WO2024044935A1 - Method and apparatus for structural optimizition - Google Patents

Method and apparatus for structural optimizition Download PDF

Info

Publication number
WO2024044935A1
WO2024044935A1 PCT/CN2022/115720 CN2022115720W WO2024044935A1 WO 2024044935 A1 WO2024044935 A1 WO 2024044935A1 CN 2022115720 W CN2022115720 W CN 2022115720W WO 2024044935 A1 WO2024044935 A1 WO 2024044935A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
pdes
solutions
reformulated
physical quantities
Prior art date
Application number
PCT/CN2022/115720
Other languages
French (fr)
Inventor
Jun Zhu
Songming LIU
Zhongkai HAO
Chengyang YING
Hang SU
Ze CHENG
Original Assignee
Robert Bosch Gmbh
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Tsinghua University filed Critical Robert Bosch Gmbh
Priority to PCT/CN2022/115720 priority Critical patent/WO2024044935A1/en
Publication of WO2024044935A1 publication Critical patent/WO2024044935A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/042Knowledge-based neural networks; Logical representations of neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Definitions

  • aspects of the present disclosure relate generally to artificial intelligence (AI) , and more particularly, to optimizing structure of an object.
  • AI artificial intelligence
  • the structure of an object influences the performance of the object.
  • the object may be the wing of an airplane, the truss of a house, the pipes in a reactor, or the like.
  • the shape of an airfoil influences the pressure and velocity of the airflow with respect to the airfoil while the pressure and velocity influencing the performance of the physical system of the airfoil.
  • the physical system can be described by partial differential equations (PDEs) .
  • PDEs partial differential equations
  • the physical quantities of the physical system such as the pressure and velocity can be obtained by solving the PDEs based on the structural quantities such as those describing the shape of the object.
  • this procedure may be referred to as structural optimization.
  • the structural optimization is applicable in many areas including scientific area, engineering area, industrial area or the like.
  • the shape of chemical catalyst pellets, the shape of auto parts or the like may be optimized through the structural optimization procedure before manufacturing.
  • PDEs partial differential equations
  • the disclosure proposes a novel framework for structural optimization and solving of PDEs, by which the time consumption and computation requirement may be reduced and accuracy of the solution of PDEs and accordingly performance of structural optimization may be improved.
  • a computer implemented method for optimizing structure of an object comprises: receiving structural quantities by a hard-constraint neural network (NN) framework, wherein the structural quantities are used to describe boundaries of the object, wherein the hard-constraint NN framework comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein partial differential equations (PDEs) are formulated to characterize a physical system related to the object with physical quantities of the object; generating a first prediction of solutions of reformulated PDEs by the at least one primary NN, the reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object; generating a second prediction of solutions of boundary conditions (BCs) of the reformulated PDEs by at least using the at least one secondary NN, wherein the BCs are formulated to character
  • NN hard-constraint
  • a computer implemented method for predicting physical quantities of an object comprises: receiving structural quantities by a hard-constraint neural network (NN) framework, wherein the structural quantities are used to describe boundaries of the object, wherein the hard-constraint NN framework comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein partial differential equations (PDEs) are formulated to characterize a physical system related to the object with physical quantities of the object; generating a first prediction of solutions of reformulated PDEs by the at least one primary NN, the reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object; generating a second prediction of solutions of boundary conditions (BCs) of the reformulated PDEs by at least using the at least one secondary NN, wherein the BCs are formulated to
  • a computer system which comprises one or more processors and one or more storage devices storing computer- executable instructions that, when executed, cause the one or more processors to perform the operations of the method as mentioned above as well as to perform the operations of the method according to aspects of the disclosure.
  • there provides one or more computer readable storage media storing computer-executable instructions that, when executed, cause one or more processors to perform the operations of the method as mentioned above as well as to perform the operations of the method according to aspects of the disclosure.
  • a computer program product comprising computer-executable instructions that, when executed, cause one or more processors to perform the operations of the method as mentioned above as well as to perform the operations of the method according to aspects of the disclosure.
  • the efficiency of structural optimization can be improved while the bottleneck of solving PDEs being resolved.
  • most commonly used BCs i.e., Dirichlet, Neumann and Robin BCs
  • the model can be trained without the loss of these BCs, this alleviates the unbalanced competition between the loss terms of PDEs and BCs, and significantly improves the performance of solving geometrically complex PDEs, and accordingly significantly improves the performance of structure of an object.
  • Fig. 1 illustrates an exemplary framework for optimizing structure of an object according to aspects of the disclosure.
  • Fig. 2 illustrates three types of most commonly used BCs according to aspects of the disclosure.
  • Fig. 3 illustrates an exemplary transformation of coordinates systems according to aspects of the disclosure.
  • Fig. 4 illustrates an exemplary structural optimization of 2D battery pack according to aspects of the disclosure.
  • Fig. 5 illustrates an exemplary architecture of HCNN according to aspects of the disclosure.
  • Fig. 6 illustrates an exemplary structural optimization of airfoil according to aspects of the disclosure.
  • Fig. 7 illustrates an exemplary architecture of HCNN according to aspects of the disclosure.
  • Fig. 8 illustrates an exemplary architecture of HCNN according to aspects of the disclosure.
  • Fig. 9 illustrates an exemplary process for optimizing structure of an object according to aspects of the disclosure.
  • Fig. 10 illustrates an exemplary process for predicting physical quantities of an object according to aspects of the disclosure
  • Fig. 11 illustrates an exemplary computing system according to aspects of the disclosure.
  • Fig. 1 illustrates an exemplary framework for optimizing structure of an object according to aspects of the disclosure.
  • the object to be structurally optimized in the example shown in Fig. 1 is an airfoil.
  • the shape of the airfoil is presented by a boundary ⁇ , which is parameterized by structural quantities ⁇ .
  • the structural quantities ⁇ may be a set of control points which consist of splines representing the shape of the airfoil.
  • the structure to be optimized is the shape of the airfoil represented by splines with a set of control points ⁇ .
  • the label ⁇ denotes the problem domain or particularly denotes the domain of the physical system related to the airfoil.
  • the arrowed lines denote airflows on the airfoil.
  • the physical state of the airflow on the airfoil may be represented by physical quantities of the physical system related to the airfoil.
  • the label x denotes spatial coordinates in the domain ⁇ .
  • NS equations are well known physical equations that can be used to describe the three-dimensional motion of viscous fluid substances.
  • the NS equations are second-order nonlinear PDEs, and may be used to model the weather, ocean currents, heat conducting, air flow around an airfoil, water flow in a pipe or in a reactor and many other applications.
  • the PDEs of the NS equations for a physical system of an object may be formulated according to physical laws related to the physical system of the object.
  • the PDEs of the physical system of the airfoil may be established according to the related physical law as shown by label 140 of Fig. 1.
  • the PDEs are used to govern the optimization of the structure of the airfoil, they may be referred to as governing PDEs.
  • the formulation of the governing PDEs may be implemented with well-known physical knowledge, and other kinds of PDEs used to describe a physical system of an object may also be used as the governing PDEs in aspects of the disclosure.
  • the objective or goal of the structural optimization of the airfoil is to reach the desired pressure distribution p ref on the airfoil surface by changing the structural parameter ⁇ .
  • the objective function J may be formulated as shown by label 130, and the aim of the structural optimization is to minimize the objective function J, which is a functional of the pressure p.
  • the shape of the airfoil corresponding to the boundary ⁇ parameterized by structural quantities ⁇ may be iteratively optimized to minimize the objective function J, so as to reach the desired pressure distribution p ref on the airfoil surface.
  • the PDEs 140 need to be solved to obtain the physical quantities such as the velocity u and pressure p, and then the objective function J may be evaluated based on the physical quantities such as the pressure p. Then the structural quantities ⁇ may be updated or optimized based on the calculated objective function J as shown by label 160.
  • a NN model may be used to obtain the velocity u and pressure p by solving the PDEs 140.
  • PDEs 140 Physical-informed neural network
  • PINN Physical-informed neural network
  • the PINN is trained in the way of taking the residuals of both the PDEs and the BCs as multiple terms of the loss function.
  • Fig. 2 illustrates three types of most commonly used BCs according to aspects of the disclosure.
  • k is the thermal conductivity
  • h is the heat transfer coefficient.
  • a hard-constraint neural network (HCNN) framework 150 is employed in the structural optimization frame 100 to predict the solutions of the PDEs 140 with various boundary shapes represented by structural quantities ⁇ .
  • the HCNN 150 is a unified hard-constraint framework for all the three most commonly used BCs, i.e., Dirichlet, Neumann and Robin BCs.
  • an ansatz can be constructed to automatically satisfy the three types of BCs. Therefore, the model can be trained without the losses of these BCs, which alleviates the unbalanced competition and significantly improves the accuracy of solving geometrically complex PDEs, and accordingly significantly improves the efficiency and performance of the structural optimization for the object such as the illustrated foil.
  • the PINN is introduced briefly in order to better understand the HCNN according to aspects of the disclosure.
  • the following Laplace’s equation may be considered as an example,
  • Eq. (1a) gives the form of the PDE
  • Eq. (1b) is a Dirichlet boundary condition (BC) .
  • a solution to the above problem is a solution to Eq. (1a) which also satisfies Eq. (1b) .
  • PINNs employ a neural network NN (x 1 , x 2 ; w) to approximate or predict the solution of the PDE, i.e., where w denotes the trainable parameters of the neural network. And the parameters w are learned by minimizing the following loss function:
  • the first loss term is configured to restrict the prediction of the solution to satisfy the PDE (Eq. (1a) ) while the second loss term is configured to restrict the prediction of the solution to satisfy the BC (Eq. (1b) )
  • the second loss term is configured to restrict the prediction of the solution to satisfy the BC (Eq. (1b) )
  • N f collocation points sampled from the domain [0, 1] 2
  • PINNs have a wide range of applications, including heat, flow, and atmosphere.
  • PINNs are struggling with some issues on the performance.
  • Previous analysis has demonstrated that the convergence of first loss term can be significantly faster than that of the second loss term This pathology may lead to nonphysical solutions which does not satisfy the BCs or initial conditions (ICs) .
  • ICs initial conditions
  • Eq. (7) represents a Dirichlet BC if a i (x) ⁇ 1, b i (x) ⁇ 0, a Neumann BC if a i (x) ⁇ 0, b i (x) ⁇ 1, and a Robin BC otherwise.
  • Eq. (7) has been transformed into linear equations with respect to (u j , p j ) , which are much easier to derive general solutions.
  • (u j , p j ) is denoted by and their general solutions at boundary ⁇ i (i.e., ) are denoted by
  • a basis B (x) of the null space may be used to obtain the general solution of Eq. (9) , dimension of the null space is d.
  • B (x) should be carefully chosen. Since Eq. (9) is parameterized by x, for any x ⁇ i , B (x) should always be a basis of the null space, that is, its columns cannot degenerate into linearly dependent vectors, otherwise it will not be able to represent all possible solutions.
  • Eq. (10) can represent any function in boundary ⁇ i , as long as the function satisfies the BC (see Eq. (9) ) . Since the problem domain contains multiple boundaries, the general solutions corresponding to each boundary ⁇ i may be combined to achieve an overall approximation or prediction. Hence, the ansatz may be constructed as follows
  • Eq. (11) extended distance functions are utilized to divide the problem domain into several parts, where ( is its learnable part) is responsible for the approximation on the boundaries ⁇ i while NN main is responsible for the approximation of the internal apart from the boundaries. Furthermore, Eq. (12) ensures that the weight of decays to at the nearest neighbor of boundary ⁇ i , so that does not interfere with the approximation on other boundaries.
  • the parameters a i , b i , n or g i in Eq. (10) and Eq. (11) are only defined at boundary ⁇ i , their definition can be extended to the domain using interpolation or approximation via neural networks.
  • the airfoil boundary i.e, ⁇ af
  • Supposing f (x) is only defined in airfoil boundary ⁇ af , the task is to extend its definition to As shown in Fig. 3, two reference points (i.e., x 0 and x 1 ) are placed on the front and rear half of the airfoil.
  • any it can be expressed as polar coordinates with respect to x 0 and x 1 , respectively.
  • the two polar coordinates are concatenated to form a new space.
  • Next interpolation and approximation are performed under the new space. This is because in the new space it can better characterize the shape of the airfoil.
  • coordinate transformations there are many ways for coordinate transformations, not limited to the example here.
  • the interpolation several points are sampled at the airfoil boundary ⁇ af to obtain the dataset For any the corresponding extended f (x) is generated by interpolating in the dataset.
  • the interpolation method used here depends on the smoothness requirements of the ansatz.
  • the number of reference points can also be changed, and in experiments it is found that only one reference point is enough.
  • Approximation via neural networks is a general method that does not require manual design.
  • several points can be sampled at the airfoil boundary ⁇ af to construct the dataset followed by training a neural network on the dataset, i.e. NN ( ⁇ 0 (x (i) ) , ⁇ 1 (x (i) ) ) ⁇ f (i) .
  • NN ⁇ 0 (x (i) )
  • ⁇ 1 (x (i) ) is taken as the corresponding extended f (x) .
  • the neural network can also be trained in the original space. However, experimental results show that training on the new space can achieve better results. The reason may be that the complex geometry become smoother and easier to learn in the new space.
  • the extended distance functions l (x) may also be handled similarly. Because for the complex geometry, the distance function can be complex and it may be replaced with a cheap surrogate model. The methods are similar, including approximating the distance function with a neural network, or constructing splines function (Hailong Sheng and Chao Yang. Pfnn: A penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries. Journal of Computational Physics, 428: 110085, 2021) .
  • the HCNN model can be trained with the following loss function
  • Eq. (11) is a set of collocation points sampled in the domain ⁇ .
  • the loss function of Eq. (13) measures the discrepancy of both the PDEs (i.e., ) and the equilibrium equations introduced by the extra fields (i.e., Eq. (8b) ) at N f collocation points.
  • the HCNN framework detailed above can be extended to the spatial-temporal domain.
  • a physical system governed by the following time-dependent PDEs defined on a geometrically complex domain is considered.
  • NN main is the main neural network
  • extended distance functions see Eq. (4)
  • Eq. (12) is a hyper-parameter of the “hardness” in the temporal domain.
  • Fig. 4 is a schematic diagram illustrating structural optimization of a 2-dimentional (2D) battery pack according to aspects of the disclosure.
  • the cell boundaries ⁇ c, i and cooling pipe boundaries ⁇ p, i located in domain ⁇ are the structure to be optimized.
  • the goal of the structural optimization is to optimize the shape and position of the cells and cooling pipes so as to obtain an even distribution of the temperature over time.
  • the structural optimization problem may be represented by:
  • denotes the structural parameters of the structure of the object to be optimized, which are also the parameters of the boundary shapes
  • denotes the space of ⁇ .
  • the structural parameters ⁇ is changing during the optimization of the structure but is within the design space ⁇ .
  • J is the objective function whose value measures how good a given structure is
  • ⁇ ° is an elementwise comparison.
  • T ref is the reference temperature
  • the governing PDEs describing the physical system related to the 2D battery pack may be formulated according to physical laws, for example, the PDEs may be given by:
  • T (x, t) is the temperature over time
  • T a , T c , T w are respectively the temperature of the air
  • the cells (n c 11 cells of radius r c )
  • ⁇ ou stands for the outer boundaries of the battery packet
  • ⁇ c, i stands for the boundaries of the cells
  • ⁇ p, i stands for the boundaries of the cooling pipes.
  • the structural quantities include the center and the radius of cells and the cooling pipes.
  • the governing PDEs need to be solved to obtain the physical quantity, that is, the temperature T.
  • the PDEs of Eq. (21a) to Eq. (21e) are reformulated by adding extra fields according to the HCNN model.
  • the introduced extra fields is p (x, t) shown in Eq. (22b)
  • the reformulated PDEs are:
  • the Extended Distance Function in Eq. (11) may be implemented in various ways according to aspects of the disclosure.
  • the extended distance functions can be chosen as the distance between x and the center minus the radius.
  • the extended distance function can be constructed as follows
  • SoftMin is a differentiable version of min function.
  • the extended function is computed by taking the SoftMin of the distances to all the boundaries
  • Fig. 5 illustrates an architecture of HCNN 500 for predicting PDE solutions of the 2D battery pack according to aspects of the disclosure.
  • the HCNN 500 includes a main-NN denoted as M-NN 510, and three sub-NNs denoted as S-NNs 520-1, 520-2 and 520-3.
  • the main-NN is a multilayer perceptron (MLP) of size [3] + 4 ⁇ [50] + [3] , which means 3 inputs, 4 hidden layers of width 50, and 3 outputs.
  • MLP multilayer perceptron
  • the sub-NNs 520-1, 520-2 and 520-3 are MLPs of size [3] + 3 ⁇ [20] + [3] , which means 3 inputs, 3 hidden layers of width 20, and 3 outputs.
  • the main-NN 510 is responsible for the prediction of the PDE solutions in the out-of-boundary region of the battery pack, and the sub-NNs 520-1, 520-2 and 520-3 are respectively responsible for the prediction of the PDE solutions at the BCs corresponding to Eq. (22c) , Eq. (22d) , and Eq. (22e) .
  • the HCNN 500 further includes an assemble unit denoted as AS 530.
  • the assemble unit 530 includes a main assemble unit denoted as M-AS 530-4 and three sub-assemble units denoted as S-ASs 530-1, 530-2 and 530-3.
  • the S-ASs 530-1, 530-2 and 530-3 respectively take the outputs of sub-NNs 520-1, 520-2 and 520-3 as input and obtain the general solutions at the respective boundaries of the outer boundary, the cell boundary and the cooling pipe boundary.
  • the S-ASs 530-1, 530-2 and 530-3 respectively output the general solutions at the three boundaries according to Eq. (23) , Eq. (24) , and Eq. (25) .
  • the main assemble unit 530-4 takes the outputs of M-NN 510, S-ASs 530-1, 530-2 and 530-3 as input and obtain the solution of the PDEs according to Eq. (11) .
  • the solution of PDEs of HCNN 500 is the temperature T and its two derivatives It is appreciated that the output of the HCNN 500 can be only the temperature T.
  • the loss may be obtained based on Eq. (13) , the parameters or weights of the NNs of the HCNN 500 can be updated based on the loss.
  • the NN models are trained for e.g., 5000 Adam iterations, followed by a L-BFGS optimization until convergence.
  • the mean squared error (MSE) is used for the loss function and tanh is used for the activation function.
  • the output, i.e., the temperature T, of the trained HCNN 500 is used to optimize the structure of the 2D battery packet.
  • the structure of the 2D battery packet may be optimized based on Eq. (20) .
  • the HCNN 500 in each iteration of the structural optimization of the object such as the 2D battery packet, the HCNN 500 is trained based on the current structural quantities such as the positions and radius of the cells and the cooling pipes. Therefore the improvement of the efficiency and accuracy of HCNN significantly enhance the performance of the structure design process for the object such as the 2D battery packet and so on.
  • Fig. 6 is a schematic diagram illustrating the structural optimization of an airfoil according to aspects of the disclosure.
  • the airfoil boundary ⁇ af located in domain ⁇ is the structure to be optimized.
  • the goal of the structural optimization is to reach the desired pressure distribution p ref on the airfoil surface by changing the structural parameter ⁇ .
  • p is the pressure
  • p ref is the reference pressure
  • the governing PDEs describing the physical system related to the airfoil may be formulated according to physical laws, for example, the PDEs may be NS equations and may be given by:
  • u (x) (u 1 (x) , u 2 (x) ) is the velocity of the fluid
  • p (x) is the pressure of the fluid
  • v viscosity of the fluid and is set to 1/50 in this example.
  • u 0 (x) (1, 0) . is a Jacobian matrix, In Fig. 6, ⁇ il stands for the inlet boundary of the domain, ⁇ tp stands for the top boundary, ⁇ bt stands for the bottom boundary, ⁇ ol stands for the outlet boundary, ⁇ af stands for the airfoil boundary.
  • the structural quantities include the shape of the airfoil which is represented by the boundary ⁇ af .
  • the governing PDEs need to be solved to obtain the physical quantity, that is, the velocity u and pressure p.
  • the PDEs of Eq. (29a) to Eq. (29e) are reformulated by adding extra fields according to the HCNN model.
  • the introduced extra fields are shown in Eq. (30c) and Eq. (30d) , and the reformulated PDEs are:
  • [3] means taking the third elements of the output of NN main (x) .
  • [1 : 2] means taking the first two elements of the output of NN main (x) and as well as are similarly defined as in Eq. (12) .
  • the Extended Distance Function in Eq. (11) may be implemented in various ways according to aspects of the disclosure.
  • a direct way of obtaining is to calculate the distance between x and the airfoil ⁇ af .
  • the true distance may be approximated with an MLP.
  • a NN with 3 hidden layers of width 30 may be trained with 1024 ⁇ 6 points sampled in the domain ⁇ shown in Fig. 6. A part of the points are sampled in the bounding box of the airfoil, and the rest are sampled in ⁇ along with their truth distances, which may be computed by using the formula of the distance to a polygon.
  • top and bottom boundaries ⁇ * ⁇ il ⁇ tp ⁇ bt
  • the boundary ⁇ * is an open rectangle, so the extended distance function can be constructed similarly to the case of the rectangle as shown in Eq. (26) while ignoring the right side.
  • Fig. 7 illustrates an architecture of HCNN 700 for predicting PDE solutions of the airfoil according to aspects of the disclosure.
  • the HCNN 700 includes a main-NN denoted as M-NN 710, and a sub-NN denoted as S-NN 720.
  • the main-NN is a multilayer perceptron (MLP) of size [2] + 6 ⁇ [50] + [7] , which means 2 inputs, 6 hidden layers of width 50, and 7 outputs.
  • the sub-NN 720 is a MLP of size [2] + 4 ⁇ [40] + [1] , which means 2 inputs, 4 hidden layers of width 40, and 1 output.
  • Eq. (30e) Eq. (30f) and Eq. (30g)
  • the BCs do not include the extra fields p 1 (x) and p 2 (x) , therefore the sub-NN 720 does not need to output the corresponding terms.
  • the BCs of Eq. (30e) and Eq. (30f) provide constant velocity and pressure at the corresponding boundaries, therefore the sub-NN 720 does not need to provide output for these BCs.
  • the sub-NN 720 by using the as the basis of solution, the sub-NN 720 only needs to provide a scalar as illustrated in Eq. (32) .
  • the main-NN 710 is responsible for the prediction of the PDE solutions in the out-of-boundary region of the airfoil
  • the sub-NN 720 is responsible for the prediction of the PDE solutions at the BC corresponding to Eq. (30g) .
  • the PDE solutions at the BCs corresponding to Eq. (30e) and Eq. (30f) can be analytically obtained.
  • the HCNN 700 further includes an assemble unit denoted as AS 730.
  • the assemble unit 730 includes a main assemble unit denoted as M-AS 730-2 and a sub-assemble units denoted as S-AS 730-1.
  • the S-AS 730-1 takes the output of sub-NN 720 as input and obtains the general solution at the corresponding airfoil boundary ⁇ af
  • the S-AS 730-1 outputs the general solutions at the boundary according to Eq. (30g) or Eq. (32) .
  • the main assemble unit 730-2 takes the outputs of M-NN 710 and S-AS 730-1 as input and obtains the solution of the PDEs according to Eq. (11) or according to Eq. (31) and Eq. (33) .
  • the loss may be obtained based on Eq. (13) , the parameters or weights of the NNs of the HCNN 700 can be updated based on the loss.
  • the NN models are trained for e.g., 5000 Adam iterations, followed by a L-BFGS optimization until convergence.
  • the mean squared error (MSE) is used for the loss function and tanh is used for the activation function.
  • the output, i.e., the temperature T, of the trained HCNN 700 is used to optimize the structure of the airfoil.
  • the shape of the airfoil may be optimized based on Eq. (28) .
  • the HCNN 700 in each iteration of the structural optimization of the object such as the airfoil, the HCNN 700 is trained based on the current structural quantities such as a set of control points which consist of splines representing the shape of the airfoil. Therefore the improvement of the efficiency and accuracy of HCNN significantly enhance the performance of the structure design process for the object such as the airfoil and so on.
  • Fig. 8 illustrates an architecture of HCNN 800 for predicting PDE solutions of an object to be designed or manufactured according to aspects of the disclosure.
  • the one or more main-NNs 810-1 to 810-m are responsible for the prediction of the PDE solutions in the out-of-boundary region of the object, and the one or more sub-NNs 820-1 to 820-n are respectively responsible for the prediction of the PDE solutions at the respective boundaries according to corresponding BCs.
  • the HCNN 800 further includes an assemble unit denoted as AS 830.
  • the assemble unit 830 includes a main assemble unit denoted as M-AS 830-k and at least one sub-assemble units denoted as S-AS 830-1 to S-AS 830-n.
  • the one or more S-ASs 830-1 to 830-n respectively take the outputs of sub-NNs 820-1 to 820-n as input and obtain the general solutions at the respective boundaries of the object.
  • the main assemble unit 830-k takes the outputs of the one or more main-NNs 810-1 to 810-m and the one or more sub-AS 830-1 to S-AS 830-n as input and obtain the solution of the PDEs according to Eq. (11) .
  • the loss may be obtained based on Eq. (13) , the parameters or weights of the NNs of the HCNN 800 can be updated based on the loss.
  • the NN models are trained for e.g., a defined number of Adam iterations, followed by a L-BFGS optimization until convergence.
  • Fig. 9 illustrates an exemplary process for optimizing structure of an object according to aspects of the disclosure. It is appreciated that the process may be implemented with computers or processors.
  • the HCNN comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein PDEs are formulated to characterize a physical system related to the object with physical quantities of the object.
  • a first prediction of solutions of reformulated PDEs is generated by the at least one primary NN.
  • the reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object.
  • a second prediction of solutions of BCs of the reformulated PDEs is generated by at least using the at least one secondary NN.
  • the BCs are formulated to characterize the physical system related to the boundaries of the object, wherein the second prediction of the solutions of the BCs of the reformulated PDEs comprises prediction of the physical quantities of the object.
  • a final prediction of solutions of the reformulated PDEs is obtained by assembling the first prediction of solution and the second prediction of solution by the assemble unit.
  • the final prediction of solutions of the reformulated PDEs represents prediction of the physical quantities of the object.
  • the structural quantities representing the boundaries of the object are updated based on the physical quantities of the final prediction.
  • the BCs of the boundaries of the object comprise one or more of Dirichlet BC, Neumann BC, and Robin BC.
  • the primary NN corresponds to out-of-boundary region of the object
  • the at least one secondary NN corresponds to at least one of the boundaries of the object.
  • the second prediction of the solutions of the BCs of the reformulated PDEs further comprises prediction of the additional quantities representing gradients of the physical quantities of the object.
  • the generating a second prediction of solutions of BCs of the reformulated PDEs at block 930 further comprises: for each of at least one boundary corresponding to the at least one secondary NN, generating a corresponding part of the second prediction based on constraints of the BC of the boundary and output of a corresponding secondary NN.
  • the generating a second prediction of solutions of BCs of the reformulated PDEs at block 930 further comprises: for the each of the at least one boundary corresponding to the at least one secondary NN, generating the corresponding part of the second prediction based further on a basis matrix or vector of null space for the boundary, wherein the basis matrix or vector is obtained based on a unit normal of the boundary.
  • the obtaining a final prediction of solutions of the reformulated PDEs at block 940 further comprises: assembling the first prediction of solution and the second prediction of solution based on a distance of a sampled point of object to the boundaries of the object.
  • the assembling the first prediction of solution and the second prediction of solution at block 940 further comprises: assembling respective parts of the second prediction corresponding to the boundaries of the object by ensuring that a part of the second prediction corresponding to any one boundary decays at the other boundaries to an extent of having insignificant influence to the other boundaries.
  • the process 900 further comprises: obtaining a first discrepancy of the reformulated PDEs based on the final prediction of solutions including the physical quantities of the object and the gradients of the physical quantities; obtaining a second discrepancy between the physical quantities and the gradients of the physical quantities in the final prediction of solutions; obtaining a loss based on the first discrepancy and the second discrepancy; and updating the at least one primary NN and the at least one secondary NN based on the loss.
  • the steps of generating a first prediction, generating a second prediction, obtaining a final prediction, obtaining a loss and updating the at least one primary NN and the at least one secondary NN are repeated, until a training requirement is met.
  • the at least one primary NN and the at least one secondary NN are MLP NNs.
  • the object is one of a fuel cell bipolar plate, a part of a car, a part of a plane, a part of a building, pipes of a reactor, flow baffles and so on, that are to be manufactured or designed.
  • the structural quantities comprise at least one of position, radius, width, height, length, anchor points, and so on.
  • the physical quantities comprise at least one of velocity, pressure, temperature, and so on.
  • Fig. 10 illustrates an exemplary process for predicting physical quantities of an object according to aspects of the disclosure. It is appreciated that the process may be implemented with computers or processors.
  • the HCNN comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein PDEs are formulated to characterize a physical system related to the object with physical quantities of the object.
  • a first prediction of solutions of reformulated PDEs is generated by the at least one primary NN.
  • the reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object.
  • a second prediction of solutions of BCs of the reformulated PDEs is generated by at least using the at least one secondary NN.
  • the BCs are formulated to characterize the physical system related to the boundaries of the object, wherein the second prediction of the solutions of the BCs of the reformulated PDEs comprises prediction of the physical quantities of the object.
  • a final prediction of solutions of the reformulated PDEs is obtained by assembling the first prediction of solution and the second prediction of solution by the assemble unit.
  • the final prediction of solutions of the reformulated PDEs represents prediction of the physical quantities of the object.
  • the BCs of the boundaries of the object comprise one or more of Dirichlet BC, Neumann BC, and Robin BC.
  • the primary NN corresponds to out-of-boundary region of the object
  • the at least one secondary NN corresponds to at least one of the boundaries of the object.
  • the second prediction of the solutions of the BCs of the reformulated PDEs further comprises prediction of the additional quantities representing gradients of the physical quantities of the object.
  • the generating a second prediction of solutions of BCs of the reformulated PDEs at block 1030 further comprises: for each of at least one boundary corresponding to the at least one secondary NN, generating a corresponding part of the second prediction based on constraints of the BC of the boundary and output of a corresponding secondary NN.
  • the generating a second prediction of solutions of BCs of the reformulated PDEs at block 1030 further comprises: for the each of the at least one boundary corresponding to the at least one secondary NN, generating the corresponding part of the second prediction based further on a basis matrix or vector of null space for the boundary, wherein the basis matrix or vector is obtained based on a unit normal of the boundary.
  • the obtaining a final prediction of solutions of the reformulated PDEs at block 1040 further comprises: assembling the first prediction of solution and the second prediction of solution based on a distance of a sampled point of object to the boundaries of the object.
  • the assembling the first prediction of solution and the second prediction of solution at block 1040 further comprises: assembling respective parts of the second prediction corresponding to the boundaries of the object by ensuring that a part of the second prediction corresponding to any one boundary decays at the other boundaries to an extent of having insignificant influence to the other boundaries.
  • the process 1000 further comprises: obtaining a first discrepancy of the reformulated PDEs based on the final prediction of solutions including the physical quantities of the object and gradients of the physical quantities; obtaining a second discrepancy between the physical quantities and the gradients of the physical quantities in the final prediction of solutions; obtaining a loss based on the first discrepancy and the second discrepancy; and updating the at least one primary NN and the at least one secondary NN based on the loss.
  • the steps of generating a first prediction, generating a second prediction, obtaining a final prediction, obtaining a loss and updating the at least one primary NN and the at least one secondary NN are repeated, until a training requirement is met.
  • the at least one primary NN and the at least one secondary NN areMLP NNs.
  • the object is one of a fuel cell bipolar plate, a part of a car, a part of a plane, a part of a building, pipes of a reactor, flow baffles and so on, that are to be manufactured or designed.
  • the structural quantities comprise at least one of position, radius, width, height, length, anchor points, and so on.
  • the physical quantities comprise at least one of velocity, pressure, temperature, and so on.
  • Fig. 11 illustrates an exemplary computing system according to aspects of the disclosure.
  • the computing system 1100 may comprise at least one processor 1110.
  • the computing system 1100 may further comprise at least one storage device 1120.
  • the storage device 1120 may store computer-executable instructions that, when executed, cause the processor 1110 to perform any operations according to the embodiments of the present disclosure as described in connection with Figs. 1-10.
  • the embodiments of the present disclosure may be embodied in a computer-readable medium such as non-transitory computer-readable medium.
  • the non-transitory computer-readable medium may comprise instructions that, when executed, cause one or more processors to perform any operations according to the embodiments of the present disclosure as described in connection with Figs. 1-10.
  • inventions of the present disclosure may be embodied in a computer program product comprising computer-executable instructions that, when executed, cause one or more processors to perform any operations according to the embodiments of the present disclosure as described in connection with Figs. 1-10.
  • modules in the apparatuses described above may be implemented in various approaches. These modules may be implemented as hardware, software, or a combination thereof. Moreover, any of these modules may be further functionally divided into sub-modules or combined together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pure & Applied Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Algebra (AREA)
  • Fluid Mechanics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present disclosure provides computer implemented method for optimizing structure of an object. The method comprises: receiving structural quantities by a hard-constraint neural network (NN) framework, wherein the structural quantities are used to describe boundaries of the object, wherein the hard-constraint NN framework comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein partial differential equations (PDEs) are formulated to characterize a physical system related to the object with physical quantities of the object; generating a first prediction of solutions of reformulated PDEs by the at least one primary NN; generating a second prediction of solutions of boundary conditions (BCs) of the reformulated PDEs by at least using the at least one secondary NN; obtaining a final prediction of solutions of the reformulated PDEs by assembling the first prediction of solution and the second prediction of solution by the assemble unit; and updating the structural quantities representing the boundaries of the object based on the physical quantities of the final prediction.

Description

METHOD AND APPARATUS FOR STRUCTURAL OPTIMIZITION FIELD
Aspects of the present disclosure relate generally to artificial intelligence (AI) , and more particularly, to optimizing structure of an object.
BACKGROUND
The structure of an object, such as its shape, size, or distribution of materials, influences the performance of the object. Examples of the object may be the wing of an airplane, the truss of a house, the pipes in a reactor, or the like. For example, the shape of an airfoil influences the pressure and velocity of the airflow with respect to the airfoil while the pressure and velocity influencing the performance of the physical system of the airfoil. The physical system can be described by partial differential equations (PDEs) . The physical quantities of the physical system such as the pressure and velocity can be obtained by solving the PDEs based on the structural quantities such as those describing the shape of the object.
It is desirable to design the structure of an object so as to improve its performance, this procedure may be referred to as structural optimization. The structural optimization is applicable in many areas including scientific area, engineering area, industrial area or the like. For example, the shape of chemical catalyst pellets, the shape of auto parts or the like may be optimized through the structural optimization procedure before manufacturing.
Since most physical systems are described by partial differential equations (PDEs) , structural optimization is typically carried out with the governing PDEs, which need to be solved to determine the state of the structure at each iteration of the optimization. The efficiency and accuracy of the solving of PDEs, especially for an object with complex structure, would be critical for improving the performance of the structural optimization of the object to be manufactured.
SUMMARY
In order to improve the performance of the structural optimization, the disclosure proposes a novel framework for structural optimization and solving of PDEs, by which the time consumption and computation requirement may be reduced and accuracy of the solution of PDEs and accordingly performance of structural optimization may be improved.
According to an embodiment, there provides a computer implemented method for optimizing structure of an object. The method comprises: receiving structural quantities by a hard-constraint neural network (NN) framework, wherein the structural quantities are used to describe boundaries of the object, wherein the hard-constraint NN framework comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein partial differential equations (PDEs) are  formulated to characterize a physical system related to the object with physical quantities of the object; generating a first prediction of solutions of reformulated PDEs by the at least one primary NN, the reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object; generating a second prediction of solutions of boundary conditions (BCs) of the reformulated PDEs by at least using the at least one secondary NN, wherein the BCs are formulated to characterize the physical system related to the boundaries of the object, wherein the second prediction of the solutions of the BCs of the reformulated PDEs comprises prediction of the physical quantities of the object; obtaining a final prediction of solutions of the reformulated PDEs by assembling the first prediction of solution and the second prediction of solution by the assemble unit, wherein the final prediction of solutions of the reformulated PDEs represents prediction of the physical quantities of the object; and updating the structural quantities representing the boundaries of the object based on the physical quantities of the final prediction.
According to an embodiment, there provides a computer implemented method for predicting physical quantities of an object. The method comprises: receiving structural quantities by a hard-constraint neural network (NN) framework, wherein the structural quantities are used to describe boundaries of the object, wherein the hard-constraint NN framework comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein partial differential equations (PDEs) are formulated to characterize a physical system related to the object with physical quantities of the object; generating a first prediction of solutions of reformulated PDEs by the at least one primary NN, the reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object; generating a second prediction of solutions of boundary conditions (BCs) of the reformulated PDEs by at least using the at least one secondary NN, wherein the BCs are formulated to characterize the physical system related to the boundaries of the object, wherein the second prediction of the solutions of the BCs of the reformulated PDEs comprises prediction of the physical quantities of the object; obtaining a final prediction of solutions of the reformulated PDEs by assembling the first prediction of solution and the second prediction of solution by the assemble unit, wherein the final prediction of solutions of the reformulated PDEs represents prediction of the physical quantities of the object.
According to an embodiment, there provides a computer system, which comprises one or more processors and one or more storage devices storing computer- executable instructions that, when executed, cause the one or more processors to perform the operations of the method as mentioned above as well as to perform the operations of the method according to aspects of the disclosure.
According to an embodiment, there provides one or more computer readable storage media storing computer-executable instructions that, when executed, cause one or more processors to perform the operations of the method as mentioned above as well as to perform the operations of the method according to aspects of the disclosure.
According to an embodiment, there provides a computer program product comprising computer-executable instructions that, when executed, cause one or more processors to perform the operations of the method as mentioned above as well as to perform the operations of the method according to aspects of the disclosure.
By using the HCNN framework in the structural optimization framework, the efficiency of structural optimization can be improved while the bottleneck of solving PDEs being resolved. Moreover, by using the HCNN framework, most commonly used BCs (i.e., Dirichlet, Neumann and Robin BCs) can be automatically satisfied during the training of the NNs, therefore the model can be trained without the loss of these BCs, this alleviates the unbalanced competition between the loss terms of PDEs and BCs, and significantly improves the performance of solving geometrically complex PDEs, and accordingly significantly improves the performance of structure of an object. Other advantages and enhancements are explained in the description hereafter.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed aspects will hereinafter be described in connection with the appended drawings that are provided to illustrate and not to limit the disclosed aspects.
Fig. 1 illustrates an exemplary framework for optimizing structure of an object according to aspects of the disclosure.
Fig. 2 illustrates three types of most commonly used BCs according to aspects of the disclosure.
Fig. 3 illustrates an exemplary transformation of coordinates systems according to aspects of the disclosure.
Fig. 4 illustrates an exemplary structural optimization of 2D battery pack according to aspects of the disclosure.
Fig. 5 illustrates an exemplary architecture of HCNN according to aspects of the disclosure.
Fig. 6 illustrates an exemplary structural optimization of airfoil according to aspects of the disclosure.
Fig. 7 illustrates an exemplary architecture of HCNN according to aspects of the disclosure.
Fig. 8 illustrates an exemplary architecture of HCNN according to aspects  of the disclosure.
Fig. 9 illustrates an exemplary process for optimizing structure of an object according to aspects of the disclosure.
Fig. 10 illustrates an exemplary process for predicting physical quantities of an object according to aspects of the disclosure
Fig. 11 illustrates an exemplary computing system according to aspects of the disclosure.
DETAILED DESCRIPTION
The present disclosure will now be discussed with reference to several example implementations. It is to be understood that these implementations are discussed only for enabling those skilled in the art to better understand and thus implement the embodiments of the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and embodiments are for illustrative purposes, and are not intended to limit the scope of the disclosure.
Fig. 1 illustrates an exemplary framework for optimizing structure of an object according to aspects of the disclosure.
The object to be structurally optimized in the example shown in Fig. 1 is an airfoil. As shown in block 120 of Fig. 1, the shape of the airfoil is presented by a boundary γ, which is parameterized by structural quantities θ. In this example, the structural quantities θ may be a set of control points which consist of splines representing the shape of the airfoil. In other words, the structure to be optimized is the shape of the airfoil represented by splines with a set of control points θ. The label Ω denotes the problem domain or particularly denotes the domain of the physical system related to the airfoil.
As shown in block 110 of Fig. 1, the arrowed lines denote airflows on the airfoil. The physical state of the airflow on the airfoil may be represented by physical quantities of the physical system related to the airfoil. In this example, the physical quantities may be the velocity u=u (x) and the pressure p=p (x) . The label x denotes spatial coordinates in the domain Ω.
The velocity u=u (x) and the pressure p=p (x) may be characterized by nonlinear PDEs of Navier–Stokes (NS) equations, with the constraint of the shape of the airfoil represented by the boundary γ. It is appreciated that NS equations are well known physical equations that can be used to describe the three-dimensional motion of viscous fluid substances. The NS equations are second-order nonlinear PDEs, and may be used to model the weather, ocean currents, heat conducting, air flow around an airfoil, water flow in a pipe or in a reactor and many other applications. The PDEs  of the NS equations for a physical system of an object may be formulated according to physical laws related to the physical system of the object. In the illustrated example, the PDEs of the physical system of the airfoil may be established according to the related physical law as shown by label 140 of Fig. 1. As the PDEs are used to govern the optimization of the structure of the airfoil, they may be referred to as governing PDEs. It is appreciated that the formulation of the governing PDEs may be implemented with well-known physical knowledge, and other kinds of PDEs used to describe a physical system of an object may also be used as the governing PDEs in aspects of the disclosure.
As shown by label 130 of Fig. 1, the objective or goal of the structural optimization of the airfoil is to reach the desired pressure distribution p ref on the airfoil surface by changing the structural parameter θ. The objective function J may be formulated as shown by label 130, and the aim of the structural optimization is to minimize the objective function J, which is a functional of the pressure p. The shape of the airfoil corresponding to the boundary γ parameterized by structural quantities θ may be iteratively optimized to minimize the objective function J, so as to reach the desired pressure distribution p ref on the airfoil surface.
In each loop of the structural optimization, the PDEs 140 need to be solved to obtain the physical quantities such as the velocity u and pressure p, and then the objective function J may be evaluated based on the physical quantities such as the pressure p. Then the structural quantities θ may be updated or optimized based on the calculated objective function J as shown by label 160.
In an example, as shown by label 150, a NN model may be used to obtain the velocity u and pressure p by solving the PDEs 140. For example, Physical-informed neural network (PINN) (Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378: 686–707, 2019) is one of the most influential works for predicting the solutions of the PDEs and may be employed to implement the NN model 150. The PINN is trained in the way of taking the residuals of both the PDEs and the BCs as multiple terms of the loss function. However, there exists an unbalanced competition between the terms of PDEs and BCs, causing the computational requirement of the PINNs to be large and the accuracy of the PINNs to be decreased for solving PDEs with complex BCs. One way to address this problem is to embed BCs into the ansatz so as to enable the neural networks to automatically satisfy the BCs and no longer require adding corresponding loss terms. However, the challenge is that the equation forms of complex BCs such as the Neumann BCs and Robin BCs as illustrated in Fig. 2 have no analytical solutions in general and are thus difficult to be embedded into the ansatz.
Fig. 2 illustrates three types of most commonly used BCs according to aspects of the disclosure. In the illustrated example of heat transfer, T = T (x) is the  temperature, k is the thermal conductivity, and h is the heat transfer coefficient. As illustrated in Fig. 2 (a) , the Dirichlet BC specifies the value of the solution of PDEs at the boundary. It is assumed a constant temperature T H at the heat source (x = x 0) . As illustrated in Fig. 2 (b) the Neumann BC specifies the value of the derivative at the boundary. It is assumed that the right wall (x = x 1) is adiabatic and forces the derivative to be zero. As illustrated in Fig. 2 (c) the Robin BC is a combination of the Dirichlet BC and the Neumann BC. And it is used to describe the heat convection between the heat source and the environment (T ) at the surface (x = x 2) .
In an embodiment, as illustrated in Fig. 1, a hard-constraint neural network (HCNN) framework 150 is employed in the structural optimization frame 100 to predict the solutions of the PDEs 140 with various boundary shapes represented by structural quantities θ. The HCNN 150 is a unified hard-constraint framework for all the three most commonly used BCs, i.e., Dirichlet, Neumann and Robin BCs. With HCNN, an ansatz can be constructed to automatically satisfy the three types of BCs. Therefore, the model can be trained without the losses of these BCs, which alleviates the unbalanced competition and significantly improves the accuracy of solving geometrically complex PDEs, and accordingly significantly improves the efficiency and performance of the structural optimization for the object such as the illustrated foil.
The PINN is introduced briefly in order to better understand the HCNN according to aspects of the disclosure. The following Laplace’s equation may be considered as an example,
Δu (x 1, x 2) =0, x 1∈ (0, 1] , x 2∈ [0, 1]             (1a)
u (x 1, x 2) =g (x 2) , x 1=0, x 2∈ [0, 1]                  (1b)
where Eq. (1a) gives the form of the PDE, and Eq. (1b) is a Dirichlet boundary condition (BC) . A solution to the above problem is a solution to Eq. (1a) which also satisfies Eq. (1b) .
PINNs employ a neural network NN (x 1, x 2; w) to approximate or predict the solution of the PDE, i.e., 
Figure PCTCN2022115720-appb-000001
where w denotes the trainable parameters of the neural network. And the parameters w are learned by minimizing the following loss function:
Figure PCTCN2022115720-appb-000002
where the first loss term
Figure PCTCN2022115720-appb-000003
is configured to restrict the prediction
Figure PCTCN2022115720-appb-000004
of the solution to satisfy the PDE (Eq. (1a) ) while the second loss term
Figure PCTCN2022115720-appb-000005
is configured to restrict the prediction
Figure PCTCN2022115720-appb-000006
of the solution to satisfy the BC (Eq. (1b) ) , 
Figure PCTCN2022115720-appb-000007
is a set of N f collocation points sampled from the domain [0, 1]  2, and
Figure PCTCN2022115720-appb-000008
is a set of N b collocation points sampled from the boundary x 1=0, x 2∈ [0, 1] .
PINNs have a wide range of applications, including heat, flow, and  atmosphere. However, PINNs are struggling with some issues on the performance. Previous analysis has demonstrated that the convergence of first loss term 
Figure PCTCN2022115720-appb-000009
can be significantly faster than that of the second loss term 
Figure PCTCN2022115720-appb-000010
This pathology may lead to nonphysical solutions which does not satisfy the BCs or initial conditions (ICs) . Moreover, for geometrically complex PDEs where the number of BCs is large, this problem is exacerbated and can seriously affect accuracy.
One potential approach to overcome this pathology is to embed the BCs into the ansatz in a way that any instance from the ansatz can automatically satisfy the BCs. In this way, the loss terms corresponding to the BCs are no longer needed, and thus the above pathology is alleviated. Such methods are called hard-constraint methods, and they share a similar formula of the ansatz as
Figure PCTCN2022115720-appb-000011
where x is the coordinate, Ω is the domain of interest, 
Figure PCTCN2022115720-appb-000012
is the general solution at the boundary
Figure PCTCN2022115720-appb-000013
and
Figure PCTCN2022115720-appb-000014
is an extended distance function which satisfies
Figure PCTCN2022115720-appb-000015
In the case of Eq. (1) (where x= (x 1, x 2) , Ω= [0, 1]  2) , the general solution is exactly g (x 2) , and the following ansatz, which automatically satisfies the BC in Eq. (1b) , can be used.
Figure PCTCN2022115720-appb-000016
However, it is hard to directly extend this method to more general cases of Robin BCs (see Eq. (7) ) , since it is difficult to obtain the general solution
Figure PCTCN2022115720-appb-000017
analytically. Existing attempts are either mesh-dependent method, which are time-consuming for high-dimensional and geometrically complex PDEs, or ad hoc methods for specific (geometrically simple) physical systems. It is still lacking a unified hard-constraint framework for both geometrically complex PDEs and the most commonly used Dirichlet, Neumann, and Robin BCs.
A physical system governed by the following PDEs defined on a geometrically complex domain
Figure PCTCN2022115720-appb-000018
is considered.
Figure PCTCN2022115720-appb-000019
where
Figure PCTCN2022115720-appb-000020
includes N PDE operators which map u to a function of x, u and its derivatives. Here, u (x) = (u 1 (x) , …, u n (x) ) is the solution to the PDEs, which represents physical quantities of interest. For each u j, j=1, …, n, the suitable boundary conditions (BCs) may be posed as
Figure PCTCN2022115720-appb-000021
where
Figure PCTCN2022115720-appb-000022
are subsets of the boundary
Figure PCTCN2022115720-appb-000023
whose closures are disjoint, a i (x) and b i (x) are two functions satisfying that
Figure PCTCN2022115720-appb-000024
holds for
Figure PCTCN2022115720-appb-000025
and n (x) = (n 1 (x) , …, n d (x) ) is the (outward facing) unit normal of corresponding boundary γ i at point x. It is noted that Eq. (7) represents a Dirichlet BC if a i (x) ≡1, b i (x) ≡ 0, a Neumann BC if a i (x) ≡0, b i (x) ≡ 1, and a Robin BC otherwise.
For such geometrically complex PDEs, if PINNs are to be employed, there would be a difficult multi-task learning with at least
Figure PCTCN2022115720-appb-000026
terms in the loss function. It will severely affect the convergence of the training due to the unbalanced competition between those loss terms. If the BCs can be embedded into the ansatz, every instance automatically satisfies the BCs. However, it is infeasible to directly follow the pipeline of hard-constraint methods (see Eq. (3) ) since Eq. (7) does not have a general solution of analytical form. Therefore, a new approach is needed to address this intractable problem.
According to aspects of the disclosure, the general solutions of the BCs are presented and used to construct the hard-constraint ansatz. Extra fields may be introduced to equivalently reformulate the PDEs. Let
Figure PCTCN2022115720-appb-000027
Figure PCTCN2022115720-appb-000028
which are substituted into Eq. (6) and Eq. (7) to obtain the equivalent PDEs
Figure PCTCN2022115720-appb-000029
Figure PCTCN2022115720-appb-000030
where (u (x) , p 1 (x) , …, p n (x) ) is the solution of the new PDEs, 
Figure PCTCN2022115720-appb-000031
are PDE operators after the reformulation. And for j=1, …, n, the corresponding BCs are as the following
Figure PCTCN2022115720-appb-000032
By adding the extra fields shown in Eq. (8b) , Eq. (7) has been transformed into linear equations with respect to (u j, p j) , which are much easier to derive general solutions. Hereinafter, (u j, p j) is denoted by
Figure PCTCN2022115720-appb-000033
and their general solutions at boundary γ i (i.e., 
Figure PCTCN2022115720-appb-000034
) are denoted by
Figure PCTCN2022115720-appb-000035
According to aspects of the disclosure, a basis B (x) of the null space may be used to obtain the general solution of Eq. (9) , dimension of the null space is d. B (x) should be carefully chosen. Since Eq. (9) is parameterized by x, for any x∈γ i, B (x) should always be a basis of the null space, that is, its columns cannot degenerate into linearly dependent vectors, otherwise it will not be able to represent all possible solutions.
Generally, for any dimension
Figure PCTCN2022115720-appb-000036
it is non-trivial to find a simple expression for the basis. According to aspects of the disclosure, it is preferrable to find (d + 1) vectors in the null space, d of which are linearly independent (that way, 
Figure PCTCN2022115720-appb-000037
Then the general solution of
Figure PCTCN2022115720-appb-000038
at the boundary γ i may be constructed as
Figure PCTCN2022115720-appb-000039
where
Figure PCTCN2022115720-appb-000040
is a neural network with trainable parameters
Figure PCTCN2022115720-appb-000041
and B (x) is given by
Figure PCTCN2022115720-appb-000042
According to aspects of the disclosure, in the case of d = 1 or d = 2, a simpler expression for B (x) can be found. In an embodiment, in the case of d = 1, the basis of null space may be found as
Figure PCTCN2022115720-appb-000043
where
Figure PCTCN2022115720-appb-000044
In an embodiment, in the case of d = 2, the basis of null space may be found as
B (x) = [β 1 (x) , β 2 (x) , β 3 (x) ] ,
Figure PCTCN2022115720-appb-000045
Figure PCTCN2022115720-appb-000046
Figure PCTCN2022115720-appb-000047
where
Figure PCTCN2022115720-appb-000048
With the parameterization of a neural network, Eq. (10) can represent any function in boundary γ i, as long as the function satisfies the BC (see Eq. (9) ) . Since the problem domain contains multiple boundaries, the general solutions corresponding to each boundary γ i may be combined to achieve an overall approximation or prediction. Hence, the ansatz may be constructed as follows
Figure PCTCN2022115720-appb-000049
where NN main
Figure PCTCN2022115720-appb-000050
is the main neural network with trainable parameters w main
Figure PCTCN2022115720-appb-000051
are continuous extended distance functions (see Eq. (4) ) , and α i (i=1, …, m j) are determined by
Figure PCTCN2022115720-appb-000052
where
Figure PCTCN2022115720-appb-000053
is a hyper-parameter of the “hardness” in the spatial domain. 
Figure PCTCN2022115720-appb-000054
stands for the boundaries except γ i. In Eq. (11) , extended distance functions are utilized to divide the problem domain into several parts, where
Figure PCTCN2022115720-appb-000055
 (
Figure PCTCN2022115720-appb-000056
is its learnable part) is responsible for the approximation on the boundaries γ i while NN mainis responsible for the approximation of the internal apart from the boundaries. Furthermore, Eq. (12) ensures that the weight of
Figure PCTCN2022115720-appb-000057
decays to
Figure PCTCN2022115720-appb-000058
at the nearest neighbor of boundary γ i, so that
Figure PCTCN2022115720-appb-000059
does not interfere with the approximation on other boundaries.
According to aspects of the disclosure, if the parameters a i, b i, n or g i in Eq. (10) and Eq. (11) are only defined at boundary γ i, their definition can be extended  to the domain
Figure PCTCN2022115720-appb-000060
using interpolation or approximation via neural networks. The airfoil boundary (i.e, γ af) is considered as an example. Supposing f (x) is only defined in airfoil boundary γ af, the task is to extend its definition to
Figure PCTCN2022115720-appb-000061
As shown in Fig. 3, two reference points (i.e., x 0 and x 1) are placed on the front and rear half of the airfoil. For any
Figure PCTCN2022115720-appb-000062
it can be expressed as polar coordinates with respect to x 0 and x 1, respectively. The two polar coordinates are concatenated to form a new space. Next interpolation and approximation are performed under the new space. This is because in the new space it can better characterize the shape of the airfoil. It is appreciated that there are many ways for coordinate transformations, not limited to the example here. As for the interpolation, several points are sampled at the airfoil boundary γ af to obtain the dataset
Figure PCTCN2022115720-appb-000063
For any
Figure PCTCN2022115720-appb-000064
the corresponding extended f (x) is generated by interpolating in the dataset. The interpolation method used here depends on the smoothness requirements of the ansatz. In addition, the number of reference points can also be changed, and in experiments it is found that only one reference point is enough.
Approximation via neural networks is a general method that does not require manual design. In this case, several points can be sampled at the airfoil boundary γ af to construct the dataset
Figure PCTCN2022115720-appb-000065
followed by training a neural network on the dataset, i.e. NN (φ 0 (x  (i) ) , φ 1 (x  (i) ) ) ≈f  (i) . For any 
Figure PCTCN2022115720-appb-000066
NN(φ 0 (x) , φ 1 (x) ) is taken as the corresponding extended f (x) . According to aspects of the disclosure, the neural network can also be trained in the original space. However, experimental results show that training on the new space can achieve better results. The reason may be that the complex geometry become smoother and easier to learn in the new space.
It is worth noting that, in addition to the cases mentioned above, the extended distance functions l (x) (here the superscript is omitted and see Eq. (4) for its definition) may also be handled similarly. Because for the complex geometry, the distance function can be complex and it may be replaced with a cheap surrogate model. The methods are similar, including approximating the distance function with a neural network, or constructing splines function (Hailong Sheng and Chao Yang. Pfnn: A penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries. Journal of Computational Physics, 428: 110085, 2021) .
Finally, the HCNN model can be trained with the following loss function
Figure PCTCN2022115720-appb-000067
where
Figure PCTCN2022115720-appb-000068
is defined in Eq. (11) and
Figure PCTCN2022115720-appb-000069
is a set of collocation points sampled in the domain Ω. For neatness, the trainable parameters of  neural networks are omitted here. The loss function of Eq. (13) measures the discrepancy of both the PDEs (i.e., 
Figure PCTCN2022115720-appb-000070
) and the equilibrium equations introduced by the extra fields (i.e., Eq. (8b) ) at N f collocation points.
According to Eq. (13) , BCs are successfully embedded into the ansatz, and it no longer needs to take the residuals of BCs as extra terms in the loss function as performed by PINN. That is, the proposed ansatz strictly conforms to BCs throughout the training process, greatly reducing the possibility of generating nonphysical solutions. Nevertheless, this comes at the cost of introducing (nd) additional equilibrium equations (see Eq. (8b) ) . But in many physical systems, especially those with complex geometries, the number of BCs (cnt (BCs) ) is far larger than (nd) (e.g., n = 3, d = 2, cnt (BCs) = 1260 for a classical physical system, a heat exchanger) . So aspects of the disclosure actually reduce the number of loss terms by an order of magnitude or two (Δcnt (losses) = nd -cnt (BCs) << 0) , alleviating the unbalanced competition between loss terms.
According to aspects of the disclosure, the HCNN framework detailed above can be extended to the spatial-temporal domain. A physical system governed by the following time-dependent PDEs defined on a geometrically complex domain 
Figure PCTCN2022115720-appb-000071
is considered.
Figure PCTCN2022115720-appb-000072
where t is the temporal coordinate, and the other notations are the same as those of Eq. (6) and Eq. (7) . For each u j, j=1, …, n, the suitable boundary conditions (BCs) may be posed as
Figure PCTCN2022115720-appb-000073
and an initial condition (IC)
u j (x, 0) =f j (x) , x∈Ω                                     (16)
Following the pipeline described above with reference to Eq. (9) to Eq. (13) , the general solution of
Figure PCTCN2022115720-appb-000074
at the boundary γ i may be constructed as
Figure PCTCN2022115720-appb-000075
where
Figure PCTCN2022115720-appb-000076
is a neural network, and
Figure PCTCN2022115720-appb-000077
The trainable parameters of neural networks are omitted for neatness.
Finally, the ansatz may be constructed as follows
Figure PCTCN2022115720-appb-000078
where
Figure PCTCN2022115720-appb-000079
is an intermediate variable that incorporates hard constraints in spatial dimensions, NN main
Figure PCTCN2022115720-appb-000080
is the main neural network, 
Figure PCTCN2022115720-appb-000081
Figure PCTCN2022115720-appb-000082
are extended distance functions (see Eq. (4) ) , α i (i=1, …, m j) is determined in Eq. (12) , and
Figure PCTCN2022115720-appb-000083
is a hyper-parameter of the “hardness” in the temporal domain.
Fig. 4 is a schematic diagram illustrating structural optimization of a 2-dimentional (2D) battery pack according to aspects of the disclosure.
As shown in Fig. 4, the cell boundaries γ c, i and cooling pipe boundaries γ p, i located in domain Ω are the structure to be optimized. The goal of the structural optimization is to optimize the shape and position of the cells and cooling pipes so as to obtain an even distribution of the temperature over time.
The structural optimization problem may be represented by:
Figure PCTCN2022115720-appb-000084
where θ denotes the structural parameters of the structure of the object to be optimized, which are also the parameters of the boundary shapes, Θ denotes the space of θ. The structural parameters θ is changing during the optimization of the structure but is within the design space Θ. J is the objective function whose value measures how good a given structure is, W stands for the constraints on both the structural parameters θ and the state variable s = s (x) which denotes the state of the physical system, for example, velocity, pressure, temperature or the like, where x denotes spatial coordinates. And the symbol “≤°” is an elementwise comparison.
The structural optimization problem for the 2D battery pack shown in Fig. 4 may be represented by
J (θ) =∫ tΩ|T (x) -T ref (x) |dx dt                              (20)
where T is the temperature, T ref is the reference temperature.
The governing PDEs describing the physical system related to the 2D battery pack may be formulated according to physical laws, for example, the PDEs may be given by:
Figure PCTCN2022115720-appb-000085
Figure PCTCN2022115720-appb-000086
Figure PCTCN2022115720-appb-000087
Figure PCTCN2022115720-appb-000088
T (x, 0) =T 0, x∈Ω,                                                (21e)
where x= (x 1, x 2) is the spatial coordinate, t is the temporal coordinate. T (x, t) is the temperature over time, k is the thermal conductivity and is set to k = 1 in this example, 
Figure PCTCN2022115720-appb-000089
h is the heat transfer coefficient and is set to h = 1 in this example. 
Figure PCTCN2022115720-appb-000090
T a, T c, T w are respectively the temperature of the air, the cells (n c= 11 cells of radius r c) , the cooling pipes (n w = 6 pipes of radius r c, ) , and are set to T a = 0.1, T c = 5, T w = 1. T 0 is the initial temperature  and is set to T 0 = 0.1 in this example. In Fig. 4, γ ou stands for the outer boundaries of the battery packet, γ c, i stands for the boundaries of the cells, γ p, i stands for the boundaries of the cooling pipes.
The structural quantities include the center and the radius of cells and the cooling pipes. In order to optimize the structure of the 2D battery pack based on the Eq. (20) , the governing PDEs need to be solved to obtain the physical quantity, that is, the temperature T.
According to aspects of the disclosure, the PDEs of Eq. (21a) to Eq. (21e) are reformulated by adding extra fields according to the HCNN model. The introduced extra fields is p (x, t) shown in Eq. (22b) , and the reformulated PDEs are:
Figure PCTCN2022115720-appb-000091
Figure PCTCN2022115720-appb-000092
k (n (x) ·p (x, t) ) =h (T a-T (x, t) ) , x∈γ ou, t∈ (0, 1] ,                             (22c)
k (n (x) ·p (x, t) ) =h (T c-T (x, t) ) , x∈γ c, i, t∈ (0, 1] , i=1, …, n c,        (22d)
k (n (x) ·p (x, t) ) =h (T w-T (x, t) ) , x∈γ p, i, t∈ (0, 1] , i=1, …, n w,       (22e)
T (x, 0) =T 0, x∈Ω,                                                (22f)
Since the solution of the PDEs or reformulated PDEs is a scalar function, that is, the temperature T (x, t) ) , the solution is denoted by u (x, t) =T (x, t) ) . Let 
Figure PCTCN2022115720-appb-000093
denote (u, p) , where p is the extra field shown in Eq. (22b) . The general solutions at boundaries γ ou, γ c, i, γ p, i are derived respectively.
For any point at the outer boundary, that is, for x∈γ ou, the coefficients of the BCs shown in Eq. (9) may be obtained from BC shown in Eq. (22c) , that is, a (x) =h, b (x) =k, g (x) =hT a. According to Eq. (10) , the general solution
Figure PCTCN2022115720-appb-000094
at the outer boundary is given by
Figure PCTCN2022115720-appb-000095
where B (x) is given by Eq. (10a) or Eq. (10c) , with
Figure PCTCN2022115720-appb-000096
Figure PCTCN2022115720-appb-000097
For any point at the cell boundary, that is, for x∈γ c, i, the coefficients of the BCs shown in Eq. (9) may be obtained from BC shown in Eq. (22d) , that is, a (x) =h, b (x) =k, g (x) =hT c. According to Eq. (10) , the general solution
Figure PCTCN2022115720-appb-000098
at the cell boundary is given by
Figure PCTCN2022115720-appb-000099
For any point at the cooling pipe boundary, that is, for x∈γ p, i, the coefficients of the BCs shown in Eq. (9) may be obtained from BC shown in Eq. (22e) , that is, a (x) =h, b (x) =k, g (x) =hT w. According to Eq. (10) , the general solution 
Figure PCTCN2022115720-appb-000100
at the cooling pipe boundary is given by
Figure PCTCN2022115720-appb-000101
The Extended Distance Function
Figure PCTCN2022115720-appb-000102
in Eq. (11) may be implemented in  various ways according to aspects of the disclosure. In an embodiment, for the cell boundary γ c, i and the cooling pipe boundary γ p, i, since they are 2D circles, the extended distance functions
Figure PCTCN2022115720-appb-000103
and
Figure PCTCN2022115720-appb-000104
can be chosen as the distance between x and the center minus the radius. For the rectangular outer boundary γ ou, supposing that it is given by [a 1, a 2] × [b 1, b 2] , the extended distance function
Figure PCTCN2022115720-appb-000105
can be constructed as follows
Figure PCTCN2022115720-appb-000106
where x= (x 1, x 2) , SoftMin is a differentiable version of min function. In an implementation, the SoftMin is implemented by LogSumExp in PyTorch, i.e., SoftMin (y) = LogSumExp (-βy) / (-β) , β = 4. And the extended function
Figure PCTCN2022115720-appb-000107
is computed by taking the SoftMin of the distances to all the boundaries
Figure PCTCN2022115720-appb-000108
Fig. 5 illustrates an architecture of HCNN 500 for predicting PDE solutions of the 2D battery pack according to aspects of the disclosure.
The HCNN 500 includes a main-NN denoted as M-NN 510, and three sub-NNs denoted as S-NNs 520-1, 520-2 and 520-3. In an implementation, the main-NN is a multilayer perceptron (MLP) of size [3] + 4 × [50] + [3] , which means 3 inputs, 4 hidden layers of width 50, and 3 outputs. The three inputs are spatial coordinates x= (x 1, x 2) and time t, and the three outputs are temperature T and its two derivatives
Figure PCTCN2022115720-appb-000109
The sub-NNs 520-1, 520-2 and 520-3 are MLPs of size [3] + 3 × [20] + [3] , which means 3 inputs, 3 hidden layers of width 20, and 3 outputs. The three inputs are spatial coordinates x= (x 1, x 2) and time t, and the three outputs are temperature T and its two derivatives
Figure PCTCN2022115720-appb-000110
The main-NN 510 is responsible for the prediction of the PDE solutions in the out-of-boundary region of the battery pack, and the sub-NNs 520-1, 520-2 and 520-3 are respectively responsible for the prediction of the PDE solutions at the BCs corresponding to Eq. (22c) , Eq. (22d) , and Eq. (22e) . In an implementation, the hyper-parameters of “hardness” are β s = 5 and β t = 10.
The HCNN 500 further includes an assemble unit denoted as AS 530. The assemble unit 530 includes a main assemble unit denoted as M-AS 530-4 and three sub-assemble units denoted as S-ASs 530-1, 530-2 and 530-3. The S-ASs 530-1, 530-2 and 530-3 respectively take the outputs of sub-NNs 520-1, 520-2 and 520-3 as input and obtain the general solutions at the respective boundaries of the outer boundary, the cell boundary and the cooling pipe boundary. In an implementation, the S-ASs 530-1, 530-2 and 530-3 respectively output the general solutions
Figure PCTCN2022115720-appb-000111
at the three boundaries according to Eq. (23) , Eq. (24) , and Eq. (25) . The main assemble unit 530-4 takes the outputs of M-NN 510, S-ASs 530-1, 530-2 and 530-3 as input and obtain the solution of the PDEs according to Eq. (11) . The solution of PDEs of HCNN 500 is the temperature T and its two derivatives
Figure PCTCN2022115720-appb-000112
It is appreciated that the output of the HCNN 500 can be only the temperature T.
In order to train the HCNN 500, the loss may be obtained based on Eq.  (13) , the parameters or weights of the NNs of the HCNN 500 can be updated based on the loss. In an implementation, the NN models are trained for e.g., 5000 Adam iterations, followed by a L-BFGS optimization until convergence. In an implementation, the mean squared error (MSE) is used for the loss function and tanh is used for the activation function.
After the training of the HCNN 500, the output, i.e., the temperature T, of the trained HCNN 500 is used to optimize the structure of the 2D battery packet. For example, the structure of the 2D battery packet may be optimized based on Eq. (20) . In an implementation, in each iteration of the structural optimization of the object such as the 2D battery packet, the HCNN 500 is trained based on the current structural quantities such as the positions and radius of the cells and the cooling pipes. Therefore the improvement of the efficiency and accuracy of HCNN significantly enhance the performance of the structure design process for the object such as the 2D battery packet and so on.
Fig. 6 is a schematic diagram illustrating the structural optimization of an airfoil according to aspects of the disclosure.
As shown in Fig. 6, the airfoil boundary γ af located in domain Ω is the structure to be optimized. The goal of the structural optimization is to reach the desired pressure distribution p ref on the airfoil surface by changing the structural parameter θ.
The structural optimization problem for the airfoil shown in Fig. 6 may be represented by
Figure PCTCN2022115720-appb-000113
where p is the pressure, p ref is the reference pressure.
The governing PDEs describing the physical system related to the airfoil may be formulated according to physical laws, for example, the PDEs may be NS equations and may be given by:
Figure PCTCN2022115720-appb-000114
Figure PCTCN2022115720-appb-000115
u (x) =u 0 (x) , x∈γ il ∪γ tp ∪γ bt,      (29c)
p (x) =1, x∈γ ol ,                       (29d)
n (x) ·u (x) =0, x∈γ af ,                       (29e)
where x= (x 1, x 2) is the spatial coordinate. u (x) = (u 1 (x) , u 2 (x) ) is the velocity of the fluid,  p (x) is the pressure of the fluid, v is viscosity of the fluid and is set to 1/50 in this example. u 0 (x) = (1, 0) . 
Figure PCTCN2022115720-appb-000116
is a Jacobian matrix, 
Figure PCTCN2022115720-appb-000117
Figure PCTCN2022115720-appb-000118
In Fig. 6, γ il stands for the inlet boundary of the domain, γ tp stands for the top boundary, γ bt stands for the bottom boundary, γ ol stands for the outlet boundary, γ af stands for the airfoil boundary.
The structural quantities include the shape of the airfoil which is  represented by the boundary γ af. In order to optimize the structure of the airfoil based on the Eq. (28) , the governing PDEs need to be solved to obtain the physical quantity, that is, the velocity u and pressure p.
According to aspects of the disclosure, the PDEs of Eq. (29a) to Eq. (29e) are reformulated by adding extra fields according to the HCNN model. The introduced extra fields are
Figure PCTCN2022115720-appb-000119
shown in Eq. (30c) and Eq. (30d) , and the reformulated PDEs are:
Figure PCTCN2022115720-appb-000120
Figure PCTCN2022115720-appb-000121
Figure PCTCN2022115720-appb-000122
Figure PCTCN2022115720-appb-000123
u (x) =u 0 (x) , x∈γ il ∪γ tp ∪γ bt,                   (30e)
p (x) =1, x∈γ ol ,                                    (30f)
n (x) ·u (x) =0, x∈γ af ,                                   (30g)
The solution of the PDEs or reformulated PDEs is the velocity and pressure (u (x) , p (x) ) . For the pressure p (x) , the general solution in the outlet boundary γ ol is exactly
Figure PCTCN2022115720-appb-000124
The ansatz for the pressure p is given by
Figure PCTCN2022115720-appb-000125
where [3] means taking the third elements of the output of NN main (x) .
For the velocity u (x) , the general solution in the inlet, top and bottom boundaries γ *il ∪γ tp ∪γ bt is exactly 
Figure PCTCN2022115720-appb-000126
The general solution at the airfoil boundary γ af is given by
Figure PCTCN2022115720-appb-000127
where 
Figure PCTCN2022115720-appb-000128
according to Eq. (10b) and the output of 
Figure PCTCN2022115720-appb-000129
is a scalar.
Assembling 
Figure PCTCN2022115720-appb-000130
and
Figure PCTCN2022115720-appb-000131
according to Eq. (11) , the ansatz for velocity u can be obtained by
Figure PCTCN2022115720-appb-000132
where [1 : 2] means taking the first two elements of the output of NN main (x) and
Figure PCTCN2022115720-appb-000133
as well as
Figure PCTCN2022115720-appb-000134
are similarly defined as in Eq. (12) .
The Extended Distance Function
Figure PCTCN2022115720-appb-000135
in Eq. (11) may be implemented in various ways according to aspects of the disclosure. In an embodiment, For the airfoil boundary, a direct way of obtaining
Figure PCTCN2022115720-appb-000136
is to calculate the distance between x and the airfoil γ af . However, it may be time consuming since the airfoil boundary γ af is complicated. In another implementation, the true distance may be approximated with an MLP. For example, a NN with 3 hidden layers of width 30 may be trained with 1024 × 6 points sampled in the domain Ω shown in Fig. 6. A part of the points are sampled in the bounding box of the airfoil, and the rest are sampled in Ω along with  their truth distances, which may be computed by using the formula of the distance to a polygon.
For the outlet boundary γ ol , it is a vertical line, for example, the outlet boundary is x 1=a. The extended distance function can be computed as
Figure PCTCN2022115720-appb-000137
Figure PCTCN2022115720-appb-000138
where x= (x 1, x 2) .
For the collection of the inlet, top and bottom boundaries γ *il ∪γ tp ∪γ bt, the boundary γ * is an open rectangle, so the extended distance function
Figure PCTCN2022115720-appb-000139
can be constructed similarly to the case of the rectangle as shown in Eq. (26) while ignoring the right side. Besides, 
Figure PCTCN2022115720-appb-000140
is computed by taking the SoftMin of the distances to all the boundaries as shown in Eq. (27) .
Fig. 7 illustrates an architecture of HCNN 700 for predicting PDE solutions of the airfoil according to aspects of the disclosure.
The HCNN 700 includes a main-NN denoted as M-NN 710, and a sub-NN denoted as S-NN 720. In an implementation, the main-NN is a multilayer perceptron (MLP) of size [2] + 6 × [50] + [7] , which means 2 inputs, 6 hidden layers of width 50, and 7 outputs. The two inputs are spatial coordinates x= (x 1, x 2) , and the seven outputs are velocity u= (u 1, u 2) , pressure p, and two derivatives of u 1 and two derivatives of u 2. The sub-NN 720 is a MLP of size [2] + 4 × [40] + [1] , which means 2 inputs, 4 hidden layers of width 40, and 1 output. As illustrated in Eq. (30e) , Eq. (30f) and Eq. (30g) , the BCs do not include the extra fields p 1 (x) and p 2 (x) , therefore the sub-NN 720 does not need to output the corresponding terms. The BCs of Eq. (30e) and Eq. (30f) provide constant velocity and pressure at the corresponding boundaries, therefore the sub-NN 720 does not need to provide output for these BCs. As for the BC of Eq. (30g) , by using the 
Figure PCTCN2022115720-appb-000141
as the basis of solution, the sub-NN 720 only needs to provide a scalar as illustrated in Eq. (32) . The main-NN 710 is responsible for the prediction of the PDE solutions in the out-of-boundary region of the airfoil, and the sub-NN 720 is responsible for the prediction of the PDE solutions at the BC corresponding to Eq. (30g) . And the PDE solutions at the BCs corresponding to Eq. (30e) and Eq. (30f) can be analytically obtained. In an implementation, the hyper-parameters of “hardness” are β s = 5.
The HCNN 700 further includes an assemble unit denoted as AS 730. The assemble unit 730 includes a main assemble unit denoted as M-AS 730-2 and a sub-assemble units denoted as S-AS 730-1. The S-AS 730-1 takes the output of sub-NN 720 as input and obtains the general solution at the corresponding airfoil boundary γ af, the S-AS 730-1 outputs the general solutions
Figure PCTCN2022115720-appb-000142
at the boundary according to Eq. (30g) or Eq. (32) . The main assemble unit 730-2 takes the outputs of M-NN 710 and S-AS 730-1 as input and obtains the solution of the PDEs according to Eq. (11) or according to Eq. (31) and Eq. (33) . The solution of PDEs of HCNN 700 is the velocity u= (u 1, u 2) , pressure p, and derivatives
Figure PCTCN2022115720-appb-000143
of velocity. It is appreciated that the output of the HCNN 700 can be the velocity u= (u 1, u 2) and pressure p only.
In order to train the HCNN 700, the loss may be obtained based on Eq. (13) , the parameters or weights of the NNs of the HCNN 700 can be updated based on the loss. In an implementation, the NN models are trained for e.g., 5000 Adam iterations, followed by a L-BFGS optimization until convergence. In an implementation, the mean squared error (MSE) is used for the loss function and tanh is used for the activation function.
After the training of the HCNN 700, the output, i.e., the temperature T, of the trained HCNN 700 is used to optimize the structure of the airfoil. For example, the shape of the airfoil may be optimized based on Eq. (28) . In an implementation, in each iteration of the structural optimization of the object such as the airfoil, the HCNN 700 is trained based on the current structural quantities such as a set of control points which consist of splines representing the shape of the airfoil. Therefore the improvement of the efficiency and accuracy of HCNN significantly enhance the performance of the structure design process for the object such as the airfoil and so on.
Fig. 8 illustrates an architecture of HCNN 800 for predicting PDE solutions of an object to be designed or manufactured according to aspects of the disclosure.
The HCNN 800 includes at least one main-NN denoted as M-NN 810-1 to M-NN 810-m, and at least one sub-NNs denoted as S-NN 820-1 to S-NN 820-n. It is appreciated that although one main-NN can be used to predict all the solutions u = (u 1, …, u n) of PDEs, it is feasible to predict respective parts of all the solutions with multiple main-NNs. The one or more main-NNs 810-1 to 810-m are responsible for the prediction of the PDE solutions in the out-of-boundary region of the object, and the one or more sub-NNs 820-1 to 820-n are respectively responsible for the prediction of the PDE solutions at the respective boundaries according to corresponding BCs.
The HCNN 800 further includes an assemble unit denoted as AS 830. The assemble unit 830 includes a main assemble unit denoted as M-AS 830-k and at least one sub-assemble units denoted as S-AS 830-1 to S-AS 830-n. The one or more S-ASs 830-1 to 830-n respectively take the outputs of sub-NNs 820-1 to 820-n as input and obtain the general solutions at the respective boundaries of the object. The main assemble unit 830-k takes the outputs of the one or more main-NNs 810-1 to 810-m and the one or more sub-AS 830-1 to S-AS 830-n as input and obtain the solution of the PDEs according to Eq. (11) .
In order to train the HCNN 800, the loss may be obtained based on Eq. (13) , the parameters or weights of the NNs of the HCNN 800 can be updated based on the loss. In an implementation, the NN models are trained for e.g., a defined number of Adam iterations, followed by a L-BFGS optimization until convergence.
After the training of the HCNN 800, the output, i.e., the prediction of the solution u = (u 1, …, u n) of PDEs, of the trained HCNN 800 is used to optimize the structure of the object. Therefore the improvement of the efficiency and accuracy of  HCNN significantly enhance the performance of the structure design process for the object to be manufactured.
Fig. 9 illustrates an exemplary process for optimizing structure of an object according to aspects of the disclosure. It is appreciated that the process may be implemented with computers or processors.
At block 910, structural quantities are received by a HCNN framework, wherein the structural quantities are used to describe boundaries of the object. The HCNN comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein PDEs are formulated to characterize a physical system related to the object with physical quantities of the object.
At block 920, a first prediction of solutions of reformulated PDEs is generated by the at least one primary NN. The reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object.
At block 930, a second prediction of solutions of BCs of the reformulated PDEs is generated by at least using the at least one secondary NN. The BCs are formulated to characterize the physical system related to the boundaries of the object, wherein the second prediction of the solutions of the BCs of the reformulated PDEs comprises prediction of the physical quantities of the object.
At block 940, a final prediction of solutions of the reformulated PDEs is obtained by assembling the first prediction of solution and the second prediction of solution by the assemble unit. The final prediction of solutions of the reformulated PDEs represents prediction of the physical quantities of the object.
At block 950, the structural quantities representing the boundaries of the object are updated based on the physical quantities of the final prediction.
According to an embodiment, the BCs of the boundaries of the object comprise one or more of Dirichlet BC, Neumann BC, and Robin BC.
According to an embodiment, the primary NN corresponds to out-of-boundary region of the object, and the at least one secondary NN corresponds to at least one of the boundaries of the object.
According to an embodiment, the second prediction of the solutions of the BCs of the reformulated PDEs further comprises prediction of the additional quantities representing gradients of the physical quantities of the object.
According to an embodiment, the generating a second prediction of solutions of BCs of the reformulated PDEs at block 930 further comprises: for each of at least one boundary corresponding to the at least one secondary NN, generating a corresponding part of the second prediction based on constraints of the BC of the boundary and output of a corresponding secondary NN.
According to an embodiment, the generating a second prediction of  solutions of BCs of the reformulated PDEs at block 930 further comprises: for the each of the at least one boundary corresponding to the at least one secondary NN, generating the corresponding part of the second prediction based further on a basis matrix or vector of null space for the boundary, wherein the basis matrix or vector is obtained based on a unit normal of the boundary.
According to an embodiment, the obtaining a final prediction of solutions of the reformulated PDEs at block 940 further comprises: assembling the first prediction of solution and the second prediction of solution based on a distance of a sampled point of object to the boundaries of the object.
According to an embodiment, the assembling the first prediction of solution and the second prediction of solution at block 940 further comprises: assembling respective parts of the second prediction corresponding to the boundaries of the object by ensuring that a part of the second prediction corresponding to any one boundary decays at the other boundaries to an extent of having insignificant influence to the other boundaries.
According to an embodiment, the process 900 further comprises: obtaining a first discrepancy of the reformulated PDEs based on the final prediction of solutions including the physical quantities of the object and the gradients of the physical quantities; obtaining a second discrepancy between the physical quantities and the gradients of the physical quantities in the final prediction of solutions; obtaining a loss based on the first discrepancy and the second discrepancy; and updating the at least one primary NN and the at least one secondary NN based on the loss.
According to an embodiment, the steps of generating a first prediction, generating a second prediction, obtaining a final prediction, obtaining a loss and updating the at least one primary NN and the at least one secondary NN are repeated, until a training requirement is met.
According to an embodiment, the at least one primary NN and the at least one secondary NN are MLP NNs.
According to an embodiment, the object is one of a fuel cell bipolar plate, a part of a car, a part of a plane, a part of a building, pipes of a reactor, flow baffles and so on, that are to be manufactured or designed.
According to an embodiment, the structural quantities comprise at least one of position, radius, width, height, length, anchor points, and so on. The physical quantities comprise at least one of velocity, pressure, temperature, and so on.
Fig. 10 illustrates an exemplary process for predicting physical quantities of an object according to aspects of the disclosure. It is appreciated that the process may be implemented with computers or processors.
At block 1010, structural quantities are received by a HCNN framework, wherein the structural quantities are used to describe boundaries of the object. The HCNN comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein PDEs are formulated to characterize a physical system related  to the object with physical quantities of the object.
At block 1020, a first prediction of solutions of reformulated PDEs is generated by the at least one primary NN. The reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object.
At block 1030, a second prediction of solutions of BCs of the reformulated PDEs is generated by at least using the at least one secondary NN. The BCs are formulated to characterize the physical system related to the boundaries of the object, wherein the second prediction of the solutions of the BCs of the reformulated PDEs comprises prediction of the physical quantities of the object.
At block 1040, a final prediction of solutions of the reformulated PDEs is obtained by assembling the first prediction of solution and the second prediction of solution by the assemble unit. The final prediction of solutions of the reformulated PDEs represents prediction of the physical quantities of the object.
According to an embodiment, the BCs of the boundaries of the object comprise one or more of Dirichlet BC, Neumann BC, and Robin BC.
According to an embodiment, the primary NN corresponds to out-of-boundary region of the object, and the at least one secondary NN corresponds to at least one of the boundaries of the object.
According to an embodiment, the second prediction of the solutions of the BCs of the reformulated PDEs further comprises prediction of the additional quantities representing gradients of the physical quantities of the object.
According to an embodiment, the generating a second prediction of solutions of BCs of the reformulated PDEs at block 1030 further comprises: for each of at least one boundary corresponding to the at least one secondary NN, generating a corresponding part of the second prediction based on constraints of the BC of the boundary and output of a corresponding secondary NN.
According to an embodiment, the generating a second prediction of solutions of BCs of the reformulated PDEs at block 1030 further comprises: for the each of the at least one boundary corresponding to the at least one secondary NN, generating the corresponding part of the second prediction based further on a basis matrix or vector of null space for the boundary, wherein the basis matrix or vector is obtained based on a unit normal of the boundary.
According to an embodiment, the obtaining a final prediction of solutions of the reformulated PDEs at block 1040 further comprises: assembling the first prediction of solution and the second prediction of solution based on a distance of a sampled point of object to the boundaries of the object.
According to an embodiment, the assembling the first prediction of solution and the second prediction of solution at block 1040 further comprises:  assembling respective parts of the second prediction corresponding to the boundaries of the object by ensuring that a part of the second prediction corresponding to any one boundary decays at the other boundaries to an extent of having insignificant influence to the other boundaries.
According to an embodiment, the process 1000 further comprises: obtaining a first discrepancy of the reformulated PDEs based on the final prediction of solutions including the physical quantities of the object and gradients of the physical quantities; obtaining a second discrepancy between the physical quantities and the gradients of the physical quantities in the final prediction of solutions; obtaining a loss based on the first discrepancy and the second discrepancy; and updating the at least one primary NN and the at least one secondary NN based on the loss.
According to an embodiment, the steps of generating a first prediction, generating a second prediction, obtaining a final prediction, obtaining a loss and updating the at least one primary NN and the at least one secondary NN are repeated, until a training requirement is met.
According to an embodiment, the at least one primary NN and the at least one secondary NN areMLP NNs.
According to an embodiment, the object is one of a fuel cell bipolar plate, a part of a car, a part of a plane, a part of a building, pipes of a reactor, flow baffles and so on, that are to be manufactured or designed.
According to an embodiment, the structural quantities comprise at least one of position, radius, width, height, length, anchor points, and so on. The physical quantities comprise at least one of velocity, pressure, temperature, and so on.
Fig. 11 illustrates an exemplary computing system according to aspects of the disclosure. The computing system 1100 may comprise at least one processor 1110. The computing system 1100 may further comprise at least one storage device 1120. The storage device 1120 may store computer-executable instructions that, when executed, cause the processor 1110 to perform any operations according to the embodiments of the present disclosure as described in connection with Figs. 1-10.
The embodiments of the present disclosure may be embodied in a computer-readable medium such as non-transitory computer-readable medium. The non-transitory computer-readable medium may comprise instructions that, when executed, cause one or more processors to perform any operations according to the embodiments of the present disclosure as described in connection with Figs. 1-10.
The embodiments of the present disclosure may be embodied in a computer program product comprising computer-executable instructions that, when executed, cause one or more processors to perform any operations according to the embodiments of the present disclosure as described in connection with Figs. 1-10.
It should be appreciated that all the operations in the methods described above are merely exemplary, and the present disclosure is not limited to any operations in the methods or sequence orders of these operations, and should cover all  other equivalents under the same or similar concepts.
It should also be appreciated that all the modules in the apparatuses described above may be implemented in various approaches. These modules may be implemented as hardware, software, or a combination thereof. Moreover, any of these modules may be further functionally divided into sub-modules or combined together.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein. All structural and functional equivalents to the elements of the various aspects described throughout the present disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims.

Claims (20)

  1. A computer implemented method for optimizing structure of an object, comprising:
    receiving structural quantities by a hard-constraint neural network (NN) framework, wherein the structural quantities are used to describe boundaries of the object, wherein the hard-constraint NN framework comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein partial differential equations (PDEs) are formulated to characterize a physical system related to the object with physical quantities of the object;
    generating a first prediction of solutions of reformulated PDEs by the at least one primary NN, the reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object;
    generating a second prediction of solutions of boundary conditions (BCs) of the reformulated PDEs by at least using the at least one secondary NN, wherein the BCs are formulated to characterize the physical system related to the boundaries of the object, wherein the second prediction of the solutions of the BCs of the reformulated PDEs comprises prediction of the physical quantities of the object;
    obtaining a final prediction of solutions of the reformulated PDEs by assembling the first prediction of solution and the second prediction of solution by the assemble unit, wherein the final prediction of solutions of the reformulated PDEs represents prediction of the physical quantities of the object; and
    updating the structural quantities representing the boundaries of the object based on the physical quantities of the final prediction.
  2. The method of claim 1, wherein the BCs of the boundaries of the object comprising one or more of Dirichlet BC, Neumann BC, and Robin BC.
  3. The method of claim 1, wherein the primary NN corresponds to out-of-boundary region of the object, wherein the at least one secondary NN corresponds to at least one of the boundaries of the object.
  4. The method of claim 1, wherein the second prediction of the solutions of the BCs of the reformulated PDEs further comprises prediction of the additional quantities representing gradients of the physical quantities of the object.
  5. The method of claim 2, the generating a second prediction of solutions of BCs of the reformulated PDEs further comprising:
    for each of at least one boundary corresponding to the at least one secondary NN, generating a corresponding part of the second prediction based on constraints of the BC of the boundary and output of a corresponding secondary NN.
  6. The method of claim 5, the generating a second prediction of solutions of BCs of the reformulated PDEs further comprising:
    for the each of the at least one boundary corresponding to the at least one secondary NN, generating the corresponding part of the second prediction based further on a basis matrix or vector of null space for the boundary, wherein the basis matrix or vector is obtained based on a unit normal of the boundary.
  7. The method of claim 2, wherein the obtaining a final prediction of solutions of the reformulated PDEs by assembling the first prediction of solution and the second prediction of solution by the assemble unit further comprising:
    assembling the first prediction of solution and the second prediction of solution based on a distance of a sampled point of object to the boundaries of the object.
  8. The method of claim 7, wherein the assembling the first prediction of solution and the second prediction of solution further comprising assembling respective parts of the second prediction corresponding to the boundaries of the object by ensuring that a part of the second prediction corresponding to any one boundary decays at the other boundaries to an extent of having insignificant influence to the other boundaries.
  9. The method of claim 2, further comprising:
    obtaining a first discrepancy of the reformulated PDEs based on the final prediction of solutions including the physical quantities of the object and gradients of the physical quantities;
    obtaining a second discrepancy between the physical quantities and the gradients of the physical quantities in the final prediction of solutions;
    obtaining a loss based on the first discrepancy and the second discrepancy; and
    updating the at least one primary NN and the at least one secondary NN based on the loss.
  10. The method of claim 9, further comprising:
    repeating the steps of generating a first prediction, generating a second prediction, obtaining a final prediction, obtaining a loss and updating the at least one primary NN and the at least one secondary NN, until a training requirement is met.
  11. The method of claim 1, wherein the at least one primary NN and the at least one secondary NN are multilayer perceptron (MLP) NNs.
  12. The method of claim 1, wherein the object is one of a fuel cell bipolar plate, a part of a car, a part of a plane, a part of a building, pipes of a reactor, flow baffles.
  13. The method of claim 1, wherein the structural quantities comprise at least one of position, radius, width, height, length, anchor points, and the physical quantities comprise at least one of velocity, pressure, temperature.
  14. A computer implemented method for predicting physical quantities of an object, comprising:
    receiving structural quantities by a hard-constraint neural network (NN) framework, wherein the structural quantities are used to describe boundaries of the object, wherein the hard-constraint NN framework comprises at least one primary NN, at least one secondary NN and an assemble unit, wherein partial differential equations (PDEs) are formulated to characterize a physical system related to the object with physical quantities of the object;
    generating a first prediction of solutions of reformulated PDEs by the at least one primary NN, the reformulated PDEs are obtained by substituting gradients of the physical quantities in the PDEs with additional quantities, wherein the first prediction of the solutions of the reformulated PDEs comprises prediction of the physical quantities of the object and the additional quantities representing gradients of the physical quantities of the object;
    generating a second prediction of solutions of boundary conditions (BCs) of the reformulated PDEs by at least using the at least one secondary NN, wherein the BCs are formulated to characterize the physical system related to the boundaries of the object, wherein the second prediction of the solutions of the BCs of the reformulated PDEs comprises prediction of the physical quantities of the object;
    obtaining a final prediction of solutions of the reformulated PDEs by assembling the first prediction of solution and the second prediction of solution by the assemble unit, wherein the final prediction of solutions of the reformulated PDEs represents prediction of the physical quantities of the object.
  15. The method of claim 14, wherein the BCs of the boundaries of the object comprising one or more of Dirichlet BC, Neumann BC, and Robin BC.
  16. The method of claim 15, the generating a second prediction of solutions of BCs of the reformulated PDEs further comprising:
    for each of the at least one boundary corresponding to the at least one secondary NN, generating a corresponding part of the second prediction based on constraints of the BC of the boundary and output of a corresponding secondary NN.
  17. The method of claim 15, wherein the obtaining a final prediction of solutions of the reformulated PDEs by assembling the first prediction of solution and the second prediction of solution by the assemble unit further comprising:
    assembling the first prediction of solution and the second prediction of solution based on a distance of a sampled point of object to the boundaries of the object.
  18. The method of claim 13, further comprising:
    obtaining a first discrepancy of the reformulated PDEs based on the final prediction of solutions including the physical quantities of the object and the gradients of the physical quantities;
    obtaining a second discrepancy between the physical quantities and the gradients of the physical quantities in the final prediction of solutions;
    obtaining a loss based on the first discrepancy and the second discrepancy; and
    updating the at least one primary NN and the at least one secondary NN based on the loss.
  19. A computer system, comprising:
    one or more processors; and
    one or more storage devices storing computer-executable instructions that, when executed, cause the one or more processors to perform the operations of the method of one of claims 1-18.
  20. One or more computer readable storage media storing computer-executable instructions that, when executed, cause one or more processors to perform the operations of the method of one of claims 1-18.
PCT/CN2022/115720 2022-08-30 2022-08-30 Method and apparatus for structural optimizition WO2024044935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115720 WO2024044935A1 (en) 2022-08-30 2022-08-30 Method and apparatus for structural optimizition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115720 WO2024044935A1 (en) 2022-08-30 2022-08-30 Method and apparatus for structural optimizition

Publications (1)

Publication Number Publication Date
WO2024044935A1 true WO2024044935A1 (en) 2024-03-07

Family

ID=90100129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115720 WO2024044935A1 (en) 2022-08-30 2022-08-30 Method and apparatus for structural optimizition

Country Status (1)

Country Link
WO (1) WO2024044935A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133616A1 (en) * 2002-09-09 2004-07-08 Carmel - Haifa University Economic Corporation Ltd Apparatus and method for efficient adaptation of finite element meshes for numerical solutions of partial differential equations
EP3772021A1 (en) * 2019-08-02 2021-02-03 Robert Bosch GmbH Apparatus and computer-implemented method for determining at least one solver-based estimate, and apparatus and computer-implemented method for training a deep neural network
CN112529328A (en) * 2020-12-23 2021-03-19 长春理工大学 Product performance prediction method and system
CN114781610A (en) * 2022-04-20 2022-07-22 华为技术有限公司 Data processing method, neural network training method and related equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133616A1 (en) * 2002-09-09 2004-07-08 Carmel - Haifa University Economic Corporation Ltd Apparatus and method for efficient adaptation of finite element meshes for numerical solutions of partial differential equations
EP3772021A1 (en) * 2019-08-02 2021-02-03 Robert Bosch GmbH Apparatus and computer-implemented method for determining at least one solver-based estimate, and apparatus and computer-implemented method for training a deep neural network
CN112529328A (en) * 2020-12-23 2021-03-19 长春理工大学 Product performance prediction method and system
CN114781610A (en) * 2022-04-20 2022-07-22 华为技术有限公司 Data processing method, neural network training method and related equipment

Similar Documents

Publication Publication Date Title
He et al. A review of surrogate-assisted evolutionary algorithms for expensive optimization problems
Júnior et al. Intelligent data-driven aerodynamic analysis and optimization of morphing configurations
Shukla et al. Deep neural operators can serve as accurate surrogates for shape optimization: a case study for airfoils
Khatouri et al. Metamodeling techniques for CPU-intensive simulation-based design optimization: a survey
Su et al. A hybrid hyper-heuristic whale optimization algorithm for reusable launch vehicle reentry trajectory optimization
Merrill et al. Moving overlapping grid methodology of spectral accuracy for incompressible flow solutions around rigid bodies in motion
Koziel et al. Expedited constrained multi-objective aerodynamic shape optimization by means of physics-based surrogates
Boncoraglio et al. Active manifold and model reduction for multidisciplinary analysis and optimization
Li et al. A generative deep learning approach for real-time prediction of hypersonic vehicles in fluid-thermo-structural coupling fields
Theodoropoulos Optimisation and linear control of large scale nonlinear systems: A review and a suite of model reduction-based techniques
WO2024044935A1 (en) Method and apparatus for structural optimizition
Zhang et al. Multi-fidelity expected improvement based on multi-level hierarchical kriging model for efficient aerodynamic design optimization
Chen et al. Developing an advanced neural network and physics solver coupled framework for accelerating flow field simulations
WO2023206204A1 (en) Method and apparatus for structure optimizition
Sun et al. Physics-informed deep learning for simultaneous surrogate modelling and pde-constrained optimization
Sunny et al. An artificial neural network residual kriging based surrogate model for shape and size optimization of a stiffened panel
Koratikere et al. Constrained Aerodynamic Shape Optimization Using Neural Networks and Sequential Sampling
Zhu et al. A sequential radial basis function method for interval uncertainty analysis of multidisciplinary systems based on trust region updating scheme
Emre Tekaslan et al. Multifidelity prediction framework with convolutional neural networks using high-dimensional data
Zheng An output mapping variable fidelity metamodeling approach based on nested Latin hypercube design for complex engineering design optimization
Hu et al. Reentry trajectory optimization for hypersonic vehicles using fuzzy satisfactory goal programming method
Yao et al. State space representation and phase analysis of gradient descent optimizers
Alimo et al. Delaunay-based optimization in CFD leveraging multivariate adaptive polyharmonic splines (MAPS)
Poole et al. Optimal domain element shapes for free-form aerodynamic shape control
Patel et al. Machine learning based model reduction for fluid-structure interaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956770

Country of ref document: EP

Kind code of ref document: A1