WO2024043303A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2024043303A1
WO2024043303A1 PCT/JP2023/030465 JP2023030465W WO2024043303A1 WO 2024043303 A1 WO2024043303 A1 WO 2024043303A1 JP 2023030465 W JP2023030465 W JP 2023030465W WO 2024043303 A1 WO2024043303 A1 WO 2024043303A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
speed
hydraulic actuator
force
target
Prior art date
Application number
PCT/JP2023/030465
Other languages
French (fr)
Japanese (ja)
Inventor
亮 菊植
裕貴 山本
Original Assignee
コベルコ建機株式会社
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023127490A external-priority patent/JP2024031851A/en
Application filed by コベルコ建機株式会社, 国立大学法人広島大学 filed Critical コベルコ建機株式会社
Publication of WO2024043303A1 publication Critical patent/WO2024043303A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present invention relates to a control device and a control method for controlling the position of a controlled object driven by a hydraulic actuator or the force acting on the controlled object.
  • Patent Document 1 a prediction equation for predicting the position and velocity of the controlled object at the next time step and an equation representing a sliding mode control law are solved as simultaneous equations based on prior information on the dynamic characteristics of the controlled object, and the manipulated variable is
  • the control algorithm is simplified by calculating the valve opening command to the hydraulic actuator.
  • An object of the present invention is to obtain high control performance for position control or force control even when the accuracy of prior information regarding the dynamic characteristics of a controlled object is low or when there is a time delay in the response of a hydraulic actuator.
  • the objective is to provide a control device and a control method that can
  • a control device includes an operation command unit that controls a hydraulic actuator that drives a machine to be controlled, and a next time step of the machine based on a target position and a current position of the machine.
  • an ideal speed calculation unit that calculates the ideal speed that should be generated at A reference speed that is a similar speed and a reference generated force that is an actuator force that should be generated when PID control or PD control is performed using the reference speed as a target speed are determined based on the quasi-static characteristics of the hydraulic actuator.
  • the hydraulic actuator, and an operation amount calculation section that calculates the operation amount of the hydraulic actuator based on the quasi-static characteristics of the hydraulic actuator, the reference generated force, and the reference speed.
  • control method is based on the target position and current position of a machine to be controlled driven by a hydraulic actuator, and the ideal speed to be generated in the next time step of the machine. and a reference speed which is the speed closest to the ideal speed among the target speeds at which the actuator force that can be generated when PID control or PD control is implemented with the hydraulic actuator.
  • a reference speed calculation step of calculating a reference generated force which is an actuator force that should be generated when PID control or PD control is performed with the reference speed as a target speed, based on the quasi-static characteristics of the hydraulic actuator.
  • FIG. 1 is a schematic diagram showing the configuration of a hydraulic actuator according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view schematically showing the shovel according to the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of the control system according to the first embodiment.
  • FIG. 4 is a conceptual diagram showing a method of controlling a plurality of hydraulic actuators.
  • FIG. 5 is a flowchart showing the flow of position control according to the first embodiment.
  • FIG. 6 is a diagram showing the attitude of the hydraulic excavator and the trajectory of the target position according to a numerical example.
  • FIG. 7A is a conceptual diagram showing the flow of processing in a control law, and is a diagram in the case of a conventional control law.
  • FIG. 1 is a schematic diagram showing the configuration of a hydraulic actuator according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view schematically showing the shovel according to the first embodiment.
  • FIG. 3 is a block diagram showing
  • FIG. 7B is a conceptual diagram showing the flow of processing in the control law, and is a diagram in the case of the control law according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing simulation results using a conventional control law and a control law according to Embodiment 1 of the present invention.
  • FIG. 9A is a diagram showing simulation results for comparing the effects of modeling errors, and is a diagram for the case of the control law according to Embodiment 1 of the present invention without reproducing circuit compensation.
  • FIG. 9B is a diagram showing simulation results for comparing the effects of modeling errors, and is a diagram for the case of the control law according to the first embodiment of the present invention with reproducing circuit compensation.
  • FIG. 9C is a diagram showing simulation results for comparing the effects of modeling errors, and is a diagram for a conventional control law.
  • FIG. 10 is a block diagram showing the configuration of a control system according to the second embodiment.
  • FIG. 11 is a functional block diagram showing the configuration of a control system according to the second embodiment.
  • FIG. 12 is a flowchart showing the flow of force control according to the second embodiment.
  • FIG. 13 is a conceptual diagram showing the configuration of a hydraulic testing machine according to a numerical example.
  • FIG. 14A is a graph showing a simulation result related to a numerical example in the case of stepped input, and is a graph when the hardness of the contact environment is 50HS.
  • FIG. 14B is a graph showing a simulation result related to a numerical example in the case of stepped input, and is a graph when the hardness of the contact environment is 65HS.
  • FIG. 14C is a graph showing a simulation result regarding a numerical example in the case of stepped input, and is a graph when the hardness of the contact environment is 70HS.
  • FIG. 15A is a graph showing simulation results according to a numerical example in the case of a sine wave input, and is a graph when the hardness of the contact environment is 50HS.
  • FIG. 15B is a graph showing a simulation result related to a numerical example in the case of a sine wave input, and is a graph when the hardness of the contact environment is 65HS.
  • FIG. 15C is a graph showing simulation results regarding a numerical example in the case of a sine wave input, and is a graph when the hardness of the contact environment is 70HS.
  • the hydraulic actuator 1 includes a hydraulic pump 11a that supplies hydraulic pressure, a pump relief valve 11b, a bleed valve 11c, a pump check valve 11d, a main control valve 12 that controls hydraulic pressure, a rod-side relief valve 13a, and a rod. It includes a side check valve 13b, a head side relief valve 14a, a head side check valve 14b, and a cylinder 15 operated by hydraulic control.
  • the hydraulic actuator 1 also includes a regeneration circuit 16, and the regeneration circuit 16 includes a check valve 16a and a flow control valve 16b.
  • X represents a real closed interval
  • p represents the position of the controlled object
  • v represents the speed of the controlled object
  • M represents the mass of the controlled object
  • Actuator force f and external force g act on the controlled object in the above equation.
  • the set value function ⁇ is a quasi-static model of the hydraulic actuator, and is given as a set value function from the current speed v and the manipulated variable u, which is the valve opening command, to the actuator force f.
  • a concrete example of the set-valued function ⁇ which is a quasi-static model of the hydraulic actuator 1 that is driven with the regeneration circuit 16 removed from the hydraulic circuit of the hydraulic actuator 1 in FIG. 1, that is, with the regeneration circuit 16 always closed.
  • the shape is described in the known document 1 (R. Kikuuwe, et al., “A nonsmooth quasi-static modeling approach for hydraulic actuators ,” J. Dyn.
  • the manipulated variable u ⁇ B which is the second argument of the function ⁇ , is a variable that indicates the degree of opening of the four main control valves 12 shown in FIG.
  • the manipulated variable u and the opening degree u * ⁇ [0,1](* ⁇ ph, pr, th, tr ⁇ ) of the main control valve 12 have a relationship expressed by the following equation (7).
  • the manipulated variable u which is a positive control input, becomes a command to extend the cylinder
  • the manipulated variable u which is a negative control input
  • position control laws for the hydraulic actuator shown in the following equations (8a), (8b), (8c), and (8d) are used.
  • K, L, D are PID gain
  • H time constant
  • pd is target position
  • p is current position
  • vr is reference speed
  • u command to actuator
  • f ⁇ reference generated force of actuator
  • a is the error integral value of the PID controller.
  • g is an estimated value of external force. If an estimated value of the external force cannot be obtained, g may be set to 0, but if an estimated value can be obtained, better control performance can be obtained by setting the value to g.
  • the function ⁇ is an inverse function regarding the second argument of the set-valued function ⁇ , and is a set-valued function that has a relationship with the set-valued function ⁇ according to the following equation (9).
  • Equation (8a) is a PID control law constructed based on the speed p ⁇ and the reference speed vr . Further, equation (8b) is a sliding mode control law using equation (10) below as a switching plane.
  • the PID control law of equation (8a) and the sliding mode control law of equation (8b) are combined.
  • this method will be referred to as differential algebraic relaxation.
  • the sliding mode control law of Equation (8b) since the right side is a set value, the value is not uniquely determined, and it is not suitable for implementation alone.
  • this problem can be avoided and the reference generated force f ⁇ can be calculated (calculated, the same applies hereafter). Note that in each formula, symbols such as dots placed above the symbols are placed after the symbols in the main text, but both indicate the same thing.
  • Equation (11) Equation (11f) from Equation (11a)
  • T is a sampling interval and k ⁇ Z is a discrete time index.
  • v s , k can be interpreted as the ideal speed to be achieved in the next step by the sliding mode control law. Further, v f , k can be interpreted as a temporary target speed such that the force generated by the hydraulic actuator becomes 0 when the PID control law is implemented with the hydraulic actuator.
  • equation (12a) can be rewritten as equation (14) below.
  • the function ⁇ s and the function ⁇ s are single-valued functions that have a relationship with the function ⁇ and the function ⁇ as shown in the following equations (16) and (17).
  • the set value function ⁇ can be obtained from the quasi-static characteristics of the hydraulic actuator (the relationship among the speed v at steady speed, the generated force f, and the manipulated variable u that is the valve opening command). Further, the set-valued function ⁇ can be obtained from the set-valued function ⁇ using equation (9). Using these relationships, Equation (16), and Equation (17), the single-valued function ⁇ s and the single-valued function ⁇ s can be obtained. Specifics of the single-valued function ⁇ s and the single-valued function ⁇ s of the hydraulic actuator 1 that is driven in a state in which the regeneration circuit 16 is removed from the hydraulic circuit of the hydraulic actuator 1 shown in FIG. 1, that is, in a state in which the regeneration circuit 16 is always closed. The formula (34) of the well-known document 2 and III. Each is shown in Section C.
  • the pair of the generated force f k that can be generated by the hydraulic actuator 1 at time k and the target speed v r , k that produces the generated force f k is a real number that satisfies the following two equations (18a) and (18b). is the pair ⁇ f k ⁇ , v r , k ⁇ .
  • Equation (15b), (15c), and (15d) calculate the ideal speed v s , among the target speeds v f , k at which the actuator force that can be generated when the hydraulic actuator 1 performs PID control is calculated.
  • Reference generated force f k ⁇ which is the actuator force to be generated when PID control is performed using the reference speed v r , k which is the speed closest to k and the reference speed v r , k as the target speed v f , k
  • a double implicit implementation method is used to deal with the set value nature of the sliding mode control law.
  • a control algorithm is constructed by discretizing both the control law and the dynamic characteristic model of the controlled object using the backward Euler method and combining them.
  • the control method based on differential algebraic relaxation according to the present embodiment does not require a dynamic characteristic model for implementation, so it has a structure that is more resistant to modeling errors than conventional control methods. Furthermore, sensitivity to modeling errors and dead time can be adjusted by adjusting the gains of the PID controllers that are coupled through differential algebraic relaxation.
  • the target position p d , k and the current position p k of the hydraulic actuator more specifically, the target position p d , k and the current position
  • the ideal speed vs , k to be generated by the hydraulic actuator at the next time step is calculated (ideal speed calculation step , formula (19a)).
  • a reference speed v is the speed closest to the ideal speed v s , k . r , k and a reference generated force f k ⁇ which is the actuator force to be generated when PID control or PD control is performed with the reference speed v r , k as the target speed, using a quasi-static model of the hydraulic actuator.
  • the operation amount u k of the hydraulic actuator is calculated based on the quasi-static model ⁇ of the hydraulic actuator, the calculated reference generated force f k ⁇ , and the reference speed v r , k (operation amount calculation step, formula (19f)).
  • the hydraulic actuator 1 includes a regeneration circuit 16 as shown in FIG.
  • u reg indicates the opening degree of the flow rate control valve 16b of the regeneration circuit 16.
  • the coefficient c reg is defined as C reg a reg ⁇ 2/ ⁇ , where ⁇ is the mass density of the hydraulic oil, a reg is the maximum opening area of the flow control valve 16b, and C reg is the outflow coefficient.
  • An algorithm for implementing the control law including the variable v reg can be obtained by discretizing the control law of Equation (21) by applying a procedure similar to the derivation of the algorithm of Equation (15).
  • the derived algorithm is obtained by replacing equation (15a) of the algorithm expressed by equation (15) with equation (22) below.
  • the value of the variable v reg , k may be calculated for each time step related to the calculation using equation (20). Moreover, at this time, the gravity acting on the cylinder 15 derived from the joint angle and the mass of the link can be used as the external force g.
  • Control system configuration As an example of a specific control system configuration, a case will be described in which the position of a bucket of an excavator driven by a plurality of hydraulic actuators is controlled.
  • a control unit 50 which is a position control device according to this embodiment, is mounted on the shovel 30 shown in FIG. 2 and controls the operation of the shovel 30.
  • the excavator 30 includes a lower traveling body 31, an upper revolving body 32, and a working device 40.
  • the lower traveling body 31 is a portion on which the excavator 30 travels, and is, for example, a crawler.
  • the upper rotating body 32 is rotatably attached to the lower traveling body 31 via a rotating motor 47 .
  • a driver's cab in which an operator operates the shovel 30, a working device 40, and the like are arranged in the upper revolving body 32.
  • the working device 40 includes a boom 41 rotatably attached to the upper revolving structure 32, an arm 42 rotatably attached to the boom 41, and a bucket 43 rotatably attached to the arm 42 for digging and the like.
  • the working device 40 also includes a boom cylinder 44 connected to the upper revolving body 32 and the boom 41 to operate the boom 41, an arm cylinder 45 connected to the boom 41 and the arm 42 to operate the arm 42, an arm 42, and a bucket 43.
  • the bucket cylinder 46 is connected to the bucket cylinder 46 to operate the bucket 43
  • the swing motor 47 is connected to the lower traveling body 31 and the upper rotating body 32 to operate the upper rotating body 32.
  • the boom cylinder 44, arm cylinder 45, bucket cylinder 46, and swing motor 47 (hereinafter also referred to as actuators 44 to 47) are hydraulic actuators driven by hydraulic pressure.
  • the control unit 50 is mounted on the excavator 30, and includes a control section 51, a storage section 52, a display section 53, and an input section 54, as shown in the block diagram of FIG.
  • the control unit 50 is connected to a position sensor 48, a speed sensor 49, each actuator 44 to 47, etc., and controls the operation of each part of the shovel 30.
  • the control unit 51 is a computer device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc., and controls the operation of the shovel 30.
  • the control unit 51 performs each function as the control unit 51 shown in FIG. 3 by loading various operating programs and data stored in the ROM, storage unit 52, etc. of the control unit 51 into the RAM and operating the CPU. make it happen.
  • the control unit 51 includes the ideal speed calculation unit 511 (ideal speed calculation unit), the reference speed calculation unit 512 (reference calculation calculation unit), the operation amount calculation unit 513 (operation amount calculation unit), the external force estimation unit 514, and the operation It operates as a command unit 515.
  • the ideal speed calculation section 511, the reference speed calculation section 512, and the operation amount calculation section 513 calculate the measured values that are the outputs of the position sensor 48 and the speed sensor 49, and the target position of the bucket 43, more specifically, at a predetermined position of the excavator 30. Based on the target position of the tip of a certain bucket 43 (hereinafter referred to as bucket tip 43a), the operation amount u of each actuator 44 to 47 for operating the working device 40 is calculated.
  • the external force estimation unit 514 estimates the magnitude of the external force acting on each actuator 44 to 47.
  • the method for estimating the external force is not particularly limited, and can be estimated based on the output of a sensor (not shown) installed on each actuator 44 to 47, for example.
  • the operation command section 515 controls each of the actuators 44 to 47 based on the operation amount u calculated by the operation amount calculation section 513, and operates the upper revolving structure 32, boom 41, arm 42, and bucket 43.
  • the storage unit 52 is a nonvolatile memory such as a hard disk or a flash memory, and stores various setting parameters, control algorithms for calculating the manipulated variable u, and the like.
  • the display unit 53 is a display device such as a liquid crystal panel or an organic EL (electroluminescence), and displays various setting parameters, detected values of the position sensor 48 and speed sensor 49, and the like.
  • the display unit 53 according to this embodiment is a liquid crystal panel installed in the driver's cab of the excavator 30.
  • the input unit 54 is an input device for inputting various setting parameters for operating the shovel 30, such as the target position of the bucket tip 43a.
  • the input unit 54 is, for example, a touch panel placed on the display unit 53.
  • the position sensor 48 is a sensor that detects the position of the working device 40 of the excavator 30 to be controlled, and the position sensor 48 according to the present embodiment includes a swing angle sensor 484 that detects the angle of the upper swing structure 32,
  • the boom angle sensor 481 detects the angle of the arm, the arm angle sensor 482 detects the angle of the arm, and the bucket angle sensor 483 detects the angle of the bucket.
  • the control unit 51 controls the boom cylinder 44, arm cylinder 45, and bucket cylinder 46 (hereinafter referred to as The length of each cylinder 44 to 46 (also referred to as 46) and the angle of the swing motor 47 are calculated, and the position of the bucket tip 43a is controlled based on the calculated length of each cylinder 44 to 46 and the angle of the swing motor 47. I do.
  • the speed sensor 49 is a sensor that detects the speed of each part of the working device 40, and the speed sensor 49 according to the present embodiment includes a swing angular velocity sensor 494 that detects the angular velocity of the upper rotating body 32, and a swing angular velocity sensor 494 that detects the expansion and contraction speed of the boom cylinder.
  • An arm speed sensor 492 detects the expansion/contraction speed of the arm cylinder, and a bucket speed sensor 493 detects the expansion/contraction speed of the bucket cylinder.
  • the position control process of the bucket tip 43a by the control unit 50 will be described below.
  • a control algorithm for calculating the operation amount u of each cylinder 44 to 46 which are hydraulic actuators, will be explained as an example. Note that in the following embodiment, only each of the cylinders 44 to 46 is used, but the invention is not limited to this.
  • the position of the bucket tip 43a may be controlled by configuring a controller that adds the rotation angle of the upper rotating body 32 to the coordinates of the target position pd. More specifically, as shown in FIG.
  • a swing angle sensor 484 as the position sensor 48 and a swing angular velocity sensor 494 as the speed sensor 49 are used to operate the swing motor 47, which is a hydraulic actuator, and the boom 41 , the arm 42, and the bucket 43 to control the position of the bucket tip 43a.
  • control unit 51 calculates the operation amount u of each cylinder 44 to 46 based on the target position, desired behavior, current position, current speed, etc. of the given controlled object.
  • the desired behavior is, for example, the time constant of the convergence movement of the controlled object to the target position.
  • the operator of the excavator 30 inputs and sets the target position pd of the bucket tip 43a from the input unit 54 (step S11).
  • the target position pd may be entered by inputting coordinates using the input unit 54, which is a touch panel, or by setting the coordinates of the bucket tip 43a manually moved using an operating lever as the target position pd . good.
  • the target position pd may be set by reading the coordinates on the design surface that are stored in advance in the storage unit 52.
  • the operator also inputs and sets parameters such as the time constant H that represents the desired behavior. These parameters may be set by reading values stored in advance in the storage unit 52.
  • the control unit 51 calculates the target length of each cylinder 44 to 46 at the target position p d from the input target position p d by inverse kinematics (step S12). Then, as shown in FIG. 4, the position of the bucket tip 43a is controlled by controlling the cylinders 44 to 46 to expand and contract so that the lengths of the cylinders 44 to 46 become the respective target lengths.
  • the ideal speed calculation unit 511 of the control unit 51 calculates the ideal speed v s , k to be generated at the next time step as an ideal speed calculation step (step S13). More specifically, the control unit 51 acquires angle data of each part of the working device 40 from a boom angle sensor 481, an arm angle sensor 482, and a bucket angle sensor 483 (hereinafter also referred to as each angle sensor 481 to 483). . The control unit 51 calculates the current position p k , which is the length of each cylinder 44 to 46, based on the acquired angle data.
  • the control unit 51 calculates the calculated current position p k (m), the set target position p d , k (m), the target speed v d , k (m/s), the time constant H (s), and the equation (15a). ) or the ideal speed v s , k of each cylinder 44 to 46 is calculated based on equation (22).
  • the control period is, for example, 10 ms (milliseconds), although it is not particularly limited.
  • the reference speed calculation unit 512 of the control unit 51 calculates the current speed vk (m/sec), the set PID gains K, L, D, the control period T (sec), and the formula ( 15b) to (15e) or equations (19b) to (19e), the reference speed vr, k and reference generated force f k ⁇ of the next time step are calculated (step S14). More specifically, the reference speed calculation unit 512 obtains the current speed v k of each cylinder 44 to 46 from the boom speed sensor 491, arm speed sensor 492, and bucket speed sensor 493.
  • the reference speed calculation unit 512 selects the ideal speed v s , k that is the most suitable among the target speeds v f , k for which the actuator force f that can be generated when PID control or PD control is performed with the hydraulic actuator is calculated.
  • the reference speed v r , k which is a similar speed and the reference generated force f k ⁇ which is the actuator force that should be generated when PID control or PD control is performed with the reference speed v r , k as the target speed are Calculated based on the quasi-static model ⁇ of the pressure actuator.
  • the manipulated variable calculation unit 513 of the control unit 51 calculates the manipulated variables u k of each cylinder 44 to 46 as a manipulated variable calculation step (step S15). Specifically, the operation amount calculation unit 513 calculates the operation amount u k based on the reference speed v r , k and the reference generated force f k ⁇ calculated in step S14, and the quasi-static model ⁇ of the hydraulic actuator . is calculated (Equations (15f), (17)).
  • the operation command unit 515 of the control unit 51 outputs the calculated operation amount u k to each cylinder 44 to 46, and operates the boom 41, arm 42, and bucket 43 to move the bucket tip 43a (step S16).
  • the control unit 51 When the next time step is reached, the control unit 51 newly acquires the current position p k of each cylinder 44 to 46 from the position sensor 48. If the difference between the acquired current position p k and target position p d , k is less than or equal to a predetermined threshold (YES in step S17), the control unit 51 ends the position control.
  • control unit 51 performs the ideal speed calculation process in step S13. return. Then, the control unit 51 calculates the operation amount u k at the time step in accordance with the control algorithm, and moves the bucket tip 43a. By repeating this, the control unit 51 performs position control so that the position of the bucket tip 43a is set to the target position pd .
  • control device and control method for position control of this embodiment uses a PID control law or a PD control law for making the speed of a controlled object follow a reference speed, and a sliding mode control law. Since the reference speed and actuator force are calculated simultaneously, and the operation amount of the hydraulic actuator is calculated based on the quasi-static characteristics of the hydraulic actuator, control can be performed without depending on the dynamic characteristic model of the controlled object. . Therefore, even when the accuracy of prior information on the dynamic characteristics of the controlled object is low or when there is a time delay in the response of the hydraulic actuator, it is possible to obtain high control performance.
  • the cylinder force generated in the real-time simulator is calculated based on the quasi-static model of the hydraulic actuator described in the above-mentioned known document 1. Further, the arm cylinder generated force is calculated based on a quasi-static model including a regeneration circuit described in the well-known document 1.
  • a filter expressed by the following equation (23) is installed between the actuator model and the controller.
  • u f is the filtered control input.
  • FIG. 6 shows the attitude of the shovel 30 and the trajectory of the target position qd .
  • the target position q d and the rate of change over time of the target position q d are as shown in equation (24) below, and the magnitude of the rate of change over time of the target position q d is constant.
  • K 3 ⁇ 10 5 N/m
  • B 3 ⁇ 10 5 N ⁇ s/m
  • H 1.0 s for both the boom 41 and arm 42 of the excavator 30.
  • the parameters of the actuator model in the control law were set to the same values as the parameters of the controlled object.
  • control law A is a conventional sliding mode control law (control law according to known document 2) based on the double implicit implementation shown in FIG. 7A
  • control law B is the present implementation shown in FIG. 7B.
  • Control law B is expressed by the following formula (25) (formula (25a), formula (25b)).
  • the proportional gain K p , the differential gain K d and the integral gain K i were set to 3 ⁇ 10 8 N/m, 3 ⁇ 10 8 N ⁇ s/m, and 0, respectively. These gain values were adjusted by trial and error through repeated simulations.
  • FIG. 8 is a diagram showing the simulation results.
  • the control method according to the present embodiment (proposed method in the figure) with regenerative circuit compensation enabled is effective in controlling the target position and the arm tip position (hand position in FIG. 8; also in subsequent figures) over the entire range. (similar) gave the best result with the least error.
  • control method (control law B) according to the present embodiment without reproducing circuit compensation errors are large due to the influence of the reproducing circuit during vertical lowering and horizontal pulling when the reproducing circuit opens.
  • FIGS. 9A, 9B, and 9C are diagrams showing simulation results. Comparing FIG. 9C using control law A, FIG. 9A using control law B without regeneration circuit compensation, and FIG. 9B using control law B with regeneration circuit compensation, FIGS. 9A and 9B are better.
  • the trajectories of simulation results are clustered near the trajectories of the ideal case with no parameter errors. This shows that the control method according to this embodiment causes little change in control performance with respect to parameter errors. This result is considered to be due to the fact that the control method according to the present embodiment does not depend on the dynamic characteristic model of the controlled object and has low model dependence.
  • control law A performs dead time compensation based on a quasi-static model and a dynamic characteristic model of the controlled object, it is considered that the influence of parameter errors was more pronounced. From a comparison between FIGS. 9A and 9B, it can be seen that even in a situation where there is a parameter error, the hand trajectory can be brought closer to the trajectory of the target position qd by compensating for the influence of the reproducing circuit.
  • position control is performed by sliding mode control that is algebraically combined with PID control or PD control, and the dynamic characteristics of the controlled object are Since it has a structure that does not depend on the model, it is less susceptible to the effects of parameter errors, dead time, etc. Therefore, even a hydraulic actuator with a large dead time can be appropriately controlled. Also, since it is based on a quasi-static model of the hydraulic actuator, it can handle the strong nonlinearity of the hydraulic actuator.
  • control device and control method according to this embodiment are expanded to compensate for the influence of the reproducing circuit. Therefore, it is also applicable to a hydraulic actuator equipped with a regeneration circuit.
  • the speed sensor 49 is used to measure the expansion and contraction speed of each cylinder 44 to 46, but the invention is not limited to this.
  • the control unit 51 may calculate the speed of each cylinder 44 to 46 based on angle data measured by each angle sensor 481 to 483.
  • Embodiment 2 a case has been described in which the position of a controlled object driven by a hydraulic actuator is controlled; however, it is also possible to perform force control of a controlled object using the same control law as in Embodiment 1. .
  • a control device and a control method for force-controlling a controlled object driven by a hydraulic actuator will be described.
  • the force control device and the force control method will be described using an example in which admittance control is performed on a controlled object driven by the hydraulic actuator 1 similar to the first embodiment.
  • the control system according to the present embodiment has a feedback loop for performing force control, and in order to realize this, the control section 51' includes a reference position calculation section 516 (reference position calculation section).
  • the control section 51' includes a reference position calculation section 516 (reference position calculation section).
  • reference position calculation section 516 reference position calculation section
  • the control system uses the measured value of force f e (hereinafter also referred to as reaction force) applied from the environment to the hydraulic actuator 1 to be controlled, and the hydraulic pressure.
  • the operation of the hydraulic actuator 1 is controlled in admittance by inputting a target applied force fd , which is a target value of the force that the actuator 1 applies to the environment.
  • the admittance control according to this embodiment is force control based on position control, as shown in FIG. More specifically, in the admittance control according to the present embodiment, the position p of the rod of the hydraulic actuator 1 to be controlled is controlled by the internal position controller that performs position control according to Embodiment 1 to match the target position of the control target.
  • Control is performed to follow the position q of a virtual object having dynamic characteristics.
  • the target dynamic characteristics of the virtual object are dynamic characteristics defined by the target inertia and target viscosity of the controlled object, and the virtual object according to the present embodiment is expressed as a mass damper system that models the dynamic characteristics of the hydraulic actuator 1. be done.
  • the target applied force f d and the reaction force f e measured as the force that the hydraulic actuator 1 receives from the environment due to contact between the controlled object and the highly rigid external environment are acting on the virtual object. Assuming that.
  • control law that is, the operation amount u of the hydraulic actuator when a machine driven by a hydraulic actuator is controlled, and force control is performed when the controlled object contacts a highly rigid environment.
  • the control algorithm that determines this will be explained.
  • p represents the position of the controlled object
  • v represents the speed of the controlled object
  • M represents the mass of the controlled object
  • the set value function ⁇ is a quasi-static model of the hydraulic actuator similar to Embodiment 1, and is given as a set value function from the current speed v and the manipulated variable u, which is the valve opening command, to the actuator generated force f. It will be done.
  • the control input u ⁇ B determines the degree of opening of the flow control valve.
  • the flow control valve opens so that the oil flow inside the hydraulic actuator is generated in the direction of extending the hydraulic actuator when u>0 and in the direction of contracting the hydraulic actuator when u ⁇ 0. Note that there is no assumption that M is known. It is assumed that p can be obtained by a position sensor.
  • Equation (28a) represents the dynamic characteristics of the virtual object driven by the target applied force f d and the measured reaction force f e from the environment.
  • the third term on the right side of equation (28a), N [-vm, vm] ( q . It has the effect of limiting the Equations (28b) to (28d) are a position controller that causes the position p of the controlled object to follow the position q of the virtual object, and represent the same control law as the position controller according to the first embodiment. Further, this position controller has PID gains K and B and a time constant H as adjustable parameters.
  • A ⁇ KT+B
  • k represents a discrete time index
  • the force control algorithm according to the present embodiment is based on equations (29c) to (29i), which correspond to the position control algorithm of equation (19) according to the first embodiment.
  • equations (29a) to (29b) for configuring the force controller are added.
  • the control device and control method according to the present embodiment performs force control using the internal position controller based on the position control method according to the first embodiment. Therefore, even when the accuracy of prior information on the dynamic characteristics of the controlled object is low or when there is a time delay in the response of the hydraulic actuator, it is possible to obtain high control performance.
  • control section 51' of the control unit 50' has the control section 51' according to the first embodiment, in that it includes a reference position calculation section 516 (reference position calculation section). It is different from part 51.
  • the reference position calculation unit 516 calculates a reference position using a virtual object that has the dynamic characteristics of a machine that includes a hydraulic actuator to be controlled. Specifically, as shown in the above algorithm, the target applied force set as the target value of the applied force from the hydraulic actuator to the environment and the environment acting on the hydraulic actuator measured by the force sensor 60 included in the hydraulic actuator. The measured value of the reaction force from is input into the model of the virtual object. Then, in the next time step, the control target, more specifically, the reference position where the rod of the hydraulic actuator in the virtual object should be located is calculated.
  • the force sensor 60 that measures the force acting on the hydraulic actuator may be built into the hydraulic actuator, or may be installed outside the hydraulic actuator.
  • the ideal speed calculation unit 511 calculates the ideal speed using the reference position calculated by the reference position calculation unit 516. More specifically, the ideal speed calculation unit 511 calculates the ideal speed by using the reference position as a target position in the algorithm according to the first embodiment. As a result, as shown in FIG. 10, the reference position q, which is the output of the reference position calculation unit 516, is input to the control law according to the first embodiment that operates as an internal position controller, and control is executed. Force control of the controlled object will be performed.
  • FIG. 12 is a flowchart showing the flow of force control according to this embodiment.
  • a target applied force fd of the hydraulic actuator is set (step S31).
  • a reference position q is calculated based on the set target applied force f d and the measured value of the force f e acting on the hydraulic actuator (step S32).
  • Parameters such as the time constant H given at the start of control are given in advance as in the first embodiment.
  • the reference position calculation unit 516 of the control unit 51' calculates the reference position at which the rod of the hydraulic actuator to be controlled should be located in the next time step.
  • the algorithm for calculating the reference position is as shown in equations (29a) to (29b) above.
  • steps S33 to S36 is similar to the processing in steps S13 to S16 according to the first embodiment (FIG. 5) when the reference position calculated in step S31 is input as the target position.
  • steps S33 to S36 the operation amount u is calculated by the internal position controller, and the operation of the hydraulic actuator to be controlled is controlled.
  • the control unit 51' repeats the processes of steps S31 to S37 until the control process is terminated (NO in step S37) due to a termination instruction from the operator, the end of a predetermined operation time, or the like. Further, the control system ends the control process when a predetermined end condition is satisfied, such as an end instruction from the operator, or the end of a predetermined operation time (YES in step S37).
  • a predetermined end condition such as an end instruction from the operator, or the end of a predetermined operation time (YES in step S37).
  • the PID control law or PD control law for making the speed of the controlled object follow the reference speed, and the sliding mode control law are simultaneously implemented. Since the force control of the controlled object is performed using the control law according to the first embodiment, which calculates the reference speed and actuator force based on the quasi-static characteristics of the hydraulic actuator, and calculates the operation amount of the hydraulic actuator based on the quasi-static characteristics of the hydraulic actuator. Control can be performed without depending on the dynamic characteristic model of the controlled object. Therefore, even when the accuracy of prior information on the dynamic characteristics of the controlled object is low or when there is a time delay in the response of the hydraulic actuator, it is possible to obtain high control performance.
  • FIG. 13 A force control simulation of a hydraulic actuator using the control law according to the present embodiment will be described below.
  • admittance control according to the present embodiment was performed using a hydraulic testing machine shown in FIG. 13.
  • the hydraulic testing machine is equipped with an electromagnetic proportional flow control valve (the top stage of the modular valve), a relief valve, and a check valve.
  • the control unit acquires measured values of the rod position p and the reaction force f e from the environment from the linear encoder and load cell of the hydraulic cylinder.
  • the control input u is converted into an input voltage for the flow control valve by a D/A conversion board.
  • a rubber plate fixed to a rigid wall was used as the environment in which the hydraulic cylinder came into contact.
  • a metal plate was installed in front of the rubber plate so that only the load button part of the load cell came into contact with the environment.
  • a contact experiment was conducted with three types of rubber plates of different hardness.
  • the hardness of the rubber plates is approximately Shore A hardness 50HS (ShoreA50), Shore A hardness approximately 65HS (ShoreA65), and Shore A hardness approximately 70HS (ShoreA70), and the rubber plate with a smaller number is a softer material.
  • FIGS. 14A, 14B, and 14C show the results of contact force control with respect to the stepwise target applied force fd .
  • the measured reaction force f can be made to follow the target applied force f d for all hardness environments.
  • 15A, 15B, and 15C show the results of contact force control for a sinusoidal target applied force fd .
  • the measured reaction force f can be made to follow the target applied force f d for all hardness environments.
  • the force control method according to the present embodiment allows the force applied to the environment from the hydraulic actuator in contact with the highly rigid environment to appropriately follow the target applied force.
  • the present invention is suitable for position control and force control of machines operated by hydraulic actuators.
  • it is suitable for automatic positioning control and admittance control of construction machinery operated by hydraulic actuators.
  • a control device includes an operation command unit that controls a hydraulic actuator that drives a machine to be controlled, and a next time step of the machine based on a target position and a current position of the machine.
  • an ideal speed calculation unit that calculates the ideal speed that should be generated at A reference speed that is a similar speed and a reference generated force that is an actuator force that should be generated when PID control or PD control is performed using the reference speed as a target speed are determined based on the quasi-static characteristics of the hydraulic actuator.
  • the hydraulic actuator, and an operation amount calculation section that calculates the operation amount of the hydraulic actuator based on the quasi-static characteristic of the hydraulic actuator, the reference generated force, and the reference speed.
  • the hydraulic actuator includes a regeneration circuit
  • the ideal speed is based on the target position of the machine, the current position, the opening degree of a flow control valve of the regeneration circuit, and the flow rate of hydraulic fluid passing through the regeneration circuit. It may be calculated based on an estimated value.
  • the machine is driven by a plurality of the hydraulic actuators, the operation amount calculation section calculates the operation amount for each of the hydraulic actuators, and the operation command section is configured to calculate the operation amount for each of the hydraulic actuators, and the operation command section calculates the operation amount for each of the hydraulic actuators.
  • a predetermined portion of the machine may be moved to a target position by controlling each of the hydraulic actuators based on the hydraulic actuator.
  • control device includes an external force estimating section that estimates an external force applied to the machine, and the reference speed calculating section calculates the reference speed and the reference generated force based on the external force estimated by the external force estimating section. It's okay.
  • the hydraulic actuator may be a hydraulic actuator.
  • control device calculates a reaction force that the hydraulic actuator receives from an environment with which the machine comes into contact, and a target applied force that is a target value of the force that the hydraulic actuator applies to the environment, based on the target dynamic characteristics of the machine.
  • a reference position calculation unit that calculates a reference position at which the machine in the virtual object should be positioned at the next time step by inputting the input into a virtual object having The ideal speed may be calculated.
  • control method is based on the target position and current position of a machine to be controlled driven by a hydraulic actuator, and the ideal speed to be generated in the next time step of the machine. and a reference speed which is the speed closest to the ideal speed among the target speeds at which the actuator force that can be generated when PID control or PD control is implemented with the hydraulic actuator.
  • a reference speed calculation step of calculating a reference generated force which is an actuator force that should be generated when PID control or PD control is performed with the reference speed as a target speed, based on the quasi-static characteristics of the hydraulic actuator.
  • control method may be configured to calculate a reaction force that the hydraulic actuator receives from an environment with which the machine comes into contact, and a target applied force that is a target value of the force that the hydraulic actuator applies to the environment, based on a target dynamic characteristic of the machine.
  • a reference position calculation step of calculating a reference position at which the machine in the virtual object should be located at the next time step by inputting the reference position into a virtual object having a The ideal speed may be calculated.
  • the reference speed and actuator force are calculated by simultaneously calculating the PID control law or PD control law for making the speed of the controlled object follow the reference speed and the sliding mode control law, and Since the operation amount of the hydraulic actuator is calculated based on the quasi-static characteristics of the hydraulic actuator, control can be performed without depending on the dynamic characteristic model of the controlled object. Therefore, even when the accuracy of prior information on the dynamic characteristics of the controlled object is low or when there is a time delay in the response of the hydraulic actuator, it is possible to obtain high control performance.

Abstract

This control device comprises: an operation command unit that controls cylinders (44-46) for driving an excavator, which is a controlled object; an ideal speed calculation unit that calculates an ideal speed to be generated at a next time step on the basis of a target position and a current position of a bucket tip (43a); a reference speed calculation unit that calculates a reference speed, which is closest to the ideal speed within the range of actuator force that can be generated when PID control is implemented in the cylinders, and a reference generated force for when PID control is implemented at the reference speed, from quasi-static characteristics of the cylinders; and a manipulated variable calculation unit that calculates a manipulated variable on the basis of the quasi-static characteristics of the cylinders, the reference generated force, and the reference speed.

Description

制御装置及び制御方法Control device and control method
 本発明は、液圧アクチュエータで駆動される制御対象の位置又は制御対象に働く力を制御する制御装置及び制御方法に関する。 The present invention relates to a control device and a control method for controlling the position of a controlled object driven by a hydraulic actuator or the force acting on the controlled object.
 油圧アクチュエータで駆動されるショベル等の機械において、バケット、作業装置等を、目標位置へ自動的に移動させる制御方法が開発されている。油圧アクチュエータを含む液圧アクチュエータの応答特性は、強い非線形性を持ち、リリーフバルブの開閉によっても大きく変化する。したがって、自動的な位置決め制御を、単純な制御則で実現することは難しい。 In machines such as excavators that are driven by hydraulic actuators, control methods have been developed to automatically move buckets, work equipment, etc. to target positions. The response characteristics of hydraulic actuators, including hydraulic actuators, have strong nonlinearity and vary greatly depending on whether a relief valve is opened or closed. Therefore, it is difficult to realize automatic positioning control using a simple control law.
 また、液圧アクチュエータで駆動される機械を力制御する場合、具体的には外部環境に接触した制御対象に働く力についてアドミッタンス制御を行う場合においても、液圧アクチュエータの強い非線形性によって単純な制御則で実現することは難しい。 In addition, when performing force control on a machine driven by a hydraulic actuator, specifically when performing admittance control on the force acting on a controlled object in contact with the external environment, the strong nonlinearity of hydraulic actuators makes simple control possible. It is difficult to achieve this by following the rules.
 特許文献1では、制御対象の動特性の事前情報に基づいて、制御対象の次時刻ステップにおける位置及び速度を予測する予測方程式と、スライディングモード制御則を表す方程式とを連立方程式として解き、操作量である液圧アクチュエータへのバルブ開度指令を算出することにより、制御アルゴリズムを簡素化することとしている。 In Patent Document 1, a prediction equation for predicting the position and velocity of the controlled object at the next time step and an equation representing a sliding mode control law are solved as simultaneous equations based on prior information on the dynamic characteristics of the controlled object, and the manipulated variable is The control algorithm is simplified by calculating the valve opening command to the hydraulic actuator.
特開2021-121717号公報JP 2021-121717 Publication
 特許文献1の制御方法では、液圧アクチュエータへのバルブ開度指令を算出する際、制御対象の動特性を用いることとしている。しかしながら、制御対象の動特性の事前情報が不正確である場合、油圧アクチュエータの応答に時間遅れがある場合等においては、予測方程式の精度を担保することができず、所望の制御特性を得られないおそれがある。 In the control method of Patent Document 1, the dynamic characteristics of the controlled object are used when calculating the valve opening command to the hydraulic actuator. However, if the prior information on the dynamic characteristics of the controlled object is inaccurate, or if there is a time delay in the response of the hydraulic actuator, the accuracy of the prediction equation cannot be guaranteed and the desired control characteristics cannot be obtained. There is a possibility that it is not.
 本発明の目的は、制御対象の動特性に係る事前情報の精度が低い場合及び液圧アクチュエータの応答に時間遅れがある場合であっても、位置制御又は力制御について高い制御性能を得ることができる制御装置及び制御方法を提供することにある。 An object of the present invention is to obtain high control performance for position control or force control even when the accuracy of prior information regarding the dynamic characteristics of a controlled object is low or when there is a time delay in the response of a hydraulic actuator. The objective is to provide a control device and a control method that can
 本発明の第1の観点に係る制御装置は、制御対象である機械を駆動させる液圧アクチュエータを制御する動作指令部と、前記機械の目標位置及び現在位置に基づいて、前記機械の次時刻ステップに発生されるべき理想速度を算出する理想速度算出部と、前記液圧アクチュエータでPID制御又はPD制御を実施した場合に発生可能なアクチュエータ力が算出される目標速度のうち、前記理想速度に最も近い速度である参照速度と、前記参照速度を目標速度としてPID制御又はPD制御を実施した場合に発生されるべきアクチュエータ力である参照発生力とを、前記液圧アクチュエータの準静的特性に基づいて算出する参照速度算出部と、前記液圧アクチュエータの準静的特性、前記参照発生力及び前記参照速度に基づいて、前記液圧アクチュエータの操作量を算出する操作量算出部と、を備える。 A control device according to a first aspect of the present invention includes an operation command unit that controls a hydraulic actuator that drives a machine to be controlled, and a next time step of the machine based on a target position and a current position of the machine. an ideal speed calculation unit that calculates the ideal speed that should be generated at A reference speed that is a similar speed and a reference generated force that is an actuator force that should be generated when PID control or PD control is performed using the reference speed as a target speed are determined based on the quasi-static characteristics of the hydraulic actuator. the hydraulic actuator, and an operation amount calculation section that calculates the operation amount of the hydraulic actuator based on the quasi-static characteristics of the hydraulic actuator, the reference generated force, and the reference speed.
 また、本発明の第2の観点に係る制御方法は、液圧アクチュエータで駆動される制御対象である機械の目標位置及び現在位置に基づいて、前記機械の次時刻ステップに発生されるべき理想速度を算出する理想速度算出工程と、前記液圧アクチュエータでPID制御又はPD制御を実施した場合に発生可能なアクチュエータ力が算出される目標速度のうち、前記理想速度に最も近い速度である参照速度と、前記参照速度を目標速度としてPID制御又はPD制御を実施した場合に発生されるべきアクチュエータ力である参照発生力とを、前記液圧アクチュエータの準静的特性に基づいて算出する参照速度算出工程と、前記液圧アクチュエータの準静的特性、前記参照発生力及び前記参照速度に基づいて、前記液圧アクチュエータの操作量を算出する操作量算出工程と、を含む。 Further, the control method according to the second aspect of the present invention is based on the target position and current position of a machine to be controlled driven by a hydraulic actuator, and the ideal speed to be generated in the next time step of the machine. and a reference speed which is the speed closest to the ideal speed among the target speeds at which the actuator force that can be generated when PID control or PD control is implemented with the hydraulic actuator. , a reference speed calculation step of calculating a reference generated force, which is an actuator force that should be generated when PID control or PD control is performed with the reference speed as a target speed, based on the quasi-static characteristics of the hydraulic actuator. and a manipulated variable calculating step of calculating a manipulated variable of the hydraulic actuator based on the quasi-static characteristic of the hydraulic actuator, the reference generated force, and the reference speed.
図1は、本発明の実施の形態1に係る油圧アクチュエータの構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of a hydraulic actuator according to Embodiment 1 of the present invention. 図2は、実施の形態1に係るショベルの概要を示す側面図である。FIG. 2 is a side view schematically showing the shovel according to the first embodiment. 図3は、実施の形態1に係る制御システムの構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the control system according to the first embodiment. 図4は、複数の油圧アクチュエータの制御方法を示す概念図である。FIG. 4 is a conceptual diagram showing a method of controlling a plurality of hydraulic actuators. 図5は、実施の形態1に係る位置制御の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of position control according to the first embodiment. 図6は、数値例に係る油圧ショベルの姿勢及び目標位置の軌道を示す図である。FIG. 6 is a diagram showing the attitude of the hydraulic excavator and the trajectory of the target position according to a numerical example. 図7Aは、制御則における処理の流れを示す概念図であり、従来の制御則の場合の図である。FIG. 7A is a conceptual diagram showing the flow of processing in a control law, and is a diagram in the case of a conventional control law. 図7Bは、制御則における処理の流れを示す概念図であり、本発明の実施の形態1に係る制御則の場合の図である。FIG. 7B is a conceptual diagram showing the flow of processing in the control law, and is a diagram in the case of the control law according to Embodiment 1 of the present invention. 図8は、従来の制御則及び本発明の実施の形態1に係る制御則によるシミュレーション結果を示す図である。FIG. 8 is a diagram showing simulation results using a conventional control law and a control law according to Embodiment 1 of the present invention. 図9Aは、モデル化誤差の影響を比較するためのシミュレーション結果を示す図であり、再生回路補償のない本発明の実施の形態1に係る制御則の場合の図である。FIG. 9A is a diagram showing simulation results for comparing the effects of modeling errors, and is a diagram for the case of the control law according to Embodiment 1 of the present invention without reproducing circuit compensation. 図9Bは、モデル化誤差の影響を比較するためのシミュレーション結果を示す図であり、再生回路補償のある本発明の実施の形態1に係る制御則の場合の図である。FIG. 9B is a diagram showing simulation results for comparing the effects of modeling errors, and is a diagram for the case of the control law according to the first embodiment of the present invention with reproducing circuit compensation. 図9Cは、モデル化誤差の影響を比較するためのシミュレーション結果を示す図であり、従来の制御則の場合の図である。FIG. 9C is a diagram showing simulation results for comparing the effects of modeling errors, and is a diagram for a conventional control law. 図10は、実施の形態2に係る制御システムの構成を示すブロック線図である。FIG. 10 is a block diagram showing the configuration of a control system according to the second embodiment. 図11は、実施の形態2に係る制御システムの構成を示す機能ブロック図である。FIG. 11 is a functional block diagram showing the configuration of a control system according to the second embodiment. 図12は、実施の形態2に係る力制御の流れを示すフローチャートである。FIG. 12 is a flowchart showing the flow of force control according to the second embodiment. 図13は、数値例に係る油圧試験機の構成を示す概念図である。FIG. 13 is a conceptual diagram showing the configuration of a hydraulic testing machine according to a numerical example. 図14Aは、階段状入力の場合の数値例に係るシミュレーション結果を示すグラフであり、接触環境の硬度が50HSの場合のグラフである。FIG. 14A is a graph showing a simulation result related to a numerical example in the case of stepped input, and is a graph when the hardness of the contact environment is 50HS. 図14Bは、階段状入力の場合の数値例に係るシミュレーション結果を示すグラフであり、接触環境の硬度が65HSの場合のグラフである。FIG. 14B is a graph showing a simulation result related to a numerical example in the case of stepped input, and is a graph when the hardness of the contact environment is 65HS. 図14Cは、階段状入力の場合の数値例に係るシミュレーション結果を示すグラフであり、接触環境の硬度が70HSの場合のグラフである。FIG. 14C is a graph showing a simulation result regarding a numerical example in the case of stepped input, and is a graph when the hardness of the contact environment is 70HS. 図15Aは、正弦波入力の場合の数値例に係るシミュレーション結果を示すグラフであり、接触環境の硬度が50HSの場合のグラフである。FIG. 15A is a graph showing simulation results according to a numerical example in the case of a sine wave input, and is a graph when the hardness of the contact environment is 50HS. 図15Bは、正弦波入力の場合の数値例に係るシミュレーション結果を示すグラフであり、接触環境の硬度が65HSの場合のグラフである。FIG. 15B is a graph showing a simulation result related to a numerical example in the case of a sine wave input, and is a graph when the hardness of the contact environment is 65HS. 図15Cは、正弦波入力の場合の数値例に係るシミュレーション結果を示すグラフであり、接触環境の硬度が70HSの場合のグラフである。FIG. 15C is a graph showing simulation results regarding a numerical example in the case of a sine wave input, and is a graph when the hardness of the contact environment is 70HS.
 <実施の形態1>
 以下、図を参照しつつ、本発明の実施の形態に係る制御装置及び制御方法のうち、位置制御に係る制御装置及び制御方法について説明する。
<Embodiment 1>
Hereinafter, among the control devices and control methods according to embodiments of the present invention, a control device and control method related to position control will be described with reference to the drawings.
 <制御アルゴリズム>
 まず、本実施の形態に係る制御則、すなわち、液圧アクチュエータによって駆動される機械を制御対象とし、制御対象を目標位置へ移動させる場合の液圧アクチュエータの操作量uを決定する制御アルゴリズムについて説明する。具体的には、液圧アクチュエータとして図1に示す油圧アクチュエータ1を考える。
<Control algorithm>
First, a description will be given of the control law according to the present embodiment, that is, the control algorithm for determining the operation amount u of the hydraulic actuator when a machine driven by a hydraulic actuator is the controlled object and the controlled object is moved to a target position. do. Specifically, consider the hydraulic actuator 1 shown in FIG. 1 as a hydraulic actuator.
 図1に示すように、油圧アクチュエータ1は、油圧を供給する油圧ポンプ11a、ポンプリリーフバルブ11b、ブリードバルブ11c、ポンプチェックバルブ11d、油圧を制御する主制御バルブ12、ロッド側リリーフバルブ13a、ロッド側チェックバルブ13b、ヘッド側リリーフバルブ14a、ヘッド側チェックバルブ14b、油圧制御によって動作するシリンダ15を備える。また、油圧アクチュエータ1は、再生回路16を備え、再生回路16は、チェック弁16a、流量制御バルブ16bを備える。 As shown in FIG. 1, the hydraulic actuator 1 includes a hydraulic pump 11a that supplies hydraulic pressure, a pump relief valve 11b, a bleed valve 11c, a pump check valve 11d, a main control valve 12 that controls hydraulic pressure, a rod-side relief valve 13a, and a rod. It includes a side check valve 13b, a head side relief valve 14a, a head side check valve 14b, and a cylinder 15 operated by hydraulic control. The hydraulic actuator 1 also includes a regeneration circuit 16, and the regeneration circuit 16 includes a check valve 16a and a flow control valve 16b.
 <数学的準備>
 本実施の形態では、以下の式(1)、式(2)、式(3)、式(4)に示す閉単位球B及び関数を用いる。
<Mathematical preparation>
In this embodiment, the closed unit sphere B and functions shown in the following equations (1), (2), (3), and (4) are used.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 また、集合値を引数とする関数を以下の式(5)のように扱う。 Also, a function that takes a set value as an argument is handled as shown in equation (5) below.
Figure JPOXMLDOC01-appb-I000002
 ここで、Xは実閉区間を表す。
Figure JPOXMLDOC01-appb-I000002
Here, X represents a real closed interval.
 <制御則>
 液圧アクチュエータは、以下の式(6a)、式(6b)、式(6c)で表される。
<Control law>
The hydraulic actuator is expressed by the following equations (6a), (6b), and (6c).
Figure JPOXMLDOC01-appb-I000003
 ここで、pは制御対象の位置、vは制御対象の速度、Mは制御対象の質量を表す。
Figure JPOXMLDOC01-appb-I000003
Here, p represents the position of the controlled object, v represents the speed of the controlled object, and M represents the mass of the controlled object.
 上式の制御対象には、アクチュエータ力fと外力gが作用している。集合値関数Γは、液圧アクチュエータの準静的モデルであり、現在速度v及びバルブ開度指令である操作量uからアクチュエータ力fへの集合値関数として与えられる。図1の油圧アクチュエータ1の油圧回路から再生回路16を除いた状態、すなわち再生回路16が常に閉じている状態で駆動される油圧アクチュエータ1の準静的モデルである集合値関数Γの具体的な形は、公知の文献1(R. Kikuuwe, et al., “A nonsmooth quasi-static modeling approach  for hydraulic actuators,” J. Dyn. Sys., Meas., Control, vol.143, no.12, p.1210 02, 2021)の式(19)、及び公知の文献2(Y. Yamamoto, et al., “A sliding-mode set-point position controller for hydraulic excavators”, IEEE Access, vol.9, pp.153735-153749, 2021)の式(24)に示されている。 Actuator force f and external force g act on the controlled object in the above equation. The set value function Γ is a quasi-static model of the hydraulic actuator, and is given as a set value function from the current speed v and the manipulated variable u, which is the valve opening command, to the actuator force f. A concrete example of the set-valued function Γ, which is a quasi-static model of the hydraulic actuator 1 that is driven with the regeneration circuit 16 removed from the hydraulic circuit of the hydraulic actuator 1 in FIG. 1, that is, with the regeneration circuit 16 always closed. The shape is described in the known document 1 (R. Kikuuwe, et al., “A nonsmooth quasi-static modeling approach for hydraulic actuators ,” J. Dyn. Sys., Meas., Control, vol. 143, no. 12, p .1210 02, 2021), and the well-known document 2 (Y. Yamamoto, et al., “A sliding-mode set-point position controller for “hydraulic excavators”, IEEE Access, vol. 9, pp. 153735-153749, 2021) is shown in equation (24).
 関数Γの第2引数である操作量u∈Bは、図1に示す4つの主制御バルブ12の開口度を示す変数である。この操作量uと主制御バルブ12の開口度u∈[0,1](*∈{ph,pr,th,tr})は、以下の式(7)の関係にある。 The manipulated variable uεB, which is the second argument of the function Γ, is a variable that indicates the degree of opening of the four main control valves 12 shown in FIG. The manipulated variable u and the opening degree u * ∈[0,1](*∈{ph, pr, th, tr}) of the main control valve 12 have a relationship expressed by the following equation (7).
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 上記の関係式(7)より、正の制御入力である操作量uは、シリンダを伸ばす指令となり、負の制御入力である操作量uはシリンダを縮める指令となる。 From the above relational expression (7), the manipulated variable u, which is a positive control input, becomes a command to extend the cylinder, and the manipulated variable u, which is a negative control input, becomes a command to retract the cylinder.
 本実施の形態では、以下の式(8a)、式(8b)、式(8c)、式(8d)に示す油圧アクチュエータのための位置制御則を用いる。 In this embodiment, position control laws for the hydraulic actuator shown in the following equations (8a), (8b), (8c), and (8d) are used.
Figure JPOXMLDOC01-appb-I000005
 ここで、K,L,DはPIDゲイン、Hは時定数、pは目標位置、pは現在位置、vrは参照速度、uはアクチュエータへの指令、f^はアクチュエータの参照発生力、aはPID制御器の誤差積分値である。また、gは外力の推定値である。外力の推定値が得られない場合はg=0としてもよいが、推定値が得られる場合はその値をgとした方がより良好な制御性能を得ることができる。
Figure JPOXMLDOC01-appb-I000005
Here, K, L, D are PID gain, H is time constant, pd is target position, p is current position, vr is reference speed, u is command to actuator, f^ is reference generated force of actuator, a is the error integral value of the PID controller. Moreover, g is an estimated value of external force. If an estimated value of the external force cannot be obtained, g may be set to 0, but if an estimated value can be obtained, better control performance can be obtained by setting the value to g.
 また、関数Θは、集合値関数Γの第2引数に関する逆関数であり、集合値関数Γと以下の式(9)の関係にある集合値関数である。 Further, the function Θ is an inverse function regarding the second argument of the set-valued function Γ, and is a set-valued function that has a relationship with the set-valued function Γ according to the following equation (9).
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 式(8a)は速度pと参照速度vに基づいて構成されるPID制御則である。また、式(8b)は以下の式(10)を切替平面とするスライディングモード制御則である。 Equation (8a) is a PID control law constructed based on the speed p · and the reference speed vr . Further, equation (8b) is a sliding mode control law using equation (10) below as a switching plane.
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
 本実施の形態では、式(8a)のPID制御則と式(8b)のスライディングモード制御則とを連立させている。以下、この手法を微分代数緩和という。式(8b)のスライディングモード制御則は、右辺が集合値であるため、値が一意に定められず、単独では実装に適さない。しかしながら、式(8a)のPID制御則と連立させることによって、この課題を回避し、参照発生力f^を算出する(演算する、以後も同様)ことが可能となる。なお、各式において符号の上に付したドットなどの記号は、本文では前記符号の後に付されているが、両者は同じものを示す。 In this embodiment, the PID control law of equation (8a) and the sliding mode control law of equation (8b) are combined. Hereinafter, this method will be referred to as differential algebraic relaxation. In the sliding mode control law of Equation (8b), since the right side is a set value, the value is not uniquely determined, and it is not suitable for implementation alone. However, by combining it with the PID control law of equation (8a), this problem can be avoided and the reference generated force f^ can be calculated (calculated, the same applies hereafter). Note that in each formula, symbols such as dots placed above the symbols are placed after the symbols in the main text, but both indicate the same thing.
 <離散時間アルゴリズム>
 上述の制御則を実装するため、離散時間における制御アルゴリズムを考える。後退オイラー法を用いて式(8)(式(8a)~式(8d))の制御則を離散化することにより、以下の式(11)(式(11a)から式(11f))を得ることができる。
<Discrete time algorithm>
To implement the above control law, we consider a control algorithm in discrete time. By discretizing the control law of Equation (8) (Equations (8a) to (8d)) using the backward Euler method, the following Equation (11) (Equation (11f) from Equation (11a)) is obtained. be able to.
Figure JPOXMLDOC01-appb-I000008
 ここで、Tはサンプリング間隔、k∈Zは離散時間のインデックスを示す。
Figure JPOXMLDOC01-appb-I000008
Here, T is a sampling interval and kεZ is a discrete time index.
 式(11a)と式(11d)を用いて、式(11b)からvr,kとaを消去すると、以下の式(12)(式(12a)から式(12c))が得られる。 When v r,k and a k are eliminated from equation (11b) using equation (11a) and equation (11d), the following equation (12) (from equation (12a) to equation (12c)) is obtained.
Figure JPOXMLDOC01-appb-I000009
 ここで、A=△LT+KT+Dである(=△は、式12に示すように、=の上に△が上下に並んだ符号に相当する)。
Figure JPOXMLDOC01-appb-I000009
Here, A=ΔLT 2 +KT+D (=Δ corresponds to a symbol in which Δ is arranged vertically above =, as shown in Equation 12).
 ここで、v,はスライディングモード制御則によって次ステップに実現されるべき理想速度と解釈できる。また、v,は、液圧アクチュエータでPID制御則を実施した際、液圧アクチュエータの発生力が0となるような仮の目標速度と解釈できる。 Here, v s , k can be interpreted as the ideal speed to be achieved in the next step by the sliding mode control law. Further, v f , k can be interpreted as a temporary target speed such that the force generated by the hydraulic actuator becomes 0 when the PID control law is implemented with the hydraulic actuator.
 公知の文献3(R. Kikuuwe, Y. Yamamoto, and B. Brogliato, “Implicit implementation of nonsmooth controllers to nonsmooth actuators,” IEEE Trans. Autom. Control, 10.1109/TAC.2022.3163124, 2022)において、以下の式(13)が成立することが示されている。 Known document 3 (R. Kikuuwe, Y. Yamamoto, and B. Brogliato, “Implicit implementation of nonsmooth controllers” to nonsmooth actuators,” IEEE Trans. Autom. Control, 10.1109/TAC.2022.3163124, 2022), It is shown that the following equation (13) holds true.
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
 式(13)を用いることにより、式(12a)を以下の式(14)のように書き直すことができる。 By using equation (13), equation (12a) can be rewritten as equation (14) below.
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
 これにより、状態{p,v,p,,v,}から制御入力uを求める以下の式(15)(式(15a)から式(15f))のアルゴリズムが得られる。 As a result, the algorithm of formula (15) below (formula (15a) to formula (15f)) for determining the control input u k from the state {p k , v k , p d , k , v d , k } is obtained. .
Figure JPOXMLDOC01-appb-I000012
 ここで、関数Γ及び関数Θは、関数Γ及び関数Θと以下の式(16)、式(17)のような関係にある一価関数である。
Figure JPOXMLDOC01-appb-I000012
Here, the function Γ s and the function Θ s are single-valued functions that have a relationship with the function Γ and the function Θ as shown in the following equations (16) and (17).
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
 上述のように、集合値関数Γは、液圧アクチュエータの準静的特性(定常速度時の速度v,発生力f,バルブ開度指令である操作量uの関係)から得ることができる。また、集合値関数Θは、式(9)を用いて集合値関数Γから得ることができる。これらの関係と、式(16)と、式(17)とを用いて一価関数Γ及び一価関数Θを得ることができる。図1に示す油圧アクチュエータ1の油圧回路から再生回路16を除いた状態、すなわち再生回路16が常に閉じている状態で駆動される油圧アクチュエータ1の一価関数Γ及び一価関数Θの具体的な形は、公知の文献2の式(34)及び第III.C節にそれぞれ示されている。 As described above, the set value function Γ can be obtained from the quasi-static characteristics of the hydraulic actuator (the relationship among the speed v at steady speed, the generated force f, and the manipulated variable u that is the valve opening command). Further, the set-valued function Θ can be obtained from the set-valued function Γ using equation (9). Using these relationships, Equation (16), and Equation (17), the single-valued function Γ s and the single-valued function Θ s can be obtained. Specifics of the single-valued function Γ s and the single-valued function Θ s of the hydraulic actuator 1 that is driven in a state in which the regeneration circuit 16 is removed from the hydraulic circuit of the hydraulic actuator 1 shown in FIG. 1, that is, in a state in which the regeneration circuit 16 is always closed. The formula (34) of the well-known document 2 and III. Each is shown in Section C.
 尚、時刻kに油圧アクチュエータ1で発生可能な発生力fと、発生力fを生じる目標速度v,の対は、以下の2つの式(18a)、式(18b)を満たす実数の対{f^,v,}である。 Note that the pair of the generated force f k that can be generated by the hydraulic actuator 1 at time k and the target speed v r , k that produces the generated force f k is a real number that satisfies the following two equations (18a) and (18b). is the pair {f k ^, v r , k }.
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
 上述のような対は無限個存在する。一方、式(15b),(15c),(15d)で求められる対{f^,v,}は、式(18)を満たす無限個の対{f^,v,}のうち、v,がv,に最も近いものである。すなわち、式(15b),(15c),(15d)は、油圧アクチュエータ1でPID制御を実施した場合に発生可能なアクチュエータ力が算出される目標速度v,のうち、理想速度v,に最も近い速度である参照速度v,と、参照速度v,を目標速度v,としてPID制御を実施した場合に発生されるべきアクチュエータ力である参照発生力f^とを、液圧アクチュエータの準静的特性に基づいて算出する工程(参照速度算出工程)である。 There are an infinite number of such pairs. On the other hand, the pair {f k ^, v r , k } obtained by equations (15b), (15c), and (15d) is an infinite number of pairs {f k ^, v r , k } that satisfy equation (18). Among them, v r , k is closest to v s , k . That is, Equations (15b), (15c), and (15d) calculate the ideal speed v s , among the target speeds v f , k at which the actuator force that can be generated when the hydraulic actuator 1 performs PID control is calculated. Reference generated force f k ^ which is the actuator force to be generated when PID control is performed using the reference speed v r , k which is the speed closest to k and the reference speed v r , k as the target speed v f , k This is a step (reference speed calculation step) of calculating this based on the quasi-static characteristics of the hydraulic actuator.
 尚、式(15)のアルゴリズムにおいてL=0とした場合、aが無限に大きくなり得るという不具合が生じる。この場合、e=(a-ak-1)/Tで定義される新たな変数eを用いて式(15)のアルゴリズムを、以下の式(19a)から式(19f)のように修正することができる。 Note that when L=0 in the algorithm of equation (15), a problem arises in that a k can become infinitely large. In this case, the algorithm of equation (15) can be changed from equation (19a) to equation (19f) using a new variable e k defined by e k = (a k - a k-1 )/T. can be corrected.
Figure JPOXMLDOC01-appb-I000015
 ここで、A=△KT+Dである(=△は、=の上に△が上下に並んだ符号に相当する)。
Figure JPOXMLDOC01-appb-I000015
Here, A=△KT+D (=△ corresponds to a symbol in which △ is arranged above and below =).
 上記の式(19)で表されるアルゴリズムは、式(8)においてaをeで置き換えてL=0とし、後退オイラー法を用いて離散化し、上述の式(15)と同様の導出手順を経ることによっても導出することができる。式(19)により、式(15)のPID制御を、積分ゲインL=0としたPD制御に置き換えることが可能となる。 The algorithm expressed by the above equation (19) replaces a · with e in the equation (8) to set L=0, discretizes using the backward Euler method, and performs the same derivation procedure as the above equation (15). It can also be derived by going through . Equation (19) makes it possible to replace the PID control of Equation (15) with PD control with integral gain L=0.
 本実施の形態と同様に準静的モデルに基づく制御則である公知の文献2に係る従来の制御則では、スライディングモード制御則の集合値性に対処するため二重陰的実装法を用いている。二重陰的実装法では、制御則と制御対象の動特性モデルの両方を後退オイラー法で離散化し、組み合わせることによって制御アルゴリズムを構築する。本実施の形態に係る微分代数緩和に基づく制御方法では、実装に動特性モデルを必要としないので、従来の制御方法に比べてモデル化誤差に強い構造となっている。また、微分代数緩和で結合しているPID制御器のゲインを調整することで、モデル化誤差及びむだ時間に対する感度を調整できる。 In the conventional control law according to the known document 2, which is a control law based on a quasi-static model like the present embodiment, a double implicit implementation method is used to deal with the set value nature of the sliding mode control law. There is. In the double-implicit implementation method, a control algorithm is constructed by discretizing both the control law and the dynamic characteristic model of the controlled object using the backward Euler method and combining them. The control method based on differential algebraic relaxation according to the present embodiment does not require a dynamic characteristic model for implementation, so it has a structure that is more resistant to modeling errors than conventional control methods. Furthermore, sensitivity to modeling errors and dead time can be adjusted by adjusting the gains of the PID controllers that are coupled through differential algebraic relaxation.
 式(19)のアルゴリズムに示すように、本実施の形態に係る位置制御では、液圧アクチュエータの目標位置p,及び現在位置p、より詳細には目標位置p,、現在位置pとこれらから導出される目標速度v,、現在速度vとに基づいて、次時刻ステップに液圧アクチュエータで発生されるべき理想速度v,を算出する(理想速度算出工程、式(19a))。そして、液圧アクチュエータでPID制御又はPD制御を実施した場合に発生可能なアクチュエータ力fが算出される目標速度v,のうち、理想速度v,に最も近い速度である参照速度v,と、参照速度v,を目標速度としてPID制御又はPD制御を実施した場合に発生されるべきアクチュエータ力である参照発生力f^とを、液圧アクチュエータの準静的モデルΓに基づいて算出する(参照速度算出工程、式(19b)~(19e))。さらに、液圧アクチュエータの準静的モデルΓ、算出された参照発生力f^及び参照速度v,に基づいて、液圧アクチュエータの操作量uを算出する(操作量算出工程、式(19f))。 As shown in the algorithm of equation (19), in the position control according to the present embodiment, the target position p d , k and the current position p k of the hydraulic actuator, more specifically, the target position p d , k and the current position Based on pk , the target speed vd , k derived from these, and the current speed vk , the ideal speed vs , k to be generated by the hydraulic actuator at the next time step is calculated (ideal speed calculation step , formula (19a)). Then, among the target speeds v f , k at which the actuator force f that can be generated when PID control or PD control is performed with the hydraulic actuator is calculated, a reference speed v is the speed closest to the ideal speed v s , k . r , k and a reference generated force f k ^ which is the actuator force to be generated when PID control or PD control is performed with the reference speed v r , k as the target speed, using a quasi-static model of the hydraulic actuator. Calculate based on Γ (reference speed calculation step, equations (19b) to (19e)). Furthermore, the operation amount u k of the hydraulic actuator is calculated based on the quasi-static model Γ of the hydraulic actuator, the calculated reference generated force f k ^, and the reference speed v r , k (operation amount calculation step, formula (19f)).
 <再生回路の影響の補償>
 油圧アクチュエータ1は、図1に示すように再生回路16を備える。再生回路16は、リンクの位置エネルギを利用して作動液(作動油)をロッド側チャンバからヘッド側チャンバに送る。ロッド側チャンバの断面積をA、ヘッド側チャンバの断面積をAとし、A=(A+A)/2とすると、外力gによって発生するロッド側チャンバとヘッド側チャンバとの間の圧力差はg/Aで近似できる。流量制御バルブ16bにおける流量は、両チャンバ間の圧力差の平方根に比例するので、再生回路を通る作動油の流量qreg の推定値は、以下の式(20)で求められる。
<Compensation for the influence of the reproduction circuit>
The hydraulic actuator 1 includes a regeneration circuit 16 as shown in FIG. The regeneration circuit 16 uses the potential energy of the link to send hydraulic fluid from the rod-side chamber to the head-side chamber. If the cross-sectional area of the rod-side chamber is A r and the cross-sectional area of the head-side chamber is A h , and A = (A r +A h )/2, then the distance between the rod-side chamber and the head-side chamber generated by external force g is The pressure difference can be approximated by g/A - . Since the flow rate in the flow rate control valve 16b is proportional to the square root of the pressure difference between both chambers, the estimated value of the flow rate q reg of the hydraulic oil passing through the regeneration circuit is obtained by the following equation (20).
Figure JPOXMLDOC01-appb-I000016
 ここで、uregは再生回路16の流量制御バルブ16bの開口度を示す。係数cregは、Cregreg√2/ρで定義され、ρは作動油の質量密度、aregは流量制御バルブ16bの最大開口面積、Cregは流出係数である。
Figure JPOXMLDOC01-appb-I000016
Here, u reg indicates the opening degree of the flow rate control valve 16b of the regeneration circuit 16. The coefficient c reg is defined as C reg a reg √2/ρ, where ρ is the mass density of the hydraulic oil, a reg is the maximum opening area of the flow control valve 16b, and C reg is the outflow coefficient.
 再生回路16の流量qregによるシリンダ速度の増分vregは、vreg=qreg/Aと求められる。また、変数vregは再生回路16のチェック弁16aの効果によって非負の値となる。このシリンダ速度の増分vregに基づいて、再生回路16の影響を補償するために式(8)の制御則を拡張すると、以下の式(21a)、式(21b)、式(21c)に示す制御則が得られる。 The increment v reg of the cylinder speed due to the flow rate q reg of the regeneration circuit 16 is determined as v reg =q reg /A h . Furthermore, the variable v reg takes on a non-negative value due to the effect of the check valve 16a of the regeneration circuit 16. Based on this cylinder speed increment v reg , the control law of equation (8) is extended to compensate for the influence of the regeneration circuit 16, and the following equations (21a), (21b), and (21c) are shown. A control law is obtained.
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000017
 上記の変数vregを導入することによって、作動油が再生回路16を通ってヘッド側チャンバに送られる状況では、切替平面がp-p+H(p -v-vreg)=0となる。これにより、補償なしの場合と比べてvregだけ低速な状態で切替平面に到達するため、過度な速度上昇を抑制した制御を行うことができる。 By introducing the above variable v reg , the switching plane becomes p d −p+H(p d · −v r −v reg )=0 in the situation where the hydraulic oil is sent to the head side chamber through the regeneration circuit 16. Become. As a result, the switching plane is reached at a lower speed by v reg than in the case without compensation, so that control can be performed that suppresses excessive speed increases.
 変数vregを含む制御則を実装するためのアルゴリズムは、式(15)のアルゴリズムの導出と同様の手順を式(21)の制御則に適用して離散化することによって得られる。導出されるアルゴリズムは、式(15)で表されるアルゴリズムの式(15a)を以下の式(22)に置き換えたものとなる。 An algorithm for implementing the control law including the variable v reg can be obtained by discretizing the control law of Equation (21) by applying a procedure similar to the derivation of the algorithm of Equation (15). The derived algorithm is obtained by replacing equation (15a) of the algorithm expressed by equation (15) with equation (22) below.
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
 変数vreg,の値は、式(20)を用いて演算に係る時刻ステップごとに演算すればよい。また、この際、外力gとして関節角度及びリンクの質量から導出されるシリンダ15に作用する重力を用いることができる。 The value of the variable v reg , k may be calculated for each time step related to the calculation using equation (20). Moreover, at this time, the gravity acting on the cylinder 15 derived from the joint angle and the mass of the link can be used as the external force g.
 <制御システムの構成>
 本実施の形態では、具体的な制御システムの構成の例として、複数の油圧アクチュエータで駆動されるショベルのバケットの位置制御を行う場合について説明する。
<Control system configuration>
In this embodiment, as an example of a specific control system configuration, a case will be described in which the position of a bucket of an excavator driven by a plurality of hydraulic actuators is controlled.
 本実施の形態に係る位置制御装置である制御ユニット50は、図2に示すショベル30に搭載され、ショベル30の動作を制御する。 A control unit 50, which is a position control device according to this embodiment, is mounted on the shovel 30 shown in FIG. 2 and controls the operation of the shovel 30.
 ショベル30は、下部走行体31、上部旋回体32、作業装置40を備える。下部走行体31は、ショベル30を走行させる部分であり、例えばクローラである。上部旋回体32は、下部走行体31に、旋回モータ47を介して旋回可能に取り付けられている。上部旋回体32には、操作者がショベル30の操作を行う運転室、作業装置40等が配置されている。 The excavator 30 includes a lower traveling body 31, an upper revolving body 32, and a working device 40. The lower traveling body 31 is a portion on which the excavator 30 travels, and is, for example, a crawler. The upper rotating body 32 is rotatably attached to the lower traveling body 31 via a rotating motor 47 . A driver's cab in which an operator operates the shovel 30, a working device 40, and the like are arranged in the upper revolving body 32.
 作業装置40は、上部旋回体32に回転可能に取り付けられているブーム41、ブーム41に回転可能に取り付けられているアーム42、アーム42に回転可能に取り付けられ掘削等を行うバケット43を備える。 The working device 40 includes a boom 41 rotatably attached to the upper revolving structure 32, an arm 42 rotatably attached to the boom 41, and a bucket 43 rotatably attached to the arm 42 for digging and the like.
 また、作業装置40は、上部旋回体32及びブーム41に接続されてブーム41を動作させるブームシリンダ44、ブーム41及びアーム42に接続されてアーム42を動作させるアームシリンダ45、アーム42及びバケット43に接続されてバケット43を動作させるバケットシリンダ46、下部走行体31及び上部旋回体32に接続されて上部旋回体32を動作させる旋回モータ47を備える。ブームシリンダ44、アームシリンダ45、バケットシリンダ46、旋回モータ47(以下、各アクチュエータ44~47ともいう。)は、油圧によって駆動される油圧アクチュエータである。 The working device 40 also includes a boom cylinder 44 connected to the upper revolving body 32 and the boom 41 to operate the boom 41, an arm cylinder 45 connected to the boom 41 and the arm 42 to operate the arm 42, an arm 42, and a bucket 43. The bucket cylinder 46 is connected to the bucket cylinder 46 to operate the bucket 43, and the swing motor 47 is connected to the lower traveling body 31 and the upper rotating body 32 to operate the upper rotating body 32. The boom cylinder 44, arm cylinder 45, bucket cylinder 46, and swing motor 47 (hereinafter also referred to as actuators 44 to 47) are hydraulic actuators driven by hydraulic pressure.
 制御ユニット50は、ショベル30に搭載されており、図3のブロック図に示すように、制御部51、記憶部52、表示部53、入力部54を備える。制御ユニット50は、位置センサ48、速度センサ49、各アクチュエータ44~47等と接続されて、ショベル30の各部の動作制御を行う。 The control unit 50 is mounted on the excavator 30, and includes a control section 51, a storage section 52, a display section 53, and an input section 54, as shown in the block diagram of FIG. The control unit 50 is connected to a position sensor 48, a speed sensor 49, each actuator 44 to 47, etc., and controls the operation of each part of the shovel 30.
 制御部51は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等から構成されるコンピュータ装置であり、ショベル30の動作を制御する。制御部51は、制御部51のROM、記憶部52等に記憶されている各種動作プログラム及びデータをRAMに読み込んでCPUを動作させることにより、図3に示される制御部51としての各機能を実現させる。これにより、制御部51は、理想速度演算部511(理想速度算出部)、参照速度演算部512(参照算出演算部)、操作量演算部513(操作量算出部)、外力推定部514及び動作指令部515として動作する。 The control unit 51 is a computer device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc., and controls the operation of the shovel 30. The control unit 51 performs each function as the control unit 51 shown in FIG. 3 by loading various operating programs and data stored in the ROM, storage unit 52, etc. of the control unit 51 into the RAM and operating the CPU. make it happen. As a result, the control unit 51 includes the ideal speed calculation unit 511 (ideal speed calculation unit), the reference speed calculation unit 512 (reference calculation calculation unit), the operation amount calculation unit 513 (operation amount calculation unit), the external force estimation unit 514, and the operation It operates as a command unit 515.
 理想速度演算部511、参照速度演算部512及び操作量演算部513は、位置センサ48及び速度センサ49の出力である測定値と、バケット43の目標位置、より詳細にはショベル30の所定部位であるバケット43の先端部(以下、バケット先端43aという。)の目標位置とに基づいて、作業装置40を動作させるための各アクチュエータ44~47の操作量uを算出する。 The ideal speed calculation section 511, the reference speed calculation section 512, and the operation amount calculation section 513 calculate the measured values that are the outputs of the position sensor 48 and the speed sensor 49, and the target position of the bucket 43, more specifically, at a predetermined position of the excavator 30. Based on the target position of the tip of a certain bucket 43 (hereinafter referred to as bucket tip 43a), the operation amount u of each actuator 44 to 47 for operating the working device 40 is calculated.
 外力推定部514は、各アクチュエータ44~47に作用する外力の大きさを推定する。外力の推定方法は特に限定されず、例えば、各アクチュエータ44~47に設置されたセンサ(不図示)等の出力に基づいて推定することができる。 The external force estimation unit 514 estimates the magnitude of the external force acting on each actuator 44 to 47. The method for estimating the external force is not particularly limited, and can be estimated based on the output of a sensor (not shown) installed on each actuator 44 to 47, for example.
 動作指令部515は、操作量演算部513で算出された操作量uに基づいて、各アクチュエータ44~47を制御し、上部旋回体32、ブーム41、アーム42、バケット43を動作させる。 The operation command section 515 controls each of the actuators 44 to 47 based on the operation amount u calculated by the operation amount calculation section 513, and operates the upper revolving structure 32, boom 41, arm 42, and bucket 43.
 記憶部52は、ハードディスク、フラッシュメモリ等の不揮発性メモリであり、各種設定パラメータ、操作量u算出のための制御アルゴリズム等を記憶する。 The storage unit 52 is a nonvolatile memory such as a hard disk or a flash memory, and stores various setting parameters, control algorithms for calculating the manipulated variable u, and the like.
 表示部53は、液晶パネル、有機EL(Electroluminescence)等の表示用デバイスであり、各種設定パラメータ、位置センサ48及び速度センサ49の検出値等を表示する。本実施の形態に係る表示部53は、ショベル30の運転室内に設置された液晶パネルである。 The display unit 53 is a display device such as a liquid crystal panel or an organic EL (electroluminescence), and displays various setting parameters, detected values of the position sensor 48 and speed sensor 49, and the like. The display unit 53 according to this embodiment is a liquid crystal panel installed in the driver's cab of the excavator 30.
 入力部54は、バケット先端43aの目標位置等、ショベル30を動作させる各種設定パラメータを入力するための入力デバイスである。入力部54は、例えば表示部53上に配置されたタッチパネルである。 The input unit 54 is an input device for inputting various setting parameters for operating the shovel 30, such as the target position of the bucket tip 43a. The input unit 54 is, for example, a touch panel placed on the display unit 53.
 位置センサ48は、制御対象であるショベル30の作業装置40の位置を検出するセンサであり、本実施の形態に係る位置センサ48は、上部旋回体32の角度を検出する旋回角度センサ484、ブームの角度を検出するブーム角度センサ481、アームの角度を検出するアーム角度センサ482、バケットの角度を検出するバケット角度センサ483を含む。制御部51は、ブーム角度センサ481、アーム角度センサ482、バケット角度センサ483、旋回角度センサ484によって検出された作業装置40各部の角度から、ブームシリンダ44、アームシリンダ45及びバケットシリンダ46(以下、各シリンダ44~46ともいう。)の長さと、旋回モータ47の角度とを算出し、算出された各シリンダ44~46の長さと旋回モータ47の角度とに基づいて、バケット先端43aの位置制御を行う。 The position sensor 48 is a sensor that detects the position of the working device 40 of the excavator 30 to be controlled, and the position sensor 48 according to the present embodiment includes a swing angle sensor 484 that detects the angle of the upper swing structure 32, The boom angle sensor 481 detects the angle of the arm, the arm angle sensor 482 detects the angle of the arm, and the bucket angle sensor 483 detects the angle of the bucket. The control unit 51 controls the boom cylinder 44, arm cylinder 45, and bucket cylinder 46 (hereinafter referred to as The length of each cylinder 44 to 46 (also referred to as 46) and the angle of the swing motor 47 are calculated, and the position of the bucket tip 43a is controlled based on the calculated length of each cylinder 44 to 46 and the angle of the swing motor 47. I do.
 速度センサ49は、作業装置40各部の速度を検出するセンサであり、本実施の形態に係る速度センサ49は、上部旋回体32の角速度を検出する旋回角速度センサ494、ブームシリンダの伸縮速度を検出するブーム速度センサ491、アームシリンダの伸縮速度を検出するアーム速度センサ492、バケットシリンダの伸縮速度を検出するバケット速度センサ493を含む。 The speed sensor 49 is a sensor that detects the speed of each part of the working device 40, and the speed sensor 49 according to the present embodiment includes a swing angular velocity sensor 494 that detects the angular velocity of the upper rotating body 32, and a swing angular velocity sensor 494 that detects the expansion and contraction speed of the boom cylinder. An arm speed sensor 492 detects the expansion/contraction speed of the arm cylinder, and a bucket speed sensor 493 detects the expansion/contraction speed of the bucket cylinder.
 以下、本実施の形態に係る制御ユニット50によるバケット先端43aの位置制御処理について説明する。図4のブロック図に示すように、油圧アクチュエータである各シリンダ44~46の操作量uを算出する制御アルゴリズムを例として説明する。尚、以下の実施の形態では、各シリンダ44~46のみを用いることとするが、これに限られない。目標位置pの座標によって、上部旋回体32の旋回角度を加えたコントローラを構成して、バケット先端43aの位置制御を行うこととしてもよい。より具体的には、図3に示すように、位置センサ48としての旋回角度センサ484、速度センサ49としての旋回角速度センサ494を用いて、液圧アクチュエータである旋回モータ47を動作させ、ブーム41、アーム42、バケット43の動作と組み合わせてバケット先端43aの位置制御を行うこととしてもよい。 The position control process of the bucket tip 43a by the control unit 50 according to the present embodiment will be described below. As shown in the block diagram of FIG. 4, a control algorithm for calculating the operation amount u of each cylinder 44 to 46, which are hydraulic actuators, will be explained as an example. Note that in the following embodiment, only each of the cylinders 44 to 46 is used, but the invention is not limited to this. The position of the bucket tip 43a may be controlled by configuring a controller that adds the rotation angle of the upper rotating body 32 to the coordinates of the target position pd. More specifically, as shown in FIG. 3, a swing angle sensor 484 as the position sensor 48 and a swing angular velocity sensor 494 as the speed sensor 49 are used to operate the swing motor 47, which is a hydraulic actuator, and the boom 41 , the arm 42, and the bucket 43 to control the position of the bucket tip 43a.
 本発明の制御アルゴリズムでは、制御部51は、与えられた制御対象の目標位置、所望の挙動、現在位置、現在速度等に基づいて、各シリンダ44~46の操作量uを算出する。所望の挙動は、例えば制御対象の目標位置への収束運動の時定数である。 In the control algorithm of the present invention, the control unit 51 calculates the operation amount u of each cylinder 44 to 46 based on the target position, desired behavior, current position, current speed, etc. of the given controlled object. The desired behavior is, for example, the time constant of the convergence movement of the controlled object to the target position.
 <制御の流れ>
 図5のフローチャートを参照しつつ、ショベル30のバケット先端43aの位置制御の流れについて具体的に説明する。
<Control flow>
The flow of position control of the bucket tip 43a of the shovel 30 will be specifically described with reference to the flowchart in FIG.
 ショベル30の操作者は、入力部54からバケット先端43aの目標位置pを入力、設定する(ステップS11)。目標位置pの入力は、タッチパネルである入力部54で座標入力することとしてもよいし、操作レバーを用いて手動で移動させたバケット先端43aの座標を目標位置pとして設定することとしてもよい。また、記憶部52に予め記憶されている設計面上の座標を読み出して、目標位置pを設定することとしてもよい。 The operator of the excavator 30 inputs and sets the target position pd of the bucket tip 43a from the input unit 54 (step S11). The target position pd may be entered by inputting coordinates using the input unit 54, which is a touch panel, or by setting the coordinates of the bucket tip 43a manually moved using an operating lever as the target position pd . good. Alternatively, the target position pd may be set by reading the coordinates on the design surface that are stored in advance in the storage unit 52.
 また、操作者は、所望の挙動を表す時定数H等のパラメータを入力、設定する。これらのパラメータは、記憶部52に予め記憶されている値を読み出して、設定されることとしてもよい。 The operator also inputs and sets parameters such as the time constant H that represents the desired behavior. These parameters may be set by reading values stored in advance in the storage unit 52.
 制御部51は、入力された目標位置pから、逆運動学によって目標位置pにおける各シリンダ44~46の目標長さを算出する(ステップS12)。そして、図4に示すように、各シリンダ44~46の長さがそれぞれ目標長さとなるように、各シリンダ44~46を制御して伸縮させることにより、バケット先端43aの位置制御を行う。 The control unit 51 calculates the target length of each cylinder 44 to 46 at the target position p d from the input target position p d by inverse kinematics (step S12). Then, as shown in FIG. 4, the position of the bucket tip 43a is controlled by controlling the cylinders 44 to 46 to expand and contract so that the lengths of the cylinders 44 to 46 become the respective target lengths.
 制御部51の理想速度演算部511は、理想速度演算工程として、次時刻ステップに発生されるべき理想速度v,を算出する(ステップS13)。より具体的には、制御部51は、ブーム角度センサ481、アーム角度センサ482、バケット角度センサ483(以下、各角度センサ481~483ともいう。)から、作業装置40各部の角度データを取得する。制御部51は、取得した角度データに基づいて、各シリンダ44~46の長さである現在位置pを算出する。制御部51は、算出した現在位置p(m)、設定された目標位置p,(m)、目標速度v,(m/s)、時定数H(s)及び式(15a)又は式(22)に基づいて、各シリンダ44~46の理想速度v,を算出する。制御周期は、特に限定されないが、例えば10ms(ミリ秒)である。 The ideal speed calculation unit 511 of the control unit 51 calculates the ideal speed v s , k to be generated at the next time step as an ideal speed calculation step (step S13). More specifically, the control unit 51 acquires angle data of each part of the working device 40 from a boom angle sensor 481, an arm angle sensor 482, and a bucket angle sensor 483 (hereinafter also referred to as each angle sensor 481 to 483). . The control unit 51 calculates the current position p k , which is the length of each cylinder 44 to 46, based on the acquired angle data. The control unit 51 calculates the calculated current position p k (m), the set target position p d , k (m), the target speed v d , k (m/s), the time constant H (s), and the equation (15a). ) or the ideal speed v s , k of each cylinder 44 to 46 is calculated based on equation (22). The control period is, for example, 10 ms (milliseconds), although it is not particularly limited.
 続いて、制御部51の参照速度演算部512は、参照速度演算工程として、現在速度vk(m/sec)、設定されたPIDゲインK,L,D、制御周期T(sec)、及び式(15b)~(15e)又は式(19b)~(19e)に基づいて、次時刻ステップの参照速度vr,及び参照発生力f^を算出する(ステップS14)。より具体的には、参照速度演算部512は、ブーム速度センサ491、アーム速度センサ492、バケット速度センサ493から、各シリンダ44~46の現在速度vを取得する。そして、参照速度演算部512は、液圧アクチュエータでPID制御又はPD制御を実施した場合に発生可能なアクチュエータ力fが算出される目標速度v,のうち、理想速度v,に最も近い速度である参照速度v,と、参照速度v,を目標速度としてPID制御又はPD制御を実施した場合に発生されるべきアクチュエータ力である参照発生力f^とを、液圧アクチュエータの準静的モデルΓに基づいて算出する。 Subsequently, the reference speed calculation unit 512 of the control unit 51 calculates the current speed vk (m/sec), the set PID gains K, L, D, the control period T (sec), and the formula ( 15b) to (15e) or equations (19b) to (19e), the reference speed vr, k and reference generated force f k ^ of the next time step are calculated (step S14). More specifically, the reference speed calculation unit 512 obtains the current speed v k of each cylinder 44 to 46 from the boom speed sensor 491, arm speed sensor 492, and bucket speed sensor 493. Then, the reference speed calculation unit 512 selects the ideal speed v s , k that is the most suitable among the target speeds v f , k for which the actuator force f that can be generated when PID control or PD control is performed with the hydraulic actuator is calculated. The reference speed v r , k which is a similar speed and the reference generated force f k ^ which is the actuator force that should be generated when PID control or PD control is performed with the reference speed v r , k as the target speed are Calculated based on the quasi-static model Γ of the pressure actuator.
 続いて、制御部51の操作量演算部513は、操作量演算工程として、各シリンダ44~46の操作量uを算出する(ステップS15)。具体的には、操作量演算部513は、ステップS14で算出された参照速度v,及び参照発生力f^と、液圧アクチュエータの準静的モデルΓに基づいて、操作量uを算出する(式(15f),(17))。 Subsequently, the manipulated variable calculation unit 513 of the control unit 51 calculates the manipulated variables u k of each cylinder 44 to 46 as a manipulated variable calculation step (step S15). Specifically, the operation amount calculation unit 513 calculates the operation amount u k based on the reference speed v r , k and the reference generated force f k ^ calculated in step S14, and the quasi-static model Γ of the hydraulic actuator . is calculated (Equations (15f), (17)).
 制御部51の動作指令部515は、算出した操作量uを各シリンダ44~46へ出力し、ブーム41、アーム42、バケット43を動作させてバケット先端43aを移動させる(ステップS16)。 The operation command unit 515 of the control unit 51 outputs the calculated operation amount u k to each cylinder 44 to 46, and operates the boom 41, arm 42, and bucket 43 to move the bucket tip 43a (step S16).
 次の時刻ステップに到達すると、制御部51は、位置センサ48から各シリンダ44~46の現在位置pを、新たに取得する。取得した現在位置pと目標位置p,との差が予め設定されている所定の閾値以下である場合(ステップS17のYES)、制御部51は、位置制御を終了する。 When the next time step is reached, the control unit 51 newly acquires the current position p k of each cylinder 44 to 46 from the position sensor 48. If the difference between the acquired current position p k and target position p d , k is less than or equal to a predetermined threshold (YES in step S17), the control unit 51 ends the position control.
 また、取得した現在位置pと目標位置p,との差が予め設定されている所定の閾値より大きい場合(ステップS17のNO)、制御部51は、ステップS13の理想速度演算工程に戻る。そして、制御部51は、制御アルゴリズムにしたがって、当該時刻ステップでの操作量uを算出し、バケット先端43aを移動させる。これを繰り返し、制御部51は、バケット先端43aの位置を目標位置pとするように、位置制御を行う。 Further, if the difference between the acquired current position p k and target position p d , k is larger than a predetermined threshold value set in advance (NO in step S17), the control unit 51 performs the ideal speed calculation process in step S13. return. Then, the control unit 51 calculates the operation amount u k at the time step in accordance with the control algorithm, and moves the bucket tip 43a. By repeating this, the control unit 51 performs position control so that the position of the bucket tip 43a is set to the target position pd .
 以上、詳細に説明したように、本実施の形態の位置制御に係る制御装置及び制御方法では、制御対象の速度を参照速度に追従させるPID制御則又はPD制御則と、スライディングモード制御則とを連立させて参照速度及びアクチュエータ力を算出し、液圧アクチュエータの準静的特性に基づいて液圧アクチュエータの操作量を算出するので、制御対象の動特性モデルに依存せず制御を行うことができる。したがって、制御対象の動特性の事前情報の精度が低い場合及び液圧アクチュエータの応答に時間遅れがある場合であっても、高い制御性能を得ることが可能である。 As described above in detail, the control device and control method for position control of this embodiment uses a PID control law or a PD control law for making the speed of a controlled object follow a reference speed, and a sliding mode control law. Since the reference speed and actuator force are calculated simultaneously, and the operation amount of the hydraulic actuator is calculated based on the quasi-static characteristics of the hydraulic actuator, control can be performed without depending on the dynamic characteristic model of the controlled object. . Therefore, even when the accuracy of prior information on the dynamic characteristics of the controlled object is low or when there is a time delay in the response of the hydraulic actuator, it is possible to obtain high control performance.
 <数値例>
 以下、本実施の形態に係る制御則を用いた油圧アクチュエータの位置制御シミュレーションについて説明する。本例では、13トン級油圧ショベルの実時間シミュレータを用いてシミュレーションを行った。また、本例では、本実施の形態に係る制御則を、運動学を用いて各軸のアクチュエータに適用することでアーム先端位置の制御を行った。また、実時間シミュレータのサンプリング間隔は0.1msであり、制御器のサンプリング間隔は10msである。実時間シミュレータと制御器とはUDP/IP(User Datagram Protocol/Internet Protocol)で接続されており、関節角度情報、制御入力等の送受信が可能である。
<Numerical example>
Hereinafter, a position control simulation of a hydraulic actuator using the control law according to the present embodiment will be explained. In this example, the simulation was performed using a real-time simulator for a 13-ton class hydraulic excavator. Further, in this example, the arm tip position was controlled by applying the control law according to the present embodiment to the actuator of each axis using kinematics. Further, the sampling interval of the real-time simulator is 0.1 ms, and the sampling interval of the controller is 10 ms. The real-time simulator and the controller are connected by UDP/IP (User Datagram Protocol/Internet Protocol), and can transmit and receive joint angle information, control inputs, and the like.
 実時間シミュレータ内のシリンダ発生力は、上述の公知の文献1に記載の油圧アクチュエータの準静的モデルに基づいて算出される。また、アームシリンダ発生力については、公知の文献1に記載の再生回路を含む準静的モデルに基づいて計算される。本例では、油圧アクチュエータの動特性及び油圧アクチュエータ内のむだ時間を模擬するため、アクチュエータモデルと制御器との間に、以下の式(23)で示すフィルタを設置した。 The cylinder force generated in the real-time simulator is calculated based on the quasi-static model of the hydraulic actuator described in the above-mentioned known document 1. Further, the arm cylinder generated force is calculated based on a quasi-static model including a regeneration circuit described in the well-known document 1. In this example, in order to simulate the dynamic characteristics of the hydraulic actuator and the dead time within the hydraulic actuator, a filter expressed by the following equation (23) is installed between the actuator model and the controller.
Figure JPOXMLDOC01-appb-I000019
 ここで、uはフィルタ後の制御入力である。また、むだ時間T、カットオフ周波数 ω及び減衰比ζは、それぞれT=300msec、ω=94.2rad/sec、ζ=1に設定した。
Figure JPOXMLDOC01-appb-I000019
Here, u f is the filtered control input. Furthermore, the dead time T d , the cutoff frequency ω 0 , and the damping ratio ζ were set to T d =300 msec, ω 0 =94.2 rad/sec, and ζ=1, respectively.
 図6は、ショベル30の姿勢及び目標位置qの軌道を示す。目標位置q及び目標位置qの時間変化率は以下の式(24)の通りであり、目標位置qの時間変化率の大きさは一定とした。 FIG. 6 shows the attitude of the shovel 30 and the trajectory of the target position qd . The target position q d and the rate of change over time of the target position q d are as shown in equation (24) below, and the magnitude of the rate of change over time of the target position q d is constant.
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
 また、本例のパラメータとして、ショベル30のブーム41とアーム42のどちらとも、K=3×10N/m,B=3×10N・s/m,H=1.0sとした。また、制御則中のアクチュエータモデルのパラメータは、制御対象のパラメータと同じ値に設定した。 Further, as parameters in this example, K=3×10 5 N/m, B=3×10 5 N·s/m, and H=1.0 s for both the boom 41 and arm 42 of the excavator 30. Furthermore, the parameters of the actuator model in the control law were set to the same values as the parameters of the controlled object.
 また、本実施の形態に係る制御方法と、従来の制御方法とを比較するため、同条件にて制御シミュレーションを行った。具体的には、制御則Aとして、図7Aに示す二重陰的実装に基づく従来のスライディングモード制御則(公知の文献2に係る制御則)を、制御則Bとして、図7Bに示す本実施の形態に係るPID制御則を用いた。制御則Aはむだ時間補償器を内包しているので、その先読み時間T^を300ms(=T),150ms及び0msに設定してそれぞれシミュレーションを行った。また、切替平面の傾きを示す時定数Hは1.0sとした。 Furthermore, in order to compare the control method according to this embodiment with a conventional control method, a control simulation was performed under the same conditions. Specifically, the control law A is a conventional sliding mode control law (control law according to known document 2) based on the double implicit implementation shown in FIG. 7A, and the control law B is the present implementation shown in FIG. 7B. A PID control law according to the form was used. Since the control law A includes a dead time compensator, simulations were performed with the look-ahead time T d ^ set to 300 ms (=T d ), 150 ms, and 0 ms, respectively. Further, the time constant H indicating the inclination of the switching plane was set to 1.0 s.
 制御則Bは以下の式(25)(式(25a)、式(25b))で表される。 Control law B is expressed by the following formula (25) (formula (25a), formula (25b)).
Figure JPOXMLDOC01-appb-I000021
 ここで、比例ゲインK,微分ゲインK及び積分ゲインKは、それぞれ3×10N/m,3×10N・s/m,及び0に設定した。これらのゲインの値は、シミュレーションを繰り返して試行錯誤的に調整したものである。
Figure JPOXMLDOC01-appb-I000021
Here, the proportional gain K p , the differential gain K d and the integral gain K i were set to 3×10 8 N/m, 3×10 8 N·s/m, and 0, respectively. These gain values were adjusted by trial and error through repeated simulations.
 図8は、シミュレーション結果を示す図である。図8に示すように、再生回路補償を有効にした本実施の形態に係る制御方法(図中の提案手法)が、全域で目標位置とアーム先端位置(図8の手先位置。以後の図でも同様)との誤差が少なく最もよい結果となった。再生回路補償なしの場合の本実施の形態に係る制御方法(制御則B)は、再生回路が開く垂直下げと水平引きの際に、再生回路の影響によって誤差が大きくなっている。 FIG. 8 is a diagram showing the simulation results. As shown in FIG. 8, the control method according to the present embodiment (proposed method in the figure) with regenerative circuit compensation enabled is effective in controlling the target position and the arm tip position (hand position in FIG. 8; also in subsequent figures) over the entire range. (similar) gave the best result with the least error. In the control method (control law B) according to the present embodiment without reproducing circuit compensation, errors are large due to the influence of the reproducing circuit during vertical lowering and horizontal pulling when the reproducing circuit opens.
 制御則Aは、水平引きの際、常に誤差が発生する結果となった。また、先読み時間Td^=0(むだ時間補償なし)の場合、手先位置が常に振動する結果となった。制御則Bについても、全域で振動する結果となった。 Control law A always resulted in errors during leveling. Furthermore, when the look-ahead time Td = 0 (no dead time compensation), the hand position always oscillated. Control law B also resulted in oscillations over the entire range.
 <モデル化誤差の影響検証>
 油圧アクチュエータモデルのパラメータ誤差が制御性能に与える影響を検証するため、シミュレーションを実施した。シミュレータ側のリリーフ圧や流出係数などの値を基準として、制御則側のパラメータに{-20%,0,+20%}の誤差をランダムに付加した。試行回数は100回とした。また、比較のため、本実施の形態に係る制御方法と、油圧アクチュエータの準静的モデルに基づく制御則Aについて、同様のシミュレーションを行った。
<Verification of influence of modeling errors>
A simulation was conducted to verify the influence of parameter errors in the hydraulic actuator model on control performance. An error of {-20%, 0, +20%} was randomly added to the parameters on the control law side based on values such as relief pressure and outflow coefficient on the simulator side. The number of trials was 100. Further, for comparison, similar simulations were performed using the control method according to the present embodiment and control law A based on a quasi-static model of a hydraulic actuator.
 図9A、図9B、図9Cは、シミュレーション結果を示す図である。制御則Aを用いた図9Cと再生回路補償なしの制御則Bを用いた図9A、再生回路補償ありの制御則Bを用いた図9Bとを比較すると、図9A、図9Bの方が、パラメータ誤差のない理想的な場合の軌道の近くに、シミュレーション結果の軌道(パラメータ誤差ありの場合の軌道)が集まっている。これにより、本実施の形態に係る制御方法は、パラメータ誤差に対して制御性能の変化が少ないことがわかる。この結果は、本実施の形態に係る制御方法は制御対象の動特性モデルに依存しておらず、モデル依存性が低いことに起因すると考えられる。また、制御則Aは準静的モデル及び制御対象の動特性モデルに基づくむだ時間補償を行っているので、パラメータ誤差の影響がより顕著に表れたと考えられる。図9Aと図9Bとの比較から、パラメータ誤差がある状況でも再生回路の影響を補償することにより、手先軌道を目標位置qの軌道に近づけられることがわかる。 FIGS. 9A, 9B, and 9C are diagrams showing simulation results. Comparing FIG. 9C using control law A, FIG. 9A using control law B without regeneration circuit compensation, and FIG. 9B using control law B with regeneration circuit compensation, FIGS. 9A and 9B are better. The trajectories of simulation results (trajectories with parameter errors) are clustered near the trajectories of the ideal case with no parameter errors. This shows that the control method according to this embodiment causes little change in control performance with respect to parameter errors. This result is considered to be due to the fact that the control method according to the present embodiment does not depend on the dynamic characteristic model of the controlled object and has low model dependence. Furthermore, since control law A performs dead time compensation based on a quasi-static model and a dynamic characteristic model of the controlled object, it is considered that the influence of parameter errors was more pronounced. From a comparison between FIGS. 9A and 9B, it can be seen that even in a situation where there is a parameter error, the hand trajectory can be brought closer to the trajectory of the target position qd by compensating for the influence of the reproducing circuit.
 以上説明したように、本実施の形態の位置制御に係る制御装置及び制御方法によれば、PID制御又はPD制御と代数的に結合されたスライディングモード制御により位置制御を行い、制御対象の動特性モデルに依存しない構造となっているので、パラメータ誤差、むだ時間等の影響を受けにくい。したがって、大きなむだ時間を有する油圧アクチュエータであっても、適切に制御することができる。また、油圧アクチュエータの準静的モデルに基づいているので、油圧アクチュエータの強い非線形性を取り扱うことができる。 As explained above, according to the control device and control method related to position control of the present embodiment, position control is performed by sliding mode control that is algebraically combined with PID control or PD control, and the dynamic characteristics of the controlled object are Since it has a structure that does not depend on the model, it is less susceptible to the effects of parameter errors, dead time, etc. Therefore, even a hydraulic actuator with a large dead time can be appropriately controlled. Also, since it is based on a quasi-static model of the hydraulic actuator, it can handle the strong nonlinearity of the hydraulic actuator.
 また、本実施の形態に係る制御装置及び制御方法では、再生回路の影響を補償するための拡張が行われている。したがって、再生回路を備える液圧アクチュエータにも適用可能である。 Furthermore, the control device and control method according to this embodiment are expanded to compensate for the influence of the reproducing circuit. Therefore, it is also applicable to a hydraulic actuator equipped with a regeneration circuit.
 上記実施の形態では、速度センサ49を用いて各シリンダ44~46の伸縮速度を計測することとしたが、これに限られない。例えば、各角度センサ481~483で計測された角度データに基づいて、制御部51が各シリンダ44~46の速度を算出することとしてもよい。 In the above embodiment, the speed sensor 49 is used to measure the expansion and contraction speed of each cylinder 44 to 46, but the invention is not limited to this. For example, the control unit 51 may calculate the speed of each cylinder 44 to 46 based on angle data measured by each angle sensor 481 to 483.
 <実施の形態2>
 上記実施の形態1では、液圧アクチュエータで駆動される制御対象を位置制御する場合について説明したが、実施の形態1と同様の制御則を用いて制御対象の力制御を行うことも可能である。本実施の形態では、液圧アクチュエータで駆動される制御対象を力制御する場合の制御装置及び制御方法について説明する。
<Embodiment 2>
In Embodiment 1 above, a case has been described in which the position of a controlled object driven by a hydraulic actuator is controlled; however, it is also possible to perform force control of a controlled object using the same control law as in Embodiment 1. . In this embodiment, a control device and a control method for force-controlling a controlled object driven by a hydraulic actuator will be described.
 具体的には、実施の形態1と同様の油圧アクチュエータ1で駆動される制御対象をアドミッタンス制御する場合を例として力制御装置及び力制御方法について説明する。本実施の形態に係る制御システムは力制御を行うためのフィードバックループを有し、これを実現するために制御部51’が参照位置演算部516(参照位置算出部)を備える点が実施の形態1と異なり、その他の構成等については実施の形態1と同様であるので、同じ符号を付して説明を省略する。 Specifically, the force control device and the force control method will be described using an example in which admittance control is performed on a controlled object driven by the hydraulic actuator 1 similar to the first embodiment. The control system according to the present embodiment has a feedback loop for performing force control, and in order to realize this, the control section 51' includes a reference position calculation section 516 (reference position calculation section). Unlike Embodiment 1, other configurations and the like are the same as in Embodiment 1, so the same reference numerals are given and explanations are omitted.
 図10のブロック線図に示すように、本実施の形態に係る制御システムは、制御対象の油圧アクチュエータ1に環境から加えられる力(以下、反力ともいう。)fの計測値と、油圧アクチュエータ1が環境に加える力の目標値である目標印加力fとを入力として、油圧アクチュエータ1の動作をアドミッタンス制御する。本実施の形態に係るアドミッタンス制御は、図10に示すように、位置制御を基礎とした力制御である。より具体的には、本実施の形態に係るアドミッタンス制御では、実施の形態1に係る位置制御を行う内部位置制御器により、制御対象である油圧アクチュエータ1のロッドの位置pが、制御対象の目標動特性を有する仮想物体の位置qに追従するように制御される。仮想物体の目標動特性は、制御対象の目標慣性及び目標粘性によって定義される動特性であり、本実施の形態に係る仮想物体は、油圧アクチュエータ1の動特性をモデル化した質量ダンパ系として表現される。また、仮想物体には、目標印加力fと、制御対象と高剛性の外部環境とが接触することにより、油圧アクチュエータ1が環境から受ける力として計測された反力fが作用していると想定する。 As shown in the block diagram of FIG. 10, the control system according to the present embodiment uses the measured value of force f e (hereinafter also referred to as reaction force) applied from the environment to the hydraulic actuator 1 to be controlled, and the hydraulic pressure. The operation of the hydraulic actuator 1 is controlled in admittance by inputting a target applied force fd , which is a target value of the force that the actuator 1 applies to the environment. The admittance control according to this embodiment is force control based on position control, as shown in FIG. More specifically, in the admittance control according to the present embodiment, the position p of the rod of the hydraulic actuator 1 to be controlled is controlled by the internal position controller that performs position control according to Embodiment 1 to match the target position of the control target. Control is performed to follow the position q of a virtual object having dynamic characteristics. The target dynamic characteristics of the virtual object are dynamic characteristics defined by the target inertia and target viscosity of the controlled object, and the virtual object according to the present embodiment is expressed as a mass damper system that models the dynamic characteristics of the hydraulic actuator 1. be done. In addition, the target applied force f d and the reaction force f e measured as the force that the hydraulic actuator 1 receives from the environment due to contact between the controlled object and the highly rigid external environment are acting on the virtual object. Assuming that.
 以下、本実施の形態に係る制御則、すなわち、液圧アクチュエータによって駆動される機械を制御対象とし、制御対象と高剛性環境との接触時の力制御を行う場合の液圧アクチュエータの操作量uを決定する制御アルゴリズムについて説明する。 The following describes the control law according to this embodiment, that is, the operation amount u of the hydraulic actuator when a machine driven by a hydraulic actuator is controlled, and force control is performed when the controlled object contacts a highly rigid environment. The control algorithm that determines this will be explained.
 <数学的準備>
 本実施の形態では、以下の式(26)に示す法錘(Normal Cone)と呼ばれる関数を用いる。
<Mathematical preparation>
In this embodiment, a function called a normal cone shown in equation (26) below is used.
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000022
 <制御則>
 制御対象である液圧アクチュエータは、以下の式(27)(式(27a)、式(27b)、式(27c))で表される。
<Control law>
The hydraulic actuator to be controlled is expressed by the following formula (27) (formula (27a), formula (27b), formula (27c)).
Figure JPOXMLDOC01-appb-I000023
 ここで、pは制御対象の位置、vは制御対象の速度、Mは制御対象の質量を表す。
Figure JPOXMLDOC01-appb-I000023
Here, p represents the position of the controlled object, v represents the speed of the controlled object, and M represents the mass of the controlled object.
 上式の制御対象には、アクチュエータの発生力fと外力(外乱)g及び環境からの反力fが作用している。集合値関数Γは、実施の形態1と同様の液圧アクチュエータの準静的モデルであり、現在速度v及びバルブ開度指令である操作量uからアクチュエータの発生力fへの集合値関数として与えられる。制御入力u∈Bは、流量制御弁の開口度を決定する。u>0の場合は液圧アクチュエータを伸展させる方向に、u<0の場合は液圧アクチュエータを収縮させる方向に、液圧アクチュエータ内部のオイル流が発生するように流量制御弁が開く。尚、Mは既知であるという前提は設けない。pは位置センサによって取得可能であるとする。 A force f generated by the actuator, an external force (disturbance) g, and a reaction force f e from the environment act on the controlled object in the above equation. The set value function Γ is a quasi-static model of the hydraulic actuator similar to Embodiment 1, and is given as a set value function from the current speed v and the manipulated variable u, which is the valve opening command, to the actuator generated force f. It will be done. The control input uεB determines the degree of opening of the flow control valve. The flow control valve opens so that the oil flow inside the hydraulic actuator is generated in the direction of extending the hydraulic actuator when u>0 and in the direction of contracting the hydraulic actuator when u<0. Note that there is no assumption that M is known. It is assumed that p can be obtained by a position sensor.
 本実施の形態では、以下の式(28)の各式に示すアドミッタンス制御則を用いる。 In this embodiment, the admittance control law shown in each equation (28) below is used.
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000024
 ここで、g^は外乱の推定値であり、q、B及びMは仮想物体のロッドの位置、粘性及び質量である。式(28a)は、目標印加力fと計測された環境からの反力fによって駆動される仮想物体の動特性を表す。式(28a)の右辺第3項のN[-vm,vm](q)は、式(26)の法錘の定義により、仮想物体の速度qを区間[-v,v]に制限する効果を有する。式(28b)から式(28d)は、制御対象の位置pを仮想物体の位置qに追従させる位置制御器であり、実施の形態1に係る位置制御器と同様の制御則を表している。また、この位置制御器は、調整可能なパラメータとしてPIDゲインK,B及び時定数Hを有している。 Here, g^ is the estimated value of the disturbance, and q, B v and M v are the position, viscosity and mass of the rod of the virtual object. Equation (28a) represents the dynamic characteristics of the virtual object driven by the target applied force f d and the measured reaction force f e from the environment. The third term on the right side of equation (28a), N [-vm, vm] ( q . It has the effect of limiting the Equations (28b) to (28d) are a position controller that causes the position p of the controlled object to follow the position q of the virtual object, and represent the same control law as the position controller according to the first embodiment. Further, this position controller has PID gains K and B and a time constant H as adjustable parameters.
 <離散時間アルゴリズム>
 本実施の形態に係る力制御器から液圧アクチュエータへの制御入力uを{fd,k,fe,k,p,g^}から算出するためのアルゴリズムは、実施の形態1と同様の離散化手順に従うことで得られ、以下の式29の各式のように表される。
<Discrete time algorithm>
The algorithm for calculating the control input u k from the force controller to the hydraulic actuator according to the present embodiment from {f d,k , f e,k , p k , g k ^} is the same as that in Embodiment 1. It is obtained by following the same discretization procedure as in Equation 29 below.
Figure JPOXMLDOC01-appb-I000025
 ここで、A=△KT+Bであり、kは離散時間のインデックス、Tはサンプリング間隔を表す(=△の符号については前述のとおり)。
Figure JPOXMLDOC01-appb-I000025
Here, A=ΔKT+B, k represents a discrete time index, and T represents a sampling interval (the sign of =Δ is as described above).
 上記の式(29)に示すように、本実施の形態に係る力制御のアルゴリズムは、実施の形態1に係る式(19)の位置制御のアルゴリズムに相当する式(29c)~(29i)に、力制御器を構成するための式(29a)~(29b)が加えられたものである。このように、本実施の形態の力制御に係る制御装置及び制御方法では、実施の形態1に係る位置制御方法に基づく内部位置制御器を用いて力制御を行っている。したがって、制御対象の動特性の事前情報の精度が低い場合及び液圧アクチュエータの応答に時間遅れがある場合であっても、高い制御性能を得ることが可能である。 As shown in equation (29) above, the force control algorithm according to the present embodiment is based on equations (29c) to (29i), which correspond to the position control algorithm of equation (19) according to the first embodiment. , equations (29a) to (29b) for configuring the force controller are added. In this manner, the control device and control method according to the present embodiment performs force control using the internal position controller based on the position control method according to the first embodiment. Therefore, even when the accuracy of prior information on the dynamic characteristics of the controlled object is low or when there is a time delay in the response of the hydraulic actuator, it is possible to obtain high control performance.
 <制御システムの構成>
 本実施の形態に係る制御ユニット50’の制御部51’は、図11のブロック図に示すように、参照位置演算部516(参照位置算出部)を備える点で、実施の形態1に係る制御部51と異なる。
<Control system configuration>
As shown in the block diagram of FIG. 11, the control section 51' of the control unit 50' according to the present embodiment has the control section 51' according to the first embodiment, in that it includes a reference position calculation section 516 (reference position calculation section). It is different from part 51.
 参照位置演算部516は、制御対象である油圧アクチュエータを備える機械の動特性を有する仮想物体を用いて参照位置を算出する。具体的には、上述のアルゴリズムに示したように、油圧アクチュエータから環境への印加力の目標値として設定された目標印加力と、油圧アクチュエータが備える力センサ60で測定された油圧アクチュエータに働く環境からの反力の測定値とを仮想物体のモデルに入力する。そして、次時刻ステップにおいて制御対象、より詳細には仮想物体における油圧アクチュエータのロッドが位置するべき参照位置を算出する。油圧アクチュエータに働く力を測定する力センサ60は、油圧アクチュエータに内蔵されるものであってもよいし、油圧アクチュエータの外部に設置されるものであってもよい。 The reference position calculation unit 516 calculates a reference position using a virtual object that has the dynamic characteristics of a machine that includes a hydraulic actuator to be controlled. Specifically, as shown in the above algorithm, the target applied force set as the target value of the applied force from the hydraulic actuator to the environment and the environment acting on the hydraulic actuator measured by the force sensor 60 included in the hydraulic actuator. The measured value of the reaction force from is input into the model of the virtual object. Then, in the next time step, the control target, more specifically, the reference position where the rod of the hydraulic actuator in the virtual object should be located is calculated. The force sensor 60 that measures the force acting on the hydraulic actuator may be built into the hydraulic actuator, or may be installed outside the hydraulic actuator.
 また、本実施の形態に係る理想速度演算部511は、参照位置演算部516で算出された参照位置を用いて理想速度を算出する。より具体的には、理想速度演算部511は、参照位置を、実施の形態1に係るアルゴリズムにおける目標位置として用いることにより、理想速度を算出する。これにより、図10に示すように、参照位置演算部516の出力である参照位置qが、内部位置制御器として動作する実施の形態1に係る制御則に入力されて制御が実行され、全体として制御対象の力制御が行われることとなる。 Further, the ideal speed calculation unit 511 according to the present embodiment calculates the ideal speed using the reference position calculated by the reference position calculation unit 516. More specifically, the ideal speed calculation unit 511 calculates the ideal speed by using the reference position as a target position in the algorithm according to the first embodiment. As a result, as shown in FIG. 10, the reference position q, which is the output of the reference position calculation unit 516, is input to the control law according to the first embodiment that operates as an internal position controller, and control is executed. Force control of the controlled object will be performed.
 <制御の流れ>
 図12は、本実施の形態に係る力制御の流れを示すフローチャートである。図12に示すように、本実施の形態に係る力制御では、まず、油圧アクチュエータの目標印加力fを設定する(ステップS31)。続いて、設定された目標印加力fと、油圧アクチュエータに働く力fの測定値とに基づいて、参照位置qが演算される(ステップS32)。制御開始時に与えられる時定数H等のパラメータは、実施の形態1と同様に予め与えられる。
<Control flow>
FIG. 12 is a flowchart showing the flow of force control according to this embodiment. As shown in FIG. 12, in the force control according to the present embodiment, first, a target applied force fd of the hydraulic actuator is set (step S31). Subsequently, a reference position q is calculated based on the set target applied force f d and the measured value of the force f e acting on the hydraulic actuator (step S32). Parameters such as the time constant H given at the start of control are given in advance as in the first embodiment.
 より具体的には、制御部51’の参照位置演算部516は、参照位置演算工程として、次時刻ステップに制御対象である油圧アクチュエータのロッドが位置すべき参照位置を算出する。参照位置を算出するためのアルゴリズムは、上述の式(29a)~(29b)の通りである。 More specifically, as a reference position calculation step, the reference position calculation unit 516 of the control unit 51' calculates the reference position at which the rod of the hydraulic actuator to be controlled should be located in the next time step. The algorithm for calculating the reference position is as shown in equations (29a) to (29b) above.
 ステップS33~S36の処理は、ステップS31で算出された参照位置を目標位置として入力した場合における実施の形態1に係るステップS13~S16の処理(図5)と同様である。 The processing in steps S33 to S36 is similar to the processing in steps S13 to S16 according to the first embodiment (FIG. 5) when the reference position calculated in step S31 is input as the target position.
 ステップS33~S36において、内部位置制御器による操作量uの演算が行われ、制御対象である油圧アクチュエータの動作が制御される。制御部51’は、操作者による終了指示、所定の動作時間の終了等により、制御処理が終了するまで(ステップS37のNO)、ステップS31~S37の処理を繰り返す。また、制御システムは、操作者による終了指示、所定の動作時間の終了等、所定の終了条件が充足されると(ステップS37のYES)、制御処理を終了する。以上の処理により、本実施の形態に係る制御部51’は、制御対象の力制御を行うことができる。 In steps S33 to S36, the operation amount u is calculated by the internal position controller, and the operation of the hydraulic actuator to be controlled is controlled. The control unit 51' repeats the processes of steps S31 to S37 until the control process is terminated (NO in step S37) due to a termination instruction from the operator, the end of a predetermined operation time, or the like. Further, the control system ends the control process when a predetermined end condition is satisfied, such as an end instruction from the operator, or the end of a predetermined operation time (YES in step S37). Through the above processing, the control unit 51' according to the present embodiment can control the force of the controlled object.
 以上説明したように、本実施の形態に係る力制御を行う制御装置及び制御方法では、制御対象の速度を参照速度に追従させるPID制御則又はPD制御則と、スライディングモード制御則とを連立させて参照速度及びアクチュエータ力を算出し、液圧アクチュエータの準静的特性に基づいて液圧アクチュエータの操作量を算出する実施の形態1に係る制御則を用いて制御対象の力制御を行うので、制御対象の動特性モデルに依存せず制御を行うことができる。したがって、制御対象の動特性の事前情報の精度が低い場合及び液圧アクチュエータの応答に時間遅れがある場合であっても、高い制御性能を得ることが可能である。 As explained above, in the control device and control method that performs force control according to the present embodiment, the PID control law or PD control law for making the speed of the controlled object follow the reference speed, and the sliding mode control law are simultaneously implemented. Since the force control of the controlled object is performed using the control law according to the first embodiment, which calculates the reference speed and actuator force based on the quasi-static characteristics of the hydraulic actuator, and calculates the operation amount of the hydraulic actuator based on the quasi-static characteristics of the hydraulic actuator. Control can be performed without depending on the dynamic characteristic model of the controlled object. Therefore, even when the accuracy of prior information on the dynamic characteristics of the controlled object is low or when there is a time delay in the response of the hydraulic actuator, it is possible to obtain high control performance.
 <数値例>
 以下、本実施の形態に係る制御則を用いた油圧アクチュエータの力制御シミュレーションについて説明する。本例では、図13に示す油圧試験機を用いて、本実施の形態に係るアドミッタンス制御を行った。油圧試験機は、電磁比例流量制御弁(モジュラー弁の最上段)、リリーフ弁及びチェック弁を備えている。ポンプユニットから供給される作動油の流量は4.17×10-4/sで一定であり、油圧シリンダの最大出力は1.56×10-3Nである。また、サンプリング間隔はT=0.01sである。
<Numerical example>
A force control simulation of a hydraulic actuator using the control law according to the present embodiment will be described below. In this example, admittance control according to the present embodiment was performed using a hydraulic testing machine shown in FIG. 13. The hydraulic testing machine is equipped with an electromagnetic proportional flow control valve (the top stage of the modular valve), a relief valve, and a check valve. The flow rate of the hydraulic oil supplied from the pump unit is constant at 4.17×10 −4 m 3 /s, and the maximum output of the hydraulic cylinder is 1.56×10 −3 N. Further, the sampling interval is T=0.01s.
 制御ユニットは、油圧シリンダのリニアエンコーダ及びロードセルから、ロッド位置p及び環境からの反力fの計測値を取得する。制御入力uは、D/A変換ボードによって流量制御弁の入力電圧に変換される。 The control unit acquires measured values of the rod position p and the reaction force f e from the environment from the linear encoder and load cell of the hydraulic cylinder. The control input u is converted into an input voltage for the flow control valve by a D/A conversion board.
 油圧シリンダが接触する環境としては、図13に示すように、剛体壁に固定されたゴム板を用いた。また、ロードセルのロードボタン部のみが環境と接触するように、ゴム板前面には金属板を設置した。本例では比較のため、3種類の異なる硬さのゴム板との接触実験を行った。ゴム板の硬さは、それぞれショアA硬度50HS程度(ShoreA50)、ショアA硬度65HS程度(ShoreA65)及びショアA硬度70HS程度(ShoreA70)であり、数字の小さいゴム板がより柔らかい材質である。 As shown in FIG. 13, a rubber plate fixed to a rigid wall was used as the environment in which the hydraulic cylinder came into contact. In addition, a metal plate was installed in front of the rubber plate so that only the load button part of the load cell came into contact with the environment. In this example, for comparison, a contact experiment was conducted with three types of rubber plates of different hardness. The hardness of the rubber plates is approximately Shore A hardness 50HS (ShoreA50), Shore A hardness approximately 65HS (ShoreA65), and Shore A hardness approximately 70HS (ShoreA70), and the rubber plate with a smaller number is a softer material.
 本例のアドミッタンス制御の制御アルゴリズムに係る各パラメータは、K=2.5×10N/m、B=3.0×10N・s/m、H=0.5sとした。仮想物体のパラメータは、B=7.5×10N・s/m、M=5kgとした。これらのパラメータは、発生力fが不安定にならないように試行錯誤的に決定された。 Each parameter related to the control algorithm of admittance control in this example was set to K=2.5×10 3 N/m, B=3.0×10 2 N·s/m, and H=0.5 s. The parameters of the virtual object were B v =7.5×10 3 N·s/m and M v =5 kg. These parameters were determined by trial and error so that the generated force f would not become unstable.
 図14A、図14B、図14Cに階段状の目標印加力fに対する接触力制御の結果を示す。図14A、図14B、図14Cに示すように、すべての硬度の環境に対して、計測された反力fを目標印加力fに追従させることができている。 14A, 14B, and 14C show the results of contact force control with respect to the stepwise target applied force fd . As shown in FIGS. 14A, 14B, and 14C, the measured reaction force f can be made to follow the target applied force f d for all hardness environments.
 図15A、図15B、図15Cに正弦波状の目標印加力fに対する接触力制御の結果を示す。図15A、図15B、図15Cに示すように、すべての硬度の環境に対して、計測された反力fを目標印加力fに追従させることができている。 15A, 15B, and 15C show the results of contact force control for a sinusoidal target applied force fd . As shown in FIGS. 15A, 15B, and 15C, the measured reaction force f can be made to follow the target applied force f d for all hardness environments.
 以上説明したように、本実施の形態に係る力制御方法よって、高剛性環境に接触した油圧アクチュエータから環境に加えられる力を、適切に目標印加力に追従させることが可能である。 As explained above, the force control method according to the present embodiment allows the force applied to the environment from the hydraulic actuator in contact with the highly rigid environment to appropriately follow the target applied force.
 本発明は、液圧アクチュエータで動作する機械の位置制御及び力制御に好適である。特に、油圧アクチュエータによって動作する建設機械の自動位置決め制御及びアドミッタンス制御に好適である。 The present invention is suitable for position control and force control of machines operated by hydraulic actuators. In particular, it is suitable for automatic positioning control and admittance control of construction machinery operated by hydraulic actuators.
 本発明の第1の観点に係る制御装置は、制御対象である機械を駆動させる液圧アクチュエータを制御する動作指令部と、前記機械の目標位置及び現在位置に基づいて、前記機械の次時刻ステップに発生されるべき理想速度を算出する理想速度算出部と、前記液圧アクチュエータでPID制御又はPD制御を実施した場合に発生可能なアクチュエータ力が算出される目標速度のうち、前記理想速度に最も近い速度である参照速度と、前記参照速度を目標速度としてPID制御又はPD制御を実施した場合に発生されるべきアクチュエータ力である参照発生力とを、前記液圧アクチュエータの準静的特性に基づいて算出する参照速度算出部と、前記液圧アクチュエータの準静的特性、前記参照発生力及び前記参照速度に基づいて、前記液圧アクチュエータの操作量を算出する操作量算出部と、を備える。 A control device according to a first aspect of the present invention includes an operation command unit that controls a hydraulic actuator that drives a machine to be controlled, and a next time step of the machine based on a target position and a current position of the machine. an ideal speed calculation unit that calculates the ideal speed that should be generated at A reference speed that is a similar speed and a reference generated force that is an actuator force that should be generated when PID control or PD control is performed using the reference speed as a target speed are determined based on the quasi-static characteristics of the hydraulic actuator. the hydraulic actuator, and an operation amount calculation section that calculates the operation amount of the hydraulic actuator based on the quasi-static characteristic of the hydraulic actuator, the reference generated force, and the reference speed.
 また、前記液圧アクチュエータは、再生回路を備え、前記理想速度は、前記機械の前記目標位置、前記現在位置、前記再生回路の流量制御バルブの開口度及び前記再生回路を通る作動液の流量の推定値に基づいて算出されてもよい。 Further, the hydraulic actuator includes a regeneration circuit, and the ideal speed is based on the target position of the machine, the current position, the opening degree of a flow control valve of the regeneration circuit, and the flow rate of hydraulic fluid passing through the regeneration circuit. It may be calculated based on an estimated value.
 また、前記機械は、複数の前記液圧アクチュエータで駆動され、前記操作量算出部は、それぞれの前記液圧アクチュエータについて前記操作量を算出し、前記動作指令部は、算出された前記操作量に基づいてそれぞれの前記液圧アクチュエータを制御することにより、前記機械の所定部位を目標位置に移動させてもよい。 Further, the machine is driven by a plurality of the hydraulic actuators, the operation amount calculation section calculates the operation amount for each of the hydraulic actuators, and the operation command section is configured to calculate the operation amount for each of the hydraulic actuators, and the operation command section calculates the operation amount for each of the hydraulic actuators. A predetermined portion of the machine may be moved to a target position by controlling each of the hydraulic actuators based on the hydraulic actuator.
 また、制御装置は、前記機械に加わる外力を推定する外力推定部を備え、前記参照速度算出部は、前記外力推定部で推定される外力に基づいて前記参照速度及び前記参照発生力を算出してもよい。 Further, the control device includes an external force estimating section that estimates an external force applied to the machine, and the reference speed calculating section calculates the reference speed and the reference generated force based on the external force estimated by the external force estimating section. It's okay.
 また、前記液圧アクチュエータは、油圧アクチュエータであってもよい。 Furthermore, the hydraulic actuator may be a hydraulic actuator.
 また、制御装置は、前記機械が接触する環境から前記液圧アクチュエータが受ける反力と、前記液圧アクチュエータが前記環境に加える力の目標値である目標印加力とを、前記機械の目標動特性を有する仮想物体に入力して、前記仮想物体における前記機械が次時刻ステップにおいて位置すべき参照位置を算出する参照位置算出部を備え、前記理想速度算出部は、前記参照位置を前記目標位置として前記理想速度を算出してもよい。 Further, the control device calculates a reaction force that the hydraulic actuator receives from an environment with which the machine comes into contact, and a target applied force that is a target value of the force that the hydraulic actuator applies to the environment, based on the target dynamic characteristics of the machine. a reference position calculation unit that calculates a reference position at which the machine in the virtual object should be positioned at the next time step by inputting the input into a virtual object having The ideal speed may be calculated.
 また、本発明の第2の観点に係る制御方法は、液圧アクチュエータで駆動される制御対象である機械の目標位置及び現在位置に基づいて、前記機械の次時刻ステップに発生されるべき理想速度を算出する理想速度算出工程と、前記液圧アクチュエータでPID制御又はPD制御を実施した場合に発生可能なアクチュエータ力が算出される目標速度のうち、前記理想速度に最も近い速度である参照速度と、前記参照速度を目標速度としてPID制御又はPD制御を実施した場合に発生されるべきアクチュエータ力である参照発生力とを、前記液圧アクチュエータの準静的特性に基づいて算出する参照速度算出工程と、前記液圧アクチュエータの準静的特性、前記参照発生力及び前記参照速度に基づいて、前記液圧アクチュエータの操作量を算出する操作量算出工程と、を含む。 Further, the control method according to the second aspect of the present invention is based on the target position and current position of a machine to be controlled driven by a hydraulic actuator, and the ideal speed to be generated in the next time step of the machine. and a reference speed which is the speed closest to the ideal speed among the target speeds at which the actuator force that can be generated when PID control or PD control is implemented with the hydraulic actuator. , a reference speed calculation step of calculating a reference generated force, which is an actuator force that should be generated when PID control or PD control is performed with the reference speed as a target speed, based on the quasi-static characteristics of the hydraulic actuator. and a manipulated variable calculating step of calculating a manipulated variable of the hydraulic actuator based on the quasi-static characteristic of the hydraulic actuator, the reference generated force, and the reference speed.
 また、制御方法は、前記機械が接触する環境から前記液圧アクチュエータが受ける反力と、前記液圧アクチュエータが前記環境に加える力の目標値である目標印加力とを、前記機械の目標動特性を有する仮想物体に入力して、前記仮想物体における前記機械が次時刻ステップにおいて位置すべき参照位置を算出する参照位置算出工程を含み、前記理想速度算出工程では、前記参照位置を前記目標位置として前記理想速度を算出してもよい。 In addition, the control method may be configured to calculate a reaction force that the hydraulic actuator receives from an environment with which the machine comes into contact, and a target applied force that is a target value of the force that the hydraulic actuator applies to the environment, based on a target dynamic characteristic of the machine. a reference position calculation step of calculating a reference position at which the machine in the virtual object should be located at the next time step by inputting the reference position into a virtual object having a The ideal speed may be calculated.
 本発明の制御装置及び制御方法によれば、制御対象の速度を参照速度に追従させるPID制御則又はPD制御則と、スライディングモード制御則とを連立させて参照速度及びアクチュエータ力を算出し、液圧アクチュエータの準静的特性に基づいて液圧アクチュエータの操作量を算出するので、制御対象の動特性モデルに依存せず制御を行うことができる。したがって、制御対象の動特性の事前情報の精度が低い場合及び液圧アクチュエータの応答に時間遅れがある場合であっても、高い制御性能を得ることが可能である。
 

 
According to the control device and control method of the present invention, the reference speed and actuator force are calculated by simultaneously calculating the PID control law or PD control law for making the speed of the controlled object follow the reference speed and the sliding mode control law, and Since the operation amount of the hydraulic actuator is calculated based on the quasi-static characteristics of the hydraulic actuator, control can be performed without depending on the dynamic characteristic model of the controlled object. Therefore, even when the accuracy of prior information on the dynamic characteristics of the controlled object is low or when there is a time delay in the response of the hydraulic actuator, it is possible to obtain high control performance.


Claims (8)

  1.  制御対象である機械を駆動させる液圧アクチュエータを制御する動作指令部と、
     前記機械の目標位置及び現在位置に基づいて、前記機械の次時刻ステップに発生されるべき理想速度を算出する理想速度算出部と、
     前記液圧アクチュエータでPID制御又はPD制御を実施した場合に発生可能なアクチュエータ力が算出される目標速度のうち、前記理想速度に最も近い速度である参照速度と、前記参照速度を目標速度としてPID制御又はPD制御を実施した場合に発生されるべきアクチュエータ力である参照発生力とを、前記液圧アクチュエータの準静的特性に基づいて算出する参照速度算出部と、
     前記液圧アクチュエータの準静的特性、前記参照発生力及び前記参照速度に基づいて、前記液圧アクチュエータの操作量を算出する操作量算出部と、
     を備える制御装置。
    an operation command unit that controls a hydraulic actuator that drives a machine to be controlled;
    an ideal speed calculation unit that calculates an ideal speed to be generated at the next time step of the machine based on a target position and a current position of the machine;
    Among the target speeds at which the actuator force that can be generated is calculated when PID control or PD control is performed with the hydraulic actuator, a reference speed that is the speed closest to the ideal speed, and a PID using the reference speed as the target speed. a reference speed calculation unit that calculates a reference generated force that is an actuator force that should be generated when control or PD control is performed based on quasi-static characteristics of the hydraulic actuator;
    an operation amount calculation unit that calculates an operation amount of the hydraulic actuator based on the quasi-static characteristic of the hydraulic actuator, the reference generated force, and the reference speed;
    A control device comprising:
  2.  前記液圧アクチュエータは、再生回路を備え、
     前記理想速度は、前記機械の前記目標位置、前記現在位置、前記再生回路の流量制御バルブの開口度及び前記再生回路を通る作動液の流量の推定値に基づいて算出される、請求項1に記載の制御装置。
    The hydraulic actuator includes a regeneration circuit,
    The ideal speed is calculated based on the target position of the machine, the current position, the opening degree of the flow control valve of the regeneration circuit, and an estimated value of the flow rate of the hydraulic fluid passing through the regeneration circuit. Control device as described.
  3.  前記機械は、複数の前記液圧アクチュエータで駆動され、
     前記操作量算出部は、それぞれの前記液圧アクチュエータについて前記操作量を算出し、
     前記動作指令部は、算出された前記操作量に基づいてそれぞれの前記液圧アクチュエータを制御することにより、前記機械の所定部位を目標位置に移動させる、請求項1に記載の制御装置。
    The machine is driven by a plurality of the hydraulic actuators,
    The operation amount calculation unit calculates the operation amount for each of the hydraulic actuators,
    The control device according to claim 1, wherein the operation command section moves a predetermined part of the machine to a target position by controlling each of the hydraulic actuators based on the calculated operation amount.
  4.  前記機械に加わる外力を推定する外力推定部を更に備え、
     前記参照速度算出部は、前記外力推定部で推定される外力に基づいて前記参照速度及び前記参照発生力を算出する、請求項1に記載の制御装置。
    further comprising an external force estimation unit that estimates an external force applied to the machine,
    The control device according to claim 1, wherein the reference speed calculation unit calculates the reference speed and the reference generated force based on the external force estimated by the external force estimation unit.
  5.  前記液圧アクチュエータは、油圧アクチュエータである、請求項1から4のいずれか一項に記載の制御装置。 The control device according to any one of claims 1 to 4, wherein the hydraulic actuator is a hydraulic actuator.
  6.  前記機械が接触する環境から前記液圧アクチュエータが受ける反力と、前記液圧アクチュエータが前記環境に加える力の目標値である目標印加力とを、前記機械の目標動特性を有する仮想物体に入力して、前記仮想物体における前記機械が次時刻ステップにおいて位置すべき参照位置を算出する参照位置算出部を更に備え、
     前記理想速度算出部は、前記参照位置を前記目標位置として前記理想速度を算出する、請求項1に記載の制御装置。
    A reaction force that the hydraulic actuator receives from an environment with which the machine comes into contact and a target applied force that is a target value of the force that the hydraulic actuator applies to the environment are input to a virtual object having target dynamic characteristics of the machine. further comprising a reference position calculation unit that calculates a reference position at which the machine in the virtual object should be located at the next time step,
    The control device according to claim 1, wherein the ideal speed calculation unit calculates the ideal speed using the reference position as the target position.
  7.  液圧アクチュエータで駆動される制御対象である機械の目標位置及び現在位置に基づいて、前記機械の次時刻ステップに発生されるべき理想速度を算出する理想速度算出工程と、
     前記液圧アクチュエータでPID制御又はPD制御を実施した場合に発生可能なアクチュエータ力が算出される目標速度のうち、前記理想速度に最も近い速度である参照速度と、前記参照速度を目標速度としてPID制御又はPD制御を実施した場合に発生されるべきアクチュエータ力である参照発生力とを、前記液圧アクチュエータの準静的特性に基づいて算出する参照速度算出工程と、
     前記液圧アクチュエータの準静的特性、前記参照発生力及び前記参照速度に基づいて、前記液圧アクチュエータの操作量を算出する操作量算出工程と、
     を含む制御方法。
    an ideal speed calculation step of calculating an ideal speed to be generated at the next time step of the machine based on a target position and a current position of the machine that is a controlled object driven by a hydraulic actuator;
    Among the target speeds at which the actuator force that can be generated is calculated when PID control or PD control is performed with the hydraulic actuator, a reference speed that is the speed closest to the ideal speed, and a PID using the reference speed as the target speed. a reference speed calculation step of calculating a reference generated force, which is an actuator force to be generated when control or PD control is performed, based on quasi-static characteristics of the hydraulic actuator;
    an operation amount calculation step of calculating an operation amount of the hydraulic actuator based on the quasi-static characteristic of the hydraulic actuator, the reference generated force, and the reference speed;
    control methods including.
  8.  前記機械が接触する環境から前記液圧アクチュエータが受ける反力と、前記液圧アクチュエータが前記環境に加える力の目標値である目標印加力とを、前記機械の目標動特性を有する仮想物体に入力して、前記仮想物体における前記機械が次時刻ステップにおいて位置すべき参照位置を算出する参照位置算出工程を更に含み、
     前記理想速度算出工程では、前記参照位置を前記目標位置として前記理想速度を算出する、請求項7に記載の制御方法。
    A reaction force that the hydraulic actuator receives from an environment with which the machine comes into contact and a target applied force that is a target value of the force that the hydraulic actuator applies to the environment are input to a virtual object having target dynamic characteristics of the machine. further comprising a reference position calculation step of calculating a reference position at which the machine in the virtual object should be located at the next time step;
    The control method according to claim 7, wherein in the ideal speed calculation step, the ideal speed is calculated using the reference position as the target position.
PCT/JP2023/030465 2022-08-26 2023-08-24 Control device and control method WO2024043303A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-134748 2022-08-26
JP2022134748 2022-08-26
JP2023127490A JP2024031851A (en) 2022-08-26 2023-08-04 Control device and control method
JP2023-127490 2023-08-04

Publications (1)

Publication Number Publication Date
WO2024043303A1 true WO2024043303A1 (en) 2024-02-29

Family

ID=90013486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030465 WO2024043303A1 (en) 2022-08-26 2023-08-24 Control device and control method

Country Status (1)

Country Link
WO (1) WO2024043303A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242028A (en) * 1986-04-11 1987-10-22 Kobe Steel Ltd Slow start position controller for working machine for construction equipment
JPH09291560A (en) * 1996-04-26 1997-11-11 Hitachi Constr Mach Co Ltd Locus controller of construction machine
JP2002023807A (en) * 2000-06-19 2002-01-25 Kyosei Kan Method for realizing feedback control for optimally and automatically removing disturbance and device for the same
US6356829B1 (en) * 1999-08-02 2002-03-12 Case Corporation Unified control of a work implement
JP2015040604A (en) * 2013-08-22 2015-03-02 日立建機株式会社 Hydraulic control device of work machine
JP2015196968A (en) * 2014-03-31 2015-11-09 住友建機株式会社 Shovel
JP2017053160A (en) * 2015-09-10 2017-03-16 日立建機株式会社 Construction machine
JP2017096040A (en) * 2015-11-27 2017-06-01 日立建機株式会社 Work machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242028A (en) * 1986-04-11 1987-10-22 Kobe Steel Ltd Slow start position controller for working machine for construction equipment
JPH09291560A (en) * 1996-04-26 1997-11-11 Hitachi Constr Mach Co Ltd Locus controller of construction machine
US6356829B1 (en) * 1999-08-02 2002-03-12 Case Corporation Unified control of a work implement
JP2002023807A (en) * 2000-06-19 2002-01-25 Kyosei Kan Method for realizing feedback control for optimally and automatically removing disturbance and device for the same
JP2015040604A (en) * 2013-08-22 2015-03-02 日立建機株式会社 Hydraulic control device of work machine
JP2015196968A (en) * 2014-03-31 2015-11-09 住友建機株式会社 Shovel
JP2017053160A (en) * 2015-09-10 2017-03-16 日立建機株式会社 Construction machine
JP2017096040A (en) * 2015-11-27 2017-06-01 日立建機株式会社 Work machine

Similar Documents

Publication Publication Date Title
Ha et al. Impedance control of a hydraulically actuated robotic excavator
Jud et al. Planning and control for autonomous excavation
US9752298B2 (en) Trace generation device and working machine
JP3091667B2 (en) Excavation control device for construction machinery
Feng et al. Identification and compensation of non-linear friction for a electro-hydraulic system
Egli et al. A general approach for the automation of hydraulic excavator arms using reinforcement learning
Nguyen et al. Force/position tracking for electrohydraulic systems of a robotic excavator
EP0979901A1 (en) Device for controlling limited-area excavation with construction machine
Park et al. Utilizing online learning based on echo-state networks for the control of a hydraulic excavator
Sotiropoulos et al. A model-free extremum-seeking approach to autonomous excavator control based on output power maximization
Egli et al. Towards RL-based hydraulic excavator automation
US11248365B2 (en) Automated control for excavators
WO2020045579A1 (en) Construction machine
Bender et al. A predictive driver model for the virtual excavator
CN114411840B (en) Land leveling control method and device and excavator
WO2024043303A1 (en) Control device and control method
JP2024031851A (en) Control device and control method
KR20210151812A (en) Hydrostatic working tools and methods for controlling them
JPH11350537A (en) Controller of hydraulic working machine
Moghaddam et al. FOPID control with parameter optimization for hydrostatically-actuated autonomous excavators
JP7313633B2 (en) Position control device and position control method
Wind et al. Design of an adaptive velocity controller for a hydraulic mini excavator using a moving-horizon-estimator
Lee et al. An isobus-networked electronic self-leveling controller for the front-end loader of an agricultural tractor
Zhang et al. Modeling and controlling for hydraulic excavator’s arm
Pencelli et al. Accurate position control for hydraulic servomechanisms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857411

Country of ref document: EP

Kind code of ref document: A1