WO2024045600A1 - 多波长的扫描装置及制造方法、激光雷达及发射模块 - Google Patents

多波长的扫描装置及制造方法、激光雷达及发射模块 Download PDF

Info

Publication number
WO2024045600A1
WO2024045600A1 PCT/CN2023/085297 CN2023085297W WO2024045600A1 WO 2024045600 A1 WO2024045600 A1 WO 2024045600A1 CN 2023085297 W CN2023085297 W CN 2023085297W WO 2024045600 A1 WO2024045600 A1 WO 2024045600A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scanning device
wavelength
dispersion
grating
Prior art date
Application number
PCT/CN2023/085297
Other languages
English (en)
French (fr)
Inventor
周权
潘政清
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211042629.3A external-priority patent/CN117665764A/zh
Priority claimed from CN202211040717.XA external-priority patent/CN117665763A/zh
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Publication of WO2024045600A1 publication Critical patent/WO2024045600A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters

Definitions

  • the invention relates to the field of laser radar, and in particular to a multi-wavelength scanning device and a manufacturing method, a laser radar and a transmitting module.
  • Lidar is a commonly used ranging sensor with the characteristics of long detection range, high resolution, and low environmental interference. It is widely used in fields such as intelligent robots, drones, and unmanned driving.
  • the working principle of lidar is to use the time it takes for laser light to travel back and forth between the radar and the target, or the frequency shift produced by the frequency-modulated continuous light traveling back and forth between the radar and the target to evaluate information such as the distance or speed of the target.
  • lidar In order to obtain a larger field of view, lidar usually uses a scanning device for scanning. Commonly used scanning methods for lidar include mechanical rotation, mirror scanning, optical phased array (OPA) scanning, Flash scanning, etc.
  • OPA optical phased array
  • the scanning device of wavelength scanning uses first elements such as gratings and prisms to separate the light generated by multi-wavelength light sources at different angles based on wavelength to achieve the scanning effect.
  • the problem solved by the present invention is how to reduce the assembly difficulty of a scanning device for wavelength scanning.
  • the present invention provides a multi-wavelength scanning device, including:
  • the dispersion deflection unit has a first surface and a second surface arranged sequentially along the optical path; the first surface receives the first light to form the second light, and the second surface receives the second The light ray forms an emitted third light ray; wherein the optical axis direction of the light path incident on the first surface is the first direction, and the angle between the third light ray and the first direction is smaller than the angle between the second light ray and the first direction.
  • the angle between the first directions; one of the first surface and the second surface is a dispersion surface, and the other of the first surface and the second surface is a deflection surface, wherein the dispersion surface receives The light is deflected based on the wavelength; the deflection surface receives the light and deflects the light based on refraction.
  • the third light ray with the central wavelength is parallel to the first direction.
  • the third light rays of different wavelengths are at a preset angle.
  • angles between adjacent third light rays are substantially equal.
  • the second surface has an anti-reflection film.
  • the dispersion deflection unit also has a third surface, the third surface is located in the optical path between the first surface and the second surface, and the third surface is a reflective surface to reflect all the The second light beam reaches the second surface.
  • the angle between the third surface and the first direction is in the range of 10° to 45°.
  • the second light ray is totally reflected on the third surface.
  • the third surface has a reflective film.
  • the dispersion deflection unit includes: a light guide, one surface of the light guide is the first surface, and one surface is the second surface, and the first light ray passes from the first surface The second surface is incident on the light guide body, and the third light ray is emitted from the second surface and the light guide body.
  • one surface of the light guide is the third surface.
  • the refractive index of the material of the light guide is greater than 1.
  • the light guide is made of glass.
  • the first surface is provided with a grating layer, and the grating layer has a grating structure.
  • the grating layer and the light guide body have an integrated structure.
  • the grating layer is made of imprint glue.
  • the dispersion deflection unit includes: a first element, one surface of the first element is the first surface, and the first light ray is incident on the first element from the first surface; A second element, the second element is located in the optical path downstream of the first element, one surface of the second element is the second surface, and the third light ray passes from the second surface to the second element. Two elements are emitted; the first element is one of the grating and the prism; the second element is the other of the grating and the prism.
  • the second element is a prism
  • the first element is a grating
  • the dispersion deflection unit further includes: a third element located in the optical path between the first element and the second element; one surface of the third element is the Three surfaces are used to reflect the second light to the second element.
  • the third element includes at least one of a reflecting mirror, a galvanometer, and a rotating mirror.
  • the dispersion deflection unit includes: a fourth element, the fourth element is located in the optical path downstream of the dispersion deflection unit to reflect the third light, and the reflective surface of the fourth element rotates around the axis Turn.
  • the rotation axis of the reflective surface of the fourth element is parallel to the incident surface of the first element when the first light ray is incident.
  • one of the third surface of the dispersion deflection unit and the fourth element of the dispersion deflection unit rotates at a preset first angular speed to achieve field of view splicing, wherein the first angular speed is based on a multi-dimensional The maximum angle between the third light rays is set.
  • the third surface of the dispersion deflection unit and the fourth surface of the dispersion deflection unit One of the elements rotates at a preset second angular velocity to increase the angular resolution, wherein the second angular velocity is set based on an angle between third light rays of adjacent wavelengths.
  • the present invention also provides a transmitting module, including:
  • a multi-wavelength light source is suitable for generating multi-wavelength light
  • a collimating optical device the collimating optical device is suitable for transmitting the light generated by the multi-wavelength light source to form the first light
  • the scanning device is a multi-wavelength scanning device of the present invention.
  • multiple second rays formed by the same first ray are all located in the first plane; the emission module includes multiple multi-wavelength light sources, and the multiple multi-wavelength light sources are at least partially distributed on the first within the plane.
  • the plurality of multi-wavelength light sources are also distributed in a second plane, and the second plane is perpendicular to the first plane.
  • the multi-wavelength light source includes: multiple lasers of different wavelengths, or at least one wavelength tunable laser.
  • the present invention also provides a laser radar, including:
  • a transmitting module is the transmitting module of the present invention; the emitted third light is reflected by the target to be measured to form an echo light; a detection element, the detection element is suitable for receiving the echo light.
  • the laser radar includes a transceiver system; the transceiver system includes the transmitting module and the receiving module, and the receiving module includes the detecting element.
  • the method further includes: a spectroscopic element located on the optical path between the multi-wavelength light source and the collimating optical device.
  • the present invention also provides a method for manufacturing a multi-wavelength scanning device for lidar, including:
  • the grating structure is formed through nanoimprint technology.
  • the step of forming the grating structure through nanoimprint technology includes: forming an imprint material layer on the base master; using a preset master to imprint and solidify the imprint material layer; The cured imprinting material layer is demolded to form the above grating structure.
  • the dispersion and deflection unit is used to realize the splitting and emission of the light generated by the multi-wavelength light source.
  • the first surface and the second surface one serves as the dispersion surface and the other serves as the deflection surface, so that the exit
  • the angle between the third light ray and the first direction is smaller than the angle between the second light ray and the first direction.
  • the distance between the incident point of the first light ray and the incident point of the second light ray is relatively close, that is, the heights of the second surface and the first surface in the vertical direction are close, so the The dispersion deflection unit does not increase the optical path height of the lidar too much, effectively compresses the height and volume of the lidar, has a simple structure and is easy to install.
  • the dispersion deflection unit further includes: a third surface located in the optical path between the first surface and the second surface, and the third surface reflects the second light to the Describe the second side. By reflecting the second light to the second surface through the third surface, the light path can be further folded and the volume of the light path can be further reduced.
  • the dispersion deflection unit includes: a first element whose surface is the first surface and a second element whose surface is the second surface; the first element is a grating and a prism. one of; the second element is the other of a grating and a prism.
  • the grating has the function of wavelength scanning and changes the angle of light based on diffraction.
  • the prism can expand the beam and change the angle of light based on refraction. Therefore, the combination of grating and prism can realize scanning and expansion at the same time.
  • the light can be deflected at least twice in different directions, so that the third light beam is different from the third light beam.
  • the angle between one direction is smaller than the angle between the second light ray and the first direction, and the emission direction of the third light ray is close to the first direction, so that the size of the optical path can be effectively controlled, which is beneficial to laser radar.
  • Miniaturization at the same time, in the combination of grating and prism, the uneven angular distribution introduced by the grating is just compensated by the opposite uneven angular distribution introduced by the prism, so that uniform scanning angle intervals can be achieved.
  • the dispersion deflection unit includes a light guide, and both the first surface and the second surface are surfaces of the light guide.
  • the dispersion surface and the deflection surface are integrated on the light guide body of the integrated structure, which can greatly reduce the volume of the optical element and effectively improve the robustness of the optical path.
  • the second light is totally reflected on the third surface.
  • the second light is completely reflected on the third surface, which can effectively improve the reflection efficiency of the second light reflection, and there is no need to provide a reflective film on the third surface, which reduces the manufacturing of the dispersion deflection unit. cost.
  • Figure 1 is a schematic diagram of the optical path of a wavelength scanning scanning device
  • Figure 2 is a schematic structural diagram of the first embodiment of the multi-wavelength scanning device of the present invention.
  • Figure 3 is a schematic optical path diagram of the grating layer light splitting in the embodiment of the scanning device shown in Figure 2;
  • Figure 4 is a schematic structural diagram of a second embodiment of a multi-wavelength scanning device according to the present invention.
  • Figure 5 is a schematic optical path diagram of the position of the first element in the embodiment of the scanning device shown in Figure 4;
  • Figure 6 is a schematic diagram of the optical path inside the second element in the embodiment of the scanning device shown in Figure 4 picture;
  • Figure 7 is a schematic diagram of the optical path of the first light incident on the first element and the second element in the embodiment of the scanning device shown in Figure 4;
  • Figure 8 is a schematic structural diagram of a third embodiment of a multi-wavelength scanning device according to the present invention.
  • Figure 9 is a schematic diagram of the optical path when total reflection occurs on the third surface in the embodiment of the scanning device shown in Figure 8;
  • Figure 10 is a schematic structural diagram of the fourth embodiment of the multi-wavelength scanning device of the present invention.
  • Figure 11 is a schematic structural diagram of the fifth embodiment of the multi-wavelength scanning device of the present invention.
  • Figure 12 is a schematic structural diagram of the sixth embodiment of the multi-wavelength scanning device of the present invention.
  • Figure 13 is a schematic side structural view of the seventh embodiment of the multi-wavelength scanning device of the present invention.
  • Figure 14 is a top structural schematic diagram of the embodiment of the multi-wavelength scanning device shown in Figure 13;
  • Figure 15 is a schematic side view of the structure of the eighth embodiment of the multi-wavelength scanning device of the present invention.
  • Figure 16 is a side structural schematic diagram of the ninth embodiment of the multi-wavelength scanning device of the present invention.
  • Figure 17 is a schematic side structural view of a tenth embodiment of a multi-wavelength scanning device according to the present invention.
  • Figure 18 is a top structural schematic diagram of the embodiment of the multi-wavelength scanning device shown in Figure 17;
  • Figure 19 is a side structural schematic diagram of an eleventh embodiment of a multi-wavelength scanning device according to the present invention.
  • Figure 20 is a top structural schematic diagram of the embodiment of the multi-wavelength scanning device shown in Figure 19;
  • Figure 21 is a schematic top structural view of an embodiment of the transmitting module of the present invention.
  • Figure 22 is an enlarged schematic diagram of the transceiver device in another embodiment of the transmitting module of the present invention.
  • Figure 23 is a schematic structural diagram of an embodiment of the laser radar of the present invention.
  • Figure 24 is a schematic structural diagram of another embodiment of the laser radar of the present invention.
  • Figure 25 is a method for manufacturing a multi-wavelength scanning device for laser radar according to the present invention. Flowchart of the embodiment
  • 26 to 30 are schematic cross-sectional structural diagrams of various steps in the embodiment of the manufacturing method of the multi-wavelength scanning device for lidar shown in FIG. 25 .
  • Figure 1 shows a schematic diagram of the optical path of a wavelength scanning scanning device.
  • the light source 11 is a multi-wavelength light source, that is, the light source 11 can generate light of different wavelengths; the dispersion element 12 includes a grating.
  • the optics of different wavelengths generated by the light source 11 are incident on the dispersion element 12 at the same incident angle.
  • the grating diffraction equation light of different wavelengths has different diffraction angles after passing through the grating. Therefore, the light incident at the same angle is deflected by the grating in the dispersion element 12 and exits at different angles, thereby separating the light of different wavelengths, thereby achieving a scanning effect.
  • the -1 order diffraction light of the grating is usually used for scanning, that is, the diffracted light and the incident light are on the same side of the normal. Therefore, the light deflected by the grating in the first element 12 cannot be parallel to the incident light, and the deflected light is deflected downward.
  • the diffracted light of different wavelengths is distributed in a plane perpendicular to the horizontal plane, that is, the lidar scans different vertical angles by diffracting light of different wavelengths to different angles. Therefore, in order to make the exit direction of the multi-beam diffracted light close to the horizontal plane to achieve scanning at a vertical 0° angle and a certain range of positive and negative angles in the vertical direction, as shown in Figure 1, usually the optical path downstream of the dispersion element 12 Reflector 13 will be installed. However, the angle between the reflective surface of the reflector 13 and the horizontal direction is relatively large, so the arrangement of the reflector 13 will increase the size of the optical path in the vertical direction, causing the height of the laser radar optical path in the vertical direction to increase. This is not conducive to reducing the size of lidar. Furthermore, and It will also cause different optical elements of the laser radar's optical path to be on horizontal planes at different heights, thus causing inconvenience in the installation of the laser radar.
  • the present invention provides a multi-wavelength scanning device, which is characterized in that it includes: a dispersion deflection unit, the dispersion deflection unit has a first surface and a second surface arranged sequentially along the optical path; The first surface receives the first light to form a second light, and the second surface receives the second light to form an emitted third light; wherein the optical axis direction of the light path incident on the first surface is the first direction, The angle between the third light ray and the first direction is smaller than the angle between the second light ray and the first direction; one of the first surface and the second surface is a dispersion surface, The other of the first surface and the second surface is a deflection surface, wherein the dispersion surface receives light and deflects the light based on the wavelength; the deflection surface receives the light and deflects the light based on refraction. .
  • the dispersion and deflection unit realizes the splitting and emission of the light generated by the multi-wavelength light source.
  • the first surface and the second surface one serves as the dispersion surface and the other serves as the deflection surface, so that the emitted third light
  • the angle between the second light ray and the first direction is smaller than the angle between the second light ray and the first direction.
  • the distance between the incident point of the first light ray and the incident point of the second light ray is relatively close, that is, the heights of the second surface and the first surface in the vertical direction are close, so the The dispersion deflection unit does not increase the optical path height of the lidar too much, effectively compresses the height and volume of the lidar, has a simple structure and is easy to install.
  • FIG. 2 a schematic structural diagram of an embodiment of the multi-wavelength scanning device of the present invention is shown.
  • the scanning device 120 includes: a dispersion deflection unit 129.
  • the dispersion deflection unit 129 has a first surface 121 and a second surface 122 arranged sequentially along the optical path; the first surface 121 receives the first light 131 to form a second surface.
  • Two light rays 132, the second surface 122 receives the second light ray 132 to form an emitted third light ray 133; wherein the optical axis direction of the light path incident on the first surface 121 is the first direction, and the third light ray 133 and the first direction
  • the included angle is smaller than the included angle between the second light ray 132 and the first direction;
  • one of the first surface 121 and the second surface 122 is a dispersion surface, and the first surface 121 and the second surface 122
  • the other one is a deflection surface, wherein the dispersion surface receives light and deflects the light based on the wavelength; the deflection surface receives the light and deflects the light based on refraction.
  • the dispersion deflection unit 129 will not increase the optical path height of the lidar too much, effectively compressing the height and volume of the lidar, with a simple structure and easy installation.
  • the scanning device 120 is adapted to implement scanning based on wavelength deflection of light.
  • the dispersion surface to deflect light based on wavelength one is the dispersion surface to deflect light based on wavelength, and the other is the deflection surface to deflect light based on refraction. Deflect light.
  • the multi-wavelength light source 111 sequentially outputs light of different wavelengths, and the light of different wavelengths is deflected by the scanning device 120 to different angles in the vertical direction, thereby achieving sequential scanning at multiple vertical angles.
  • the propagation direction of the first light 131 is parallel to the first direction.
  • the first light 131 is incident on the multi-wavelength scanning device 120 along a horizontal direction, that is, the first direction is a horizontal direction.
  • the first surface 121 and the second surface 122 are arranged sequentially along the optical path.
  • the first surface 121 is the incident surface, suitable for receiving the first light 131; after the first light 131 is transmitted
  • the second light ray 132 is formed; the second surface 122 is an emitting surface, and the second surface 122 receives the second light ray 132 to form an emitted third light ray 133 .
  • the first surface 121 is the dispersion surface
  • the second surface 122 is the deflection surface.
  • the first surface 121 receives the first light 131, according to
  • the second surface 122 receives the second light 132 transmitted in different directions, and forms the third light 133 emitted in different directions based on the refraction.
  • the degree of dispersion of the first surface 121 and the angle between the first surface 121 and the second surface 122 are appropriate, so that the angle between the third light ray 133 and the first direction is smaller than the The angle between the second light 132 and the first direction.
  • the first direction is the direction of the optical axis of the optical path incident on the first surface 121 .
  • the degree of dispersion of the first surface 121 refers to the relationship between the angle between the propagation directions of light of different wavelengths and the wavelength difference.
  • a preset angle can be formed between adjacent second light rays 132.
  • the first light 131 is incident on the scanning device 120 along the horizontal direction, that is, the first direction is the horizontal direction; therefore, the third light 133
  • the angle between the second light ray 132 and the horizontal direction is smaller than the angle between the second light ray 132 and the horizontal direction, so that the light path emerges horizontally.
  • the third light ray 133 of the central wavelength is parallel to the first direction. Therefore, through angle design, that is, the first surface 121 and the second surface 122 form a preset angle, so that the third light ray 133 of the central wavelength is parallel to the first direction.
  • the third light rays 133 of different wavelengths are at a preset angle.
  • angle design that is, based on the grating equation and the refractive index of the material of the light guide 128, the first surface 121 and the second surface 122 are respectively formed into a preset angle with the first direction, so that the first surface 121 and the second surface 122 are respectively at a preset angle, so that the first surface 121 and the second surface 122 are at different wavelengths.
  • the three light rays 133 form a preset included angle.
  • the preset angle can be designed so that the angles between adjacent third light rays 133 are substantially equal, thereby achieving uniform scanning angle intervals of the laser radar. Specifically, it is preset that the angles between any two adjacent third light rays 133 are equal. Angle can make the scanning angles of lidar evenly spaced, but there is a certain error in practical applications. The difference between the angle between adjacent third light rays 133 and the preset angle does not exceed 10% of the preset angle, which is regarded as Basically equal.
  • the collimated first light 131 is incident on the first surface 121 along the horizontal direction, and the first light 131 is between the incident surface of the first surface 121 and the
  • the incident surfaces of the second light rays 132 on the second surface 122 are all perpendicular to the horizontal plane, so that the second light rays 132 of different wavelengths and the third light rays 133 of different wavelengths are located in a plane perpendicular to the horizontal plane, thereby achieving a vertical field of view of the lidar. Scanning in different directions within the range.
  • the second surface 122 has an anti-reflection film. Providing an anti-reflection film on the second surface 122 can effectively reduce the loss of light energy on the second surface 122, which is beneficial to the reduction and control of energy consumption and the improvement of laser radar performance.
  • the first surface 121 is the dispersion surface
  • the second surface 122 is the deflection surface.
  • the first surface 121 may also be a deflection surface
  • the second surface 122 may also be a dispersion surface.
  • the dispersion deflection unit 129 includes: a light guide 128 , one surface of the light guide 128 is the first surface 121 , and one surface is the second surface. 122.
  • the first light ray 131 is incident from the first surface 121 to the light guide 128, and the third light ray 133 is emitted from the second surface 122 from the light guide 128.
  • the dispersion surface and the deflection surface are integrated into the integrated structure of the light guide 128, which can greatly reduce the volume of the optical element, and the integrated optical element structure is more stable, which can effectively improve the robustness of the optical path.
  • the refractive index of the material of the light guide 128 is greater than 1.
  • the material of the light guide 128 is set to a relatively common material greater than 1 to control the refraction angle and achieve a beam expansion effect.
  • the material of the light guide 128 may be glass. Glass It is a common optical element material. Setting the material of the light guide 128 to glass can effectively control costs and have stable optical performance, which is beneficial to ensuring the stability of the dispersion deflection unit 129 .
  • a grating layer 127 is provided on the first surface 121 as the scattering surface, and the grating layer 127 has a grating structure.
  • the principle of grating diffraction is used to cause the first light 131 projected onto the first surface 121 to undergo grating diffraction when it is projected onto the first surface 121 and incident into the light guide 128 , thereby polarizing light rays of different wavelengths.
  • the second light rays 132 with different wavelengths are bent at different angles to propagate in different directions in the light guide 128 .
  • the grating layer 127 on the first surface 121 rotates the propagation direction of the light clockwise, forming a second light 132 that is deflected downward and has a different propagation direction.
  • the grating layer 127 is located on the surface of the light guide 128 , that is, the surface of the grating layer 127 facing the light guide 128 is in direct contact with the surface of the light guide 128 . Directly applying the grating layer 127 to the surface of the light guide 128 can effectively ensure the stability and robustness of the optical path.
  • the material of the grating layer 127 is embossing glue, that is, the grating layer 127 can be directly formed on one surface of the light guide 128 through nanoimprint technology, which can effectively control the production cost.
  • the refractive index of the embossing glue is close to the refractive index of glass, which can effectively reduce the light loss at the interface between the grating layer 127 and the light guide 128, and can effectively prevent the light from passing through the interface. Refraction occurs on the surface, which is beneficial to improving the accuracy of the optical path.
  • the grating layer and the light guide have an integrated structure, that is, there is no obvious boundary between the grating layer and the light guide. Directly integrating the light guide and the grating layer into an integrated structure can effectively avoid the formation of an interface between the grating layer and the light guide.
  • d is the grating period
  • ⁇ 1 and ⁇ 2 are the incident angle and diffraction angle of the light beam on the grating respectively
  • m is the diffraction order
  • is the wavelength.
  • "-" means that the incident light and the diffracted light are on the same side of the normal (as shown in Figure 3). Therefore, after light of different wavelengths is diffracted by the grating layer 127 on the dispersion surface, the diffracted light has different diffraction angles, and the diffracted light is deflected downward.
  • the formed second light 132 is directly projected to the second surface 122 , is refracted on the second surface 122 , and is formed from the dispersion deflection unit 129
  • the third ray of light 133 emerges. Since the propagation directions of the second light rays 132 of different wavelengths are different, the incident angles of the second light rays 132 of different wavelengths and different directions projected onto the second surface 122 are different, and therefore the second light rays 132 of different wavelengths are refracted.
  • the formed third light ray 133 also has different exit directions, thereby achieving scanning in different field of view directions.
  • the intersection line of the second surface 122 and the first surface 121 is perpendicular to the first direction.
  • the intersection line of the second surface 122 and the first surface 121 perpendicular to the first direction, the second light rays 132 of different wavelengths and the third light rays 133 of different wavelengths can be made coplanar.
  • the intersection line of the second surface 122 and the first surface 121 is perpendicular to the first direction, according to the principle of diffraction, the first light ray 131 and the second light ray 132 formed by it are coplanar; according to According to the principle of refraction, the second light ray 132 and the third light ray 133 formed by it are coplanar. That is to say, the first light ray 131, the second light ray 132 and the third light ray 133 of different wavelengths are coplanar.
  • the first light ray 131, the second light ray 132, and the third light ray 133 are all located in a plane perpendicular to the horizontal plane, thereby enabling the lidar to scan the vertical field of view at different angles.
  • the first surface 121 and the second surface 122 are inclined in the same direction. That is, in the embodiment shown in Figure 2, the first surface 121 and the second surface 122 are inclined in the same direction.
  • the surface 121 and the second surface 122 are tilted clockwise relative to the vertical plane in the first direction.
  • the incident point of the second light ray 132 on the second surface 122 corresponds to the angle of the first light ray 131 on the first surface 121
  • the distance between the incident points decreases as the wavelength increases, that is, the wavelength
  • the third light ray is deflected in different directions, that is, in the embodiment shown in FIG. 2 , the second ray 132 is deflected clockwise relative to the first ray 131 , and the third light ray 132 is deflected in a clockwise direction relative to the first ray 131 .
  • the three rays 133 are deflected in the counterclockwise direction relative to the second ray 132 .
  • FIG. 4 a schematic structural diagram of another embodiment of the multi-wavelength scanning device of the present invention is shown.
  • the scanning device 219 includes: a first element 211.
  • One surface of the first element 211 is the first surface 221.
  • the first light 231 is incident on the first element 211 from the first surface 221.
  • the second element 212, the second element 212 is located in the optical path downstream of the first element 211, one surface of the second element 212 is the second surface 222, and the third light 233 comes from the The second surface 222 emerges from the second element 212;
  • the first element 211 is one of a grating and a prism; and the second element 212 is the other of a grating and a prism.
  • the first element 211 receives and deflects the first light 231 to form a second light 232; the second element 212 receives and deflects the second light 232 to form a third light 233.
  • the first element 211 is a grating
  • the second element 212 is a prism. Therefore, after receiving the first light 231, based on the principle of grating diffraction, the first element 211 deflects the first light 231 of different wavelengths to different angles to form the second light 232 of different propagation directions; the second The element 212 receives the second light 232 and deflects the second light 232 to form a third light 233 based on the principle of refraction.
  • the first light 231 includes multiple wavelengths. Therefore, the first light rays 231 with different wavelengths are deflected at different angles, thereby forming the second light rays 232 with different propagation directions.
  • d is the grating period
  • ⁇ 3 and ⁇ 4 are the incident angle and diffraction angle of the light beam on the grating respectively
  • m is the diffraction order
  • is the wavelength.
  • "-" means that the incident light and the diffracted light are on the same side of the normal. Therefore, after light of different wavelengths is diffracted by the grating, the diffraction angles of the diffracted light are different, and the diffracted light is deflected downward.
  • the prism can deflect the outgoing light in the opposite direction relative to the incident light relative to the horizontal direction.
  • the incident angle ⁇ is inversely related to the exit angle ⁇ .
  • the incident angles of light beams of different wavelengths to the prism decrease from top to bottom, and the exit angle ⁇ increases in sequence.
  • the beam of the central wavelength can be emitted horizontally, and the beams of other wavelengths can be emitted at positive and negative angles in the vertical direction to achieve vertical scanning.
  • ⁇ i2 is the incident angle
  • sin ⁇ d2 is the refraction angle
  • n is the refractive index of the prism.
  • the angle d ⁇ d1 at which the second light ray formed by diffraction of two adjacent wavelengths is separated increases; when d ⁇ d1 increases, d ⁇ i2 increases, so d ⁇ d2 decreases, Therefore, the angle at which the third light rays of adjacent wavelengths are separated after passing through the prism is reduced.
  • the uneven angular distribution introduced by the grating is just compensated by the opposite uneven angular distribution introduced by the prism, so that the third ray formed by the first light ray with uniform wavelength spacing is
  • the included angles are basically the same, thereby achieving uniform scanning angle intervals.
  • the second light 232 is directly projected to the second element 212 , that is, the first element 211 deflects the first light 231 so that the second light 231 is formed.
  • the light 232 propagates toward the second element 212 and is directly projected to the second element 212. There are no other optical elements in the optical path between the second element 212 and the first element 211.
  • the first element 211 is a grating, so the first light 231 of different wavelengths is split by the first element 211 to form the second light 232 of different propagation directions; different wavelengths, different
  • the second light ray 232 in the propagation direction is obliquely incident on the second element 212. Therefore, the third light ray 233 formed by refraction of the second light ray 232 with different wavelengths also has different exit directions, thereby achieving scanning in different field of view directions.
  • the surface of the second element 212 that receives the second light 232 is the incident surface of the second element 212
  • the surface that the third light 233 emits from the second element 212 is the exit surface of the second element 212 .
  • the intersection line of the incident surface of the second element 212 and the exit surface of the second element 212 is perpendicular to the first direction. Making the intersection line perpendicular to the first direction can make the incident surface of the first light 231 and the incident surface of the second light 232 coplanar, so that the second light 232 of different wavelengths and the third light ray of different wavelengths can be made coplanar. Rays 233 are coplanar.
  • the incident surface of the second element 212 is in contact with the incident surface on the side away from the first element 211 .
  • the exit surfaces of the second element 212 intersect, so the second light 232 is deflected toward the first direction when transmitting the second element 212, thereby making the angle between the formed third light 233 and the first direction smaller.
  • the first element 211 is a grating
  • the second element 212 is a prism.
  • this setting method is only an example.
  • the first element 211 can also be a prism
  • the second element 212 can also be a grating, which can achieve the same technical effect.
  • the collimated first light 231 is incident on the first element 211 along the horizontal direction, that is, the first direction is the horizontal direction; the first element 211 The first light rays 231 of different wavelengths are separated to form second light rays 232 whose propagation directions deviate from the first direction to varying degrees; the second element 212 reversely deflects the second light rays 232 of different wavelengths to form a third The propagation direction of light 233 is closer to the horizontal direction.
  • the distance between the first element 211 and the second element 212 is small and basically at the same height. Therefore, the combined use of gratings and prisms can realize wavelength scanning without increasing the number of scanning devices 219 too much.
  • the height and volume are conducive to the miniaturization of lidar.
  • the grating is splitting the light, it can be combined with the deflection of the prism to affect the light.
  • the function of beam expansion it can increase the caliber of the lidar, increase the light energy that the lidar can receive, and improve the distance measurement capability.
  • the dispersion deflection unit 329 also has a third surface 323, and the third surface 323 is located between the first surface 321 and the second surface 322. Of In the optical path between the two surfaces, the third surface 323 is a reflective surface to reflect the second light 332 to the second surface 322 .
  • Reflecting the second light 332 to the second surface 322 through the third surface 323 can further fold the light path and further reduce the incidence point of the first light 331 in a plane perpendicular to the first direction.
  • the distance from the incident point of the second light ray 332 is conducive to further reduction of the size of the optical path and miniaturization of the laser radar.
  • the angle between the third surface 323 and the first direction is in the range of 10° to 45°. Limiting the angle between the third surface 323 and the first direction can reduce the projected area of the third surface 323 in the vertical plane of the first direction, thereby conducive to compressing the size of the optical path and conducive to miniaturization of the laser radar. change.
  • the second light 332 is totally reflected on the third surface 323 .
  • the incident angles of the second light 332 of different wavelengths on the third surface 323 are all greater than or equal to the critical angle of total reflection, which can improve the reflectivity of the third surface 323 without adding additional reflective films. .
  • the material of the light guide 327 has a refractive index n 1 , where n 1 >1.
  • the diffraction angles of the second light rays 332 of different wavelengths formed by diffraction can be obtained by the aforementioned formula 1; according to the principle of total reflection, that is, when the light enters the optically sparse medium from the optically dense medium, if the incident angle is greater than the critical angle ⁇ c , the refracted light will disappear, and all incident light will be reflected without entering the optically sparse medium.
  • the angle between the third surface 323 and the first surface 321 is designed so that the second light 332 of different wavelengths is incident.
  • the angles are all greater than the critical angle at the corresponding wavelength, so that the second light 332 is completely reflected on the third surface 323, and the third surface 323 can completely reflect the second light 332 while eliminating the need for The complex and costly coating step is conducive to simplifying the preparation process and reducing costs.
  • the second light 332 is totally reflected on the third surface 323 .
  • the third surface 323 has a reflective film, thereby improving the reflectivity of the third surface 323 .
  • one surface of the light guide 327 is the third surface 323 .
  • the light guide 327 is a polygonal prism.
  • the two surfaces of the light guide 327 are the first surface 321 and the second surface 322 respectively.
  • the other surface of the light guide 327 is the third surface. Face 323.
  • FIG. 10 a schematic structural diagram of another embodiment of the multi-wavelength scanning device of the present invention is shown.
  • the dispersion deflection unit further includes: a third element 413, the third element 413 is located between the first element 411 and the second element 412. In the optical path between them, one surface of the third element 413 is the third surface 423 to reflect the second light 422 to the second element 412 .
  • the optical path can be further folded and the volume of the optical path can be further reduced, which is beneficial to the miniaturization of the laser radar.
  • the angle between the line connecting the geometric center of the third element 413 and the geometric center of the first element 411 and the first direction is greater than 45°, that is to say, Along the first direction, the projection position of the first element 411 and the projection position of the third element 413 are close, which is beneficial to miniaturization of the device.
  • the angle between the reflective surface of the third element 413 and the first direction is in the range of 10° to 45°. Limiting the angle between the third element 413 and the first direction can reduce the projected area of the third element 413 in the vertical plane in the first direction, thereby conducive to compressing the size of the optical path and miniaturizing the laser radar. change.
  • the third element 413 is a reflector, and the reflective surface of the reflector faces the first element 411 and the second element 412 .
  • the reflective surface of the third element 413 rotates around the axis of rotation.
  • the reflector is rotated around a rotation axis, and the rotation axis is perpendicular to the first direction.
  • the angle of rotation of the reflector around the axis changes, the reflection angle of the second light ray is changed, and the reflection angle of the second light ray is changed. It can expand the scanning field of view or improve the scanning resolution.
  • the third element 413 may include at least one of a galvanometer, a transition mirror, and a pendulum mirror.
  • the third surface of the dispersion deflection unit rotates at a preset first angular speed to achieve field of view splicing, wherein the first angular speed is based on the maximum angle between a plurality of third light rays. corner settings.
  • the reflective surface 413a of the third element rotates at a preset first angular speed to achieve field of view splicing, wherein the first angular speed is based on the third light 423 with the largest wavelength and the third light 423 with the smallest wavelength. The angle between rays 423 is set.
  • the solid line in the third light ray in Figure 11 represents the third light ray formed by the reflection surface 413a reflecting the second light ray of different wavelengths at the first angle.
  • the dotted line in the third light ray represents the reflection surface 413a reflecting the second light ray at the second angle and forming the third light ray.
  • the third surface of the dispersion deflection unit rotates at a preset second angular speed to increase the angular resolution, wherein the second angular speed is based on the angle between the third light rays of adjacent wavelengths. set up.
  • the reflective surface 413b of the third element rotates at a preset second angular speed to increase the angular resolution, wherein the second angular speed is based on the angle between the third light rays 423 of adjacent wavelengths. set up.
  • the solid line in the third light ray in FIG. 12 represents the third light ray formed by the reflection surface 413b reflecting the second light ray of different wavelengths at the first angle.
  • the dotted line in the third light ray represents the reflection surface 413a reflecting the second light ray at the second angle and forming the third light ray.
  • Figure 13 shows a side structural schematic diagram of yet another embodiment of the multi-wavelength scanning device of the present invention
  • Figure 14 is a top structural schematic diagram of the multi-wavelength scanning device shown in Figure 13.
  • the emission module further includes: a fourth element 540, the fourth element 540 is located in the optical path downstream of the dispersion deflection unit 529 to reflect the third light 533 , the reflective surface of the fourth element 540 rotates around the axis of rotation.
  • the first light 531 is incident from the first surface 521 to the light guide 527 to form the second light 532; the third surface 523 reflects the second light 532 to the Second surface 522; the second light 532 is deflected on the second surface 522 to form an emitted third light 533; the emitted third light 533 is reflected by the mirror 534 to achieve scanning.
  • the second light rays 532 of different wavelengths formed by the first light ray 531 of the same propagation path are all located in the same plane, and the plane is the first plane. That is to say, the first light ray 531 of the same propagation path forms The second light rays 532 of different wavelengths are all located in the first plane.
  • the reflective surface of the fourth element 540 has an included angle with the first plane, and the intersection line between the reflective surface and the first plane is perpendicular to the first direction.
  • the first direction is the horizontal direction
  • the rotation axis of the fourth element 540 is perpendicular to the horizontal plane, so that the third light 533 can scan in a plane perpendicular to the rotation axis.
  • the third light rays 533 of different wavelengths are all located in a plane perpendicular to the horizontal plane, and the rotation axis is perpendicular to the horizontal plane, so the fourth element 540 can realize the third light ray 533 Scanning in the horizontal direction.
  • the rotation axis of the fourth element 540 is parallel to the horizontal plane.
  • the third light rays 533 of different wavelengths are located in a plane perpendicular to the horizontal plane, and the rotation axis of the fourth element 540 is parallel to the horizontal plane, so the fourth element 540 can change the emission angle of the third light ray 533 in the vertical direction.
  • the arrangement of the fourth element 540 can expand the scanning range or increase the scanning density.
  • the fourth element 640 rotates at a preset first angular speed to achieve field of view splicing.
  • the second light ray 632 and the third light ray of different wavelengths are distinguished by lines. 633.
  • the first angular velocity is set based on the maximum angle between the plurality of third light rays 633 , that is, the fourth element 640 reflects multiple rays of different emission periods.
  • the fields of view of the third light ray 633 are spliced together, thereby expanding the field of view scanning range.
  • the second light ray 732 and the third light ray 733 of different wavelengths are also distinguished linearly, and the fourth element 740 rotates at a preset second angular speed to increase the angular resolution, wherein the The second angular velocity is set based on the angle between the third light rays 733 of adjacent wavelengths, that is, the fourth element 740 reflects multiple third light rays 733 of different emission periods at corresponding field of view angles that are interlaced with each other, thereby improving the performance of the lidar. Scan angle resolution. Therefore, by setting the rotation angular velocity of the fourth element 740, different scanning effects can be achieved.
  • FIG. 17 a schematic structural diagram (side view) of another embodiment of the multi-wavelength scanning device of the present invention is shown.
  • FIG. 18 shows a structural top view of the embodiment of the multi-wavelength scanning device shown in FIG. 17 .
  • the scanning device further includes: a fourth element 814, which is located downstream of the optical path of the second element 812 to reflect the third light. 823.
  • the reflective surface of the fourth element 814 rotates around the rotation axis.
  • the reflective surface of the fourth element 814 has an included angle with the plane on which the third light ray 823 is distributed.
  • the rotation axis is parallel to the first light ray 821 and is incident on the incident surface of the first element 811. Therefore, as the As the reflective surface of the fourth element 814 rotates, the third light ray 823 reflected by the fourth element 814 rotates in a plane perpendicular to the incident surface of the first light ray 821 incident on the first element 811 .
  • the rotation axis is perpendicular to the horizontal plane, so as the reflective surface of the fourth element 814 rotates, the third element reflected by the fourth element 814 The light 823 is deflected in the horizontal plane, thereby achieving horizontal scanning.
  • the present invention also provides a transmitting module.
  • FIG. 2 a schematic structural diagram of an embodiment of the transmitting module of the present invention is shown.
  • the emission module includes: a multi-wavelength light source 111.
  • the multi-wavelength light source 111 is suitable for For generating multi-wavelength light;
  • a collimating optical device 140 the collimating optical device 140 is suitable for transmitting the light generated by the multi-wavelength light source 111 to form the first light 131;
  • a scanning device 120 the scanning device 120 is Transmitting module of the present invention.
  • the multi-wavelength light source 111 is used to generate light for detection.
  • the light generated by the multi-wavelength light source 111 is multi-wavelength light, that is, the light generated by the multi-wavelength light source 111 includes multiple wavelengths.
  • the multi-wavelength light source 111 includes: multiple lasers of different wavelengths, or at least one wavelength-tunable laser.
  • the wavelength tunable laser may include, but is not limited to, dye lasers, solid lasers, excimer lasers, etc.
  • the light generated by the multi-wavelength light source 111 forms the first light 131 after being transmitted.
  • the collimating optical device 140 is suitable for collimating the light generated by the multi-wavelength light source 111 .
  • the collimating optical device 140 includes: at least one collimating lens 140.
  • the light generated by the multi-wavelength light source 111 is collimated by the collimating optical device 140 to form the first light 131. Therefore, , the propagation direction of the first light 131 is parallel to the first direction.
  • the first light 131 is incident on the multi-wavelength scanning device 120 along the horizontal direction, that is, the first direction is the horizontal direction.
  • the scanning device 120 is suitable for changing the propagation direction of the emitted light to achieve scanning.
  • the scanning device 120 is the scanning device 120 of the present invention.
  • the scanning device 120 For specific technical solutions of the scanning device 120, please refer to the aforementioned embodiment of the scanning device 120, and the present invention will not be described again here.
  • the multi-wavelength light source 111 sequentially outputs light of different wavelengths, and the light of different wavelengths is deflected to different angles in the vertical direction by the scanning device 120, thereby realizing sequential scanning at multiple vertical angles.
  • the emission module includes multiple multi-wavelength light sources 815.
  • the second light rays 822 of different wavelengths formed by the first element 811 deflecting the same first light ray 821 are all located in the first plane; in some embodiments of the present invention, the plurality of multi-wavelength light rays 822 of the emission module
  • the light sources 815 are at least partially distributed in the first plane, that is, the plurality of multi-wavelength light sources 815 are arranged coplanarly.
  • a plurality of multi-wavelength light sources 815 are arranged coplanarly in the first plane, and the light generated by each multi-wavelength light source 815 will also emit in different directions in the same plane; further through the wavelength scanning of the scanning device 810, different wavelengths The rays are separated in the same plane.
  • the combination of multiple multi-wavelength light sources 815 and the scanning device 810 of the present invention can exponentially increase the number of scanning lines and greatly improve the scanning field of view range and/or the scanning field of view resolution.
  • the first plane is perpendicular to the horizontal plane (i.e., the paper plane in Figure 17), that is, the second light rays 822 of different wavelengths formed by the same first light ray 821 are separated in the direction of the vertical horizontal plane; Therefore, the plurality of multi-wavelength light sources 815 are at least partially distributed and separated in a vertical horizontal plane.
  • the light generated by different multi-wavelength light sources 815 located in this plane will be separated in a vertical horizontal plane and emit in different directions. ;
  • the scanning device 810 uses light generated by different multi-wavelength light sources 815 to perform wavelength scanning.
  • the light of different wavelengths generated by the same light source is further separated in the vertical direction to have a larger field of view range and/or field of view resolution in the vertical direction. Scan.
  • FIGS. 19 and 20 a schematic side structural view of yet another embodiment of the transmitting module of the present invention is shown, wherein FIG. 20 is a schematic top structural view of the transmitting module shown in FIG. 19 .
  • the emission module includes a plurality of multi-wavelength light sources 911.
  • the plurality of multi-wavelength light sources 911 can be distributed in the first plane.
  • Each multi-wavelength light source 911 can emit a plurality of wavelengths of third light sources.
  • a light ray 931, the first light ray 931 emitted by the plurality of multi-wavelength light sources 911, and the respectively formed second light ray 932 and third light ray 933 are all distributed in the first plane.
  • the third light rays 933 of different wavelengths are distinguished in a linear shape, and the angle intervals between the third light rays 933 formed by each multi-wavelength light source 911 emitting the first light are even, so as to achieve The scanning angles of the lidar are evenly spaced; the fields of view of the third light 933 formed by the different multi-wavelength light sources 911 emitting the first light are spliced with each other. Therefore, without increasing the number of wavelengths, through multiple multi-wavelengths in the first plane The arrangement of the light source 911 can increase the field of view of the lidar in the first plane.
  • the first plane is a plane perpendicular to the horizontal plane
  • a preset number of multi-wavelength light sources 911 and the number of wavelengths of the first light 931 emitted by each multi-wavelength light source 911 are set, and the preset angular interval is obtained by combining the dispersion deflection unit 929
  • the third light 933 can realize the large-scale scanning of the vertical field of view by the lidar without the need to set up additional components such as scanning mirrors in the vertical direction, simplifying the optical path structure of the lidar, which is conducive to the miniaturization and cost reduction of the lidar.
  • the second light rays 932 of different wavelengths formed by the first light ray 931 with the same propagation path are all located in the same plane, and the plane is the first plane. That is to say, the first light ray 931 formed by the same propagation path The second light rays 932 of different wavelengths are located in the first plane.
  • a plurality of the multi-wavelength light sources 911 are distributed in a second plane, and the second plane is perpendicular to the first plane.
  • a plurality of the multi-wavelength light sources 911 are distributed in a second plane perpendicular to the first plane, allowing the formed third light rays 933 to emit in different directions in the second plane, to achieve scanning in the second plane.
  • the first direction is a horizontal direction
  • the first plane is a plane perpendicular to the horizontal plane
  • the second plane is a horizontal plane. Therefore, multiple multi-wavelength light sources 911 are arranged in the horizontal plane to achieve Lidar scans in the horizontal direction.
  • a plurality of the multi-wavelength light sources 911 are distributed in the first plane and the second plane, and the second plane is perpendicular to the first plane, that is, a plurality of multi-wavelength light sources 911 are distributed in the first plane and the second plane.
  • the light sources 911 are arranged in a two-dimensional array.
  • the multi-wavelength light source 911 of the two-dimensional array can realize two-dimensional scanning in the vertical and horizontal directions, increase the field of view of the lidar, and simplify the optical path structure.
  • the plurality of multi-wavelength light sources may also be distributed only in the first plane, or the plurality of multi-wavelength light sources may only be distributed in the first plane. distributed in the second plane.
  • the plurality of multi-wavelength light sources 1015 are also distributed in the second plane, and the second plane is perpendicular to the first plane.
  • the second plane is perpendicular to the first plane where the second rays of different wavelengths formed by the same first ray 1021 are located together, and the multi-wavelength light sources 1015 in different second planes are located on the focal plane of the collimating lens 1016. Therefore, the first light 1021 after being collimated by the collimating lens 1016 emerges parallel to the first direction, and the third light 1023 formed after being transmitted by the scanning device 1010 faces different directions in the second plane. direction to achieve scanning in the second plane.
  • the second plane is a horizontal plane, so some of the multiple multi-wavelength light sources 1015 are distributed in the same horizontal plane, and the multi-wavelength light sources 1015 in the same horizontal plane are located on the focal plane of the collimating lens 1016. Different positions, therefore, the third light 1023 formed is emitted in different directions in the horizontal plane, thereby realizing scanning in the horizontal direction.
  • the multi-wavelength light source can also be a two-dimensional array to directly realize a wide range of two-dimensional scanning, that is, a wide range of two-dimensional scanning can be directly realized without the need for a fourth element.
  • the present invention also provides a laser radar.
  • the present invention also provides a laser radar.
  • FIG. 19 shows a schematic side structural view of an embodiment of the lidar of the present invention
  • FIG. 20 shows a schematic structural view of a top view of an embodiment of the lidar of the present invention.
  • the laser radar includes: a transmitting module (not marked in the figure), which is the transmitting module of the present invention; the emitted third light 933 is formed after being reflected by the target to be measured. Echo light; detection element (not shown in the figure), the detection element is suitable for receiving the echo light.
  • the emitting module is adapted to emit light for detection.
  • the transmitting module is a transmitting module of the present invention. Therefore, the specific technical solution of the transmitting module refers to the foregoing embodiment of the transmitting module, and the present invention will not be described in detail here.
  • the emitted third light 933 forms an echo light after reflection.
  • the detection element is suitable for receiving echo light to obtain point cloud data.
  • the laser radar includes a transceiver system.
  • the transceiver system includes the transmitting module and the receiving module, and the receiving module includes the detecting element.
  • the detection element includes a light detector.
  • the photodetector includes but is not limited to at least one of PIN PD, APD, SiPM, SPAD, CMOS and CCD.
  • the laser radar includes: a transceiver system, the transceiver system includes a transmitting module and a receiving module, and the receiving module includes the detecting element.
  • FIG. 22 an enlarged schematic diagram of a transceiver system in another embodiment of the lidar of the present invention is shown.
  • the transceiver system 1110 includes multiple packaging structures 1120.
  • Each packaging structure 1120 includes: a transmitting unit 1121 with a multi-wavelength light source and a receiving unit 1122 with a detection element.
  • the same packaging structure 1120 can transmit and receive at the same time, thus forming a coaxial optical path. That is to say, the transmitting module 1110 includes multiple transmitting units 1121, so The receiving module includes multiple receiving units 1122.
  • One transmitting unit 1121 and one receiving unit 1122 form a package structure 1120.
  • the plurality of packaging structures 1120 are arranged and distributed sequentially in the first plane and/or the second plane.
  • the packaging structure may also be a transceiver waveguide, that is, the corresponding transmitting unit and the receiving unit are coupled to the same transceiver waveguide, and the third light used for detection is emitted from the said The transmitting and receiving waveguides are emitted, and the echo light is also sent and received.
  • a spectroscopic device connected to the transceiver waveguide splits the emitted beam and the received beam.
  • the lidar further includes: a spectroscopic element 1240, which is located between the multi-wavelength light source and the collimating optical device (not labeled in the figure). ) on the light path between.
  • the laser radar is a coaxial optical path laser radar.
  • the transmitting module 1210 and the receiving module 1220 are separated, and the first light and the echoed light are separated through the light splitting element 1240, such as a polarizing beam splitter or a semi-transparent mirror.
  • the optical paths are separated. This coaxial optical path can achieve decoupling of sending and receiving.
  • the dispersion deflection unit formed by the light guide can also be used in lidar.
  • the lidar is also a coaxial optical path lidar;
  • the spectroscopic element 1240 is located on the optical path between the collimating optical device 1242 and the multi-wavelength light source 1211;
  • the spectroscopic element 1240 directly transmits the light generated by the multi-wavelength light source 1211 and reflects the echo light focused by the collimating optical device 1242 to the receiving unit 1241, thereby achieving separation of the transmitting light path and the receiving light path.
  • a laser radar with a coaxial optical path is formed.
  • the light splitting element may be a semi-transparent mirror or a polarizing beam splitter.
  • the dispersion and deflection unit can be arranged in the opposite direction to that shown in the figure, so that the light is deflected upward.
  • the third ray with the longest wavelength is located on the vertical plane.
  • the third ray with the shortest wavelength is located at the top of the vertical plane.
  • the ground is the area of greater concern, so that the third light ray with a lower height in the vertical plane has stronger distance measurement capabilities, which can improve the lidar's detection ability of the vehicle's area of interest.
  • the present invention also provides a method for manufacturing a multi-wavelength scanning device for laser radar.
  • Figure 25 is a schematic flow chart of an embodiment of a manufacturing method for a multi-wavelength scanning device for lidar of the present invention
  • Figures 26 to 30 are diagrams of a method for manufacturing a multi-wavelength scanning device for lidar of the present invention shown in Figure 25.
  • step S11 is performed to provide a base motherboard M910.
  • the base motherboard M910 is used to provide mechanical support and process platform.
  • the material of the base motherboard M910 is a material with a refractive index greater than 1.
  • the material of the base motherboard M910 is glass.
  • step S12 is performed to form a grating structure M920 on one surface of the base motherboard M910 .
  • the grating structure M920 is used to form a dispersion surface.
  • the grating structure M920 is formed through nanoimprint technology.
  • Nanoimprint technology has a simple process, good repeatability, high stability, and can be produced on large-area motherboards.
  • the steps of forming the grating structure M920 through nanoimprint technology include: as shown in Figure 26, forming an imprint material layer M921 on the base motherboard M910; as shown in Figure 27, using a preset motherboard
  • the plate M922 is on the imprinting material layer M921 (as shown in Figure 27 (shown in ) is imprinted and cured; as shown in FIG. 28 , the cured imprinting material layer M921 is demoulded to form the grating structure M920.
  • the imprinting material layer M921 is used to form the grating structure M920.
  • the material of the embossing material layer M921 is embossing glue.
  • the master M922 After forming the imprint material layer M921, the master M922 is used to imprint and solidify. Wherein, the side of the master M922 that is in contact with the embossing material layer M921 has a concave and convex regular texture; after the master M922 is in contact with the embossing material layer M921, through further extrusion, the The imprinting material layer M921 is deformed to fill the gaps between the regular textures on the surface of the master M922; then, the imprinting material layer M921 is cured by heating, ultraviolet irradiation and other methods according to the material of the imprinting material layer M921.
  • the regular texture on the master M922 is produced based on the grating parameters determined by the grating equation.
  • the cured imprinting material layer M921 is demolded, and a concave and convex texture is formed on the surface of the imprinting material layer M921 to form the grating structure M920.
  • step S13 is performed to perform a first cutting on the base motherboard M910 with the grating structure M920 formed on the surface to obtain a structural piece M930.
  • the first cutting is used to divide the base motherboard M910 into a plurality of structural small pieces M930, and each structural small piece M930 is used to form a dispersion deflection unit M940 of the scanning device.
  • the base motherboard M910 can be divided into multiple structural small pieces M930 through laser cutting or cutting with a cutting knife.
  • each structural piece M930 is used to form one of the scanning devices.
  • the dispersion in is biased toward unit M940 (shown in Figures 2M9 and 1M9).
  • the size of each structural piece M930 is larger than the dispersion deflecting unit M940 in all directions, that is, in each direction of length, width, and height, the size of the structural piece M930 is larger than the dispersion deflecting unit M940. .
  • step S14 is performed to perform a second cutting on the structural piece M930 to form a dispersion deflection unit M940.
  • the second cutting is used to form the dispersion deflection unit M940.
  • the dispersion deflection unit M940 has an irregular shape, so the dispersion deflection unit M940 is shaped by the second cutting. Specifically, according to the optical path design, the shape of the structural piece M930 is changed so that each surface is formed at a preset angle to form the dispersion deflection unit M940.
  • gratings and prisms are used at the same time, where the grating has the function of wavelength scanning, and the prism can expand the beam; therefore, the combination of the grating and the prism can not only achieve the functions of scanning and beam expansion at the same time; and the third light ray and The angle between the first directions is smaller than the angle between the second light and the first direction, and the emission direction of the third light is close to the first direction, which can effectively control the size of the light path, which is beneficial to Miniaturization of lidar.
  • the dispersion and deflection unit is used to realize the splitting and emission of the light generated by the multi-wavelength light source.
  • the first surface and the second surface one serves as the dispersion surface and the other serves as the deflection surface, so that the emitted light is
  • the angle between the third light ray and the first direction is smaller than the angle between the second light ray and the first direction.
  • the distance between the incident point of the first light ray and the incident point of the second light ray is relatively close, that is, the heights of the second surface and the first surface in the vertical direction are close, so the The dispersion deflection unit does not increase the optical path height of the lidar too much, effectively compresses the height and volume of the lidar, has a simple structure and is easy to install.
  • the dispersion deflection unit further includes: a third surface located in the optical path between the first surface and the second surface, and the third surface reflects the second light to the second surface. By reflecting the second light to the second surface through the third surface, the light path can be further folded and the volume of the light path can be further reduced.
  • the dispersion deflection unit includes: a first element whose surface is the first surface and a second element whose surface is the second surface; the first element is one of a grating and a prism; The second element is the other of a grating and a prism.
  • the grating has the function of wavelength scanning and changes the angle of light based on diffraction.
  • the prism can expand the beam and change the angle of light based on refraction. Therefore, the combination of grating and prism can realize scanning and expansion at the same time.
  • the light can be deflected at least twice in different directions, so that the angle between the third light ray and the first direction is smaller than the angle between the second light ray and the first direction.
  • the angle between the two, the emission direction of the third light is close to the first direction, so that the size of the light path can be effectively controlled, which is conducive to the miniaturization of the lidar; at the same time, in the combination of the grating and the prism, the angle distribution introduced by the grating is uneven. , which is just compensated by an opposite uneven angular distribution introduced by the prism, so that uniform scanning angle intervals can be achieved.
  • the dispersion deflection unit includes a light guide, and both the first surface and the second surface are surfaces of the light guide.
  • the dispersion surface and the deflection surface are integrated on the light guide body of the integrated structure, which can greatly reduce the volume of the optical element and effectively improve the robustness of the optical path.
  • the second light is totally reflected on the third surface.
  • the second light is completely reflected on the third surface, which can effectively improve the reflection efficiency of the second light reflection, and there is no need to provide a reflective film on the third surface, which reduces the manufacturing of the dispersion deflection unit. cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种多波长的扫描装置及制造方法、激光雷达及发射模块,扫描装置(120)包括:色散偏折单元(129),色散偏折单元(129)具有第一面(121)和第二面(122);第一面(121)接收第一光线(131)以形成第二光线(132),第二面(122)接收第二光线(132)形成出射的第三光线(133);其中第三光线(133)与第一方向之间的夹角小于第二光线(132)与第一方向之间的夹角;第一面(121)和第二面(122)中的一个为色散面,第一面(121)和第二面(122)中的另一个为偏折面。垂直第一方向的平面内,第一光线(131)的入射点与第二光线(132)的入射点之间的距离较近,即第二面(122)与第一面(121)在垂直方向上的高度接近,因此色散偏折单元(129)不会过多增加激光雷达的光路高度,有效的压缩了激光雷达的高度和体积,结构简单、易于安装。

Description

多波长的扫描装置及制造方法、激光雷达及发射模块
本申请要求2022年8月29日提交中国专利局、申请号为2022110426293、发明名称为“多波长的扫描装置、发射模块和激光雷达”和2022年8月29日提交中国专利局、申请号为202211040717X、发明名称为“发射模块及其扫描装置的制造方法、激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光雷达领域,特别涉及一种多波长的扫描装置及制造方法、激光雷达及发射模块。
背景技术
激光雷达是一种常用的测距传感器,具有探测距离远、分辨率高、受环境干扰小等特点,广泛应用于智能机器人、无人机、无人驾驶等领域。激光雷达的工作原理是利用激光往返于雷达和目标之间所用的时间,或者调频连续光在雷达和目标之间往返所产生的频移来评估目标的距离或速度等信息。
为了获得较大的视场范围,激光雷达通常采用扫描装置进行扫描。激光雷达常用的扫描方式有机械旋转式、反射镜扫描式、光学相控阵(OPA)扫描、Flash扫描等。
另外,还有一种扫描方式是波长扫描。波长扫描的扫描装置是利用光栅、棱镜等第一元件基于波长将多波长光源产生的光线分开不同的角度以达到扫描的效果。
但是现有波长扫描的扫描装置往往存在体积大、装配不方便的问题。
发明内容
本发明解决的问题如何降低波长扫描的扫描装置的装配难度。
为解决上述问题,本发明提供一种多波长的扫描装置,包括:
色散偏折单元,所述色散偏折单元具有沿光路依次设置的第一面和第二面;所述第一面接收第一光线以形成第二光线,所述第二面接收所述第二光线形成出射的第三光线;其中入射所述第一面的光路的光轴方向为第一方向,所述第三光线与所述第一方向之间的夹角小于所述第二光线与所述第一方向之间的夹角;所述第一面和第二面中的一个为色散面,所述第一面和第二面中的另一个为偏折面,其中所述色散面接收光线并基于波长偏折所述光线;所述偏折面接收光线并基于折射作用偏折所述光线。
可选的,中心波长的第三光线平行所述第一方向。
可选的,不同波长的第三光线之间成预设夹角。
可选的,相邻第三光线之间的夹角基本相等。
可选的,所述第二面具有增透膜。
可选的,所述色散偏折单元还具有第三面,所述第三面位于所述第一面和所述第二面之间的光路中,所述第三面为反射面以反射所述第二光线至所述第二面。
可选的,所述第三面与所述第一方向的夹角在10°至45°范围内。
可选的,第二光线在所述第三面上发生全反射。
可选的,所述第三面具有反射膜。
可选的,所述色散偏折单元包括:导光体,所述导光体的一个表面为所述第一面,一个表面为所述第二面,所述第一光线自所述第一面入射至所述导光体,所述第三光线自所述第二面从所述导光体出射。
可选的,所述导光体的一个表面为第三面。
可选的,所述导光体的材料的折射率大于1。
可选的,所述导光体的材料为玻璃。
可选的,所述第一面上具有光栅层,所述光栅层具有光栅结构。
可选的,所述光栅层与所述导光体为一体结构。
可选的,所述光栅层的材料为压印胶。
可选的,所述色散偏折单元包括:第一元件,所述第一元件的一个表面为所述第一面,所述第一光线自所述第一面入射至所述第一元件;第二元件,所述第二元件位于所述第一元件下游的光路中,所述第二元件的一个表面为所述第二面,所述第三光线自所述第二面从所述第二元件出射;所述第一元件为光栅和棱镜中的一个;所述第二元件是光栅和棱镜中的另一个。
可选的,所述第二元件为棱镜,所述第一元件为光栅。
可选的,所述色散偏折单元还包括:第三元件,所述第三元件位于所述第一元件和所述第二元件之间的光路中;所述第三元件的一个表面为第三面以反射所述第二光线至所述第二元件。
可选的,所述第三元件包括反射镜、振镜和转镜中的至少一种。
可选的,所述色散偏折单元包括:第四元件,所述第四元件位于所述色散偏折单元下游的光路中以反射所述第三光线,所述第四元件的反射面绕转轴转动。
可选的,所述第四元件的反射面的转轴平行所述第一光线入射至所述第一元件的入射面。
可选的,所述色散偏折单元的第三面和所述色散偏折单元的第四元件中的一个以预设的第一角速度旋转以实现视场拼接,其中所述第一角速度基于多个所述第三光线之间的最大夹角设置。
可选的,所述色散偏折单元的第三面和所述色散偏折单元的第四 元件中的一个以预设的第二角速度旋转以增大角分辨率,其中所述第二角速度基于相邻波长的第三光线之间的夹角设置。
相应的,本发明还提供一种发射模块,包括:
多波长光源,所述多波长光源适宜于产生多波长的光线;准直光学装置,所述准直光学装置适宜于传输所述多波长光源所产生的光线以形成第一光线;扫描装置,所述扫描装置为本发明的多波长的扫描装置。
可选的,同一所述第一光线形成的多个第二光线均位于第一平面内;所述发射模块包括多个多波长光源,所述多个多波长光源至少部分分布于所述第一平面内。
可选的,所述多个多波长光源还分布于第二平面内,所述第二平面垂直所述第一平面。
可选的,所述多波长光源包括:多个不同波长的激光器,或者至少1个波长可调谐激光器。
此外,本发明还提供一种激光雷达,包括:
发射模块,所述发射模块为本发明的发射模块;出射的所述第三光线经待测目标反射后形成回波光线;探测元件,所述探测元件适宜于接收所述回波光线。
可选的,所述激光雷达包括收发系统;所述收发系统包括所述发射模块和接收模块,所述接收模块包括所述探测元件。
可选的,还包括:分光元件,所述分光元件位于所述多波长光源和所述准直光学装置之间的光路上。
另外,本发明还提供一种用于激光雷达的多波长的扫描装置的制造方法,包括:
提供基底母板;在所述基底母板的一个表面上形成光栅结构;对表面形成有所述光栅结构的基底母板进行第一切割,获得结构小片; 对所述结构小片进行第二切割以形成色散偏折单元。
可选的,形成光栅结构的步骤中,通过纳米压印技术形成所述光栅结构。
可选的,通过纳米压印技术形成所述光栅结构的步骤包括:在所述基底母板上形成压印材料层;利用预设的母版对所述压印材料层进行压印并固化;对固化后的压印材料层进行脱模,以形成上所述光栅结构。
与现有技术相比,本发明的技术方案具有以下优点:
本发明技术方案中,通过色散偏折单元实现多波长光源所产生光线的分光和出射,所述第一面和所述第二面中,一个作为色散面,另一个作为偏折面,使出射的所述第三光线与所述第一方向之间的夹角小于所述第二光线与所述第一方向之间的夹角。垂直第一方向的平面内,所述第一光线的入射点与所述第二光线的入射点之间的距离较近,即第二面与第一面在垂直方向上的高度接近,因此所述色散偏折单元不会过多增加激光雷达的光路高度,有效的压缩了激光雷达的高度和体积,结构简单、易于安装。
本发明可选方案中,所述色散偏折单元还包括:位于所述第一面和所述第二面之间光路中的第三面,所述第三面反射所述第二光线至所述第二面。通过第三面将所述第二光线反射至所述第二面,能够进一步折叠光路,进一步缩小光路体积。
本发明可选方案中,所述色散偏折单元包括:一个表面为所述第一面的第一元件和一个表面为所述第二面的第二元件;所述第一元件为光栅和棱镜中的一个;所述第二元件是光栅和棱镜中的另一个。同时使用光栅和棱镜,其中光栅具有波长扫描的作用,基于衍射改变光线的角度,所述棱镜可以扩束,并基于折射改变光线的角度;因此光栅和棱镜的组合,除了能够同时实现扫描和扩束的功能外,而且能够使光线向不同的方向进行至少两次偏折,使得所述第三光线与所述第 一方向之间的夹角小于所述第二光线与所述第一方向之间的夹角,第三光线的出射方向接近于所述第一方向,从而能够有效控制光路尺寸,有利于激光雷达的小型化;同时,光栅和棱镜的组合中,光栅引入的角度分布不均匀,刚好被棱镜引入的一个相反的角度分布不均匀所补偿,从而能够实现扫描角度间隔均匀。
本发明可选方案中,所述色散偏折单元包括导光体,所述第一面和所述第二面均为所述导光体的表面。所述色散面和所述偏折面集成于一体化结构的导光体上,能够使光学元件体积大幅缩小,能够有效提高光路的鲁棒性。
本发明可选方案中,所述第二光线在所述第三面上发生全反射。通过结构设计,使第二光线在所述第三面上发生全反射,能够有效提高所述第二光线反射的反射效率,而且无需在第三面上设置反射膜,降低色散偏折单元的制造成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种波长扫描的扫描装置的光路示意图;
图2是本发明多波长的扫描装置第一实施例的结构示意图;
图3是图2所示扫描装置实施例中所述光栅层分光的光路示意图;
图4是本发明多波长的扫描装置第二实施例的结构示意图;
图5是图4所示扫描装置实施例中所述第一元件位置的光路示意图;
图6是图4所示扫描装置实施例中所述第二元件内部的光路示意 图;
图7是图4所示扫描装置实施例中第一光线入射所述第一元件与第二元件的光路示意图;
图8是本发明多波长的扫描装置第三实施例的结构示意图;
图9是图8所示扫描装置实施例中所述第三面上发生全反射的光路示意图;
图10是本发明多波长的扫描装置第四实施例的结构示意图;
图11是本发明多波长的扫描装置第五实施例的结构示意图;
图12是本发明多波长的扫描装置第六实施例的结构示意图;
图13是本发明多波长的扫描装置第七实施例的侧视结构示意图;
图14是图13所示多波长的扫描装置实施例的俯视结构示意图;
图15是本发明多波长的扫描装置第八实施例的侧视结构示意图;
图16是本发明多波长的扫描装置第九实施例的侧视结构示意图;
图17是本发明多波长的扫描装置第十实施例的侧视结构示意图;
图18是图17所示多波长的扫描装置实施例的俯视结构示意图;
图19是本发明多波长的扫描装置第十一实施例的侧视结构示意图;
图20是图19所示多波长的扫描装置实施例的俯视结构示意图;
图21是本发明发射模块一实施例的俯视结构示意图;
图22是本发明发射模块另一实施例中收发装置的放大示意图;
图23是本发明激光雷达一实施例的结构示意图;
图24是本发明激光雷达另一实施例的结构示意图;
图25是本发明用于激光雷达的多波长的扫描装置的制造方法一 实施例的流程示意图;
图26至图30是图25所示的用于激光雷达的多波长的扫描装置的制造方法实施例中各个步骤的剖面结构示意图。
具体实施方式
由背景技术可知,现有技术中的波长扫描的扫描装置存在装配不便的问题。现结合一种波长扫描的扫描装置的光路结构分析其装配不便问题的原因:
图1示出了一种波长扫描的扫描装置的光路示意图。
如图1所示,光源11为多波长光源,即所述光源11能够产生不同波长的光线;色散元件12包括光栅。所述光源11所产生的不同波长的光学以相同的入射角入射至所述色散元件12。根据光栅衍射方程,不同波长的光线经光栅后的衍射角度不同。因此相同角度入射的光线,经所述色散元件12中的光栅偏折后的光线以不同的角度出射,从而将不同波长的光线分开,即可实现扫描效果。
如图1所示,由于光栅-1阶的衍射效率最高,因此通常会用光栅的-1阶衍射光线进行扫描,即衍射光和入射光在法线的同一侧。所以所述第一元件12中的光栅偏折后的光线不可能平行于入射的光线,偏折后的光线向下偏折。
在激光雷达的应用中,不同波长的衍射光分布在垂直于水平面的平面内,即通过不同波长的光线向不同角度衍射来实现激光雷达对不同垂直角度的扫描。因此,为了使多束衍射光的出射方向靠近水平面,以实现对垂直0°角和垂直方向正角度和负角度一定范围的扫描,如图1所示,通常在所述色散元件12下游的光路中会设置反射镜13。但是所述反射镜13的反射面与水平方向之间的夹角较大,所以所述反射镜13的设置,会增大光路沿垂直方向的尺寸,使得激光雷达光路垂直方向的高度增大,从而不利于激光雷达体积的缩小。此外,而且 也会使所述激光雷达的光路的不同光学元件在不同高度的水平面上,从而造成了激光雷达的安装不便。
为解决所述技术问题,本发明提供一种多波长的扫描装置,其特征在于,包括:色散偏折单元,所述色散偏折单元具有沿光路依次设置的第一面和第二面;所述第一面接收第一光线以形成第二光线,所述第二面接收所述第二光线形成出射的第三光线;其中入射所述第一面的光路的光轴方向为第一方向,所述第三光线与所述第一方向之间的夹角小于所述第二光线与所述第一方向之间的夹角;所述第一面和第二面中的一个为色散面,所述第一面和第二面中的另一个为偏折面,其中所述色散面接收光线并基于波长偏折所述光线;所述偏折面接收光线并基于折射作用偏折所述光线。
通过色散偏折单元实现多波长光源所产生光线的分光和出射,所述第一面和所述第二面中,一个作为色散面,另一个作为偏折面,使出射的所述第三光线与所述第一方向之间的夹角小于所述第二光线与所述第一方向之间的夹角。垂直第一方向的平面内,所述第一光线的入射点与所述第二光线的入射点之间的距离较近,即第二面与第一面在垂直方向上的高度接近,因此所述色散偏折单元不会过多增加激光雷达的光路高度,有效的压缩了激光雷达的高度和体积,结构简单、易于安装。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参考图2,示出了本发明多波长的扫描装置一实施例的结构示意图。
所述扫描装置120包括:色散偏折单元129,所述色散偏折单元129具有沿光路依次设置的第一面121和第二面122;所述第一面121接收第一光线131以形成第二光线132,所述第二面122接收所述第二光线132形成出射的第三光线133;其中入射所述第一面121的光路的光轴方向为第一方向,所述第三光线133与所述第一方向之间的 夹角小于所述第二光线132与所述第一方向之间的夹角;所述第一面121和第二面122中的一个为色散面,所述第一面121和第二面122中的另一个为偏折面,其中所述色散面接收光线并基于波长偏折所述光线;所述偏折面接收光线并基于折射作用偏折所述光线。
垂直第一方向的平面内,所述第一光线131的入射点与所述第二光线132的入射点之间的距离较近,即第二面122与第一面121在垂直方向上的高度接近,因此所述色散偏折单元129不会过多增加激光雷达的光路高度,有效的压缩了激光雷达的高度和体积,结构简单、易于安装。
下面结合附图详细说明本发明多波长的扫描装置实施例中具体技术方案。
所述扫描装置120适用于基于波长偏折光线以实现扫描。其中,所述色散偏折单元129的所述第一面121和所述第二面122中,一个为所述色散面以基于波长偏折光线,另一个为所述偏折面以基于折射作用偏折光线。
在具体实施例中,所述多波长光源111依次输出不同波长的光线,不同波长的光线分别被扫描装置120偏折到垂直方向的不同角度,从而实现多个垂直角度的依次扫描。
图2所示的一些实施例中,所述第一光线131传播方向平行于所述第一方向。具体的,所述第一光线131沿水平方向入射至所述多波长的扫描装置120,即所述第一方向为水平方向。
继续参考图2,所述第一面121和第二面122沿光路依次设置,所述第一面121为入射面,适宜于接收所述第一光线131;所述第一光线131经传输后形成第二光线132;所述第二面122为出射面,所述第二面122接收所述第二光线132以形成出射的第三光线133。
本发明一些实施例中,所述第一面121为所述色散面,所述第二面122为所述偏折面。所述第一面121接收所述第一光线131,根据 波长,以形成不同波长向不同方向偏折的第二光线132;所述第二面122接收不同方向传输的第二光线132,基于折射作用形成不同方向出射的第三光线133。
所述第一面121的色散程度、所述第一面121和第二面122之间的角度适宜,从而使的所述第三光线133与所述第一方向之间的夹角小于所述第二光线132和所述第一方向之间的夹角。其中,第一方向为所述入射所述第一面121的光路的光轴的方向。
需要说明的是,所述第一面121的色散程度是指不同波长光线传播方向之间的夹角与波长差距之间的关系,分开一定夹角的两束光波长相差越小、一定波长差的两束光分开的夹角越大,色散程度越强;相应的,分开一定夹角的两束光波长相差越大、一定波长差的两束光分开的夹角越小,色散程度越小。通过第一光线131中多个波长的设置,可以使相邻第二光线132之间具有预设的夹角。
具体如图2所示,本发明一些实施例中,所述第一光线131沿水平方向入射至所述扫描装置120,即所述第一方向为所述水平方向;所以所述第三光线133与所述水平方向的夹角小于所述第二光线132与所述水平方向的夹角,从而使光路水平出射。
本发明一些实施例中,中心波长的第三光线133平行所述第一方向。所以通过角度设计,即所述第一面121和所述第二面122之间成预设的角度,从而使中心波长的第三光线133平行所述第一方向。
本发明一些实施例中,不同波长的第三光线133之间成预设夹角。通过角度设计,即依据光栅方程和导光体128材料的折射率,使所述第一面121和第二面122与所述第一方向之间分别成预设角度,以使不同波长的第三光线133之间成预设夹角。
本发明一些实施例中,可以通过预设角度的设计,使得相邻第三光线133之间的夹角基本相等,从而实现激光雷达的扫描角度间隔均匀。具体的,任意两个相邻第三光线133之间的夹角均为相等的预设 角度,可以使激光雷达的扫描角度间隔均匀,但实际应用中存在一定的误差,相邻第三光线133之间的夹角与预设角度的差不超过该预设角度的10%,视为基本相等。
具体的,如图2所示实施例中,准直后的所述第一光线131沿水平方向入射至所述第一面121,所述第一光线131在第一面121的入射面和所述第二光线132在第二面122的入射面均垂直于水平面,从而使不同波长的第二光线132以及不同波长的第三光线133均位于垂直水平面的平面内,进而实现激光雷达垂直视场范围内不同方向的扫描。
需要说明的是,本发明一些实施例中,所述第二面122具有增透膜。在所述第二面122上设置增透膜,能有效减少第二面122上的光能损耗,有利于能耗的降低和控制,有利于激光雷达性能的改善。
还需要说明的是,本发明一些实施例中,所述第一面121为所述色散面,所述第二面122为所述偏折面。本发明另一些实施例中,所述第一面121也可以为偏折面,所述第二面122也可以为色散面。
如图2所示的一些实施例中,所述色散偏折单元129包括:导光体128,所述导光体128的一个表面为所述第一面121,一个表面为所述第二面122,所述第一光线131自所述第一面121入射至所述导光体128,所述第三光线133自所述第二面122从所述导光体128出射。
所述色散面和所述偏折面集成于一体化结构的导光体128上,能够使光学元件体积大幅缩小,并且一体化的光学元件结构更加稳定,能够有效提高光路的鲁棒性。
本发明一些实施例中,所述导光体128的材料的折射率大于1。将所述导光体128的材料设置比较常见的大于1的材料以控制折射角度,实现扩束效果。
本发明一些实施例中,所述导光体128的材料可以为玻璃。玻璃 是常见的光学元件的材料,将所述导光体128的材料设置为玻璃,能够有效控制成本,而且光学性能稳定,有利于保证所述色散偏折单元129的稳定性。
本发明一些实施例中,作为散射面的所述第一面121上具有光栅层127,所述光栅层127具有光栅结构。利用光栅衍射的原理使投射至所述第一面121上的第一光线131在投射所述第一面121、入射至所述导光体128内时发生光栅衍射,从而将不同波长的光线偏折不同角度,从而使不同波长的第二光线132在所述导光体128内朝向不同方向传播。具体如图2所示,所述第一面121上的光栅层127使光线的传播方向沿顺时针旋转,形成向下偏折、不同传播方向的第二光线132。
本发明一些实施例中,所述光栅层127位于所述导光体128的表面,即所述光栅层127朝向所述导光体128的表面与所述导光体128的表面直接接触。直接将所述光栅层127贴敷于所述导光体128表面,能够有效保证光路的稳定性和鲁棒性。
本发明一些实施例中,所述光栅层127的材料为压印胶,即可以通过纳米压印技术直接在所述导光体128的一个表面上形成所述光栅层127,能够有效控制制作成本。而且一些实施例中,所述压印胶的折射率与玻璃的折射率接近,能有效降低所述光栅层127和所述导光体128之间界面上的光线损耗,能有效避免光线在界面上发生折射,有利于光路精度的提高。
需要说明的是,本发明另一些实施例中,所述光栅层与所述导光体为一体结构,即所述光栅层和所述导光体之间没有明显界限。直接使所述导光体和所述光栅层为一体结构的做法,能够有效避免光栅层和所述导光体之间形成界面。
具体的,结合参考图3,根据光栅方程:
d(sinθ1+sinθ2)=mλ      (公式1)
公式1中,d为光栅周期,θ1与θ2分别为光束在光栅上的入射角和衍射角,m为衍射级次,λ是波长。通常光栅-1阶衍射效率最高,即取m=-1,“-”表示入射光与衍射光在法线同一侧(如图3所示)。因此,不同波长的光经过色散面上的光栅层127衍射后,衍射光的衍射角不同,且衍射光向下偏折。
如图2所示,本发明一些实施例中,所形成的第二光线132直接投射至所述第二面122,在所述第二面122上发生折射,形成自所述色散偏折单元129出射的第三光线133。由于不同波长的第二光线132的传播方向不同,因此不同波长、不同方向的第二光线132投射至所述第二面122的入射角均不相同,而且因此不同波长的第二光线132折射所形成的第三光线133出射方向也不同,从而实现不同视场方向的扫描。
本发明一些实施例中,所述第二面122和所述第一面121的交线垂直所述第一方向。使所述第二面122和所述第一面121的交线垂直所述第一方向,能够使的不同波长的第二光线132、不同波长的第三光线133共面。
需要说明的是,由于所述第二面122和所述第一面121的交线垂直所述第一方向,根据衍射原理,所述第一光线131与其形成的第二光线132共面;根据折射原理,所述第二光线132与其形成的第三光线133共面,也就是说,不同波长的第一光线131、第二光线132和第三光线133共面。本发明一些实施例中,第一光线131、第二光线132和第三光线133均位于垂直于水平面的平面内,从而实现激光雷达对垂直视场范围不同角度的扫描。
本发明一些实施例中,相对于所述第一方向的垂面,所述第一面121和所述第二面122向相同方向倾斜,即如图2所示实施例中,所述第一面121和第二面122相对于所述第一方向的垂面顺时针倾斜,第二光线132在所述第二面122上的入射点与相对应第一光线131在所述第一面121上的入射点之间距离随着波长的增大而减小,即波长 越大,所述距离越小,波长越大的第二光线132在所述第一面121和所述第二面122之间的光程越小;因此相对于所述第二光线132的偏折方向,所述第三光向不同的方向偏折,即如图2所示的实施例中,所述第二光线132相对于所述第一光线131向顺时针方向偏折,所述第三光线133相对于所述第二光线132向逆时针方向偏折。
参考图4,示出了本发明多波长的扫描装置另一实施例的结构示意图。
所述扫描装置219包括:第一元件211,所述第一元件211的一个表面为所述第一面221,所述第一光线231自所述第一面221入射至所述第一元件211;第二元件212,所述第二元件212位于所述第一元件211下游的光路中,所述第二元件212的一个表面为所述第二面222,所述第三光线233自所述第二面222从所述第二元件212出射;所述第一元件211为光栅和棱镜中的一个;所述第二元件212是光栅和棱镜中的另一个。
所述第一元件211接收并偏折第一光线231,形成第二光线232;所述第二元件212接收并偏折所述第二光线232,形成第三光线233。
如图4所示,本发明一些实施例中,所述第一元件211为光栅,所述第二元件212为棱镜。因此,接收所述第一光线231后,基于光栅衍射原理,所述第一元件211将不同波长的第一光线231偏折到不同角度,形成不同传播方向的第二光线232;所述第二元件212接收所述第二光线232,基于折射原理,偏折所述第二光线232以形成第三光线233。
需要说明的是,所述第一光线231包括多种波长。因此不同波长的第一光线231偏折角度不同,从而形成传播方向不同的第二光线232。
具体的,如图5所示,在所述第一元件211的位置,根据光栅方程:
d(sinθ3+sinθ4)=mλ      (公式2)
公式2中,d为光栅周期,θ3与θ4分别为光束在光栅上的入射角和衍射角,m为衍射级次,λ是波长。通常光栅-1阶衍射效率最高,即取m=-1,“-”表示入射光与衍射光在法线同一侧。因此,不同波长的光经过光栅衍射后,衍射光的衍射角不同,且衍射光向下偏折。
如图6所示,在所述第二元件212中,根据棱镜的折射原理,相对于水平方向,棱镜可以将出射光相对于入射光向相反的方向偏折。入射角α与出射角γ反相关,结合图4,从上到下不同波长的光束到棱镜的入射角依次减小,出射角γ依次增大。可以通过位置和角度设计,使中心波长的光束水平出射,其他波长的光束分别向垂直方向正角度和负角度出射,实现垂直方向的扫描。
此外,结合参考图7,对于同一传播路径的第一光线,sinθi为定值,根据光栅方程(1)取微分可得:
由公式(2)和公式(3)可得,对于以预设角度θi入射光栅的第一光线,波长λ越大,衍射角θd1越大,但对于相同波长差dλ的第一光线,波长越大,相邻两波长的第一光线被衍射形成的第二光线被分开的角度dθd1越大。可见,多个波长的第一光线以相同的预设角度入射光栅,光线会被光栅不均匀的分开,即如图7所示,波长较大的两束第二光线322的夹角Δθd1’大于波长较小的两束第二光线322的夹角Δθd1
继续参考图7,第二光线入射棱镜时,入射角与折射角符合菲涅尔定律,如下:
sinθi2=n·sinθd2     (公式4)
其中,θi2为入射角,sinθd2为折射角,n是棱镜的折射率。
对公式(4)取微分可得:
cosθi2·dθi2=n·cosθd2d2       (公式5)
对公式(5)求导可得dθd2/dθi2为单调递减函数,即随着dθi2增大,dθd2减小。
当第一光线的波长增大,相邻两波长的第一光线被衍射形成的第二光线被分开的角度dθd1增大;dθd1增大的同时dθi2增大,则dθd2减小,因此经过棱镜后相邻波长的第三光线被分开的角度减小。如图7所示,虽然第二光线Δθd1’>Δθd1,经过棱镜折射后的不同波长第三光线之间的夹角Δθd2’=Δθd2。由此可见,光栅和棱镜的组合中,光栅引入的角度分布不均匀,刚好被棱镜引入的一个相反的角度分布不均匀所补偿,从而使波长间隔均匀的第一光线形成的第三光线之间夹角基本相同,进而能够实现扫描角度间隔均匀。
继续参考图4,本发明一些实施例中,所述第二光线232直接投射至所述第二元件212,即所述第一元件211偏折所述第一光线231从而使所形成的第二光线232朝向所述第二元件212传播,直接投射至所述第二元件212,所述第二元件212和所述第一元件211之间的光路中,不存在其他光学元件。
如图4所示实施例中,所述第一元件211为光栅,因此不同波长的第一光线231经所述第一元件211分光后,形成不同传播方向的第二光线232;不同波长、不同传播方向的第二光线232斜入射至所述第二元件212,因此不同波长的第二光线232折射所形成的第三光线233出射方向也不同,从而实现不同视场方向的扫描。
所述第二元件212接收所述第二光线232的表面为第二元件212的入射面,所述第三光线233出射所述第二元件212的表面为第二元件212的出射面。本发明一些实际例中,第二元件212的入射面与第二元件212的出射面的交线垂直所述第一方向。使该交线垂直所述第一方向,能够使所述第一光线231的入射面和所述第二光线232的入射面共面,从而使不同波长的第二光线232、不同波长的第三光线233共面。
本发明一些实际例中,如图4至图7所示,在所述第二元件212的入射面内,所述第二元件212的入射面在远离所述第一元件211的一侧与所述第二元件212的出射面相交,因此第二光线232在透射所述第二元件212时,朝向第一方向偏折,从而使所形成的第三光线233与第一方向的夹角更小。
需要说明的是,前述实施例中,所述第一元件211为光栅,所述第二元件212为棱镜。但是这种设置方式仅为一示例。本发明其他实施例中,所述第一元件211也可以为棱镜,所述第二元件212也可以为光栅,能够实现相同的技术效果。
具体的,如图4所示实施例中,准直后的所述第一光线231沿水平方向入射至所述第一元件211,即所述第一方向为水平方向;所述第一元件211将不同波长的第一光线231分开,形成传播方向不同程度偏离第一方向的第二光线232;所述第二元件212将不同波长的第二光线232反向偏折,使所形成的第三光线233的传播方向更接近于水平方向。
而且,所述第一元件211和所述第二元件212之间的距离较小,基本处于同一高度,因此光栅和棱镜的配合使用,在实现波长扫描的同时,不会过多增加扫描装置219的高度和体积,有利于激光雷达的小型化。
此外,基于折射原理,棱镜对光线的偏折中,光线的出射方向和入射方向不同,同时会引起光束宽度的变化,因此在光栅进行分光的同时,配合棱镜的偏折作用,可以对光线起到扩束的作用,能够增大激光雷达的口径,增加激光雷达能够接收的光能量,提升测远能力。
参考图8,示出了本发明发射模块另一实施例的结构示意图。
与前述实施例相同之处,本发明在此不再赘述。与前述实施例不同之处在于,本发明一些实施例中,所述色散偏折单元329还具有第三面323,所述第三面323位于所述第一面321和所述第二面322之 间的光路中,所述第三面323为反射面以反射所述第二光线332至所述第二面322。
通过第三面323将所述第二光线332反射至所述第二面322的做法,能够进一步折叠光路,能够进一步减小垂直于第一方向的平面内,所述第一光线331的入射点与所述第二光线332的入射点之间的距离,有利于光路尺寸的进一步减小,有利于激光雷达的小型化。
本发明一些实施例中,所述第三面323与所述第一方向的夹角在10°至45°范围内。限制所述第三面323与所述第一方向的夹角,能够减小第三面323在所述第一方向的垂面内的投影面积,从而有利于压缩光路尺寸,有利于激光雷达小型化。
本发明一些实施例中,第二光线332在所述第三面323上发生全反射。通过角度设计,不同波长的第二光线332在所述第三面323上的入射角均大于或等于全反射临界角,能够在不增加额外反射膜的前提下,提高第三面323的反射率。
具体如图9所示实施例中,所述导光体327的材料都折射率为n1,其中,n1>1。经衍射而形成的不同波长的第二光线332的衍射角可以通过前述公式1而获得;根据全反射原理,即当光线从光密介质进入光疏介质时,如果入射角大于临界角θc时,折射光线会消失,所有入射光线将被反射而不进入光疏介质,设计所述第三面323与所述第一面321之间的夹角,使不同波长的的第二光线332的入射角均大于相应波长下的临界角,从而使所述第二光线332在所述第三面323上发生全反射,能够使所述第三面323将第二光线332完全反射的同时,省去工艺复杂、成本较高的镀膜步骤,有利于简化制备工艺,降低成本。
需要说明的是,本发明一些实施例中,所述第二光线332在所述第三面323上发生全反射。本发明另一些实施例中,所述第三面323具有反射膜,从而提高所述第三面323的反射率。
本发明一些实施例中,所述导光体327的一个表面为第三面323。具体的,所述导光体327为多边形棱镜,所述导光体327的两个表面分别为第一面321和第二面322,所述导光体327的另一个表面为所述第三面323。
参考图10,示出了本发明多波长的扫描装置另一实施例的结构示意图。
与前述实施例相同之处,本发明在此不再赘述。与前述实施例不同之处在于,本发明一些实施例中,所述色散偏折单元还包括:第三元件413,所述第三元件413位于所述第一元件411和所述第二元件412之间的光路中;所述第三元件413的一个表面为第三面423以反射所述第二光线422至所述第二元件412。
通过第三元件413将所述第二光线422反射至所述第二元件412,能够进一步折叠光路,进一步缩小光路体积,有利于激光雷达的小型化。
本发明一些实施例中,所述第三元件413的几何中心与所述第一元件411的几何中心之间的连线与所述第一方向之间的夹角大于45°,也就是说,沿所述第一方向,第一元件411的投影和所述第三元件413的投影位置接近,有利于装置小型化。
本发明一些实施例中,所述第三元件413的反射面与所述第一方向的夹角在10°至45°范围内。限制所述第三元件413与所述第一方向的夹角,能够减小第三元件413在所述第一方向的垂面内的投影面积,从而有利于压缩光路尺寸,有利于激光雷达小型化。具体的,如图10所示,本发明一些实施例中,所述第三元件413为反射镜,所述反射镜的反射面朝向所述第一元件411和所述第二元件412。
本发明另一些实施例中,如图11所示,所述第三元件413的反射面绕转轴转动。使反射镜绕转轴转动,所述转轴垂直于所述第一方向,随着反射镜绕轴转动的角度变化,改变第二光线的反射角度,能 够扩大扫描视场范围,或者提高扫描分辨率。具体的,所述第三元件413可以包括振镜、转境、摆镜中的至少一种。
本发明一些实施例中,所述色散偏折单元的第三面以预设的第一角速度旋转以实现视场拼接,其中所述第一角速度基于多个所述第三光线之间的最大夹角设置。具体如图11所示,所述第三元件的反射面413a以预设的第一角速度旋转以实现视场拼接,其中所述第一角速度基于波长最大的第三光线423与波长最小的第三光线423之间的夹角设置。
图11中第三光线中的实线表示反射面413a在第一角度反射不同波长的第二光线形成的第三光线,第三光线中的虚线表示反射面413a在第二角度反射第二光线并形成的第三光线。可见,所述反射面413a的转动速度较快,使所述反射面413a反射不同发射周期的多个第二光线422的视场相拼接,从而扩大扫描视场范围。
此外,一些实施例中,所述色散偏折单元的第三面以预设的第二角速度旋转以增大角分辨率,其中所述第二角速度基于相邻波长的第三光线之间的夹角设置。具体如图12所示,所述第三元件的反射面413b以预设的第二角速度旋转以增大角分辨率,其中所述第二角速度基于相邻波长的第三光线423之间的夹角设置。
图12中第三光线中的实线表示反射面413b在第一角度反射不同波长的第二光线形成的第三光线,第三光线中的虚线表示反射面413a在第二角度反射第二光线并形成的第三光线。可见,所述反射面413b的转动速度较慢,所述反射面413b反射不同发射周期的多个第二光线422所对应的视场相互交错,从而可以提高扫描的角分辨率。
参考图13和图14,其中图13示出了本发明多波长的扫描装置再一实施例的侧视结构示意图;图14是图13所示多波长的扫描装置的俯视结构示意图。
与前述实施例相同之处,本发明在此不再赘述。与前述实施例不 同之处在于,本发明一些实施例中,所述发射模块还包括:第四元件540,所述第四元件540位于所述色散偏着单元529下游的光路中以反射所述第三光线533,所述第四元件540的反射面绕转轴转动。
具体的,所述第一光线531自所述第一面521入射至所述导光体527以形成所述第二光线532;所述第三面523将所述第二光线532反射至所述第二面522;所述第二光线532在所述第二面522偏折,形成出射的第三光线533;出射的所述第三光线533经所述反射镜534反射,以实现扫描。
根据衍射原理可以知道,同一传播路径的第一光线531形成的不同波长的第二光线532均位于同一平面内,所述平面为第一平面,也就是说,同一传播路径的第一光线531形成的不同波长的第二光线532均位于所述第一平面内。
如图14所示,所述第四元件540的反射面与第一平面具有夹角,反射面与第一平面的交线垂直于第一方向。本发明一些实施例中,第一方向为水平方向,第四元件540的转轴垂直于水平面能够使所述第三光线533在垂直于所述转轴的平面内实现扫描。如图13和图14所示实施例中,不同波长的第三光线533均位于垂直于水平面的平面内,所述转轴垂直于水平面,因此所述第四元件540能够实现所述第三光线533在水平方向的扫描。
本发明另一些实施例中,所述第四元件540的转轴平行于水平面。具体的,不同波长的第三光线533均位于垂直于水平面的平面内,所述第四元件540的转轴平行于水平面,因此第四元件540能够改变第三光线533在垂直方向的出射角度。所述第四元件540的设置,能够扩大扫描范围或提高扫描密度。
具体的,如图15所示的一些实施例中,所述第四元件640以预设的第一角速度旋转以实现视场拼接,图中以线形区分不同波长的第二光线632和第三光线633。其中所述第一角速度基于多个第三光线633之间的最大夹角设置,即第四元件640反射不同发射周期的多个 第三光线633的视场相拼接,从而扩大视场扫描范围。
如图16所示的一些实施例中,同样以线形区分不同波长的第二光线732和第三光线733,所述第四元件740以预设的第二角速度旋转以增大角分辨率,其中所述第二角速度基于相邻波长的第三光线733之间的夹角设置,即第四元件740反射不同发射周期的多个第三光线733所对应的视场角度相互交错,从而提高激光雷达的扫描角度分辨率。因此,通过第四元件740旋转角速度的设置,能够实现不同扫描效果。
参考图17,示出了本发明多波长的扫描装置又一实施例的结构示意图(侧视图)。图18示出了图17所示多波长的扫描装置实施例的结构俯视图。
与前述实施例相同之处,本发明在此不再赘述。与前述实施例不同之处在于,本发明一些实施例中,所述扫描装置还包括:第四元件814,所述第四元件814位于所述第二元件812光路下游以反射所述第三光线823,所述第四元件814的反射面绕转轴转动。
如图17所示,第四元件814的反射面与第三光线823分布的平面具有夹角,所述转轴平行所述第一光线821入射至所述第一元件811的入射面,因此随着所述第四元件814的反射面的转动,经所述第四元件814反射的第三光线823在垂直所述第一光线821入射至所述第一元件811的入射面的平面内转动。
如图17和图18所示,本发明一些实施例中,所述转轴垂直所述水平面,因此随着所述第四元件814的反射面的转动,经所述第四元件814反射的第三光线823在水平面内偏转,从而实现水平方向的扫描。
相应的,本发明还提供一种发射模块。
参考图2,示出了本发明发射模块一实施例的结构示意图。
所述发射模块包括:多波长光源111,所述多波长光源111适宜 于产生多波长的光线;准直光学装置140,所述准直光学装置140适宜于传输所述多波长光源111所产生的光线以形成第一光线131;扫描装置120,所述扫描装置120为本发明的发射模块。
所述多波长光源111用以产生光线以进行探测。
所述多波长光源111产生的光线为多波长光线,即所述多波长光源111产生的光线包括多个波长。具体的,一些实施例中,所述多波长光源111包括:多个不同波长的激光器,或者至少1个波长可调谐激光器。其中,所述波长可调谐激光器可以包括但不限于染料激光器,固体激光器,准分子激光器等。具体的,所述多波长光源111所产生的光线经传输后,形成第一光线131。
所述准直光学装置140适宜于对所述多波长光源111所产生的光线进行准直。
如图2所示,所述准直光学装置140包括:至少1个准直透镜140,所述多波长光源111所产生光线经所述准直光学装置140准直后形成第一光线131,所以,所述第一光线131传播方向平行于所述第一方向。具体如图2所示实施例中,所述第一光线131沿水平方向入射至所述多波长的扫描装置120,即所述第一方向为水平方向。
所述扫描装置120适宜于改变出射的光线的传播方向以实现扫描。
所述扫描装置120为本发明的扫描装置120,所扫描装置120的具体技术方案参考前述扫描装置120的实施例,本发明在此不再赘述。
所述多波长光源111依次输出不同波长的光线,不同波长的光线分别被扫描装置120偏折到垂直方向的不同角度,从而实现多个垂直角度的依次扫描。
参考图17,示出了本发明发射模块另一实施例的结构示意图。
与前述实施例相同之处,本发明在此不再赘述。与前述实施例不 同之处在于,本发明一些实施例中,所述发射模块包括多个多波长光源815。
具体的,所述第一元件811偏折同一第一光线821形成的不同波长的第二光线822均位于第一平面内;本发明一些实施例中,所述发射模块的所述多个多波长光源815至少部分分布于所述第一平面内,即所示多个多波长光源815共面设置。在所述第一平面内共面设置多个多波长光源815,每个多波长光源815所产生光线也会在同一平面内朝向不同方向出射;进一步通过所述扫描装置810的波长扫描,不同波长的光线在同一平面内分开。
在波长数量不变的情况下,多个多波长光源815和本发明扫描装置810的结合,能够成倍增加扫描线数,能够大幅提升扫描视场范围和/或扫描视场分辨率。
如图17所示实施例中,所述第一平面垂直水平面(即图17中的纸面),即同一第一光线821所形成的不同波长的第二光线822在垂直水平面的方向上分开;因此多个所述多波长光源815至少部分分布在垂直水平面的平面内分开,位于该平面内的不同的多波长光源815所产生的光线本就会在垂直水平面的平面内分开,朝向不同方向出射;所述扫描装置810利用不同多波长光源815所产生光线进行波长扫描,同一光源产生的不同波长的光在垂直方向再进一步分开以更大的视场范围和/或视场分辨率对垂直方向进行扫描。
参考图19和图20,示出了本发明发射模块又一实施例的侧视结构示意图,其中图20是图19所示发射模块的俯视结构示意图。
具体如图19所示,所述发射模块包括多个多波长光源911,所述多个多波长光源911可以分布于所述第一平面内,每个多波长光源911可以发射多种波长的第一光线931,多个多波长光源911发射的第一光线931以及分别形成的第二光线932和第三光线933均分布于第一平面内。
本发明一些实施例中,如图19所示,以线形区分不同波长的第三光线933,每个多波长光源911发射第一光线形成的第三光线933之间的夹角间隔均匀,以实现激光雷达的扫描角度间隔均匀;不同多波长光源911发射第一光线形成的第三光线933的视场范围相互拼接,因此,在不增加波长数量的情况下,通过第一平面内多个多波长光源911的设置,可以增大激光雷达在第一平面内的视场范围。具体的,第一平面为垂直于水平面的平面,设置预设数量的多波长光源911和每个多波长光源911发射第一光线931的波长数量,结合色散偏着单元929获得预设角度间隔的第三光线933,能够实现激光雷达对垂直视场的大范围扫描,无需在垂直方向设置扫描镜等额外的元件,简化激光雷达的光路结构,有利于激光雷达的小型化和成本降低。
根据衍射原理可以知道,同一传播路径第一光线931形成的不同波长的第二光线932均位于同一平面内,所述平面为第一平面,也就是说,同一传播路径的第一光线931形成的不同波长的第二光线932均位于所述第一平面内。
本发明一些实施例中,多个所述多波长光源911分布于第二平面内,所述第二平面垂直所述第一平面。如图20所示,多个所述多波长光源911分布于垂直所述第一平面的第二平面内,能够使所形成的第三光线933在所述第二平面内朝向不同的方向出射,以实现第二平面内的扫描。具体的,所述第一方向为水平方向,所述第一平面为垂直水平面的平面,所述第二平面为水平面,因此将多个所述多波长光源911设置于所述水平面内,能够实现激光雷达在水平方向的扫描。
需要说明的是,图19和图20所示的实施例中,多个所述多波长光源911分布于第一平面和第二平面内,第二平面垂直于第一平面,即多个多波长光源911排列成二维阵列。如上所述,二维阵列的多波长光源911能够实现垂直方向和水平方向的二维扫描,增大激光雷达的视场范围,简化光路结构。本发明其他实施例中,多个所述多波长光源也可以仅分布于第一平面内,或者多个所述多波长光源也可以仅 分布于第二平面内。
参考图21,示出了本发明发射模块另一实施例的结构俯视图。
与前述实施例相同之处,本发明在此不再赘述。与前述实施例不同之处在于,本发明一些实施例中,所述多个多波长光源1015还分布于所述第二平面内,所述第二平面垂直所述第一平面。
如图21所示,所述第二平面垂直于同一第一光线1021形成的不同波长的第二光线共同位于的第一平面,不同第二平面内的多波长光源1015位于准直透镜1016焦平面的不同位置,因此经所述准直透镜1016准直之后的第一光线1021平行第一方向出射,经所述扫描装置1010传输后形成的第三光线1023在所述第二平面内朝向不同的方向出射,从而实现第二平面内的扫描。
具体的,所述第二平面为水平面,因此使多个所述多波长光源1015中的部分分布于同一水平面内,同一水平面内的多波长光源1015位于所述准直透镜准1016的焦平面的不同位置,因此所形成的第三光线1023在水平面内朝向不同方向出射,进而实现水平方向的扫描。
需要说明的是,本发明另一些实施例中,所述多波长光源也可以为二维阵列以直接实现大范围的二维扫描,即无需第四元件也可以直接实现大范围的二维扫描。
此外,本发明还提供一种激光雷达。
相应的,本发明还提供一种激光雷达。
参考图19和图20,其中图19示出了本发明激光雷达一实施例的侧视结构示意图,图20示出了本本发明激光雷达一实施例的俯视结构示意图。
所述激光雷达包括:发射模块(图中未标示),所述发射模块为本发明的发射模块;出射的所述第三光线933经待测目标反射后形成 回波光线;探测元件(图中未示出),所述探测元件适宜于接收所述回波光线。
所述发射模块适宜于发射光线以进行探测。所述发射模块为本发明的发射模块,因此所述发射模块的具体技术方案参考前述发射模块的实施例,本发明在此不再赘述。
出射的第三光线933经反射后形成回波光线。
所述探测元件适宜于接收回波光线以获得点云数据。本发明一些实施例中,所述激光雷达包括收发系统。所述收发系统包括所述发射模块和接收模块,所述接收模块包括所述探测元件。所述探测元件包括光探测器。其中,所述光探测器包括但不限于PIN PD,APD,SiPM,SPAD,CMOS,CCD中的至少一种。
需要说明的是,本发明一些实施例中,所述激光雷达包括:收发系统,所述收发系统包括发射模块和接收模块,所述接收模块包括所述探测元件。
参考图22,示出本发明激光雷达另一实施例中收发系统的放大示意图。
图22所示的一些实施例中,所述收发系统1110包括多个封装结构1120,每个封装结构1120包括:具有多波长光源的发射单元1121和具有探测元件的接收单元1122。通过封装结构1120集成发射单元1121和接收单元1122,能够使同一个封装结构1120同时实现发射和接收,从而构成一个同轴光路,也就是说,所述发射模块1110包括多个发射单元1121,所述接收模块包括多个接收单元1122,1个发射单元1121和1个接收单元1122构成1个封装结构1120。多个封装结构1120在第一平面和/或第二平面内依次排列分布。
需要说明的是,本发明另一些实施例中,所述封装结构也可以为收发波导,即相对应的发射单元和接收单元均耦合至同一收发波导,出射用于探测的第三光线从所述收发波导出射,回波光线同样被收发 波导耦合接收。与收发波导连接的分光器件进行发射光束和接收光束的分光。
参考图23,示出了本发明激光雷达另一实施例的结构示意图。
与前述实施例相同之处,本发明在此不再赘述。与前述实施例不同之处在于,本发明一些实施例中,所述激光雷达还包括:分光元件1240,所述分光元件1240位于所述多波长光源和所述准直光学装置(图中未标示)之间的光路上。
本发明一些实施例中,所述激光雷达为同轴光路的激光雷达。如图23所示的一些实施例中,所述发射模块1210和所述接收模块1220相分离,通过所述分光元件1240,例如偏振分光器或半透半反镜将第一光线和回波光线的光路相分离。这种同轴光路能够实现收发解耦。
需要说明的是,通过导光体构成色散偏着单元也可以应用于激光雷达中。如图24所示的一些实施例中,所述激光雷达也为同轴光路的激光雷达;所述分光元件1240位于所述准直光学装置1242和所述多波长光源1211之间的光路上;所述分光元件1240使多波长光源1211产生的光线直接透射,并将准直光学装置1242聚焦的回波光线反射到接收单元1241,从而实现发射光路和接收光路的分离。通过分光元件1240的设置,构成同轴光路的激光雷达。其中,所述分光元件可以是半透半反镜或偏振分光器。
需要说明的是,上述实施例仅为本发明技术方案的示例性说明,图中示意的向下、左右等方向并不限定多波长的扫描装置在激光雷达中的实际设置方向。
在其他示例中,色散偏折单元的设置方向可以与图示方向相反,使得光线向上偏折,经过色散偏折单元后的多个第三光线中,波长最长的第三光线位于垂直平面的最下方,波长最短的第三光线位于垂直平面的最上方。在激光雷达的探测中,在垂直平面内随着高度从高到低,第三光线的波长依次增大,激光雷达的测远能力依次增强。
进一步,在图19所示的示例中,采用与图19所示相反方向的色散偏着单元的设置,还可以使垂直平面内高度较低的一组第三光线(同一第一光线形成的多个第三光线)的测远能力比高度较高的一组第三光线的测远能力更强。
在应用于车辆的场景中,地面是比较关注的区域,使垂直平面内高度较低的第三光线具有更强的测远能力,可以提高激光雷达对车辆感兴趣区域的探测能力。
此外,本发明还提供一种用于激光雷达的多波长的扫描装置的制造方法。
参考图25至图30,其中图25是本发明用于激光雷达的多波长的扫描装置的制造方法一实施例的流程示意图,图26至图30是图25所示本发明用于激光雷达的多波长的扫描装置的制造方法的实施例各个步骤的剖面结构示意图。
参考图25,结合参考图26,执行步骤S11,提供基底母板M910。
所述基底母板M910用于提供机械支撑和工艺平台。
本发明一些实施例中,所述基底母板M910的材料为折射率大于1的材料。具体的,所述基底母板M910的材料为玻璃。
参考图25,结合参考图26至图28,执行步骤S12,在所述基底母板M910的一个表面上形成光栅结构M920。
所述光栅结构M920用以形成色散面。
本发明的一些实施例中,形成光栅结构M920的步骤中,通过纳米压印技术形成所述光栅结构M920。纳米压印技术工艺简单,重复性好,稳定性高,而且能够在大面积的母板上制作。
具体的,通过纳米压印技术形成所述光栅结构M920的步骤包括:如图26所示,在所述基底母板M910上形成压印材料层M921;如图27所示,利用预设的母版M922对所述压印材料层M921(如图27 中所示)进行压印并固化;如图28所示,对固化后的压印材料层M921进行脱模,以形成所述光栅结构M920。
所述压印材料层M921用以形成所述光栅结构M920。
本发明一些实施例中,所述压印材料层M921的材料为压印胶。
形成所述压印材料层M921之后,利用所述母版M922进行压印并固化。其中,所述母版M922与所述压印材料层M921相接触的一面上具有凹凸的规律纹理;所述母版M922与所述压印材料层M921接触后,通过进一步的挤压,使所述压印材料层M921形变以填充满母版M922表面上的规律纹理之间的空隙;之后,根据所述压印材料层M921的材料,通过加热、紫外照射等方法进行固化。
需要说明的是,所述母版M922上的规律纹理是依据光栅方程而确定的光栅参数制作的。
固化完成之后,对固化后的压印材料层M921进行脱模,所述压印材料层M921表面形成凹凸的纹理以构成所述光栅结构M920。
参考图25,结合参考图2M9,执行步骤S13,对表面形成有所述光栅结构M920的基底母板M910进行第一切割,获得结构小片M930。
所述第一切割用以将基底母板M910分成多个结构小片M930,每个结构小片M930用以形成1个所述扫描装置的色散偏着单元M940。通过基底母板M910形成光栅结构M920,再切割基底母板M910以形成多个扫描装置的做法,通过一次光栅结构M920的形成步骤即可实现多个光栅结构M920的形成,能够有效提高生产效率,更重要的是,有利于提高工艺稳定性,提高良率。
具体的,可以通过激光切割或者切割刀切割将基底母板M910分为多个结构小片M930。
需要说明的是,每个结构小片M930用以形成1个所述扫描装置 中的色散偏着单元M940(如图2M9和1M9所示)。每个结构小片M930的尺寸沿各个方向的尺寸均大于所述色散偏着单元M940,即在长、宽、高每个方向上,所述结构小片M930的尺寸均大于所述色散偏着单元M940。
参考图25,结合参考图30,执行步骤S14,对所述结构小片M930进行第二切割以形成色散偏着单元M940。
所述第二切割用以形成色散偏着单元M940。
所述色散偏着单元M940为不规则形状,因此通过所述第二切割使所述色散偏着单元M940成形。具体的,根据光路设计,改变所述结构小片M930的形状,使各个表面形成于预设角度,以形成所述色散偏着单元M940。
需要说明的是,改变所述结构小片M930的形状之后,对形状改变后的结构小片M930的各个表面中,除形成有所述光栅结构M920的表面以外的表面进行抛光,从而获得所述色散偏着单元M940。
综上,同时使用光栅和棱镜,其中光栅具有波长扫描的作用,所述棱镜可以扩束;因此光栅和棱镜的组合,除了能够同时实现扫描和扩束的功能外;而且所述第三光线与所述第一方向之间的夹角小于所述第二光线与所述第一方向之间的夹角,第三光线的出射方向接近于所述第一方向,能够有效控制光路尺寸,有利于激光雷达的小型化。
综上,通过色散偏折单元实现多波长光源所产生光线的分光和出射,所述第一面和所述第二面中,一个作为色散面,另一个作为偏折面,使出射的所述第三光线与所述第一方向之间的夹角小于所述第二光线与所述第一方向之间的夹角。垂直第一方向的平面内,所述第一光线的入射点与所述第二光线的入射点之间的距离较近,即第二面与第一面在垂直方向上的高度接近,因此所述色散偏折单元不会过多增加激光雷达的光路高度,有效的压缩了激光雷达的高度和体积,结构简单、易于安装。
而且,所述色散偏折单元还包括:位于所述第一面和所述第二面之间光路中的第三面,所述第三面反射所述第二光线至所述第二面。通过第三面将所述第二光线反射至所述第二面,能够进一步折叠光路,进一步缩小光路体积。
另外,所述色散偏折单元包括:一个表面为所述第一面的第一元件和一个表面为所述第二面的第二元件;所述第一元件为光栅和棱镜中的一个;所述第二元件是光栅和棱镜中的另一个。同时使用光栅和棱镜,其中光栅具有波长扫描的作用,基于衍射改变光线的角度,所述棱镜可以扩束,并基于折射改变光线的角度;因此光栅和棱镜的组合,除了能够同时实现扫描和扩束的功能外,而且能够使光线向不同的方向进行至少两次偏折,使得所述第三光线与所述第一方向之间的夹角小于所述第二光线与所述第一方向之间的夹角,第三光线的出射方向接近于所述第一方向,从而能够有效控制光路尺寸,有利于激光雷达的小型化;同时,光栅和棱镜的组合中,光栅引入的角度分布不均匀,刚好被棱镜引入的一个相反的角度分布不均匀所补偿,从而能够实现扫描角度间隔均匀。
此外,所述色散偏折单元包括导光体,所述第一面和所述第二面均为所述导光体的表面。所述色散面和所述偏折面集成于一体化结构的导光体上,能够使光学元件体积大幅缩小,能够有效提高光路的鲁棒性。
其他的,所述第二光线在所述第三面上发生全反射。通过结构设计,使第二光线在所述第三面上发生全反射,能够有效提高所述第二光线反射的反射效率,而且无需在第三面上设置反射膜,降低色散偏折单元的制造成本。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (34)

  1. 一种多波长的扫描装置,其特征在于,包括:色散偏折单元,所述色散偏折单元具有沿光路依次设置的第一面和第二面;
    所述第一面接收第一光线以形成第二光线,所述第二面接收所述第二光线形成出射的第三光线;其中入射所述第一面的光路的光轴方向为第一方向,所述第三光线与所述第一方向之间的夹角小于所述第二光线与所述第一方向之间的夹角;
    所述第一面和第二面中的一个为色散面,所述第一面和第二面中的另一个为偏折面,其中所述色散面接收光线并基于波长偏折所述光线;所述偏折面接收光线并基于折射作用偏折所述光线。
  2. 如权利要求1所述的扫描装置,其特征在于,中心波长的第三光线平行所述第一方向。
  3. 如权利要求1或2所述的扫描装置,其特征在于,不同波长的第三光线之间成预设夹角。
  4. 如权利要求3所述的扫描装置,其特征在于,相邻第三光线之间的夹角基本相等。
  5. 如权利要求1所述的扫描装置,其特征在于,所述第二面具有增透膜。
  6. 如权利要求1所述的扫描装置,其特征在于,所述色散偏折单元还具有第三面,所述第三面位于所述第一面和所述第二面之间的光路中,所述第三面为反射面以反射所述第二光线至所述第二面。
  7. 如权利要求6所述的扫描装置,其特征在于,所述第三面与所述第一方向的夹角在10°至45°范围内。
  8. 如权利要求6所述的扫描装置,其特征在于,第二光线在所述第三面上发生全反射。
  9. 如权利要求6所述的扫描装置,其特征在于,所述第三面具有反 射膜。
  10. 如权利要求1所述的扫描装置,其特征在于,所述色散偏折单元包括:
    导光体,所述导光体的一个表面为所述第一面,一个表面为所述第二面,所述第一光线自所述第一面入射至所述导光体,所述第三光线自所述第二面从所述导光体出射。
  11. 如权利要求10所述的扫描装置,其特征在于,所述导光体的一个表面为第三面。
  12. 如权利要求10所述的扫描装置,其特征在于,所述导光体的材料的折射率大于1。
  13. 如权利要求10所述的扫描装置,其特征在于,所述导光体的材料为玻璃。
  14. 如权利要求10所述的扫描装置,其特征在于,所述第一面上具有光栅层,所述光栅层具有光栅结构。
  15. 如权利要求14所述的扫描装置,其特征在于,所述光栅层与所述导光体为一体结构。
  16. 如权利要求14所述的扫描装置,其特征在于,所述光栅层的材料为压印胶。
  17. 如权利要求1所述的扫描装置,其特征在于,所述色散偏折单元包括:
    第一元件,所述第一元件的一个表面为所述第一面,所述第一光线自所述第一面入射至所述第一元件;
    第二元件,所述第二元件位于所述第一元件下游的光路中,所述第二元件的一个表面为所述第二面,所述第三光线自所述第二面从所述第二元件出射;
    所述第一元件为光栅和棱镜中的一个;所述第二元件是光栅和棱镜中的另一个。
  18. 如权利要求17所述的扫描装置,其特征在于,所述第二元件为棱镜,所述第一元件为光栅。
  19. 如权利要求17所述的扫描装置,其特征在于,所述色散偏折单元还包括:第三元件,所述第三元件位于所述第一元件和所述第二元件之间的光路中;
    所述第三元件的一个表面为第三面以反射所述第二光线至所述第二元件。
  20. 如权利要求19所述的扫描装置,其特征在于,所述第三元件包括反射镜、振镜和转镜中的至少一种。
  21. 如权利要求17所述的扫描装置,其特征在于,所述色散偏折单元包括:第四元件,所述第四元件位于所述色散偏折单元下游的光路中以反射所述第三光线,所述第四元件的反射面绕转轴转动。
  22. 如权利要求21所述的扫描装置,其特征在于,所述第四元件的反射面的转轴平行所述第一光线入射至所述第一元件的入射面。
  23. 如权利要求1所述的扫描装置,其特征在于,所述色散偏折单元的第三面和所述色散偏折单元的第四元件中的一个以预设的第一角速度旋转以实现视场拼接,其中所述第一角速度基于多个所述第三光线之间的最大夹角设置。
  24. 如权利要求23所述的扫描装置,其特征在于,所述色散偏折单元的第三面和所述色散偏折单元的第四元件中的一个以预设的第二角速度旋转以增大角分辨率,其中所述第二角速度基于相邻波长的第三光线之间的夹角设置。
  25. 一种发射模块,其特征在于,包括:
    多波长光源,所述多波长光源适宜于产生多波长的光线;
    准直光学装置,所述准直光学装置适宜于传输所述多波长光源所产生的光线以形成第一光线;
    扫描装置,所述扫描装置如权利要求1~24中任一项所述。
  26. 如权利要求25所述的发射模块,其特征在于,同一所述第一光线形成的多个第二光线均位于第一平面内;
    所述发射模块包括多个多波长光源,所述多个多波长光源至少部分分布于所述第一平面内。
  27. 如权利要求26所述的发射模块,其特征在于,所述多个多波长光源还分布于第二平面内,所述第二平面垂直所述第一平面。
  28. 如权利要求25所述的发射模块,其特征在于,所述多波长光源包括:多个不同波长的激光器,或者至少1个波长可调谐激光器。
  29. 一种激光雷达,其特征在于,包括:
    发射模块,所述发射模块如权利要求25~28中任一项所述;
    出射的所述第三光线经待测目标反射后形成回波光线;
    探测元件,所述探测元件适宜于接收所述回波光线。
  30. 如权利要求29所述的激光雷达,其特征在于,所述激光雷达包括收发系统;
    所述收发系统包括所述发射模块和接收模块,所述接收模块包括所述探测元件。
  31. 如权利要求30所述的激光雷达,其特征在于,还包括:分光元件,所述分光元件位于所述多波长光源和所述准直光学装置之间的光路上。
  32. 一种用于激光雷达的多波长的扫描装置的制造方法,其特征在于,包括:
    提供基底母板;
    在所述基底母板的一个表面上形成光栅结构;
    对表面形成有所述光栅结构的基底母板进行第一切割,获得结构小片;
    对所述结构小片进行第二切割以形成色散偏折单元。
  33. 如权利要求32所述的制造方法,其特征在于,形成光栅结构的步骤中,通过纳米压印技术形成所述光栅结构。
  34. 如权利要求33所述的制造方法,其特征在于,通过纳米压印技术形成所述光栅结构的步骤包括:
    在所述基底母板上形成压印材料层;
    利用预设的母版对所述压印材料层进行压印并固化;
    对固化后的压印材料层进行脱模,以形成上所述光栅结构。
PCT/CN2023/085297 2022-08-29 2023-03-31 多波长的扫描装置及制造方法、激光雷达及发射模块 WO2024045600A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211042629.3A CN117665764A (zh) 2022-08-29 2022-08-29 多波长的扫描装置、发射模块和激光雷达
CN202211040717.XA CN117665763A (zh) 2022-08-29 2022-08-29 激光雷达的发射模块及其扫描装置的制造方法、激光雷达
CN202211040717.X 2022-08-29
CN202211042629.3 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024045600A1 true WO2024045600A1 (zh) 2024-03-07

Family

ID=90100290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085297 WO2024045600A1 (zh) 2022-08-29 2023-03-31 多波长的扫描装置及制造方法、激光雷达及发射模块

Country Status (1)

Country Link
WO (1) WO2024045600A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118137291A (zh) * 2024-05-07 2024-06-04 深圳市柠檬光子科技有限公司 激光组件、激光设备及出射角度调节方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153768A (en) * 1990-03-08 1992-10-06 Xerox Corporation Multiple wavelength, multiple diode laser ROS
JP2011150199A (ja) * 2010-01-22 2011-08-04 Yokogawa Electric Corp 波長分散素子及び分光装置
CN204462539U (zh) * 2015-01-07 2015-07-08 先进微系统科技股份有限公司 激光投射装置
CN106415309A (zh) * 2014-06-27 2017-02-15 Hrl实验室有限责任公司 扫描激光雷达及其制造方法
US20170205632A1 (en) * 2016-01-20 2017-07-20 Wang-Long Zhou Wavelength beam combining laser systems utilizing prisms for beam quality improvement and bandwidth reduction
CN210894687U (zh) * 2019-07-02 2020-06-30 深圳奥锐达科技有限公司 一种激光发射装置以及激光雷达系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153768A (en) * 1990-03-08 1992-10-06 Xerox Corporation Multiple wavelength, multiple diode laser ROS
JP2011150199A (ja) * 2010-01-22 2011-08-04 Yokogawa Electric Corp 波長分散素子及び分光装置
CN106415309A (zh) * 2014-06-27 2017-02-15 Hrl实验室有限责任公司 扫描激光雷达及其制造方法
CN204462539U (zh) * 2015-01-07 2015-07-08 先进微系统科技股份有限公司 激光投射装置
US20170205632A1 (en) * 2016-01-20 2017-07-20 Wang-Long Zhou Wavelength beam combining laser systems utilizing prisms for beam quality improvement and bandwidth reduction
CN210894687U (zh) * 2019-07-02 2020-06-30 深圳奥锐达科技有限公司 一种激光发射装置以及激光雷达系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118137291A (zh) * 2024-05-07 2024-06-04 深圳市柠檬光子科技有限公司 激光组件、激光设备及出射角度调节方法

Similar Documents

Publication Publication Date Title
CN115144842B (zh) 发射模组、光电检测装置、电子设备及三维信息检测方法
CN109946710B (zh) 一种双波长多偏振激光成像装置
US11486979B2 (en) Light receiving array and LiDAR device
WO2024045600A1 (zh) 多波长的扫描装置及制造方法、激光雷达及发射模块
WO2021168832A1 (zh) 一种激光探测系统及车辆
CN209928021U (zh) 双波长多偏振激光成像装置
CN112219130A (zh) 一种测距装置
CN209356678U (zh) 测距装置
CN108761485B (zh) 法布里-珀罗干涉仪、干涉装置及多普勒测风激光雷达
CN101369015B (zh) 基于双边缘检测的测风激光雷达的分光装置
CN116559838B (zh) 基于柱面透镜扩束的声光偏转模组、光电装置及电子设备
CN112130130B (zh) 硅光芯片以及激光雷达系统
CN218158328U (zh) 激光雷达的发射模块及激光雷达
WO2020226031A1 (ja) 光デバイスおよび光検出システム
CN117665763A (zh) 激光雷达的发射模块及其扫描装置的制造方法、激光雷达
CN115047428A (zh) 激光雷达
CN218158327U (zh) 多波长的扫描装置、发射模块和激光雷达
CN117665764A (zh) 多波长的扫描装置、发射模块和激光雷达
CN116559837B (zh) 基于超透镜准直的声光偏转模组、光电装置及电子设备
CN116560155B (zh) 基于超透镜准直的声光偏转模组、测距装置及电子设备
CN116559836B (zh) 基于扩散片扩束的声光偏转模组、光电装置及电子设备
CN116559839B (zh) 基于柱面透镜准直的声光偏转模组、光电装置及电子设备
WO2024082877A1 (zh) 激光雷达的扫描模块和激光雷达
US20240160028A1 (en) Flat optics for light coupling
CN116559835B (zh) 基于柱面透镜的声光偏转发射模组、检测装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858641

Country of ref document: EP

Kind code of ref document: A1