part of the resource, the delay resolution corresponding to the first part of the resource, and the maximum speed of the sensing target;
    根据第二时域资源长度、第二部分资源对应的速度分辨率、第二部分资源对应的多普勒分辨率中的至少一项和感知目标的最大速度,确定第二频域资源长度。The second frequency domain resource length is determined according to at least one of the second time domain resource length, the speed resolution corresponding to the second part of the resource, the Doppler resolution corresponding to the second part of the resource, and the maximum speed of the sensing target.
  9. 根据权利要求3所述的方法,其中,所述第一设备确定感知信号的资源配置信息,包括:The method according to claim 3, wherein the first device determines resource configuration information of the sensing signal, including:
    根据感知目标的最大不模糊速度或最大不模糊多普勒,确定第一时域资源间隔;和/或,根据感知目标的最大距离和感知目标的最大时延,确定第二频域资源间隔。Determine the first time domain resource interval based on the maximum unambiguous speed or maximum unambiguous Doppler of the sensed target; and/or determine the second frequency domain resource interval based on the maximum distance of the sensed target and the maximum delay of the sensed target.
  10. 根据权利要求1所述的方法,其中,所述感知信号的资源图样对应多个传输端口;The method according to claim 1, wherein the resource pattern of the sensing signal corresponds to multiple transmission ports;
    其中,不同传输端口上的资源图样相同或不同。Among them, the resource patterns on different transmission ports are the same or different.
  11. 根据权利要求10所述的方法,其中,在不同传输端口上的资源图样相同的情况下,不同传输端口上的感知信号的生成序列不同,或者,不同传输端口的感知信号对应的正交覆盖码不同。The method according to claim 10, wherein when the resource patterns on different transmission ports are the same, the generation sequences of the sensing signals on different transmission ports are different, or the orthogonal cover codes corresponding to the sensing signals of different transmission ports are different.
  12. 根据权利要求10所述的方法,其中,在不同传输端口上的资源图样不同的情况下,不同传输端口上的资源图样时分复用和/或频分复用。The method according to claim 10, wherein when the resource patterns on different transmission ports are different, the resource patterns on different transmission ports are time division multiplexed and/or frequency division multiplexed.
  13. 根据权利要求3所述的方法,其中,还包括:The method of claim 3, further comprising:
    所述第一设备将所述感知信号的资源配置信息指示给第二设备。The first device indicates the resource configuration information of the sensing signal to the second device.
  14. 根据权利要求13所述的方法,其中,所述第一设备将所述感知信号的资源配置信息指示给第二设备,包括:The method according to claim 13, wherein the first device indicates the resource configuration information of the sensing signal to the second device, including:
    所述第一设备向所述第二设备指示感知信号配置类型,其中,不同感知信号配置类型 对应不同的资源配置信息。The first device indicates a sensing signal configuration type to the second device, where different sensing signal configuration types Corresponds to different resource configuration information.
  15. 根据权利要求13所述的方法,其中,还包括:The method of claim 13, further comprising:
    获取第二设备反馈的测量结果,所述测量结果是所述第二设备对所述感知信号进行测量处理后得到的;Obtaining the measurement result fed back by the second device, the measurement result is obtained after the second device performs measurement processing on the sensing signal;
    其中,所述测量结果包括以下至少一项:Wherein, the measurement results include at least one of the following:
    第一距离或第一时延,所述第一距离或第一时延与所述第一部分资源关联;a first distance or a first delay, the first distance or the first delay being associated with the first part of the resources;
    第二距离或第二时延,所述第二距离或第二时延与所述第二部分资源关联;a second distance or a second delay, the second distance or the second delay being associated with the second part of the resources;
    第一速度或第一多普勒,所述第一速度或第一多普勒与所述第一部分资源关联;a first velocity or a first Doppler, the first velocity or the first Doppler being associated with the first portion of the resource;
    第二速度或第二多普勒,所述第二速度或第二多普勒与第二部分资源关联;a second velocity or a second Doppler, the second velocity or the second Doppler being associated with the second part of the resource;
    目标距离或目标时延,所述目标距离是根据第一距离和第二距离计算得到,所述目标时延是根据第一时延和第二时延计算得到的;Target distance or target delay, the target distance is calculated based on the first distance and the second distance, and the target delay is calculated based on the first delay and the second delay;
    目标速度或目标多普勒,所述目标速度是根据所述第一速度和所述第二速度计算得到的,所述目标多普勒是根据所述第一多普勒和所述第二多普勒计算得到的;Target speed or target Doppler, the target speed is calculated based on the first speed and the second speed, the target Doppler is calculated based on the first Doppler and the second Doppler Calculated by Puller;
    第一感知指标,所述第一感知指标与所述第一部分资源关联;A first perception indicator, the first perception indicator is associated with the first part of resources;
    第二感知指标,所述第二感知指标与所述第二部分资源关联;a second perception indicator, the second perception indicator being associated with the second part of resources;
    联合感知指标,所述联合感知指标是根据所述第一感知指标和所述第二感知指标计算得到的。Joint sensing index, the joint sensing index is calculated based on the first sensing index and the second sensing index.
  16. 根据权利要求3所述的方法,其中,所述第一设备确定感知信号的资源配置信息,包括:The method according to claim 3, wherein the first device determines resource configuration information of the sensing signal, including:
    所述第一设备根据第三设备发送的资源配置指示信息,确定所述感知信号的资源配置信息。The first device determines the resource configuration information of the sensing signal based on the resource configuration indication information sent by the third device.
  17. 一种感知信号处理方法,包括:A perceptual signal processing method, including:
    第二设备接收感知信号,所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The second device receives a sensing signal, and the characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the first frequency domain resource length of the first part of resources is greater than the length of the third part of resources. The second frequency domain resource length of the two parts of resources, the first time domain resource length of the first part of the resource is smaller than the second time domain resource length of the second part of the resource.
  18. 根据权利要求17所述的方法,其中,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。The method according to claim 17, wherein the characteristics of the resource pattern of the sensing signal further include: the first time domain resource interval of the first part of the resource is less than or equal to the second time domain resource of the second part of the resource. interval; and/or, the second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
  19. 根据权利要求17所述的方法,其中,还包括:The method of claim 17, further comprising:
    获取第一设备指示的感知信号的资源配置信息;Obtain resource configuration information of the sensing signal indicated by the first device;
    根据所述资源配置信息确定所述感知信号的资源图样;Determine the resource pattern of the sensing signal according to the resource configuration information;
    其中,所述资源配置信息包括以下至少一项:Wherein, the resource configuration information includes at least one of the following:
    第一部分资源的第一时域资源长度; The length of the first time domain resource of the first part of the resource;
    第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
    第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
    第二部分资源的第二频域资源长度;The second frequency domain resource length of the second part of the resource;
    所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
    所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
    所述第二部分资源的第二时域资源间隔;The second time domain resource interval of the second part of resources;
    所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
    第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
    第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
    第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
    第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
  20. 根据权利要求17所述的方法,其中,还包括:The method of claim 17, further comprising:
    所述第二设备对感知信号进行接收与测量处理,并向第一设备反馈测量结果;The second device receives and measures the sensing signal, and feeds back the measurement results to the first device;
    其中,所述测量结果包括以下至少一项:Wherein, the measurement results include at least one of the following:
    第一距离或第一时延,所述第一距离或第一时延与所述第一部分资源关联;a first distance or a first delay, the first distance or the first delay being associated with the first part of the resources;
    第二距离或第二时延,所述第二距离或第二时延与所述第二部分资源关联;a second distance or a second delay, the second distance or the second delay being associated with the second part of the resources;
    第一速度或第一多普勒,所述第一速度或第一多普勒与所述第一部分资源关联;a first velocity or a first Doppler, the first velocity or the first Doppler being associated with the first portion of the resource;
    第二速度或第二多普勒,所述第二速度或第二多普勒与第二部分资源关联;a second velocity or a second Doppler, the second velocity or the second Doppler being associated with the second part of the resource;
    目标距离或目标时延,所述目标距离是根据第一距离和第二距离计算得到,所述目标时延是根据第一时延和第二时延计算得到的;Target distance or target delay, the target distance is calculated based on the first distance and the second distance, and the target delay is calculated based on the first delay and the second delay;
    目标速度或目标多普勒,所述目标速度是根据所述第一速度和所述第二速度计算得到的,所述目标多普勒是根据所述第一多普勒和所述第二多普勒计算得到的;Target speed or target Doppler, the target speed is calculated based on the first speed and the second speed, the target Doppler is calculated based on the first Doppler and the second Doppler Calculated by Puller;
    第一感知指标,所述第一感知指标与所述第一部分资源关联;A first perception indicator, the first perception indicator is associated with the first part of resources;
    第二感知指标,所述第二感知指标与所述第二部分资源关联;a second perception indicator, the second perception indicator being associated with the second part of resources;
    联合感知指标,所述联合感知指标是根据所述第一感知指标和所述第二感知指标计算得到的。Joint sensing index, the joint sensing index is calculated based on the first sensing index and the second sensing index.
  21. 根据权利要求19所述的方法,其中,所述第二设备获取第一设备指示的感知信号的资源配置信息,包括:The method according to claim 19, wherein the second device obtains the resource configuration information of the sensing signal indicated by the first device, including:
    所述第二设备获取感知信号配置类型,其中,不同感知信号配置类型对应不同的资源配置信息;The second device obtains a sensing signal configuration type, where different sensing signal configuration types correspond to different resource configuration information;
    根据感知信号配置类型,确定感知信号的资源配置信息。According to the sensing signal configuration type, the resource configuration information of the sensing signal is determined.
  22. 一种感知信号处理装置,应用于第一设备,包括:A sensing signal processing device, applied to a first device, including:
    第一发送模块,用于发送感知信号;The first sending module is used to send sensing signals;
    所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源 长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the length of the first frequency domain resource of the first part of the resource is greater than the second frequency domain of the second part of the resource. domain resources The length of the first time domain resource of the first part of the resource is less than the second time domain resource length of the second part of the resource.
  23. 根据权利要求22所述的装置,其中,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。The device according to claim 22, wherein the characteristics of the resource pattern of the sensing signal further include: a first time domain resource interval of the first part of the resource is less than or equal to a second time domain resource of the second part of the resource. interval; and/or, the second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
  24. 根据权利要求22或23所述的装置,其中,还包括:The device according to claim 22 or 23, further comprising:
    第一确定模块,用于确定感知信号的资源配置信息;The first determination module is used to determine the resource configuration information of the sensing signal;
    第二确定模块,用于根据所述资源配置信息确定所述感知信号的资源图样;a second determination module, configured to determine the resource pattern of the sensing signal according to the resource configuration information;
    其中,所述资源配置信息包括以下至少一项:Wherein, the resource configuration information includes at least one of the following:
    第一部分资源的第一时域资源长度;The length of the first time domain resource of the first part of the resource;
    第一部分资源的第一频域资源长度;The length of the first frequency domain resource of the first part of the resource;
    第二部分资源的第二时域资源长度;The second time domain resource length of the second part of the resource;
    第二部分资源的第二频域资源长度;The second frequency domain resource length of the second part of the resource;
    所述第一部分资源的第一时域资源间隔;The first time domain resource interval of the first part of resources;
    所述第一部分资源的第一频域资源间隔;The first frequency domain resource interval of the first part of resources;
    所述第二部分资源的第二时域资源间隔;The second time domain resource interval of the second part of resources;
    所述第二部分资源的第二频域资源间隔;The second frequency domain resource interval of the second part of resources;
    第一时域偏移量,所述第一时域偏移量为第一部分资源对应的时域偏移量;A first time domain offset, which is a time domain offset corresponding to the first part of the resource;
    第二时域偏移量,所述第二时域偏移量为第二部分资源对应的时域偏移量;A second time domain offset, which is a time domain offset corresponding to the second part of the resources;
    第一频域偏移量,所述第一频域偏移量为第一部分资源对应的频域偏移量;A first frequency domain offset, which is a frequency domain offset corresponding to the first part of the resource;
    第二频域偏移量,所述第二频域偏移量为第二部分资源对应的频域偏移量。A second frequency domain offset, which is a frequency domain offset corresponding to the second part of the resources.
  25. 根据权利要求24所述的装置,其中,所述第一确定模块用于根据感知分辨率,确定所述第一频域资源长度和所述第二时域资源长度。The device according to claim 24, wherein the first determining module is configured to determine the first frequency domain resource length and the second time domain resource length according to the sensing resolution.
  26. 一种感知信号处理装置,应用于第二设备,包括:A sensing signal processing device, applied to a second device, including:
    第一接收模块,用于接收感知信号,所述感知信号的资源图样的特征包括:所述感知信号的资源包括第一部分资源和第二部分资源,所述第一部分资源的第一频域资源长度大于所述第二部分资源的第二频域资源长度,所述第一部分资源的第一时域资源长度小于所述第二部分资源的第二时域资源长度。A first receiving module, configured to receive a sensing signal. The characteristics of the resource pattern of the sensing signal include: the resources of the sensing signal include a first part of resources and a second part of resources, and the first frequency domain resource length of the first part of resources. is greater than the second frequency domain resource length of the second part of the resource, and the first time domain resource length of the first part of the resource is less than the second time domain resource length of the second part of the resource.
  27. 根据权利要求26所述的装置,其中,所述感知信号的资源图样的特征还包括:所述第一部分资源的第一时域资源间隔小于或等于所述第二部分资源的第二时域资源间隔;和/或,所述第二部分资源的第二频域资源间隔小于或等于第一部分资源的第一频域资源间隔。The device according to claim 26, wherein the characteristics of the resource pattern of the sensing signal further include: a first time domain resource interval of the first part of the resource is less than or equal to a second time domain resource of the second part of the resource. interval; and/or, the second frequency domain resource interval of the second part of the resources is less than or equal to the first frequency domain resource interval of the first part of the resources.
  28. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的感知信号处理方法的步骤,或者,实现如权利要求17至21任一项所述的感知信号处理方 法的步骤。A communication device, including a processor and a memory. The memory stores programs or instructions that can be run on the processor. When the program or instructions are executed by the processor, the implementation of any one of claims 1 to 16 is achieved. The steps of the perceptual signal processing method, or implementing the perceptual signal processing method according to any one of claims 17 to 21 steps of the law.
  29. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至16任一项所述的感知信号处理方法的步骤,或者,实现如权利要求17至21任一项所述的感知信号处理方法的步骤。 A readable storage medium that stores programs or instructions that, when executed by a processor, implement the steps of the sensory signal processing method according to any one of claims 1 to 16, or , implement the steps of the perceptual signal processing method according to any one of claims 17 to 21.
PCT/CN2023/114583 2022-08-29 2023-08-24 Sensing signal processing methods and apparatuses, and communication device WO2024046195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211041311.3 2022-08-29
CN202211041311.3A CN117692945A (en) 2022-08-29 2022-08-29 Perceptual signal processing method and device and communication equipment

Publications (1)

Publication Number Publication Date
WO2024046195A1 true WO2024046195A1 (en) 2024-03-07

Family

ID=90100329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114583 WO2024046195A1 (en) 2022-08-29 2023-08-24 Sensing signal processing methods and apparatuses, and communication device

Country Status (2)

Country Link
CN (1) CN117692945A (en)
WO (1) WO2024046195A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682607A (en) * 2008-04-10 2010-03-24 联发科技股份有限公司 A resource block based pilot pattern design for 1/2-stream mimo ofdma systems
CN107872818A (en) * 2016-09-27 2018-04-03 中兴通讯股份有限公司 Data processing method, node and terminal
CN108282281A (en) * 2017-01-05 2018-07-13 中国移动通信有限公司研究院 A kind of symbol arranging method and device
CN109219015A (en) * 2017-07-06 2019-01-15 电信科学技术研究院 A kind of resource selection method and device
CN109495223A (en) * 2017-09-11 2019-03-19 中兴通讯股份有限公司 Resource indicating method and device, storage medium
WO2022040843A1 (en) * 2020-08-24 2022-03-03 Qualcomm Incorporated Sensing resource configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682607A (en) * 2008-04-10 2010-03-24 联发科技股份有限公司 A resource block based pilot pattern design for 1/2-stream mimo ofdma systems
CN107872818A (en) * 2016-09-27 2018-04-03 中兴通讯股份有限公司 Data processing method, node and terminal
CN108282281A (en) * 2017-01-05 2018-07-13 中国移动通信有限公司研究院 A kind of symbol arranging method and device
CN109219015A (en) * 2017-07-06 2019-01-15 电信科学技术研究院 A kind of resource selection method and device
CN109495223A (en) * 2017-09-11 2019-03-19 中兴通讯股份有限公司 Resource indicating method and device, storage medium
WO2022040843A1 (en) * 2020-08-24 2022-03-03 Qualcomm Incorporated Sensing resource configuration

Also Published As

Publication number Publication date
CN117692945A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2023088299A1 (en) Sensing signal transmission processing method and apparatus, and related device
WO2023088298A1 (en) Sensing signal detection method, sensing signal detection processing method and related device
WO2024046195A1 (en) Sensing signal processing methods and apparatuses, and communication device
CN116074885A (en) Sensing method, sensing device and communication equipment
WO2024099152A1 (en) Information transmission methods and apparatus, and communication device
WO2024099153A1 (en) Information transmission method and apparatus, and communication device
WO2024078382A1 (en) Doppler measurement method and apparatus, and communication device
WO2023226826A1 (en) Sensing method and apparatus, and communication device
WO2024078379A1 (en) Doppler measurement method and apparatus, and communication device
WO2024078378A1 (en) Doppler measurement method and apparatus, and communication device
WO2024099125A1 (en) Measurement information feedback method, measurement information reception method, and communication device
WO2024027537A1 (en) Sensing method and apparatus, and communication device and readable storage medium
WO2023186123A1 (en) Sensing signal processing method, device, and readable storage medium
WO2023125786A1 (en) Positioning reference signal port distinguishing method and apparatus and communication device
CN118041729A (en) Information transmission method and device and communication equipment
WO2023186098A1 (en) Sensing signal processing method and device, and readable storage medium
WO2024061067A1 (en) Link monitoring method and apparatus, and terminal
WO2023169544A1 (en) Method and apparatus for determining quality information, and terminal and storage medium
WO2024099126A1 (en) Measurement information sending method, measurement information receiving method and communication device
WO2023138456A1 (en) Signal processing method and apparatus, and communication device
WO2023231840A1 (en) Measurement processing method and apparatus, communication device, and readable storage medium
WO2024061066A1 (en) Beam recovery method and device and terminal
WO2024061065A1 (en) Preamble sending method, terminal and storage medium
WO2023138633A1 (en) Information transmission method and apparatus, and network-side device and terminal
WO2024051545A1 (en) Measurement information sending method, measurement information receiving method, and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859228

Country of ref document: EP

Kind code of ref document: A1