WO2024043006A1 - Inspection system, inspection device, and inspection method - Google Patents

Inspection system, inspection device, and inspection method Download PDF

Info

Publication number
WO2024043006A1
WO2024043006A1 PCT/JP2023/027859 JP2023027859W WO2024043006A1 WO 2024043006 A1 WO2024043006 A1 WO 2024043006A1 JP 2023027859 W JP2023027859 W JP 2023027859W WO 2024043006 A1 WO2024043006 A1 WO 2024043006A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
image
inspection
welding
workpiece
Prior art date
Application number
PCT/JP2023/027859
Other languages
French (fr)
Japanese (ja)
Inventor
庸介 入江
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024043006A1 publication Critical patent/WO2024043006A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Definitions

  • the present disclosure relates to an inspection system, an inspection device, and an inspection method for inspecting a workpiece after welding.
  • Patent Document 1 discloses a method of inspecting a laser welded part that is welded by irradiating a laser onto the surface of an object to be inspected after welding.
  • a laser welded part that has been cooled to ambient temperature is imaged with an infrared camera, and the difference in brightness in the obtained infrared image is used as an index representing the difference in infrared emissivity of the surface of the object to be inspected.
  • the method includes a first process of detecting a weld area, and a second process of determining the quality of welding based on the brightness value of an infrared image within the weld area.
  • the present disclosure provides an inspection system, an inspection device, and an inspection method that can accurately and efficiently inspect a welded object after welding.
  • One aspect of the present disclosure provides an inspection device used in an inspection system equipped with an infrared camera.
  • the infrared camera captures a plurality of temperature images, each of which indicates the temperature of the welded object, using infrared rays emitted from the welded object after welding, and generates image data representing the plurality of temperature images.
  • the plurality of temperature images are taken in time series according to changes in the temperature of the object to be welded, and reflect changes in heat conduction due to the internal structure of the object to be welded.
  • the inspection device includes an input circuit that receives image data and an arithmetic circuit that analyzes the image data.
  • the arithmetic circuit calculates an analytical image regarding the internal structure of the workpiece based on the image data, and calculates an analysis image based on the emissivity difference from each part of the workpiece's surface in at least one of the plurality of temperature images. Based on the contrast, an inspection area corresponding to a welding area formed on the object to be welded by welding is extracted from the analysis image, and the extracted inspection area is output.
  • One aspect of the present disclosure provides an inspection method that includes the steps of input circuitry of a computer receiving image data generated by an infrared camera, and arithmetic circuitry of the computer analyzing the image data.
  • the infrared camera captures a plurality of temperature images, each of which indicates the temperature of the welded object, using infrared rays emitted from the welded object after welding, and generates image data representing the plurality of temperature images.
  • the plurality of temperature images are taken in time series according to changes in the temperature of the object to be welded, and reflect changes in heat conduction due to the internal structure of the object to be welded.
  • the arithmetic circuit calculates an analytical image regarding the internal structure of the workpiece based on the image data, and calculates an analysis image based on the emissivity difference from each part of the workpiece's surface in at least one of the plurality of temperature images. Based on the contrast, an inspection area corresponding to a welding area formed on the workpiece by welding is extracted from the analysis image, and the extracted inspection area is output.
  • Diagram for explaining the configuration of an inspection system according to Embodiment 1 of the present disclosure A block diagram showing an example of the configuration of an inspection device in the inspection system of Embodiment 1.
  • Flowchart illustrating the operation of the inspection device according to the first embodiment Diagram illustrating a temperature image captured by an infrared camera of the inspection system Diagram for explaining temporal changes in measured temperature in temperature images
  • Diagram illustrating phase images before and after extracting the inspection area with the inspection device Flowchart illustrating inspection area extraction processing by the inspection apparatus of Embodiment 1
  • Diagram for explaining a temperature difference image in the inspection device of Embodiment 1 A diagram for explaining inspection area extraction processing in the inspection apparatus of Embodiment 1.
  • Diagram for explaining an example of defect detection by the inspection system A diagram for explaining a temperature difference image in an inspection apparatus according to a modification of Embodiment 1.
  • An inspection device is an inspection device used in an inspection system equipped with an infrared camera.
  • the infrared camera captures a plurality of temperature images, each of which indicates the temperature of the welded object, using infrared rays emitted from the welded object after welding, and generates image data representing the plurality of temperature images.
  • the plurality of temperature images are taken in time series according to changes in the temperature of the object to be welded, and reflect changes in heat conduction due to the internal structure of the object to be welded.
  • the inspection device includes an input circuit that receives the image data, and an arithmetic circuit that analyzes the image data.
  • the arithmetic circuit calculates an analytical image regarding the internal structure of the workpiece based on the image data, and calculates radiation from each part of the surface of the workpiece in at least one temperature image of the plurality of temperature images.
  • An inspection area corresponding to a welding area formed on the object to be welded by welding is extracted from the analysis image based on a contrast according to the rate difference, and the extracted inspection area is output.
  • the calculation circuit corresponds to at least a peak temperature at which the temperature of the welded object is at a peak among the plurality of temperature images.
  • the contrast is calculated from the first image.
  • the arithmetic circuit is configured to lower the temperature than the peak temperature captured before or after the first image in the plurality of temperature images.
  • a third image showing a difference between a second image corresponding to temperature and the first image is calculated, and the contrast is calculated from the third image.
  • the arithmetic circuit performs Fourier transformation on the plurality of temperature images to calculate the analysis image.
  • the analysis image is calculated by the Fourier transform based on a phase or amplitude defined according to a temperature change of the workpiece. be done.
  • the arithmetic circuit performs an analysis of the workpiece based on the extracted analysis image of the inspection area. Detect internal defects.
  • the inspection apparatus includes a recording medium for recording information, and the arithmetic circuit is configured to analyze an analysis image from which the inspection area has been extracted. Image data is output to the recording medium.
  • the inspection apparatus includes an output circuit connected to an external device, and the arithmetic circuit is configured to control the inspection area by the output circuit.
  • the image data of the extracted analysis image is output to the external device.
  • An inspection system includes an infrared camera that generates image data by capturing a temperature image indicating the temperature of the welded object using infrared rays emitted from the welded object after welding; to the inspection device according to any one of the eighth aspects.
  • an excitation source that emits excitation energy toward the workpiece after welding to heat the workpiece, or an excitation source that heats the workpiece after welding;
  • the infrared camera further includes a cooling device that cools the object to be welded, and the infrared camera captures the plurality of temperature images according to a temperature change due to heating or cooling of the object to be welded.
  • An inspection method includes a step in which an input circuit of a computer receives image data generated by an infrared camera, and a step in which an arithmetic circuit of the computer analyzes the image data.
  • the infrared camera captures a plurality of temperature images, each of which indicates the temperature of the welded object, using infrared rays emitted from the welded object after welding, and generates image data representing the plurality of temperature images.
  • the plurality of temperature images are taken in time series according to changes in the temperature of the object to be welded, and reflect changes in heat conduction due to the internal structure of the object to be welded.
  • the arithmetic circuit calculates an analytical image regarding the internal structure of the workpiece based on the image data, and calculates radiation from each part of the surface of the workpiece in at least one temperature image of the plurality of temperature images.
  • An inspection area corresponding to a welding area formed on the object to be welded by welding is extracted from the analysis image based on a contrast according to the rate difference, and the extracted inspection area is output.
  • a program according to a twelfth aspect of the present disclosure is a program for causing the arithmetic circuit to execute the inspection method according to the eleventh aspect.
  • Embodiment 1 The inspection system and inspection device according to Embodiment 1 will be described below.
  • FIG. 1 is a diagram for explaining the configuration of an inspection system 1 according to Embodiment 1 of the present disclosure.
  • the inspection system 1 of this embodiment is applied to inspect the workpiece 11, which is an object to be welded, in-line or offline after welding the workpiece 11.
  • the inspection device 20 detects internal defects 12 such as voids that may occur inside the workpiece 11 using, for example, active thermography.
  • the active thermography method is a non-destructive inspection method in which the temperature change of the object is observed by excitation such as applying heat to the object to be inspected, and the internal structure of the object is estimated from the temperature change.
  • the inspection system 1 of FIG. 1 includes two excitation sources 18 and an infrared camera 17, for example for active thermography, a power supply 16 for supplying power to each excitation source 18 and infrared camera 17, and a control for controlling the operation of the power supply 16. It includes a box 15 and an inspection device 20.
  • the control box 15 is connected to the power source 16 and the inspection device 20 so as to control the power supply to the excitation source 18 and the like by the power source 16 based on, for example, a control signal from the inspection device 20.
  • the infrared camera 17 of the present system 1 is arranged so that, for example, the welding area 30 to be welded on the workpiece 11 can be seen.
  • the infrared camera 17 repeats an imaging operation at a predetermined period, for example, and generates image data representing a captured image.
  • the infrared camera 17 is connected to, for example, the inspection device 20 so as to transmit image data.
  • the inspection device 20 controls the imaging operation of the infrared camera 17, collects and analyzes the captured image data.
  • the infrared camera 17 includes an infrared sensor that detects infrared rays having a wavelength of 3 ⁇ m to 15 ⁇ m, for example.
  • the excitation source 18 is, for example, a halogen lamp, a xenon lamp, a laser light source, a vibrator that generates ultrasonic waves, or a coil that generates electromagnetic induction, but is not limited to these, and may be any configuration that emits energy. Further, when the excitation source 18 is a halogen lamp, a xenon lamp, or a laser light source, the excitation source 18 may pulse-heat the workpiece 11 by emitting flash light.
  • the wavelength of the light emitted by the excitation source 18 may be different from the wavelength of the infrared rays detected by the infrared camera 17 as long as it is a wavelength that is highly absorbed by the object to be welded. Although two excitation sources 18 are illustrated in FIG. 1, the number of excitation sources 18 is not limited to two, and may be one or three or more.
  • FIG. 2 is a block diagram showing a configuration example of the inspection device 20 in the inspection system 1 of this embodiment.
  • the inspection device 20 is configured as, for example, various types of computers.
  • the inspection device 20 in FIG. 2 includes a CPU 21, a storage device 22, an input interface 23, and an output interface 24.
  • the interface will be abbreviated as "I/F”.
  • the CPU 21 realizes the functions of the inspection device 20 by performing information processing in collaboration with software, for example. Such information processing is realized, for example, by the CPU 21 operating in accordance with instructions from the control program 25 stored in the storage device 22.
  • the CPU 21 may include an internal memory as a temporary storage area that holds various data and programs.
  • the CPU 21 is an example of an arithmetic circuit in the inspection device of the present disclosure.
  • the arithmetic circuit of the inspection device 20 may include a circuit that performs arithmetic operations for information processing, and is not limited to a CPU.
  • the arithmetic circuit may be a hardware circuit such as a dedicated electronic circuit or a reconfigurable electronic circuit designed to realize various functions in the inspection device 20, or may be a circuit such as an MPU or an FPGA. may be configured.
  • the storage device 22 is a recording medium that records various information including programs and data such as the control program 25 necessary to realize the functions of the inspection device 20.
  • the storage device 22 is realized by, for example, a flash memory, a semiconductor storage device such as a solid state drive (SSD), a magnetic storage device such as a hard disk drive (HDD), and other recording media alone or in combination.
  • the storage device 22 may include volatile memory such as SRAM and DRAM.
  • the above program may be provided via a communication network such as the Internet, or may be stored in a portable recording medium.
  • the input I/F 23 is an interface circuit that connects the inspection device 20 with external equipment such as the infrared camera 17 in order to input information such as image data from the infrared camera 17 into the inspection device 20.
  • the input I/F 23 may be an input terminal that receives image data from the infrared camera 17, for example.
  • the input I/F 23 may be a communication circuit that performs data communication according to a predetermined wired communication standard or wireless communication standard.
  • the predetermined communication standards include IEEE802.3, USB, HDMI (registered trademark), IEEE802.11, IEEE1394, WiFi (registered trademark), Bluetooth (registered trademark), and the like.
  • the output I/F 24 is an interface circuit that connects the inspection device 20 and external equipment in order to output information such as control signals from the inspection device 20.
  • external devices include, for example, the control box 15, the infrared camera 17, other information processing terminals such as a server device, and other output devices such as a display.
  • the output I/F 24 may be a communication circuit that performs data communication according to a predetermined wired communication standard or wireless communication standard.
  • the output I/F 24 may be, for example, various signal lines, output terminals, or connection terminals that output information to external equipment.
  • the input I/F 23 and the output I/F 24 may be realized by similar hardware, or may be an integrated input/output I/F.
  • this system 1 excites the workpiece 11 after welding with an excitation source 18 and measures the temperature change of the workpiece 11 with an infrared camera 17.
  • the infrared camera 17 detects infrared rays emitted from the workpiece 11, captures temperature images indicating the temperature of the workpiece 11 at a period such as a predetermined frame rate, and generates image data indicating each temperature image.
  • the infrared camera 17 sequentially transmits such temperature image data to the inspection device 20, for example.
  • the inspection device 20 receives temperature image data via, for example, the input I/F 23 and stores it in the storage device 22 .
  • the inspection device 20 of the present system 1 detects internal defects 12 in the workpiece 11 by analyzing temperature image data over a predetermined period as an inspection of the workpiece 11, and determines whether the welding quality is good or bad according to the detection result. Determine.
  • the workpiece 11 is inspected by pulse thermography in which the excitation source 18 is used to pulse-heat the workpiece 11.
  • the thickness direction of the work 11 corresponding to the vertical direction in FIG. is sometimes called downward.
  • FIG. 3 is a flowchart illustrating the operation of the inspection device 20 according to this embodiment.
  • the flowchart in FIG. 3 is started, for example, in synchronization with the timing of pulse heating by the excitation source 18.
  • Each process shown in this flowchart is executed by, for example, the CPU 21 of the inspection device 20.
  • FIG. 4 is a diagram illustrating a temperature image captured by the infrared camera 17 of the inspection system 1.
  • FIG. 4A shows a temperature image N21 of the workpiece 11 at room temperature before being heated by the excitation source 18.
  • FIG. 4(B) shows a temperature image N1 at a peak temperature at which the temperature in the temperature image becomes the highest due to heating while measuring the temperature change of the workpiece 11.
  • FIG. 4(C) shows a temperature image N22 of the workpiece 11 in which the temperature in the temperature image decreases after heating and is in a normal temperature state, for example, as before heating.
  • FIG. 5 is a diagram for explaining temporal changes in measured temperature in a temperature image.
  • the vertical axis shows the temperature (in degrees Celsius) measured by the infrared camera 17, and the horizontal axis shows time (in seconds).
  • the dotted line indicates a temperature change in a portion of the surface of the workpiece 11 where the emissivity is relatively low and the temperature measured by the infrared camera 17 is difficult to rise due to heating (#1).
  • a solid line indicates a temperature change in a portion of the surface of the workpiece 11 that has a higher emissivity than the above-mentioned portion and whose measured temperature is likely to rise due to heating (#2).
  • Emissivity indicates the ratio of the measured temperature in the temperature image to the actual value when the temperature of the surface of the workpiece 11 is actually measured, and in the range of "0" to "1", the higher the value, the more infrared rays are emitted. shows.
  • the pre-heating temperature image N21 is captured at time t21, one frame before the start of heating by the excitation source 18.
  • the temperature image N1 of the peak temperature is captured at time t1 when the measured temperature is the highest during the measurement period.
  • the temperature image N22 after heating is captured at time t22, 100 frames after the start of heating.
  • the level of the measured temperature is expressed by the level of brightness, and the brighter the image, the higher the measured temperature.
  • the welding area 30 on the workpiece 11 appears brighter than other areas in the temperature image N1 at the peak temperature, The boundaries between the welding region 30 and other regions can be easily observed. A possible reason for this is that the welding region 30 undergoes a thermal history due to heating during welding, causing changes in shape and physical properties, making it easier for infrared rays to be emitted.
  • the CPU 21 sets analysis conditions indicating conditions for analyzing the temperature image data (S2).
  • the analysis conditions include, for example, a frame range of a temperature image used for analysis by the inspection device 20, an analysis frequency used for calculating a phase image, which will be described later.
  • the frame range of the analysis conditions is set, for example, to correspond to a predetermined period long enough to allow observation of temperature changes in the workpiece 11 due to pulsed heating from the excitation source 18.
  • the analysis frequency is set to a frequency that is less than or equal to 1/2 of the sampling frequency (Nyquist frequency: a frequency that can be correctly detected by Fourier transform), and is set to a frequency that is equal to or lower than 1/2 of the sampling frequency (Nyquist frequency: a frequency that can be correctly detected by Fourier transform), and is set at a depth where internal defects 12, etc. of the workpiece 11, which is assumed to be the object to be inspected, exists. It will be set accordingly. For example, when detecting an internal defect 12 on the upper side (closer to the surface) of the workpiece 11, a higher frequency is used than when detecting an internal defect 12 on the lower side (farther from the surface). .
  • step S2 the CPU 21 sets analysis conditions based on user input values input from an external input device via the input I/F 23, for example.
  • the CPU 21 may set the analysis conditions based on setting values stored in advance in the storage device 22 or the like.
  • the CPU 21 analyzes the temperature image data in the frame range of the set analysis conditions (S2) using discrete Fourier transform (S3). For example, the CPU 21 calculates a complex function in the frequency domain using a discrete Fourier transform from a time function indicating a temperature change at each part of the surface of the workpiece 11 corresponding to each pixel of the temperature image.
  • the analysis result of such a discrete Fourier transform of the temperature image data includes, for example, a phase and an amplitude defined by a complex function regarding the frequency, depending on the temperature change of the workpiece 11 over the frame range of the analysis conditions.
  • the CPU 21 calculates the phase value at the analysis frequency of the set analysis condition from the complex function corresponding to each pixel of the temperature image based on the analysis result of step S3, and converts each phase value into a pixel value.
  • a phase image is calculated (S4).
  • the phase image is an example of an analysis image in the inspection device 20 of this embodiment, and for example, the difference in heat propagation depending on the internal structure of each part of the workpiece 11 is reflected as a phase difference between pixels for a period of the frame range. obtain.
  • the CPU 21 executes filter processing on the calculated phase image using, for example, various image processing filters (S5).
  • image processing filters include, for example, a high-pass filter that emphasizes edges of an image, a Gaussian filter that smoothes an image, and the like. Through such filter processing, for example, edge enhancement and noise reduction can be performed in the phase image, thereby making it easier to perform the processing related to inspection using the phase image (S6 to S8).
  • the CPU 21 stores, for example, a phase image to which filter processing has been applied, in an internal memory or the like.
  • FIG. 6 is a diagram illustrating phase images before and after the inspection region is extracted by the inspection device 20.
  • the inspection area indicates an area corresponding to the welding area 30 on the workpiece 11 in the phase image, and is used for detecting an internal defect 12, which will be described later.
  • FIG. 6(A) illustrates the phase image P1 after filter processing is performed (S5) and before the inspection region is extracted.
  • an internal defect 12 inside the workpiece 11 appears as a darker area than the surrounding area in a region corresponding to the welding region 30 in the phase image P1.
  • the CPU 21 performs a process of extracting an inspection area corresponding to the welding area 30, for example, in the phase image P1 after filter processing (S5) (S6).
  • FIG. 6(B) illustrates a phase image P1 in which the inspection region 30p has been extracted by such inspection region extraction processing (S6).
  • the background portion other than the inspection area 30p is masked.
  • the CPU 21 may hold the analysis results of the temperature image such as the phase image P1 in an internal memory or the like. Details of the inspection area extraction process (S6) will be described later.
  • the CPU 21 performs internal defect 12 detection processing, for example, based on the pixel value of the inspection area 30p in the phase image P1 (S7).
  • the CPU 21 determines, for example, the size and per unit area of the region corresponding to the internal defect 12 in the inspection region 30p in the phase image P1 after extracting the inspection region 30p as shown in FIG. 6(B). Detect the number of .
  • Such defect detection processing (S7) is executed using, for example, various types of machine learning.
  • the CPU 21 determines whether the welding quality is good or bad based on the detection results (S8). For example, the CPU 21 compares the size of the region detected corresponding to the internal defect 12 and the number of defects per unit area with predetermined threshold values to determine whether the welding quality is good or not, that is, the workpiece 11 after welding. Determine whether the product is good or defective. For example, it may be determined that the product is non-defective when both the size and the number of detected regions are greater than or equal to each threshold value, and it may be determined that the product is defective when either of the detected regions is less than or equal to the threshold value.
  • the predetermined threshold value can be set as appropriate in accordance with the required level of processing accuracy in welding the workpiece 11, taking into account, for example, the rate of overlooking and over-detecting defective products.
  • the CPU 21 determines whether the welding quality is poor (S9). If the welding quality is poor (YES in S9), the CPU 21 notifies, for example, an external device of the poor welding quality. For example, the CPU 21 outputs, via the output I/F 24, a signal notifying a defective welding quality to a control device of a production line including the welding process of the workpiece 11, or a terminal owned by the manager of the production line. The defect may be notified to the device or the like. This makes it possible to take measures, such as stopping the production line or excluding defective products, depending on the determination result of defective welding.
  • the CPU 21 After notifying the welding quality defect (S10), the CPU 21 stores, for example, the analysis result held in the internal memory and the determination result of step S8 in the storage device 22 or the like (S11).
  • the CPU 21 does not particularly execute the process of step S10, and stores, for example, the analysis result and the determination result (S11).
  • the CPU 21 ends the processing of this flowchart.
  • the process shown in FIG. 3 may be started again in accordance with the timing of pulse heating the next workpiece 11.
  • the corresponding inspection area 30p is extracted (S6).
  • internal defects 12 are detected in the inspection area 30p from the phase image P1 after extracting the inspection area 30p (see FIG. 6(B)) (S7), and the quality of welding is determined based on the detection result. (S8).
  • the inspection device 20 can accurately and efficiently inspect the workpiece 11 after welding.
  • step S1 the CPU 21 may acquire temperature image data from the server device or the like, for example, via the input I/F 23.
  • step S4 the CPU 21 may calculate an amplitude image not only based on the phase image but also based on the amplitude of the complex function based on the analysis result.
  • the processing after step S5 may be performed using an amplitude image instead of the phase image, or may be performed using both the phase image and the amplitude image.
  • the CPU 21 executes the defect detection processing (S7) and the welding quality determination (S8).
  • S7 defect detection processing
  • S8 welding quality determination
  • the internal defect 12 may be observed, for example, by visual inspection of the welding region 30 of the phase image P1, and the quality of the welding may be determined based on the observation result.
  • the CPU 21 may output, for example, the phase image P1 after extracting the inspection region 30p to an external output device or the like through the output I/F 24, and display the phase image P1.
  • FIG. 7 is a flowchart illustrating the inspection area extraction process (S6) by the inspection device 20 of this embodiment.
  • the process shown in the flowchart of FIG. 7 is started, for example, with the temperature image data acquired in step S1 of FIG. 3 and the phase image P1 after filter processing (S5) being held in the internal memory of the CPU 21, etc. .
  • the CPU 21 generates a temperature image N1 at a peak temperature (also referred to as a "peak temperature image N1"), for example, as shown in FIG. ) is acquired (S21).
  • the CPU 21 acquires image data of a temperature image (also referred to as "low temperature image N2") at a temperature lower than the peak temperature (for example, room temperature) from the temperature image data corresponding to the temperature change (S22).
  • the CPU 21 acquires, for example, a temperature image N21 of one frame before heating as shown in FIG. 4(A) as the low temperature image N2.
  • the CPU 21 calculates a temperature difference image N3 based on the image data of the peak temperature image N1 and the low temperature image N2 acquired in steps S21 and S22 (S23).
  • the CPU 21 calculates a temperature difference image N3 by calculating the difference in pixel values (that is, brightness values) at corresponding positions between the peak temperature image N1 and the low temperature image N2.
  • a background region corresponding to a region where the temperature change on the workpiece 11 due to thermal excitation is smaller than that in the welding region 30, that is, a background component is suppressed.
  • FIG. 8 is a diagram for explaining a temperature difference image in the inspection device 20 of this embodiment.
  • FIG. 8A illustrates a temperature difference image N3 calculated by subtracting each pixel value of the temperature image N21 before heating as the low temperature image N2 from each pixel value of the peak temperature image N1.
  • the contrast is emphasized and the boundary between the area corresponding to the welding area 30 and other areas becomes more clear than, for example, the peak temperature image N1 of FIG. 4(B). ing.
  • FIG. 8B shows, as another example of calculating a temperature difference image, a temperature difference image N3b calculated by subtracting each pixel value of the peak temperature image N1 from each pixel value of the temperature image N21 before heating. is illustrated using a temperature scale different from that in FIG. 8(A). Also in the temperature difference image N3b of FIG. 8(B), the boundary between the area corresponding to the welding area 30 and other areas can be clearly observed, similar to the temperature difference image N3 of FIG. 8(A), for example. .
  • the CPU 21 After calculating the temperature difference image N3 (S23), the CPU 21 performs a binarization process on the temperature difference image N3 based on the contrast due to the emissivity difference in each part of the surface of the workpiece 11 (S24).
  • the CPU 21 executes the binarization process using, for example, a brightness value histogram according to the emissivity of the temperature difference image N3.
  • the CPU 21 sets pixels whose pixel values are greater than or equal to a predetermined threshold value to be white, and sets pixels whose pixel values are less than the threshold value to black.
  • the predetermined threshold value is set using, for example, Otsu's binarization method, which is also known as the discriminant analysis method.
  • FIG. 9 is a diagram for explaining the inspection area extraction process in the inspection device 20 of this embodiment.
  • FIG. 9(A) illustrates a temperature difference image N3 similar to FIG. 8(A) as a temperature image before performing the binarization process.
  • FIG. 9(B) illustrates a binarized image M3 obtained by applying binarization processing to the temperature difference image N3 of FIG. 9(A).
  • a region 30m corresponding to the welding region 30 is set to white.
  • the CPU 21 Based on the calculated binarized image M3, the CPU 21 creates a region mask for extracting the inspection region 30p from the phase image P1 as shown in FIG. 6(A) (S25). For example, in the binarized image M3 of FIG. 9(B), the CPU 21 sets the pixel value of an area 30m set to white as "1", with the position where the pixel value changes as a boundary, and the area set to black. A region mask having the pixel value of "0" may be created.
  • the CPU 21 After creating the region mask (S25), the CPU 21 combines the region mask with the phase image P1 and extracts the inspection region 30p (S26). For example, the CPU 21 may multiply each pixel value of the region mask created from the above-described binarized image M3 by each pixel value at the corresponding position of the phase image P1. As a result, in the phase image P1, the pixel value at the position corresponding to the area 30m is not changed, while the pixel value in the background area other than the area becomes zero, and for example, the welding area as shown in FIG. A phase image P1 is obtained by extracting the inspection region 30p corresponding to 30.
  • the CPU 21 outputs image data indicating the phase image P1 from which the inspection area 30p is extracted to the internal memory or the like as the extraction result of the inspection area 30p (S27).
  • the CPU 21 may output the extraction result of the inspection area 30p not only to the internal memory but also to an external output device of the inspection apparatus 20, for example, via the output I/F 24.
  • the CPU 21 ends the process of this flowchart and returns to step S7 in FIG. 3.
  • a region mask is created based on the contrast according to the emissivity difference on the workpiece 11 in the temperature image (S24, S25), and the region mask is used for inspection according to the welding region 30 in the phase image P1.
  • Region 30p is extracted (S26).
  • the temperature image is used not only to calculate the phase image P1 (S4) but also to create a region mask.
  • the inspection area 30p for performing defect detection processing (S7) can be extracted.
  • FIG. 10 is a diagram for explaining an example of defect detection by the inspection system 1.
  • FIG. 10 shows an example in which defect detection is performed in a phase image different from that in FIG. 6.
  • FIG. 10A illustrates the phase image P10 calculated from the temperature image analysis result in step S4 of FIG.
  • FIG. 10(B) illustrates a phase image P11 obtained by applying filter processing to the phase image P10 of FIG. 10(A) in step S5.
  • FIG. 10C illustrates a phase image P11 in which the inspection region 30p is extracted by combining region masks from the state of FIG. 10B in the inspection region extraction process (S6).
  • the dark-looking region in the phase images P10 and P11 corresponding to the welding region 30 corresponds to the internal defect 12.
  • phase image P11 of FIG. 10(B) the visibility of the area corresponding to the welding area 30 is improved from the phase image P10 of FIG. 10(A) by filtering such as edge enhancement and smoothing. Furthermore, according to the phase image P11 in FIG. 10(C), for example, the area of the internal defect 12 can be searched only in the extracted inspection area 30p of the phase image P11, making it easier to perform the defect detection process (S7). can do.
  • step S24 is not limited to the above example, and various methods such as the P-tile method, mode method, dynamic threshold determination method, level slice method, Laplacian histogram method, differential histogram method, etc. are used. It's okay.
  • the image data of the temperature image N21 before heating is acquired as the low temperature image N2 (S22), and is used to calculate the temperature difference image N3 (S23).
  • the low temperature image N2 is not limited to the temperature image N21 before heating, but may also be acquired, for example, a temperature image N22 after heating as shown in FIG. 4(C).
  • FIG. 11 is a diagram for explaining a temperature difference image in an inspection apparatus according to a modification of the present embodiment.
  • FIG. 11(A) illustrates a temperature difference image N3a calculated using the temperature image N22 after heating instead of the temperature image N21 before heating in calculating the temperature difference image N3 shown in FIG. 8(A).
  • FIG. 11(B) illustrates a temperature difference image N3ab calculated using the temperature image N22 after heating instead of the temperature image N21 before heating in calculating the temperature difference image N3b in FIG. 8(B).
  • FIGS. 11(A) and (B) even if the temperature image N22 after heating is used as the low temperature image N2, it is similar to the temperature difference images N3 and N3b in FIGS. 8(A) and (B), for example.
  • temperature difference images N3a and N3ab with enhanced contrast can be obtained.
  • the inspection device 20 is used in the inspection system 1 equipped with the infrared camera 17.
  • the infrared camera 17 captures a plurality of temperature images each indicating the temperature of the workpiece 11 using infrared rays emitted from the workpiece 11 after welding (an example of an object to be welded), and generates image data indicating the plurality of temperature images. generate.
  • the plurality of temperature images are taken in time series according to changes in the temperature of the workpiece 11, and reflect changes in heat conduction due to the internal structure of the workpiece 11.
  • the inspection device 20 includes an input I/F 23 (an example of an input circuit) that receives image data, and a CPU 21 (an example of an arithmetic circuit) that analyzes the image data. Based on the image data, the CPU 21 calculates a phase image P1 as an example of an analysis image regarding the internal structure of the workpiece 11 (S3, S4), and calculates each part of the surface of the workpiece 11 in at least one temperature image among the plurality of temperature images.
  • the inspection area 30p corresponding to the welding area 30 formed on the workpiece 11 by welding is extracted from the phase image P1 based on the contrast according to the emissivity difference from (S6), and the extracted inspection area 30p is output ( S6, S27).
  • the phase image P1 regarding the internal structure of the work 11 is generated by analyzing a plurality of temperature images according to the temperature change of the work 11 (S3, S4), and the phase image P1 is generated using the temperature images.
  • the inspection area 30p is extracted (S6).
  • the welding quality regarding the internal defect 12 etc. can be inspected from the extracted inspection area 30p, and the influence of the background area other than the inspection area 30p can be suppressed to accurately and accurately inspect the workpiece 11 after welding. It can be done efficiently.
  • the CPU 21 calculates the contrast from the peak temperature image N1 (an example of the first image) corresponding to the peak temperature at which the temperature of the workpiece 11 is at least the peak among the plurality of temperature images (S21 , S24).
  • the peak temperature image N1 tends to have a large contrast due to the difference in emissivity of each part of the surface of the workpiece 11, so it is possible to easily calculate the contrast used for, for example, binarization processing.
  • the CPU 21 selects a low temperature image N2 (second image) corresponding to a temperature lower than the peak temperature, which is captured before or after the peak temperature image N1 (an example of the first image) among the plurality of temperature images.
  • a temperature difference image N3 (an example of a third image) is calculated (S23), and a contrast is calculated from the temperature difference image N3 (S24).
  • S24 the contrast between the area corresponding to the welding area 30 and the background area is emphasized, and a region mask is created by binarization processing (S24 to S25). ) can be made easier.
  • the temperature difference image N3 As the low-temperature image N2 used in calculating the temperature difference image N3 (S23) described above, either the temperature image N21 before heating or the temperature image N22 after heating can be used, depending on the imaging period of the plurality of temperature images, for example. It may also be determined whether the Further, calculation of the temperature difference image N3 is not limited to the example using the above-mentioned peak temperature image N1 and low temperature image N2, and it is sufficient to obtain a difference between an image with a relatively high temperature and an image with a relatively low temperature.
  • the CPU 21 performs discrete Fourier transform, which is an example of Fourier transform, on the plurality of temperature images (S3), and calculates a phase image P1, which is an example of an analysis image (S4).
  • discrete Fourier transform which is an example of Fourier transform
  • a phase image P1 which is an example of an analysis image (S4).
  • the phase image P1 which is an example of an analysis image
  • the amplitude image which is another example of the analysis image, includes an amplitude defined by the complex function according to the temperature change of the workpiece 11. According to such a phase image or an amplitude image, information regarding the internal structure of the internal defect 12 or the like can be obtained depending on the temperature change of the workpiece 11, for example.
  • the CPU 21 detects an internal defect 12, which is an example of a defect occurring inside the workpiece 11, based on the pixel value of the inspection area 30p in the phase image P1, as an example of the extracted analysis image of the inspection area 30p. Detect (S7). Thereby, the internal defect 12 can be detected more accurately and efficiently than, for example, by using the entire phase image P1. Furthermore, based on the detection results of such internal defects 12, it is possible to accurately and efficiently determine whether the welding quality is good or bad (S8).
  • the inspection device 20 includes an internal memory of the CPU 21 as an example of a recording medium for recording information, and the CPU 21 outputs image data of the phase image P1 from which the inspection region 30p has been extracted to the recording medium (S27 ).
  • the CPU 21 may output and store the extraction result of the inspection area 30p not only in the internal memory but also in the storage device 22, for example.
  • the inspection device 20 includes an output I/F 24 (an example of an output circuit) that connects to an external device such as an output device such as a display.
  • the CPU 21 may output the image data of the phase image from which the inspection region 30p has been extracted to the external device using the output I/F 24.
  • the extraction result of the inspection area 30p may be output to an output device such as a display or an information processing terminal such as a server device as an external device.
  • the inspection system 1 includes an infrared camera 17 that generates image data by capturing a temperature image indicating the temperature of the work 11 using infrared rays emitted from the work 11 after welding, and an inspection device 20.
  • the inspection device 20 controls the imaging operation of the infrared camera 17, for example, and acquires image data of a temperature image from the infrared camera 17.
  • the inspection device 20 is not limited to the above example, and may receive image data of a temperature image by, for example, communicating data with an infrared camera external to the inspection system 1.
  • the inspection system 1 further includes an excitation source 18 that heats the work 11 by emitting excitation energy toward the work 11 after welding.
  • the infrared camera 17 captures a plurality of temperature images N1 and N2 according to temperature changes due to heating of the workpiece 11. Thereby, for example, temperature image data can be acquired by cooling the workpiece 11 after welding, heating it with the excitation source 18, and capturing the image with the infrared camera 17 (S1 in FIG. 3).
  • the inspection method in this embodiment includes a step in which the input I/F 23 (an example of an input circuit) of the inspection device 20, which is an example of a computer, receives image data generated by the infrared camera 17, and a step in which the CPU 21 (arithmetic circuit example) includes steps (S3 to S7) of analyzing image data.
  • the infrared camera 17 captures a plurality of temperature images each indicating the temperature of the workpiece 11 using infrared rays emitted from the workpiece 11 after welding (an example of an object to be welded), and generates image data indicating the plurality of temperature images. generate.
  • the plurality of temperature images are taken in time series according to changes in the temperature of the workpiece 11, and reflect changes in heat conduction due to the internal structure of the workpiece 11.
  • the CPU 21 calculates a phase image P1 (an example of an analysis image) regarding the internal structure of the workpiece 11 based on the image data (S3, S4), and calculates a phase image P1 (an example of an analysis image) regarding the internal structure of the workpiece 11, and calculates a phase image P1 (an example of an analysis image) regarding the internal structure of the workpiece 11, and Based on the contrast according to the emissivity difference from each part, an inspection area 30p corresponding to the welding area 30 formed on the workpiece 11 by welding is extracted from the phase image P1 (S6), and the extracted inspection area 30p is output. (S6, S27).
  • a control program 25 is provided as an example of a program for causing the CPU 21 to execute the above inspection method. According to the above inspection method and program, the work 11 after welding can be inspected accurately and efficiently.
  • the inspection system 1 performs inspection using pulse thermography.
  • the inspection system 1 of this embodiment is not limited to this, and may be applied, for example, to an inspection using lock-in thermography that excites the workpiece 11 at a predetermined cycle.
  • a peak temperature image N1 and a low temperature image N2 are acquired (S21, S22), a temperature difference image N3 is calculated (S23), and the temperature difference image N3 is calculated based on the contrast due to the emissivity difference in the temperature difference image N3.
  • An example of performing binarization processing (S24) has been described.
  • the inspection area extraction process (S6) in this embodiment is not limited to the above example. For example, if the contrast in the peak temperature image N1 is large enough to allow binarization processing, the processes in steps S22 and S23 are omitted. It's okay. In this case, in step S24, binarization processing may be performed based on the contrast within the peak temperature image N1.
  • a temperature image is binarized (S24) before creating a region mask (S25).
  • the process in step S24 may be omitted, and the temperature image is calculated based on the contrast of the temperature image.
  • a region mask may be created.
  • the inspection system 1 was described which inspects the workpiece 11 after welding by capturing a temperature image after heating by the excitation source 18 with the infrared camera 17.
  • the inspection system may include a cooling device that cools the welded workpiece 11 instead of the excitation source 18, for example, when the temperature of the workpiece 11 that is the object to be inspected is high.
  • the cooling device may be, for example, a device that sprays low-temperature gas onto the workpiece 11.
  • temperature images before and after cooling can be captured by the infrared camera 17, and the workpiece 11 can be inspected using the plurality of temperature images in the same manner as when using the excitation source 18 described above.
  • the inspection system includes the excitation source 18 that heats the workpiece 11 by emitting excitation energy toward the workpiece 11 after welding (an example of an object to be welded), or the workpiece after welding.
  • the apparatus further includes a cooling device for cooling 11.
  • the infrared camera 17 captures a plurality of temperature images according to temperature changes due to heating or cooling of the workpiece 11.
  • the inspection system is not limited to the above example, and the inspection system may not particularly include an excitation source or a cooling device.
  • the heat generated during welding may be used to obtain temperature image data captured by the infrared camera 17 immediately after welding the workpiece 11. Good too.
  • the workpiece 11 is inspected in the same way as when using the excitation source 18 etc. using, for example, a temperature image immediately after welding and a temperature image after the workpiece 11 has naturally cooled down to the ambient temperature after welding. It can be carried out.
  • the present disclosure is applicable to an inspection system, an inspection device, and an inspection method for inspecting a welded object after welding, and is particularly applicable to inspecting a welded object by analyzing an image captured by an infrared camera. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

This inspection device, which is used in an inspection system provided with an infrared camera, comprises: an input circuit for receiving image data; and a computation circuit for analyzing the image data. Using infrared rays emitted from a welding object after welding, the infrared camera acquires a plurality of temperature images each indicating the temperature of the welding object, and generates the image data which represents the plurality of temperature images. The plurality of temperature images are captured in time series in accordance with temperature changes in the welding object, and are reflective of changes in thermal conduction due to the internal structure of the welding object. The computation circuit: calculates an analysis image pertaining to the internal structure of the welding object on the basis of the image data; and, according to a difference in emissivity from respective surface parts of the welding object and on the basis of the contrast in at least one temperature image, extracts, in the analysis image, an inspection region corresponding to a welding region formed on the welding object by welding, and outputs the extracted inspection region.

Description

検査システム、検査装置及び検査方法Inspection system, inspection device and inspection method
 本開示は、溶接後の被溶接物を検査するための検査システム、検査装置及び検査方法に関する。 The present disclosure relates to an inspection system, an inspection device, and an inspection method for inspecting a workpiece after welding.
 特許文献1は、被検査物の表面にレーザーを照射して溶接したレーザー溶接部を溶接後に検査する方法を開示している。特許文献1の検査方法は、溶接後、雰囲気温度まで冷却したレーザー溶接部を赤外線カメラで撮像し、得られた赤外線画像における輝度の差を被検査物表面の赤外線放射率の差を表す指標とみなして溶接部領域を検出する第1の過程と、上記溶接部領域内での赤外線画像の輝度値をもとに溶接の良否を判定する第2の過程とを有する。 Patent Document 1 discloses a method of inspecting a laser welded part that is welded by irradiating a laser onto the surface of an object to be inspected after welding. In the inspection method of Patent Document 1, after welding, a laser welded part that has been cooled to ambient temperature is imaged with an infrared camera, and the difference in brightness in the obtained infrared image is used as an index representing the difference in infrared emissivity of the surface of the object to be inspected. The method includes a first process of detecting a weld area, and a second process of determining the quality of welding based on the brightness value of an infrared image within the weld area.
特許第4140218号公報Patent No. 4140218
 本開示は、溶接後の被溶接物の検査を精度良くかつ効率良く行うことができる検査システム、検査装置及び検査方法を提供する。 The present disclosure provides an inspection system, an inspection device, and an inspection method that can accurately and efficiently inspect a welded object after welding.
 本開示の一態様は、赤外線カメラを備えた検査システムにおいて用いられる検査装置を提供する。赤外線カメラは、溶接後の被溶接物から放射される赤外線によって、各々が被溶接物の温度を示す複数の温度画像を撮像して、複数の温度画像を示す画像データを生成する。複数の温度画像は、被溶接物の温度変化に応じて時系列で撮像されて、被溶接物の内部構造による熱伝導の変化を反映している。検査装置は、画像データを受け取る入力回路と、画像データを解析する演算回路とを備える。演算回路は、画像データに基づいて、被溶接物の内部構造に関する解析画像を算出し、複数の温度画像のうちの少なくとも一の温度画像における被溶接物の表面各部からの放射率差に応じたコントラストに基づいて、解析画像において溶接により被溶接物に形成される溶接領域に対応する検査領域を抽出し、抽出した検査領域を出力する。 One aspect of the present disclosure provides an inspection device used in an inspection system equipped with an infrared camera. The infrared camera captures a plurality of temperature images, each of which indicates the temperature of the welded object, using infrared rays emitted from the welded object after welding, and generates image data representing the plurality of temperature images. The plurality of temperature images are taken in time series according to changes in the temperature of the object to be welded, and reflect changes in heat conduction due to the internal structure of the object to be welded. The inspection device includes an input circuit that receives image data and an arithmetic circuit that analyzes the image data. The arithmetic circuit calculates an analytical image regarding the internal structure of the workpiece based on the image data, and calculates an analysis image based on the emissivity difference from each part of the workpiece's surface in at least one of the plurality of temperature images. Based on the contrast, an inspection area corresponding to a welding area formed on the object to be welded by welding is extracted from the analysis image, and the extracted inspection area is output.
 本開示の一態様は、コンピュータの入力回路が赤外線カメラにより生成された画像データを受け取るステップと、コンピュータの演算回路が画像データを解析するステップとを含む検査方法を提供する。赤外線カメラは、溶接後の被溶接物から放射される赤外線によって、各々が被溶接物の温度を示す複数の温度画像を撮像して、複数の温度画像を示す画像データを生成する。複数の温度画像は、被溶接物の温度変化に応じて時系列で撮像されて、被溶接物の内部構造による熱伝導の変化を反映している。演算回路は、画像データに基づいて、被溶接物の内部構造に関する解析画像を算出し、複数の温度画像のうちの少なくとも一の温度画像における被溶接物の表面各部からの放射率差に応じたコントラストに基づいて、解析画像において溶接により被溶接物に形成される溶接領域に対応する検査領域を抽出し、抽出した検査領域を出力する。 One aspect of the present disclosure provides an inspection method that includes the steps of input circuitry of a computer receiving image data generated by an infrared camera, and arithmetic circuitry of the computer analyzing the image data. The infrared camera captures a plurality of temperature images, each of which indicates the temperature of the welded object, using infrared rays emitted from the welded object after welding, and generates image data representing the plurality of temperature images. The plurality of temperature images are taken in time series according to changes in the temperature of the object to be welded, and reflect changes in heat conduction due to the internal structure of the object to be welded. The arithmetic circuit calculates an analytical image regarding the internal structure of the workpiece based on the image data, and calculates an analysis image based on the emissivity difference from each part of the workpiece's surface in at least one of the plurality of temperature images. Based on the contrast, an inspection area corresponding to a welding area formed on the workpiece by welding is extracted from the analysis image, and the extracted inspection area is output.
 本開示に係る検査システム、検査装置及び検査方法によれば、溶接後の被溶接物の検査を精度良くかつ効率良く行うことができる。 According to the inspection system, inspection device, and inspection method according to the present disclosure, it is possible to accurately and efficiently inspect a welded object after welding.
本開示の実施形態1に係る検査システムの構成を説明するための図Diagram for explaining the configuration of an inspection system according to Embodiment 1 of the present disclosure 実施形態1の検査システムにおける検査装置の構成例を示すブロック図A block diagram showing an example of the configuration of an inspection device in the inspection system of Embodiment 1. 実施形態1に係る検査装置の動作を例示するフローチャートFlowchart illustrating the operation of the inspection device according to the first embodiment 検査システムの赤外線カメラにより撮像される温度画像を例示する図Diagram illustrating a temperature image captured by an infrared camera of the inspection system 温度画像における計測温度の時間変化を説明するための図Diagram for explaining temporal changes in measured temperature in temperature images 検査装置により検査領域を抽出する前後の位相画像を例示する図Diagram illustrating phase images before and after extracting the inspection area with the inspection device 実施形態1の検査装置による検査領域の抽出処理を例示するフローチャートFlowchart illustrating inspection area extraction processing by the inspection apparatus of Embodiment 1 実施形態1の検査装置における温度差分画像を説明するための図Diagram for explaining a temperature difference image in the inspection device of Embodiment 1 実施形態1の検査装置における検査領域の抽出処理を説明するための図A diagram for explaining inspection area extraction processing in the inspection apparatus of Embodiment 1. 検査システムによる欠陥の検出例を説明するための図Diagram for explaining an example of defect detection by the inspection system 実施形態1の変形例の検査装置における温度差分画像を説明するための図A diagram for explaining a temperature difference image in an inspection apparatus according to a modification of Embodiment 1.
 以下、適宜図面を参照しながら、本開示の実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、出願人は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid unnecessary redundancy in the following description and to facilitate understanding by those skilled in the art. The applicant provides the accompanying drawings and the following description to enable those skilled in the art to fully understand the present disclosure, and they are not intended to limit the subject matter recited in the claims. do not have.
(本開示の態様)
 本開示の第1態様に係る検査装置は、赤外線カメラを備えた検査システムにおいて用いられる検査装置である。前記赤外線カメラは、溶接後の被溶接物から放射される赤外線によって、各々が前記被溶接物の温度を示す複数の温度画像を撮像して、前記複数の温度画像を示す画像データを生成する。前記複数の温度画像は、前記被溶接物の温度変化に応じて時系列で撮像されて、前記被溶接物の内部構造による熱伝導の変化を反映している。前記検査装置は、前記画像データを受け取る入力回路と、前記画像データを解析する演算回路とを備える。前記演算回路は、前記画像データに基づいて、前記被溶接物の内部構造に関する解析画像を算出し、前記複数の温度画像のうちの少なくとも一の温度画像における前記被溶接物の表面各部からの放射率差に応じたコントラストに基づいて、前記解析画像において溶接により前記被溶接物に形成される溶接領域に対応する検査領域を抽出し、抽出した前記検査領域を出力する。
(Aspects of this disclosure)
An inspection device according to a first aspect of the present disclosure is an inspection device used in an inspection system equipped with an infrared camera. The infrared camera captures a plurality of temperature images, each of which indicates the temperature of the welded object, using infrared rays emitted from the welded object after welding, and generates image data representing the plurality of temperature images. The plurality of temperature images are taken in time series according to changes in the temperature of the object to be welded, and reflect changes in heat conduction due to the internal structure of the object to be welded. The inspection device includes an input circuit that receives the image data, and an arithmetic circuit that analyzes the image data. The arithmetic circuit calculates an analytical image regarding the internal structure of the workpiece based on the image data, and calculates radiation from each part of the surface of the workpiece in at least one temperature image of the plurality of temperature images. An inspection area corresponding to a welding area formed on the object to be welded by welding is extracted from the analysis image based on a contrast according to the rate difference, and the extracted inspection area is output.
 本開示の第2態様によれば、第1態様に記載の検査装置において、前記演算回路は、前記複数の温度画像のうちの、少なくとも前記被溶接物の温度がピークとなるピーク温度に対応する第1の画像から、前記コントラストを算出する。 According to a second aspect of the present disclosure, in the inspection apparatus according to the first aspect, the calculation circuit corresponds to at least a peak temperature at which the temperature of the welded object is at a peak among the plurality of temperature images. The contrast is calculated from the first image.
 本開示の第3態様によれば、第2態様に記載の検査装置において、前記演算回路は、前記複数の温度画像において前記第1の画像の前または後に撮像された、前記ピーク温度よりも低い温度に対応する第2の画像と、前記第1の画像との差分を示す第3の画像を算出し、前記第3の画像から、前記コントラストを算出する。 According to a third aspect of the present disclosure, in the inspection apparatus according to the second aspect, the arithmetic circuit is configured to lower the temperature than the peak temperature captured before or after the first image in the plurality of temperature images. A third image showing a difference between a second image corresponding to temperature and the first image is calculated, and the contrast is calculated from the third image.
 本開示の第4態様によれば、第1態様から第3態様のいずれかに記載の検査装置において、前記演算回路は、前記複数の温度画像にフーリエ変換を行って、前記解析画像を算出する。 According to a fourth aspect of the present disclosure, in the inspection device according to any one of the first to third aspects, the arithmetic circuit performs Fourier transformation on the plurality of temperature images to calculate the analysis image. .
 本開示の第5態様によれば、第4態様に記載の検査装置において、前記解析画像は、前記フーリエ変換により、前記被溶接物の温度変化に応じて規定される位相または振幅に基づいて算出される。 According to a fifth aspect of the present disclosure, in the inspection apparatus according to the fourth aspect, the analysis image is calculated by the Fourier transform based on a phase or amplitude defined according to a temperature change of the workpiece. be done.
 本開示の第6態様によれば、第1態様から第5態様のいずれかに記載の検査装置において、前記演算回路は、抽出した前記検査領域の前記解析画像に基づいて、前記被溶接物の内部に生じた欠陥を検出する。 According to a sixth aspect of the present disclosure, in the inspection apparatus according to any one of the first to fifth aspects, the arithmetic circuit performs an analysis of the workpiece based on the extracted analysis image of the inspection area. Detect internal defects.
 本開示の第7態様によれば、第1態様から第6態様のいずれかに記載の検査装置において、情報を記録する記録媒体を備え、前記演算回路は、前記検査領域を抽出した解析画像の画像データを前記記録媒体に出力する。 According to a seventh aspect of the present disclosure, the inspection apparatus according to any one of the first to sixth aspects includes a recording medium for recording information, and the arithmetic circuit is configured to analyze an analysis image from which the inspection area has been extracted. Image data is output to the recording medium.
 本開示の第8態様によれば、第1態様から第7態様のいずれかに記載の検査装置において、外部機器と接続する出力回路を備え、前記演算回路は、前記出力回路により、前記検査領域を抽出した解析画像の画像データを前記外部機器に出力する。 According to an eighth aspect of the present disclosure, the inspection apparatus according to any one of the first to seventh aspects includes an output circuit connected to an external device, and the arithmetic circuit is configured to control the inspection area by the output circuit. The image data of the extracted analysis image is output to the external device.
 本開示の第9態様に係る検査システムは、溶接後の被溶接物から放射される赤外線により前記被溶接物の温度を示す温度画像を撮像して画像データを生成する赤外線カメラと、第1態様から第8態様のいずれかに記載の検査装置とを備える。 An inspection system according to a ninth aspect of the present disclosure includes an infrared camera that generates image data by capturing a temperature image indicating the temperature of the welded object using infrared rays emitted from the welded object after welding; to the inspection device according to any one of the eighth aspects.
 本開示の第10態様によれば、第9態様に記載の検査システムにおいて、溶接後の前記被溶接物に向けて励起エネルギーを発して前記被溶接物を加熱する励起源、または溶接後の前記被溶接物を冷却する冷却装置をさらに備え、前記赤外線カメラは、前記被溶接物の加熱または冷却による温度変化に応じて前記複数の温度画像を撮像する。 According to a tenth aspect of the present disclosure, in the inspection system according to the ninth aspect, an excitation source that emits excitation energy toward the workpiece after welding to heat the workpiece, or an excitation source that heats the workpiece after welding; The infrared camera further includes a cooling device that cools the object to be welded, and the infrared camera captures the plurality of temperature images according to a temperature change due to heating or cooling of the object to be welded.
 本開示の第11態様に係る検査方法は、コンピュータの入力回路が赤外線カメラにより生成された画像データを受け取るステップと、前記コンピュータの演算回路が前記画像データを解析するステップとを含む。前記赤外線カメラは、溶接後の被溶接物から放射される赤外線によって、各々が前記被溶接物の温度を示す複数の温度画像を撮像して、前記複数の温度画像を示す画像データを生成する。前記複数の温度画像は、前記被溶接物の温度変化に応じて時系列で撮像されて、前記被溶接物の内部構造による熱伝導の変化を反映している。前記演算回路は、前記画像データに基づいて、前記被溶接物の内部構造に関する解析画像を算出し、前記複数の温度画像のうちの少なくとも一の温度画像における前記被溶接物の表面各部からの放射率差に応じたコントラストに基づいて、前記解析画像において溶接により前記被溶接物に形成される溶接領域に対応する検査領域を抽出し、抽出した前記検査領域を出力する。 An inspection method according to an eleventh aspect of the present disclosure includes a step in which an input circuit of a computer receives image data generated by an infrared camera, and a step in which an arithmetic circuit of the computer analyzes the image data. The infrared camera captures a plurality of temperature images, each of which indicates the temperature of the welded object, using infrared rays emitted from the welded object after welding, and generates image data representing the plurality of temperature images. The plurality of temperature images are taken in time series according to changes in the temperature of the object to be welded, and reflect changes in heat conduction due to the internal structure of the object to be welded. The arithmetic circuit calculates an analytical image regarding the internal structure of the workpiece based on the image data, and calculates radiation from each part of the surface of the workpiece in at least one temperature image of the plurality of temperature images. An inspection area corresponding to a welding area formed on the object to be welded by welding is extracted from the analysis image based on a contrast according to the rate difference, and the extracted inspection area is output.
 本開示の第12態様に係るプログラムは、第11態様に記載の検査方法を前記演算回路に実行させるためのプログラムである。 A program according to a twelfth aspect of the present disclosure is a program for causing the arithmetic circuit to execute the inspection method according to the eleventh aspect.
(実施形態1)
 実施形態1に係る検査システム及び検査装置について、以下説明する。
(Embodiment 1)
The inspection system and inspection device according to Embodiment 1 will be described below.
1.構成
1-1.検査システムの構成
 図1は、本開示の実施形態1に係る検査システム1の構成を説明するための図である。本実施形態の検査システム1は、被溶接物であるワーク11の溶接後に、インラインまたはオフラインでワーク11を検査する用途に適用される。本システム1による検査では、例えばアクティブサーモグラフィ法を用いて、検査装置20により、ワーク11の内部に生じ得る空隙といった内部欠陥12の検出等が行われる。アクティブサーモグラフィ法は、例えば検査対象の物体に熱を加えるような励起により、物体の温度変化を観測して、当該温度変化から物体の内部構造を推定する非破壊検査の手法である。
1. Configuration 1-1. Configuration of Inspection System FIG. 1 is a diagram for explaining the configuration of an inspection system 1 according to Embodiment 1 of the present disclosure. The inspection system 1 of this embodiment is applied to inspect the workpiece 11, which is an object to be welded, in-line or offline after welding the workpiece 11. In the inspection by the present system 1, the inspection device 20 detects internal defects 12 such as voids that may occur inside the workpiece 11 using, for example, active thermography. The active thermography method is a non-destructive inspection method in which the temperature change of the object is observed by excitation such as applying heat to the object to be inspected, and the internal structure of the object is estimated from the temperature change.
 図1の検査システム1は、例えばアクティブサーモグラフィのための2つの励起源18及び赤外線カメラ17と、各励起源18及び赤外線カメラ17に電力を供給する電源16と、電源16の動作を制御するコントロールボックス15と、検査装置20とを備える。本システム1では、コントロールボックス15は、例えば検査装置20からの制御信号等に基づいて、電源16による励起源18等への給電を制御するように、電源16及び検査装置20に接続される。 The inspection system 1 of FIG. 1 includes two excitation sources 18 and an infrared camera 17, for example for active thermography, a power supply 16 for supplying power to each excitation source 18 and infrared camera 17, and a control for controlling the operation of the power supply 16. It includes a box 15 and an inspection device 20. In this system 1, the control box 15 is connected to the power source 16 and the inspection device 20 so as to control the power supply to the excitation source 18 and the like by the power source 16 based on, for example, a control signal from the inspection device 20.
 本システム1の赤外線カメラ17は、例えばワーク11上で溶接される溶接領域30が映るように配置される。赤外線カメラ17は、例えば所定の周期で撮像動作を繰り返し、撮像画像を示す画像データを生成する。赤外線カメラ17は、例えば検査装置20に画像データを送信するように接続される。検査装置20は、例えば、赤外線カメラ17による撮像動作を制御して、撮像された画像データを収集して解析する。 The infrared camera 17 of the present system 1 is arranged so that, for example, the welding area 30 to be welded on the workpiece 11 can be seen. The infrared camera 17 repeats an imaging operation at a predetermined period, for example, and generates image data representing a captured image. The infrared camera 17 is connected to, for example, the inspection device 20 so as to transmit image data. For example, the inspection device 20 controls the imaging operation of the infrared camera 17, collects and analyzes the captured image data.
 赤外線カメラ17は、例えば3μm~15μmの波長を有する赤外線を検知する赤外線センサを含む。励起源18は、例えば、ハロゲンランプ、キセノンランプ、レーザ光源、超音波を発生する振動子、電磁誘導を生じさせるコイルであるが、これらに限定されず、エネルギーを放射する構成であればよい。また、励起源18がハロゲンランプ、キセノンランプ、またはレーザ光源である場合、励起源18は、フラッシュ発光してワーク11をパルス加熱してもよい。励起源18が放射する光の波長は、被溶接物による吸収率の高い波長であれば、赤外線カメラ17が検出する赤外線の波長と異なってもよい。図1では、2つの励起源18を例示しているが、励起源18の個数は2つに限らず、1つまたは3つ以上であってもよい。 The infrared camera 17 includes an infrared sensor that detects infrared rays having a wavelength of 3 μm to 15 μm, for example. The excitation source 18 is, for example, a halogen lamp, a xenon lamp, a laser light source, a vibrator that generates ultrasonic waves, or a coil that generates electromagnetic induction, but is not limited to these, and may be any configuration that emits energy. Further, when the excitation source 18 is a halogen lamp, a xenon lamp, or a laser light source, the excitation source 18 may pulse-heat the workpiece 11 by emitting flash light. The wavelength of the light emitted by the excitation source 18 may be different from the wavelength of the infrared rays detected by the infrared camera 17 as long as it is a wavelength that is highly absorbed by the object to be welded. Although two excitation sources 18 are illustrated in FIG. 1, the number of excitation sources 18 is not limited to two, and may be one or three or more.
1-2.検査装置の構成
 本システム1における検査装置20の構成について、図2を用いて説明する。図2は、本実施形態の検査システム1における検査装置20の構成例を示すブロック図である。
1-2. Configuration of Inspection Device The configuration of the inspection device 20 in the present system 1 will be explained using FIG. 2. FIG. 2 is a block diagram showing a configuration example of the inspection device 20 in the inspection system 1 of this embodiment.
 検査装置20は、例えば各種のコンピュータとして構成される。図2の検査装置20は、CPU21と、記憶装置22と、入力インタフェース23と、出力インタフェース24とを備える。以下、インタフェースを「I/F」と略記する。 The inspection device 20 is configured as, for example, various types of computers. The inspection device 20 in FIG. 2 includes a CPU 21, a storage device 22, an input interface 23, and an output interface 24. Hereinafter, the interface will be abbreviated as "I/F".
 CPU21は、例えばソフトウェアと協働した情報処理を行って検査装置20の機能を実現する。このような情報処理は、例えば、CPU21が記憶装置22に格納された制御プログラム25の指令に従って動作することにより実現される。CPU21は、例えば、各種のデータ及びプログラムを保持する一時的な記憶領域として、内部メモリを備えてもよい。CPU21は、本開示の検査装置における演算回路の一例である。 The CPU 21 realizes the functions of the inspection device 20 by performing information processing in collaboration with software, for example. Such information processing is realized, for example, by the CPU 21 operating in accordance with instructions from the control program 25 stored in the storage device 22. For example, the CPU 21 may include an internal memory as a temporary storage area that holds various data and programs. The CPU 21 is an example of an arithmetic circuit in the inspection device of the present disclosure.
 検査装置20の演算回路は、情報処理のための演算を行う回路を含めばよく、CPUに限定されない。例えば、演算回路は、検査装置20における各種の機能を実現するように設計された専用の電子回路又は再構成可能な電子回路などのハードウェア回路であってもよく、MPU、FPGA等の回路で構成されてもよい。 The arithmetic circuit of the inspection device 20 may include a circuit that performs arithmetic operations for information processing, and is not limited to a CPU. For example, the arithmetic circuit may be a hardware circuit such as a dedicated electronic circuit or a reconfigurable electronic circuit designed to realize various functions in the inspection device 20, or may be a circuit such as an MPU or an FPGA. may be configured.
 記憶装置22は、検査装置20の機能を実現するために必要な制御プログラム25等のプログラム及びデータを含む種々の情報を記録する記録媒体である。記憶装置22は、例えば、フラッシュメモリ、ソリッド・ステート・ドライブ(SSD)等の半導体記憶装置、ハードディスクドライブ(HDD)等の磁気記憶装置、及びその他の記録媒体を単独で又は組み合わせて実現される。記憶装置22は、SRAM、DRAM等の揮発性メモリを含んでもよい。上記のプログラムは、インターネット等の通信ネットワークを介して提供されてもよいし、可搬性を有する記録媒体に格納されていてもよい。 The storage device 22 is a recording medium that records various information including programs and data such as the control program 25 necessary to realize the functions of the inspection device 20. The storage device 22 is realized by, for example, a flash memory, a semiconductor storage device such as a solid state drive (SSD), a magnetic storage device such as a hard disk drive (HDD), and other recording media alone or in combination. The storage device 22 may include volatile memory such as SRAM and DRAM. The above program may be provided via a communication network such as the Internet, or may be stored in a portable recording medium.
 入力I/F23は、赤外線カメラ17からの画像データ等の情報を検査装置20に入力するために、検査装置20と赤外線カメラ17等の外部機器とを接続するインタフェース回路である。入力I/F23は、例えば赤外線カメラ17から画像データを受け取る入力端子であってもよい。入力I/F23は、所定の有線通信規格又は無線通信規格に従ってデータ通信を行う通信回路であってもよい。所定の通信規格には、IEEE802.3、USB、HDMI(登録商標)、IEEE802.11、IEEE1394、WiFi(登録商標)、Bluetooth(登録商標)等が含まれる。 The input I/F 23 is an interface circuit that connects the inspection device 20 with external equipment such as the infrared camera 17 in order to input information such as image data from the infrared camera 17 into the inspection device 20. The input I/F 23 may be an input terminal that receives image data from the infrared camera 17, for example. The input I/F 23 may be a communication circuit that performs data communication according to a predetermined wired communication standard or wireless communication standard. The predetermined communication standards include IEEE802.3, USB, HDMI (registered trademark), IEEE802.11, IEEE1394, WiFi (registered trademark), Bluetooth (registered trademark), and the like.
 出力I/F24は、検査装置20からの制御信号等の情報を出力するために、検査装置20と外部機器とを接続するインタフェース回路である。このような外部機器は、例えばコントロールボックス15、赤外線カメラ17、サーバ装置等の他の情報処理端末、及びディスプレイ等の他の出力装置である。出力I/F24は、例えば入力I/F23と同様に、所定の有線通信規格又は無線通信規格に従ってデータ通信を行う通信回路であってもよい。出力I/F24は、例えば外部機器に情報を出力する各種の信号線、出力端子または接続端子であってもよい。また、入力I/F23及び出力I/F24は、同様のハードウェアにより実現されてもよく、一体の入出力I/Fであってもよい。 The output I/F 24 is an interface circuit that connects the inspection device 20 and external equipment in order to output information such as control signals from the inspection device 20. Such external devices include, for example, the control box 15, the infrared camera 17, other information processing terminals such as a server device, and other output devices such as a display. For example, like the input I/F 23, the output I/F 24 may be a communication circuit that performs data communication according to a predetermined wired communication standard or wireless communication standard. The output I/F 24 may be, for example, various signal lines, output terminals, or connection terminals that output information to external equipment. Further, the input I/F 23 and the output I/F 24 may be realized by similar hardware, or may be an integrated input/output I/F.
2.動作
 以上のように構成される検査システム1の動作について、以下説明する。
2. Operation The operation of the inspection system 1 configured as described above will be explained below.
 本システム1は、例えば図1に示すように、励起源18によって溶接後のワーク11を励起して、赤外線カメラ17によりワーク11の温度変化を計測する。赤外線カメラ17は、ワーク11から放射される赤外線の検知により、ワーク11の温度を示す温度画像を所定のフレームレートといった周期で撮像して、各温度画像を示す画像データを生成する。赤外線カメラ17は、例えば逐次、こうした温度画像データを検査装置20に送信する。検査装置20は、例えば入力I/F23を介して温度画像データを受信して、記憶装置22に蓄積する。 For example, as shown in FIG. 1, this system 1 excites the workpiece 11 after welding with an excitation source 18 and measures the temperature change of the workpiece 11 with an infrared camera 17. The infrared camera 17 detects infrared rays emitted from the workpiece 11, captures temperature images indicating the temperature of the workpiece 11 at a period such as a predetermined frame rate, and generates image data indicating each temperature image. The infrared camera 17 sequentially transmits such temperature image data to the inspection device 20, for example. The inspection device 20 receives temperature image data via, for example, the input I/F 23 and stores it in the storage device 22 .
 本システム1の検査装置20は、ワーク11の検査として、所定の期間に亘る温度画像データを解析することで、ワーク11における内部欠陥12の検出を行い、その検出結果に応じて溶接品質の良否を判定する。以下では、励起源18を用いてワーク11をパルス加熱するパルスサーモグラフィにより検査する例を説明する。また、以下の説明では、図1の鉛直方向に対応するワーク11の厚み方向において、ワーク11の表面側、即ち赤外線カメラ17に対向する側面側を上方、当該側面と対向するワーク11の底面側を下方という場合がある。 The inspection device 20 of the present system 1 detects internal defects 12 in the workpiece 11 by analyzing temperature image data over a predetermined period as an inspection of the workpiece 11, and determines whether the welding quality is good or bad according to the detection result. Determine. In the following, an example will be described in which the workpiece 11 is inspected by pulse thermography in which the excitation source 18 is used to pulse-heat the workpiece 11. In the following explanation, in the thickness direction of the work 11 corresponding to the vertical direction in FIG. is sometimes called downward.
2-1.検査装置の全体動作
 本実施形態の検査システム1における検査装置20の全体的な動作について、図3~図6を用いて説明する。
2-1. Overall Operation of Inspection Apparatus The overall operation of the inspection apparatus 20 in the inspection system 1 of this embodiment will be explained using FIGS. 3 to 6.
 図3は、本実施形態に係る検査装置20の動作を例示するフローチャートである。図3のフローチャートは、例えば、励起源18によるパルス加熱のタイミングに同期して開始される。本フローチャートに示す各処理は、例えば検査装置20のCPU21により実行される。 FIG. 3 is a flowchart illustrating the operation of the inspection device 20 according to this embodiment. The flowchart in FIG. 3 is started, for example, in synchronization with the timing of pulse heating by the excitation source 18. Each process shown in this flowchart is executed by, for example, the CPU 21 of the inspection device 20.
 まず、CPU21は、例えば記憶装置22から、赤外線カメラ17によるワーク11の温度画像データを取得する(S1)。図4は、検査システム1の赤外線カメラ17により撮像される温度画像を例示する図である。図4(A)は、励起源18による加熱前に常温状態であるワーク11の温度画像N21を示す。図4(B)は、ワーク11の温度変化を計測中に、加熱により温度画像での温度が最高となるピーク温度における温度画像N1を示す。図4(C)は、加熱後に温度画像での温度が低下して、例えば加熱前と同様の常温状態であるワーク11の温度画像N22を示す。 First, the CPU 21 acquires temperature image data of the workpiece 11 captured by the infrared camera 17, for example, from the storage device 22 (S1). FIG. 4 is a diagram illustrating a temperature image captured by the infrared camera 17 of the inspection system 1. FIG. 4A shows a temperature image N21 of the workpiece 11 at room temperature before being heated by the excitation source 18. FIG. 4(B) shows a temperature image N1 at a peak temperature at which the temperature in the temperature image becomes the highest due to heating while measuring the temperature change of the workpiece 11. FIG. 4(C) shows a temperature image N22 of the workpiece 11 in which the temperature in the temperature image decreases after heating and is in a normal temperature state, for example, as before heating.
 図5は、温度画像における計測温度の時間変化を説明するための図である。図5では、縦軸が赤外線カメラ17により計測される温度(単位は℃)を示し、横軸が時間(単位は秒)を示す。また、図5では、ワーク11の表面において、放射率が比較的低く、赤外線カメラ17による計測温度が加熱により上昇しにくい部分の温度変化を点線で示す(#1)。一方、ワーク11の表面において前述した部分よりも放射率が高く、計測温度が加熱により上昇し易い部分の温度変化を実線で示している(#2)。放射率は、ワーク11の表面の温度を実測した場合の実測値に対する温度画像での計測温度の割合を示し、「0」以上「1」以下の範囲において、高い値ほど赤外線が放射され易いことを示す。 FIG. 5 is a diagram for explaining temporal changes in measured temperature in a temperature image. In FIG. 5, the vertical axis shows the temperature (in degrees Celsius) measured by the infrared camera 17, and the horizontal axis shows time (in seconds). Further, in FIG. 5, the dotted line indicates a temperature change in a portion of the surface of the workpiece 11 where the emissivity is relatively low and the temperature measured by the infrared camera 17 is difficult to rise due to heating (#1). On the other hand, a solid line indicates a temperature change in a portion of the surface of the workpiece 11 that has a higher emissivity than the above-mentioned portion and whose measured temperature is likely to rise due to heating (#2). Emissivity indicates the ratio of the measured temperature in the temperature image to the actual value when the temperature of the surface of the workpiece 11 is actually measured, and in the range of "0" to "1", the higher the value, the more infrared rays are emitted. shows.
 図4(A)の例では、加熱前の温度画像N21は、励起源18による加熱開始時の1フレーム前の時刻t21に撮像されている。図4(B)の例では、ピーク温度の温度画像N1は、計測温度が計測期間中に最高となる時刻t1に撮像されている。図4(C)の例では、加熱後の温度画像N22は、加熱開始時の100フレーム後の時刻t22に撮像されている。図4(A)~(C)の各温度画像N21,N1,N22では、計測温度の高低を輝度の大小により表し、明るいほど計測温度が高いことを示す。 In the example of FIG. 4(A), the pre-heating temperature image N21 is captured at time t21, one frame before the start of heating by the excitation source 18. In the example of FIG. 4(B), the temperature image N1 of the peak temperature is captured at time t1 when the measured temperature is the highest during the measurement period. In the example of FIG. 4C, the temperature image N22 after heating is captured at time t22, 100 frames after the start of heating. In each of the temperature images N21, N1, and N22 in FIGS. 4A to 4C, the level of the measured temperature is expressed by the level of brightness, and the brighter the image, the higher the measured temperature.
 図4(A)~(C)に示すように、加熱前後の各温度画像N21,N22と比較して、ピーク温度の温度画像N1ではワーク11における溶接領域30が他の領域よりも明るく映り、溶接領域30と他の領域との境界が観測し易い。この要因としては、溶接領域30において、溶接による加熱で熱履歴を受け、形状および物性変化が生じ赤外線が放射され易くなることが考えられる。 As shown in FIGS. 4A to 4C, in comparison with the temperature images N21 and N22 before and after heating, the welding area 30 on the workpiece 11 appears brighter than other areas in the temperature image N1 at the peak temperature, The boundaries between the welding region 30 and other regions can be easily observed. A possible reason for this is that the welding region 30 undergoes a thermal history due to heating during welding, causing changes in shape and physical properties, making it easier for infrared rays to be emitted.
 図3に戻り、CPU21は、温度画像データを解析する際の条件を示す解析条件を設定する(S2)。解析条件は、例えば、検査装置20での解析に用いる温度画像のフレーム範囲、及び後述する位相画像の算出に用いる解析周波数等を含む。 Returning to FIG. 3, the CPU 21 sets analysis conditions indicating conditions for analyzing the temperature image data (S2). The analysis conditions include, for example, a frame range of a temperature image used for analysis by the inspection device 20, an analysis frequency used for calculating a phase image, which will be described later.
 解析条件のフレーム範囲は、例えば、励起源18からのパルス加熱によるワーク11の温度変化が観測できる程度に長い所定の期間に対応して設定される。解析周波数は、サンプリング周波数の1/2(ナイキスト周波数:フーリエ変換で正しく検出可能な周波数)以下の周波数に設定され、検査対象物として想定されるワーク11の内部欠陥12等が存在する深さに応じて設定される。例えば、ワーク11における上方側(表面に近い側)の内部欠陥12を検出対象とする場合に、下方側(表面から遠い側)の内部欠陥12を検出対象とする場合よりも高い周波数が用いられる。 The frame range of the analysis conditions is set, for example, to correspond to a predetermined period long enough to allow observation of temperature changes in the workpiece 11 due to pulsed heating from the excitation source 18. The analysis frequency is set to a frequency that is less than or equal to 1/2 of the sampling frequency (Nyquist frequency: a frequency that can be correctly detected by Fourier transform), and is set to a frequency that is equal to or lower than 1/2 of the sampling frequency (Nyquist frequency: a frequency that can be correctly detected by Fourier transform), and is set at a depth where internal defects 12, etc. of the workpiece 11, which is assumed to be the object to be inspected, exists. It will be set accordingly. For example, when detecting an internal defect 12 on the upper side (closer to the surface) of the workpiece 11, a higher frequency is used than when detecting an internal defect 12 on the lower side (farther from the surface). .
 ステップS2において、CPU21は、例えば入力I/F23を介して外部の入力機器から入力されたユーザ入力値に基づいて、解析条件を設定する。あるいは、CPU21は、予め記憶装置22等に格納された設定値に基づいて、解析条件を設定してもよい。 In step S2, the CPU 21 sets analysis conditions based on user input values input from an external input device via the input I/F 23, for example. Alternatively, the CPU 21 may set the analysis conditions based on setting values stored in advance in the storage device 22 or the like.
 CPU21は、設定した解析条件(S2)のフレーム範囲における温度画像データを、離散フーリエ変換により解析する(S3)。CPU21は、例えば、温度画像の各画素に対応してワーク11の表面各部における温度変化を示す時間関数から、離散フーリエ変換により周波数領域における複素関数を計算する。こうした温度画像データの離散フーリエ変換による解析結果は、例えば、解析条件のフレーム範囲に亘るワーク11の温度変化に応じて、周波数についての複素関数において規定される位相及び振幅を含む。 The CPU 21 analyzes the temperature image data in the frame range of the set analysis conditions (S2) using discrete Fourier transform (S3). For example, the CPU 21 calculates a complex function in the frequency domain using a discrete Fourier transform from a time function indicating a temperature change at each part of the surface of the workpiece 11 corresponding to each pixel of the temperature image. The analysis result of such a discrete Fourier transform of the temperature image data includes, for example, a phase and an amplitude defined by a complex function regarding the frequency, depending on the temperature change of the workpiece 11 over the frame range of the analysis conditions.
 本実施形態では、CPU21は、ステップS3の解析結果により、例えば温度画像の各画素に対応する複素関数から、設定された解析条件の解析周波数における位相値を計算し、各位相値を画素値とする位相画像を算出する(S4)。位相画像は、本実施形態の検査装置20における解析画像の一例であり、例えば、フレーム範囲の期間について、ワーク11の各部における内部構造に応じた熱伝搬の差異を画素間の位相差として反映し得る。 In this embodiment, the CPU 21 calculates the phase value at the analysis frequency of the set analysis condition from the complex function corresponding to each pixel of the temperature image based on the analysis result of step S3, and converts each phase value into a pixel value. A phase image is calculated (S4). The phase image is an example of an analysis image in the inspection device 20 of this embodiment, and for example, the difference in heat propagation depending on the internal structure of each part of the workpiece 11 is reflected as a phase difference between pixels for a period of the frame range. obtain.
 位相画像を算出後(S4)、CPU21は、例えば各種の画像処理フィルタを用いて、算出した位相画像においてフィルタ処理を実行する(S5)。各種の画像処理フィルタは、例えば画像のエッジを強調するハイパスフィルタ、及び画像を平滑化するガウシアンフィルタ等を含む。こうしたフィルタ処理により、例えば位相画像においてエッジの強調及びノイズの低減等を行って、位相画像を用いた検査に関する処理(S6~S8)を行い易くすることができる。CPU21は、例えばフィルタ処理を適用した位相画像を、内部メモリ等に保持する。 After calculating the phase image (S4), the CPU 21 executes filter processing on the calculated phase image using, for example, various image processing filters (S5). Various image processing filters include, for example, a high-pass filter that emphasizes edges of an image, a Gaussian filter that smoothes an image, and the like. Through such filter processing, for example, edge enhancement and noise reduction can be performed in the phase image, thereby making it easier to perform the processing related to inspection using the phase image (S6 to S8). The CPU 21 stores, for example, a phase image to which filter processing has been applied, in an internal memory or the like.
 図6は、検査装置20により検査領域を抽出する前後の位相画像を例示する図である。検査領域は、位相画像においてワーク11上の溶接領域30に対応する領域を示し、後述する内部欠陥12の検出に用いられる。図6(A)は、フィルタ処理を実行後(S5)、検査領域を抽出する前の位相画像P1を例示する。図6(A)の例では、位相画像P1において溶接領域30に対応する領域内に、周囲よりも暗い部分として、ワーク11内部の内部欠陥12が現れている。 FIG. 6 is a diagram illustrating phase images before and after the inspection region is extracted by the inspection device 20. The inspection area indicates an area corresponding to the welding area 30 on the workpiece 11 in the phase image, and is used for detecting an internal defect 12, which will be described later. FIG. 6(A) illustrates the phase image P1 after filter processing is performed (S5) and before the inspection region is extracted. In the example of FIG. 6(A), an internal defect 12 inside the workpiece 11 appears as a darker area than the surrounding area in a region corresponding to the welding region 30 in the phase image P1.
 本実施形態の検査装置20では、CPU21は、例えばフィルタ処理後(S5)の位相画像P1において、溶接領域30に対応した検査領域を抽出する処理を行う(S6)。図6(B)は、こうした検査領域の抽出処理(S6)により、検査領域30pが抽出された位相画像P1を例示する。例えば図6(B)に示すように、抽出後の位相画像P1では、検査領域30p以外の背景部分がマスクされている。CPU21は、例えば検査領域30pを抽出すると、位相画像P1といった温度画像の解析結果を内部メモリ等に保持してもよい。検査領域の抽出処理(S6)について詳細は後述する。 In the inspection apparatus 20 of this embodiment, the CPU 21 performs a process of extracting an inspection area corresponding to the welding area 30, for example, in the phase image P1 after filter processing (S5) (S6). FIG. 6(B) illustrates a phase image P1 in which the inspection region 30p has been extracted by such inspection region extraction processing (S6). For example, as shown in FIG. 6(B), in the extracted phase image P1, the background portion other than the inspection area 30p is masked. For example, after extracting the inspection region 30p, the CPU 21 may hold the analysis results of the temperature image such as the phase image P1 in an internal memory or the like. Details of the inspection area extraction process (S6) will be described later.
 次に、CPU21は、例えば位相画像P1における検査領域30pの画素値に基づいて、内部欠陥12の検出処理を行う(S7)。本実施形態では、CPU21は、図6(B)に示すような検査領域30pを抽出後の位相画像P1において、例えば検査領域30pのうちの内部欠陥12に対応する領域の大きさ及び単位面積あたりの個数を検出する。こうした欠陥検出の処理(S7)は、例えば各種の機械学習等を用いて実行される。 Next, the CPU 21 performs internal defect 12 detection processing, for example, based on the pixel value of the inspection area 30p in the phase image P1 (S7). In this embodiment, the CPU 21 determines, for example, the size and per unit area of the region corresponding to the internal defect 12 in the inspection region 30p in the phase image P1 after extracting the inspection region 30p as shown in FIG. 6(B). Detect the number of . Such defect detection processing (S7) is executed using, for example, various types of machine learning.
 例えば、本フローチャートの処理を実行する前に、複数回の溶接を行い、各回の溶接後に、逐次撮像された複数の温度画像が取得される。各回の溶接で得られる複数の温度画像から、例えば上記のステップS3~S6と同様に、算出した位相画像において検査領域を抽出し、検査領域内の内部欠陥12に対応する領域の大きさ及び単位面積あたりの個数をアノテーションした学習データが作成される。そして、当該学習データに基づいて、位相画像から抽出された検査領域の画素値を入力して、内部欠陥12の領域の大きさ及び個数を出力するように、回帰モデルの機械学習が実行される。欠陥検出の処理(S7)では、こうした学習済みの回帰モデルにより、内部欠陥12の検出を行うことができる。 For example, before executing the process of this flowchart, welding is performed multiple times, and after each welding, multiple temperature images are sequentially captured. From a plurality of temperature images obtained in each welding process, for example, similarly to steps S3 to S6 above, an inspection area is extracted in the calculated phase image, and the size and unit of the area corresponding to the internal defect 12 within the inspection area are determined. Learning data annotated with the number of pieces per area is created. Then, based on the learning data, machine learning of the regression model is executed so as to input the pixel values of the inspection area extracted from the phase image and output the size and number of the internal defect 12 area. . In the defect detection process (S7), internal defects 12 can be detected using such a learned regression model.
 CPU21は、欠陥検出の処理を行うと(S7)、検出結果に基づいて溶接品質の良否を判定する(S8)。CPU21は、例えば、内部欠陥12に対応して検出された領域の大きさ、及び単位面積あたりの個数の各々について、所定の閾値と比較することで、溶接品質の良否、即ち溶接後のワーク11が良品か不良品かを判定する。例えば、検出された当該領域の大きさ及び個数の両方が各々の閾値以上である場合に良品と判定し、いずれかが閾値以下である場合に不良品であると判定されてもよい。所定の閾値は、例えば不良品の見逃し及び過検出の割合等を考慮して、ワーク11の溶接における加工精度の要求水準等に応じて適宜、設定可能である。 After performing defect detection processing (S7), the CPU 21 determines whether the welding quality is good or bad based on the detection results (S8). For example, the CPU 21 compares the size of the region detected corresponding to the internal defect 12 and the number of defects per unit area with predetermined threshold values to determine whether the welding quality is good or not, that is, the workpiece 11 after welding. Determine whether the product is good or defective. For example, it may be determined that the product is non-defective when both the size and the number of detected regions are greater than or equal to each threshold value, and it may be determined that the product is defective when either of the detected regions is less than or equal to the threshold value. The predetermined threshold value can be set as appropriate in accordance with the required level of processing accuracy in welding the workpiece 11, taking into account, for example, the rate of overlooking and over-detecting defective products.
 CPU21は、溶接品質の判定結果に基づいて、溶接品質が不良か否かを判断する(S9)。溶接品質が不良である場合(S9でYES)、CPU21は、例えば外部装置等に溶接品質の不良を報知する。例えば、CPU21は、出力I/F24を介して、溶接品質の不良を報知する信号を出力して、ワーク11の溶接工程を含む製造ラインの制御装置、または当該製造ラインの管理者が保有する端末装置等に、不良を報知してもよい。これにより、溶接不良の判定結果に応じて、例えば製造ラインの停止、あるいは不良品の除外等の措置を取ることができる。 Based on the welding quality determination result, the CPU 21 determines whether the welding quality is poor (S9). If the welding quality is poor (YES in S9), the CPU 21 notifies, for example, an external device of the poor welding quality. For example, the CPU 21 outputs, via the output I/F 24, a signal notifying a defective welding quality to a control device of a production line including the welding process of the workpiece 11, or a terminal owned by the manager of the production line. The defect may be notified to the device or the like. This makes it possible to take measures, such as stopping the production line or excluding defective products, depending on the determination result of defective welding.
 CPU21は、溶接品質の不良を報知した後(S10)、例えば内部メモリに保持していた解析結果、及びステップS8の判定結果を、記憶装置22等に記憶する(S11)。 After notifying the welding quality defect (S10), the CPU 21 stores, for example, the analysis result held in the internal memory and the determination result of step S8 in the storage device 22 or the like (S11).
 また、溶接品質が不良ではない場合(S9でNO)、CPU21は、ステップS10の処理を特に実行せず、例えば解析結果及び判定結果を記憶する(S11)。 Furthermore, if the welding quality is not poor (NO in S9), the CPU 21 does not particularly execute the process of step S10, and stores, for example, the analysis result and the determination result (S11).
 その後、CPU21は、本フローチャートの処理を終了する。例えばパルスサーモグラフィによるインライン検査では、次のワーク11にパルス加熱を行うタイミングに応じて、再び図3の処理が開始されてもよい。 After that, the CPU 21 ends the processing of this flowchart. For example, in an in-line inspection using pulse thermography, the process shown in FIG. 3 may be started again in accordance with the timing of pulse heating the next workpiece 11.
 以上の処理によると、温度画像データの離散フーリエ変換による解析結果(S3)から、図6(A)に示すような位相画像P1を算出し(S4,S5)、位相画像P1において溶接領域30に対応する検査領域30pが抽出される(S6)。そして、検査領域30pを抽出後の位相画像P1(図6(B)参照)から、検査領域30pにおいて内部欠陥12の検出を行い(S7)、検出結果に基づいて溶接品質の良否が判定される(S8)。 According to the above processing, a phase image P1 as shown in FIG. The corresponding inspection area 30p is extracted (S6). Then, internal defects 12 are detected in the inspection area 30p from the phase image P1 after extracting the inspection area 30p (see FIG. 6(B)) (S7), and the quality of welding is determined based on the detection result. (S8).
 以上のように、検査領域30pを抽出することで(S6)、例えば欠陥検出の処理(S7)では、位相画像P1において溶接領域30に対応する検査領域30pの画素値のみに基づいて、内部欠陥12の検出を行うことができる。これにより、例えば、抽出前の位相画像P1でのノイズ等を低減して検出精度を向上させるとともに、検査装置20における処理負荷及び使用メモリ量を低減させて、処理速度の向上及び検査にかかるコストの削減を図ることができる。また、このように、検査領域30pにおいて内部欠陥12の検出を行い易くして、検出結果を用いた溶接品質の良否判定(S8)における判定精度及び処理効率等を向上させることができる。これにより、検査装置20において、溶接後のワーク11の検査を精度良くかつ効率良く行うことができる。 As described above, by extracting the inspection area 30p (S6), for example, in the defect detection process (S7), internal defects are detected based only on the pixel values of the inspection area 30p corresponding to the welding area 30 in the phase image P1. 12 detections can be performed. As a result, for example, noise etc. in the phase image P1 before extraction is reduced to improve detection accuracy, and the processing load and amount of memory used in the inspection device 20 are reduced, improving processing speed and inspection costs. It is possible to reduce the amount of Moreover, in this way, it is possible to easily detect internal defects 12 in the inspection area 30p, and improve the determination accuracy, processing efficiency, etc. in the welding quality determination (S8) using the detection results. Thereby, the inspection device 20 can accurately and efficiently inspect the workpiece 11 after welding.
 上記の処理では、温度画像データを検査装置20の記憶装置22から取得する例を説明した(S1)。温度画像データは、記憶装置22に限らず、例えば外部のサーバ装置等に格納されてもよい。この場合、ステップS1において、CPU21は、例えば入力I/F23を介して、当該サーバ装置等から温度画像データを取得してもよい。 In the above process, an example was explained in which temperature image data is acquired from the storage device 22 of the inspection device 20 (S1). The temperature image data may be stored not only in the storage device 22 but also in, for example, an external server device. In this case, in step S1, the CPU 21 may acquire temperature image data from the server device or the like, for example, via the input I/F 23.
 上記の処理では、温度画像データの解析結果から位相画像を算出し(S4)、位相画像においてステップS5以降の処理を行う例を説明した。ステップS4においてCPU21は、位相画像に限らず、解析結果による複素関数の振幅に応じて、振幅画像を算出してもよい。ステップS5以降の処理は、位相画像に代えて振幅画像を用いて行われてもよく、位相画像及び振幅画像の両方を用いて行われてもよい。 In the above processing, an example has been described in which a phase image is calculated from the analysis result of temperature image data (S4), and the processing from step S5 onwards is performed on the phase image. In step S4, the CPU 21 may calculate an amplitude image not only based on the phase image but also based on the amplitude of the complex function based on the analysis result. The processing after step S5 may be performed using an amplitude image instead of the phase image, or may be performed using both the phase image and the amplitude image.
 また、上記の処理では、CPU21が、欠陥検出の処理(S7)及び溶接品質の良否の判定(S8)を実行する例を説明した。これらの処理は、上記の例に限らず、例えば位相画像P1の溶接領域30の目視等により、内部欠陥12を観測し、観測結果に基づいて溶接品質の良否が判定されてもよい。この場合、CPU21は、例えば検査領域30pを抽出後の位相画像P1を、出力I/F24により外部の出力装置等に出力して、表示させてもよい。 Furthermore, in the above processing, an example has been described in which the CPU 21 executes the defect detection processing (S7) and the welding quality determination (S8). These processes are not limited to the above example, and the internal defect 12 may be observed, for example, by visual inspection of the welding region 30 of the phase image P1, and the quality of the welding may be determined based on the observation result. In this case, the CPU 21 may output, for example, the phase image P1 after extracting the inspection region 30p to an external output device or the like through the output I/F 24, and display the phase image P1.
2-2.検査領域の抽出処理
 図3のステップS6における検査領域の抽出処理の詳細を、図7~図10を用いて説明する。
2-2. Inspection Area Extraction Process The details of the inspection area extraction process in step S6 in FIG. 3 will be described with reference to FIGS. 7 to 10.
 図7は、本実施形態の検査装置20による検査領域の抽出処理(S6)を例示するフローチャートである。図7のフローチャートに示す処理は、例えば、図3のステップS1で取得された温度画像データ、及びフィルタ処理後(S5)の位相画像P1がCPU21の内部メモリ等に保持された状態で開始される。 FIG. 7 is a flowchart illustrating the inspection area extraction process (S6) by the inspection device 20 of this embodiment. The process shown in the flowchart of FIG. 7 is started, for example, with the temperature image data acquired in step S1 of FIG. 3 and the phase image P1 after filter processing (S5) being held in the internal memory of the CPU 21, etc. .
 まず、CPU21は、ステップS1においてワーク11の温度変化に応じて取得された温度画像データから、例えば図4(B)に示すような、ピーク温度での温度画像N1(「ピーク温度画像N1」ともいう。)の画像データを取得する(S21)。 First, the CPU 21 generates a temperature image N1 at a peak temperature (also referred to as a "peak temperature image N1"), for example, as shown in FIG. ) is acquired (S21).
 次に、CPU21は、温度変化に応じた温度画像データから、ピーク温度より低い温度(例えば常温)での温度画像(「低温度画像N2」ともいう。)の画像データを取得する(S22)。CPU21は、例えば低温度画像N2として、図4(A)に示すような加熱前1フレームの温度画像N21を取得する。 Next, the CPU 21 acquires image data of a temperature image (also referred to as "low temperature image N2") at a temperature lower than the peak temperature (for example, room temperature) from the temperature image data corresponding to the temperature change (S22). The CPU 21 acquires, for example, a temperature image N21 of one frame before heating as shown in FIG. 4(A) as the low temperature image N2.
 CPU21は、ステップS21,S22で取得したピーク温度画像N1及び低温度画像N2の画像データに基づいて、温度差分画像N3を算出する(S23)。CPU21は、ピーク温度画像N1と低温度画像N2との対応する位置における画素値(即ち、輝度値)の差分を演算して、温度差分画像N3を算出する。温度差分画像N3では、例えば温度画像N1,N2間において、熱励起によるワーク11上での温度変化が溶接領域30よりも少ない領域に対応する背景領域、即ちバックグラウンドの成分が抑制される。 The CPU 21 calculates a temperature difference image N3 based on the image data of the peak temperature image N1 and the low temperature image N2 acquired in steps S21 and S22 (S23). The CPU 21 calculates a temperature difference image N3 by calculating the difference in pixel values (that is, brightness values) at corresponding positions between the peak temperature image N1 and the low temperature image N2. In the temperature difference image N3, for example, between the temperature images N1 and N2, a background region corresponding to a region where the temperature change on the workpiece 11 due to thermal excitation is smaller than that in the welding region 30, that is, a background component is suppressed.
 図8は、本実施形態の検査装置20における温度差分画像を説明するための図である。図8(A)は、ピーク温度画像N1の各画素値から、低温度画像N2として加熱前の温度画像N21の各画素値を減算して算出された温度差分画像N3を例示する。図8(A)の温度差分画像N3では、例えば図4(B)のピーク温度画像N1よりも、コントラストが強調され、溶接領域30に対応する領域と他の領域との境界がさらに明瞭になっている。 FIG. 8 is a diagram for explaining a temperature difference image in the inspection device 20 of this embodiment. FIG. 8A illustrates a temperature difference image N3 calculated by subtracting each pixel value of the temperature image N21 before heating as the low temperature image N2 from each pixel value of the peak temperature image N1. In the temperature difference image N3 of FIG. 8(A), the contrast is emphasized and the boundary between the area corresponding to the welding area 30 and other areas becomes more clear than, for example, the peak temperature image N1 of FIG. 4(B). ing.
 また、図8(B)は、温度差分画像の別の算出例として、加熱前の温度画像N21の各画素値から、ピーク温度画像N1の各画素値を減算して算出された温度差分画像N3bを、図8(A)とは異なる温度のスケールにより例示している。図8(B)の温度差分画像N3bにおいても、例えば図8(A)の温度差分画像N3と同様に、溶接領域30に対応する領域と他の領域との境界を明瞭に観測することができる。 Further, FIG. 8B shows, as another example of calculating a temperature difference image, a temperature difference image N3b calculated by subtracting each pixel value of the peak temperature image N1 from each pixel value of the temperature image N21 before heating. is illustrated using a temperature scale different from that in FIG. 8(A). Also in the temperature difference image N3b of FIG. 8(B), the boundary between the area corresponding to the welding area 30 and other areas can be clearly observed, similar to the temperature difference image N3 of FIG. 8(A), for example. .
 CPU21は、例えば温度差分画像N3を算出すると(S23)、温度差分画像N3において、ワーク11の表面各部における放射率差によるコントラストに基づいて、2値化処理を行う(S24)。CPU21は、例えば温度差分画像N3の放射率に応じた輝度値ヒストグラムを利用して、2値化処理を実行する。この際、CPU21は、画素値が所定の閾値以上である画素を白色に設定し、当該閾値未満である画素を黒色に設定する。所定の閾値は、例えば判別分析法としても知られる大津の2値化法等を用いて設定される。 For example, after calculating the temperature difference image N3 (S23), the CPU 21 performs a binarization process on the temperature difference image N3 based on the contrast due to the emissivity difference in each part of the surface of the workpiece 11 (S24). The CPU 21 executes the binarization process using, for example, a brightness value histogram according to the emissivity of the temperature difference image N3. At this time, the CPU 21 sets pixels whose pixel values are greater than or equal to a predetermined threshold value to be white, and sets pixels whose pixel values are less than the threshold value to black. The predetermined threshold value is set using, for example, Otsu's binarization method, which is also known as the discriminant analysis method.
 図9は、本実施形態の検査装置20における検査領域の抽出処理を説明するための図である。図9(A)は、2値化処理を行う前の温度画像として、図8(A)と同様の温度差分画像N3を例示する。図9(B)は、図9(A)の温度差分画像N3に、2値化処理を適用した2値化画像M3を例示する。図9(B)の2値化画像M3では、溶接領域30に応じた領域30mが白色に設定されている。 FIG. 9 is a diagram for explaining the inspection area extraction process in the inspection device 20 of this embodiment. FIG. 9(A) illustrates a temperature difference image N3 similar to FIG. 8(A) as a temperature image before performing the binarization process. FIG. 9(B) illustrates a binarized image M3 obtained by applying binarization processing to the temperature difference image N3 of FIG. 9(A). In the binarized image M3 of FIG. 9(B), a region 30m corresponding to the welding region 30 is set to white.
 CPU21は、算出した2値化画像M3に基づいて、図6(A)に示すような位相画像P1から検査領域30pを抽出するための領域マスクを作成する(S25)。CPU21は、例えば図9(B)の2値化画像M3において、画素値が変化する位置を境界に、白色に設定された領域30mの画素値を「1」として、及び黒色に設定された領域の画素値を「0」として有する領域マスクを作成してもよい。 Based on the calculated binarized image M3, the CPU 21 creates a region mask for extracting the inspection region 30p from the phase image P1 as shown in FIG. 6(A) (S25). For example, in the binarized image M3 of FIG. 9(B), the CPU 21 sets the pixel value of an area 30m set to white as "1", with the position where the pixel value changes as a boundary, and the area set to black. A region mask having the pixel value of "0" may be created.
 CPU21は、領域マスクを作成後(S25)、当該領域マスクを位相画像P1に合成して、検査領域30pを抽出する(S26)。CPU21は、例えば、上述の2値化画像M3から作成された領域マスクの各画素値を、位相画像P1の対応する位置の各画素値に乗算してもよい。これにより、位相画像P1において、領域30mと対応する位置の画素値は変更されない一方で、当該領域以外の背景領域の画素値はゼロ値となり、例えば図6(B)に示すような、溶接領域30に対応する検査領域30pを抽出した位相画像P1が得られる。 After creating the region mask (S25), the CPU 21 combines the region mask with the phase image P1 and extracts the inspection region 30p (S26). For example, the CPU 21 may multiply each pixel value of the region mask created from the above-described binarized image M3 by each pixel value at the corresponding position of the phase image P1. As a result, in the phase image P1, the pixel value at the position corresponding to the area 30m is not changed, while the pixel value in the background area other than the area becomes zero, and for example, the welding area as shown in FIG. A phase image P1 is obtained by extracting the inspection region 30p corresponding to 30.
 CPU21は、例えば、検査領域30pの抽出結果として、検査領域30pを抽出した位相画像P1を示す画像データを内部メモリ等に出力する(S27)。なお、CPU21は、検査領域30pの抽出結果を内部メモリに限らず、例えば出力I/F24を介して、検査装置20の外部の出力装置等に出力してもよい。 For example, the CPU 21 outputs image data indicating the phase image P1 from which the inspection area 30p is extracted to the internal memory or the like as the extraction result of the inspection area 30p (S27). Note that the CPU 21 may output the extraction result of the inspection area 30p not only to the internal memory but also to an external output device of the inspection apparatus 20, for example, via the output I/F 24.
 CPU21は、例えば抽出した検査領域30pを出力後(S27)、本フローチャートの処理を終了して、図3のステップS7に戻る。 For example, after outputting the extracted inspection area 30p (S27), the CPU 21 ends the process of this flowchart and returns to step S7 in FIG. 3.
 以上の処理によると、温度画像におけるワーク11上の放射率差に応じたコントラストに基づいて領域マスクが作成され(S24,S25)、当該領域マスクにより、位相画像P1において溶接領域30に応じた検査領域30pが抽出される(S26)。これにより、例えば、温度画像の解析による欠陥検出等の処理(S3~S7)において、位相画像P1の算出(S4)だけでなく、領域マスクの作成にも温度画像を用いて、位相画像P1において欠陥検出の処理(S7)を行う検査領域30pが抽出できる。 According to the above processing, a region mask is created based on the contrast according to the emissivity difference on the workpiece 11 in the temperature image (S24, S25), and the region mask is used for inspection according to the welding region 30 in the phase image P1. Region 30p is extracted (S26). As a result, for example, in processing such as defect detection by analyzing a temperature image (S3 to S7), the temperature image is used not only to calculate the phase image P1 (S4) but also to create a region mask. The inspection area 30p for performing defect detection processing (S7) can be extracted.
 図10は、検査システム1による欠陥の検出例を説明するための図である。図10は、図6とは別の位相画像において、欠陥検出を行う例を示す。図10(A)は、図3のステップS4で温度画像の解析結果により算出された位相画像P10を例示する。図10(B)は、図10(A)の位相画像P10にステップS5でフィルタ処理を適用した位相画像P11を例示する。図10(C)は、検査領域の抽出処理(S6)において、図10(B)の状態から領域マスクを合成して検査領域30pを抽出した位相画像P11を例示する。図10(A)~(C)の例では、位相画像P10,P11において溶接領域30に応じた領域のうちの暗く見える領域が内部欠陥12に対応する。 FIG. 10 is a diagram for explaining an example of defect detection by the inspection system 1. FIG. 10 shows an example in which defect detection is performed in a phase image different from that in FIG. 6. FIG. 10A illustrates the phase image P10 calculated from the temperature image analysis result in step S4 of FIG. FIG. 10(B) illustrates a phase image P11 obtained by applying filter processing to the phase image P10 of FIG. 10(A) in step S5. FIG. 10C illustrates a phase image P11 in which the inspection region 30p is extracted by combining region masks from the state of FIG. 10B in the inspection region extraction process (S6). In the examples shown in FIGS. 10A to 10C, the dark-looking region in the phase images P10 and P11 corresponding to the welding region 30 corresponds to the internal defect 12.
 図10(B)の位相画像P11では、例えばエッジ強調及び平滑化等のフィルタ処理により、図10(A)の位相画像P10から、溶接領域30に対応する領域の視認性が向上している。さらに、図10(C)の位相画像P11によれば、例えば、位相画像P11のうちの抽出された検査領域30pのみにおいて内部欠陥12の領域を探索でき、欠陥検出の処理(S7)を行い易くすることができる。 In the phase image P11 of FIG. 10(B), the visibility of the area corresponding to the welding area 30 is improved from the phase image P10 of FIG. 10(A) by filtering such as edge enhancement and smoothing. Furthermore, according to the phase image P11 in FIG. 10(C), for example, the area of the internal defect 12 can be searched only in the extracted inspection area 30p of the phase image P11, making it easier to perform the defect detection process (S7). can do.
 上記の処理では、2値化処理(S24)に判別分析法を用いる例を説明した。ステップS24の2値化処理には、上記の例に限らず、Pタイル法、モード法、動的閾値決定法、レベルスライス法、ラプラシアン・ヒストグラム法、微分ヒストグラム法等の各種の方法が用いられてもよい。 In the above process, an example in which the discriminant analysis method is used in the binarization process (S24) has been described. The binarization process in step S24 is not limited to the above example, and various methods such as the P-tile method, mode method, dynamic threshold determination method, level slice method, Laplacian histogram method, differential histogram method, etc. are used. It's okay.
(変形例)
 上記の例では、低温度画像N2として加熱前の温度画像N21の画像データを取得して(S22)、温度差分画像N3の算出(S23)に用いる例を説明した。低温度画像N2としては、加熱前の温度画像N21に限らず、例えば図4(C)に示すような、加熱後の温度画像N22が取得されてもよい。図11は、本実施形態の変形例の検査装置における温度差分画像を説明するための図である。
(Modified example)
In the above example, the image data of the temperature image N21 before heating is acquired as the low temperature image N2 (S22), and is used to calculate the temperature difference image N3 (S23). The low temperature image N2 is not limited to the temperature image N21 before heating, but may also be acquired, for example, a temperature image N22 after heating as shown in FIG. 4(C). FIG. 11 is a diagram for explaining a temperature difference image in an inspection apparatus according to a modification of the present embodiment.
 図11(A)は、図8(A)に示す温度差分画像N3の算出における加熱前の温度画像N21に代えて、加熱後の温度画像N22を用いて算出した温度差分画像N3aを例示する。図11(B)は、図8(B)の温度差分画像N3bの算出における加熱前の温度画像N21に代えて、加熱後の温度画像N22を用いて算出した温度差分画像N3abを例示する。図11(A),(B)に示すように、低温度画像N2として、加熱後の温度画像N22を用いても、例えば図8(A),(B)の温度差分画像N3,N3bと同様に、コントラストが強調された温度差分画像N3a,N3abを得ることができる。 FIG. 11(A) illustrates a temperature difference image N3a calculated using the temperature image N22 after heating instead of the temperature image N21 before heating in calculating the temperature difference image N3 shown in FIG. 8(A). FIG. 11(B) illustrates a temperature difference image N3ab calculated using the temperature image N22 after heating instead of the temperature image N21 before heating in calculating the temperature difference image N3b in FIG. 8(B). As shown in FIGS. 11(A) and (B), even if the temperature image N22 after heating is used as the low temperature image N2, it is similar to the temperature difference images N3 and N3b in FIGS. 8(A) and (B), for example. In addition, temperature difference images N3a and N3ab with enhanced contrast can be obtained.
3.効果等
 以上のように、本実施形態において、検査装置20は、赤外線カメラ17を備えた検査システム1において用いられる。赤外線カメラ17は、溶接後のワーク11(被溶接物の一例)から放射される赤外線によって、各々がワーク11の温度を示す複数の温度画像を撮像して、複数の温度画像を示す画像データを生成する。複数の温度画像は、ワーク11の温度変化に応じて時系列で撮像されて、ワーク11の内部構造による熱伝導の変化を反映している。検査装置20は、画像データを受け取る入力I/F23(入力回路の一例)と、画像データを解析するCPU21(演算回路の一例)とを備える。CPU21は、画像データに基づいて、ワーク11の内部構造に関する解析画像の一例として位相画像P1を算出し(S3,S4)、複数の温度画像のうちの少なくとも一の温度画像におけるワーク11の表面各部からの放射率差に応じたコントラストに基づいて、位相画像P1において溶接によりワーク11に形成される溶接領域30に対応する検査領域30pを抽出し(S6)、抽出した検査領域30pを出力する(S6,S27)。
3. Effects, etc. As described above, in this embodiment, the inspection device 20 is used in the inspection system 1 equipped with the infrared camera 17. The infrared camera 17 captures a plurality of temperature images each indicating the temperature of the workpiece 11 using infrared rays emitted from the workpiece 11 after welding (an example of an object to be welded), and generates image data indicating the plurality of temperature images. generate. The plurality of temperature images are taken in time series according to changes in the temperature of the workpiece 11, and reflect changes in heat conduction due to the internal structure of the workpiece 11. The inspection device 20 includes an input I/F 23 (an example of an input circuit) that receives image data, and a CPU 21 (an example of an arithmetic circuit) that analyzes the image data. Based on the image data, the CPU 21 calculates a phase image P1 as an example of an analysis image regarding the internal structure of the workpiece 11 (S3, S4), and calculates each part of the surface of the workpiece 11 in at least one temperature image among the plurality of temperature images. The inspection area 30p corresponding to the welding area 30 formed on the workpiece 11 by welding is extracted from the phase image P1 based on the contrast according to the emissivity difference from (S6), and the extracted inspection area 30p is output ( S6, S27).
 以上の検査装置20によると、ワーク11の温度変化に応じた複数の温度画像の解析により、ワーク11の内部構造に関する位相画像P1が生成され(S3,S4)、温度画像を用いて位相画像P1において検査領域30pが抽出される(S6)。これにより、溶接領域30に応じた検査領域30pに基づいて、溶接後のワーク11の検査を行い易くすることができる。例えば、位相画像P1において、抽出された検査領域30pから内部欠陥12等に関する溶接品質を検査でき、検査領域30p以外の背景領域の影響を抑制して、溶接後のワーク11の検査を精度良くかつ効率良く行うことができる。 According to the inspection apparatus 20 described above, the phase image P1 regarding the internal structure of the work 11 is generated by analyzing a plurality of temperature images according to the temperature change of the work 11 (S3, S4), and the phase image P1 is generated using the temperature images. In this step, the inspection area 30p is extracted (S6). Thereby, it is possible to easily inspect the workpiece 11 after welding based on the inspection area 30p corresponding to the welding area 30. For example, in the phase image P1, the welding quality regarding the internal defect 12 etc. can be inspected from the extracted inspection area 30p, and the influence of the background area other than the inspection area 30p can be suppressed to accurately and accurately inspect the workpiece 11 after welding. It can be done efficiently.
 本実施形態において、CPU21は、複数の温度画像のうちの、少なくともワーク11の温度がピークとなるピーク温度に対応するピーク温度画像N1(第1の画像の一例)から、コントラストを算出する(S21,S24)。これにより、複数の温度画像において、ピーク温度画像N1ではワーク11の表面各部の放射率差によるコントラストが大きくなり易いため、例えば2値化処理に用いるコントラストを算出し易くすることができる。 In the present embodiment, the CPU 21 calculates the contrast from the peak temperature image N1 (an example of the first image) corresponding to the peak temperature at which the temperature of the workpiece 11 is at least the peak among the plurality of temperature images (S21 , S24). As a result, in the plurality of temperature images, the peak temperature image N1 tends to have a large contrast due to the difference in emissivity of each part of the surface of the workpiece 11, so it is possible to easily calculate the contrast used for, for example, binarization processing.
 本実施形態において、CPU21は、複数の温度画像においてピーク温度画像N1(第1の画像の一例)の前または後に撮像された、ピーク温度よりも低い温度に対応する低温度画像N2(第2の画像の一例)と、ピーク温度画像N1との差分を示す温度差分画像N3(第3の画像の一例)を算出し(S23)、温度差分画像N3から、コントラストを算出する(S24)。これにより、例えば図8(A)に示すように、温度差分画像N3では、溶接領域30に対応する領域と背景領域とのコントラストが強調され、2値化処理による領域マスクの作成(S24~S25)を行い易くすることができる。 In the present embodiment, the CPU 21 selects a low temperature image N2 (second image) corresponding to a temperature lower than the peak temperature, which is captured before or after the peak temperature image N1 (an example of the first image) among the plurality of temperature images. A temperature difference image N3 (an example of a third image) is calculated (S23), and a contrast is calculated from the temperature difference image N3 (S24). As a result, as shown in FIG. 8A, for example, in the temperature difference image N3, the contrast between the area corresponding to the welding area 30 and the background area is emphasized, and a region mask is created by binarization processing (S24 to S25). ) can be made easier.
 上述した温度差分画像N3の算出(S23)に用いる低温度画像N2としては、例えば複数の温度画像の撮像期間等に応じて、加熱前の温度画像N21または加熱後の温度画像N22のいずれを用いるかが決定されてもよい。また、温度差分画像N3の算出は、上記のピーク温度画像N1及び低温度画像N2を用いる例に限らず、相対的に温度の高い画像と温度の低い画像とで差分が取れればよい。 As the low-temperature image N2 used in calculating the temperature difference image N3 (S23) described above, either the temperature image N21 before heating or the temperature image N22 after heating can be used, depending on the imaging period of the plurality of temperature images, for example. It may also be determined whether the Further, calculation of the temperature difference image N3 is not limited to the example using the above-mentioned peak temperature image N1 and low temperature image N2, and it is sufficient to obtain a difference between an image with a relatively high temperature and an image with a relatively low temperature.
 本実施形態において、CPU21は、複数の温度画像にフーリエ変換の一例である離散フーリエ変換を行って(S3)、解析画像の一例である位相画像P1を算出する(S4)。これにより、例えば温度変化においてワーク11の内部構造による熱伝導の変化を反映した複数の温度画像から、こうした熱伝導の変化が位相変化として反映された位相画像が得られる。 In the present embodiment, the CPU 21 performs discrete Fourier transform, which is an example of Fourier transform, on the plurality of temperature images (S3), and calculates a phase image P1, which is an example of an analysis image (S4). Thereby, for example, from a plurality of temperature images that reflect changes in heat conduction due to the internal structure of the workpiece 11 due to temperature changes, a phase image in which such changes in heat conduction are reflected as a phase change is obtained.
 本実施形態において、解析画像の一例である位相画像P1は、離散フーリエ変換によりワーク11の温度変化に応じて、複数の温度画像の解析結果による複素関数において規定される位相に基づいて算出される(S4)。また、解析画像の別の一例である振幅画像は、ワーク11の温度変化に応じた当該複素関数において規定される振幅を含む。こうした位相画像または振幅画像によれば、例えばワーク11の温度変化に応じて内部欠陥12等の内部構造に関する情報が得られる。 In this embodiment, the phase image P1, which is an example of an analysis image, is calculated based on the phase defined by a complex function based on the analysis results of a plurality of temperature images according to the temperature change of the workpiece 11 by discrete Fourier transform. (S4). Further, the amplitude image, which is another example of the analysis image, includes an amplitude defined by the complex function according to the temperature change of the workpiece 11. According to such a phase image or an amplitude image, information regarding the internal structure of the internal defect 12 or the like can be obtained depending on the temperature change of the workpiece 11, for example.
 本実施形態において、CPU21は、抽出した検査領域30pの解析画像の一例として、位相画像P1における検査領域30pの画素値に基づいて、ワーク11の内部に生じた欠陥の一例である内部欠陥12を検出する(S7)。これにより、例えば位相画像P1の全体を用いるよりも精度良くかつ効率良く内部欠陥12を検出することができる。さらに、こうした内部欠陥12の検出結果に基づいて、溶接品質の良否の判定(S8)を精度良くかつ効率良く行うことができる。 In the present embodiment, the CPU 21 detects an internal defect 12, which is an example of a defect occurring inside the workpiece 11, based on the pixel value of the inspection area 30p in the phase image P1, as an example of the extracted analysis image of the inspection area 30p. Detect (S7). Thereby, the internal defect 12 can be detected more accurately and efficiently than, for example, by using the entire phase image P1. Furthermore, based on the detection results of such internal defects 12, it is possible to accurately and efficiently determine whether the welding quality is good or bad (S8).
 本実施形態において、検査装置20は、情報を記録する記録媒体の一例として、CPU21の内部メモリを備え、CPU21は、検査領域30pを抽出した位相画像P1の画像データを記録媒体に出力する(S27)。CPU21は、こうした検査領域30pの抽出結果を内部メモリに限らず、例えば記憶装置22に出力して格納させてもよい。また、本実施形態において、検査装置20は、例えばディスプレイ等の出力装置といった外部機器と接続する出力I/F24(出力回路の一例)を備える。CPU21は、ステップS27において、出力I/F24により、検査領域30pを抽出した位相画像の画像データを当該外部機器に出力してもよい。例えば、外部機器として、ディスプレイ等の出力装置あるいはサーバ装置等の情報処理端末に、検査領域30pの抽出結果が出力されてもよい。 In this embodiment, the inspection device 20 includes an internal memory of the CPU 21 as an example of a recording medium for recording information, and the CPU 21 outputs image data of the phase image P1 from which the inspection region 30p has been extracted to the recording medium (S27 ). The CPU 21 may output and store the extraction result of the inspection area 30p not only in the internal memory but also in the storage device 22, for example. Furthermore, in this embodiment, the inspection device 20 includes an output I/F 24 (an example of an output circuit) that connects to an external device such as an output device such as a display. In step S27, the CPU 21 may output the image data of the phase image from which the inspection region 30p has been extracted to the external device using the output I/F 24. For example, the extraction result of the inspection area 30p may be output to an output device such as a display or an information processing terminal such as a server device as an external device.
 本実施形態において、検査システム1は、溶接後のワーク11から放射される赤外線によりワーク11の温度を示す温度画像を撮像して画像データを生成する赤外線カメラ17と、検査装置20とを備える。本実施形態の検査システム1では、検査装置20は、例えば赤外線カメラ17による撮像動作を制御して、赤外線カメラ17から温度画像の画像データを取得する。なお、検査装置20は、上記の例に限らず、例えば検査システム1の外部の赤外線カメラとデータ通信して、温度画像の画像データを受け取ってもよい。 In the present embodiment, the inspection system 1 includes an infrared camera 17 that generates image data by capturing a temperature image indicating the temperature of the work 11 using infrared rays emitted from the work 11 after welding, and an inspection device 20. In the inspection system 1 of this embodiment, the inspection device 20 controls the imaging operation of the infrared camera 17, for example, and acquires image data of a temperature image from the infrared camera 17. Note that the inspection device 20 is not limited to the above example, and may receive image data of a temperature image by, for example, communicating data with an infrared camera external to the inspection system 1.
 本実施形態において、検査システム1は、溶接後のワーク11に向けて励起エネルギーを発してワーク11を加熱する励起源18をさらに備える。赤外線カメラ17は、ワーク11の加熱による温度変化に応じて複数の温度画像N1,N2を撮像する。これにより、例えば、ワーク11を溶接後に冷却されてから、励起源18で加熱して赤外線カメラ17により撮像することで、温度画像データを取得することができる(図3のS1)。 In the present embodiment, the inspection system 1 further includes an excitation source 18 that heats the work 11 by emitting excitation energy toward the work 11 after welding. The infrared camera 17 captures a plurality of temperature images N1 and N2 according to temperature changes due to heating of the workpiece 11. Thereby, for example, temperature image data can be acquired by cooling the workpiece 11 after welding, heating it with the excitation source 18, and capturing the image with the infrared camera 17 (S1 in FIG. 3).
 本実施形態における検査方法は、コンピュータの一例である検査装置20の入力I/F23(入力回路の一例)が赤外線カメラ17により生成された画像データを受け取るステップと、検査装置20のCPU21(演算回路の一例)が画像データを解析するステップ(S3~S7)とを含む。赤外線カメラ17は、溶接後のワーク11(被溶接物の一例)から放射される赤外線によって、各々がワーク11の温度を示す複数の温度画像を撮像して、複数の温度画像を示す画像データを生成する。複数の温度画像は、ワーク11の温度変化に応じて時系列で撮像されて、ワーク11の内部構造による熱伝導の変化を反映している。CPU21は、画像データに基づいて、ワーク11の内部構造に関する位相画像P1(解析画像の一例)を算出し(S3,S4)、複数の温度画像のうちの少なくとも一の温度画像におけるワーク11の表面各部からの放射率差に応じたコントラストに基づいて、位相画像P1において溶接によりワーク11に形成される溶接領域30に対応する検査領域30pを抽出し(S6)、抽出した検査領域30pを出力する(S6,S27)。 The inspection method in this embodiment includes a step in which the input I/F 23 (an example of an input circuit) of the inspection device 20, which is an example of a computer, receives image data generated by the infrared camera 17, and a step in which the CPU 21 (arithmetic circuit example) includes steps (S3 to S7) of analyzing image data. The infrared camera 17 captures a plurality of temperature images each indicating the temperature of the workpiece 11 using infrared rays emitted from the workpiece 11 after welding (an example of an object to be welded), and generates image data indicating the plurality of temperature images. generate. The plurality of temperature images are taken in time series according to changes in the temperature of the workpiece 11, and reflect changes in heat conduction due to the internal structure of the workpiece 11. The CPU 21 calculates a phase image P1 (an example of an analysis image) regarding the internal structure of the workpiece 11 based on the image data (S3, S4), and calculates a phase image P1 (an example of an analysis image) regarding the internal structure of the workpiece 11, and calculates a phase image P1 (an example of an analysis image) regarding the internal structure of the workpiece 11, and Based on the contrast according to the emissivity difference from each part, an inspection area 30p corresponding to the welding area 30 formed on the workpiece 11 by welding is extracted from the phase image P1 (S6), and the extracted inspection area 30p is output. (S6, S27).
 本実施形態において、以上のような検査方法をCPU21に実行させるためのプログラムの一例として、制御プログラム25が提供される。以上の検査方法及びプログラムによれば、溶接後のワーク11の検査を精度良くかつ効率良く行うことができる。 In this embodiment, a control program 25 is provided as an example of a program for causing the CPU 21 to execute the above inspection method. According to the above inspection method and program, the work 11 after welding can be inspected accurately and efficiently.
(他の実施形態)
 上記の実施形態1では、検査システム1は、パルスサーモグラフィにより検査を行う例を説明した。本実施形態の検査システム1は、これに限らず、例えば所定の周期でワーク11を励起するロックインサーモグラフィによる検査に適用されてもよい。
(Other embodiments)
In the first embodiment described above, an example has been described in which the inspection system 1 performs inspection using pulse thermography. The inspection system 1 of this embodiment is not limited to this, and may be applied, for example, to an inspection using lock-in thermography that excites the workpiece 11 at a predetermined cycle.
 上記の各実施形態では、ピーク温度画像N1及び低温度画像N2を取得し(S21,S22)、温度差分画像N3を算出して(S23)、温度差分画像N3での放射率差によるコントラストに基づいて2値化処理を行う(S24)例を説明した。本実施形態における検査領域の抽出処理(S6)は、上記の例に限らず、例えばピーク温度画像N1において2値化処理が可能な程度にコントラストが大きい場合、ステップS22~S23の処理が省略されてもよい。この場合、ステップS24ではピーク温度画像N1内のコントラストに基づいて2値化処理が実行されてもよい。 In each of the above embodiments, a peak temperature image N1 and a low temperature image N2 are acquired (S21, S22), a temperature difference image N3 is calculated (S23), and the temperature difference image N3 is calculated based on the contrast due to the emissivity difference in the temperature difference image N3. An example of performing binarization processing (S24) has been described. The inspection area extraction process (S6) in this embodiment is not limited to the above example. For example, if the contrast in the peak temperature image N1 is large enough to allow binarization processing, the processes in steps S22 and S23 are omitted. It's okay. In this case, in step S24, binarization processing may be performed based on the contrast within the peak temperature image N1.
 上記の各実施形態では、領域マスクを作成する(S25)前に、温度画像の2値化処理を行う(S24)例を説明した。本実施形態では、例えば2値化処理を適用前の温度画像において、領域マスクを作成可能な程度にコントラストが大きい場合、ステップS24の処理を省略してもよく、当該温度画像のコントラストに基づいて領域マスクが作成されてもよい。 In each of the above embodiments, an example has been described in which a temperature image is binarized (S24) before creating a region mask (S25). In this embodiment, for example, if the contrast in the temperature image before applying the binarization process is large enough to create a region mask, the process in step S24 may be omitted, and the temperature image is calculated based on the contrast of the temperature image. A region mask may be created.
 上記の各実施形態では、励起源18による加熱後の温度画像を赤外線カメラ17により撮像して、溶接後のワーク11を検査する検査システム1を説明した。本実施形態では、検査システムは、例えば検査対象物であるワーク11の温度が高い場合に、励起源18に代えて、溶接後のワーク11を冷却する冷却装置を備えてもよい。冷却装置は、例えば、低温ガスをワーク11に吹き付ける装置等であってもよい。この場合にも、例えば赤外線カメラ17により冷却前後の温度画像を撮像し、当該複数の温度画像を用いて、上述した励起源18を用いる場合と同様にワーク11の検査を行うことができる。 In each of the above embodiments, the inspection system 1 was described which inspects the workpiece 11 after welding by capturing a temperature image after heating by the excitation source 18 with the infrared camera 17. In the present embodiment, the inspection system may include a cooling device that cools the welded workpiece 11 instead of the excitation source 18, for example, when the temperature of the workpiece 11 that is the object to be inspected is high. The cooling device may be, for example, a device that sprays low-temperature gas onto the workpiece 11. In this case as well, for example, temperature images before and after cooling can be captured by the infrared camera 17, and the workpiece 11 can be inspected using the plurality of temperature images in the same manner as when using the excitation source 18 described above.
 以上のように、上記の各実施形態において、検査システムは、溶接後のワーク11(被溶接物の一例)に向けて励起エネルギーを発してワーク11を加熱する励起源18、または溶接後のワーク11を冷却する冷却装置をさらに備える。赤外線カメラ17は、ワーク11の加熱または冷却による温度変化に応じて複数の温度画像を撮像する。なお、上記の例に限らず、検査システムは、特に励起源または冷却装置を備えなくてもよい。例えば、溶接後に自然冷却されたワーク11を励起源で加熱することに代えて、溶接で発生した熱を利用し、ワーク11の溶接直後に赤外線カメラ17により撮像された温度画像データが取得されてもよい。この場合にも、例えば、溶接直後の温度画像と、溶接後に雰囲気温度までワーク11が自然冷却された後の温度画像とを用いて、励起源18等を用いる場合と同様にワーク11の検査を行うことができる。 As described above, in each of the above embodiments, the inspection system includes the excitation source 18 that heats the workpiece 11 by emitting excitation energy toward the workpiece 11 after welding (an example of an object to be welded), or the workpiece after welding. The apparatus further includes a cooling device for cooling 11. The infrared camera 17 captures a plurality of temperature images according to temperature changes due to heating or cooling of the workpiece 11. Note that the inspection system is not limited to the above example, and the inspection system may not particularly include an excitation source or a cooling device. For example, instead of heating the workpiece 11 that has been naturally cooled after welding with an excitation source, the heat generated during welding may be used to obtain temperature image data captured by the infrared camera 17 immediately after welding the workpiece 11. Good too. In this case as well, the workpiece 11 is inspected in the same way as when using the excitation source 18 etc. using, for example, a temperature image immediately after welding and a temperature image after the workpiece 11 has naturally cooled down to the ambient temperature after welding. It can be carried out.
 本開示は、溶接後の被溶接物を検査するための検査システム、検査装置及び検査方法に適用可能であり、特に赤外線カメラにより撮像された画像の解析による被溶接物の検査に適用可能である。 The present disclosure is applicable to an inspection system, an inspection device, and an inspection method for inspecting a welded object after welding, and is particularly applicable to inspecting a welded object by analyzing an image captured by an infrared camera. .

Claims (12)

  1.  赤外線カメラを備えた検査システムにおいて用いられる検査装置であって、
     前記赤外線カメラは、溶接後の被溶接物から放射される赤外線によって、各々が前記被溶接物の温度を示す複数の温度画像を撮像して、前記複数の温度画像を示す画像データを生成し、
     前記複数の温度画像は、前記被溶接物の温度変化に応じて時系列で撮像されて、前記被溶接物の内部構造による熱伝導の変化を反映しており、
     前記検査装置は、
     前記画像データを受け取る入力回路と、
     前記画像データを解析する演算回路とを備え、
     前記演算回路は、
     前記画像データに基づいて、前記被溶接物の内部構造に関する解析画像を算出し、
     前記複数の温度画像のうちの少なくとも一の温度画像における前記被溶接物の表面各部からの放射率差に応じたコントラストに基づいて、前記解析画像において溶接により前記被溶接物に形成される溶接領域に対応する検査領域を抽出し、
     抽出した前記検査領域を出力する
    検査装置。
    An inspection device used in an inspection system equipped with an infrared camera,
    The infrared camera captures a plurality of temperature images each indicating the temperature of the welded object using infrared rays emitted from the welded object after welding, and generates image data indicating the plurality of temperature images,
    The plurality of temperature images are taken in time series according to temperature changes of the welding object, and reflect changes in heat conduction due to the internal structure of the welding object,
    The inspection device includes:
    an input circuit that receives the image data;
    and an arithmetic circuit that analyzes the image data,
    The arithmetic circuit is
    calculating an analysis image regarding the internal structure of the welded object based on the image data;
    A welding area formed on the workpiece by welding in the analysis image based on a contrast according to the emissivity difference from each part of the surface of the workpiece in at least one temperature image of the plurality of temperature images. Extract the inspection area corresponding to
    An inspection device that outputs the extracted inspection area.
  2.  前記演算回路は、前記複数の温度画像のうちの、少なくとも前記被溶接物の温度がピークとなるピーク温度に対応する第1の画像から、前記コントラストを算出する
    請求項1に記載の検査装置。
    The inspection device according to claim 1, wherein the arithmetic operation circuit calculates the contrast from at least a first image of the plurality of temperature images that corresponds to a peak temperature at which the temperature of the workpiece reaches a peak.
  3.  前記演算回路は、
     前記複数の温度画像において前記第1の画像の前または後に撮像された、前記ピーク温度よりも低い温度に対応する第2の画像と、前記第1の画像との差分を示す第3の画像を算出し、
     前記第3の画像から、前記コントラストを算出する
    請求項2に記載の検査装置。
    The arithmetic circuit is
    A third image showing a difference between the first image and a second image taken before or after the first image in the plurality of temperature images and corresponding to a temperature lower than the peak temperature. Calculate,
    The inspection device according to claim 2, wherein the contrast is calculated from the third image.
  4.  前記演算回路は、前記複数の温度画像にフーリエ変換を行って前記解析画像を算出する
    請求項1に記載の検査装置。
    The inspection device according to claim 1, wherein the arithmetic circuit performs Fourier transform on the plurality of temperature images to calculate the analysis image.
  5.  前記解析画像は、前記フーリエ変換により、前記被溶接物の温度変化に応じて規定される位相または振幅に基づいて算出される
    請求項4に記載の検査装置。
    The inspection device according to claim 4, wherein the analysis image is calculated by the Fourier transform based on a phase or an amplitude defined according to a temperature change of the workpiece.
  6.  前記演算回路は、抽出した前記検査領域の前記解析画像に基づいて、前記被溶接物の内部に生じた欠陥を検出する
    請求項1に記載の検査装置。
    The inspection device according to claim 1, wherein the arithmetic circuit detects a defect occurring inside the workpiece based on the extracted analysis image of the inspection area.
  7.  情報を記録する記録媒体を備え、
     前記演算回路は、前記検査領域を抽出した解析画像の画像データを前記記録媒体に出力する
    請求項1に記載の検査装置。
    Equipped with a recording medium for recording information,
    The inspection apparatus according to claim 1, wherein the arithmetic circuit outputs image data of an analysis image from which the inspection area has been extracted to the recording medium.
  8.  外部機器と接続する出力回路を備え、
     前記演算回路は、前記出力回路により、前記検査領域を抽出した解析画像の画像データを前記外部機器に出力する
    請求項1に記載の検査装置。
    Equipped with an output circuit to connect with external equipment,
    The inspection apparatus according to claim 1, wherein the arithmetic circuit outputs image data of an analysis image from which the inspection area has been extracted to the external device by the output circuit.
  9.  溶接後の被溶接物から放射される赤外線により前記被溶接物の温度を示す温度画像を撮像して画像データを生成する赤外線カメラと、
     請求項1~8のいずれか1項に記載の検査装置と
    を備える検査システム。
    an infrared camera that generates image data by capturing a temperature image indicating the temperature of the welded object using infrared rays emitted from the welded object after welding;
    An inspection system comprising the inspection device according to any one of claims 1 to 8.
  10.  溶接後の前記被溶接物に向けて励起エネルギーを発して前記被溶接物を加熱する励起源、または溶接後の前記被溶接物を冷却する冷却装置をさらに備え、
     前記赤外線カメラは、前記被溶接物の加熱または冷却による温度変化に応じて前記複数の温度画像を撮像する
    請求項9に記載の検査システム。
    Further comprising an excitation source that heats the welded object by emitting excitation energy toward the welded object after welding, or a cooling device that cools the welded object after welding,
    The inspection system according to claim 9, wherein the infrared camera captures the plurality of temperature images according to temperature changes due to heating or cooling of the workpiece.
  11.  コンピュータの入力回路が赤外線カメラにより生成された画像データを受け取るステップと、
     前記コンピュータの演算回路が前記画像データを解析するステップとを含み、
     前記赤外線カメラは、溶接後の被溶接物から放射される赤外線によって、各々が前記被溶接物の温度を示す複数の温度画像を撮像して、前記複数の温度画像を示す画像データを生成し、
     前記複数の温度画像は、前記被溶接物の温度変化に応じて時系列で撮像されて、前記被溶接物の内部構造による熱伝導の変化を反映しており、
     前記演算回路は、
     前記画像データに基づいて、前記被溶接物の内部構造に関する解析画像を算出し、
     前記複数の温度画像のうちの少なくとも一の温度画像における前記被溶接物の表面各部からの放射率差に応じたコントラストに基づいて、前記解析画像において溶接により前記被溶接物に形成される溶接領域に対応する検査領域を抽出し、
     抽出した前記検査領域を出力する
    検査方法。
    an input circuit of the computer receives image data generated by the infrared camera;
    a step in which an arithmetic circuit of the computer analyzes the image data,
    The infrared camera captures a plurality of temperature images each indicating the temperature of the welded object using infrared rays emitted from the welded object after welding, and generates image data indicating the plurality of temperature images,
    The plurality of temperature images are taken in time series according to temperature changes of the welding object, and reflect changes in heat conduction due to the internal structure of the welding object,
    The arithmetic circuit is
    calculating an analysis image regarding the internal structure of the welded object based on the image data;
    A welding area formed on the workpiece by welding in the analysis image based on a contrast according to the emissivity difference from each part of the surface of the workpiece in at least one temperature image of the plurality of temperature images. Extract the inspection area corresponding to
    An inspection method that outputs the extracted inspection area.
  12.  請求項11に記載の検査方法を前記演算回路に実行させるためのプログラム。 A program for causing the arithmetic circuit to execute the inspection method according to claim 11.
PCT/JP2023/027859 2022-08-26 2023-07-28 Inspection system, inspection device, and inspection method WO2024043006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022135343 2022-08-26
JP2022-135343 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024043006A1 true WO2024043006A1 (en) 2024-02-29

Family

ID=90013016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027859 WO2024043006A1 (en) 2022-08-26 2023-07-28 Inspection system, inspection device, and inspection method

Country Status (1)

Country Link
WO (1) WO2024043006A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250809A (en) * 1992-01-24 1993-10-05 Shuji Nakata Method and device for checking joint of electronic component
JPH08122051A (en) * 1994-10-21 1996-05-17 Obara Kk Method for measuring nugget of spot welding part
JP2003065985A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Method for inspecting laser welding part and apparatus therefor
JP2015064311A (en) * 2013-09-26 2015-04-09 株式会社日立ハイテクノロジーズ Infrared inspection device and infrared inspection method
JP2016142567A (en) * 2015-01-30 2016-08-08 株式会社日立ハイテクファインシステムズ Inspection method and device
JP2022178583A (en) * 2021-05-20 2022-12-02 日本製鉄株式会社 Plate thickness estimation method for spot welded joint

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250809A (en) * 1992-01-24 1993-10-05 Shuji Nakata Method and device for checking joint of electronic component
JPH08122051A (en) * 1994-10-21 1996-05-17 Obara Kk Method for measuring nugget of spot welding part
JP2003065985A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Method for inspecting laser welding part and apparatus therefor
JP2015064311A (en) * 2013-09-26 2015-04-09 株式会社日立ハイテクノロジーズ Infrared inspection device and infrared inspection method
JP2016142567A (en) * 2015-01-30 2016-08-08 株式会社日立ハイテクファインシステムズ Inspection method and device
JP2022178583A (en) * 2021-05-20 2022-12-02 日本製鉄株式会社 Plate thickness estimation method for spot welded joint

Similar Documents

Publication Publication Date Title
US8449176B2 (en) Automated binary processing of thermographic sequence data
US7699521B2 (en) Automated binary processing of thermographic sequence data
WO2021251064A1 (en) Information processing device, determination method, and information processing program
JP2017026609A (en) Measuring method and device
KR101809504B1 (en) Continuous wave line laser scanning thermography apparatus and method for nondestructive test
WO2021250986A1 (en) Inspection device, inspection method, and inspection program
US20220318667A1 (en) Intelligent real-time defect prediction, detection, and ai driven automated correction solution
Ratsakou et al. Shape reconstruction of delamination defects using thermographic infrared signals based on an enhanced Canny approach
US9984454B2 (en) System, method and computer program product for correcting a difference image generated from a comparison of target and reference dies
TWI637250B (en) Intelligent processing modulation system and method
He et al. Detection of micro solder balls using active thermography and probabilistic neural network
JP2021058927A (en) Laser welding quality detecting method and laser welding quality detecting device
WO2024043006A1 (en) Inspection system, inspection device, and inspection method
KR20160097651A (en) Apparatus and Method for Testing Pattern of Sample using Validity Image Processing Technique, and computer-readable recording medium with program therefor
JP2006170684A (en) Method and device for inspecting press failure
JP2003065985A (en) Method for inspecting laser welding part and apparatus therefor
JP3253724B2 (en) Defect inspection equipment
Florez-Ospina et al. Toward automatic evaluation of defect detectability in infrared images of composites and honeycomb structures
JP2017078624A (en) Method and device for inspecting connectability of sample
JP5567804B2 (en) Appearance inspection device
JP6173088B2 (en) Inspection device, inspection method, program, and recording medium
Su et al. Intelligent diagnosis of flip chip solder bumps using high-frequency ultrasound and a naive Bayes classifier
JP2007081513A (en) Blot defect detecting method for solid-state imaging element
TWI493177B (en) Method of detecting defect on optical film with periodic structure and device thereof
KR101658221B1 (en) Device and method for inspecting quality of sealer coating using the preprocessing thermal image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857121

Country of ref document: EP

Kind code of ref document: A1